Science.gov

Sample records for folate carrier polymorphism

  1. Association of reduced folate carrier-1 (RFC-1) polymorphisms with ischemic stroke and silent brain infarction.

    PubMed

    Cho, Yunkyung; Kim, Jung O; Lee, Jeong Han; Park, Hye Mi; Jeon, Young Joo; Oh, Seung Hun; Bae, Jinkun; Park, Young Seok; Kim, Ok Joon; Kim, Nam Keun

    2015-01-01

    Stroke is the second leading cause of death in the world and in South Korea. Ischemic stroke and silent brain infarction (SBI) are complex, multifactorial diseases influenced by multiple genetic and environmental factors. Moderately elevated plasma homocysteine levels are a major risk factor for vascular diseases, including stroke and SBI. Folate and vitamin B12 are important regulators of homocysteine metabolism. Reduced folate carrier (RFC), a bidirectional anion exchanger, mediates folate delivery to a variety of cells. We selected three known RFC-1 polymorphisms (-43C>T, 80A>G, 696T>C) and investigated their relationship to cerebral infarction in the Korean population. We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to analyze associations between the three RFC-1 polymorphisms, disease status, and folate and homocysteine levels in 584 ischemic stroke patients, 353 SBI patients, and 505 control subjects. The frequencies of the RFC-1 -43TT, 80GG, and 696CC genotypes differed significantly between the stroke and control groups. The RFC-1 80A>G substitution was also associated with small artery occlusion and SBI. In a gene-environment analysis, the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms in the ischemic stroke group had combined effects with all environmental factors. In summary, we found that the RFC-1 -43C>T, 80A>G, and 696T>C polymorphisms may be risk factors for ischemic stroke. PMID:25659099

  2. The association between reduced folate carrier-1 gene 80G/A polymorphism and methotrexate efficacy or methotrexate related-toxicity in rheumatoid arthritis: A meta-analysis.

    PubMed

    Li, XiaoBing; Hu, MingCai; Li, WanPing; Gu, Li; Chen, MeiJuan; Ding, HuiHua; Vanarsa, Kamala; Du, Yong

    2016-09-01

    Methotrexate (MTX), the most commonly used anti-rheumatic drug against RA, enters the cell via the action of the reduced folate carrier 1(RFC1). A major polymorphism of the RFC1 gene, 80G/A, has been reported to influence the activity of RFC1, resulting in variable intracellular MTX-polyglutamate (MTX-PG) levels. However, the association studies addressing the RFC1 80G/A polymorphism and MTX efficacy or toxicity in Rheumatoid arthritis (RA) has yielded conflicting results. In the present meta-analysis, we aimed to evaluate the association between the RFC1 80G/A polymorphism and MTX efficacy or toxicity in RA patients. A total 17 studies met our inclusion criteria. Among them, 12 studies with 2049 subjects reported the association between the RFC1 80G/A and MTX response, and 12 studies involving 2627 subjects were on MTX-related toxicity. Meta-analysis revealed significant association between RFC1 80G/A polymorphism and MTX efficacy (odds ratio (OR) for the A allele=1.29, 95% confidence interval (CI) 1.05-1.67, P=0.02; for AA genotype: OR=1.49, 95%CI 1.17-1.907, P=0.001). However, no association could be detected in the analysis of MTX-related toxicity. Stratification by ethnic population also indicated an association between this polymorphism and MTX efficacy in Asian group (P=0.002 for A allele; P=0.003 for AA genotype), but not in the Caucasian group (P=0.15 for A allele; P=0.05 for AA genotype). In both Asian and Caucasian sub-groups, no influence of the RFC1 80G/A polymorphism on MTX toxicity can be detected. In conclusion, the RFC1 G80A polymorphism is associated with responsiveness to MTX therapy, but may not be associated with MTX toxicity in RA patients. PMID:27233001

  3. Reduced folate carrier-1 80G > A gene polymorphism is not associated with methotrexate treatment response in South Indian Tamils with rheumatoid arthritis.

    PubMed

    Muralidharan, Niveditha; Mariaselvam, Christina Mary; Mithun, C B; Negi, Vir Singh

    2016-04-01

    Methotrexate (MTX) is the most commonly used disease-modifying drug to treat rheumatoid arthritis (RA). Although there are no reliable molecular markers to predict the treatment response and adverse effects to MTX therapy, the polymorphisms in genes coding for MTX metabolizing enzymes and transporters may play a crucial role. The reduced folate carrier-1 (RFC-1) is a bidirectional anion exchanger which transports MTX and folinic acid. It is reported to influence MTX treatment response and adverse effects in some ethnic populations but not in others. It is also associated with susceptibility to various diseases including systemic lupus erythematosus (SLE). The present study was aimed at investigating the role of RFC-1 80G > A gene polymorphism in association with disease susceptibility, MTX treatment response and the MTX-induced adverse events in the South Indian Tamil patients with rheumatoid arthritis. The RFC-1 80G > A gene polymorphism was investigated in 327 patients with RA and in 322 healthy controls by PCR-RFLP method. It was found that the heterozygous RFC-1 80 GA genotype was associated with protection against RA [p = 0.02, odds ratio (OR) 0.69, 95 % confidence interval (CI) 0.50-0.95]. However, it was not found to be associated with MTX treatment response. The RFC-1 G allele frequency was higher in patients with adverse effects, but the difference was not statistically significant (p = 0.08, OR 1.44, 95 % CI 0.97-2.13). RFC-1 80G > A gene polymorphism confers protection for RA. However, it is not associated with MTX treatment response and MTX-induced adverse effects in South Indian Tamil patients with RA. PMID:25771854

  4. Association between folate metabolism-related polymorphisms and colorectal cancer risk

    PubMed Central

    KIM, JONG WOO; JEON, YOUNG JOO; JANG, MOON JU; KIM, JUNG O; CHONG, SO YOUNG; KO, KWANG HYUN; HWANG, SEONG GYU; OH, DOYEUN; OH, JISU; KIM, NAM KEUN

    2015-01-01

    Folate has essential roles in DNA synthesis, repair and methylation. Folate metabolism-related gene variants may modulate the levels of this vitamin and affect the cancer risk. Thus, whether these polymorphisms play an important role in carcinogenesis, particularly colorectal cancer (CRC) development, has been a subject interest. The present study investigated the association between polymorphisms in the methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS) and the reduced folate carrier 1 (RFC1) genes and CRC risk. Polymorphisms in MTHFR (677C>T and 1298A>C), TS [1494del6 and the TS enhancer region (TSER)] and RFC1 (−43T>C, 80G>A and 696C>T) were characterized using polymerase chain reaction-restriction fragment length polymorphism in 477 CRC cases and 514 controls. Although no polymorphisms were significantly associated with the CRC risk in the overall sample, significant associations between folate metabolism-related polymorphisms and CRC risk were identified in the stratified analyses. The MTHFR 677CT/1298AC and MTHFR 1298AC+CC/TSER 2R3R genotypes in the presence of plasma folate levels ≤4.12 ng/ml were associated with significantly increased CRC risk. In addition, individuals with the MTHFR 677TT/TSER 3R3R or MTHFR 677/TSER 3R3R/TS 1494 0bp6bp+6bp6bp genotypes and diabetes mellitus (DM) were at an increased risk for CRC. Therefore, the data suggest that i) MTHFR polymorphisms combined with low plasma folate levels and ii) polymorphisms in folate metabolism-related genes combined with metabolic syndrome risk factors (hypertension and DM) increase the odds of developing CRC. PMID:26137281

  5. Folate: metabolism, genes, polymorphisms and the associated diseases.

    PubMed

    Nazki, Fakhira Hassan; Sameer, Aga Syed; Ganaie, Bashir Ahmad

    2014-01-01

    Folate being an important vitamin of B Complex group in our diet plays an important role not only in the synthesis of DNA but also in the maintenance of methylation reactions in the cells. Folate metabolism is influenced by several processes especially its dietary intake and the polymorphisms of the associated genes involved. Aberrant folate metabolism, therefore, affects both methylation as well as the DNA synthesis processes, both of which have been implicated in the development of various diseases. This paper reviews the current knowledge of the processes involved in folate metabolism and consequences of deviant folate metabolism, particular emphasis is given to the polymorphic genes which have been implicated in the development of various diseases in humans, like vascular diseases, Down's syndrome, neural tube defects, psychiatric disorders and cancers. PMID:24091066

  6. A Humanized Mouse Model for the Reduced Folate Carrier

    PubMed Central

    Patterson, David; Graham, Christine; Cherian, Christina; Matherly, Larry H.

    2008-01-01

    The ubiquitously expressed reduced folate carrier (RFC) or SLC19A1 is recognized to be an essential transport system for folates in mammalian cells and tissues. In addition to its generalized role as a folate transporter, RFC provides specialized tissue functions including absorption across intestinal/colonic epithelia, transport across the basolateral membrane of renal proximal tubules, transplacental transport of folates, and folate transport across the blood-brain barrier. The human RFC (hRFC) gene is regulated by 5 major upstream non-coding regions (designated A1/A2, A, B, C, and D), each transcribed from a unique promoter. Altogether, at least 14 distinct hRFC transcripts can be envisaged in which different 5’ untranslated regions (UTRs) are fused to a common splice acceptor region (positions -1 to -49) within the first coding exon with a common 1776 bp coding sequence. The 5’ non-coding regions are characterized by alternate transcription start sites, multiple splice forms, and selective tissue distributions. Alternate 5’UTRs impact mRNA stabilities and translation efficiencies, and result in synthesis of modified hRFC proteins translated from upstream AUGs. In this report, we describe production and characterization of transgenic mice (TghRFC1) containing a functional hRFC gene and of humanized mice in which the mRFC gene is inactivated and an active hRFC gene has been introduced. The mice appear to be healthy and to breed well. Analysis of tissue specificity of expression in both the TghRFC1 and humanized hRFC mice by real-time RT-PCR demonstrates that the hRFC gene is expressed with a specificity closely resembling that seen in human tissues. For the humanized hRFC mice, levels of B and A1/A2 5’UTRs predominated in all mice/tissues, thus resembling results in normal human tissues. Lower levels of A and C 5’UTRs were also detected. The availability of humanized mouse models for hRFC will permit investigators to address critical unanswered

  7. A humanized mouse model for the reduced folate carrier.

    PubMed

    Patterson, David; Graham, Christine; Cherian, Christina; Matherly, Larry H

    2008-02-01

    The ubiquitously expressed reduced folate carrier (RFC) or SLC19A1 is recognized to be an essential transport system for folates in mammalian cells and tissues. In addition to its generalized role as a folate transporter, RFC provides specialized tissue functions including absorption across intestinal/colonic epithelia, transport across the basolateral membrane of renal proximal tubules, transplacental transport of folates, and folate transport across the blood-brain barrier. The human RFC (hRFC) gene is regulated by five major upstream non-coding regions (designated A1/A2, A, B, C, and D), each transcribed from a unique promoter. Altogether, at least 14 distinct hRFC transcripts can be envisaged in which different 5' untranslated regions (UTRs) are fused to a common splice acceptor region (positions -1 to -49) within the first coding exon with a common 1776bp coding sequence. The 5' non-coding regions are characterized by alternate transcription start sites, multiple splice forms, and selective tissue distributions. Alternate 5' UTRs impact mRNA stabilities and translation efficiencies, and result in synthesis of modified hRFC proteins translated from upstream AUGs. In this report, we describe production and characterization of transgenic mice (TghRFC1) containing a functional hRFC gene and of humanized mice in which the mRFC gene is inactivated and an active hRFC gene has been introduced. The mice appear to be healthy and to breed well. Analysis of tissue specificity of expression in both the TghRFC1 and humanized hRFC mice by real-time RT-PCR demonstrates that the hRFC gene is expressed with a specificity closely resembling that seen in human tissues. For the humanized hRFC mice, levels of B and A1/A2 5' UTRs predominated in all mice/tissues, thus resembling results in normal human tissues. Lower levels of A and C 5' UTRs were also detected. The availability of humanized mouse models for hRFC will permit investigators to address critical unanswered questions

  8. Polymorphisms of Genes Involved in the Folate Metabolic Pathway Impact the Occurrence of Unexplained Recurrent Pregnancy Loss.

    PubMed

    Luo, Li; Chen, Yueming; Wang, Li; Zhuo, Guangchao; Qiu, Chunning; Tu, Qiaofeng; Mei, Jin; Zhang, Wen; Qian, Xia; Wang, Xianjun

    2015-07-01

    Low levels of folate combined with high levels of homocysteine may cause unexplained recurrent pregnancy loss (URPL). However, the relationships between polymorphisms in genes of the folate metabolic pathway and URPL remain controversial. We conducted a case-control study to explore polymorphisms of the major folate pathway genes, including methylenetetrahydrofolate reductase (MTHFR) 677C>T, MTHFR 1298A>C, methionine synthase (MTR) 2756A>G, methionine synthase reductase (MTRR) 66A>G and reduced folate carrier 1 (RFC-1) 80A>G, and their associations with URPL. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to determine the distributions of MTHFR, MTR and RFC-1 polymorphisms, and the results were validated using direct sequencing. The polymorphisms in MTRR were determined using direct sequencing. Haplotypes were analyzed using SHEsis, an online tool for biological analysis. We found that the MTHFR 677T allele and the 677T/1298A/2756A/66A/80G haplotype were risk factors for URPL, while the MTR 2756G allele and the 677C/1298A/2756A/66A/80A haplotype exhibited protective effects on susceptibility to URPL in a Chinese Han population from the Hangzhou area. PMID:25544674

  9. Dietary intake of folate and co-factors in folate metabolism, MTHFR polymorphisms, and reduced rectal cancer.

    PubMed

    Murtaugh, Maureen A; Curtin, Karen; Sweeney, Carol; Wolff, Roger K; Holubkov, Richard; Caan, Bette J; Slattery, Martha L

    2007-03-01

    Little is known about the contribution of polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR) and the folate metabolism pathway in rectal cancer alone. Data were from participants in a case-control study conducted in Northern California and Utah (751 cases and 979 controls). We examined independent associations and interactions of folate, B vitamins, methionine, alcohol, and MTHFR polymorphisms (MTHFR C677T and A1298C) with rectal cancer. Dietary folate intake was associated with a reduction in rectal cancer OR 0.66, 95% CI 0.48-0.92 (>475 mcg day compared to < or = 322 mcg) as was a combination of nutrient intakes contributing to higher methyl donor status (OR 0.79, 95% CI 0.66-0.95). Risk was reduced among women with the 677 TT genotype (OR 0.54, 95% CI 0.30-0.9), but not men (OR 1.11, 95% CI 0.70-1.76) and with the 1298 CC genotype in combined gender analysis (OR 0.67, 95% CI 0.46-0.98). These data are consistent with a protective effect of increasing dietary folate against rectal cancer and suggest a protective role of the MTHFR 677 TT genotype in women and 1298 CC in men and women. Folate intake, low methyl donor status, and MTHFR polymorphisms may play independent roles in the etiology of rectal cancer. PMID:17245555

  10. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children

    PubMed Central

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C.; Reyes-López, Miguel A.; Quiñones, Luis A.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11–5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62–78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42–191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94–31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05–6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19–31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  11. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children.

    PubMed

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C; Reyes-López, Miguel A; Quiñones, Luis A

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11-5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62-78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42-191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94-31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05-6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19-31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  12. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency

    PubMed Central

    Li, Wen-Xing; Dai, Shao-Xing; Zheng, Jun-Juan; Liu, Jia-Qian; Huang, Jing-Fei

    2015-01-01

    Folate deficiency is strongly associated with cardiovascular disease. We aimed to explore the joint effect of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G polymorphisms on folate deficiency in a Chinese hypertensive population. A total of 480 subjects aged 28–75 were enrolled in this study from September 2005–December 2005 from six hospitals in different Chinese regions. Known genotypes were detected by PCR-RFLP methods and serum folate was measured by chemiluminescence immunoassay. Our results showed that MTHFR 677TT and MTR 2756AG + GG were independently associated with a higher risk of folate deficiency (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA p = 0.030, respectively). However, the MTHFR A1298C mutation may confer protection by elevating the serum folate level (p = 0.025). Furthermore, patients carrying two or more risk genotypes showed higher odds of folate deficiency than null risk genotype carriers, especially those carrying four risk genotypes. These findings were verified by generalized multifactor dimensionality reduction (p = 0.0107) and a cumulative effects model (p = 0.001). The results of this study have shown that interactions among homocysteine metabolism gene polymorphisms lead to dramatic elevations in the folate deficiency risk. PMID:26266420

  13. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency.

    PubMed

    Li, Wen-Xing; Dai, Shao-Xing; Zheng, Jun-Juan; Liu, Jia-Qian; Huang, Jing-Fei

    2015-08-01

    Folate deficiency is strongly associated with cardiovascular disease. We aimed to explore the joint effect of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G polymorphisms on folate deficiency in a Chinese hypertensive population. A total of 480 subjects aged 28-75 were enrolled in this study from September 2005-December 2005 from six hospitals in different Chinese regions. Known genotypes were detected by PCR-RFLP methods and serum folate was measured by chemiluminescence immunoassay. Our results showed that MTHFR 677TT and MTR 2756AG + GG were independently associated with a higher risk of folate deficiency (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA p = 0.030, respectively). However, the MTHFR A1298C mutation may confer protection by elevating the serum folate level (p = 0.025). Furthermore, patients carrying two or more risk genotypes showed higher odds of folate deficiency than null risk genotype carriers, especially those carrying four risk genotypes. These findings were verified by generalized multifactor dimensionality reduction (p = 0.0107) and a cumulative effects model (p = 0.001). The results of this study have shown that interactions among homocysteine metabolism gene polymorphisms lead to dramatic elevations in the folate deficiency risk. PMID:26266420

  14. Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease.

    PubMed

    Bravatà, Valentina

    2015-02-01

    Breast cancer (BC) represents a highly heterogeneous tumour at both the clinical and molecular levels. Single-nucleotide polymorphisms (SNPs) of the folate-metabolising enzyme methylenetetrahydrofolate-reductase (MTHFR) may modify the association between folate intake and BC and influence plasma folate concentration. The role of folate in BC is equivocal, association studies between the common MTHFR SNPs C677T and A1298C and BC risk are controversial. In this study, I have reviewed observed associations between folate intake, as well as its blood levels, and BC. The purpose of this review is to analyse the role of folate and the two SNPs associated with reduced enzyme activity in BC. I explored the most relevant and updated work that emphasises positive and negative associations among these variables. My findings indicate that no definitive conclusions can be drawn from the studies on this topic. However, this manuscript highlights variables that could be useful to explore in further association analyses. PMID:25318348

  15. Folate and Thiamine Transporters mediated by Facilitative Carriers (SLC19A1-3 and SLC46A1) and Folate Receptors

    PubMed Central

    Zhao, Rongbao; Goldman, I. David

    2013-01-01

    The reduced folate carrier (RFC,SLC19A1), thiamine transporter-1 (ThTr1,SLC19A2) and thiamine transporter-2 (ThTr2,SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT,SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  16. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors.

    PubMed

    Zhao, Rongbao; Goldman, I David

    2013-01-01

    The reduced folate carrier (RFC, SLC19A1), thiamine transporter-1 (ThTr1, SLC19A2) and thiamine transporter-2 (ThTr2, SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT, SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  17. MTHFR polymorphisms, dietary folate intake, and breast cancer risk: results from the Shanghai Breast Cancer Study.

    PubMed

    Shrubsole, Martha J; Gao, Yu-Tang; Cai, Qiuyin; Shu, Xiao Ou; Dai, Qi; Hébert, James R; Jin, Fan; Zheng, Wei

    2004-02-01

    Folate plays an important role in DNA methylation, synthesis, and repair; intake has been associated with breast cancer. The folate-metabolizing enzyme, methylenetetrahydrofolate reductase (MTHFR) is polymorphic at nucleotides 677 (C-->T) and 1298 (A-->C), resulting in allozymes with decreased activity. We evaluated these two common polymorphisms and their effects on the folate intake and breast cancer risk association in a population-based case-control study of 1144 breast cancer cases and 1236 controls using a PCR-RFLP-based assay. All subjects completed in-person interviews, which included a food frequency questionnaire. Unconditional logistic regression models were used to calculate odds ratios and their 95% confidence intervals, after adjusting for potential confounding factors. Cases and controls were similar in the distribution of MTHFR polymorphisms at codons 677 (41.4% cases and 41.8% controls carried the T allele) and 1298 (17.6% cases and 17.5% controls carried the C allele). An inverse association of breast cancer risk with folate intake was observed in all genotype groups, particularly among subjects with the 677TT genotype. Compared with those with the 677CC genotype and high folate, the adjusted odds ratios (95% confidence intervals) associated with low folate intake were 1.94 (1.15-3.26), 2.17 (1.34-3.51), and 2.51 (1.37-4.60) for subjects who had CC, CT, and TT genotypes (p for interaction, 0.05). No modifying effect of A1298C genotypes on the association of folate intake with breast cancer risk was observed. Results of this study suggest that the MTHFR C677T polymorphisms may modify the association between dietary folate intake and breast cancer risk. PMID:14973091

  18. A COMMON POLYMORPHISM IN THE METHYLENETETRAHYDROFOLATE REDUCTASE (MTHFR) GENE IS ASSOCIATED WITH QUANTITATIVE ULTRASOUND IN THOSE WITH LOW PLASMA FOLATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study of a polymorphism in the MTHFR gene, plasma folate, and bone phenotypes in 1632 individuals revealed that the genotype effect on BMD and quantitative ultrasound was dependent on the level of folate. Our findings support the hypothesis that the association between an MTHFR polymorphism and bo...

  19. The influence of folate pathway polymorphisms on high-dose methotrexate-related toxicity and survival in children with non-Hodgkin malignant lymphoma

    PubMed Central

    Erculj, Nina; Kotnik, Barbara Faganel; Debeljak, Marusa; Jazbec, Janez; Dolzan, Vita

    2014-01-01

    Background We evaluated the influence of folate pathway polymorphisms on high-dose methotrexate (HD-MTX) related toxicity in paediatric patients with T-cell non-Hodgkin lymphoma (NHL). Patients and methods In total, 30 NHL patients were genotyped for selected folate pathway polymorphisms. Results Carriers of at least one MTHFR 677T allele had significantly higher MTX area under the time-concentration curve levels at third MTX cycle (P = 0.003). These patients were also at higher odds of leucopoenia (P = 0.006) or thrombocytopenia (P = 0.041) and had higher number of different HD-MTX-related toxicity (P = 0.035) compared to patients with wild-type genotype. Conclusions Our results suggest an important role of MTHFR 677C>T polymorphism in the development of HD-MTX-related toxicity in children with NHL. PMID:25177243

  20. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine and DNA uracil concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Folate is an essential nutrient which supports nucleotide synthesis and biological methylation reactions. Diminished folate status results in chromosome breakage and is associated with several diseases including colorectal cancer. Folate status is also inversely related to plasma homocys...

  1. Polymorphisms of folate metabolic genes and susceptibility to bladder cancer: a case-control study.

    PubMed

    Lin, Jie; Spitz, Margaret R; Wang, Yunfei; Schabath, Matthew B; Gorlov, Ivan P; Hernandez, Ladia M; Pillow, Patricia C; Grossman, H Barton; Wu, Xifeng

    2004-09-01

    Epidemiological studies have shown an association between low folate intake and an increased cancer risk. Major genes involved in folate metabolism include methylene-tetrahydrofolate reductase (MTHFR) and methionine synthase (MS). We investigated joint effects of polymorphisms of the MTHFR (677 C-->T, 1298A-->C) and MS genes (2756 A-->G), dietary folate intake and cigarette smoking on the risk of bladder cancer in a case-control study. The study population consisted of 457 bladder cancer patients and 457 healthy controls, matched to the cases in terms of age, gender and ethnicity. Genotype data were analyzed in a subset of 410 Caucasian cases and 410 controls. Compared with individuals carrying the MTHFR 677 wild-type (CC) and reporting a high folate intake, those carrying the variant genotype (CT or TT) and reporting a low folate intake were at a significantly 3.51-fold increased risk of bladder cancer (95% CI: 1.59-6.52). In contrast, individuals carrying a variant genotype and reporting a high folate intake were at only a 1.39-fold increased risk (95% CI: 0.71-2.70), and those carrying the wild-type and reporting a low folate intake were at only 1.56-fold increased risk (95% CI: 0.82-2.97). The interaction between genetic polymorphisms and folate intake was significant on the multiplicative scale (P = 0.01). When analyzed in the context of smoking status, compared with never smokers with the MTHFR 677 wild-type, the risk increased to 6.56-fold (95% CI: 3.28-13.12) in current smokers carrying the variant genotype. Analyses of the MTHFR 1298, MS 2756 genes revealed similar results. In addition, age at cancer onset in former smokers increased as the proportion of the heteromorphic haplotype in the individual increased (P = 0.005). Our results strongly suggest that polymorphisms of the MTHFR and MS genes act together with low folate intake and smoking to increase bladder cancer risk. These results have important implications for cancer prevention in susceptible

  2. Polymorphisms in folate pathway genes are not associated with somatic nondisjunction in turner syndrome.

    PubMed

    Bispo, Adriana Valéria Sales; dos Santos, Luana Oliveira; de Barros, Juliana Vieira; Duarte, Andrea Rezende; Araújo, Jacqueline; Muniz, Maria Tereza Cartaxo; Santos, Neide

    2015-07-01

    Folate metabolism dysfunction can lead to DNA hypomethylation and abnormal chromosomal segregation. Previous investigations of this association have produced controversial results. Here we performed a case-control study in patients with Turner syndrome (TS) to determine the effects of genetic polymorphisms of folate pathway genes as potential risk factors for somatic chromosomal nondisjunction. TS is a useful model for this investigation because patients with TS show a high frequency of chromosome mosaicism. Here we investigated the possible association of polymorphisms of the MTHFR gene with TS risk, which has been previously investigated with controversial results. We also examined the effects of MTR, RFC1, and TYMS gene polymorphisms in TS for the first time. The risk was evaluated according to allelic and genotype (independent and combined) frequencies among 70 patients with TS and 144 age-matched healthy control subjects. Polymorphism genotyping was performed by PCR, PCR-RFLP, and PCR-ASA. The polymorphisms MTHFR 677C>T and 1298A>C, MTR 2756A>G, RFC1 80G>A, and TYMS 2R/3R-alone or in combinations-were not associated with the risk of chromosomal aneuploidy in TS. In conclusion, our present findings did not support a link between impaired folate metabolism and abnormal chromosome segregation leading to somatic nondisjunction in TS patients. PMID:25858821

  3. Serum homocysteine, folate level and methylenetetrahydrofolate reductase 677, 1298 gene polymorphism in Korean schizophrenic patients.

    PubMed

    Lee, Young Sik; Han, Doug Hyun; Jeon, Chang Moo; Lyoo, In Kyoon; Na, Chul; Chae, Seok Lae; Cho, Soo Churl

    2006-05-15

    High homocysteine serum level has been regarded as one of the important factors that influence the development of schizophrenia. Genetic variations of methylenetetrahydrofolate reductase, which is a main enzyme reducing homocysteine level, are reported in schizophrenic patients. We measured the serum level of homocysteine/folate and methylenetetrahydrofolate reductase C677T/A1298C gene polymorphism in 235 patients with schizophrenia. Plasma homocysteine levels were higher and folate levels were lower in patients than in comparison subjects. Variations of C677T were more frequent in patients than in comparison subjects. Patients with the 677TT genotype showed higher homocysteine levels than patients with the CC and CT genotypes. These findings suggest that folate supplement may be beneficial to some schizophrenic patients with homocysteinemia due to the genetic defect of methylenetetrahydrofolate reductase. PMID:16641680

  4. The Major Facilitative Folate Transporters Solute Carrier 19A1 and Solute Carrier 46A1: Biology and Role in Antifolate Chemotherapy of Cancer

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun

    2014-01-01

    This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases. PMID:24396145

  5. Folate and One-Carbon Metabolism Gene Polymorphisms and Their Associations With Oral Facial Clefts

    PubMed Central

    Boyles, Abee L.; Wilcox, Allen J.; Taylor, Jack A.; Meyer, Klaus; Fredriksen, Åse; Ueland, Per Magne; Drevon, Christian A.; Vollset, Stein Emil; Lie, Rolv Terje

    2008-01-01

    Folate metabolism plays a critical role in embryonic development. Prenatal folate supplementation reduces the risk of neural tube defects and probably oral facial clefts. Previous studies of related metabolic genes have associated polymorphisms in cystathionine-beta-synthase (CBS) and 5,10-methylenetetrahydrofolate reductase (MTHFR) with cleft risk. We explored associations between genes related to one-carbon metabolism and clefts in a Norwegian population-based study that included 362 families with cleft lip with or without cleft palate (CL/P) and 191 families with cleft palate only (CPO). We previously showed a 39% reduction in risk of CL/P with folic acid supplementation in this population. In the present study we genotyped 12 polymorphisms in nine genes related to one-carbon metabolism and looked for associations of clefting risk with fetal polymorphisms, maternal polymorphisms, as well as parent-of-origin effects, using combined likelihood-ratio tests (LRT). We also stratified by maternal periconceptional intake of folic acid (>400 μg) to explore gene-exposure interactions. We found a reduced risk of CL/P with mothers who carried the CBS C699T variant (rs234706); relative risk was 0.94 with one copy of the T allele (95% CI 0.63-1.4) and 0.50 (95% CI 0.26-0.96) with two copies (P = 0.008). We found no evidence of interaction of this variant with folate status. We saw no evidence of risk from the MTHFR C677T variant (rs1801133) either overall or after stratifying by maternal folate intake. No associations were found between any of the polymorphisms and CPO. Genetic variations in the nine metabolic genes examined here do not confer a substantial degree of risk for clefts. Published 2008 Wiley-Liss, Inc.† PMID:18203168

  6. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    SciTech Connect

    Halwachs, Sandra; Lakoma, Cathleen; Gebhardt, Rolf; Schaefer, Ingo; Seibel, Peter; Honscha, Walther

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  7. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and thymidylate synthase, dietary folate intake, and the risk of leukemia in adults.

    PubMed

    Liu, Ping; Zhang, Min; Xie, Xing; Jin, Jie; Holman, C D'Arcy J

    2016-03-01

    The 5,10-methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) are critical enzymes in folate metabolism. Previous studies have reported conflicting results on the associations between MTHFR/TS polymorphisms and adult leukemia risk, which may due to the lack of information on folate intake. We investigated the risks of adult leukemia with genetic polymorphisms of folate metabolic enzymes (MTHFR C677T, A1298C, and TS) and evaluated if the associations varied by dietary folate intake from a multicenter case-control study conducted in Chinese. This study comprised 442 incident adult leukemia cases and 442 outpatient controls, individually matched to cases by gender, birth quinquennium, and study site. Genotypes were determined by a polymerase chain reaction (PCR) or PCR-based restriction fragment length polymorphism assay. Dietary folate intake was assessed by face-to-face interviews using a validated food-frequency questionnaire. The MTHFR 677TT genotype conferred a significant higher risk of leukemia in males than in females and exhibited an increased risk of acute myeloid leukemia (AML) but a decreased risk of acute lymphoblastic leukemia (ALL). The MTHFR 1298AC genotype appeared to decrease the risks of leukemia in both genders, in AML and ALL. Stratified analysis by dietary folate intake showed the increased risks of leukemia with the MTHFR 677TT and TS 2R3R/2R2R genotypes were only significant in individuals with low folate intake. A significant interaction between TS polymorphism and dietary folate intake was observed (P = 0.03). This study suggests that dietary folate intake and gender may modify the associations between MTHFR/TS polymorphisms and adult leukemia risk. PMID:26438060

  8. Folate, alcohol, and aldehyde dehydrogenase 2 polymorphism and the risk of oral and pharyngeal cancer in Japanese.

    PubMed

    Matsuo, Keitaro; Rossi, Marta; Negri, Eva; Oze, Isao; Hosono, Satoyo; Ito, Hidemi; Watanabe, Miki; Yatabe, Yasushi; Hasegawa, Yasuhisa; Tanaka, Hideo; Tajima, Kazuo; La Vecchia, Carlo

    2012-03-01

    Folate consumption is inversely associated with the risk of oral and pharyngeal cancer (OPC) and potentially interacts with alcohol drinking in the risk of OPC. Aldehyde dehydrogenase 2 (ALDH2) gene polymorphism is known to interact with alcohol consumption. The aim of this study was to investigate potential interaction between folate, alcohol drinking, and ALDH2 polymorphism in the risk of OPC in a Japanese population. The study group comprised 409 head and neck cancer cases and 1227 age-matched and sex-matched noncancer controls; of these, 251 cases and 759 controls were evaluated for ALDH rs671 polymorphism. Associations were assessed by odds ratios and 95% confidence intervals in multiple logistic regression models. We observed an inverse association between folate consumption and OPC risk. The odds ratio for high folate intake was 0.53 (95% confidence interval: 0.36-0.77) relative to low intake (P trend=0.003). This association was consistent across strata of sex, age, smoking, and ALDH2 genotypes. Interaction between folate consumption, drinking, and ALDH2 genotype was remarkable (three-way interaction, P<0.001). We observed significant interaction among folate, drinking, and ALDH2 genotype in the Japanese population. PMID:21946912

  9. MTHFR Polymorphisms, Folate Intake, and Carcinogen DNA Adducts in the Lung

    PubMed Central

    Lee, Mi-Sun; Asomaning, Kofi; Su, Li; Wain, John C.; Mark, Eugene J.; Christiani, David C.

    2011-01-01

    The methylenetetrahydrofolate reductase (MTHFR) genes and folate in one-carbon metabolism are essential for DNA methylation and synthesis. However, their role in carcinogen DNA damage in target lung tissue, a dosimeter for cancer risk, is not known. Our study aimed to investigate the association between genetic and nutritional one-carbon metabolism factors and DNA adducts in target lung. Data on 135 lung cancer cases from the Massachusetts General Hospital were studied. Genotyping was completed for MTHFR C677T (rs1801133) and A1298C (rs1801131). Information on dietary intake for one-carbon related micronutrients, folate and other B vitamin, was derived from a validated food frequency questionnaire. DNA adducts in lung were measured by 32P-postlabeling. After adjusting for potential confounders, DNA adduct levels in lung significantly increased by 69.2% [95% confidence interval (CI), 5.5% to 171.5%] for the MTHFR 1298AC+CC genotype. The high risk group, combining the A1298C (AC+CC) plus C677T (CT+TT) genotypes, had significantly enhanced levels of lung adducts by 210.7% (95% CI, 21.4% to 695.2%) in contrast to the A1298C (AA) plus C677T (CC) genotypes. Elevation of DNA adduct was pronounced - 111.3% (95% CI, −3.0 to 360.5%) among 1298AC+CC patients who consumed the lowest level of folate intake as compared with 1298AA individuals with highest tertile of intake. These results indicate that DNA adducts levels are influenced by MTHFR polymorphisms and low folate consumption, suggesting an important role of genetic and nutritional factors in protecting DNA damage from lung carcinogen in at-risk populations. PMID:22052259

  10. Combined folate gene MTHFD and TC polymorphisms as maternal risk factors for Down syndrome in China.

    PubMed

    Liao, Y P; Zhang, D; Zhou, W; Meng, F M; Bao, M S; Xiang, P; Liu, C Q

    2014-01-01

    We examined whether polymorphisms in the methylenetetrahydrofolate dehydrogenase (MTHFD) and transcobalamin (TC) genes, which are involved in folate metabolism, affect maternal risk for Down syndrome. We investigated 76 Down syndrome mothers and 115 control mothers from Bengbu, China. Genomic DNA was isolated from the peripheral lymphocytes. Polymerase chain reaction and restriction fragment length polymorphism were used to examine the polymorphisms of MTHFD G1958A and TC C776G. The frequencies of the polymorphic alleles were 24.3 and 19.1% for MTHFD 1958A, 53.9 and 54.2% for TC 776G, in the case and control groups, respectively. No significant differences were found between two groups in relation to either the allele or the genotype frequency for both polymorphisms. However, when gene-gene interactions between these two polymorphisms together with previous studied C677T and A1298C polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene were analyzed, the combined MTHFR 677CT/TT and MTHFD 1958AA/GA genotype was found to be significantly associated with the risk of having a Down syndrome child [odds ratio (OR) = 3.11; 95% confidence interval (95%CI) = 1.07-9.02]. In addition, the combined TC 776CG and MTHFR 677TT genotype increased the risk of having a child with Down syndrome 3.64-fold (OR = 3.64; 95%CI = 1.28-10.31). In conclusion, neither MTHFD G1958A nor TC C776G polymorphisms are an independent risk factor for Down syndrome. However, the combined MTHFD/MTHFR, TC/MTHFR genotypes play a role in the risk of bearing a Down syndrome child in the Chinese population. PMID:24668664

  11. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms resulting in suboptimal oocyte maturation: a discussion of folate status, neural tube defects, schizophrenia, and vasculopathy

    PubMed Central

    Jongbloet, Piet Hein; Verbeek, André LM; den Heijer, Martin; Roeleveld, Nel

    2008-01-01

    Several conditions apparent at birth, e.g., neural tube defects (NTDs) and cardiac anomalies, are associated with polymorphisms in folate-related genes, such as the 677C → T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene. Similar associations have been established for several constitutional chronic diseases in adulthood, such as schizophrenia, cardiovascular diseases, dementia, and even neoplasias in different organ systems. This spectrum of developmental anomalies and constitutional diseases may be linked to high-risk conceptions related to preovulatory overripeness ovopathy (PrOO). Some developmental anomalies, such as NTDs, are to a large extent prevented by supplementation of folic acid before conception, but supplementation does not seem to prevent cardiovascular disease or cognitive decline. These diverging results can be elucidated by introduction of the PrOO concept, as MTHFR polymorphisms and inherent low folate levels induce both non-optimal maturation of the oocyte and unsuccessful DNA methylation and demethylation, i.e. epigenetic mutations. The PrOO concept is testable and predicts in a random population the following: (1) female carriers of specific genetic MTHFR variants exhibit more ovulatory disturbances and inherent subfecundity traits, (2) descendents from a carrier mother, when compared with those from a wild-type mother, are more frequently conceived in PrOO high-risk conditions and, thus, (3) disadvantaged in life expectancy. If so, some MTHFR polymorphisms represent a novel, genetically determined, PrOO high-risk conception category comparable to those which are environmentally and behaviorly influenced. These high-risk conditions may cause developmental anomalies and defective epigenetic reprogramming in progeny. The interaction between genetic and environmental factors is a plausible mechanism of multifactorial inheritance. PMID:18616826

  12. THE GLUTAMATE CARBOXYPEPTIDASE GENE II (C>T) POLYMORPHISM DOES NOT AFFECT FOLATE STATUS IN THE FRAMINGHAM OFFSPRING COHORT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally occurring folates are comprised mostly of reduced polyglutamyl derivatives and require hydrolysis to monoglutamyl derivatives before they are absorbed by the small intestine. This hydrolysis is catalyzed by glutamate carboxypeptidase II (GCPII). Recently, a 1561 C>T polymorphism in the GCP...

  13. Genetic Polymorphisms Involved in Folate Metabolism and Maternal Risk for Down Syndrome: A Meta-Analysis

    PubMed Central

    Balduino Victorino, Daniella; de Godoy, Moacir Fernandes; Goloni-Bertollo, Eny Maria; Pavarino, Érika Cristina

    2014-01-01

    Inconclusive results of the association between genetic polymorphisms involved in folate metabolism and maternal risk for Down syndrome (DS) have been reported. Therefore, this meta-analysis was conducted. We searched electronic databases through May, 2014, for eligible studies. Pooled odds ratios with 95% confidence intervals were used to assess the strength of the association, which was estimated by fixed or random effects models. Heterogeneity among studies was evaluated using Q-test and I2 statistic. Subgroup and sensitivity analyses were also conducted. Publication bias was estimated using Begg's and Egger's tests. A total of 17 case-controls studies were included. There was evidence for an association between the MTRR c.66A>G (rs1801394) polymorphism and maternal risk for DS. In the subgroup analysis, increased maternal risk for DS was found in Caucasians. Additionally, the polymorphic heterozygote MTHFD1 1958GA genotype was associated significantly with maternal risk for DS, when we limit the analysis by studies conformed to Hardy-Weinberg equilibrium. Finally, considering MTR c.2756A>G (rs1805087), TC2 c.776C>G (rs1801198), and CBS c.844ins68, no significant associations have been found, neither in the overall analyses nor in the stratified analyses by ethnicity. In conclusion, our meta-analysis suggested that the MTRR c.66A>G (rs1801394) polymorphism and MTHFD1 c.1958G>A (rs2236225) were associated with increased maternal risk for DS. PMID:25544792

  14. Genetic polymorphisms involved in folate metabolism and maternal risk for down syndrome: a meta-analysis.

    PubMed

    Balduino Victorino, Daniella; de Godoy, Moacir Fernandes; Goloni-Bertollo, Eny Maria; Pavarino, Érika Cristina

    2014-01-01

    Inconclusive results of the association between genetic polymorphisms involved in folate metabolism and maternal risk for Down syndrome (DS) have been reported. Therefore, this meta-analysis was conducted. We searched electronic databases through May, 2014, for eligible studies. Pooled odds ratios with 95% confidence intervals were used to assess the strength of the association, which was estimated by fixed or random effects models. Heterogeneity among studies was evaluated using Q-test and I (2) statistic. Subgroup and sensitivity analyses were also conducted. Publication bias was estimated using Begg's and Egger's tests. A total of 17 case-controls studies were included. There was evidence for an association between the MTRR c.66A>G (rs1801394) polymorphism and maternal risk for DS. In the subgroup analysis, increased maternal risk for DS was found in Caucasians. Additionally, the polymorphic heterozygote MTHFD1 1958GA genotype was associated significantly with maternal risk for DS, when we limit the analysis by studies conformed to Hardy-Weinberg equilibrium. Finally, considering MTR c.2756A>G (rs1805087), TC2 c.776C>G (rs1801198), and CBS c.844ins68, no significant associations have been found, neither in the overall analyses nor in the stratified analyses by ethnicity. In conclusion, our meta-analysis suggested that the MTRR c.66A>G (rs1801394) polymorphism and MTHFD1 c.1958G>A (rs2236225) were associated with increased maternal risk for DS. PMID:25544792

  15. Schizophyllan-folate conjugate as a new non-cytotoxic and cancer-targeted antisense carrier.

    PubMed

    Hasegawa, Teruaki; Fujisawa, Tomohisa; Haraguchi, Shuichi; Numata, Munenori; Karinaga, Ryouji; Kimura, Taro; Okumura, Shiro; Sakurai, Kazuo; Shinkai, Seiji

    2005-01-17

    Schizophyllan having folate-appendages was synthesized from native schizophyllan through NaIO(4)-oxidation and the subsequent reductive amination in aqueous ammonia followed by amido-coupling with folic acid. The resulting folate-appended schizophyllan can form stable complex with poly(dA), show specific affinity toward folate binding protein, and mediate effective antisense activity in cancer cells. PMID:15603948

  16. Association of DNA Methyltransferases 3A and 3B Polymorphisms, and Plasma Folate Levels with the Risk of Urothelial Carcinoma

    PubMed Central

    Chung, Chi-Jung; Chang, Chao-Hsiang; Liu, Chiu-Shong; Huang, Chi-Ping; Chang, Yi-Huei; Chien, Ssu-Ning; Tsai, Ping-Huan; Hsieh, Hui-An

    2014-01-01

    Background Interindividual genetic variations of human DNA methyltransferases (DNMTs), which involve the methyl donor from the folate-related one-carbon metabolism pathway, are hypothesized as a risk factor for urothelial carcinoma (UC). Therefore, we evaluated the role of gene-environment interaction in UC carcinogenesis. Methods A hospital-based case-control study was conducted by recruiting 192 patients with UC and 381 controls. Their plasma folate levels were measured using a competitive immunoassay kit. In addition, DNMT3A −448A>G and DNMT3B −579G>T genotyping was evaluated using a polymerase chain reaction-restriction fragment length polymorphism technique. Multivariate logistic regression and 95% confidence intervals (CIs) were applied to estimate the UC risk. Results We observed that patients with UC exhibited a higher prevalence rate of folate insufficiency (folate levels ≤6 ng/mL) compared with the controls (35.94% and 18.37%, respectively). Furthermore, folate levels were higher in the prevalent UC patients than in the incident UC patients. However, folate insufficiency was similarly associated with a nearly two-fold increase in the risk of UC regardless of the UC patient group. In addition, the frequencies of the variant alleles for DNMT3A and DNMT3B were 0.80 and 0.92, respectively, and no association was observed with UC risk. However, participants with a variant homozygous genotype of DNMT3B −579G>T and folate insufficiency or with high cumulative cigarette smoking exhibited an increased risk of UC. Conclusion Overall, environmental factors may contribute more significantly to UC carcinogenesis compared with genetic susceptibility. Future studies should investigate other polymorphisms of DNMT3A and DNMT3B to determine genetic susceptibility. PMID:25126948

  17. Association between 11 genetic polymorphisms in folate-metabolising genes and head and neck cancer risk.

    PubMed

    Galbiatti, Ana Lívia Silva; da Silva, Lidia Maria Rebolho Batista; Ruiz-Cintra, Mariangela Torreglosa; Raposo, Luis Sérgio; Maníglia, José Victor; Pavarino, Erika Cristina; Goloni-Bertollo, Eny Maria

    2012-07-01

    Genetic polymorphisms in folate metabolism may affect the risk of head and neck cancer (HNSCC) due to its involvement in DNA methylation and synthesis. We conducted a case-control study (265 HNSCC cases and 466 non-cancer controls) to investigate associations of MTHFR C677T and A1298C, MTR A2756G, MTRR A66G, RFC1 A80G, MTHFD1 G1958A, CBS 844ins68, TC2 C776G and A67G, SHMT C1420T and BHMT G742A polymorphisms with HNSCC risk. Interactions between polymorphisms and survival time, tobacco and alcohol habits, age, gender and tumour staging (TNM classification) were evaluated by multiple logistic regression analysis. We found that age ≥ 49 years (P<0.001), male gender (P=0.03), tobacco habit (P<0.001), MTHFR 1298AC/CC (P=0.028), MTR 2756AG/GG (P=0.010) and RFC1 80AG/GG (P=0.015) genotypes were associated with an increased risk of HNSCC. There were interactions between lower survival and CBS 844ins68 (P=0.005); age ≥ 49 years and MTR 2756 AG/GG (P=0.004) and RFC1 80AG/GG (P=0.006) genotypes; male gender and MTHFR 1298 AC/CC (P=0.030), MTR 2756 AG/GG (P=0.006) and RFC1 80 AG/GG (P=0.009); tobacco non-habit and MTHFD1 1958GA/AA (P=0.040); tobacco and MTHFR 1298 AC/CC (P=0.054) and MTR 2756 AG/GG (P=0.010); alcohol non-consume and RFC1 80 AG/GG (P=0.008) with HNSCC increased risk. MTHFR C677CT/TT genotypes were less frequently in advanced tumours (P=0.04). In conclusion, our data provide evidence that folate metabolism genetic polymorphisms associated with variables as advanced age, male gender, tobacco and alcohol increase HNSCC development; CBS 844ins68 and MTHFR C677T polymorphisms are associated with less survival time and advanced stage tumours, respectively. PMID:22051736

  18. Folate Intake, MTHFR Polymorphisms, and the Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis

    PubMed Central

    Kennedy, Deborah A.; Stern, Seth J.; Matok, Ilan; Moretti, Myla E.; Sarkar, Moumita; Adams-Webber, Thomasin; Koren, Gideon

    2012-01-01

    Background. The objective was to determine whether relationships exist between the methylene-tetrahydrofolate reductase (MTHFR) polymorphisms and risk of colorectal cancer (CRC) and examine whether the risk is modified by level of folate intake. Methods. MEDLINE, Embase, and SCOPUS were searched to May 2012 using the terms “folic acid,” “folate,” “colorectal cancer,” “methylenetetrahydrofolate reductase,” “MTHFR.” Observational studies were included which (1) assessed the risk of CRC for each polymorphism and/or (2) had defined levels of folate intake for each polymorphism and assessed the risk of CRC. Results. From 910 references, 67 studies met our criteria; hand searching yielded 10 studies. The summary risk estimate comparing the 677CT versus CC genotype was 1.02 (95% CI 0.95–1.10) and for 677TT versus CC was 0.88 (95% CI 0.80–0.96) both with heterogeneity. The summary risk estimates for A1298C polymorphisms suggested no reduced risk. The summary risk estimate for high versus low total folate for the 677CC genotype was 0.70 (95% CI 0.56–0.89) and the 677TT genotype 0.63 (95% CI 0.41–0.97). Conclusion. These results suggest that the 677TT genotype is associated with a reduced risk of developing CRC, under conditions of high total folate intake, and this associated risk remains reduced for both MTHFR 677 CC and TT genotypes. PMID:23125859

  19. Folate-related polymorphisms in gastrointestinal stromal tumours: susceptibility and correlation with tumour characteristics and clinical outcome.

    PubMed

    Angelini, Sabrina; Ravegnini, Gloria; Nannini, Margherita; Bermejo, Justo Lorenzo; Musti, Muriel; Pantaleo, Maria A; Fumagalli, Elena; Venturoli, Nicola; Palassini, Elena; Consolini, Nicola; Casali, Paolo G; Biasco, Guido; Hrelia, Patrizia

    2015-06-01

    The folate metabolism pathway has a crucial role in tumorigenesis as it supports numerous critical intracellular reactions, including DNA synthesis, repair, and methylation. Despite its importance, little is known about the influence of the folate pathway on gastrointestinal stromal tumour (GIST), a rare tumour with an incidence ranging between 6 and 19.6 cases per million worldwide. The importance of folate metabolism led us to investigate the influence of polymorphisms in the genes coding folate-metabolising enzymes on GIST susceptibility, tumour characteristics and clinical outcome. We investigated a panel of 13 polymorphisms in 8 genes in 60 cases and 153 controls. The TS 6-bp deletion allele (formerly rs34489327, delTInsTTAAAG) was associated with reduced risk of GIST (OR=0.20, 95% CI 0.05-0.67, P=0.0032). Selected polymorphisms in patients stratified by age, gender, and other main molecular and clinical characteristics showed that few genotypes may show a likely correlation. We also observed a significant association between the RFC AA/AG genotype and time to progression (HR=0.107, 95% CI 0.014-0.82; P=0.032). Furthermore, we observed a tendency towards an association between the SHMT1 variant allele (TT, rs1979277) and early death (HR=4.53, 95% CI 0.77-26.58, P=0.087). Aware of the strengths and limitations of the study, these results suggest that polymorphisms may modify the risk of GIST and clinical outcome, pointing to the necessity for further investigations with information on folate plasma levels and a larger study population. PMID:25227144

  20. Folate-related polymorphisms in gastrointestinal stromal tumours: susceptibility and correlation with tumour characteristics and clinical outcome

    PubMed Central

    Angelini, Sabrina; Ravegnini, Gloria; Nannini, Margherita; Bermejo, Justo Lorenzo; Musti, Muriel; Pantaleo, Maria A; Fumagalli, Elena; Venturoli, Nicola; Palassini, Elena; Consolini, Nicola; Casali, Paolo G; Biasco, Guido; Hrelia, Patrizia

    2015-01-01

    The folate metabolism pathway has a crucial role in tumorigenesis as it supports numerous critical intracellular reactions, including DNA synthesis, repair, and methylation. Despite its importance, little is known about the influence of the folate pathway on gastrointestinal stromal tumour (GIST), a rare tumour with an incidence ranging between 6 and 19.6 cases per million worldwide. The importance of folate metabolism led us to investigate the influence of polymorphisms in the genes coding folate-metabolising enzymes on GIST susceptibility, tumour characteristics and clinical outcome. We investigated a panel of 13 polymorphisms in 8 genes in 60 cases and 153 controls. The TS 6-bp deletion allele (formerly rs34489327, delTInsTTAAAG) was associated with reduced risk of GIST (OR=0.20, 95% CI 0.05–0.67, P=0.0032). Selected polymorphisms in patients stratified by age, gender, and other main molecular and clinical characteristics showed that few genotypes may show a likely correlation. We also observed a significant association between the RFC AA/AG genotype and time to progression (HR=0.107, 95% CI 0.014–0.82; P=0.032). Furthermore, we observed a tendency towards an association between the SHMT1 variant allele (TT, rs1979277) and early death (HR=4.53, 95% CI 0.77–26.58, P=0.087). Aware of the strengths and limitations of the study, these results suggest that polymorphisms may modify the risk of GIST and clinical outcome, pointing to the necessity for further investigations with information on folate plasma levels and a larger study population. PMID:25227144

  1. Structure and Function of the Reduced Folate Carrier: A Paradigm of A Major Facilitator Superfamily Mammalian Nutrient Transporter

    PubMed Central

    Matherly, Larry H.; Hou, Zhanjun

    2013-01-01

    Folates are essential for life and folate deficiency contributes to a host of health problems including cardiovascular disease, fetal abnormalities, neurologic disorders, and cancer. Antifolates, represented by methotrexate, continue to occupy a unique niche among the modern day pharmacopoeia for cancer along with other pathologic conditions. This review focuses on the biology of the membrane transport system termed the “reduced folate carrier” or RFC with a particular emphasis on RFC structure and function. The ubiquitously expressed RFC is the major transporter for folates in mammalian cells and tissues. Loss of RFC expression or function portends potentially profound physiologic or developmental consequences. For chemotherapeutic antifolates used for cancer, loss of RFC expression or synthesis of mutant RFC protein with impaired function results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and low levels of substrate for polyglutamate synthesis. The functional properties for RFC were first documented nearly 40 years ago in murine leukemia cells. Since 1994, when RFC was first cloned, tremendous advances in the molecular biology of RFC and biochemical approaches for studying the structure of polytopic membrane proteins have led to an increasingly detailed picture of the molecular structure of the carrier, including its membrane topology, its N-glycosylation, identification of functionally and structurally important domains and amino acids, and helix packing associations. Although no crystal structure for RFC is yet available, biochemical and molecular studies, combined with homology modeling, based on homologous bacterial Major Facilitator Superfamily transporters such as LacY, now permit the development of experimentally testable hypotheses designed to establish RFC structure and mechanism. PMID:18804694

  2. An investigation of folate-related genetic factors in the determination of birthweight.

    PubMed

    Relton, Caroline L; Pearce, Mark S; Burn, John; Parker, Louise

    2005-09-01

    Recent evidence suggests that maternal folate status in early gestation is a significant determinant of infant birthweight. Folate metabolism is known to be controlled by genetic factors, with a number of polymorphic variations in folate metabolising genes identified, several of which have well-documented functional effects. The current study investigated whether folate-related polymorphic variation, in association with low maternal folate status, influences birthweight. Red blood cell (RBC) folate analysis and genotyping of five polymorphisms in folate-related genes [Methylenetetrahydrofolate reductase (MTHFR) 677C>T; MTHFR 1298A>C; cystathionine-beta-synthase (CbetaS) 844ins68bp; serine hydroxymethyltransferase (SHMT) 1420C>T; reduced folate carrier-1 (RFC-1) 80G>A] were undertaken in mothers and infants from 998 pregnancies. These data were analysed in relation to infant birthweight, adjusted for gender and gestational age (z-score). Low maternal RBC folate status was associated with reduced infant birthweight. None of the genetic variants studied showed an independent association with infant birthweight. However, two genetic variants were shown to have a significant effect on birthweight when found in association with low maternal RBC folate status. When individuals with variant genotypes and mothers with folate in the lowest quintile were compared with wild-type individuals and mothers with folate in the highest quintile, the following differences in mean birthweight (z-score) were observed; maternal MTHFR 677C>T (-0.56 [95% CI -1.00, -0.12]P=0.01) and infant CbetaS 844ins68bp (-0.71 [95% CI -1.97, -0.07]P=0.03). The findings of this study suggest that folate-related genetic polymorphisms do not directly influence infant birthweight. However, when placed on a background of deficient maternal nutritional status, they may detrimentally affect fetal growth. PMID:16115288

  3. Maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of recurrent pregnancy loss.

    PubMed

    Sata, F; Yamada, H; Kishi, R; Minakami, H

    2012-10-01

    Epidemiological studies have suggested that the condition of recurrent pregnancy loss (RPL) may be multifactorial, with both genetic predisposition and environmental factors potentially involved in its pathogenesis. The aim of this study is to elucidate the associations between maternal folate, alcohol and energy metabolism-related gene polymorphisms and the risk of RPL. This case-control study, which involved 116 cases with two or more instances of RPL and 306 fertile controls, was performed in the city of Sapporo, Japan. The associations between eight single nucleotide polymorphisms of folate, alcohol and energy metabolism-related genes [methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), alcohol dehydrogenase 1B (ADH1B), aldehyde dehydrogenase 2 (ALDH2), beta-3-adrenergic receptor (ADRB3) and peroxisome proliferator-activated receptor gamma (PPARG)], and RPL were assessed. Without consideration of cigarette smoking or alcohol use, the risk of RPL significantly decreased in women with the MTHFR rs1801133 TT, MTR rs1805087 AG or ALDH2 rs671 AA genotype (P < 0.05). The risk of RPL associated with cigarette smoking and alcohol use decreased significantly in women carrying the MTHFR rs1801133 T allele [odds ratio (OR), 0.51; 95% confidence interval (CI), 0.27-0.95]. Similarly, the risk of RPL significantly decreased in women carrying the MTR rs1805087 G allele (OR, 0.44; 95% CI, 0.23-0.85). Our findings suggest that maternal gene polymorphisms related to folate metabolism may decrease the risk of RPL. Molecular epidemiological studies are needed to unequivocally elucidate the multifactorial effects of both genetic and environmental factors on human fecundity. PMID:25102261

  4. Genetic and Lifestyle Variables Associated with Homocysteine Concentrations and the Distribution of Folate Derivatives in Healthy Premenopausal Women

    PubMed Central

    Summers, Carolyn M.; Mitchell, Laura E.; Stanislawska-Sachadyn, Anna; Baido, Shirley F.; Blair, Ian A.; Von Feldt, Joan M.; Whitehead, Alexander S.

    2014-01-01

    Background Low folate and high homocysteine (Hcy) concentrations are associated with pregnancy-related pathologies such as spina bifida. Polymorphisms in folate/Hcy metabolic enzymes may contribute to this potentially pathogenic biochemical phenotype. Methods The study comprised 26 Caucasian and 23 African-American premenopausal women. Subjects gave fasting blood samples for biochemical phenotyping and genotyping. Total Hcy (tHcy) and both plasma and red blood cell (RBC) folate derivatives [i.e. tetrahydrofolate (THF), 5-methylTHF (5-MTHF), and 5,10-methenylTHF (5,10-MTHF)] were measured using stable isotope dilution liquid chromatography, multiple reaction monitoring, mass spectrometry. Eleven polymorphisms from nine folate/Hcy pathway genes were genotyped. Tests of association between genetic, lifestyle, and biochemical variables were applied. Results In African American women, tHcy concentrations were associated (p<0.05) with total RBC folate, RBC 5-MTHF, B12, and polymorphisms in methionine synthase (MTR) and thymidylate synthase (TYMS). In Caucasian women, tHcy concentrations were not associated with total folate levels, but were associated (p<0.05) with RBC THF, ratios of RBC 5-MTHF: THF, and polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) and MTR . In African Americans, folate derivative levels were associated with smoking, B12, and polymorphisms in MTR, TYMS, methionine synthase reductase (MTRR), and reduced folate carrier1 (RFC1). In Caucasians, folate derivative levels were associated with vitamin use, B12, and polymorphisms in MTHFR, TYMS, and RFC1. Conclusions Polymorphisms in the folate/Hcy pathway are associated with tHcy and folate derivative levels. In African American and Caucasian women, different factors are associated with folate/Hcy phenotypes and may contribute to race-specific differences in the risks of a range of pregnancy-related pathologies. PMID:20544798

  5. 5,10-methylenetetrahydrofolate reductase 677 and 1298 polymorphisms, folate intake, and microsatellite instability in colon cancer.

    PubMed

    Eaton, Allison M; Sandler, Robert; Carethers, John M; Millikan, Robert C; Galanko, Joseph; Keku, Temitope O

    2005-08-01

    The 5,10-methylenetetrahydrofolate reductase (MTHFR) gene plays a critical role in folate metabolism. Studies on the association between MTHFR polymorphisms and length changes in short tandem repeat DNA sequences [microsatellite instability (MSI)] are inconsistent. Using data from colon cancer cases (n=503) enrolled as part of an existing population-based case-control study, we investigated the association between MTHFR 677 and MTHFR 1298 polymorphisms and MSI. We also examined whether the association was modified by folate intake. Participants were case subjects enrolled as part of the North Carolina Colon Cancer Study. Consenting cases provided information about lifestyle and diet during in-home interviews as well as blood specimens and permission to obtain tumor blocks. DNA from normal and tumor tissue sections was used to determine microsatellite status (MSI). Tumors were classified as MSI if two or more microsatellite markers (BAT25, BAT26, D5S346, D2S123, and D17S250) had changes in the number of DNA sequence repeats compared with matched nontumor tissue. Tumors with one positive marker (MSI-low) or no positive markers (microsatellite stable) were grouped together as non-MSI tumors (microsatellite stable). MTHFR 677 and MTHFR 1298 genotypes were determined by real-time PCR using the 5' exonuclease (Taqman) assay. Logistic regression was used to calculate odds ratio (OR) and 95% confidence intervals (95% CI). MSI was more common in proximal tumors (OR, 3.8; 95% CI, 1.7-8.4) and in current smokers (OR, 4.0; 95% CI, 1.6-9.7). Compared with MTHFR 677 CC referent, MTHFR 677 CT/TT genotype was inversely associated with MSI among White cases (OR, 0.36; 95% CI, 0.16-0.81) but not significant among African Americans. Although not statistically significant, a similar inverse association was observed between MTHFR 677 CT/TT genotype and MSI among the entire case subjects (OR, 0.54; 95% CI, 0.26-1.10). Among those with adequate folate intake (>400 microg total folate

  6. Uracil misincorporation into DNA of leukocytes of young women with positive folate balance depends on plasma vitamin B12 concentrations and methylenetetrahydrofolate reductase polymorphisms. A pilot study.

    PubMed

    Kapiszewska, Maria; Kalemba, Malgorzata; Wojciech, Urszula; Milewicz, Tomasz

    2005-08-01

    Changes in the folate and vitamin B12 status in the body influence the extent of uracil misincorporation (UrMis) into DNA, which is one of the biomarkers of genomic stability and, thus, portends a risk of cancer. In our study, the level of UrMis into DNA was evaluated by the comet assay (using the specific DNA repair enzyme, uracil DNA glycosylase) in leukocytes from blood donated by healthy young women with positive folate balance achieved by 4 weeks of folic acid supplementation (400 microg/day). The nutritional status was evaluated on the basis of nine food diaries recorded by the subjects during two winter months. The data were computerized, and the intake of nutrients and micronutrients was estimated using the DIETA 2 program (Food and Nutrition Institute, Warsaw, Poland) linked to recently updated Polish food tables. The plasma folate and vitamin B12 concentration, as well as methylenetetrahydrofolate reductase (MTHFR) polymorphisms, were evaluated to determine their influence on the level of UrMis into DNA. The mean value of B12 intake for all subjects reached 100% of the Polish recommended dietary allowances (RDA), whereas the mean value of folate intake, before folate supplementation, was 50%, suggesting moderate deficiency. Folic acid supplementation brought the folate intake way above the RDA, and plasma folate concentration in each individual was above the deficient range (mean value 14.67 ng/ml). The UrMis did not correlate with the plasma folate concentration, but the level of UrMis was significantly lower in subjects with plasma vitamin B12 concentration above 400 pg/ml (P=.02) only after folic acid supplementation. The concentration of folate in plasma correlated (Pfolate in plasma was significantly lower in subjects with the MTHFR 677 (CT+TT) polymorphism, which was accompanied by a

  7. DHFR 19-bp Deletion and SHMT C1420T Polymorphisms and Metabolite Concentrations of the Folate Pathway in Individuals with Down Syndrome

    PubMed Central

    Mendes, Cristiani Cortez; Raimundo, Aline Maria Zanchetta de Aquino; Oliveira, Luciana Dutra; Zampieri, Bruna Lancia; Marucci, Gustavo Henrique; Biselli, Joice Matos; Goloni-Bertollo, Eny Maria; Eberlin, Marcos Nogueira; Haddad, Renato; Riccio, Maria Francesca; Vannucchi, Hélio; Carvalho, Valdemir Melechco

    2013-01-01

    Background: Down syndrome (DS) results from the presence and expression of three copies of the genes located on chromosome 21. Studies have shown that, in addition to overexpression of the Cystathionine β-synthase (CBS) gene, polymorphisms in genes involved in folate/homocysteine (Hcy) metabolism may also influence the concentrations of metabolites of this pathway. Aim: Investigate the association between Dihydrofolate reductase (DHFR) 19-base pair (bp) deletion and Serine hydroxymethyltransferase (SHMT) C1420T polymorphisms and serum folate and plasma Hcy and methylmalonic acid (MMA) concentrations in 85 individuals with DS. Methods: Molecular analysis of the DHFR 19-bp deletion and SHMT C1420T polymorphisms was performed by polymerase chain reaction (PCR) by difference in the size of fragments and real-time PCR allelic discrimination, respectively. Serum folate was quantified by chemiluminescence and plasma Hcy and MMA by liquid chromatography–tandem mass spectrometry. Results: Individuals with DHFR DD/SHMT TT genotypes presented increased folate concentrations (p=0.004) and the DHFR II/SHMT TT genotypes were associated with increased MMA concentrations (p=0.008). In addition, the MMA concentrations were negatively associated with age (p=0.04). Conclusion: There is an association between DHFR DD/SHMT TT and DHFR II/SHMT TT combined genotypes and folate and MMA concentrations in individuals with DS. PMID:23421317

  8. The folate receptor works in tandem with a probenecid-sensitive carrier in MA104 cells in vitro.

    PubMed Central

    Kamen, B A; Smith, A K; Anderson, R G

    1991-01-01

    Previous studies have defined a novel route of internalization for the essential vitamin 5-methyltetrahydrofolate in MA104 cells that begins with binding of the vitamin to the membrane receptor for folate. One of the critical steps in the pathway is the passage of 5-methyltetrahydrofolate through the membrane into the cytoplasm. Utilizing both probenecid and low temperature as selective inhibitors, we have successfully blocked transmembrane movement of the vitamin into the cytoplasm without affecting binding to the receptor or the internalization of the vitamin-receptor complex, which suggests that passage is through an anion carrier. This anion carrier, which mediates inward movement of 5-methyltetrahydrofolate after it dissociates from the receptor, also appears to mediate the efflux of folylmonoglutamate, but not folylpolyglutamate, when the concentration of the former in the cytoplasm is sufficiently high. Since we also found that the synthesis of folylpolyglutamates is regulated in these cells, most likely the intracellular concentration of the vitamin is controlled by regulating the flux of folylmonoglutamate through this carrier. PMID:1849150

  9. Increased synthesis of folate transporters regulates folate transport in conditions of ethanol exposure and folate deficiency.

    PubMed

    Thakur, Shilpa; More, Deepti; Rahat, Beenish; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2016-01-01

    Excessive alcohol consumption and dietary folate inadequacy are the main contributors leading to folate deficiency (FD). The present study was planned to study regulation of folate transport in conditions of FD and ethanol exposure in human embryonic kidney cell line. Also, the reversible nature of effects mediated by ethanol exposure and FD was determined by folate repletion and ethanol removal. For ethanol treatment, HEK293 cells were grown in medium containing 100 mM ethanol, and after treatment, one group of cells was shifted on medium that was free from ethanol. For FD treatment, cells were grown in folate-deficient medium followed by shifting of one group of cells on folate containing medium. FD as well as ethanol exposure resulted in an increase in folate uptake which was due to an increase in expression of folate transporters, i.e., reduced folate carrier, proton-coupled folate transporter, and folate receptor, both at the mRNA and protein level. The effects mediated by ethanol exposure and FD were reversible on removal of treatment. Promoter region methylation of folate transporters remained unaffected after FD and ethanol exposure. As far as transcription rate of folate transporters is concerned, an increase in rate of synthesis was observed in both ethanol exposure and FD conditions. Additionally, mRNA life of folate transporters was observed to be reduced by FD. An increased expression of folate transporters under ethanol exposure and FD conditions can be attributed to enhanced rate of synthesis of folate transporters. PMID:26433955

  10. The association of gastric cancer risk with plasma folate, cobalamin, and methylenetetrahydrofolate reductase polymorphisms in the European Prospective Investigation into Cancer and Nutrition.

    PubMed

    Vollset, Stein Emil; Igland, Jannicke; Jenab, Mazda; Fredriksen, Ase; Meyer, Klaus; Eussen, Simone; Gjessing, Håkon K; Ueland, Per Magne; Pera, Guillem; Sala, Núria; Agudo, Antonio; Capella, Gabriel; Del Giudice, Giuseppe; Palli, Domenico; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, H Bas; Carneiro, Fátima; Pala, Valeria; Vineis, Paolo; Tumino, Rosario; Panico, Salvatore; Berglund, Göran; Manjer, Jonas; Stenling, Roger; Hallmans, Göran; Martínez, Carmen; Dorronsoro, Miren; Barricarte, Aurelio; Navarro, Carmen; Quirós, José R; Allen, Naomi; Key, Timothy J; Bingham, Sheila; Linseisen, Jakob; Kaaks, Rudolf; Overvad, Kim; Tjønneland, Anne; Büchner, Frederike L; Peeters, Petra H M; Numans, Mattijs E; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Trichopoulou, Antonia; Lund, Eiliv; Slimani, Nadia; Ferrari, Pietro; Riboli, Elio; González, Carlos A

    2007-11-01

    Previous studies have shown inconsistent associations of folate intake and polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene with gastric cancer risk. Our nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort is the first prospective study of blood folate levels and gastric cancer. Gastric cancer cases (n=247) and controls (n=631) were matched for study center, age, sex, and time of blood donation. Two common single nucleotide polymorphisms of the MTHFR gene were determined, as were plasma concentrations of folate, cobalamin (vitamin B12), total homocysteine, and methylmalonic acid (cobalamin deficiency marker) in prediagnostic plasma. Risk measures were calculated with conditional logistic regression. Although no relations were observed between plasma folate or total homocysteine concentrations and gastric cancer, we observed a trend toward lower risk of gastric cancer with increasing cobalamin concentrations (odds ratio, 0.79 per SD increase in cobalamin; P=0.01). Further analyses showed that the inverse association between cobalamin and gastric cancer was confined to cancer cases with low pepsinogen A levels (marker of severe chronic atrophic gastritis) at the time of blood sampling. The 677 C-->T MTHFR polymorphism was not associated with gastric cancer, but we observed an increased risk with the variant genotype of the 1298 A-->C polymorphism (odds ratio, 1.47 for CC versus AA; P=0.04). In conclusion, we found no evidence of a role of folate in gastric cancer etiology. However, we observed increased gastric cancer risk at low cobalamin levels that was most likely due to compromised cobalamin status in atrophic gastritis preceding gastric cancer. PMID:18006931

  11. The folate hydrolase 1561 C>T polymorphism is associated with depressive symptoms in Puerto Rican adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low plasma folate has been associated with depression. Variants of genes involved in the uptake, retention and metabolism of folate have been linked with plasma folate and homocysteine concentrations. It remains unclear whether such variants are also associated with depressive symptoms, directly or ...

  12. The Intestinal Absorption of Folates

    PubMed Central

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I. David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  13. The intestinal absorption of folates.

    PubMed

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  14. [Features of allele polymorphism of genes involved in homocysteine and folate metabolism in patients with atherosclerosis of the lower extremity arteries].

    PubMed

    Klenkova, N A; Kapustin, S I; Saltykova, N B; Shmeleva, V M; Blinov, M N

    2009-01-01

    Under study were features of allele polymorphism of genes of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), methionine synthase (MS A 2756G), methionine synthase reductase (MTRR A66G) and methylenetetrahydrofolate dehydrogenase (MTHFD G1958A) in patients with atherosclerosis of the lower extremity arteries (ALEA). Patients with hyperhomocysteinemia (HHcy) had statistically significant increase of allele MTHFR 677T and MTRR 66GG as compared both with the control group and with the group of patients without HHcy. It suggests that polymorphism of genes involved in homocystein and folate metabolism might affect the risk of HHcy in patients with ALEA. PMID:20209990

  15. Folate Pathway Gene Methylenetetrahydrofolate Reductase C677T Polymorphism and Alzheimer Disease Risk in Asian Population.

    PubMed

    Rai, Vandana

    2016-07-01

    The association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and susceptibility to Alzheimers disease (AD) was controversial in previous studies. The present meta-analysis was designed to investigate the association of MTHFR C677T polymorphism with AD. Nine studies were identified by search of PubMed, Google Scholar, Elsevier, Springer Link databases, up to January 2013. Odds ratios (ORs) with corresponding 95 % confidence interval (CI) were calculated using fixed effects model or random effects model. All statistical analysis was done by Mix version 1.7. MTHFR C677T polymorphism had a significant association with susceptibility to AD in all genetic models (for T vs C: OR 1.29, 95 % CI 1.15-1.44, p < 0.0001; for TT + CT vs CC: OR 1.38, 95 % CI 1.16-1.364, p = 0.0002; for TT vs CC: OR 1.60, 95 % CI 1.25-2.04, p = 0.0001; for CT vs CC: OR 1.28, 95 % CI 1.1-1.53, p < 0.008; for TT vs CT + CC: OR 1.37, 95 % CI 1.12-1.67, p = 0.002). Results from present meta-analysis supported that the MTHFR C677T polymorphism was associated with an increased risk of AD in Asian population. PMID:27382194

  16. Relationship between the 19 base pair deletion polymorphism in DHFR and unmetabolized folic and in plasma and RBC folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: A 19 base pair (bp) deletion allele of dihydrofolate reductase (DHFR), an enzyme that makes folic acid metabolically active and reduces dihydrofolate to tetrahydrofolate to stimulate folate turnover, has been implicated in folate related health outcomes. Objective: Examine the effect ...

  17. Folate metabolism-related gene polymorphisms and susceptibility to primary liver cancer in North China.

    PubMed

    Cui, Lian-Hua; Song, Yang; Si, Hongzong; Shen, Fangzhen; Shin, Min-Ho; Kim, Hee Nam; Choi, Jin-Su

    2012-09-01

    Genetic factors may contribute to individual differences in cancer susceptibility. This study was designed to investigate the effects of the polymorphisms of methylenetetrahydrofolate reductase 677 C → T (MTHFR 677 C → T), methylenetetrahydrofolate reductase 1298 A → C (MTHFR 1298A → C), thymidylate synthase (TYMS 3R → 2R), and methionine synthase 2756 A → G (MTR 2756 A → G) on the risk of primary liver cancer (PLC). We conducted a case-control study involving 356 PLC cases and 641 healthy controls in North China. Compared with the MTHFR 677CC genotype, the MTHFR 677TT genotype showed an increased risk for PLC (TT vs. CC: adjusted odds ratio (OR) = 1.56; 95% confidence interval (CI): 1.02-2.40; P = 0.043) after adjusting for gender and age, whereas the MTHFR 1298CC genotype showed a significantly decreased risk for PLC (CC vs. AA: adjusted OR = 0.23; 95% CI: 0.08-0.70; P = 0.010). However, no significant association was found between the TYMS 3R → 2R or the MTR 2756 A → G polymorphism and the risk of PLC. Our results suggest that the MTHFR 677 C → T and the MTHFR 1298A → C genetic polymorphisms might play important role in hepatic carcinogenesis. Further studies with larger sample sizes are required to validate this association. PMID:21956592

  18. Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry†

    PubMed Central

    Wang, Lei; Cherian, Christina; Desmoulin, Sita Kugel; Polin, Lisa; Deng, Yijun; Wu, Jianmei; Hou, Zhanjun; White, Kathryn; Kushner, Juiwanna; Matherly, Larry H.; Gangjee, Aleem

    2010-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and 4-6 carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FRα, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR- and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC. PMID:20085328

  19. Maternal Supplementary Folate Intake, Methylenetetrahydrofolate Reductase (MTHFR) C677T and A1298C Polymorphisms and the Risk of Orofacial Cleft in Iranian Children

    PubMed Central

    Ebadifar, Asghar; KhorramKhorshid, Hamid Reza; Kamali, Koorosh; Salehi Zeinabadi, Mehdi; Khoshbakht, Tayyebeh; Ameli, Nazila

    2015-01-01

    Background: The purpose of this study was to describe the association of MTHFR gene single nucleotide polymorphisms (C677T and A1298C) and maternal supplementary folate intake with orofacial clefts in the Iranian population. Methods: In this case-control study, peripheral venous blood was taken from 65 patients with orofacial clefts and 215 unaffected controls for DNA extraction and kept in EDTA for further analysis. The genotyping was carried out using Polymerase Chain Reaction (PCR) followed by Restriction Fragment Length Polymorphism (RFLP) and gel electrophoresis. Data were analyzed using Chi square test and logistic regression tests. Results: Genotype frequencies of 677TT were reported to be 13.5 and 36.1% in controls and CL/P patients, respectively, which showed a significant difference compared to CC as reference (OR=4.118; 95% CI=1.997–8.492; p=0.001). Conversely, 1298CC with frequencies of 10.8 and 12.7% in controls and patients, respectively, showed no significant difference compared to AA (OR=2.359; 95% CI=0.792–7.023; p=0.123). Comparing patients whose mothers did not report the folate supplement intake during pregnancy, to controls, it was observed that lack of folate intake was a predisposing factor for having a child with oral clefts (OR=5/718, p=0.000). Conclusion: Children carrying the 677TT variant of the MTHFR gene may have an increased risk of CL/P. In addition, the finding that the risk associated with this allele was obviously higher when the mothers didn’t use folic acid, supports the hypothesis that folic acid may play a role in the etiology of CL/P. PMID:26140186

  20. Evaluation of proton-coupled folate transporter (SLC46A1) polymorphisms as risk factors for neural tube defects and oral clefts.

    PubMed

    VanderMeer, Julia E; Carter, Tonia C; Pangilinan, Faith; Mitchell, Adam; Kurnat-Thoma, Emma; Kirke, Peadar N; Troendle, James F; Molloy, Anne M; Munger, Ronald G; Feldkamp, Marcia L; Mansilla, Maria A; Mills, James L; Murray, Jeff C; Brody, Lawrence C

    2016-04-01

    Many folate-related genes have been investigated for possible causal roles in neural tube defects (NTDs) and oral clefts. However, no previous reports have examined the major gene responsible for folate uptake, the proton-coupled folate transporter (SLC46A1). We tested for association between these birth defects and single nucleotide polymorphisms in the SLC46A1 gene. The NTD study population included 549 complete and incomplete case-family triads, and 999 controls from Ireland. The oral clefts study population comprised a sample from Utah (495 complete and incomplete case-family triads and 551 controls) and 221 Filipino multiplex cleft families. There was suggestive evidence of increased NTD case risk with the rs17719944 minor allele (odds ratio (OR): 1.29; 95% confidence intervals (CI): [1.00-1.67]), and decreased maternal risk of an NTD pregnancy with the rs4795436 minor allele (OR: 0.62; [0.39-0.99]). In the Utah sample, the rs739439 minor allele was associated with decreased case risk for cleft lip with cleft palate (genotype relative risk (GRR): 0.56 [0.32-0.98]). Additionally, the rs2239907 minor allele was associated with decreased case risk for cleft lip with cleft palate in several models, and with cleft palate only in a recessive model (OR: 0.41; [0.20-0.85]). These associations did not remain statistically significant after correcting for multiple hypothesis testing. Nominal associations between SLC46A1 polymorphisms and both Irish NTDs and oral clefts in the Utah population suggest some role in the etiology of these birth defects, but further investigation in other populations is needed. © 2016 Wiley Periodicals, Inc. PMID:26789141

  1. Gender and single nucleotide polymorphisms in MTHFR, BHMT, SPTLC1, CRBP2R, and SCARB1 are significant predictors of plasma homocysteine normalized by RBC folate in healthy adults.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using linear regression models, we studied the main and two-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma homocysteine normalized by red blood cell...

  2. Joint effects of folate intake and one-carbon-metabolizing genetic polymorphisms on breast cancer risk: a case-control study in China

    PubMed Central

    Luo, Wei-Ping; Li, Bin; Lin, Fang-Yu; Yan, Bo; Du, Yu-Feng; Mo, Xiong-Fei; Wang, Lian; Zhang, Cai-Xia

    2016-01-01

    This study aimed to examine the joint effects of folate intake, polymorphisms of 5,10- methylenetetrahydrofolate reductase (MTHFR), methionine synthesis reductase (MTRR) and methionine synthase (MTR) genes and breast cancer risk. A case-control study of 570 consecutively recruited breast cancer cases and 576 controls was conducted in Guangzhou, China. Multifactor dimensionality reduction and logistic regression approach were used to evaluate gene-gene interaction. The covariates were chosen based on comparison of baseline characteristics of cases and controls. Folate intake was found to be inversely associated with breast cancer risk. The MTRRrs162036 GG genotype was associated with a decreased risk of breast cancer [adjusted odds ratio (OR) 0.41, 95% confidence interval (CI) 0.20–0.85]. Compared with the wild-type group (MTRRrs162036 AA with MTRrs1805087 AA) MTRRrs162036 AA with MTRrs1805087 GA + GG was associated with a decreased risk (OR 0.70, 95% CI 0.48–1.03). With the combined MTHFRrs1801131 TT and MTHFRrs1801133 GG genotypes as a reference, MTHFRrs1801131 TT with MTHFRrs1801133 GA + AA was associated with a decreased risk (OR 0.78, 95% CI 0.57 – 1.08) and MTHFRrs1801131 GT + GG with MTHFRrs1801133 GA + AA was associated with an increased risk (OR 1.35, 95% CI 0.88–2.05). The joint impact of MTRRrs162036 and MTRrs1805087, MTHFRrs1801131 and MTHFRrs1801133, folate and MTHFRrs1801133 may contribute to breast cancer risk. PMID:27404801

  3. Joint effects of folate intake and one-carbon-metabolizing genetic polymorphisms on breast cancer risk: a case-control study in China.

    PubMed

    Luo, Wei-Ping; Li, Bin; Lin, Fang-Yu; Yan, Bo; Du, Yu-Feng; Mo, Xiong-Fei; Wang, Lian; Zhang, Cai-Xia

    2016-01-01

    This study aimed to examine the joint effects of folate intake, polymorphisms of 5,10- methylenetetrahydrofolate reductase (MTHFR), methionine synthesis reductase (MTRR) and methionine synthase (MTR) genes and breast cancer risk. A case-control study of 570 consecutively recruited breast cancer cases and 576 controls was conducted in Guangzhou, China. Multifactor dimensionality reduction and logistic regression approach were used to evaluate gene-gene interaction. The covariates were chosen based on comparison of baseline characteristics of cases and controls. Folate intake was found to be inversely associated with breast cancer risk. The MTRRrs162036 GG genotype was associated with a decreased risk of breast cancer [adjusted odds ratio (OR) 0.41, 95% confidence interval (CI) 0.20-0.85]. Compared with the wild-type group (MTRRrs162036 AA with MTRrs1805087 AA) MTRRrs162036 AA with MTRrs1805087 GA + GG was associated with a decreased risk (OR 0.70, 95% CI 0.48-1.03). With the combined MTHFRrs1801131 TT and MTHFRrs1801133 GG genotypes as a reference, MTHFRrs1801131 TT with MTHFRrs1801133 GA + AA was associated with a decreased risk (OR 0.78, 95% CI 0.57 - 1.08) and MTHFRrs1801131 GT + GG with MTHFRrs1801133 GA + AA was associated with an increased risk (OR 1.35, 95% CI 0.88-2.05). The joint impact of MTRRrs162036 and MTRrs1805087, MTHFRrs1801131 and MTHFRrs1801133, folate and MTHFRrs1801133 may contribute to breast cancer risk. PMID:27404801

  4. Oral facial clefts and gene polymorphisms in metabolism of folate/one-carbon and vitamin A: a pathway-wide association study

    PubMed Central

    Boyles, Abee L.; Wilcox, Allen J.; Taylor, Jack A.; Shi, Min; Weinberg, Clarice R.; Meyer, Klaus; Fredriksen, Åse; Ueland, Per Magne; Johansen, Anne Marte W.; Drevon, Christian A.; Jugessur, Astanand; Trung, Truc Nguyen; Gjessing, Håkon K.; Vollset, Stein Emil; Murray, Jeffrey C.; Christensen, Kaare; Lie, Rolv T.

    2009-01-01

    An increased risk of facial clefts has been observed among mothers with lower intake of folic acid or vitamin A around conception. We hypothesized that the risk of clefts may be further moderated by genes involved in metabolizing folate or vitamin A. We included 425 case-parent triads in which the child had either cleft lip with or without cleft palate (CL/P) or cleft palate only (CPO), and no other major defects. We analyzed 108 SNPs and one insertion in 29 genes involved in folate/one-carbon metabolism and 68 SNPs from 16 genes involved in vitamin A metabolism. Using the Triad Multi Marker (TRIMM) approach we performed SNP, gene, chromosomal region, and pathway-wide association tests of child or maternal genetic effects for both CL/P and CPO. We stratified these analyses on maternal intake of folic acid or vitamin A during the periconceptional period. As expected with this high number of statistical tests, there were many associations with p-values < 0.05; although there were fewer than predicted by chance alone. The strongest association in our data (between fetal FOLH1 and CPO, p=0.0008) is not in agreement with epidemiologic evidence that folic acid reduces the risk of CL/P in these data, not CPO. Despite strong evidence for genetic causes of oral facial clefts and the protective effects of maternal vitamins, we found no convincing indication that polymorphisms in these vitamin metabolism genes play an etiologic role. PMID:19048631

  5. Roles of Genetic Polymorphisms in the Folate Pathway in Childhood Acute Lymphoblastic Leukemia Evaluated by Bayesian Relevance and Effect Size Analysis

    PubMed Central

    Lautner-Csorba, Orsolya; Gézsi, András; Erdélyi, Dániel J.; Hullám, Gábor; Antal, Péter; Semsei, Ágnes F.; Kutszegi, Nóra; Kovács, Gábor; Falus, András; Szalai, Csaba

    2013-01-01

    In this study we investigated whether polymorphisms in the folate pathway influenced the risk of childhood acute lymphoblastic leukemia (ALL) or the survival rate of the patients. For this we selected and genotyped 67 SNPs in 15 genes in the folate pathway in 543 children with ALL and 529 controls. The results were evaluated by gender adjusted logistic regression and by the Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) methods. Bayesian structure based odds ratios for the relevant variables and interactions were also calculated. Altogether 9 SNPs in 8 genes were associated with altered susceptibility to ALL. After correction for multiple testing, two associations remained significant. The genotype distribution of the MTHFD1 rs1076991 differed significantly between the ALL and control population. Analyzing the subtypes of the disease the GG genotype increased only the risk of B-cell ALL (p = 3.52×10−4; OR = 2.00). The GG genotype of the rs3776455 SNP in the MTRR gene was associated with a significantly reduced risk to ALL (p = 1.21×10−3; OR = 0.55), which resulted mainly from the reduced risk to B-cell and hyperdiploid-ALL. The TC genotype of the rs9909104 SNP in the SHMT1 gene was associated with a lower survival rate comparing it to the TT genotype (80.2% vs. 88.8%; p = 0.01). The BN-BMLA confirmed the main findings of the frequentist-based analysis and showed structural interactional maps and the probabilities of the different structural association types of the relevant SNPs especially in the hyperdiploid-ALL, involving additional SNPs in genes like TYMS, DHFR and GGH. We also investigated the statistical interactions and redundancies using structural model properties. These results gave further evidence that polymorphisms in the folate pathway could influence the ALL risk and the effectiveness of the therapy. It was also shown that in gene association studies the BN-BMLA could be a useful supplementary to

  6. Association of folate-pathway gene polymorphisms with the risk of prostate cancer: a population-based nested case-control study, systematic review, and meta-analysis.

    PubMed

    Collin, Simon M; Metcalfe, Chris; Zuccolo, Luisa; Lewis, Sarah J; Chen, Lina; Cox, Angela; Davis, Michael; Lane, J Athene; Donovan, Jenny; Smith, George Davey; Neal, David E; Hamdy, Freddie C; Gudmundsson, Julius; Sulem, Patrick; Rafnar, Thorunn; Benediktsdottir, Kristrun R; Eeles, Rosalind A; Guy, Michelle; Kote-Jarai, Zsofia; Morrison, Jonathan; Al Olama, Ali Amin; Stefansson, Kari; Easton, Douglas F; Martin, Richard M

    2009-09-01

    Folate-pathway gene polymorphisms have been implicated in several cancers and investigated inconclusively in relation to prostate cancer. We conducted a systematic review, which identified nine case-control studies (eight included, one excluded). We also included data from four genome-wide association studies and from a case-control study nested within the UK population-based Prostate Testing for Cancer and Treatment study. We investigated by meta-analysis the effects of eight polymorphisms: MTHFR C677T (rs1801133; 12 studies; 10,745 cases; 40,158 controls), MTHFR A1298C (rs1801131; 5 studies; 3,176 cases; 4,829 controls), MTR A2756G (rs1805087; 8 studies; 7,810 cases; 37,543 controls), MTRR A66G (rs1801394; 4 studies; 3,032 cases; 4,515 controls), MTHFD1 G1958A (rs2236225; 6 studies; 7,493 cases; 36,941 controls), SLC19A1/RFC1 G80A (rs1051266; 4 studies; 6,222 cases; 35,821 controls), SHMT1 C1420T (rs1979277; 2 studies; 2,689 cases; 4,110 controls), and FOLH1 T1561C (rs202676; 5 studies; 6,314 cases; 35,190 controls). The majority (10 of 13) of eligible studies had 100% Caucasian subjects; only one study had <90% Caucasian subjects. We found weak evidence of dominant effects of two alleles: MTR 2756A>G [random effects pooled odds ratio, 1.06 (1.00-1.12); P = 0.06 (P = 0.59 for heterogeneity across studies)] and SHMT1 1420C>T [random effects pooled odds ratio, 1.11 (1.00-1.22); P = 0.05 (P = 0.38 for heterogeneity across studies)]. We found no effect of MTHFR 677C>T or any of the other alleles in dominant, recessive or additive models, or in comparing a/a versus A/A homozygous. Neither did we find any difference in effects on advanced or localized cancers. Our meta-analysis suggests that known common folate-pathway single nucleotide polymorphisms do not have significant effects on susceptibility to prostate cancer. PMID:19706844

  7. "Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: an updated meta-analysis".

    PubMed

    Yadav, Upendra; Kumar, Pradeep; Yadav, Sushil Kumar; Mishra, Om Prakash; Rai, Vandana

    2015-02-01

    Epidemiological studies have evaluated the association between maternal methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and methionine synthase reductase (MTRR) A66G polymorphisms and risk of neural tube defects (NTDs) in offspring. However, the results from the published studies on the association between these three polymorphisms and NTD risk are conflicting. To derive a clearer picture of association between these three maternal polymorphisms and risk of NTD, we performed meta-analysis. A comprehensive search was conducted to identify all case-control studies of maternal MTHFR and MTRR polymorphisms and NTD risk. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Overall, we found that maternal MTHFR C677T polymorphism (OR(TvsC) =1.20; 95% CI = 1.13-1.28) and MTRR A66G polymorphism (OR(GvsA) = 1.21; 95% CI = 0.98-1.49) were risk factors for producing offspring with NTD but maternal MTHFR A1298C polymorphism (OR(CvsA) = 0.91; 95% CI = 0.78-1.07) was not associated with NTD risk. However, in stratified analysis by geographical regions, we found that the maternal C677T polymorphism was significantly associated with the risk of NTD in Asian (OR(TvsC) = 1.43; 95% CI: 1.05-1.94), European (OR(TvsC) = 1.13; 95% CI: 1.04-1.24) and American (OR(TvsC) = 1.26; 95% CI: 1.13-1.41) populations. In conclusion, present meta-analysis supports that the maternal MTHFR C677T and MTRR A66G are polymorphisms contributory to risk for NTD. PMID:25005003

  8. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker

    PubMed Central

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-01-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects’ positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals’ FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = −0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment. PMID:26633373

  9. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker.

    PubMed

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-01-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects' positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals' FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = -0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment. PMID:26633373

  10. Growing Mouse Oocytes Transiently Activate Folate Transport via Folate Receptors As They Approach Full Size.

    PubMed

    Meredith, Megan; MacNeil, Allison H; Trasler, Jacquetta M; Baltz, Jay M

    2016-06-01

    The folate cycle is central to cellular one-carbon metabolism, where folates are carriers of one-carbon units that are critical for synthesis of purines, thymidylate, and S-adenosylmethionine, the universal methyl donor that forms the cellular methyl pool. Although folates are well-known to be important for early embryo and fetal development, their role in oogenesis has not been clearly established. Here, folate transport proteins were detected in developing neonatal ovaries and growing oocytes by immunohistochemistry, Western blot, and immunofluorescence. The folate receptors FOLR1 and FOLR2 as well as reduced folate carrier 1 (RFC1, SLC19A1 protein) each appeared to be present in follicular cells including granulosa cells. In growing oocytes, however, only FOLR2 immunoreactivity appeared abundant. Localization of apparent FOLR2 immunofluorescence near the plasma membrane increased with oocyte growth and peaked in oocytes as they neared full size. We assessed folate transport using the model folate leucovorin (folinic acid). Unexpectedly, there was a transient burst of folate transport activity for a brief period during oocyte growth as they neared full size, while folate transport was otherwise undetectable for the rest of oogenesis and in fully grown germinal vesicle stage oocytes. This folate transport was inhibited by dynasore, an inhibitor of endocytosis, but insensitive to the anion transport inhibitor stilbene 4-acetamido-40-isothiocyanato-stilbene-2,20-disulfonic acid, consistent with folate receptor-mediated transport but not with RFC1-mediated transport. Thus, near the end of their growth, growing oocytes may take up folates that could support the final stage of oogenesis or be stored to provide the endogenous folates needed in early embryogenesis. PMID:27122634

  11. Identification of regulatory mechanisms of intestinal folate transport in condition of folate deficiency.

    PubMed

    Thakur, Shilpa; Rahat, Beenish; Hamid, Abid; Najar, Rauf Ahmad; Kaur, Jyotdeep

    2015-10-01

    Folic acid is an essential micronutrient, deficiency of which can lead to disturbance in various metabolic processes of cell. Folate transport across intestine occurs via the involvement of specialized folate transporters viz. proton coupled folate transporter (PCFT) and reduced folate carrier (RFC), which express at the membrane surfaces. The current study was designed to identify the regulatory mechanisms underlying the effects of folate deficiency (FD) on folate transport in human intestinal cell line as well as in rats and to check the reversibility of such effects. Caco-2 cells were grown for five generations in control and FD medium. Following treatment, one subgroup of cells was shifted on folate sufficient medium and grown for three more generations. Similarly, rats were fed an FD diet for 3 and 5 months, and after 3 months of FD treatment, one group of rats were shifted on normal folate-containing diet. Increase in folate transport and expression of folate transporters were observed on FD treatment. However, when cells and rats were shifted to control conditions after treatment, transport and expression of these genes restored to the control level. FD was found to have no impact on promoter methylation of PCFT and RFC; however, messenger RNA stability of transporters was found to be decreased, suggesting some adaptive response. Overall, increased expression of transporters under FD conditions can be attributed to enhanced rate of transcription of folate transporters and also to the increased binding of specificity protein 1 transcription factor to the RFC promoter only. PMID:26168702

  12. Influence of genetic polymorphisms in the folate pathway on toxicity after high-dose methotrexate treatment in pediatric osteosarcoma

    PubMed Central

    Park, Jeong A

    2016-01-01

    Background Methotrexate (MTX), one of the main drugs used to treat osteosarcoma, is a representative folic acid antagonist. Polymorphisms of various enzymes involved in the metabolism of MTX could contribute to differences in response to MTX in pediatric osteosarcoma patients. Methods Blood and tissue samples were obtained from 37 pediatric osteosarcoma patients who were treated with high-dose MTX therapy. The following 4 single nucleotide polymorphisms (SNPs) were analyzed: ATIC 347C>G, MTHFR 677C>T, MTHFR 1298A>C and SLC19A1 80G>A. Serial plasma MTX concentrations after high-dose MTX therapy and MTX-induced toxicities were evaluated. Correlations among polymorphisms, MTX concentrations and treatment-induced toxicities were assessed. Results Plasma MTX levels at 48 hours after high-dose MTX infusion were significantly associated with SLC19A1 80G>A (P=0.031). Higher plasma levels of MTX at 48 and 72 hours were significantly associated with MTX-induced mucositis (P=0.007 and P=0.046) and renal toxicity (P=0.002), respectively. SNP of SLC19A1 gene was associated with development of severe mucositis (P=0.026). Conclusion This study suggests that plasma levels of MTX are associated with GI and renal toxicities after high-dose MTX therapy, and genetic polymorphisms that affect the metabolism of MTX may influence drug concentrations and development of significant side effects in pediatric patients treated with high-dose MTX. PMID:27104192

  13. Folate-deficiency anemia

    MedlinePlus

    Folate-deficiency anemia is a decrease in red blood cells (anemia) due to a lack of folate. Folate is a type ... B vitamin. It is also called folic acid. Anemia is a condition in which the body does ...

  14. Membrane Transporters and Folate Homeostasis; Intestinal Absorption, Transport into Systemic Compartments and Tissues

    PubMed Central

    Zhao, Rongbao; Matherly, Larry H.; Goldman, I. David

    2013-01-01

    Folates, the generic term for the family of B vitamins, are derived entirely from dietary sources, and are key one-carbon donors required for de novo nucleotide and methionine synthesis. These highly hydrophilic molecules utilize genetically distinct and functionally diverse transport systems to enter cells: the reduced folate carrier (RFC), the proton-coupled folate transporter (PCFT), and the folate receptors. Each plays a unique role in mediating folate transport across epithelia and into systemic tissues. With the recent discovery of the mechanism of intestinal folate absorption, and the clarification of the genetic basis for the autosomal recessive disorder, hereditary folate malabsorption, involving loss-of-function mutations in PCFT protein, it is now possible to piece together how these folate transporters contribute, both individually and collectively, to folate homeostasis in humans. This review focuses on the physiological roles of these major folate transporters with a brief consideration of their impact on the pharmacological activities of antifolates. PMID:19173758

  15. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex

    PubMed Central

    Gelineau-van Waes, Janee; Maddox, Joyce R; Smith, Lynette M; van Waes, Michael; Wilberding, Justin; Eudy, James D; Bauer, Linda K; Finnell, Richard H

    2008-01-01

    Background The reduced folate carrier (RFC1) is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryolethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. The identification of alterations in gene expression and signaling pathways involved in the observed dysmorphology following inactivation of RFC1-mediated folate transport are the focus of this investigation. Results Affymetrix microarray analysis of the relative gene expression profiles in whole E9.5 RFC1-/- vs. RFC1+/+ embryos identified 200 known genes that were differentially expressed. Major ontology groups included transcription factors (13.04%), and genes involved in transport functions (ion, lipid, carbohydrate) (11.37%). Genes that code for receptors, ligands and interacting proteins in the cubilin-megalin multiligand endocytic receptor complex accounted for 9.36% of the total, followed closely by several genes involved in hematopoiesis (8.03%). The most highly significant gene network identified by Ingenuity™ Pathway analysis included 12 genes in the cubilin-megalin multiligand endocytic receptor complex. Altered expression of these genes was validated by quantitative RT-PCR, and immunohistochemical analysis demonstrated that megalin protein expression disappeared from the visceral yolk sac of RFC1-/- embryos, while cubilin protein was widely misexpressed. Conclusion Inactivation of

  16. A 19-base pair deletion polymorphism in dihydrofolate reductase is associated with increased unmetabolized folic acid in plasma and decreased red blood cell folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dihydrofolate reductase (DHFR) catalyzes the reduction of folic acid to tetrahydrofolate (THF). A 19-bp noncoding deletion allele maps to intron 1, beginning 60 bases from the splice donor site, and has been implicated in neural tube defects and cancer, presumably by influencing folate metabolism. T...

  17. Intestinal folate absorption

    PubMed Central

    Strum, Williamson; Nixon, Peter F.; Bertino, Joseph B.; Binder, Henry J.

    1971-01-01

    Intestinal absorption of the monoglutamate form of the principal dietary and circulating folate compound, 5-methyltetrahydrofolic acid (5-MTHF), was studied in the rat utilizing a synthetic highly purified radiolabeled diastereoisomer. Chromatography confirmed that the compound was not altered after transfer from the mucosa to the serosa. Accumulation against a concentration gradient was not observed in duodenal, jejunal, or ileal segments at 5-MTHF concentration from 0.5 to 500 nmoles/liter. Unidirectional transmural flux determination also did not indicate a significant net flux. Mucosal to serosal transfer of 5-MTHF was similar in all segments of the intestine and increased in a linear fashion with increased initial mucosal concentrations. Further, no alteration in 5-MTHF transfer was found when studied in the presence of metabolic inhibitors or folate compounds. These results indicate that 5-MTHF is not absorbed by the rat small intestine by a carrier-mediated system and suggest that 5-MTHF transfer most likely represents diffusion. Images PMID:5564397

  18. Rare alleles of the HRAS polymorphism do not modify the risk of breast or ovarian cancer in BRCA1 carriers

    SciTech Connect

    Phelan, C.; Tonin, P.; Lynch, H.T.

    1994-09-01

    The presence of one of the rare alleles of a minisatellite polymorphism at the HRAS locus on chromosome 11p15 has been associated with a roughly two-fold increase in the risk of breast cancer. The BRCA1 gene on chromosome 17q12-21 is responsible for the majority of the families with the breast-ovarian cancer syndrome. It is estimated that 87% of BRCA1 carriers will be affected with breast cancer by age 70. The relative risk for premenopausal breast cancer in carriers, compared to non-carriers, is roughly 100. Because of the wide range in ages of onset of cancer among BRCA1 carriers, it is likely that additional factors modify the risk of cancer. The role of other modifying genetic loci has not been studied. Through haplotype analysis we have identified 199 female BRCA1 carriers above the age of 20 years in 25 linked families. 127 of these women have been diagnosed with cancer and 72 are currently healthy. DNA was available on 59 carriers. Each sample was typed for the HRAS polymorphism by PCR, using primers flanking the minisatellite. Rare alleles were identified in 18 carriers. The penetrance of the BRCA1 gene was not higher among those women who carried a rare HRAS allele (mean age of onset 49 years) than among those who carried two common alleles (mean age of onset 43 years) (p= 0.59; log rank test). Similar results were obtained for ovarian cancer. These data do not support the hypothesis that the HRAS locus modified the risk of cancer among carriers of mutations in BRCA1.

  19. Gender and Single Nucleotide Polymorphisms in MTHFR, BHMT, SPTLC1, CRBP2, CETP, and SCARB1 Are Significant Predictors of Plasma Homocysteine Normalized by RBC Folate in Healthy Adults123

    PubMed Central

    Clifford, Andrew J.; Chen, Kehui; McWade, Laura; Rincon, Gonzalo; Kim, Seung-Hyun; Holstege, Dirk M.; Owens, Janel E.; Liu, Bitao; Müller, Hans-Georg; Medrano, Juan F.; Fadel, James G.; Moshfegh, Alanna J.; Baer, David J.; Novotny, Janet A.

    2012-01-01

    Using linear regression models, we studied the main and 2-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine (Hcy)/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma Hcy normalized by RBC folate measurements (nHcy) in 373 healthy Caucasian adults (50% women). Variable selection was conducted by stepwise Akaike information criterion or least angle regression and both methods led to the same final model. Significant predictors (where P values were adjusted for false discovery rate) included type of blood sample [whole blood (WB) vs. plasma-depleted WB; P < 0.001] used for folate analysis, gender (P < 0.001), and SNP in genes SPTLC1 (rs11790991; P = 0.040), CRBP2 (rs2118981; P < 0.001), BHMT (rs3733890; P = 0.019), and CETP (rs5882; P = 0.017). Significant 2-way interaction effects included gender × MTHFR (rs1801131; P = 0.012), gender × CRBP2 (rs2118981; P = 0.011), and gender × SCARB1 (rs83882; P = 0.003). The relation of nHcy concentrations with the significant SNP (SPTLC1, BHMT, CETP, CRBP2, MTHFR, and SCARB1) is of interest, especially because we surveyed the main and interaction effects in healthy adults, but it is an important area for future study. As discussed, understanding Hcy and genetic regulation is important, because Hcy may be related to inflammation, obesity, cardiovascular disease, and diabetes mellitus. We conclude that gender and SNP significantly affect nHcy. PMID:22833659

  20. Folate-deficiency anemia

    MedlinePlus

    ... medlineplus.gov/ency/article/000551.htm Folate-deficiency anemia To use the sharing features on this page, please enable JavaScript. Folate-deficiency anemia is a decrease in red blood cells (anemia) ...

  1. Breast cancer risk associated with gene expression and genotype polymorphisms of the folate-metabolizing MTHFR gene: a case-control study in a high altitude Ecuadorian mestizo population.

    PubMed

    López-Cortés, Andrés; Echeverría, Carolina; Oña-Cisneros, Fabián; Sánchez, María Eugenia; Herrera, Camilo; Cabrera-Andrade, Alejandro; Rosales, Felipe; Ortiz, Malena; Paz-Y-Miño, César

    2015-08-01

    Breast cancer (BC) is the leading cause of cancer-related death among women in 2014. Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), and MTR reductase (MTRR) are enzymes that play an important role in folate metabolism. The single nucleotide polymorphisms, MTHFR C677T, A1298C, MTR A2756G, and MTRR A66G, alter plasmatic folate and homocysteine concentrations, causing problems during the repairment, synthesis, and methylation of the genetic material. Therefore, it is essential to know how BC risk is associated with histopathological and immunohistochemical characteristics, genotype polymorphisms, and gene expression in a high altitude Ecuadorian mestizo population. DNA was extracted from 195 healthy and 114 affected women. Genotypes were determined by restriction enzymes and genomic sequencing. mRNA was extracted from 26 glandular breast tissue samples, both from cancerous tissue and healthy tissue adjacent to the tumor. Relative gene expression was determined with the comparative Livak method (2(-ΔΔCT)). We found significant association between the rs1801133 (A222V) genotypes and an increased risk of BC development: C/T (odds ratio [OR] = 1.8; 95 % confidence interval [CI] = 1.1-3.2; P = 0.039), T/T (OR = 2.9; 95 % CI = 1.2-7.2; P = 0.025), and C/T + T/T (OR = 1.9; 95 % CI = 1.1-3.3; P = 0.019). Regarding relative gene expression, we found significant mRNA subexpression between the combined genotypes C/T + T/T (rs1801133) and triple negative breast cancer (TNBC) (P = 0.034). In brief, the MTHFR gene and its protein could act as potential predictive biomarkers of BC, especially TNBC among the high altitude Ecuadorian mestizo population. PMID:25801246

  2. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  3. Folate deficiency affects histone methylation.

    PubMed

    Garcia, Benjamin A; Luka, Zigmund; Loukachevitch, Lioudmila V; Bhanu, Natarajan V; Wagner, Conrad

    2016-03-01

    that the bound THF serves to protect the FAD class of histone demethylases from the destructive effects of formaldehyde generation by formation of 5,10-methylene-THF. We present pilot data showing that decreased folate in livers as a result of dietary folate deficiency is associated with increased levels of methylated lysine 4 of histone 3. This can be a result of decreased LSD1 activity resulting from the decreased folate available to scavenge the formaldehyde produced at the active site caused by the folate deficiency. Because LSD1 can regulate gene expression this suggests that folate may play a more important role than simply serving as a carrier of one-carbon units and be a factor in other diseases associated with low folate. PMID:26880641

  4. Human Folate Bioavailability

    PubMed Central

    Ohrvik, Veronica E.; Witthoft, Cornelia M.

    2011-01-01

    The vitamin folate is recognized as beneficial health-wise in the prevention of neural tube defects, anemia, cardiovascular diseases, poor cognitive performance, and some forms of cancer. However, suboptimal dietary folate intake has been reported in a number of countries. Several national health authorities have therefore introduced mandatory food fortification with synthetic folic acid, which is considered a convenient fortificant, being cost-efficient in production, more stable than natural food folate, and superior in terms of bioavailability and bioefficacy. Other countries have decided against fortification due to the ambiguous role of synthetic folic acid regarding promotion of subclinical cancers and other adverse health effects. This paper reviews recent studies on folate bioavailability after intervention with folate from food. Our conclusions were that limited folate bioavailability data are available for vegetables, fruits, cereal products, and fortified foods, and that it is difficult to evaluate the bioavailability of food folate or whether intervention with food folate improves folate status. We recommend revising the classical approach of using folic acid as a reference dose for estimating the plasma kinetics and relative bioavailability of food folate. PMID:22254106

  5. Carriers

    MedlinePlus

    ... for those known to be at risk for genetic diseases. Reproductive Choices For couples who are carriers, reproductive decisions can be sensitive. A number of options are available, such as adoption, prenatal testing, and pre-implantation genetic diagnosis (PGD). PGD screens ...

  6. Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase

    PubMed Central

    Wang, Lei; Desmoulin, Sita Kugel; Cherian, Christina; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Fulterer, Andreas; Chang, Min-Hwang; Mitchell, Shermaine; Stout, Mark; Romero, Michael F.; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2011-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series. PMID:21879757

  7. Folate Metabolism and Human Reproduction

    PubMed Central

    Thaler, C. J.

    2014-01-01

    Folate metabolism affects ovarian function, implantation, embryogenesis and the entire process of pregnancy. In addition to its well-established effect on the incidence of neural tube defects, associations have been found between reduced folic acid levels and increased homocysteine concentrations on the one hand, and recurrent spontaneous abortions and other complications of pregnancy on the other. In infertility patients undergoing IVF/ICSI treatment, a clear correlation was found between plasma folate concentrations and the incidence of dichorionic twin pregnancies. In patients supplemented with 0.4 mg/d folic acid undergoing ovarian hyperstimulation and oocyte pick-up, carriers of the MTHFR 677T mutation were found to have lower serum estradiol concentrations at ovulation and fewer oocytes could be retrieved from them. It appears that these negative effects can be compensated for in full by increasing the daily dose of folic acid to at least 0.8 mg. In carriers of the MTHFR 677TT genotype who receive appropriate supplementation, AMH concentrations were found to be significantly increased, which could indicate a compensatory mechanism. AMH concentrations in homozygous carriers of the MTHFR 677TT genotype could even be overestimated, as almost 20 % fewer oocytes are retrieved from these patients per AMH unit compared to MTHFR 677CC wild-type individuals. PMID:25278626

  8. Association of the solute carrier family 11 member 1 gene polymorphisms with susceptibility to leprosy in a Brazilian sample.

    PubMed

    Brochado, Maria José Franco; Gatti, Maria Fernanda Chociay; Zago, Marco Antônio; Roselino, Ana Maria

    2016-02-01

    Natural resistance-associated macrophage protein 1/solute carrier family 11 member 1 gene (Nramp1/Slc11a1) is a gene that controls the susceptibility of inbred mice to intracellular pathogens. Polymorphisms in the human Slc11a1/Nramp1 gene have been associated with host susceptibility to leprosy. This study has evaluated nine polymorphisms of the Slc11a1/Nramp1 gene [(GT)n, 274C/T, 469+14G/C, 577-18G/A, 823C/T, 1029 C/T, 1465-85G/A, 1703G/A, and 1729+55del4] in 86 leprosy patients (67 and 19 patients had the multibacillary and the paucibacillary clinical forms of the disease, respectively), and 239 healthy controls matched by age, gender, and ethnicity. The frequency of allele 2 of the (GT)n polymorphism was higher in leprosy patients [p = 0.04, odds ratio (OR) = 1.49], whereas the frequency of allele 3 was higher in the control group (p = 0.03; OR = 0.66). Patients carrying the 274T allele (p = 0.04; OR = 1.49) and TT homozygosis (p = 0.02; OR = 2.46), such as the 469+14C allele (p = 0.03; OR = 1.53) of the 274C/T and 469+14G/C polymorphisms, respectively, were more frequent in the leprosy group. The leprosy and control groups had similar frequency of the 577-18G/A, 823C/T, 1029C/T, 1465-85G/A, 1703G/A, and 1729+55del4 polymorphisms. The 274C/T polymorphism in exon 3 and the 469+14G/C polymorphism in intron 4 were associated with susceptibility to leprosy, while the allele 2 and 3 of the (GT)n polymorphism in the promoter region were associated with susceptibility and protection to leprosy, respectively. PMID:26814595

  9. Association study between the DNMT3A -448A>G polymorphism and risk of Alzheimer’s disease in Caucasians of Italian origin

    PubMed Central

    Tannorella, Pierpaola; Stoccoro, Andrea; Tognoni, Gloria; Bonuccelli, Ubaldo; Migliore, Lucia; Coppedè, Fabio

    2016-01-01

    Increasing evidence points to an epigenetic contribution in Alzheimer’s disease (AD) pathogenesis. In this regard, variants and polymorphisms of DNA methyltransferase genes (DNMTs) are being investigated for their contribution to cognitive decline and dementia, but results are still scarce or controversial. In the present study we genotyped 710 Caucasian subjects of Italian descent, including 320 late-onset AD (LOAD) patients, 70 individuals with amnestic Mild Cognitive Impairment (MCI), and 320 matched healthy controls, for the presence of a functional DNMT3A -448A>G (rs1550117) polymorphism, searching for association with disease risk. In addition, we searched for correlation between the studied polymorphism and circulating levels of folate, homocysteine (hcy) and vitamin B12, all involved in DNA methylation reactions and available from 189 LOAD patients and 186 matched controls. Both allele and genotype frequencies of rs1550117 were closely similar between MCI, LOAD and control subjects, and no association with dementia or pre-dementia conditions was observed. Plasma hcy levels were significantly higher (p = 0.04) and serum folate levels significantly lower (p = 0.01) in LOAD than in controls, but no difference in circulating folate, hcy or vitamin B12 levels was seen between carriers and non-carriers of the minor DNMT3A -448A allele. Collectively, present results confirmed previous associations of increased hcy and decreased folate with LOAD risk, but do not support an association between the DNMT3A -448A>G polymorphism and AD in our population. PMID:27073746

  10. Association study between the DNMT3A -448A>G polymorphism and risk of Alzheimer's disease in Caucasians of Italian origin.

    PubMed

    Tannorella, Pierpaola; Stoccoro, Andrea; Tognoni, Gloria; Bonuccelli, Ubaldo; Migliore, Lucia; Coppedè, Fabio

    2016-01-01

    Increasing evidence points to an epigenetic contribution in Alzheimer's disease (AD) pathogenesis. In this regard, variants and polymorphisms of DNA methyltransferase genes (DNMTs) are being investigated for their contribution to cognitive decline and dementia, but results are still scarce or controversial. In the present study we genotyped 710 Caucasian subjects of Italian descent, including 320 late-onset AD (LOAD) patients, 70 individuals with amnestic Mild Cognitive Impairment (MCI), and 320 matched healthy controls, for the presence of a functional DNMT3A -448A>G (rs1550117) polymorphism, searching for association with disease risk. In addition, we searched for correlation between the studied polymorphism and circulating levels of folate, homocysteine (hcy) and vitamin B12, all involved in DNA methylation reactions and available from 189 LOAD patients and 186 matched controls. Both allele and genotype frequencies of rs1550117 were closely similar between MCI, LOAD and control subjects, and no association with dementia or pre-dementia conditions was observed. Plasma hcy levels were significantly higher (p = 0.04) and serum folate levels significantly lower (p = 0.01) in LOAD than in controls, but no difference in circulating folate, hcy or vitamin B12 levels was seen between carriers and non-carriers of the minor DNMT3A -448A allele. Collectively, present results confirmed previous associations of increased hcy and decreased folate with LOAD risk, but do not support an association between the DNMT3A -448A>G polymorphism and AD in our population. PMID:27073746

  11. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 2. Transport studies, photoaffinity labeling, and identification of the membrane carrier protein for methotrexate from murine L1210 cells

    SciTech Connect

    Price, E.M.; Freisheim, J.H.

    1987-07-28

    A membrane-derived component of the methotrexate/one-carbon-reduced folate transport system in murine L1210 cells has been identified by using a photoaffinity analogue of methotrexate. The compound, a radioiodinated 4-azidosalicylyl derivative of the lysine analogue of methotrexate, is transported into murine L1210 cells in a temperature-dependent, sulfhydryl reagent inhibitable manner with a K/sub t/ of 506 +/- 79 nM and a V/sub max/ of 17.9 +/- 4.2 pmol min/sup -1/ (mg of total cellular protein)/sup -1/. Uptake of the iodinated compound at 200 nM is inhibited by low amounts of methotrexate. The parent compounds of the iodinated photoprobe inhibit (/sup 3/H)methotrexate uptake, with the uniodinated 4-azidosalicylyl derivative exhibiting a K/sub i/ of 66 +/- 21 nM. UV irradiation, at 4 /sup 0/C, of a cell suspension that had been incubated with the probe results in the covalent modification of a 46K-48K protein. This can be demonstrated when the plasma membranes from the labeled cells are analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Labeling of this protein occurs half-maximally at a reagent concentration that correlates with the K/sub t/ for transport of the iodinated compound. Protection against labeling of this protein by increasing amounts of methotrexate parallels the concentration dependence of inhibition of photoprobe uptake by methotrexate. Evidence that, in the absence of irradiation and at 37/sup 0/C, the iodinated probe is actually internalized is demonstrated by the labeling of two soluble proteins (M/sub r/ 38K and 21K) derived from the cell homogenate supernatant.

  12. The proton-coupled folate transporter: physiological and pharmacological roles.

    PubMed

    Zhao, Rongbao; Goldman, I David

    2013-12-01

    Recent studies have identified the proton-coupled folate transporter (PCFT) as the mechanism by which folates are absorbed across the apical brush-border membrane of the small intestine and across the basolateral membrane of the choroid plexus into the cerebrospinal fluid. Both processes are defective when there are loss-of-function mutations in this gene as occurs in the autosomal recessive disorder hereditary folate malabsorption. Because this transporter functions optimally at low pH, antifolates are being developed that are highly specific for PCFT in order to achieve selective delivery to malignant cells within the acidic environment of solid tumors. PCFT has a spectrum of affinities for folates and antifolates that narrows and increases at low pH. Residues have been identified that play a role in folate and proton binding, proton coupling, and oscillation of the carrier between its conformational states. PMID:24383099

  13. Evaluation of factor VIII polymorphic short tandem repeat markers in linkage analysis for carrier diagnosis of hemophilia A

    PubMed Central

    Shrestha, Sabina; Dong, Sufang; Li, Zuhua; Huang, Zhuliang; Zheng, Fang

    2016-01-01

    Hemophilia A (HA) is the most common inherited X-linked recessive bleeding disorder caused by heterogeneous mutations in the factor VIII gene (FVIII). Diagnosis of the carrier is critical for preventing the birth of children affected by this coagulation disorder, which ultimately facilitates its management. Due to the heterogeneous nature of mutations, the large inversions and the complexity of the FVIII gene, direct recognition of the disease-associated mutation in HA is complex. Indirect linkage analysis using highly informative heterozygous polymorphic markers is an alternative method for determining the co-segregation of the mutant gene within a family for carrier detection of HA. The aim of the present study was to perform carrier diagnosis in a family with HA. Rapid multifluorescent polymerase chain reaction (PCR) was performed with six extragenic short tandem repeats (STRs), DXS1073, DXS15, DXS8091, DXS1227, DXS991, DXS993 and one intragenic marker, STR22 for linkage analysis in the HA family. All the STR markers employed in the present study were informative for linkages of pathogenic and healthy haplotypes among family members, particularly STR22, DXS1073 and DXS15. The STR marker, STR22, is within the FVIII gene while the DXS1073 and DXS15 markers are very close to the FVIII gene, where the chances of recombination are comparatively low, and provided the most accurate interpretation analysis, indicating that the proband's sister may have been the HA carrier. Rapid multifluorescent PCR using STR markers and linkage analysis was identified to be a simple method for performing HA carrier diagnosis. PMID:27446547

  14. Folate and asthma.

    PubMed

    Blatter, Joshua; Han, Yueh-Ying; Forno, Erick; Brehm, John; Bodnar, Lisa; Celedón, Juan C

    2013-07-01

    Findings from experimental studies and animal models led to the hypothesis that folic acid supplementation during pregnancy confers an increased risk of asthma. This review provides a critical examination of current experimental and epidemiologic evidence of a causal association between folate status and asthma. In industrialized nations, the prevalence of asthma was rising before widespread fortification of foodstuffs with folic acid or folate supplementation before or during pregnancy, thus suggesting that changes in folate status are an unlikely explanation for "the asthma epidemic." Consistent with this ecologic observation, evidence from human studies does not support moderate or strong effects of folate status on asthma. Given known protective effects against neural tube and cardiac defects, there is no reason to alter current recommendations for folic acid supplementation during conception or pregnancy based on findings for folate and asthma. Although we believe that there are inadequate data to exclude a weak effect of maternal folate status on asthma or asthma symptoms, such effects could be examined within the context of very large (and ongoing) birth cohort studies. At this time, there is no justification for funding new studies of folate and asthma. PMID:23650899

  15. Potential role of folate in pre-eclampsia.

    PubMed

    Singh, Mansi Dass; Thomas, Philip; Owens, Julie; Hague, William; Fenech, Michael

    2015-10-01

    Dietary deficiencies of folate and other B vitamin cofactors involved in one-carbon metabolism, together with genetic polymorphisms in key folate-methionine metabolic pathway enzymes, are associated with increases in circulating plasma homocysteine, reduction in DNA methylation patterns, and genome instability events. All of these biomarkers have also been associated with pre-eclampsia. The aim of this review was to explore the literature and identify potential knowledge gaps in relation to the role of folate at the genomic level in either the etiology or the prevention of pre-eclampsia. A systematic search strategy was designed to identify citations in electronic databases for the following terms: folic acid supplementation AND pre-eclampsia, folic acid supplementation AND genome stability, folate AND genome stability AND pre-eclampsia, folic acid supplementation AND DNA methylation, and folate AND DNA methylation AND pre-eclampsia. Forty-three articles were selected according to predefined selection criteria. The studies included in the present review were not homogeneous, which made pooled analysis of the data very difficult. The present review highlights associations between folate deficiency and certain biomarkers observed in various tissues of women at risk of pre-eclampsia. Further investigation is required to understand the role of folate in either the etiology or the prevention of pre-eclampsia. PMID:26359215

  16. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    PubMed Central

    2009-01-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors. PMID:20596476

  17. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2009-02-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of 10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly- l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  18. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    PubMed

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-01-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors. PMID:20596476

  19. Folate metabolism in malaria

    PubMed Central

    Ferone, Robert

    1977-01-01

    It is known that malaria parasites are inhibited by sulfonamides and antifolate compounds, require 4-aminobenzoic acid for growth, and respond only partly to intact folic and folinic acids. Biochemical data obtained during the last decade on the synthesis of nucleic acid precursors and on folate enzymes in malaria support the hypothesis that malaria parasites are similar to microorganisms that synthesize folate cofactors de novo. Sulfa drugs inhibit plasmodial dihydropteroate synthase (EC 2.5.1.15). Pyrimethamine and many other antifolate compounds bind to tetrahydrofolate dehydrogenase (EC 1.5.1.3) of the parasite more tightly than to the host enzyme. However, the metabolic consequences of the depletion of folate cofactors as a result of drug inhibition are not yet known. Other areas to be studied are the origin of the pteridine moiety of folates, the addition of glutamate(s) in folate cofactor biosynthesis, the means by which intact, exogenous folates affect malarial growth, and demonstration of the enzymes and reactions involving N5-methyl tetrahydrofolate. PMID:338184

  20. Screening for JH1 genetic defect carriers in Jersey cattle by a polymerase chain reaction and restriction fragment length polymorphism assay.

    PubMed

    Zhang, Yi; Guo, Gang; Huang, Hetian; Lu, Lu; Wang, Lijie; Fang, Lingzhao; Liu, Lin; Wang, Yachun; Zhang, Shengli

    2015-09-01

    An autosomal recessive genetic defect termed JH1 has been associated with early embryonic loss in the Jersey cattle breed. The genetic basis has been identified as a cytosine to thymine mutation in the CWC15 gene that changes an amino acid from arginine to a stop code. To screen for JH1 carriers in an imported Jersey population in China, a method based on a polymerase chain reaction amplification followed by a restriction fragment length polymorphism assay (PCR-RFLP) was developed for the accurate diagnosis of the JH1 allele. A total of 449 randomly chosen cows were examined with the PCR-RFLP assay, and 31 were identified as JH1 carriers, corresponding to a carrier frequency of 6.9%. The PCR-RFLP method was validated by DNA sequencing of 8 positive and 13 negative samples, with all 21 samples giving the expected DNA sequence. In addition, 3 negative and 3 positive samples were confirmed by a commercial microarray-based single nucleotide polymorphism assay. Finally, samples from 9 bulls in the United States of known status were correctly identified as carriers (5 bulls) or noncarriers (4 bulls). As the JH1 defect has most likely spread worldwide, implementing routine screening is necessary to avoid the risk of carrier-to-carrier matings and to gradually eradicate the deleterious gene. PMID:26179100

  1. Folate: a functional food constituent.

    PubMed

    Iyer, Ramya; Tomar, S K

    2009-01-01

    Folate, a water-soluble vitamin, includes naturally occurring food folate and synthetic folic acid in supplements and fortified foods. Mammalian cells cannot synthesize folate and its deficiency has been implicated in a wide variety of disorders. A number of reviews have dwelt up on the health benefits associated with increased folate intakes and many countries possess mandatory folate enrichment programs. Lately, a number of studies have shown that high intakes of folic acid, the chemically synthesized form, but not natural folates, can cause adverse effects in some individuals such as the masking of the hematological manifestations of vitamin B(12) deficiency, leukemia, arthritis, bowel cancer, and ectopic pregnancies. As fermented milk products are reported to contain even higher amounts of folate produced by the food-grade bacteria, primarily lactic acid bacteria (LAB), the focus has primarily shifted toward the natural folate, that is, folate produced by LAB and levels of folate present in foods fermented by/or containing these valuable microorganisms. The proper selection and use of folate-producing microorganisms is an interesting strategy to increase "natural" folate levels in foods. An attempt has been made through this review to share information available in the literature on wide ranging aspects of folate, namely, bioavailability, analysis, deficiency, dietary requirements, and health effects of synthetic and natural folate, dairy and nondairy products as a potential source of folate, microorganisms with special reference to Streptococcus thermophilus as prolific folate producer, and recent insight on modulation of folate production levels in LAB by metabolic engineering. PMID:20492126

  2. Folate in depression: efficacy, safety, differences in formulations, and clinical issues.

    PubMed

    Fava, Maurizio; Mischoulon, David

    2009-01-01

    Supplementation with folate may help reduce depressive symptoms. Folate, a naturally occurring B vitamin, is needed in the brain for the synthesis of norepinephrine, serotonin, and dopamine. Three forms of folate are commonly used: folic acid, 5-methyltetrahydrofolate (5-MTHF) (also known as methylfolate and L-methylfolate), and folinic acid. Some forms may be more bioavailable than others in patients with a genetic polymorphism and in those who take particular medications or use alcohol. Folic acid augmentation in depressed patients may reduce residual symptoms. The 5-MTHF formulation indicated efficacy as adjunctive therapy or monotherapy in reducing depressive symptoms in patients with normal and low folate levels, improving cognitive function and reducing depressive symptoms in elderly patients with dementia and folate deficiency, and reducing depressive and somatic symptoms in patients with depression and alcoholism. Adjunctive folinic acid reduced depressive symptoms in patients who were partially responsive or nonresponsive to a selective serotonin reuptake inhibitor. Evidence for the efficacy of folate in improving cognitive symptoms is equivocal, but most studies used folic acid. Although the studies reviewed have limitations and, historically, concerns have been raised about the role of folate in increasing cancer risk, masking B(12) deficiency, and worsening depressive symptoms, folate is generally well tolerated, and 5-MTHF may be less likely to incur some of these risks. Several forms of folate appear to be safe and efficacious in some individuals with major depressive disorder, but more information is needed about dosage and populations most suited to folate therapy. PMID:19909688

  3. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia.

    PubMed

    Wiemels, J L; Smith, R N; Taylor, G M; Eden, O B; Alexander, F E; Greaves, M F

    2001-03-27

    Low folate intake as well as alterations in folate metabolism as a result of polymorphisms in the enzyme methylenetetrahydrofolate reductase (MTHFR) have been associated with an increased incidence of neural tube defects, vascular disease, and some cancers. Polymorphic variants of MTHFR lead to enhanced thymidine pools and better quality DNA synthesis that could afford some protection from the development of leukemias, particularly those with translocations. We now report associations of MTHFR polymorphisms in three subgroups of pediatric leukemias: infant lymphoblastic or myeloblastic leukemias with MLL rearrangements and childhood lymphoblastic leukemias with either TEL-AML1 fusions or hyperdiploid karyotypes. Pediatric leukemia patients (n = 253 total) and healthy newborn controls (n = 200) were genotyped for MTHFR polymorphisms at nucleotides 677 (C-->T) and 1,298 (A-->C). A significant association for carriers of C677T was demonstrated for leukemias with MLL translocations (MLL+, n = 37) when compared with controls [adjusted odd ratios (OR) = 0.36 with a 95% confidence interval (CI) of 0.15-0.85; P = 0.017]. This protective effect was not evident for A1298C alleles (OR = 1.14). In contrast, associations for A1298C homozygotes (CC; OR = 0.26 with a 95% CI of 0.07--0.81) and C677T homozygotes (TT; OR = 0.49 with a 95% CI of 0.20--1.17) were observed for hyperdiploid leukemias (n = 138). No significant associations were evident for either polymorphism with TEL-AML1+ leukemias (n = 78). These differences in allelic associations may point to discrete attributes of the two alleles in their ability to alter folate and one-carbon metabolite pools and impact after DNA synthesis and methylation pathways, but should be viewed cautiously pending larger follow-up studies. The data provide evidence that molecularly defined subgroups of pediatric leukemias have different etiologies and also suggest a role of folate in the development of childhood leukemia. PMID:11274424

  4. Plasma folate, methylenetetrahydrofolate reductase (MTHFR), and colorectal cancer risk in three large nested case-control studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few prospective studies have examined the associations between blood levels of folate, in conjunction with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, and colorectal cancer. We evaluated the associations between plasma folate, MTHFR C677T, and A1298C, and colorectal cancer in three la...

  5. Folate Augmentation of Treatment--Evaluation for Depression (FolATED): randomised trial and economic evaluation.

    PubMed Central

    Bedson, Emma; Bell, Diana; Carr, Daniel; Carter, Ben; Hughes, Dyfrig; Jorgensen, Andrea; Lewis, Helen; Lloyd, Keith; McCaddon, Andrew; Moat, Stuart; Pink, Joshua; Pirmohamed, Munir; Roberts, Seren; Russell, Ian; Sylvestre, Yvonne; Tranter, Richard; Whitaker, Rhiannon; Wilkinson, Clare; Williams, Nefyn

    2014-01-01

    BACKGROUND Folate deficiency is associated with depression. Despite the biological plausibility of a causal link, the evidence that adding folate enhances antidepressant treatment is weak. OBJECTIVES (1) Estimate the clinical effectiveness and cost-effectiveness of folic acid as adjunct to antidepressant medication (ADM). (2) Explore whether baseline folate and homocysteine predict response to treatment. (3) Investigate whether response to treatment depends on genetic polymorphisms related to folate metabolism. DESIGN FolATED (Folate Augmentation of Treatment - Evaluation for Depression) was a double-blind and placebo-controlled, but otherwise pragmatic, randomised trial including cost-utility analysis. To yield 80% power of detecting standardised difference on the Beck Depression Inventory version 2 (BDI-II) of 0.3 between groups (a 'small' effect), FolATED trialists sought to analyse 358 participants. To allow for an estimated loss of 21% of participants over three time points, we planned to randomise 453. SETTINGS Clinical - Three centres in Wales - North East Wales, North West Wales and Swansea. Trial management - North Wales Organisation for Randomised Trials in Health in Bangor University. Biochemical analysis - University Hospital of Wales, Cardiff. Genetic analysis - University of Liverpool. PARTICIPANTS Four hundred and seventy-five adult patients presenting to primary or secondary care with confirmed moderate to severe depression for which they were taking or about to start ADM, and able to consent and complete assessments, but not (1) folate deficient, vitamin B12 deficient, or taking folic acid or anticonvulsants; (2) misusing drugs or alcohol, or suffering from psychosis, bipolar disorder, malignancy or other unstable or terminal illness; (3) (planning to become) pregnant; or (4) participating in other clinical research. INTERVENTIONS Once a day for 12 weeks experimental participants added 5 mg of folic acid to their ADM, and control participants

  6. Gene-environment interactions reveal a homeostatic role for cholesterol metabolism during dietary folate perturbation in mice

    PubMed Central

    Kitami, Toshimori; Rubio, Renee; O'Brien, William; Quackenbush, John; Nadeau, Joseph H.

    2008-01-01

    Dietary folate supplementation can dramatically reduce the severity and incidence of several common birth defects and adult diseases that are associated with anomalies in homocysteine and folate metabolism. The common polymorphisms that adversely affect these metabolic pathways do not fully account for the particular birth defects and adult diseases that occur in at-risk individuals. To test involvement of folate, homocysteine, and other pathways in disease pathogenesis and treatment response, we analyzed global and pathway-specific changes in gene expression and levels of selected metabolites after depletion and repletion of dietary folate in two genetically distinct inbred strains of mice. Compared with the C57BL/6J strain, A/J showed greater homeostatic response to folate perturbation by retaining a higher serum folate level and minimizing global gene expression changes. Remarkably, folate perturbation led to systematic strain-specific differences only in the expression profile of the cholesterol biosynthesis pathway and to changes in levels of serum and liver total cholesterol. By genetically increasing serum and liver total cholesterol levels in APOE-deficient mice, we modestly but significantly improved folate retention during folate depletion, suggesting that homeostasis among the homocysteine, folate and cholesterol metabolic pathways contributes to the beneficial effects of dietary folate supplementation. PMID:18697859

  7. The mechanism of folate transport in rabbit reticulocytes

    PubMed Central

    Bobzien, William F.; Goldman, David

    1972-01-01

    Folate transport in phenylhydrazine-induced rabbit reticulocytes was studied with the non-metabolized folate-analog, methotrexate. The time-course of methotrexate uptake into a mixed population of reticulocytes and mature erythrocytes is a two-component process consisting of a small, but rapid, initial uptake phase followed by a much slower uptake component which remains essentially constant over the period of observation. The velocity of the latter uptake component is directly proportional to the per cent reticulocytes and appears to represent a unidirectional influx of methotrexate into these cells. Uptake of methotrexate into reticulocytes was found to have the following characteristics: (a) temperature sensitivity, Q10 of 4; (b) uptake velocity as a function of the extracellular methotrexate concentration approximated Michaelis-Menten kinetics with a maximum transport velocity of 48 pmoles/min per g dry wt; the extracellular methotrexate level at which the uptake velocity was one-half maximum was 1.4 μM; (c) 5-formyltetrahydrofolate markedly inhibited methotrexate uptake but pteroylglutamic acid inhibition was weak; (d) uptake was stimulated in cells preincubated with 5-formyltetrahydrofolate, indicative of hetero-exchange diffusion; (e) uptake was independent of extracellular sodium but was inhibited by anions including nitrate, phosphate, and glucose-6-phosphate; (f) uptake was enhanced by azide plus iodoacetate. These data indicate that folate transport in rabbit reticulocytes is mediated by a carrier mechanism which disappears with reticulocyte maturation. The mechanism of folate transport in rabbit reticulocytes is qualitatively similar to tumor cells previously studied; both appear to have an energy-dependent mechanism limiting folate uptake, and influx in both is inhibited by structurally unrelated inorganic and organic anions. These studies suggest that circulating pteroylglutamic acid is of little importance in meeting the folate requirements of

  8. Prediction of the Risk for Essential Hypertension among Carriers of C825T Genetic Polymorphism of G Protein β3 (GNB3) Gene

    PubMed Central

    El Din Hemimi, Neveen Salah; Mansour, Amal A.; Abdelsalam, Mona Mohamed

    2016-01-01

    BACKGROUND The guanine nucleotide-binding protein beta polypeptide 3 (GNB3) 825T allele encodes a product that enhances the activation of heterotrimeric G proteins, which is associated with the occurrence of the splice variant Gβ3 s that could play a role in vascular reactivity and hyperproliferation of smooth muscle cells, that makes such proteins attractive candidate gene products for susceptibility to essential hypertension (EH). OBJECTIVE To predict the risk for EH in individuals with C825T genetic polymorphism of G protein β3 gene. METHODS The study consisted of 222 normotensive individuals and 216 hypertensive patients. Individuals were genotyped for C825T genetic polymorphism of G protein β3 gene rs5443 by using restriction fragment length polymorphism. RESULTS Frequencies of C and T alleles were 58.1% and 41.9%, respectively, in the control group compared with 47.7% and 52.3%, respectively, in the hypertensive group. The carriers of rs5443 (T) allele exhibited a significant greater risk for EH compared with the carriers of rs5443 (C) allele (odds ratio = 1.5, 95% confidence interval = 1.2–2.0). CONCLUSION T allele is a risk factor for EH in the Egyptian population, which may be used as a prognostic and a therapeutic target of prophylaxis. PMID:27226707

  9. Thymidylate synthase and methylenetetrahy-drofolate reductase gene polymorphisms and gastric cancer susceptibility in a population of Northern Brazil.

    PubMed

    Araújo, M D; Borges, B N; Rodrigues-Antunes, S; Burbano, R M R; Harada, M L

    2015-01-01

    The folate metabolic pathway, which is involved in DNA synthesis and methylation, is associated with individual susceptibility to several diseases, including gastric tumors. In this study, we investigated four polymorphisms [thymidylate synthase enhancer region, single nucleotide polymorphism thymidylate synthase 5' (TS5'), TS3' untranslated region, and methylenetetrahydrofolate reductase (MTHFR) 677C> T] in 2 genes related to the folate pathway, TS and MTHFR, and their possible association with the risk gastric cancer development in a population from Pará state, Brazil. For the TS enhancer region, TS3' untranslated region, and single nucleotide polymorphism TS5' polymorphisms, no significant results were obtained. For the MTHFR 677C>T polymorphism, TT genotype carriers had a higher risk of developing tumors in the antrum (P = 0.19 vs CC and P = 0.02 vs CT) and intestine (odds ratio = 4.18, 95% confidence interval = 0.66-26.41; P = 0.252 vs CC and odds ratio = 2.25, 95% confidence interval = 0.32-15.75; P = 0.725 vs CT). Those carrying at least 1 T allele had an increased risk of lymph node metastasis (odds ratio = 3.00, 95% confidence interval = 0.88-10.12; P = 0.133). Our results suggest that polymorphisms in MTHFR affect the susceptibility to gastric tumors in the Brazilian population and may be a factor causing poor prognosis in such patients. PMID:26345936

  10. Folate metabolism and the risk of Down syndrome.

    PubMed

    Patterson, David

    2008-10-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy can reduce the risk of certain problems including neural tube defects. It has been suggested that certain versions (polymorphisms) of some genes can increase the risk of conceiving a baby with Down syndrome. If this is the case, then people with Down syndrome may be more likely to carry these forms of these genes and to experience associated problems in folate metabolism. Studies to date have found conflicting results, suggesting that these gene variants may be part of a more complex picture. In this issue, a further study reports no association between the presence of a common polymorphism of one of these genes and the risk of having a child with Down syndrome among mothers of Northern Indian origin. This article reviews these challenging findings and looks at where investigations can now go to resolve these issues. PMID:19026278

  11. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery.

    PubMed

    Wang, Jianting; Wang, Ming; Zheng, Mingming; Guo, Qiong; Wang, Yafan; Wang, Heqing; Xie, Xiangrong; Huang, Fenghong; Gong, Renmin

    2015-05-01

    Self-assembled core/shell nanoparticles (NPs) were synthesized from water-soluble alginate substituted by hydrophobic phytosterols. Folate, a cancer-cell-specific ligand, was conjugated to the phytosterol-alginate (PA) NPs for targeting folate-receptor-overexpressing cancer cells. The physicochemical properties of folate-phytosterol-alginate (FPA) NPs were characterized by nuclear magnetic resonance, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug, was entrapped inside prepared NPs by dialysis method. The identification of prepared FPA NPs to folate-receptor-overexpressing cancer cells (KB cells) was confirmed by cytotoxicity and folate competition assays. Compared to the pure DOX and DOX/PA NPs, the DOX/FPA NPs had lower IC50 value to KB cells because of folate-receptor-mediated endocytosis process and the cytotoxicity of DOX/FPA NPs to KB cells could be competitively inhibited by free folate. The cellular uptake and internalization of pure DOX and DOX/FPA NPs was confirmed by confocal laser scanning microscopy image and the higher intracellular uptake of drug for DOX/FPA NPs over pure DOX was observed. The FPA NPs had the potential as a promising carrier to target drugs to cancer cells overexpressing folate receptors and avoid cytotoxicity to normal tissues. PMID:25829128

  12. Folate in Skin Cancer Prevention

    PubMed Central

    Williams, J.D.; Jacobson, Elaine L.; Kim, H.; Kim, M.; Jacobson, M.K.

    2013-01-01

    Skin, the largest, most exposed organ of the body, provides a protective interface between humans and the environment. One of its primary roles is protection against exposure to sunlight, a major source of skin damage where the UV radiation (UVR) component functions as a complete carcinogen. Melanin pigmentation and the evolution of dark skin is an adaptive protective mechanism against high levels of UVR exposure. Recently, the hypothesis that skin pigmentation balances folate preservation and Vitamin D production has emerged. Both micronutrients are essential for reproductive success. Photodegradation of bioactive folates suggests a mechanism for the increased tendency of populations of low melanin pigmentation residing in areas of high UV exposure to develop skin cancers. Folate is proposed as a cancer prevention target for its role in providing precursors for DNA repair and replication, as well as its ability to promote genomic integrity through the generation of methyl groups needed for control of gene expression. The cancer prevention potential of folate has been demonstrated by large-scale epidemiological and nutritional studies indicating that decreased folate status increases the risk of developing certain cancers. While folate deficiency has been extensively documented by analysis of human plasma, folate status within skin has not been widely investigated. Nevertheless, inefficient delivery of micronutrients to skin and photolysis of folate argue that documented folate deficiencies will be present if not exacerbated in skin. Our studies indicate a critical role for folate in skin and the potential to protect sun exposed skin by effective topical delivery as a strategy for cancer prevention. PMID:22116700

  13. MTHFR polymorphisms and cognitive ageing in the ninth decade: the Lothian Birth Cohort 1921.

    PubMed

    Schiepers, O J G; van Boxtel, M P J; Harris, S E; Gow, A J; Pattie, A; Brett, C E; de Groot, R H M; Jolles, J; Starr, J M; Deary, I J

    2011-04-01

    Low blood levels of B vitamins have been implicated in age-associated cognitive impairment. The present study investigated the association between genetic variation in folate metabolism and age-related cognitive decline in the ninth decade of life. Both the 677C>T (rs1801133) polymorphism and the scarcely studied 1298A>C (rs1801131) polymorphism of the MTHFR gene were assessed in relation to cognitive change over 8 years in older community-dwelling individuals. MTHFR genotype was determined in 476 participants of the Lothian Birth Cohort 1921, whose intelligence was measured in childhood in the Scottish Mental Survey of 1932. Cognitive performance on the domains of verbal memory, reasoning and verbal fluency was assessed at mean age of 79 (n = 476) and again at mean ages of 83 (n = 275) and 87 (n = 180). Using linear mixed models, the MTHFR 677C>T and 1298A>C variants were not associated with the rate of cognitive change between 79 and 87 years, neither in the total sample, nor in a subsample of individuals with erythrocyte folate levels below the median. APOE E4 allele carrier status did not interact with MTHFR genotype in affecting change in cognitive performance over 8 years. No significant combined effect of the two polymorphisms was found. In conclusion, MTHFR 677C>T and 1298A>C polymorphisms were not associated with individual change in cognitive functioning in the ninth decade of life. Although polymorphisms in the MTHFR gene may cause disturbances in folate metabolism, they do not appear to be accompanied by changes in cognitive functioning in old age. PMID:21255267

  14. The Leu33Pro polymorphism in the ITGB3 gene does not modify BRCA1/2-associated breast or ovarian cancer risks: results from a multicenter study among 15,542 BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Jakubowska, Anna; Rozkrut, Dominik; Antoniou, Antonis; Hamann, Ute; Lubinski, Jan

    2011-01-01

    Integrins containing the β3 subunit are key players in tumor growth and metastasis. A functional Leu33Pro polymorphism (rs5918) in the β3 subunit of the integrin gene (ITGB3) has previously been suggested to act as a modifier of ovarian cancer risk in Polish BRCA1 mutation carriers. To investigate the association further, we genotyped 9,998 BRCA1 and 5,544 BRCA2 mutation carriers from 34 studies from the Consortium of Investigators of Modifiers of BRCA1/2 for the ITGB3 Leu33Pro polymorphism. Data were analysed within a Cox-proportional hazards framework using a retrospective likelihood approach. There was marginal evidence that the ITGB3 polymorphism was associated with an increased risk of ovarian cancer for BRCA1 mutation carriers (per-allele Hazard Ratio (HR) 1.11, 95% CI 1.00–1.23, p-trend 0.05). However, when the original Polish study was excluded from the analysis, the polymorphism was no longer significantly associated with ovarian cancer risk (HR 1.07, 95% CI 0.96–1.19, p-trend 0.25). There was no evidence of an association with ovarian cancer risk for BRCA2 mutation carriers (HR 1.09, 95% CI 0.89–1.32). The polymorphism was not associated with breast cancer risk for either BRCA1 or BRCA2 mutation carriers. The ITGB3 Leu33Pro polymorphism does not modify breast or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. PMID:19876733

  15. IL28B Gene Polymorphism SNP rs8099917 Genotype GG Is Associated with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) in HTLV-1 Carriers

    PubMed Central

    Luiz, Olinda do Carmo; Malta, Fernanda; Pinho, João Renato Rebello; Gonçalves, Fernanda de Toledo; Duarte, Alberto Jose da Silva; de Oliveira, Augusto Cesar Penalva

    2014-01-01

    Background The polymorphisms of IL28B have been described as important in the pathogenesis of infections caused by some viruses. The aim of this research was to evaluate whether IL28B gene polymorphisms (SNP rs8099917 and SNP rs12979860) are associated with HAM/TSP. Methods The study included 229 subjects, classified according to their neurological status in two groups: Group I (136 asymptomatic HTLV-1 carriers) and Group II (93 HAM/TSP patients). The proviral loads were quantified, and the rs8099917 and rs12979860 SNPs in the region of IL28B-gene were analyzed by StepOnePlus Real-time PCR System. Results A multivariate model analysis, including gender, age, and HTLV-1 DNA proviral load, showed that IL28B polymorphisms were independently associated with HAM/TSP outcome in rs12979860 genotype CT (OR = 2.03; IC95% = 0.96–4.27) and in rs8099917 genotype GG (OR = 7.61; IC95% = 1.82–31.72). Conclusion Subjects with SNP rs8099917 genotype GG and rs12979618 genotype CT may present a distinct immune response against HTLV-1 infection. So, it seems reasonable to suggest that a search for IL28B polymorphisms should be performed for all HTLV-1-infected subjects in order to monitor their risk for disease development; however, since this is the first description of such finding in the literature, we should first replicate this study with more HTLV-1-infected persons to strengthen the evidence already provided by our results. PMID:25233462

  16. Self-assembled liquid-crystalline folate nanoparticles for in vitro controlled release of doxorubicin.

    PubMed

    Misra, Rahul; Mohanty, Sanat

    2015-02-01

    Liquid-crystalline folate nanoparticles are ordered in structure which offers several advantages like high encapsulation of drugs, controlled release rates, biocompatible in nature. Moreover, it facilitates the cellular uptake of nanodrugs without any extra step of folate ligand based targeting. The size of these nanocarriers as well as the release profiles of drugs from these nano-carriers can be controlled precisely. Folate molecules self-assemble in ordered stacks and columns even at low concentration of 0.1wt%. Doxorubicin molecules get intercalated within the folate stacks and are developed into nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate doxorubicin molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming doxorubicin encapsulated folate nanoparticles as well as the parameters to control the release rates of doxorubicin through liquid-crystalline folate nanoparticles. It has been demonstrated that doxorubicin release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on doxorubicin release rates was also studied. Moreover, this study also addresses the comparative in vitro cytotoxic performance of Doxorubicin loaded folate nanoparticles and cellular uptake of nano-carriers on cancer and normal cell line. PMID:25661378

  17. Folate transport gene inactivation in mice increases sensitivity to colon carcinogenesis.

    PubMed

    Ma, David W L; Finnell, Richard H; Davidson, Laurie A; Callaway, Evelyn S; Spiegelstein, Ofer; Piedrahita, Jorge A; Salbaum, J Michael; Kappen, Claudia; Weeks, Brad R; James, Jill; Bozinov, Daniel; Lupton, Joanne R; Chapkin, Robert S

    2005-02-01

    Low dietary folate intake is associated with an increased risk for colon cancer; however, relevant genetic animal models are lacking. We therefore investigated the effect of targeted ablation of two folate transport genes, folate binding protein 1 (Folbp1) and reduced folate carrier 1 (RFC1), on folate homeostasis to elucidate the molecular mechanisms of folate action on colonocyte cell proliferation, gene expression, and colon carcinogenesis. Targeted deletion of Folbp1 (Folbp1(+/-) and Folbp1(-/-)) significantly reduced (P < 0.05) colonic Folbp1 mRNA, colonic mucosa, and plasma folate concentration. In contrast, subtle changes in folate homeostasis resulted from targeted deletion of RFC1 (RFC1(+/-)). These animals had reduced (P < 0.05) colonic RFC1 mRNA and exhibited a 2-fold reduction in the plasma S-adenosylmethionine/S-adenosylhomocysteine. Folbp1(+/-) and Folbp1(-/-) mice had larger crypts expressed as greater (P < 0.05) numbers of cells per crypt column relative to Folbp1(+/+) mice. Colonic cell proliferation was increased in RFC1(+/-) mice relative to RFC1(+/+) mice. Microarray analysis of colonic mucosa showed distinct changes in gene expression specific to Folbp1 or RFC1 ablation. The effect of folate transporter gene ablation on colon carcinogenesis was evaluated 8 and 38 weeks post-azoxymethane injection in wild-type and heterozygous mice. Relative to RFC1(+/+) mice, RFC1(+/-) mice developed increased (P < 0.05) numbers of aberrant crypt foci at 8 weeks. At 38 weeks, RFC1(+/-) mice developed local inflammatory lesions with or without epithelial dysplasia as well as adenocarcinomas, which were larger relative to RFC1(+/+) mice. In contrast, Folbp1(+/-) mice developed 4-fold (P < 0.05) more lesions relative to Folbp1(+/+) mice. In conclusion, Folbp1 and RFC1 genetically modified mice exhibit distinct changes in colonocyte phenotype and therefore have utility as models to examine the role of folate homeostasis in colon cancer development. PMID:15705887

  18. Causes of vitamin B12 and folate deficiency.

    PubMed

    Allen, Lindsay H

    2008-06-01

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor vitamin B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetarians (vegans) are at risk for vitamin B12 deficiency, evidence now indicates that low intakes of animal-source foods, such as occur in some lacto-ovo vegetarians and many less-industrialized countries, cause vitamin B12 depletion. Malabsorption of the vitamin is most commonly observed as food-bound cobalamin malabsorption due to gastric atrophy in the elderly, and probably as a result of Helicobacter pylori infection. There is growing evidence that gene polymorphisms in transcobalamins affect plasma vitamin B12 concentrations. The primary cause of folate deficiency is low intake of sources rich in the vitamin, such as legumes and green leafy vegetables, and the consumption of these foods may explain why folate status can be adequate in relatively poor populations. Other situations in which the risk of folate deficiency increases include lactation and alcoholism. PMID:18709879

  19. Megaloblastic anaemia, cobalamin, and folate.

    PubMed Central

    Chanarin, I

    1987-01-01

    Developments relating to cobalamin and folate are reviewed. Current work on the relations between these two coenzymes are discussed, particularly those that have emerged in studies using nitrous oxide, which inactivates cobalamin. PMID:3312306

  20. Intergenotypic variation of Vitamin B12 and Folate in AD: In north indian population

    PubMed Central

    Chhillar, Neelam; Singh, Neeraj Kumar; Banerjee, Basu Dev; Bala, Kiran; Basu, Mitra; Sharma, Deepika

    2014-01-01

    Objectives: Changes in lifestyle habits such as diet modification or supplementation have been indicated as probable protective factors for a number of chronic conditions including Alzheimer's disease (AD). With this background, we aim to hypothesize that whether C677T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene contributes towards the risk of developing AD and its association with vitamin B12 and folate levels. Materials and Methods: A case-control study comprising of total 200 subjects, within the age group of 50-85 years. Their blood samples were analyzed for serum folate, vitamin B12 levels, and MTHFR C677T polymorphism by restriction fragment length polymorphism (RFLP). Results: The mean plasma levels of vitamin B12 and folate were significantly lower in study group when compared to the control group (P < 0.001). Genotypic and allelic frequency of MTHFR gene in both groups was found to be significant (P < 0.05). The intergenotypic variations of vitamin B12 and folate were found to be significant (P < 0.001). Conclusion: We concluded that the subjects with homozygous mutated alleles are more prone to AD and also pointed out the influence of presence/absence of MTHFR T allelic variants on serum folate and vitamin B12 levels. PMID:25221401

  1. Genetic Variation Throughout the Folate Metabolic Pathway Influences Negative Symptom Severity in Schizophrenia

    PubMed Central

    Roffman, Joshua L.; Brohawn, David G.; Nitenson, Adam Z.; Macklin, Eric A.; Smoller, Jordan W.; Goff, Donald C.

    2013-01-01

    Low serum folate levels previously have been associated with negative symptom risk in schizophrenia, as has the hypofunctional 677C>T variant of the MTHFR gene. This study examined whether other missense polymorphisms in folate-regulating enzymes, in concert with MTHFR, influence negative symptoms in schizophrenia, and whether total risk allele load interacts with serum folate status to further stratify negative symptom risk. Medicated outpatients with schizophrenia (n = 219), all of European origin and some included in a previous report, were rated with the Positive and Negative Syndrome Scale. A subset of 82 patients also underwent nonfasting serum folate testing. Patients were genotyped for the MTHFR 677C>T (rs1801133), MTHFR 1298A>C (rs1801131), MTR 2756A>G (rs1805087), MTRR 203A>G (rs1801394), FOLH1 484T>C (rs202676), RFC 80A>G (rs1051266), and COMT 675G>A (rs4680) polymorphisms. All genotypes were entered into a linear regression model to determine significant predictors of negative symptoms, and risk scores were calculated based on total risk allele dose. Four variants, MTHFR 677T, MTR 2756A, FOLH1 484C, and COMT 675A, emerged as significant independent predictors of negative symptom severity, accounting for significantly greater variance in negative symptoms than MTHFR 677C>T alone. Total allele dose across the 4 variants predicted negative symptom severity only among patients with low folate levels. These findings indicate that multiple genetic variants within the folate metabolic pathway contribute to negative symptoms of schizophrenia. A relationship between folate level and negative symptom severity among patients with greater genetic vulnerability is biologically plausible and suggests the utility of folate supplementation in these patients. PMID:22021659

  2. Status of vitamin B-12 and B-6 but not of folate, homocysteine and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene differs in frequency in different ethnic groups which have differing prevalence of age-related cognitive impairments. We used a battery of neuropsychological tests to examine association of the MTHFR C677T polymorphism w...

  3. Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study

    PubMed Central

    Jakubowska, A; Rozkrut, D; Antoniou, A; Hamann, U; Scott, R J; McGuffog, L; Healy, S; Sinilnikova, O M; Rennert, G; Lejbkowicz, F; Flugelman, A; Andrulis, I L; Glendon, G; Ozcelik, H; Thomassen, M; Paligo, M; Aretini, P; Kantala, J; Aroer, B; von Wachenfeldt, A; Liljegren, A; Loman, N; Herbst, K; Kristoffersson, U; Rosenquist, R; Karlsson, P; Stenmark-Askmalm, M; Melin, B; Nathanson, K L; Domchek, S M; Byrski, T; Huzarski, T; Gronwald, J; Menkiszak, J; Cybulski, C; Serrano, P; Osorio, A; Cajal, T R; Tsitlaidou, M; Benítez, J; Gilbert, M; Rookus, M; Aalfs, C M; Kluijt, I; Boessenkool-Pape, J L; Meijers-Heijboer, H E J; Oosterwijk, J C; van Asperen, C J; Blok, M J; Nelen, M R; van den Ouweland, A M W; Seynaeve, C; van der Luijt, R B; Devilee, P; Easton, D F; Peock, S; Frost, D; Platte, R; Ellis, S D; Fineberg, E; Evans, D G; Lalloo, F; Eeles, R; Jacobs, C; Adlard, J; Davidson, R; Eccles, D; Cole, T; Cook, J; Godwin, A; Bove, B; Stoppa-Lyonnet, D; Caux-Moncoutier, V; Belotti, M; Tirapo, C; Mazoyer, S; Barjhoux, L; Boutry-Kryza, N; Pujol, P; Coupier, I; Peyrat, J-P; Vennin, P; Muller, D; Fricker, J-P; Venat-Bouvet, L; Johannsson, O Th; Isaacs, C; Schmutzler, R; Wappenschmidt, B; Meindl, A; Arnold, N; Varon-Mateeva, R; Niederacher, D; Sutter, C; Deissler, H; Preisler-Adams, S; Simard, J; Soucy, P; Durocher, F; Chenevix-Trench, G; Beesley, J; Chen, X; Rebbeck, T; Couch, F; Wang, X; Lindor, N; Fredericksen, Z; Pankratz, V S; Peterlongo, P; Bonanni, B; Fortuzzi, S; Peissel, B; Szabo, C; Mai, P L; Loud, J T; Lubinski, J

    2012-01-01

    Background: The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity. Methods: To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 C>T (rs6917) polymorphism and the MTHFR 677 C>T (rs1801133) polymorphism, respectively. Results: There was no evidence of association between the PHB 1630 C>T and MTHFR 677 C>T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 C>T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95%CI 1.10–2.04 and HR 2.16, 95%CI 1.24–3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele. Conclusion: The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers. PMID:22669161

  4. Maternal polymorphisms 677C-T and 1298A-C of MTHFR, and 66A-G MTRR genes: is there any relationship between polymorphisms of the folate pathway, maternal homocysteine levels, and the risk for having a child with Down syndrome?

    PubMed

    Martínez-Frías, María-Luisa; Pérez, Belén; Desviat, Lourdes R; Castro, Margarita; Leal, Fátima; Rodríguez, Laura; Mansilla, Elena; Martínez-Fernández, María-Luisa; Bermejo, Eva; Rodríguez-Pinilla, Elvira; Prieto, David; Ugarte, Magdalena

    2006-05-01

    This study was aimed at analyzing the effect of mutations in three non-synonymous SNP genes (677C > T and 1298A > C of the methylenetetrahydrofolate reductase (MTHFR) gene, and 66A > G in the MTRR gene) on total plasmatic homocysteine (Hcy), in 91 mothers of Down syndrome (DS) infants and 90 control mothers. The comparison of both groups of mothers is a new way to determine if those mutations and their interactions increase the risk for DS. Material came from the case-control network of the Spanish Collaborative Study of Congenital Malformations (ECEMC). Using a general lineal model in a backwards step, we performed the analyses including the different mutations, maternal age, the fact that each mother had a DS or a control infant, and all possible interactions of these variables, in the models, being maternal Hcy the continuous dependent variable. In another model, maternal folic acid intake during the third trimester of pregnancy was added. The results from both models were essentially the same: Hcy levels variability differs from case mothers to control ones, the presence of the MTHFR1298A > C polymorphism also affects significantly the Hcy variance, as it does the statistical interaction between the mutations MTRR66A > G and MTHFR1298A > C in the mother. In this sense, the interaction between different polymorphisms may totally modify their individual effects, and some of those effects are different in mothers of DS children and in controls' mothers. For instance, only two mutations in MTRR66 (GGAA) in mothers of control infants increase the reference maternal Hcy level in 4.66 units, and the individual effect of the genotype with only two mutations in the MTHFR1298 gene (AACC) increases the reference Hcy level in 12.74 units. However, the presence of the four mutations (GGCC) interacts giving a statistically significant decrease in 6.00 units in the level of Hcy in control mothers. On the contrary, in mothers of DS infants, the sole presence of two mutations

  5. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  6. [Relationship of MTHFR gene polymorphisms with infertility].

    PubMed

    Guo, Kai-min; Tian, Run-hui; Wang, Hong-liang

    2016-02-01

    The folate metabolic pathway plays important roles in cellular physiology by participating in nucleotide synthesis, DNA repair and methylation, and maintenance and stability of the genome. Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme involved in folate metabolism. Polymorphisms of MTHFR may change the level of homocysteine and affect DNA synthesis and methylation, leading to an increased oxidative stress and disturbed methylation reactions and consequently affecting reproductive function. This article presents an overview on MTHFR gene polymorphisms, proposing that multicentered, large-sample and long-term prospective studies are needed to reveal the relationship between MTHFR gene polymorphisms and infertility. PMID:26939404

  7. Pooled analysis indicates that the GSTT1 deletion, GSTM1 deletion, and GSTP1 Ile105Val polymorphisms do not modify breast cancer risk in BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Spurdle, Amanda B.; Fahey, Paul; Chen, Xiaoqing; McGuffog, Lesley; Easton, Douglas; Peock, Susan; Cook, Margaret; Simard, Jacques; Rebbeck, Tim R.; Antoniou, Antonis C.

    2011-01-01

    The GSTP1, GSTM1, and GSTT1 detoxification genes all have functional polymorphisms that are common in the general population. A single study of 320 BRCA1/2 carriers previously assessed their effect in BRCA1 or BRCA2 mutation carriers. This study showed no evidence for altered risk of breast cancer for individuals with the GSTT1 and GSTM1 deletion variants, but did report that the GSTP1 Ile105Val (rs1695) variant was associated with increased breast cancer risk in carriers. We investigated the association between these three GST polymorphisms and breast cancer risk using existing data from 718 women BRCA1 and BRCA2 mutation carriers from Australia, the UK, Canada, and the USA. Data were analyzed within a proportional hazards framework using Cox regression. There was no evidence to show that any of the polymorphisms modified disease risk for BRCA1 or BRCA2 carriers, and there was no evidence for heterogeneity between sites. These results support the need for replication studies to confirm or refute hypothesis-generating studies. PMID:19921428

  8. A 138-kDa glycoprotein from Dictyostelium membranes with folate deaminase and folate binding activity.

    PubMed

    Greiner, R A; Jacobs-Krahnen, D; Mutzel, R; Malchow, D; Wurster, B

    1992-03-15

    A 138-kDa glycoprotein comprising folate deaminase activity was purified to apparent homogeneity from membranes of Dictyostelium discoideum. Deaminase activity could be effectively inhibited by p-chloromercuriphenylsulfonate. This treatment protected folate from deamination and thus allowed investigation of folate binding to deaminase fractions. Two types of folate binding sites, differing in affinity and specificity, were detected on the folate deaminase glycoprotein. One type displays high affinity and binds folate stronger than N10-methylfolate. This binding site appears to be identical with the catalytic site of folate deaminase. The other type of binding site shows lower affinity but prefers N10-methylfolate relative to folate. A similar preference for N10-methylfolate was observed in chemotaxis tests pointing to the possibility that the second type of binding site is involved in chemotactic perception of folate compounds. Folate perception and deamination could thus be performed by activities residing on the same polypeptide. PMID:1544893

  9. Folate-genetics and colorectal neoplasia: What we know and need to know next

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The metabolism of folate involves a complex network of polymorphic enzymes that may explain a proportion of the risk associated with colorectal neoplasia. Over 60 observational studies primarily in non-Hispanic White populations have been conducted on selected genetic variants in specific genes, MTH...

  10. Dietary consumption of B vitamins, maternal MTHFR polymorphisms and risk for spontaneous abortion

    PubMed Central

    Rodríguez-Guillén, María del Rosario; Torres-Sánchez, Luisa; Chen, Jia; Galván-Portillo, Marcia; Silva-Zolezzi, Irma; Blanco-Muñoz, Julia; Hernández-Valero, María A.; López-Carrillo, Lizbeth

    2010-01-01

    Objective To asses he association between intake of folate and B vitamins and the incidence of spontaneous abortion (SA) according to the maternal methylenetetrahydrofolate reductase (MTHFR) polymorphisms (677 C>T and 1298 A>C). Material and Methods We conducted a nested case-control study within a perinatal cohort of women recruited in the state of Morelos, Mexico. Twenty-three women with SA were compared to 74 women whose pregnancy survived beyond week 20th. Intake of folate and B vitamins respectively, was estimated using a validated food frequency questionnaire. Maternal MTHFR polymorphisms were determined by PCR-RFLP and serum homocysteine levels by HPLC. Results Carriers of MTHFR 677TT and 1298AC genotypes respectively showed an increased risk of SA (OR 677TT vs. CC/CT=5.0; 95% CI: 1.2, 20.9 and OR 1298 AC vs. AA=5.5; 95% CI: 1.1, 26.6). Conclusions Our results support the role of MTHFR polymorphisms as a risk factor for SA, regardless of dietary intake of B vitamins. PMID:19180309

  11. Serum folic acid and RFC A80G polymorphism in Alzheimer's disease and vascular dementia.

    PubMed

    Mansoori, Nasim; Tripathi, Manjari; Alam, Rizwan; Luthra, Kalpana; Sharma, Sumit; Lakshmy, Ramakrishnan; Kalaivani, Mani; Mukhopadhyay, Asok K

    2014-02-01

    Low level of vitamin B12 and folic acid has been reported to play an important role in the pathogenesis of Alzheimer's disease (AD) and vascular dementia (VaD). Serum folic acid and vitamin B12 were assayed in 80 AD and 50 VaD cases and in 120 healthy controls. The reduced folate carrier (RFC1) gene, rs1051266, which encodes the RFC 1, protein was analyzed for polymorphism by polymerase chain reaction-restriction fragment length polymorphism. It was observed that the patients having folic acid <8.45 ng/mL had 2.4 (95% confidence interval [CI]: 1.4-4.5) times higher odds of having AD and 2.1 (95% CI: 1.1-4.2) times higher odds of having VaD than patients having folic acid ≥8.45 ng/mL. Serum vitamin B12 level did not show any such statistically significant effect in altering the odds. No direct association was found between variant (G) allele or genotype of rs1051266 with AD and VaD cases. On serum folate level no association was observed with gene polymorphism. PMID:24554143

  12. FOLATE CONTENT IN SELECT DRY BEAN GENOTYPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry edible beans are a good natural source of folate (½-cup serving of cooked beans provide 35% daily value of folate). Recognized healthful benefits of folate in the human diet include reduced birth defects, decreased plasma homocysteine level which is a risk factor in cardiovascular disease, reduc...

  13. Phase II-I-II Study of Two Different Doses and Schedules of Pralatrexate, a High-Affinity Substrate for the Reduced Folate Carrier, in Patients With Relapsed or Refractory Lymphoma Reveals Marked Activity in T-Cell Malignancies

    PubMed Central

    O'Connor, Owen A.; Horwitz, Steven; Hamlin, Paul; Portlock, Carol; Moskowitz, Craig H.; Sarasohn, Debra; Neylon, Ellen; Mastrella, Jill; Hamelers, Rachel; MacGregor-Cortelli, Barbara; Patterson, Molly; Seshan, Venkatraman E.; Sirotnak, Frank; Fleisher, Martin; Mould, Diane R.; Saunders, Mike; Zelenetz, Andrew D.

    2009-01-01

    Purpose To determine the maximum-tolerated dose (MTD) and efficacy of pralatrexate in patients with lymphoma. Patients and Methods Pralatrexate, initially given at a dose of 135 mg/m2 on an every-other-week basis, was associated with stomatitis. A redesigned, weekly phase I/II study established an MTD of 30 mg/m2 weekly for six weeks every 7 weeks. Patients were required to have relapsed/refractory disease, an absolute neutrophil greater than 1,000/μL, and a platelet count greater than 50,000/μL for the first dose of any cycle. Results The every-other-week, phase II experience was associated with an increased risk of stomatitis and hematologic toxicity. On a weekly schedule, the MTD was 30 mg/m2 weekly for 6 weeks every 7 weeks. This schedule modification resulted in a 50% reduction in the major hematologic toxicities and abrogation of the grades 3 to 4 stomatitis. Stomatitis was associated with elevated homocysteine and methylmalonic acid, which were reduced by folate and vitamin B12 supplementation. Of 48 assessable patients, the overall response rate was 31% (26% by intention to treat), including 17% who experienced complete remission (CR). When analyzed by lineage, the overall response rates were 10% and 54% in patients with B- and T-cell lymphomas, respectively. All eight patients who experienced CR had T-cell lymphoma, and four of the six patients with a partial remission were positron emission tomography negative. The duration of responses ranged from 3 to 26 months. Conclusion Pralatrexate has significant single-agent activity in patients with relapsed/refractory T-cell lymphoma. PMID:19652067

  14. A Study of Single Nucleotide Polymorphisms of the SLC19A1/RFC1 Gene in Subjects with Autism Spectrum Disorder.

    PubMed

    Mahmuda, Naila Al; Yokoyama, Shigeru; Huang, Jian-Jun; Liu, Li; Munesue, Toshio; Nakatani, Hideo; Hayashi, Kenshi; Yagi, Kunimasa; Yamagishi, Masakazu; Higashida, Haruhiro

    2016-01-01

    Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with complex genetic etiology. Recent studies have indicated that children with ASD may have altered folate or methionine metabolism, suggesting that the folate-methionine cycle may play a key role in the etiology of ASD. SLC19A1, also referred to as reduced folate carrier 1 (RFC1), is a member of the solute carrier group of transporters and is one of the key enzymes in the folate metabolism pathway. Findings from multiple genomic screens suggest the presence of an autism susceptibility locus on chromosome 21q22.3, which includes SLC19A1. Therefore, we performed a case-control study in a Japanese population. In this study, DNA samples obtained from 147 ASD patients at the Kanazawa University Hospital in Japan and 150 unrelated healthy Japanese volunteers were examined by the sequence-specific primer-polymerase chain reaction method pooled with fluorescence correlation spectroscopy. p < 0.05 was considered to represent a statistically significant outcome. Of 13 single nucleotide polymorphisms (SNPs) examined, a significant p-value was obtained for AA genotype of one SNP (rs1023159, OR = 0.39, 95% CI = 0.16-0.91, p = 0.0394; Fisher's exact test). Despite some conflicting results, our findings supported a role for the polymorphism rs1023159 of the SLC19A1 gene, alone or in combination, as a risk factor for ASD. However, the findings were not consistent after multiple testing corrections. In conclusion, although our results supported a role of the SLC19A1 gene in the etiology of ASD, it was not a significant risk factor for the ASD samples analyzed in this study. PMID:27213354

  15. Folates in lettuce: a pilot study

    PubMed Central

    Johansson, Madelene; Jägerstad, Margaretha; Frølich, Wenche

    2007-01-01

    Background Leafy vegetables are good sources of folates and food shops nowadays offer an increasing number of lettuce varieties. Objective To obtain data on the folate content and forms in common lettuce varieties and spinach sold in the Nordic countries, and to investigate effects of different storage conditions and preparations in the consumer's home or at lunchtime restaurants. Design Folate was analysed in eight different lettuce varieties and spinach using a validated high-performance liquid chromatographic method and the detected forms of folates were confirmed by a mass spectrometric detector [liquid chromatography–mass spectrometry (LC-MS)] following heat extraction, deconjugation with rat serum and purification by solid-phase extraction. Results Folate content, expressed in folic acid equivalents, in the lettuce samples varied six-fold, from 30 to 198 µg 100 g−1 on a fresh weight basis. The folate content was decreased by 14% after storage at 4°C for 8 days and by 2–40% after storage at 22°C for 2–4 h, depending on whether samples were stored as whole leaves, or small torn or cut pieces. LC-MS confirmed the identity of the folate forms: H4folate, 5-CH3-H4folate, 5-HCO-H4folate and 10-HCO-H4folate. Conclusion The considerable variation in folate content between varieties of lettuce in this pilot study, with one variety reaching the level found in spinach, indicates the potential to increase folate intake considerably by choosing folate-rich varieties of lettuce and storing at low temperatures.

  16. Characterization of Folate in Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The folate levels in a group of raw and roasted samples selected from the 2007 and the 2008 Uniform Peanut Performance Trials (UPPT) and from a set of raw samples from the Core of the Core of the Peanut Germplasm collection grown in 2006 and 2008 were determined. The samples were digested in protea...

  17. Folate and carcinogenesis-mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large and growing body of both pre-clinical and clinical studies pertaining to colorectal neoplasms constitutes the most compelling evidence for the protective effect of folate against the development of cancer, although evidence is also accruing in this regard for cancers of the breast, lung, pan...

  18. Folates and S-adenosylmethionine for major depressive disorder.

    PubMed

    Papakostas, George I; Cassiello, Clair F; Iovieno, Nadia

    2012-07-01

    Interest in nonpharmaceutical supplements for treating major depressive disorder (MDD) has increased significantly, both among patients and among clinicians during the past decades. Despite the large array of antidepressants (ADs) available, many patients continue to experience relatively modest response and remission rates, in addition to a burden of side effects that can hinder treatment compliance and acceptability. In this article, we review the literature on folates and S-adenosylmethionine (SAMe), 2 natural compounds linked in the 1-carbon cycle metabolic pathway, for which substantial evidence supports their involvement in mood disorders. Background information, efficacy data, proposed mechanisms of action, and side effects are reviewed. Based on existing data, supplementation with SAMe, as well as with various formulations of folates, appears to be efficacious and well tolerated in reducing depressive symptoms. Compared with other forms of folates, 5-methyltetrahydrofolate (L-methylfolate or 5-MTHF) may represent a preferable treatment option for MDD given its greater bioavailability in patients with a genetic polymorphism, and the lower risk of specific side effects associated with folic acid. Although further randomized controlled trials in this area appear warranted, SAMe and L-methylfolate may represent a useful addition to the AD armamentarium. PMID:22762295

  19. The association between RFC1 G80A polymorphism and cancer susceptibility: Evidence from 33 studies

    PubMed Central

    Huang, Xiaoyi; Gao, Yisha; He, Jing; Cai, Jiao; Ta, Na; Jiang, Hui; Zhu, Jinhong; Zheng, Jianming

    2016-01-01

    Aberrant folate metabolism is closely related to tumorigenesis. Genetic variations in the Reduced folate carrier 1 (RFC1) may alter the progress of folate metabolism, and thereby cause the initiation and progress of the cancer. Considerable studies have performed to investigate the association between RFC1 G80A (rs1051266) polymorphism and cancer susceptibility, but the conclusions were conflicting. Therefore, we conducted a meta-analysis to reevaluate the association of RFC1 G80A polymorphism with cancer risk. PubMed and EMBASE were searched for eligible studies. The association of RFC1 G80A polymorphism and cancer risk was evaluated by the pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs). The significant association was found between RFC1 G80A polymorphism and hematological malignance susceptibility (A vs. G: OR=1.11, 95%CI=1.003-1.23, P=0.045; GA vs. GG: OR=1.18, 95%CI=1.06-1.31, P=0.002; AA+GA vs. GG: OR=1.18, 95%CI=1.07-1.29, P=0.001). Stratified analysis by ethnicity indicated that the association became more prominent among Caucasians (GA vs. GG: OR=1.28, 95%CI=1.12-1.45, P<0.001; AA+GA vs. GG: OR=1.21, 95%CI=1.08-1.36, P=0.001). In term of the cancer type, this polymorphism significantly increased the risk of acute lymphoblast leukemia (GA vs. GG: OR=1.13, 95%CI=1.001-1.28, P=0.048; AA+GA vs. GG: OR=1.28, 95%CI=1.13-1.46, P<0.001) and acute myeloid leukemia (GA vs. GG: OR=2.57, 95%CI=1.37-4.85, P=0.003). No significant association between RFC1 G80A polymorphism and overall solid cancer risk was observed, but a protective association with digestive cancer risk was found (GA vs. GG: OR=0.89, 95%CI= 0.81-0.99, P=0.030). The comprehensive meta-analysis encouraged the notion that RFC1 G80A polymorphism may play an important role in hematopoietic system malignance. These findings need further validation in the large multicenter investigations. PMID:26819637

  20. Common Polymorphisms in the Solute Carrier SLC30A10 are Associated With Blood Manganese and Neurological Function

    PubMed Central

    Kippler, Maria; Alhamdow, Ayman; Rahman, Syed Moshfiqur; Smith, Donald R.; Vahter, Marie; Lucchini, Roberto G.; Broberg, Karin

    2016-01-01

    Manganese (Mn) is an essential nutrient in humans, but excessive exposure to Mn may cause neurotoxicity. Despite homeostatic regulation, Mn concentrations in blood vary considerably among individuals. We evaluated if common single-nucleotide polymorphisms (SNPs) in SLC30A10, which likely encodes an Mn transporter, influence blood Mn concentrations and neurological function. We measured blood Mn concentrations by ICP-MS or atomic absorption spectroscopy and genotyped 2 SLC30A10 non-coding SNPs (rs2275707 and rs12064812) by TaqMan PCR in cohorts from Bangladesh (N = 406), the Argentinean Andes (N = 198), and Italy (N = 238). We also measured SLC30A10 expression in whole blood by TaqMan PCR in a sub-group (N = 101) from the Andean cohort, and neurological parameters (sway velocity and finger-tapping speed) in the Italian cohort. The rs2275707 variant allele was associated with increased Mn concentrations in the Andes (8%, P = .027) and Italy (10.6%, P = .012), but not as clear in Bangladesh (3.4%, P = .21; linear regression analysis adjusted for age, gender, and plasma ferritin). This allele was also associated with increased sway velocity (15%, P = .033; adjusted for age and sex) and reduced SLC30A10 expression (−24.6%, P = .029). In contrast, the rs12064812 variant homozygous genotype was associated with reduced Mn concentrations, particularly in the Italian cohort (−18.4%, P = .04), and increased finger-tapping speed (8.7%, P = .025). We show that common SNPs in SLC30A10 are associated with blood Mn concentrations in 3 unrelated cohorts and that their influence may be mediated by altered SLC30A10 expression. Moreover, the SNPs appeared to influence neurological functions independent of blood Mn concentrations, suggesting that SLC30A10 could regulate brain Mn levels. PMID:26628504

  1. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  2. GNMT expression increases hepatic folate contents and folate-dependent methionine synthase-mediated homocysteine remethylation.

    PubMed

    Wang, Yi-Cheng; Chen, Yi-Ming; Lin, Yan-Jun; Liu, Shih-Ping; Chiang, En-Pei Isabel

    2011-01-01

    Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therapies, is not understood completely. In the present study, we investigated the impacts of GNMT expression on cell growth, folate status, methylfolate-dependent reactions and antifolate cytotoxicity. GNMT-diminished hepatoma cell lines transfected with GNMT were cultured under folate abundance or restriction. Folate-dependent homocysteine remethylation fluxes were investigated using stable isotopic tracers and gas chromatography/mass spectrometry. Folate status was compared between wild-type (WT), GNMT transgenic (GNMT(tg)) and GNMT knockout (GNMT(ko)) mice. In the cell model, GNMT expression increased folate concentration, induced folate-dependent homocysteine remethylation, and reduced antifolate methotrexate cytotoxicity. In the mouse models, GNMT(tg) had increased hepatic folate significantly, whereas GNMT(ko) had reduced folate. Liver folate levels correlated well with GNMT expressions (r = 0.53, P = 0.002); and methionine synthase expression was reduced significantly in GNMT(ko), demonstrating impaired methylfolate-dependent metabolism by GNMT deletion. In conclusion, we demonstrated novel findings that restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Studies on how GNMT expression impacts the distribution of different folate cofactors and the regulation of specific folate dependent reactions are underway. PMID:21210071

  3. Is Folate Status a Risk Factor for Asthma or Other Allergic Diseases?

    PubMed Central

    Wang, Ting; Zhang, Hong-Ping; Zhang, Xin; Liang, Zong-An; Ji, Yu-Lin

    2015-01-01

    Purpose It is controversial whether folate status is a risk factor for the development of asthma or other allergic diseases. This study was conducted to investigate whether indirect or direct exposure to folate and impaired folate metabolism, reflected as methylene-tetrahydrofolate reductase (MTHFR) C677T polymorphism, would contribute to the development of asthma and other allergic diseases. Methods Electronic databases were searched to identify all studies assessing the association between folate status and asthma or other allergic diseases. Two reviewers independently assessed the eligibility of studies and extracted data. The relative risk (RR) or odds ratio (OR) with 95% confidence intervals (CI) was calculated and pooled. Results Twenty-six studies (16 cohort, 7 case-control, and 3 cross-sectional studies) were identified. Maternal folic acid supplementation was not associated with the development of asthma, atopic dermatitis (AD), eczema, and sensitization in the offspring, whereas exposure during early pregnancy was related to wheeze occurrence in the offspring (RR=1.06, 95% CI=[1.02-1.09]). The TT genotype of MTHFR C677T polymorphism was at high risk of asthma (OR=1.41, 95% CI=[1.07-1.86]). Conclusions It is indicated that maternal folic acid supplementation during early pregnancy may increase the risk of wheeze in early childhood and that the TT genotype of MTHFR C677T polymorphism impairing folic acid metabolism would be at high risk of asthma development. These results might provide additional information for recommendations regarding forced folate consumption or folic acid supplements during pregnancy based on its well-established benefits for the prevention of congenital malformations. However, currently available evidence is of low quality which is needed to further elucidate. PMID:26333700

  4. Effect of long-term supplementation of folate on folate status in plasma and erythrocytes.

    PubMed

    Heseker, H; Schmitt, G

    1987-06-01

    Folate nutritional status was estimated by radioassay of folate levels in plasma and erythrocytes during and after a long-term supplementation of folic acid. A 1-mg dose of folic acid per day was administered orally to 6 healthy subjects for 17 weeks. After 4 weeks of supplementation the mean folate concentration in plasma reached 11 ng/ml and remained constant thereafter, but decreased exponentially after stopping the supplementation. However, the folate concentrations in reticulocytes and erythrocytes increased linearly in all subjects during the supplementation. These results suggest that folate-rich, young erythrocytes are mixed at a constant rate with circulating ripe ones, which have a lower folate content, during folate supplementation. PMID:3668697

  5. Role of the folate receptor in ovarian cancer treatment: evidence, mechanism, and clinical implications.

    PubMed

    Vergote, Ignace B; Marth, Christian; Coleman, Robert L

    2015-03-01

    Folate can be transported into the cell by the reduced folate carrier (RFC), the proton-coupled folate transporter (PCFT), or the folate receptor (FR), of which various isoforms exist. While the RFC and PCFT are expressed by many normal cells, the FR is present only in a small proportion of normal tissues. In these tissues, the FR expression level is often low and restricted to the apical surface of polarized epithelial cells. In contrast, FR is expressed on the blood-accessible basal and lateral membranes of many types of epithelial cancer. Considering that FR is expressed in few nonmalignant cell types on luminal membranes generally not accessible for molecules transported in the blood, FR is considered a promising antitumor target. As FR expression seems associated with tumor progression and prognosis, anticancer therapies targeting FR are currently being developed, such as farletuzumab (Morphotek, Exton, PA, USA), IMGN853 (ImmunoGen, Waltham, MA, USA), vintafolide, and EC1456 (both Endocyte Inc., West Lafayette, IN, USA). FR expression could be used as a response-predictive biomarker for these treatments. The ability to identify patients and treat them with an effective therapy based on the known expression of the tumor marker would, indeed, be the next step in predictive medicine for these patients. This review summarizes the role of FR in ovarian cancer and the value of FR as a prognostic biomarker for ovarian cancer and a response-predictive biomarker for folate-targeted therapeutics. PMID:25564455

  6. Genetics Home Reference: hereditary folate malabsorption

    MedlinePlus

    ... folates) from food. Folates are important for many cell functions, including the production of DNA and its chemical ... the mutated protein is not transported to the cell membrane, and so it is unable to perform its function. A lack of functional PCFT impairs the body's ...

  7. Opposing roles of folate in prostate cancer.

    PubMed

    Rycyna, Kevin J; Bacich, Dean J; O'Keefe, Denise S

    2013-12-01

    The US diet has been fortified with folic acid to prevent neural tube defects since 1998. The Physician Data Queries from the National Cancer Institute describe folate as protective against prostate cancer, whereas its synthetic analog, folic acid, is considered to increase prostate cancer risk when taken at levels easily achievable by eating fortified food or taking over-the-counter supplements. We review the present literature to examine the effects of folate and folic acid on prostate cancer, help interpret previous epidemiologic data, and provide clarification regarding the apparently opposing roles of folate for patients with prostate cancer. A literature search was conducted in Medline to identify studies investigating the effect of nutrition and specifically folate and folic acid on prostate carcinogenesis and progression. In addition, the National Health and Nutrition Examination Survey database was analyzed for trends in serum folate levels before and after mandatory fortification. Folate likely plays a dual role in prostate carcinogenesis. There remains conflicting epidemiologic evidence regarding folate and prostate cancer risk; however, there is growing experimental evidence that higher circulating folate levels can contribute to prostate cancer progression. Further research is needed to clarify these complex relationships. PMID:23992971

  8. Folate and brain function in the elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE OF REVIEW: Over the past several decades, folate has emerged as an important nutrient in several key conditions of concern to the elderly. Subclinical levels of folate inadequacy can have significant negative impacts on health in older individuals. RECENT FINDINGS: Serum and red blood cell...

  9. [Roles of folate metabolism in prostate cancer].

    PubMed

    Sun, Fei-vu; Hu, Qing-feng; Xia, Guo-wei

    2015-07-01

    Epidemiological surveys show that folic acid can prevent prostate cancer, but fortified folic acid may increase the risk of the malignancy. The physician data queries from the National Cancer Institute of the USA describe folate as protective against prostate cancer, whereas its synthetic analog, folic acid, is considered to increase prostate cancer risk when taken at levels easily achievable by eating fortified food or taking over-the-counter supplements. We review the current literature to examine the effects of folate and folic acid on prostate cancer, help interpret previous epidemiologic data, and provide a clarification regarding the apparently opposing roles of folate for patients with prostate cancer. A literature search was conducted in Medline to identify studies investigating the effect of nutrition and specifically folate and folic acid on prostate carcinogenesis and progression. In addition, the National Health and Nutrition Examination Survey database was analyzed for the trends in serum folate levels before and after mandatory fortification. Folate likely plays a dual role in prostate carcinogenesis. There remains some conflicting epidemiologic evidence regarding folate and prostate cancer risk. However, there is growing experimental evidence that higher circulating folate levels can contribute to prostate cancer progression. Further research is needed to clarify these complex relationships. PMID:26333231

  10. Polymorphism of cytosolic serine hydroxymethyltransferase, estrogen and breast cancer risk among Chinese women in Taiwan.

    PubMed

    Cheng, Chun-Wen; Yu, Jyh-Cherng; Huang, Chiun-Sheng; Shieh, Jia-Ching; Fu, Yi-Ping; Wang, Hsiao-Wei; Wu, Pei-Ei; Shen, Chen-Yang

    2008-09-01

    Cytosolic serine hydroxymethyltransferase (cSHMT) is key to intersection of folate-metabolic pathway, participating in the pyrimidine synthesis for DNA repair. Based on the hypothesis that variants of the cSHMT C1420T together with methionine synthase (MS A2756G) and 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) are associated with breast cancer, we performed a multigenic case-control study of the effects to breast cancer risk of four polymorphisms of folate-metabolizing genes against duration of estrogen exposure. Support of our hypothesis came from the following observations: (i) Allelic frequency of cSHMT C1420T was higher in the controls than in the cases, manifesting a 0.56-fold risk reduction in breast cancer (95%CI = 0.39-0.80); and this association was more significant in those women are susceptible to time of estrogen exposure. (ii) A joint effect of the cSHMT and MS polymorphisms significantly reduced susceptibility to breast cancer (aOR = 0.55; 95%CI = 0.34-0.88). (iii) There was a trend toward a reduced risk of breast cancer in women carrying a greater number of putative low-risk genotypes (Ptrend = 0.048). (iv) This synergistic effects on risk reduction was significantly interacted with length of estrogen exposure, exhibiting a longer time of estrogen exposure (> or =30 years), menarche-to-FFTP interval (>11 years), age at the first full-term pregnancy (< or =25 years), and body mass index (< or =24). In conclusion, our study provides support to account for the preferential role of cSHMT polymorphism to lower risk of female breast cancer, and such reduced risk would be more significant in carriers with the polymorphisms of MS and MTHFR genes. PMID:17896178

  11. Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk

    PubMed Central

    Kelemen, Linda E.; Terry, Kathryn L.; Goodman, Marc T.; Webb, Penelope M.; Bandera, Elisa V.; McGuire, Valerie; Rossing, Mary Anne; Wang, Qinggang; Dicks, Ed; Tyrer, Jonathan P.; Song, Honglin; Kupryjanczyk, Jolanta; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Timorek, Agnieszka; Menon, Usha; Gentry-Maharaj, Aleksandra; Gayther, Simon A.; Ramus, Susan J.; Narod, Steven A.; Risch, Harvey A.; McLaughlin, John R.; Siddiqui, Nadeem; Glasspool, Rosalind; Paul, James; Carty, Karen; Gronwald, Jacek; Lubiński, Jan; Jakubowska, Anna; Cybulski, Cezary; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; van Altena, Anne M.; Aben, Katja K. H.; Olson, Sara H.; Orlow, Irene; Cramer, Daniel W.; Levine, Douglas A.; Bisogna, Maria; Giles, Graham G.; Southey, Melissa C.; Bruinsma, Fiona; Kjær, Susanne Krüger; Høgdall, Estrid; Jensen, Allan; Høgdall, Claus K.; Lundvall, Lene; Engelholm, Svend-Aage; Heitz, Florian; du Bois, Andreas; Harter, Philipp; Schwaab, Ira; Butzow, Ralf; Nevanlinna, Heli; Pelttari, Liisa M.; Leminen, Arto; Thompson, Pamela J.; Lurie, Galina; Wilkens, Lynne R.; Lambrechts, Diether; Van Nieuwenhuysen, Els; Lambrechts, Sandrina; Vergote, Ignace; Beesley, Jonathan; Fasching, Peter A.; Beckmann, Matthias W.; Hein, Alexander; Ekici, Arif B.; Doherty, Jennifer A.; Wu, Anna H.; Pearce, Celeste L.; Pike, Malcolm C.; Stram, Daniel; Chang-Claude, Jenny; Rudolph, Anja; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo B.; Bogdanova, Natalia; Antonenkova, Natalia; Odunsi, Kunle; Edwards, Robert P.; Kelley, Joseph L.; Modugno, Francesmary; Ness, Roberta B.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Fridley, Brooke L.; Vierkant, Robert A.; Cunningham, Julie M.; Wu, Xifeng; Lu, Karen; Liang, Dong; Hildebrandt, Michelle A.T.; Weber, Rachel Palmieri; Iversen, Edwin S.; Tworoger, Shelley S.; Poole, Elizabeth M.; Salvesen, Helga B.; Krakstad, Camilla; Bjorge, Line; Tangen, Ingvild L.; Pejovic, Tanja; Bean, Yukie; Kellar, Melissa; Wentzensen, Nicolas; Brinton, Louise A.; Lissowska, Jolanta; Garcia-Closas, Montserrat; Campbell, Ian G.; Eccles, Diana; Whittemore, Alice S.; Sieh, Weiva; Rothstein, Joseph H.; Anton-Culver, Hoda; Ziogas, Argyrios; Phelan, Catherine M.; Moysich, Kirsten B.; Goode, Ellen L.; Schildkraut, Joellen M.; Berchuck, Andrew; Pharoah, Paul D.P.; Sellers, Thomas A.; Brooks-Wilson, Angela; Cook, Linda S.; Le, Nhu D.

    2014-01-01

    Scope We re-evaluated previously reported associations between variants in pathways of one-carbon (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake. Methods and Results Odds ratios (OR) for 446 genetic variants were estimated among 13,410 OC cases and 22,635 controls and among 2,281 cases and 3,444 controls with folate information. Following multiple testing correction, the most significant main effect associations were for DPYD variants rs11587873 (OR=0.92, P=6x10−5) and rs828054 (OR=1.06, P=1x10−4). Thirteen variants in the pyrimidine metabolism genes, DPYD, DPYS, PPAT and TYMS, also interacted significantly with folate in a multi-variant analysis (corrected P=9.9x10−6) but collectively explained only 0.2% of OC risk. Although no other associations were significant after multiple testing correction, variants in SHMT1 in one-carbon transfer, previously reported with OC, suggested lower risk at higher folate (Pinteraction=0.03-0.006). Conclusions Variation in pyrimidine metabolism genes, particularly DPYD, which was previously reported to be associated with OC, may influence risk; however, stratification by folate intake is unlikely to modify disease risk appreciably in these women. SHMT1 SNP-byfolate interactions are plausible but require further validation. Polymorphisms in selected genes in purine metabolism were not associated with OC. PMID:25066213

  12. Folate-homocysteine interrelations: potential new markers of folate status.

    PubMed

    Lucock, M D; Daskalakis, I; Schorah, C J; Lumb, C H; Oliver, M; Devitt, H; Wild, J; Dowell, A C; Levene, M I

    1999-05-01

    We report a transient drop in plasma Hcy and Cys following a single oral dose of PteGlu. The thiol change was concomitant with both the peak plasma 5CH3H4PteGlu1 level (by HPLC) and the maximum plasma Lactobacillus casei activity which reflects absorption of unmodified PteGlu. The significant reciprocal association of Hcy with radioassay RBC folate (r = -0.28, 99% CI -0.48, -0.05, P = 0.0016), serum folate (r = -0.37, 99% CI -0.56, -16, P = 0.0001), and vitamin B12 (r = -0.42, 99% CI -0.59, -21, P = 0.0001) is shown and reflects the long-term nutritional effect of B vitamins on this important, potentially atherogenic thiol. These are now well-established associations. We extend the potential for investigation of folate metabolism in health and disease by evaluating a range of new folate indices which are based on erythrocyte coenzymes. These have been looked at independently and in association with established parameters. Erythrocyte methylfolates (mono- to hexaglutamate-5CH3H4PteGlu1-6), formylfolates (tri- to pentaglutamate-5CHOH4PteGlu3-5),formiminotetrahydrofolate (formiminoH4PteGlu1), unsubstituted tetrahydrofolate (H4PteGlu1), andpara-aminobenzoylglutamate (P-ABG) have been measured by HPLC with fluorescence detection. A positive linear association exists between (i) H4PteGlu1 and radioassay RBC folate (r = 0.50, 99% CI 0. 07, 0.77, P = 0.0036), and (ii) H4PteGlu1 and tetraglutamates of both formyl- and methylfolate (r = 0.52, 99% CI 0.10, 0.78, P = 0. 0022, and r = 0.56, 99% CI 0.15, 0.80, P = 0.0009, respectively). Since, in addition, a reciprocal linear association exists between Hcy and tetraglutamyl formylfolate (r = -0.41, 99% CI -0.73, 0.05, P = 0.0206), erythrocyte tetraglutamates may be a good reflection of the bodies' active coenzyme pools. Pentaglutamyl formylfolate, the longest oligo-gamma-glutamyl chain form of this coenzyme may be a good indicator of folate depletion. The abundance of this coenzyme both increases with increasing Hcy (r = 0

  13. Retained folates in the rat.

    PubMed Central

    Barford, P A; Staff, R J; Blair, J A

    1977-01-01

    The retention of radioactivity after doses of 14C- and 3H-labelled folic acid is described. Radioactivity was retained in liver, kidney and gut of rats for some time after administration of the dose. The retained radioactivity could not be displaced by large doses of unlabelled folic acid or unlabelled 5-methyltetrahydrofolate. 14C- and 3H-labbelled folates showed similar chromatographic behaviour onion-exchange chromatography to 5-methyltetrahydrofolate, and on ion-exchange and gel-permeation chromatography to synthetic pteroylhepta-gamma-glutamate. PMID:883955

  14. Membrane folate-binding proteins are responsible for folate-protein conjugate endocytosis into cultured cells.

    PubMed Central

    Leamon, C P; Low, P S

    1993-01-01

    Folate-protein conjugates have been shown to bind to and enter HeLa and KB cells by receptor-mediated endocytosis [Leamon and Low (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 5572-5576]. Although these cells contain a membrane folate-binding protein (FBP) involved in the uptake of free folate, no studies have been conducted to evaluate whether the folate-protein conjugates enter cells via the same protein. To address this issue, HeLa cell monolayers were treated with folate-labelled 125I-RNAase under various conditions characteristic of FBP-mediated folate uptake. Folate-labelled 125I-RNAase was found to bind to cells with high affinity (Kd = 24 nM), and like the free vitamin, its binding could be competitively blocked by excess free folate. Furthermore, binding could be reversed by either washing the cells with acid/saline, pH 3.0, or by treating the cells with phosphatidyl-inositol-specific phospholipase C, an enzyme known to release FBP from cell surfaces. Because cells pretreated with anti-FBP serum were unable to bind folate conjugates, and since the same antiserum identified a single 65 kDa band reminiscent of FBPs found in many other tissues, we conclude that a classical FBP is responsible for the uptake of folate-protein conjugates by receptor-bearing cells. Images Figure 5 PMID:8387781

  15. Alcohol-associated folate disturbances result in altered methylation of folate-regulating genes.

    PubMed

    Wani, Nissar Ahmad; Hamid, Abid; Kaur, Jyotdeep

    2012-04-01

    Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The steady-state accumulation of folate seems to depend on the activity of two enzymes: folylpolyglutamate synthetase (FPGS), which adds glutamate residues, and gamma-glutamyl hydrolase (GGH), which removes them, enabling it to be transported across the biological membranes. Overexpression of GGH and downregulation of FPGS would be expected to decrease intracellular folate in its polyglutamylated form, thereby increasing efflux of folate and its related molecules, which might lead to resistance to drugs or folate deficiency. The study was sought to delineate the activity of GGH and expression FPGS in tissues involved in folate homeostasis during alcoholism and the epigenetic regulation of these enzymes and transporters regulating intracellular folate levels. We determined the activity of GGH and expression of FPGS in tissues after 3 months of ethanol feeding to rats at 1 g/kg body weight/day. The results showed that there was not any significant change in the activity of folate hydrolyzing enzyme GGH in ethanol-fed rats while there was significant down regulation in the expression of FPGS. Ethanol feeding decreased the total as well as polyglutamated folate levels. There was tissue-specific hyper/hypo methylation of folate transporter genes viz. PCFT and RFC by chronic ethanol feeding. Moreover, hypermethylation of FPGS gene was observed in intestine and kidney without any change in methylation levels of GGH in the ethanol-fed rats. In conclusion, the initial deconjugation of polyglutamylated folate by GGH was not impaired in ethanol-fed rats while the conversion of monoglutamylated folate to polyglutamylated form might be impaired. There was tissue-specific altered methylation of folate transporter genes by chronic ethanol feeding. PMID:22147198

  16. Regulation of reduced-folate transporter-1 (RFT-1) in retinal pigment epithelial cells by folate

    PubMed Central

    Naggar, Hany; VanElls, Tracy K.; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Purpose Reduced-folate transporter-1 (RFT-1), a typical transport protein with twelve membrane-spanning domains, transports reduced-folates, such as N5-methyltetrahydrofolate (MTF), the predominant circulating form of folate. RFT-1 is localized to the RPE apical membrane and transports folate from RPE to photoreceptor cells. We asked whether RFT-1 activity in RPE is altered under high folate conditions. Methods ARPE-19 cells were cultured 24, 48 or 72 h in medium containing either 0.5 nM, 5.0 nM or 2.26 µM MTF and the activity of RFT-1 was assessed by determining the uptake of N5-MTF. Semi-quantitative RT-PCR and western blot analysis were used to study RFT-1 gene and protein expression. Results Cells treated for 72 h with 2.26 µM MTF showed a significant (40%) decrease in MTF uptake compared to cells exposed to 0.5 nM or 5 nM MTF. The effect of high concentrations of folate on RFT-1 activity was specific. Kinetic analysis showed that folate-induced attenuation of RFT-1 activity was associated with a decrease in the maximal velocity of the transporter, but no change in the substrate affinity. Steady-state levels of RFT-1 mRNA and protein decreased significantly in the presence of excess folate. Conclusions Excess folate levels folate downregulate RFT-1 in RPE. This study represents the first molecular analysis of the regulation of RFT-1 by folate in RPE and reveals attenuation of the activity and expression of a folate transport protein under conditions of high levels of folate. PMID:15875363

  17. Regulation of Folate-Mediated One-Carbon Metabolism by Glycine N-Methyltransferase (GNMT) and Methylenetetrahydrofolate Reductase (MTHFR).

    PubMed

    Wang, Yi-Cheng; Wu, Ming-Tsung; Lin, Yan-Jun; Tang, Feng-Yao; Ko, Hsin-An; Chiang, En-Pei

    2015-01-01

    Folate-mediated one-carbon metabolism is an important therapeutic target of human diseases. We extensively investigated how gene-nutrient interactions may modulate human cancer risk in 2 major folate metabolic genes, MTHFR and GNMT. The biochemical impacts of MTHFR and GNMT on methyl group supply, global DNA methylation, nucleotide biosynthesis, DNA damage, and partitioning of the folate dependent 1-carbon group were carefully studied. The distinct model systems used included: EB virus-transformed lymphoblasts expressing human MTHFR polymorphic genotypes; liver-derived GNMT-null cell-lines with and without GNMT overexpression; and HepG2 cells with stabilized inhibition of MTHFR using shRNA, GNMT wildtype, heterozygotous (GNMT(het)) and knockout (GNMT(nul)) mice. We discovered that the MTHFR TT genotype significantly reduces folate-dependent remethylation under folate restriction, but it assists purine synthesis when folate is adequate. The advantage of de novo purine synthesis found in the MTHFR TT genotype may account for the protective effect of MTHFR in human hematological malignancies. GNMT affects transmethylation kinetics and S-adenosylmethionine (adoMet) synthesis, and facilitates the conservation of methyl groups by limiting homocysteine remethylation fluxes. Restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Loss of GNMT impairs nucleotide biosynthesis. Over-expression of GNMT enhances nucleotide biosynthesis and improves DNA integrity by reducing uracil misincorporation in DNA both in vitro and in vivo. The systematic series of studies gives new insights into the underlying mechanisms by which MTHFR and GNMT may participate in human tumor prevention. PMID:26598833

  18. Homocysteine Lowering by Folate-Rich Diet or Pharmacological Supplementations in Subjects with Moderate Hyperhomocysteinemia

    PubMed Central

    Zappacosta, Bruno; Mastroiacovo, Pierpaolo; Persichilli, Silvia; Pounis, George; Ruggeri, Stefania; Minucci, Angelo; Carnovale, Emilia; Andria, Generoso; Ricci, Roberta; Scala, Iris; Genovese, Orazio; Turrini, Aida; Mistura, Lorenza; Giardina, Bruno; Iacoviello, Licia

    2013-01-01

    Background/Objectives: To compare the efficacy of a diet rich in natural folate and of two different folic acid supplementation protocols in subjects with “moderate” hyperhomocysteinemia, also taking into account C677T polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene. Subjects/Methods: We performed a 13 week open, randomized, double blind clinical trial on 149 free living persons with mild hyperhomocyteinemia, with daily 200 μg from a natural folate-rich diet, 200 μg [6S]5-methyltetrahydrofolate (5-MTHF), 200 μg folic acid or placebo. Participants were stratified according to their MTHFR genotype. Results: Homocysteine (Hcy) levels were reduced after folate enriched diet, 5-MTHF or folic acid supplementation respectively by 20.1% (p < 0.002), 19.4% (p < 0.001) and 21.9% (p < 0.001), as compared to baseline levels and significantly as compared to placebo (p < 0.001, p < 0.002 and p < 0.001, respectively for enriched diet, 5-MTHF and folic acid). After this enriched diet and the folic acid supplementation, Hcy in both genotype groups decreased approximately to the same level, with higher percentage decreases observed for the TT group because of their higher pre-treatment value. Similar results were not seen by genotype for 5-MTHF. A significant increase in RBC folate concentration was observed after folic acid and natural folate-rich food supplementations, as compared to placebo. Conclusions: Supplementation with natural folate-rich foods, folic acid and 5-MTHF reached a similar reduction in Hcy concentrations. PMID:23698160

  19. A Study of Single Nucleotide Polymorphisms of the SLC19A1/RFC1 Gene in Subjects with Autism Spectrum Disorder

    PubMed Central

    Mahmuda, Naila Al; Yokoyama, Shigeru; Huang, Jian-Jun; Liu, Li; Munesue, Toshio; Nakatani, Hideo; Hayashi, Kenshi; Yagi, Kunimasa; Yamagishi, Masakazu; Higashida, Haruhiro

    2016-01-01

    Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with complex genetic etiology. Recent studies have indicated that children with ASD may have altered folate or methionine metabolism, suggesting that the folate–methionine cycle may play a key role in the etiology of ASD. SLC19A1, also referred to as reduced folate carrier 1 (RFC1), is a member of the solute carrier group of transporters and is one of the key enzymes in the folate metabolism pathway. Findings from multiple genomic screens suggest the presence of an autism susceptibility locus on chromosome 21q22.3, which includes SLC19A1. Therefore, we performed a case-control study in a Japanese population. In this study, DNA samples obtained from 147 ASD patients at the Kanazawa University Hospital in Japan and 150 unrelated healthy Japanese volunteers were examined by the sequence-specific primer-polymerase chain reaction method pooled with fluorescence correlation spectroscopy. p < 0.05 was considered to represent a statistically significant outcome. Of 13 single nucleotide polymorphisms (SNPs) examined, a significant p-value was obtained for AA genotype of one SNP (rs1023159, OR = 0.39, 95% CI = 0.16–0.91, p = 0.0394; Fisher’s exact test). Despite some conflicting results, our findings supported a role for the polymorphism rs1023159 of the SLC19A1 gene, alone or in combination, as a risk factor for ASD. However, the findings were not consistent after multiple testing corrections. In conclusion, although our results supported a role of the SLC19A1 gene in the etiology of ASD, it was not a significant risk factor for the ASD samples analyzed in this study. PMID:27213354

  20. Folate status and neural tube defects.

    PubMed

    Molloy, A M; Mills, J L; Kirke, P N; Weir, D G; Scott, J M

    1999-01-01

    Periconceptional folic acid supplementation prevents approximately 70% of neural tube defects (NTDs). While most women carrying affected fetuses do not have deficient blood folate levels, the risk of having an NTD affected child is inversely correlated with pregnancy red cell folate levels. Current research is focused on the discovery of genetic abnormalities in folate related enzymes which might explain the role of folate in NTD prevention. The first candidate gene to emerge was the C677T variant of 5,10-methylenetetrahydrofolate reductase. Normal subjects who are homozygous for the mutation (TT) have red cell folate status some 20% lower than expected. It is now established that the prevalence of the TT genotype is significantly higher among spina bifida cases and their parents. Nevertheless, our studies show that the variant does not account for the reduced blood folate levels in many NTD affected mothers. We conclude that low maternal folate status may in itself be the most important risk factor for NTDs and that food fortification may be the only population strategy of benefit in the effort to eliminate NTDs. PMID:10609896

  1. Association study of folate-related enzymes (MTHFR, MTR, MTRR) genetic variants with non-obstructive male infertility in a Polish population.

    PubMed

    Kurzawski, Mateusz; Wajda, Anna; Malinowski, Damian; Kazienko, Anna; Kurzawa, Rafal; Drozdzik, Marek

    2015-03-01

    Spermatogenesis is a process where an important contribution of genes involved in folate-mediated one-carbon metabolism is observed. The aim of the present study was to investigate the association between male infertility and the MTHFR (677C > T; 1298A > C), MTR (2756A > G) and MTRR (66A > G) polymorphisms in a Polish population. No significant differences in genotype or allele frequencies were detected between the groups of 284 infertile men and of 352 fertile controls. These results demonstrate that common polymorphisms in folate pathway genes are not major risk factors for non-obstructive male infertility in the Polish population. PMID:25983623

  2. Folate and Alzheimer: when time matters.

    PubMed

    Hinterberger, Margareta; Fischer, Peter

    2013-01-01

    Folate is necessary for DNA and mtDNA integrity and via folate/B12-dependent methionine cycle for methylation of multiple substrates (epigenetic DNA and enzymes) and methylation of homocysteine. During embryogenesis, folate deficiency is a risk factor for neural tube defects and late in life for cognitive decline and Alzheimer's dementia (AD). It induces several Alzheimer pathomechanisms like oxidative stress, Ca(++) influx, accumulation of hyperphosphorylated tau and β-amyloid. But impact of folic acid supplementation on prevention or delay of dementia is a matter of debate. Six out of seven randomized controlled trials (RCT) with B vitamin intervention periods between 2 and 5.4 years reported about cognitive benefits in the supplemented groups mainly for those subjects with high homocysteine or low folate levels at baseline. This review tries to demonstrate the connection between folate deficiency and AD, analyses selected epidemiologic studies and RCT on folate/B12/homocysteine with long-observation periods (≥ 2 years RCT; ≥ 4 years observational) and attempts to find explanations for the controversy in literature like short follow-up, heterogeneity of subjects concerning age, recruitment, baseline cognition, inclusion criteria and probably "misleading"(not representative for the past) folate/B12/homocysteine levels due to not reported short-term use of multivitamins or food-fortification. Population-based studies-epidemiologic and interventional-starting in the fourth decade would provide the best information about the impact of folate on later development of AD. Mandatory folate fortification areas will be important future field studies for-like neural tube defects-hopefully declining AD incidence and disproving safety concerns. PMID:22627695

  3. How well do blood folate concentrations predict dietary folate intakes in a sample of Canadian lactating women exposed to high levels of folate? An observational study

    PubMed Central

    Houghton, Lisa A; Sherwood, Kelly L; O'Connor, Deborah L

    2007-01-01

    Background In 1998, mandatory folic acid fortification of white flour and select cereal grain products was implemented in Canada with the intention to increase dietary folate intakes of reproducing women. Folic acid fortification has produced a dramatic increase in blood folate concentrations among reproductive age women, and a reduction in neural tube defect (NTD)-affected pregnancies. In response to improved blood folate concentrations, many health care professionals are asking whether a folic acid supplement is necessary for NTD prevention among women with high blood folate values, and how reliably high RBC folate concentrations predict folate intakes shown in randomized controlled trials to be protective against NTDs. The objective of this study was to determine how predictive blood folate concentrations and folate intakes are of each other in a sample of well-educated lactating Canadian women exposed to high levels of synthetic folate. Methods The relationship between blood folate concentrations and dietary folate intakes, determined by weighed food records, were assessed in a sample of predominantly university-educated lactating women (32 ± 4 yr) at 4-(n = 53) and 16-wk postpartum (n = 55). Results Median blood folate concentrations of all participants were well above plasma and RBC folate cut-off levels indicative of deficiency (6.7 and 317 nmol/L, respectively) and all, except for 2 subjects, were above the cut-off for NTD-risk reduction (>906 nmol/L). Only modest associations existed between total folate intakes and plasma (r = 0.46, P < 0.001) and RBC (r = 0.36, P < 0.01) folate concentrations at 16-wk postpartum. Plasma and RBC folate values at 16-wk postpartum correctly identified the quartile of folate intake of only 26 of 55 (47%) and 18 of 55 (33%) of subjects, respectively. The mean RBC folate concentration of women consuming 151–410 μg/d of synthetic folate (2nd quartile of intake) did not differ from that of women consuming >410 μg/d (3rd and

  4. Folate content in different strawberry genotypes and folate status in healthy subjects after strawberry consumption.

    PubMed

    Tulipani, Sara; Romandini, Stefania; Alvarez Suarez, Josè M; Capocasa, Franco; Mezzetti, Bruno; Busco, Franco; Bamonti, Fabrizia; Novembrino, Cristina; Battino, Maurizio

    2008-01-01

    Folate is a micronutrient essential in a variety of biological processes, and an adequate dietary folate intake seems to play a crucial role in health promotion and disease prevention. The importance of strawberry as a natural food source of folate has been recognised only recently, and few pilot studies have investigated the impact of strawberry intake on human folate status. In this study, firstly, we evaluated the folate content of different commercial varieties (Alba, Irma, Patty, Adria, Sveva) and advanced selections (AN99.78.51; AN94.414.52; AN00.239.55) of strawberry. Significant differences were observed among genotypes, confirming the breeding approach as a reliable tool to increase folate content in strawberry. Secondly, the variety Sveva was selected for a medium-term strawberry consumption study, in order to check if a 2-weeks strawberry intake could have any effects on folate status and plasma homocysteine levels, in healthy subjects. An average 3.4% increase in serum folate was observed, however without any statistical significance, as shown by reference change value of each analyte in each subject. This study should be considered as a first pilot investigation, and further investigations are strongly hoped to evaluate the potential impact of strawberry consumption on human folate status, particularly in the case of a previously diagnosed deficiency. PMID:19706971

  5. Folate augmentation of antidepressant response.

    PubMed

    Owen, R T

    2013-12-01

    The use of two antidepressants from the initiation of treatment in major depressive disorder has been investigated in several recent studies and forms a paradigm shift in the pharmacotherapy of the condition. Several, but not all, trials have claimed improved response and remission rates with the combinations as opposed to monotherapy. The use of folate preparations (folic and folinic acid and l-meth-ylfolate) have shown effective augmentation of antidepressant response in a variety of controlled and open-label settings in patients with normo- and hypofolatemic status. Several recent trials using L-methylfolate, the active and more bioavailable form of folic acid, have shown promising adjunctive use with a well-tolerated adverse event profile. PMID:24524097

  6. Folate

    MedlinePlus

    ... the mouth as well as changes in the color of the skin, hair, or fingernails. Women who ... Office of Dietary Supplements Frequently Asked Questions: Which brand(s) of dietary supplements should I purchase? For information ...

  7. A non-synonymous polymorphism in IRS1 modifies risk of developing breast and ovarian cancers in BRCA1 and ovarian cancer in BRCA2 mutation carriers

    PubMed Central

    Ding, Yuan C.; McGuffog, Lesley; Healey, Sue; Friedman, Eitan; Laitman, Yael; Shani-Shimon–Paluch; Kaufman, Bella; Liljegren, Annelie; Lindblom, Annika; Olsson, Håkan; Kristoffersson, Ulf; Stenmark-Askmalm, Marie; Melin, Beatrice; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Timothy R.; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Durda, Katarzyna; Gronwald, Jacek; Huzarski, Tomasz; Cybulski, Cezary; Byrski, Tomasz; Osorio, Ana; Cajal, Teresa Ramóny; Stavropoulou, Alexandra V; Benítez, Javier; Hamann, Ute; Rookus, Matti; Aalfs, Cora M.; de Lange, Judith L.; Meijers-Heijboer, Hanne E.J.; Oosterwijk, Jan C.; van Asperen, Christi J.; García, Encarna B. Gómez; Hoogerbrugge, Nicoline; Jager, Agnes; van der Luijt, Rob B.; Easton, Douglas F.; Peock, Susan; Frost, Debra; Ellis, Steve D.; Platte, Radka; Fineberg, Elena; Evans, D. Gareth; Lalloo, Fiona; Izatt, Louise; Eeles, Ros; Adlard, Julian; Davidson, Rosemarie; Eccles, Diana; Cole, Trevor; Cook, Jackie; Brewer, Carole; Tischkowitz, Marc; Godwin, Andrew K.; Pathak, Harsh; Stoppa-Lyonnet, Dominique; Sinilnikova, Olga M.; Mazoyer, Sylvie; Barjhoux, Laure; Léoné, Mélanie; Gauthier-Villars, Marion; Caux-Moncoutier, Virginie; de Pauw, Antoine; Hardouin, Agnès; Berthet, Pascaline; Dreyfus, Hélène; Ferrer, Sandra Fert; Collonge-Rame, Marie-Agnès; Sokolowska, Johanna; Buys, Saundra; Daly, Mary; Miron, Alex; Terry, Mary Beth; Chung, Wendy; John, Esther M; Southey, Melissa; Goldgar, David; Singer, Christian F; Maria, Muy-Kheng Tea; Gschwantler-Kaulich, Daphne; Fink-Retter, Anneliese; Hansen, Thomas v. O.; Ejlertsen, Bent; Johannsson, Oskar Th.; Offit, Kenneth; Sarrel, Kara; Gaudet, Mia M.; Vijai, Joseph; Robson, Mark; Piedmonte, Marion R; Andrews, Lesley; Cohn, David; DeMars, Leslie R.; DiSilvestro, Paul; Rodriguez, Gustavo; Toland, Amanda Ewart; Montagna, Marco; Agata, Simona; Imyanitov, Evgeny; Isaacs, Claudine; Janavicius, Ramunas; Lazaro, Conxi; Blanco, Ignacio; Ramus, Susan J; Sucheston, Lara; Karlan, Beth Y.; Gross, Jenny; Ganz, Patricia A.; Beattie, Mary S.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Meindl, Alfons; Arnold, Norbert; Niederacher, Dieter; Preisler-Adams, Sabine; Gadzicki, Dorotehea; Varon-Mateeva, Raymonda; Deissler, Helmut; Gehrig, Andrea; Sutter, Christian; Kast, Karin; Nevanlinna, Heli; Aittomäki, Kristiina; Simard, Jacques; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Tomlinson, Gail E.; Weitzel, Jeffrey; Garber, Judy E.; Olopade, Olufunmilayo I.; Rubinstein, Wendy S.; Tung, Nadine; Blum, Joanne L.; Narod, Steven A.; Brummel, Sean; Gillen, Daniel L.; Lindor, Noralane; Fredericksen, Zachary; Pankratz, Vernon S.; Couch, Fergus J.; Radice, Paolo; Peterlongo, Paolo; Greene, Mark H.; Loud, Jennifer T.; Mai, Phuong L.; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Gerdes, Anne-Marie; Thomassen, Mads; Jensen, Uffe Birk; Skytte, Anne-Bine; Caligo, Maria A.; Lee, Andrew; Chenevix-Trench, Georgia; Antoniou, Antonis C; Neuhausen, Susan L.

    2012-01-01

    Background We previously reported significant associations between genetic variants in insulin receptor substrate 1 (IRS1) and breast cancer risk in women carrying BRCA1 mutations. The objectives of this study were to investigate whether the IRS1 variants modified ovarian cancer risk and were associated with breast cancer risk in a larger cohort of BRCA1 and BRCA2 mutation carriers. Methods IRS1 rs1801123, rs1330645, and rs1801278 were genotyped in samples from 36 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analyzed by a retrospective cohort approach modeling the associations with breast and ovarian cancer risks simultaneously. Analyses were stratified by BRCA1 and BRCA2 status and mutation class in BRCA1 carriers. Results Rs1801278 (Gly972Arg) was associated with ovarian cancer risk for both BRCA1 [Hazard ratio (HR) = 1.43; 95% CI: 1.06–1.92; p = 0.019] and BRCA2 mutation carriers (HR=2.21; 95% CI: 1.39–3.52, p=0.0008). For BRCA1 mutation carriers, the breast cancer risk was higher in carriers with class 2 mutations than class 1 (mutations (class 2 HR=1.86, 95% CI: 1.28–2.70; class 1 HR=0.86, 95%CI:0.69–1.09; p-for difference=0.0006). Rs13306465 was associated with ovarian cancer risk in BRCA1 class 2 mutation carriers (HR = 2.42; p = 0.03). Conclusion The IRS1 Gly972Arg SNP, which affects insulin-like growth factor and insulin signaling, modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers and breast cancer risk in BRCA1 class 2 mutation carriers. Impact These findings may prove useful for risk prediction for breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers. PMID:22729394

  8. Elevated Homocysteine Level and Folate Deficiency Associated with Increased Overall Risk of Carcinogenesis: Meta-Analysis of 83 Case-Control Studies Involving 35,758 Individuals

    PubMed Central

    Wu, Wei; Guo, Ye; Cui, Wei

    2015-01-01

    Background Results of the association of folate metabolism and carcinogenesis are conflicting. We performed a meta-analysis to examine the effect of the interaction of serum concentration of homocysteine (Hcy), folate, and vitamin B12 and 5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphism on risk of cancer overall. Method Two reviewers independently searched for all published studies of Hcy and cancer in PubMed, EMBASE-MEDLINE and Chinese databases. Pooled results were reported as odds ratios (ORs) and mean differences and presented with 95% confidence intervals (95% CIs) and 2-sided probability values. Results We identified 83 eligible studies of 15,046 cases and 20,712 controls. High level of Hcy but low level of folate was associated with risk of cancer overall, with little effect by type of cancer or ethnicity. Vitamin B12 level was inversely associated with only urinary-system and gastrointestinal carcinomas and for Asian and Middle Eastern patients. As well, MTHFR C677T, A1298C and G1793A polymorphisms were related to elevated serum level of Hcy, and folate and vitamin B12 deficiency. However, only MTHFR C677T homogeneity/wild-type (TT/CC) polymorphism was positively associated with overall risk of cancer. Conclusion Elevated serum Hcy level and folate deficiency are associated with increased overall risk of cancer. PMID:25985325

  9. Folate status and health: challenges and opportunities.

    PubMed

    Obeid, Rima; Oexle, Konrad; Rißmann, Anke; Pietrzik, Klaus; Koletzko, Berthold

    2016-04-01

    Each year approximately 2400 pregnancies develop folic acid-preventable spina bifida and anencephaly in Europe. Currently, 70% of all affected pregnancies are terminated after prenatal diagnosis. The prevalence of neural tube defects (NTDs) has been significantly lowered in more than 70 countries worldwide by applying fortification with folic acid. Periconceptional supplementation of folic acid also reduces the risk of congenital heart diseases, preterm birth, low birth weight, and health problems associated with child mortality and morbidity. All European governments failed to issue folic acid fortification of centrally processed and widely eaten foods in order to prevent NTDs and other unwanted birth outcomes. The estimated average dietary intake of folate in Germany is 200 μg dietary folate equivalents (DFE)/day. More than half of German women of reproductive age do not consume sufficient dietary folate to achieve optimal serum or red blood cell folate concentrations (>18 or 1000 nmol/L, respectively) necessary to prevent spina bifida and anencephaly. To date, targeted supplementation is recommended in Europe, but this approach failed to reduce the rate of NTDs during the last 10 years. Public health centers for prenatal care and fortification with folic acid in Europe are urgently needed. Only such an action will sufficiently improve folate status, prevent at least 50% of the NTD cases, reduce child mortality and morbidity, and alleviate other health problems associated with low folate such as anemia. PMID:25825915

  10. The TP53 Arg72Pro and MDM2 309G>T polymorphisms are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers

    PubMed Central

    Sinilnikova, O M; Antoniou, A C; Simard, J; Healey, S; Léoné, M; Sinnett, D; Spurdle, A B; Beesley, J; Chen, X; Greene, M H; Loud, J T; Lejbkowicz, F; Rennert, G; Dishon, S; Andrulis, I L; Domchek, S M; Nathanson, K L; Manoukian, S; Radice, P; Konstantopoulou, I; Blanco, I; Laborde, A L; Durán, M; Osorio, A; Benitez, J; Hamann, U; Hogervorst, F B L; van Os, T A M; Gille, H J P; Peock, S; Cook, M; Luccarini, C; Evans, D G; Lalloo, F; Eeles, R; Pichert, G; Davidson, R; Cole, T; Cook, J; Paterson, J; Brewer, C; Hughes, D J; Coupier, I; Giraud, S; Coulet, F; Colas, C; Soubrier, F; Rouleau, E; Bièche, I; Lidereau, R; Demange, L; Nogues, C; Lynch, H T; Schmutzler, R K; Versmold, B; Engel, C; Meindl, A; Arnold, N; Sutter, C; Deissler, H; Schaefer, D; Froster, U G; Aittomäki, K; Nevanlinna, H; McGuffog, L; Easton, D F; Chenevix-Trench, G; Stoppa-Lyonnet, D

    2009-01-01

    Background: The TP53 pathway, in which TP53 and its negative regulator MDM2 are the central elements, has an important role in carcinogenesis, particularly in BRCA1- and BRCA2-mediated carcinogenesis. A single nucleotide polymorphism (SNP) in the promoter region of MDM2 (309T>G, rs2279744) and a coding SNP of TP53 (Arg72Pro, rs1042522) have been shown to be of functional significance. Methods: To investigate whether these SNPs modify breast cancer risk for BRCA1 and BRCA2 mutation carriers, we pooled genotype data on the TP53 Arg72Pro SNP in 7011 mutation carriers and on the MDM2 309T>G SNP in 2222 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Data were analysed using a Cox proportional hazards model within a retrospective likelihood framework. Results: No association was found between these SNPs and breast cancer risk for BRCA1 (TP53: per-allele hazard ratio (HR)=1.01, 95% confidence interval (CI): 0.93–1.10, Ptrend=0.77; MDM2: HR=0.96, 95%CI: 0.84–1.09, Ptrend=0.54) or for BRCA2 mutation carriers (TP53: HR=0.99, 95%CI: 0.87–1.12, Ptrend=0.83; MDM2: HR=0.98, 95%CI: 0.80–1.21, Ptrend=0.88). We also evaluated the potential combined effects of both SNPs on breast cancer risk, however, none of their combined genotypes showed any evidence of association. Conclusion: There was no evidence that TP53 Arg72Pro or MDM2 309T>G, either singly or in combination, influence breast cancer risk in BRCA1 or BRCA2 mutation carriers. PMID:19707196

  11. MYCN amplification confers enhanced folate dependence and methotrexate sensitivity in neuroblastoma.

    PubMed

    Lau, Diana T; Flemming, Claudia L; Gherardi, Samuele; Perini, Giovanni; Oberthuer, André; Fischer, Matthias; Juraeva, Dilafruz; Brors, Benedikt; Xue, Chengyuan; Norris, Murray D; Marshall, Glenn M; Haber, Michelle; Fletcher, Jamie I; Ashton, Lesley J

    2015-06-20

    MYCN amplification occurs in 20% of neuroblastomas and is strongly related to poor clinical outcome. We have identified folate-mediated one-carbon metabolism as highly upregulated in neuroblastoma tumors with MYCN amplification and have validated this finding experimentally by showing that MYCN amplified neuroblastoma cell lines have a higher requirement for folate and are significantly more sensitive to the antifolate methotrexate than cell lines without MYCN amplification. We have demonstrated that methotrexate uptake in neuroblastoma cells is mediated principally by the reduced folate carrier (RFC; SLC19A1), that SLC19A1 and MYCN expression are highly correlated in both patient tumors and cell lines, and that SLC19A1 is a direct transcriptional target of N-Myc. Finally, we assessed the relationship between SLC19A1 expression and patient survival in two independent primary tumor cohorts and found that SLC19A1 expression was associated with increased risk of relapse or death, and that SLC19A1 expression retained prognostic significance independent of age, disease stage and MYCN amplification. This study adds upregulation of folate-mediated one-carbon metabolism to the known consequences of MYCN amplification, and suggests that this pathway might be targeted in poor outcome tumors with MYCN amplification and high SLC19A1 expression. PMID:25860940

  12. Seasonal folate serum concentrations at different nutrition.

    PubMed

    Krajcovicová-Kudlácková, Marica; Valachovicová, Martina; Blazícek, Pavel

    2013-03-01

    Folic acid (vitamin B9) rich sources are leafy green vegetables, legumes, whole grains, egg yolk, liver, and citrus fruit. In winter and early spring, there could be insufficient supply of vegetables and fruit and thus lower intake of folic acid and possible deficient folic acid blood concentrations. The aim of the study was to assess serum vitamin B9 concentrations depending on the season (the last third of winter - March, the last third of spring - May/June and the beginning of autumn - September) and different nutritional habits (apparently healthy adults non-smoking, non-obese 366 subjects; 204 persons of general population on traditional mixed diet; and 162 long-term lacto-ovo vegetarians). In general population group, the mean concentration of folate in March was low (narrowly above lower reference limit) with high incidence of deficient values - 31.5%. In May/ June vs. March was folate concentration significantly higher with deficient values in 13.2% of individuals. The highest serum values were observed in September with 11.1% of deficient values. In vegetarian vs. non-vegetarian group, significantly higher folate concentrations were found in each season with no deficient values. Folate and vitamin B12 are the regulators of homocysteinemia; plant food lacks of vitamin B12. The deficient folate serum values in March caused the mild hyperhomocysteinemia in 12.3% of individuals vs. only 5.9% and 4.8% of subjects in groups investigated in May/June and September. In spite of high folate concentrations in all investigations and no deficient value, 19.6-22.8% of vegetarians suffer from mild hyperhomocysteinemia as a consequence of deficient vitamin B12 concentrations in one quarter of subjects. As far as the general population is concerned, our findings suggest that winter and early spring are critical seasons in regards to optimal serum folate concentrations. PMID:23741898

  13. The association between MTHFR 677C>T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia1234

    PubMed Central

    Hanks, Joanna; Ayed, Iyeman; Kukreja, Neil; Rogers, Chris; Harris, Jessica; Gheorghiu, Alina; Liu, Chee Ling; Emery, Peter

    2013-01-01

    Background: Decreased genomic and increased gene-specific DNA methylation predispose to colorectal cancer. Dietary folate intake and the methylenetetrahydrofolate reductase polymorphism (MTHFR 677C>T) may influence risk by modifying DNA methylation. Objective: We investigated the associations between MTHFR 677C>T genotype, folate status, and DNA methylation in the colon. Design: We conducted a cross-sectional study of 336 men and women (age 19–92 y) in the United Kingdom without colorectal neoplasia. We obtained blood samples for measurement of serum and red blood cell folate, plasma homocysteine, and MTHFR 677C>T genotype and colonic tissue biopsies for measurement of colonic tissue folate and DNA methylation (genomic- and gene-specific, estrogen receptor 1, ESR1; myoblast determination protein 1, MYOD1; insulin-like growth factor II, IGF2; tumor suppressor candidate 33, N33; adenomatous polyposis coli, APC; mut-L homolog 1, MLH1; and O6-methylguanine-DNA methyltransferase, MGMT) by liquid chromatography/electrospray ionization mass spectrometry and pyrosequencing, respectively. Results: Of the 336 subjects recruited, 185 (55%) carried the CC, 119 (35%) the CT, and 32 (10%) the TT alleles. No significant differences in systemic markers of folate status and colonic tissue folate between genotypes were found. The MTHFR TT genotype was not associated with genomic or gene-specific DNA methylation. Biomarkers of folate status were not associated with genomic DNA methylation. Relations between biomarkers of folate status and gene-specific methylation were inconsistent. However, low serum folate was associated with high MGMT methylation (P = 0.001). Conclusion: MTHFR 677C>T genotype and folate status were generally not associated with DNA methylation in the colon of a folate-replete population without neoplasia. This trial was registered at clinicaltrials.gov as ISRCTN43577261. PMID:24108782

  14. Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes

    PubMed Central

    Lucock, Mark; Yates, Zoë; Martin, Charlotte; Choi, Jeong-Hwa; Boyd, Lyndell; Tang, Sa; Naumovski, Nenad; Furst, John; Roach, Paul; Jablonski, Nina; Chaplin, George; Veysey, Martin

    2014-01-01

    Background and objectives: Vitamin D and folate are highly UV sensitive, and critical for maintaining health throughout the lifecycle. This study examines whether solar irradiance during the first trimester of pregnancy influences vitamin D receptor (VDR) and nuclear folate gene variant occurrence, and whether affected genes influence late-life biochemical/clinical phenotypes. Methodology: 228 subjects were examined for periconceptional exposure to solar irradiance, variation in vitamin D/folate genes (polymerase chain reaction (PCR)), dietary intake (food frequency questionnaire (FFQ)) and important adult biochemical/clinical phenotypes. Results: Periconceptional solar irradiance was associated with VDR-BsmI (P = 0.0008wk7), TaqI (P = 0.0014wk7) and EcoRV (P = 0.0030wk6) variant occurrence between post-conceptional weeks 6–8, a period when ossification begins. Similar effects were detected for other VDR gene polymorphisms. Periconceptional solar irradiance was also associated with 19 bp del-DHFR (P = 0.0025wk6), and to a lesser extent C1420T-SHMT (P = 0.0249wk6), a folate-critical time during embryogenesis. These same genes were associated with several late-life phenotypes: VDR-BsmI, TaqI and ApaI determined the relationship between dietary vitamin D and both insulin (P < 0.0001/BB, 0.0007/tt and 0.0173/AA, respectively) and systolic blood pressure (P = 0.0290/Bb, 0.0299/Tt and 0.0412/AA, respectively), making them important early and late in the lifecycle. While these and other phenotype associations were found for the VDR variants, folate polymorphism associations in later-life were limited to C1420T-SHMT (P = 0.0037 and 0.0297 for fasting blood glucose and HbA1c levels, respectively). We additionally report nutrient–gene relationships with body mass index, thiol/folate metabolome, cognition, depression and hypertension. Furthermore, photoperiod at conception influenced occurrence of VDR-Tru9I and 2R3R-TS genotypes (P = 0.0120 and 0.0360, respectively

  15. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  16. Folate status, folate-related genes and serum miR-21 expression: Implications for miR-21 as a biomarker

    PubMed Central

    Beckett, Emma Louise; Martin, Charlotte; Choi, Jeong Hwa; King, Katrina; Niblett, Suzanne; Boyd, Lyndell; Duesing, Konsta; Yates, Zoe; Veysey, Martin; Lucock, Mark

    2015-01-01

    Background Free circulating microRNA (miRNA) in serum may be valuable biomarkers for disease diagnosis and prognosis. miR-21, the archetypal oncogenic miRNA, has been proposed as a biomarker for colorectal cancer and its benign precursor, adenomatous polyps. However, it is now becoming clear that circulating miRNA profiles may be sensitive to lifestyle and environmental influences. Dietary components involved in one-carbon metabolism are particularly well placed to modulate miRNA expression through an influence on DNA methylation pathways. Methods We investigated the role of methyl group donors (folate, B12, cysteine, homocysteine), polymorphisms of the enzymes of one-carbon metabolism, and serum miR-21 expression in a primary case–control cohort (colonoscopy confirmed adenomatous colon polyps vs controls; n = 253) and a secondary cross-sectional cohort (over 65s; n = 649). The relationships between these parameters and serum miR-21 levels were assessed, stratified by gender. Conclusions Serum miR-21 expression was related to occurrence of adenomatous polyps in females, but not males. Folate levels and MTHFR-C677T genotype was associated with miR-21 expression in both genders. Additionally, DHFR-19 del and MSR-A66G were associated with miR-21 expression in females and males, respectively. Stimulation with excess folate increased expression of miR-21 in colon cancer cell lines. General significance This study demonstrates that serum miR-21 expression correlates with folate status and related genetic status. This may have consequences for the proposed use of miR-21 as a colorectal cancer biomarker. PMID:26674922

  17. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    SciTech Connect

    Beck, J.T.; Ullman, B. )

    1989-08-22

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 {mu}M concentration of either activated ({sup 3}H)folate or activated ({sup 3}H)methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labeling of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms.

  18. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    PubMed

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects. PMID:25841994

  19. Dietary folate deficiency with normal red cell folate and circulating blasts.

    PubMed

    Stark, G L; Hamilton, P J

    2003-04-01

    This report describes a 26 year old woman, of Pakistani origin, who presented five months postpartum with severe megaloblastic anaemia as a result of nutritional folate deficiency. This case was unusual in that a small number of myeloblasts were present in the peripheral blood at presentation, and this circulating population temporarily increased in size when folate replacement was begun. We also highlight the need to recognise the non-linear relation between haematocrit and red blood cell folate concentration when the haematocrit is very low (< 0.15) and emphasise the importance of the clinical history. PMID:12663648

  20. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism.

    PubMed Central

    Maden, B E

    2000-01-01

    In most organisms, tetrahydrofolate (H(4)folate) is the carrier of C(1) fragments between formyl and methyl oxidation levels. The C(1) fragments are utilized in several essential biosynthetic processes. In addition, C(1) flux through H(4)folate is utilized for energy metabolism in some groups of anaerobic bacteria. In methanogens and several other Archaea, tetrahydromethanopterin (H(4)MPT) carries C(1) fragments between formyl and methyl oxidation levels. At first sight H(4)MPT appears to resemble H(4)folate at the sites where C(1) fragments are carried. However, the two carriers are functionally distinct, as discussed in the present review. In energy metabolism, H(4)MPT permits redox-flux features that are distinct from the pathway on H(4)folate. In the reductive direction, ATP is consumed in the entry of carbon from CO(2) into the H(4)folate pathway, but not in entry into the H(4)MPT pathway. In the oxidative direction, methyl groups are much more readily oxidized on H(4)MPT than on H(4)folate. Moreover, the redox reactions on H(4)MPT are coupled to more negative reductants than the pyridine nucleotides which are generally used in the H(4)folate pathway. Thermodynamics of the reactions of C(1) reduction via the two carriers differ accordingly. A major underlying cause of the thermodynamic differences is in the chemical properties of the arylamine nitrogen N(10) on the two carriers. In H(4)folate, N(10) is subject to electron withdrawal by the carbonyl group of p-aminobenzoate, but in H(4)MPT an electron-donating methylene group occurs in the corresponding position. It is also proposed that the two structural methyl groups of H(4)MPT tune the carrier's thermodynamic properties through an entropic contribution. H(4)MPT appears to be unsuited to some of the biosynthetic functions of H(4)folate, in particular the transfer of activated formyl groups, as in purine biosynthesis. Evidence bearing upon whether H(4)MPT participates in thymidylate synthesis is discussed

  1. Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content.

    PubMed

    Dong, Wei; Cheng, Zhi-jun; Lei, Cai-lin; Wang, Xiao-le; Wang, Jiu-lin; Wang, Jie; Wu, Fu-qing; Zhang, Xin; Guo, Xiu-ping; Zhai, Hu-qu; Wan, Jian-min

    2014-12-01

    Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P < 0.01). Overexpression of two closely related enzymes dihydrofolate synthase (DHFS) and folypolyglutamate synthase (FPGS), which perform the first and further additions of glutamates, produced slightly increase in seed folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants. PMID:25432789

  2. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  3. 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors

    PubMed Central

    Wang, Lei; Wallace, Adrianne; Raghavan, Sudhir; Deis, Siobhan M.; Wilson, Mike R.; Yang, Si; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Orr, Steven; George, Christina; O’Connor, Carrie; Hou, Zhanjun; Mitchell-Ryan, Shermaine; Dann, Charles E.; Matherly, Larry H.; Gangjee, Aleem

    2016-01-01

    2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]-pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or β (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and β over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting. PMID:26317331

  4. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Strobbe, Simon; Kiekens, Filip; Storozhenko, Sergei; De Steur, Hans; Gellynck, Xavier; Lambert, Willy; Stove, Christophe; Van Der Straeten, Dominique

    2015-10-01

    Biofortification of staple crops could help to alleviate micronutrient deficiencies in humans. We show that folates in stored rice grains are unstable, which reduces the potential benefits of folate biofortification. We obtain folate concentrations that are up to 150 fold higher than those of wild-type rice by complexing folate to folate-binding proteins to improve folate stability, thereby enabling long-term storage of biofortified high-folate rice grains. PMID:26389575

  5. Folate and vitamin B12 status in schizophrenic patients

    PubMed Central

    Saedisomeolia, Ahmad; Djalali, Mahmoud; Moghadam, Ali Malekshahi; Ramezankhani, Ozra; Najmi, Laya

    2011-01-01

    BACKGROUND: This study aimed to determine red blood cell (RBC) and serum folate and vitamin B12 levels as well as their intake in schizophrenic patients. METHODS: The folate and cobalamin status of 60 schizophrenic patients (15-55 years) was compared to 60 matched healthy controls using Radio Isotope Dilution Assay (RIDA). RESULTS: Serum and RBC folate in schizophrenic patients was significantly lower than the control group. Mean serum cobalamin levels in the schizophrenic group were higher than controls. CONCLUSIONS: This study showed that folate deficiency is common in schizophrenic patients; therefore, it is important to pay attention to folate levels in these patients. PMID:22247731

  6. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption.

    PubMed

    Kishimoto, Kenji; Kobayashi, Ryoji; Sano, Hirozumi; Suzuki, Daisuke; Maruoka, Hayato; Yasuda, Kazue; Chida, Natsuko; Yamada, Masafumi; Kobayashi, Kunihiko

    2014-07-01

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder. Severe folate deficiency in HFM can result in immunodeficiency. We describe a female infant with HFM who acquired severe Pneumocystis pneumonia. The objective of the present study was to elucidate her immunological phenotype and to examine the time course of immune recovery following parenteral folate therapy. The patient demonstrated a combined immunodeficiency with an impaired T cell proliferation response, pan-hypogammaglobulinemia, and an imbalanced pro-inflammatory cytokine profile. She had normal white blood cell count, normal lymphocyte subsets, and normal complement levels. Two novel mutations were identified within the SLC46A1 gene to produce a compound heterozygote. We confirmed full recovery of her immunological and neurophysiological status with parenteral folate replacement. The time course of recovery of her immunological profile varied widely, however. HFM should be recognized as a unique form of immunodeficiency. PMID:24691418

  7. Purification of folate binding factor in normal umbilical cord serum.

    PubMed Central

    Kamen, B A; Caston, J D

    1975-01-01

    Human umbilical cord serum was found to contain both free folate and folate complexed to a high-molecular weight factor. The complexed folate was bound to a very high affinity binder and was present in concentrations equivalent to as much as 60 ng of 5-methyltetrahydrofolic acid per ml of serum. Acidification of the serum caused disassociation of the folate-binder complex. Released folates were separated from binder by Sephadex gel filtration, zonal centrifugation through sucrose gradients, or adsorption onto activated charcoal. The separated binding factor, either saturated or unsaturated with folate, had a molecular weight of about 40,000 on Sephadex G-200 chromatography. Binding of [3H]pteroylglutamic acid was rapid and, as in the original endogenous folate-binder complex, was essentially irreversible at neutral pH. The affinity and specificity of the binder were examined by competition experiments using [3H]pteroylglutamic acid and nonradioactive folate derivatives. Oxidized folates were bound in preference to reduced derivatives, but only three to four times more unlabeled 5-methyltetrahydrofolic acid than pteroylglutamic acid was required to produce an equal level of competition. The strong affinity for 5-methyltetrahydrofolic acid, the main serum folate, suggests that the binder could be part of the mechanism by which the fetus concentrates maternally supplied folate for its growth and development. PMID:676

  8. Cryptophane-Folate Biosensor for 129Xe NMR

    PubMed Central

    2015-01-01

    Folate-conjugated cryptophane was developed for targeting cryptophane to membrane-bound folate receptors that are overexpressed in many human cancers. The cryptophane biosensor was synthesized in 20 nonlinear steps, which included functionalization with folate recognition moiety, solubilizing peptide, and Cy3 fluorophore. Hyperpolarized 129Xe NMR studies confirmed xenon binding to the folate-conjugated cryptophane. Cellular internalization of biosensor was monitored by confocal laser scanning microscopy and quantified by flow cytometry. Competitive blocking studies confirmed cryptophane endocytosis through a folate receptor-mediated pathway. Flow cytometry revealed 10-fold higher cellular internalization in KB cancer cells overexpressing folate receptors compared to HT-1080 cells with normal folate receptor expression. The biosensor was determined to be nontoxic in HT-1080 and KB cells by MTT assay at low micromolar concentrations typically used for hyperpolarized 129Xe NMR experiments. PMID:25438187

  9. Increased mesolimbic cue-reactivity in carriers of the mu-opioid-receptor gene OPRM1 A118G polymorphism predicts drinking outcome: a functional imaging study in alcohol dependent subjects.

    PubMed

    Bach, Patrick; Vollsta Dt-Klein, Sabine; Kirsch, Martina; Hoffmann, Sabine; Jorde, Anne; Frank, Josef; Charlet, Katrin; Beck, Anne; Heinz, Andreas; Walter, Henrik; Sommer, Wolfgang H; Spanagel, Rainer; Rietschel, Marcella; Kiefer, Falk

    2015-08-01

    The endogenous opioid system is involved in the pathophysiology of alcohol-use disorders. Genetic variants of the opioid system alter neural and behavioral responses to alcohol. In particular, a single nucleotide polymorphism rs1799971 (A118G) in the mu-opioid receptor gene (OPRM1) is suggested to modulate alcohol-related phenotypes and neural response in the mesocorticolimbic dopaminergic system. Little is known about the clinical implications of these changes. The current study investigated the relationship of genotype effects on subjective and neural responses to alcohol cues and relapse in a sample of abstinent alcohol-dependent patients. Functional magnetic resonance imaging (fMRI) was used to investigate alcohol cue-reactivity and drinking outcome of 81 abstinent alcohol-dependent patients. G-allele carriers displayed increased fMRI cue-reactivity in the left dorsal striatum and bilateral insulae. Neural responses to alcohol cues in these brain regions correlated positively with subjective craving for alcohol and positive expectations of alcohol׳s effects. Moreover, alcohol cue-reactivity in the left dorsal striatum predicted time to first severe relapse. Current results show that alcohol-dependent G-allele carriers׳ increased cue-reactivity is associated with an increased relapse risk. This suggests that genotype effects on cue-reactivity might link the OPRM1 A118G risk allele with an increased relapse risk that was reported in earlier studies. From a clinical perspective, risk-allele carriers might benefit from treatments, such as neuro-feedback or extinction-based therapy that are suggested to reduce mesolimbic reactivity. PMID:25937240

  10. Reduced expression of folate transporters in kidney of a rat model of folate oversupplementation.

    PubMed

    Thakur, Shilpa; Thakur, Som Dev; Wani, Nissar Ahmad; Kaur, Jyotdeep

    2014-01-01

    Folic acid is the key one-carbon donor required for de novo nucleotide and methionine synthesis. Its deficiency is associated with megaloblastic anemia, cancer and various complications of pregnancy. However, its supplementation results in reduction of neural tube defects and prevention of several types of cancer. The intake of folic acid from fortified food together with the use of nutritional supplements creates a state of folate oversupplementation. Fortification of foods is occurring worldwide with little knowledge of the potential safety and physiologic consequences of intake of such high doses of folic acid. So, we planned to examine the effects of acute and chronic folate oversupplementation on the physiology of renal folate transport in rats. Male Wistar rats were procured and divided into two groups. Rats in group I were given semisynthetic diets containing 2 mg folic acid/kg diet (control) and those in group II were given folate-oversupplemented rat diet, i.e., 20 mg folic acid/kg diet (oversupplemented). Six animals from group I and group II received the treatment for 10 days (acute treatment) and remaining six for 60 days (chronic treatment). In acute folate-oversupplemented rats, 5-[(14)C]-methyltetrahydrofolate uptake was found to be significantly reduced, as compared to chronic folate-oversupplemented and control rats. This reduction in uptake was associated with a significant decrease in the mRNA and protein levels of the folate transporters. Results of the present investigation showed that acute oversupplementation led to a specific and significant down-regulation of renal folate uptake process mediated via transcriptional and translational regulatory mechanism(s). PMID:24306960

  11. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition

    PubMed Central

    Wibowo, Ardian S.; Singh, Mirage; Reeder, Kristen M.; Carter, Joshua J.; Kovach, Alexander R.; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E.

    2013-01-01

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases. PMID:23934049

  12. Folate, vitamin B12 and human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared func...

  13. Folate and neurological function: epidemiology perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews and summarizes published literature on the relationship between folate status and Alzheimer’s disease, age-related cognitive impairment, and depression. Much of this research was motivated by the hypothesis that high circulating levels of the sulfur-containing amino acid ho...

  14. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  15. UK Policy on Folate Fortification of Foods

    ERIC Educational Resources Information Center

    Malcolm, Alan

    2004-01-01

    The UK Food Standards Agency has decided not to recommend fortification of foods with folate, the family of vitamins associated with the prevention of neural tube defects in babies. This is a change in attitude from previous recommendations made by a series of committees and reports in the UK. Notably, it differs from US policy on the matter. The…

  16. Germ Cells Need Folate to Proliferate.

    PubMed

    Walker, Amy K

    2016-07-11

    In this issue of Developmental Cell, Chaudhari and colleagues (2016) use a novel method to create an in vitro proliferative cell line from tumorous C. elegans germ cells, and in the process discover that bacterial folates act as signals for proliferation, independent of their roles as vitamins. PMID:27404353

  17. Overcoming concealment effects of targeting moieties in the PEG corona: controlled permeable polymersomes decorated with folate-antennae for selective targeting of tumor cells.

    PubMed

    Yassin, Mohamed A; Appelhans, Dietmar; Wiedemuth, Ralf; Formanek, Petr; Boye, Susanne; Lederer, Albena; Temme, Achim; Voit, Brigitte

    2015-04-01

    In the context of diligent efforts to improve the tumor targeting efficiency of drug carriers, a shape-persistent polymersome which possess a pH-tunable membrane as well as folate targeting antennae is reported. The membrane of such polymersomes behaves as gate which undergoes "on" and "off" switches in response to pH stimuli. Thus, polymersomes can effectively prohibit the premature release of chemotherapeutic agents such as doxorubicin in physiological conditions, but promote drug release once they are triggered in the acidified endosomal compartment. Importantly, the folate moieties are installed on the surface of polymersomes as protruding antennae by doping the polymersomes with folate-terminated block copolymers designed to have longer PEG segments. Thereby, the folate moieties are freed from concealment and steric effects exerted by the dense PEG corona. The cellular uptake of the FA-antennae polymersomes by tumor cells is significantly enhanced facilitated by the freely accessible folate antennae; however, the normal cells record a low level of cellular uptake due to the stealth property of the PEG corona. Overall, the excellent biocompatibility, controlled permeability, targeted internalization, as well as selective cytotoxicity of such polymersomes set up the basis for properly smart carrier for targeted drug delivery. PMID:25363281

  18. Folate-related gene variants in Irish families affected by neural tube defects

    PubMed Central

    Fisk Green, Ridgely; Byrne, Julianne; Crider, Krista S.; Gallagher, Margaret; Koontz, Deborah; Berry, Robert J.

    2013-01-01

    Periconceptional folic acid use can often prevent neural tube defects (NTDs). Variants of genes involved in folate metabolism in mothers and children have been associated with occurrence of NTDs. We identified Irish families with individuals affected by neural tube defects. In these families, we observed that neural tube defects and birth defects overall occurred at a higher rate in the maternal lineage compared with the paternal lineage. The goal of this study was to look for evidence for genetic effects that could explain the discrepancy in the occurrence of these birth defects in the maternal vs. paternal lineage. We genotyped blood samples from 322 individuals from NTD-affected Irish families, identified through their membership in spina bifida associations. We looked for differences in distribution in maternal vs. paternal lineages of five genetic polymorphisms: the DHFR 19 bp deletion, MTHFD1 1958G>A, MTHFR 1298A>C, MTHFR 677C>T, and SLC19A1 80A>G. In addition to looking at genotypes individually, we determined the number of genotypes associated with decreased folate metabolism in each relative (“risk genotypes”) and compared the distribution of these genotypes in maternal vs. paternal relatives. Overall, maternal relatives had a higher number of genotypes associated with lower folate metabolism than paternal relatives (p = 0.017). We expected that relatives would share the same risk genotype as the individuals with NTDs and/or their mothers. However, we observed that maternal relatives had an over-abundance of any risk genotype, rather than one specific genotype. The observed genetic effects suggest an epigenetic mechanism in which decreased folate metabolism results in epigenetic alterations related to the increased rate of NTDs and other birth defects seen in the maternal lineage. Future studies on the etiology of NTDs and other birth defects could benefit from including multigenerational extended families, in order to explore potential epigenetic

  19. Screening of polymorphisms for MTHFR and DHFR genes in spina bifida children and their mothers

    NASA Astrophysics Data System (ADS)

    Husna, M. Z.; Endom, I.; Ibrahim, S.; Selvi, N. Amaramalar; Fakhrurazi, H.; Htwe, R. Ohnmar; Kanehaswari, Y.; Halim, A. R. Abdul; Wong, S. W.; Subashini, K.; Syahira, O. Nur; Aishah, S.

    2013-11-01

    Mechanism underlying the beneficial effect of folic acid supplementation in reducing the risk of neural tube defect is still not well understood. Current evidences show the involvement of folic acid metabolic gene's polymorphism as contributing factors that regulate this pathway. Therefore, the objective of this research was to determine the presence of C677T polymorphism for methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR-19 bp deletion) genes between mother-children pairs of case and control. With the approval of UKMMC ethic committee, genomic DNA was extracted from one hundred and forty consented bloods. Polymerase chain reaction (PCR), PCR-RFLP (Restriction Fragment Length Polymorphism) and sequencing were employed to verify each nucleotide change. Our result shows that mutant MTHFR and DHFR alleles are present in all Malaysian sub-ethnic groups, case and control. Even though mutant MTHFR are found to be slightly higher in the case groups, 75% of the affected child is a non carrier for this allele and 62.5% of the mothers with an affected child are genotypically normal. For DHFR, almost all (87.5-100%) investigated samples are a carrier or having a double DHFR deletion be it a case or control pairs. However, strong maternal inheritance shown by the deleted allele might be due to a cascade effect of lacks of folate consumption or maternal uniparental disomy. In conclusion, the use of MTHFR and DHFR as markers in determining the risk of having spina bifida baby is uninformative and plays a small indirect role as the genetic causes of spina bifida. Therefore, spina bifida remains etiologically unknown polygenic and quantitative developmental trait whereby the searches for positive genetic marker need to be continued.

  20. The association between circulating total folate and folate vitamers with overall survival after postmenopausal breast cancer diagnosis.

    PubMed

    McEligot, Archana Jaiswal; Ziogas, Argyrios; Pfeiffer, Christine M; Fazili, Zia; Anton-Culver, Hoda

    2015-01-01

    We studied the relationship between plasma total folate and folate vitamer concentrations [5-methyltetrahydrofolic acid, pteroylglutamic acid (folic acid) and tetrahydrofolic acid] with overall survival after breast cancer diagnosis. A secondary aim was to assess the relationship between folic acid supplement use with circulating total folate and folate vitamer concentrations. Participants were postmenopausal women diagnosed with breast cancer (n = 498) with an average follow-up of 6.7 yr. Plasma total folate and folate vitamers were measured by isotope-dilution LC-MS/MS in samples collected at or postdiagnosis. Cox proportional multivariate hazards models (controlled for stage, age at diagnosis, body mass index, parity, hormone replacement therapy use, treatment, alcohol use, folic acid use, and energy intake), were used to assess overall survival after breast cancer diagnosis. We found that the relative risk of dying for women with plasma total folate concentrations in the highest quartile was 59% lower (hazard ratio: 0.41, 95% confidence interval: 0.19-0.90) compared with the lowest quartile. Data on supplement use showed that women taking folic acid supplements had significantly higher circulating total folate and folate vitamer concentrations (P < 0.0001), suggesting that increased folate consumption through diet and/or supplementation may improve prognosis after breast cancer diagnosis. PMID:25647689

  1. Folate Receptor Alpha Defect Causes Cerebral Folate Transport Deficiency: A Treatable Neurodegenerative Disorder Associated with Disturbed Myelin Metabolism

    PubMed Central

    Steinfeld, Robert; Grapp, Marcel; Kraetzner, Ralph; Dreha-Kulaczewski, Steffi; Helms, Gunther; Dechent, Peter; Wevers, Ron; Grosso, Salvatore; Gärtner, Jutta

    2009-01-01

    Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specific folate transport defect that is caused by mutations in the folate receptor 1 (FOLR1) gene coding for folate receptor alpha (FRα). Three patients carrying FOLR1 mutations developed progressive movement disturbance, psychomotor decline, and epilepsy and showed severely reduced folate concentrations in the cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) demonstrated profound hypomyelination, and MR-based in vivo metabolite analysis indicated a combined depletion of white-matter choline and inositol. Retroviral transfection of patient cells with either FRα or FRβ could rescue folate binding. Furthermore, CSF folate concentrations, as well as glial choline and inositol depletion, were restored by folinic acid therapy and preceded clinical improvements. Our studies not only characterize a previously unknown and treatable disorder of early childhood, but also provide new insights into the folate metabolic pathways involved in postnatal myelination and brain development. PMID:19732866

  2. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate.

    PubMed

    Yoo, Hyuk Sang; Park, Tae Gwan

    2004-11-24

    For folate-receptor-targeted anti-cancer therapy, doxorubicin aggregates in a nano-scale size were produced employing doxorubicin-polyethylene glycol-folate (DOX-PEG-FOL) conjugate. Doxorubicin and folate were respectively conjugated to alpha- and omega-terminal end group of a PEG chain. The conjugates assisted to form doxorubicin nano-aggregates with an average size of 200 nm in diameter when combined with an excess amount of deprotonated doxorubicin in an aqueous phase. Hydrophobically deprotonated doxorubicin molecules were aggregated within the core, while the DOX-PEG-FOL conjugates stabilized the aggregates with exposing folate moieties on the surface. The doxorubicin nano-aggregates showed a greater extent of intracellular uptake against folate-receptor-positive cancer cells than folate-receptor-negative cells, indicating that the cellular uptake occurred via a folate-receptor-mediated endocytosis mechanism. They also exhibited more potent cytotoxic effect on KB cells than free doxorubicin. In a human tumor xenograft nude mouse model, folate-targeted doxorubicin nano-aggregates significantly reduced the tumor volume compared to non-targeted doxorubicin aggregates or free doxorubicin. These results suggested that folate-targeted doxorubicin nano-aggregates could be a potentially useful delivery system for folate-receptor-positive cancer cells. PMID:15544872

  3. Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging.

    PubMed

    Wang, Hanjie; Wang, Sheng; Liao, Zhenyu; Zhao, Peiqi; Su, Wenya; Niu, Ruifang; Chang, Jin

    2012-07-01

    One of the most urgent medical requirements for cancer diagnosis and treatment is how to construct a multifunctional vesicle for simultaneous diagnostic imaging and therapeutic applications. In our study, superparamagnetic iron oxide nanocrystals (SPIONs) and doxorubicin hydrochloride (DOX) are co-encapsulated into PLGA/polymeric liposome core-shell nanocarriers for achieving simultaneous magnetic resonance imaging and targeting drug delivery. The core-shell nanocarrier was self-assembled from a hydrophobic PLGA core and a hydrophilic folate coated PEGlated lipid shell. The experiment showed that folate-targeting magnetic core-shell nanocarriers show clear core-shell structure, excellent magnetism and controlled drug release behavior. Importantly, the core-shell nanoparticles achieve the possibility of co-delivering drugs and SPIONs to the same cells for enhancing magnetic resonance imaging (MRI) effect and improving drug delivery efficiency simultaneously. Our data suggests that the folate-targeting magnetic core-shell nanocarriers (FMNs) could provide effective cancer-targeting and MRI as well as drug delivery. The FMNs may become a useful nanomedical carrier system for cancer diagnosis and treatment. PMID:22525087

  4. Methotrexate influx via folate transporters into alveolar epithelial cell line A549.

    PubMed

    Kawami, Masashi; Miyamoto, Mioka; Yumoto, Ryoko; Takano, Mikihisa

    2015-08-01

    Methotrexate (MTX), a drug used for the treatment of certain cancers as well as rheumatoid arthritis, sometimes induces serious interstitial lung injury. Although lung toxicity of MTX is related to its accumulation, the information concerning MTX transport in the lungs is lacking. In this study, we investigated the mechanisms underlying MTX influx into human alveolar epithelial cell line A549. MTX influx into A549 cells was time-, pH-, and temperature-dependent and showed saturation kinetics. The influx was inhibited by folic acid with IC50 values of 256.1 μM at pH 7.4 and 1.6 μM at pH 5.5, indicating that the mechanisms underlying MTX influx would be different at these pHs. We then examined the role of two folate transporters in MTX influx, reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). The expression of RFC and PCFT mRNAs in A549 cells was confirmed by reverse transcription polymerase chain reaction. In addition, MTX influx was inhibited by thiamine monophosphate, an RFC inhibitor, at pH 7.4, and by sulfasalazine, a PCFT inhibitor, at pH 5.5. These results indicated that RFC and PCFT are predominantly involved in MTX influx into A549 cells at pH 7.4 and pH 5.5, respectively. PMID:26190800

  5. A comparative study of folate receptor-targeted doxorubicin delivery systems: dosing regimens and therapeutic index.

    PubMed

    Scomparin, Anna; Salmaso, Stefano; Eldar-Boock, Anat; Ben-Shushan, Dikla; Ferber, Shiran; Tiram, Galia; Shmeeda, Hilary; Landa-Rouben, Natalie; Leor, Jonathan; Caliceti, Paolo; Gabizon, Alberto; Satchi-Fainaro, Ronit

    2015-06-28

    Ligand-receptor mediated targeting may affect differently the performance of supramolecular drug carriers depending on the nature of the nanocarrier. In this study, we compare the selectivity, safety and activity of doxorubicin (Dox) entrapped in liposomes versus Dox conjugated to polymeric nanocarriers in the presence or absence of a folic acid (FA)-targeting ligand to cancer cells that overexpress the folate receptor (FR). Two pullulan (Pull)-based conjugates of Dox were synthesized, (FA-PEG)-Pull-(Cyst-Dox) and (NH2-PEG)-Pull-(Cyst-Dox). The other delivery systems are Dox loaded PEGylated liposomes (PLD, Doxil®) and the FR-targeted version (PLD-FA) obtained by ligand post-insertion into the commercial formulation. Both receptor-targeted drug delivery systems (DDS) were shown to interact in vitro specifically with cells via the folate ligand. Treatment of FR-overexpressing human cervical carcinoma KB tumor-bearing mice with three-weekly injections resulted in slightly enhanced anticancer activity of PLD-FA compared to PLD and no activity for both pullulan-based conjugates. When the DDS were administered intravenously every other day, the folated-Pull conjugate and the non-folated-Pull conjugate displayed similar and low antitumor activity as free Dox. At this dosing regimen, the liposome-based formulations displayed enhanced antitumor activity with an advantage to the non-folated liposome. However, both liposomal formulations suffered from toxicity that was reversible following treatment discontinuation. Using a daily dosing schedule, with higher cumulative dose, the folated-Pull conjugate strongly inhibited tumor growth while free Dox was toxic at this regimen. For polymeric constructs, increasing dose intensity and cumulative dose strongly affects the therapeutic index and reveals a major therapeutic advantage for the FR-targeted formulation. All DDS were able to abrogate doxorubicin-induced cardiotoxicity. This study constitutes the first side

  6. Association of the C47T Polymorphism in SOD2 with Amnestic Mild Cognitive Impairment and Alzheimer's Disease in Carriers of the APOEε4 Allele

    PubMed Central

    Gamarra, David; Elcoroaristizabal, Xabier; Fernández-Martínez, Manuel; de Pancorbo, Marian M.

    2015-01-01

    Oxidative stress plays an important part in amnestic mild cognitive impairment (aMCI), the prodromal phase of Alzheimer's disease (AD). Recent evidence shows that polymorphisms in the SOD2 gene affect the elimination of the reactive oxygen species (ROS) generated in mitochondria. The aim of this study was to determine whether the functional rs4880 SNP in the SOD2 gene is a risk factor associated with aMCI and sporadic AD. 216 subjects with aMCI, 355 with AD, and 245 controls have been studied. The SNP rs4880 of the SOD2 gene was genotyped by RT-PCR and the APOE genotype was determined by PCR and RFLPs. Different multinomial logistic regression models were used to determine the risk levels for aMCI and AD. Although the T allele of the SOD2 rs4880 SNP gene (rs4880-T) is not an independent risk for aMCI or AD, this allele increases the risk to aMCI patients carrying at least one APOEε4 allele. Moreover, rs4880-T allele and APOEε4 allele combination has been found to produce an increased risk for AD compared to aMCI reference patients. These results suggest that APOEε4 and rs4880-T genotype may be a risk for aMCI and a predictor of progression from aMCI to AD. PMID:26696693

  7. Novel insights on interactions between folate and lipid metabolism.

    PubMed

    da Silva, Robin P; Kelly, Karen B; Al Rajabi, Ala; Jacobs, René L

    2014-01-01

    Folate is an essential B vitamin required for the maintenance of AdoMet-dependent methylation. The liver is responsible for many methylation reactions that are used for post-translational modification of proteins, methylation of DNA, and the synthesis of hormones, creatine, carnitine, and phosphatidylcholine. Conditions where methylation capacity is compromised, including folate deficiency, are associated with impaired phosphatidylcholine synthesis resulting in non-alcoholic fatty liver disease and steatohepatitis. In addition, folate intake and folate status have been associated with changes in the expression of genes involved in lipid metabolism, obesity, and metabolic syndrome. In this review, we provide insight on the relationship between folate and lipid metabolism, and an outlook for the future of lipid-related folate research. PMID:24353111

  8. Prevalence of MTHFR C677T Polymorphism in North Indian Mothers Having Babies with Trisomy 21 Down Syndrome

    ERIC Educational Resources Information Center

    Kohli, Utkarsh; Arora, Sadhna; Kabra, Madhulika; Ramakrishnan, Lakshmy; Gulati, Sheffali; Pandey, Ravindra

    2008-01-01

    Recent studies have evaluated possible links between polymorphisms in maternal folate metabolism genes and Down syndrome. Some of these studies show a significantly increased prevalence of the C677T polymorphism of the 5,10-methylene tetrahydrofolate reductase (NADPH) gene (MTHFR) among mothers who have had babies with Down syndrome. This study…

  9. Perinatal folate supply: relevance in health outcome parameters.

    PubMed

    Fekete, Katalin; Berti, Cristiana; Cetin, Irene; Hermoso, Maria; Koletzko, Berthold V; Decsi, Tamás

    2010-10-01

    The importance of physiological supply of folate is well recognized in human health; the crucial roles of folate in one-carbon metabolism for physiological DNA synthesis and cell division, as well as in the conversion of homocysteine (Hcy) to methionine, and subsequently, to S-adenosylmethionine, have been convincingly demonstrated. Improved folate status may reduce the risk of macrocytic anaemia, cardiovascular diseases, neuropsychiatric disorders and adverse pregnancy outcomes. Inadequate folate status results in a decrease in the methylation cycle and in increased blood levels of the neurotoxic Hcy. The aim of this review is to provide insight into the influence of folate status on pregnancy health outcomes, and to consider increasing evidence of a link between the extent of genome/epigenome damage and elevated risk for adverse obstetrical endpoints. Pregnant women are at risk for folate insufficiency because of the increased need for folate for rapid fetal growth, placental development and enlargement of the uterus. Inadequate folate status may cause fetal malformations, impaired fetal growth, pre-term delivery and maternal anaemia. Even some diseases of the placenta may arise from folate deficiencies. Fetal growth seems to be vulnerable to maternal folate status during the periconception period, because it has the potential to affect both the closure of the neural tube and several epigenetic mechanisms within the placenta and the fetus. Mainly on the basis of the well recognized link between maternal folate status and fetal neural tube defects, women are advised to receive folic acid supplement during the periconceptional period. Because an adequate folate supply seems to play an important role in the implantation and development of the placenta and in improving endothelial function, folic acid supplementation in the late first trimester or early second trimester might also be beneficial. PMID:22296249

  10. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    PubMed Central

    Zhang, Linhua; Zhu, Dunwan; Dong, Xia; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2015-01-01

    The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA) modified lipid-shell and polymer-core nanoparticles (FLPNPs) for sustained, controlled, and targeted delivery of paclitaxel (PTX). The core-shell NPs consist of 1) a poly(ε-caprolactone) hydrophobic core based on self-assembly of poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) (PCL-PEG-PCL) amphiphilic copolymers, 2) a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000), 3) a targeting ligand (FA) on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation). In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More importantly, PTX-loaded FLPNPs showed greater tumor growth inhibition (65.78%) than the nontargeted PTX-loaded LPNPs (48.38%) (P<0.05). These findings indicated that the PTX loaded-FLPNPs with mixed lipid monolayer shell and biodegradable polymer core would be a promising nanosized drug formulation for tumor-targeted therapy. PMID:25844039

  11. Compilation of a standardised international folate database for EPIC.

    PubMed

    Nicolas, Geneviève; Witthöft, Cornelia M; Vignat, Jérôme; Knaze, Viktoria; Huybrechts, Inge; Roe, Mark; Finglas, Paul; Slimani, Nadia

    2016-02-15

    This paper describes the methodology applied for compiling an "international end-user" folate database. This work benefits from the unique dataset offered by the European Prospective Investigation into Cancer and Nutrition (EPIC) (N=520,000 subjects in 23 centres). Compilation was done in four steps: (1) identify folate-free foods then find folate values for (2) folate-rich foods common across EPIC countries, (3) the remaining "common" foods, and (4) "country-specific" foods. Compiled folate values were concurrently standardised in terms of unit, mode of expression and chemical analysis, using information in national food composition tables (FCT). 43-70% total folate values were documented as measured by microbiological assay. Foods reported in EPIC were either matched directly to FCT foods, treated as recipes or weighted averages. This work has produced the first standardised folate dataset in Europe, which was used to calculate folate intakes in EPIC; a prerequisite to study the relation between folate intake and diseases. PMID:26433299

  12. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  13. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-01

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement. PMID:25548870

  14. Lentils (Lens culinaris L.), a rich source of folates.

    PubMed

    Sen Gupta, Debjyoti; Thavarajah, Dil; Knutson, Phil; Thavarajah, Pushparajah; McGee, Rebecca J; Coyne, Clarice J; Kumar, Shiv

    2013-08-14

    The potential for genetic biofortification of U.S.-grown lentils ( Lens culinaris L.) with bioavailable folate has not been widely studied. The objectives of this study were (1) to determine the folate concentration of 10 commercial lentil cultivars grown in Minot and McLean counties, North Dakota, USA, in 2010 and 2011, (2) to determine the genotype (G) × environmental (E) interactions for folate concentration in lentil cultivars, and (3) to compare the folate concentration of other pulses [field peas ( Pisum sativum L.) and chickpea ( Cicer arietinum L.)] grown in the United States. Folate concentration in lentil cultivars ranged from 216 to 290 μg/100 g with a mean of 255 μg/100 g. In addition, lentil showed higher folate concentration compared to chickpea (42-125 μg/100 g), yellow field pea (41-55 μg/100 g), and green field pea (50-202 μg/100 g). A 100 g serving of lentils could provide a significant amount of the recommended daily allowance of dietary folates (54-73%) for adults. A significant year × location interaction on lentil folate concentration was observed; this indicates that possible location sourcing may be required for future lentil folate research. PMID:23865478

  15. Clinical studies of intestinal folate conjugases.

    PubMed

    Halsted, C H; Beer, W H; Chandler, C J; Ross, K; Wolfe, B M; Bailey, L; Cerda, J J

    1986-03-01

    Clinical differences between the two human intestinal mucosal folate conjugases were assessed by measurement of their activities in normal individuals and in patients with chronic diarrhea of differing causes. Intracellular folate conjugase (ICFC) was 15-fold more active than brush border folate conjugase (BBFC) in jejunal mucosa from seven obese patients undergoing elective gastric bypass surgery. The activity of ICFC was similar among normal volunteers and patients with diarrhea of unknown origin (DUO), gluten-sensitive enteropathy (GSE), inflammatory bowel disease (IBD), and the short bowel syndrome (IBD-SBS). By contrast, BBFC, sucrase, and lactase were decreased significantly in GSE, and BBFC was increased in IBD-SBS. The activity of BBFC correlated with lactase and with sucrase in the normal subjects and in patients with DUO, whereas no correlations were found with the activity of ICFC in any group. Our clinical studies confirm that ICFC and BBFC are different enzymes. ICFC is not affected by intestinal disease, whereas the activity of jejunal BBFC, like that of other brush border enzymes, is decreased by mucosal injury and is also capable of adapting to distal small intestinal disease or surgical resection. PMID:3081671

  16. Impaired Clearance of Methotrexate in Organic Anion Transporter 3 (Slc22a8) Knockout Mice: A Gender Specific Impact of Reduced Folates

    PubMed Central

    VanWert, Adam L.; Sweet, Douglas H.

    2010-01-01

    Purpose To elucidate the role of the renal basolateral transporter, Oat3, in the disposition of methotrexate. Materials and Methods Chinese hamster ovary cells expressing mouse Oat3 were used to determine kinetics and specificity of inhibition of methotrexate transport. Methotrexate clearance was then examined in vivo in wildtype and Oat3 knockout mice. Results NSAIDs, ß-lactams, and uremic toxins inhibited mOat3-mediated methotrexate uptake by 70–100%, while folate, leucovorin, and 5-methyltetrahydrofolate inhibited transport by 25–50%. A Km of 60.6±9.3 μM for methotrexate transport was determined. Oat3 knockout mice exhibited reduced methotrexate-to-inulin clearance ratios versus wildtype. Male wildtype mice, but not knockouts or females, demonstrated significantly accelerated methotrexate clearance in response to reduced folates. Reduced folates also markedly inhibited hepatic methotrexate accumulation in males, but not females, and the response was independent of Oat3 function. Conclusions Oat3 contributes to methotrexate clearance, but represents only one component responsible for methotrexate's elimination. Therefore, in patients, dysfunctional hOAT3 polymorphisms or drug competition for hOAT3 transport may severely impact methotrexate elimination only when redundant means of methotrexate removal are also compromised. Furthermore, the present findings suggest that reduced-folate administration only influences methotrexate disposition in males, with the renal reduced-folate response influenced by OAT3 function. PMID:17660957

  17. Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.

    PubMed

    Naushad, Shaik Mohammad; Ramaiah, M Janaki; Pavithrakumari, Manickam; Jayapriya, Jaganathan; Hussain, Tajamul; Alrokayan, Salman A; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadharao; Kutala, Vijay Kumar

    2016-04-15

    In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demographic variables to investigate how micronutrients modulate susceptibility to breast cancer. The developed ANN model explained 94.2% variability in breast cancer prediction. Fixed effect models of folate (400 μg/day) and B12 (6 μg/day) showed 33.3% and 11.3% risk reduction, respectively. Multifactor dimensionality reduction analysis showed the following interactions in responders to folate: RFC1 G80A × MTHFR C677T (primary), COMT H108L × CYP1A1 m2 (secondary), MTR A2756G (tertiary). The interactions among responders to B12 were RFC1G80A × cSHMT C1420T and CYP1A1 m2 × CYP1A1 m4. ANN simulations revealed that increased folate might restore ER and PR expression and reduce the promoter CpG island methylation of extra cellular superoxide dismutase and BRCA1. Dietary intake of folate appears to confer protection against breast cancer through its modulating effects on ER and PR expression and methylation of EC-SOD and BRCA1. PMID:26784656

  18. Association of methylenetetrahydrofolate reductase C677T-A1298C polymorphisms with risk for esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis.

    PubMed

    Ekiz, F; Ormeci, N; Coban, S; Karabulut, H G; Aktas, B; Tukun, A; Tuncali, T; Yüksel, O; Alkış, N

    2012-07-01

    Incidence of the esophagus adenocarcinoma has been dramatically increasing in Western countries since the last decade. Gastroesophageal reflux disease and Barrett's esophagus are risk factors for adenocarcinoma. Methylenetetrahydrofolate reductase (MTHFR) genes play a key role not only in folate metabolism but also in esophagus, stomach, pancreatic carcinoma, and acute leukemias. Studies have suggested that genetic polymorphisms of MTHFR (C677T) may clarify the causes and events involved in esophageal carcinogenesis. In this study, we evaluated MTHFR C677T and A1298C polymorphisms, and vitamin B12, folate, and plasma homocystein levels in patients with esophageal adenocarcinoma (EAC), Barrett's esophagus (BE), chronic esophagitis, and healthy controls (n = 26, n = 14, n = 30, and n = 30, respectively). The mean age of patients in the EAC and BE groups was significantly higher compared with the control group (P < 0.001, P = 0.003, respectively). In all patient groups, serum folate levels were significantly lower than that of the control group (P < 0.01, P < 0.05, and P < 0.01, respectively). There was no statistically significant association between folate levels and MTHFR gene polymorphisms. No differences were found in terms of MTHFR gene polymorphisms, homocystein, and B12 levels among the groups. MTHFR gene polymorphisms and folate deficiency are not predictors of early esophageal carcinoma. However, further studies using larger series of patients are needed to evaluate the effect of genetic polymorphisms in the folate metabolic pathway and to clarify the role of folate deficiency and folate metabolism in the development of esophagus adenocarcinoma. PMID:21951971

  19. Nuclear Enrichment of Folate Cofactors and Methylenetetrahydrofolate Dehydrogenase 1 (MTHFD1) Protect de Novo Thymidylate Biosynthesis during Folate Deficiency*

    PubMed Central

    Field, Martha S.; Kamynina, Elena; Agunloye, Olufunmilayo C.; Liebenthal, Rebecca P.; Lamarre, Simon G.; Brosnan, Margaret E.; Brosnan, John T.; Stover, Patrick J.

    2014-01-01

    Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency. PMID:25213861

  20. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  1. Effects of preparation and cooking of folic acid-fortified foods on the availability of folic acid in a folate depletion/repletion rat model.

    PubMed

    O'Leary, K; Sheehy, P J

    2001-09-01

    The practice of food fortification with folic acid offers the potential to increase the folate intake of the general population. To fully exploit the potential of fortification for raising folate nutriture, appropriate food vehicles need to be selected. Selection should involve determination of the availability of folic acid as affected by characteristics of the carrier food, food matrix, food preparation, and cooking. The present study investigated the effects of preparation and cooking of a range of folic acid-fortified foods on the folate status of folate-deficient rats. Fifty-six weanling male rats (Wistar strain) were fed a folate-deficient diet containing 1% succinyl sulfathiazole for 28 days. Following depletion, six rats were randomly assigned to each of eight repletion diets containing cooked or uncooked meringue mix, quick bread mix, brownie mix, or pizza base mix. The test foods were fortified with 1400 microg of folic acid/kg of food and incorporated as 19% of the repletion diets. Each of the first four groups was pair-fed a diet containing a cooked fortified food with another group fed the corresponding uncooked fortified food. After a further 28 days, plasma, liver, and kidney folate concentrations were determined by microbiological assay. Mean plasma and liver folate concentrations of rats fed diets containing cooked fortified foods were similar to those of rats fed uncooked fortified foods. Preparation and cooking did not affect the availability of folic acid from the selected cereal-based convenience foods in this rat model system, suggesting that these foods are appropriate vehicles for fortification with folic acid. PMID:11559162

  2. Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay.

    PubMed

    Clifford, A J; Heid, M K; Peerson, J M; Bills, N D

    1991-04-01

    Folate bioavailability of beef liver, lima beans, peas, spinach, mushrooms, collards, orange juice and wheat germ was estimated with a protocol of folate depletion-repletion using growth and liver, serum and erythrocyte folate of weanling male rats. Diets with 125, 250 and 375 micrograms folic acid/kg were standards. Individual foods were incorporated into a folate-free amino acid-based diet alone (250 micrograms folate/kg diet from food) or mixed with folic acid (125 micrograms folate from food + 125 micrograms folic acid) to evaluate folate bioavailability and effects of food matrix. Beef liver and orange juice folates were as available as folic acid, whereas those of wheat germ were less bioavailable. Folates of peas and spinach were also less available than folic acid using liver and serum folate concentrations and total liver folate as response criteria, but they were not lower when based on growth and erythrocyte folate concentrations. Lima bean, mushroom and collard folates were as available as folic acid using four of five response criteria. Folate bioavailability of all foods generally exceeded 70%. All response criteria gave approximately equivalent results, indicating that growth and tissue folate levels are appropriate criteria. No food matrix effects were observed for any food except lima beans. Foods rich in polyglutamyl folates were less bioavailable than those of foods rich in short-chain folates. PMID:2007897

  3. Plasma folate, but not homocysteine, is associated with Apolipoprotein A1 levels in a non-fortified population

    PubMed Central

    2013-01-01

    Background Elevated total plasma homocysteine (tHcy) in humans is associated with cardiovascular disease but prevention trials have failed to confirm causality. Reported reasons for this association have been that homocysteine and its major genetic determinant methylenetetrahydrofolate reductase (MTHFR) may have an effect on HDL and Apolipoprotein (Apo) A1 levels. We wanted to study if tHcy and its major determinants were correlated with Apo A1 levels in a large population without folate fortification. Methods This study was a prospective incident nested case-referent study within the Northern Sweden Health and Disease Study Cohort (NSHDSC), including 545 cases with first myocardial infarction and 1054 matched referents, median age at inclusion was 59 years. Univariate and multiple regression analyzes was used to study the associations between apolipoproteins Apo A1 and B, tHcy, folate and vitamin B12 in plasma as well as MTHFR polymorphisms 677C>T and 1298A>C. Results Apo A1 and Apo B were strongly associated with the risk of a first myocardial infarction. tHcy was not associated with Apo A1 levels. Instead, folate had an independent positive association with Apo A1 levels in univariate and multiple regression models. The associations were seen in all men and women, among referents but not among cases. MTHFR polymorphisms had no clear effect on Apo A1 levels. Conclusions Analyzing over 1500 subjects we found an independent positive association between plasma folate (major dietary determinant of tHcy) and Apo A1 levels among those who later did not develop a first myocardial infarction. No association was seen between tHcy and Apo A1. PMID:23697869

  4. Role of the fourth transmembrane domain in proton-coupled folate transporter function as assessed by the substituted cysteine accessibility method.

    PubMed

    Shin, Daniel Sanghoon; Zhao, Rongbao; Fiser, Andras; Goldman, I David

    2013-06-15

    The proton-coupled folate transporter (PCFT, SLC46A1) mediates folate transport across the apical brush-border membrane of the proximal small intestine and the basolateral membrane of choroid plexus ependymal cells. Two loss-of-function mutations in PCFT, which are the basis for hereditary folate malabsorption, have been identified within the fourth transmembrane domain (TMD4) in subjects with this disorder. We have employed the substituted Cys accessibility method (SCAM) to study the accessibilities of all residues in TMD4 and their roles in folate substrate binding to the carrier. When residues 146-167 were replaced by Cys, all except R148C were expressed at the cell surface. Modification of five of these substituted Cys residues (positions 147, 152, 157, 158, and 161) by methanethiosulfonate (MTS) reagents led to reduction of PCFT function. All five residues could be labeled with N-biotinylaminoethyl-MTS, and this could be blocked by the high-affinity PCFT substrate pemetrexed. Pemetrexed also protected PCFT mutant function from inhibitory modification of the substituted Cys at positions 157, 158, and 161 by a MTS. The findings indicate that these five residues in TMD4 are accessible to the aqueous translocation pathway, play a role in folate substrate binding, and are likely located within or near the folate binding pocket. A homology model of PCFT places three of these residues, Phe¹⁵⁷, Gly¹⁵⁸, and Leu¹⁶¹, within a breakpoint in the midportion of TMD4, a region that likely participates in alterations in the PCFT conformational state during carrier cycling. PMID:23552283

  5. Lentils (Lens culinaris L.), a rich source of folates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulses contain folates in the form of reduced tetrahydrofolate which is the biologically active form absorbed in the jejunum. Genetic biofortification potential of US-grown lentils (Lens culinaris L.) with the bioavailable form of folate has not been widely studied. The objectives of this study wer...

  6. Clinical utility of folate-containing oral contraceptives

    PubMed Central

    Lassi, Zohra S; Bhutta, Zulfiqar A

    2012-01-01

    Folate is a generic term for a water-soluble B-complex vitamin which plays an important role in protein synthesis and metabolism and other processes related to cell multiplication and tissue growth. Pregnant and lactating women are at increased risk of folic acid deficiency because generally their dietary folate is insufficient to meet their physiological requirements and the metabolic demands of the growing fetus. The evidence pertaining to the reduction of the risk of neural tube defects (NTDs) due to folate is so compelling that supplementation with 400 μg of folic acid to all women trying to conceive until 12 weeks of pregnancy has been recommended by every relevant authority. A recent Cochrane review has also found protective effects of folate supplementation in occurrence and reoccurrence of NTDs. Despite food fortification and targeted public health campaigns promoting folic acid supplementation, 4,300,000 new cases occur each year worldwide resulting in an estimated 41,000 deaths and 2.3 million disability-adjusted life years (DALYS). This article will review the burden and risk factors of NTDS, and the role of folate in preventing NTDs. It will also describe different modes of supplementing folate and the newer evidence of the effectiveness of adding folate in oral contraceptives for raising serum and red blood cell folate levels. PMID:22570577

  7. Thermal degradation of folates under varying oxygen conditions.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Cuvelier, Marie-Elisabeth; Courtois, Francis; Rychlik, Michael; Renard, Catherine M G C

    2014-12-15

    Folate losses in thermally treated foods are mainly due to oxidation. Other mechanisms and folate vitamers behaviour are poorly described. Our study evaluated oxygen impact on total folate degradation and derivatives' evolution during thermal treatments. Spinach and green bean purees were heated, in an instrumented reactor, in anaerobic conditions, under an oxygen partial pressure of 40 kPa. Folates were stable in the absence of oxygen, whilst they were degraded under 40 kPa of oxygen. Total folate showed a sharp decrease in the first hour driven by the degradation of 5-CH3-H4folate, followed by a plateau due to the formyl derivatives and minor compounds stability. The different evolution of the main derivatives was confirmed by the degradation of 5-CH3-H4folate and folic acid in solution, under the same conditions of oxygen concentrations. The stability of folic acid and the high susceptibility of 5-CH3-H4folate to degradation in the presence of oxygen were confirmed. PMID:25038652

  8. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  9. Folates in Asian noodles: III. Fortification, impact of processing, and enhancement of folate intakes.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    Asian noodles, a widely consumed staple food, were evaluated as potential vehicles for fortification with folic acid. Samples of white salted, yellow alkaline, and instant noodles, prepared under controlled laboratory conditions, were fortified and folates were measured at each stage of processing using a microbiological assay. Although the 3 styles showed differing patterns of retention, overall losses were slightly more than 40% and were similar for all styles. White salted and yellow alkaline noodles showed no significant decrease in total folate content during production. In contrast, significant losses occurred for instant noodles during steaming and deep-frying of the noodle strands. In all cases, substantial losses occurred during subsequent cooking of the dried noodles. Fortification at a rate of 50% of the reference value per serving resulted in retention of folate at levels corresponding to 30% following cooking, whereas unfortified noodles contributed less than 4% per serving. It is concluded that fortifying Asian noodles provides an effective means for enhancing folate intake. PMID:17995717

  10. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials

    PubMed Central

    Holmes, Michael V; Newcombe, Paul; Hubacek, Jaroslav A; Sofat, Reecha; Ricketts, Sally L; Cooper, Jackie; Breteler, Monique MB; Bautista, Leonelo E; Sharma, Pankaj; Whittaker, John C; Smeeth, Liam; Fowkes, F Gerald R; Algra, Ale; Shmeleva, Veronika; Szolnoki, Zoltan; Roest, Mark; Linnebank, Michael; Zacho, Jeppe; Nalls, Michael A; Singleton, Andrew B; Ferrucci, Luigi; Hardy, John; Worrall, Bradford B; Rich, Stephen S; Matarin, Mar; Norman, Paul E; Flicker, Leon; Almeida, Osvaldo P; van Bockxmeer, Frank M; Shimokata, Hiroshi; Khaw, Kay-Tee; Wareham, Nicholas J; Bobak, Martin; Sterne, Jonathan AC; Smith, George Davey; Talmud, Philippa J; van Duijn, Cornelia; Humphries, Steve E; Price, Jackie F; Ebrahim, Shah; Lawlor, Debbie A; Hankey, Graeme J; Meschia, James F; Sandhu, Manjinder S; Hingorani, Aroon D; Casas, Juan P

    2011-01-01

    Summary Background The MTHFR 677C→T polymorphism has been associated with raised homocysteine concentration and increased risk of stroke. A previous overview showed that the effects were greatest in regions with low dietary folate consumption, but differentiation between the effect of folate and small-study bias was difficult. A meta-analysis of randomised trials of homocysteine-lowering interventions showed no reduction in coronary heart disease events or stroke, but the trials were generally set in populations with high folate consumption. We aimed to reduce the effect of small-study bias and investigate whether folate status modifies the association between MTHFR 677C→T and stroke in a genetic analysis and meta-analysis of randomised controlled trials. Methods We established a collaboration of genetic studies consisting of 237 datasets including 59 995 individuals with data for homocysteine and 20 885 stroke events. We compared the genetic findings with a meta-analysis of 13 randomised trials of homocysteine-lowering treatments and stroke risk (45 549 individuals, 2314 stroke events, 269 transient ischaemic attacks). Findings The effect of the MTHFR 677C→T variant on homocysteine concentration was larger in low folate regions (Asia; difference between individuals with TT versus CC genotype, 3·12 μmol/L, 95% CI 2·23 to 4·01) than in areas with folate fortification (America, Australia, and New Zealand, high; 0·13 μmol/L, −0·85 to 1·11). The odds ratio (OR) for stroke was also higher in Asia (1·68, 95% CI 1·44 to 1·97) than in America, Australia, and New Zealand, high (1·03, 0·84 to 1·25). Most randomised trials took place in regions with high or increasing population folate concentrations. The summary relative risk (RR) of stroke in trials of homocysteine-lowering interventions (0·94, 95% CI 0·85 to 1·04) was similar to that predicted for the same extent of homocysteine reduction in large genetic studies in populations with similar

  11. The Effect of Folate Deficiency on Neuronal RNA Content

    PubMed Central

    Haltia, Matti

    1970-01-01

    One-day-old chicks were fed a defined ration deficient in folic acid. They were killed at 4 weeks of age when they showed characteristic clinical signs of folate deficiency and extremely low whole blood folate levels. Cerebellar Purkinje cells were dissected out and their total ribonucleic acid (RNA) content was determined by Edström's microchemical technique. The total RNA content of Purkinje cells of the folate deficient chicks was significantly lower than that of control chicks fed a complete ration. The low RNA values of the folate deficient chicks were apparently not only secondary to anaemia or growth retardation, and suggest that severe folate deficiency may directly interfere with neuronal RNA synthesis. The significance of the findings is discussed with reference to human pathology. PMID:5420991

  12. Assessing the Association between Natural Food Folate Intake and Blood Folate Concentrations: A Systematic Review and Bayesian Meta-Analysis of Trials and Observational Studies

    PubMed Central

    Marchetta, Claire M.; Devine, Owen J.; Crider, Krista S.; Tsang, Becky L.; Cordero, Amy M.; Qi, Yan Ping; Guo, Jing; Berry, Robert J.; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C.

    2015-01-01

    Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992–3 2014) with both natural food folate intake alone and blood folate concentration among females aged 12–49 years. Bayesian methods were used to estimate regression model parameters describing the association between natural food folate intake and subsequent blood folate concentration. Seven controlled trials and 29 observational studies met the inclusion criteria. For the six studies using microbiologic assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval (CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase in natural food folate intake. Using modeled results, we estimate that a natural food folate intake of ≥450 μg dietary folate equivalents (DFE)/day could achieve the lower bound of an RBC folate concentration (~1050 nmol/L) associated with the lowest risk of a neural tube defect. Natural food folate intake affects blood folate concentration and adequate intakes could help women achieve a RBC folate concentration associated with a risk of 6 neural tube defects/10,000 live births. PMID:25867949

  13. [Folates in the treatment of depression].

    PubMed

    Erbe, S; Pellert, U N

    2014-02-01

    Depression is an important and often recurrent illness. An initial antidepressant trial is effective at achieving remission for about 30 % of patients when prescribed as monotherapy, with the majority of patients returning as partial or non-responders. Suboptimal serum and red blood cell folate levels have been associated with a poorer response to antidepressant therapy, a greater severity of symptoms, later onset of clinical improvement, and overall treatment resistance. This article reviews the evidence for L-methylfolate and folic acid as antidepressive agents in depression and discusses their clinical use. PMID:24519190

  14. A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection.

    PubMed Central

    Saijo, T; Ito, M; Takeda, E; Huq, A H; Naito, E; Yokota, I; Sone, T; Pike, J W; Kuroda, Y

    1991-01-01

    Vitamin D-dependent rickets type II is a hereditary disease resulting from a defective vitamin D receptor. In three Japanese patients with vitamin D-dependent rickets type II whose fibroblasts displayed normal cytosol binding and impaired nuclear uptake of 1,25-dihydroxyvitamin D3, western, Southern, and northern analyses failed to disclose any abnormalities in vitamin D3 receptor protein and its gene. Exons 2 and 3 of the vitamin D receptor cDNA, which encode the DNA-binding domain consisting of two zinc fingers, were amplified by PCR and sequenced to identify the specific mutations in the vitamin D receptor gene. In the three patients and one normal control a T-to-C transition was found in the putative initiation codon, while this transition was not observed in another normal control. This finding suggested that an original initiation codon was located at positions 10-12 in the human vitamin D receptor cDNA sequence reported previously. In contrast, a unique G-to-A transition at position 140 in exon 3, resulting in substitution of arginine by glutamine at residue 47, was revealed only in these three patients. The arginine at 47 is located between two zinc fingers and is conserved within all steroid hormone receptors. Therefore, it is highly conceivable that this amino acid substitution is responsible for the defect of the vitamin D receptor in the patients. Single-strand conformation polymorphism analysis of amplified DNA confirmed that all patients were homozygous and that parents from one family were heterozygous carriers for this mutation. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1652893

  15. Folate targeted polymeric 'green' nanotherapy for cancer

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeja; Binulal, N. S.; Mony, Ullas; Manzoor, Koyakutty; Nair, Shantikumar; Menon, Deepthy

    2010-07-01

    The concept of 'green' chemotherapy by employing targeted nanoparticle mediated delivery to enhance the efficacy of phytomedicines is reported. Poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating a well known nutraceutical namely, grape seed extract (GSE)—'NanoGSE'—was prepared by a nanoprecipitation technique. The drug-loaded nanoparticles of size ~ 100 nm exhibited high colloidal stability at physiological pH. Molecular receptor targeting of this nanophytomedicine against folate receptor over-expressing cancers was demonstrated in vitro by conjugation with a potential cancer targeting ligand, folic acid (FA). Fluorescence microscopy and flow cytometry data showed highly specific cellular uptake of FA conjugated NanoGSE on folate receptor positive cancer cells. Studies were also conducted to investigate the efficiency of targeted (FA conjugated) versus non-targeted (non-FA conjugated) nanoformulations in causing cancer cell death. The IC50 values were lowered by a factor of ~ 3 for FA-NanoGSE compared to the free drug, indicating substantially enhanced bioavailability to the tumor cells, sparing the normal ones. Receptor targeting of FA-NanoGSE resulted in a significant increase in apoptotic index, which was also quantified by flow cytometry and fluorescence microscopy. This in vitro study provides a basis for the use of nanoparticle mediated delivery of anticancer nutraceuticals to enhance bioavailability and effectively target cancer by a 'green' approach.

  16. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Storozhenko, Sergei; Stove, Christophe; Lambert, Willy; Van Der Straeten, Dominique

    2013-11-01

    Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes. PMID:23771598

  17. Effects of alcohol on folate metabolism: implications for carcinogenesis.

    PubMed

    Mason, Joel B; Choi, Sang-Woon

    2005-04-01

    Epidemiologic observations implicate excess ethanol ingestion as well as low dietary folate intake as risk factors for several cancers. Moreover, the epidemiologic observations support the concept of a synergistic effect between these two factors. Such a relation is biologically plausible because ethanol impedes the bioavailability of dietary folate and is known to inhibit select folate-dependent biochemical reactions. For example, alcohol ingestion in animals is known to inhibit folate-mediated methionine synthesis and thereby may interrupt critical methylation processes that are mediated by the activated form of methionine that provides substrate for biologic methylation, S-adenosylmethionine. Consistent with this observed inhibition of methionine synthesis is the observation that chronic alcohol ingestion in laboratory animals is known to produce hypomethylation of DNA in the colonic mucosa, a constant feature of early colorectal neoplasia. Inhibition of methionine synthase also creates a "methylfolate trap," analogous to what occurs in vitamin B12 deficiency. In addition, some evidence indicates that alcohol may redirect the utilization of folate toward serine synthesis and thereby may interfere with a critical function of methylenetetrahydrofolate, thymidine synthesis. Although a mechanistic link between alcohol and impaired folate metabolism in the genesis of cancer is still not definitively established, such a link should be pursued in future studies because of the intimate metabolic relation between alcohol and folate metabolism. PMID:16054985

  18. Mechanisms of folate losses during processing: diffusion vs. heat degradation.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Maingonnat, Jean-François; Rychlik, Michael; Renard, Catherine M G C

    2014-08-15

    Though folates are sensitive to heat treatments, leaching appears to be a major mechanism involved in folate losses in vegetables during processing. The aim of our study was to study folate diffusivity and degradation from spinach and green beans, in order to determine the proportion of each mechanism involved in folate losses. Folate diffusivity constant, calculated according to Fick's second law (Crank, 1975), was 7.4×10(-12) m(2)/s for spinach and 5.8×10(-10) m(2)/s for green beans, which is the same order of magnitude as for sugars and acids for each vegetable considered. Folate thermal degradation kinetics was not monotonous in spinach and green beans especially at 45 °C and did not follow a first order reaction. The proportion of vitamers changed markedly after thermal treatment, with a better retention of formyl derivatives. For spinach, folate losses were mainly due to diffusion while for green beans thermal degradation seemed to be preponderant. PMID:24679802

  19. [Folate and breast cancer risk: a systematic review].

    PubMed

    Castillo-L, Cecilia; Tur, Josep A; Uauy, Ricardo

    2012-02-01

    An increased folate intake may be beneficial in deficient populations. However, in women with adequate levels it may not deliver additional benefits while it may increase the risk for some forms of cancer. A systematic literature review of benefits or risks of folate in the development of breast cancer was performed using MEDLINE, systematic review of selected articles and references of the selected articles looking specifically at serum folate levels, dietary folate intake or total folate intake and the risk of developing breast cancer. Fourteen case-control studies, fourteen cohort studies, seven case-control nested studies, two randomized trials and two meta-analyses were selected for analysis based on pre-established criteria. The reviewed evidence does not support the hypothesis that higher intakes of dietary folate reduce the risk for breast cancer. Some studies showed a higher risk of breast cancer in populations exposed to high folate intake post fortification, especially when folic acid is used. The results support the need to be cautious and to limit the exposure of women to high intakes of folic acid, especially in countries with mandatory food fortification. PMID:22739957

  20. Drugs and vitamin B12 and folate metabolism.

    PubMed

    Lindenbaum, J

    1983-01-01

    Deficiency of either folic acid or vitamin B12 may interfere with DNA synthesis and result in megaloblastic anemia or other conditions. These 2 vitamins have dissimilar molecular structures and are present in different foods; they are also absorbed and metabolized differently. In 201 consecutive cases of megaloblastic anemia, for 90% the cause was alcoholism and poor diet; 0.5% (1 case) was related to oral contraceptives (OCs). Megaloblastic anemia due to folate deficiency has occasionally been reported in patients with inflammatory bowel disease and has been attributed to poor diet, impaired absorption, and increased tissue utilization of folate. Sulfasalazine, a compound containing a sulfa drug and a salicylate that is broken down to its active components by the gut flora, is widely used in the treatment of inflammatory bowel disease and has been shown to impair the absorption of folic acid, polyglutamyl folate, and methyl-tetrahydrofolic acid in patients with these disorders. There is also evidence suggesting an interaction between anticonvulsant drugs and folate balance. A number of cases of megaloblastic anemia due to folate deficiency have been reported in women taking OCs. While in some cases no apparent cause for the megaloblastic anemia other than contraceptive therapy was demonstrated, in many patients other underlying disorders that were likely to disturb folate balance such as celiac disease, decreased dietary vitamin intake, and the administration of other drugs known to affect folate status have also been present. There is no convincing evidence that sex steroids affect folate absorption; about 20% of women taking OCs were found to have mild megaloblastic changes on Papanicolaou smears. These changes disappered after folic acid therapy, suggesting that OCs may cause an increased demand for folate limited to the reproductive system. Another finding is of low serum cobalamin levels in women using OCs; this appears however to be a laboratory abnormality

  1. Production of folate by bacteria isolated from oat bran.

    PubMed

    Kariluoto, Susanna; Edelmann, Minnamari; Herranen, Mirkka; Lampi, Anna-Maija; Shmelev, Anton; Salovaara, Hannu; Korhola, Matti; Piironen, Vieno

    2010-09-30

    Twenty bacteria isolated from three commercial oat bran products were tested for their folate production capability. The bacteria as well as some reference organisms were grown until early stationary phase on a rich medium (YPD), and the amount of total folate in the separated cell mass and the culture medium (supernatant) was determined by microbiological assay. Folate vitamer distribution was determined for eight bacteria including one isolated from rye flakes. For seven bacteria the effect of temperature and pH on folate production was studied in more detail. Relatively large amount of folate was both produced in the cell biomass (up to 20.8microg/g) and released to the culture medium (up to 0.38microg/g) by studied bacteria. The best producers were characterized as Bacillus subtilis ON4, Chryseobacterium sp. NR7, Janthinobacterium sp. RB4, Pantoea agglomerans ON2, and Pseudomonas sp ON8. The level of folate released in culture medium was the highest for B. subtilis ON5, Chryseobacterium sp. NR7, Curtobacterium sp. ON7, Enterococcus durans ON9, Janthinobacterium sp. RB4, Paenibacillus sp. ON10, Propionibacterium sp. RB9, and Staphylococcus kloosii RB7. Marked differences in the distribution of folate vitamers among the bacterial strains were revealed by the HPLC analysis. The main vitamers were tetrahydrofolate, 5,10-methenyltetrahydrofolate, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate. Increase in the folate content during bacterial growth was accompanied by proportional increase in the 5-methyltetrahydrofolate content and decrease of 5-formyltetrahydrofolate. 10-Formylfolic acid dominated in the culture media of four bacteria, and Janthinobacterium sp. RB4 was also found to excrete 5-methyltetrahydrofolate. Intracellular folate content was higher when the bacteria were grown at 28 degrees C than at 18 degrees C or 37 degrees C and also higher at pH 7 than at pH 5.5. PMID:20708290

  2. Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery.

    PubMed

    Zhang, Yan; Li, Jiashi; Lang, Meidong; Tang, Xiaolin; Li, Lei; Shen, Xizhong

    2011-02-01

    In this paper, folate conjugated poly(ε-caprolactone-co-4-maleate-ε-caprolactone) (P(CL-co-MCL)-folate) was prepared by a carbodiimide coupling reaction, i.e., the vitamin folic acid (FA) was covalently linked to the main chain of the maleate-functionalized polymer, poly(ε-caprolactone-co-4-maleate-ε-caprolactone) (P(CL-co-MCL)). Then the 5-Fluorouracil (5-FU) loaded nanoparticles of P(CL-co-MCL)-folate were achieved by solvent-evaporation method. Their properties were extensively studied by dynamic light scattering (DLS) and scan electron microscopy (SEM). DLS and SEM showed that the nanoparticles were in a well-defined spherical shape with a uniform size distribution. We also investigated the entrapment and in vitro release behavior, which indicated that the release speed of 5-FU could be well controlled and the release half-life period could reach 16.86h, which was 26.4 times longer than that of pure 5-FU. The in vitro targeting test displayed that the 5-FU loaded P(CL-co-MCL)-folate nanoparticles exhibited an enhanced cell inhibition because folate targeting increased the concentration of 5-FU loaded P(CL-co-MCL)-folate nanoparticles in the tumor cells with folate receptor overexpressed. Meanwhile, the tumor inhibition of 5-FU loaded P(CL-co-MCL)-folate nanoparticles was much higher than that of pure 5-FU and that of 5-FU loaded P(CL-co-MCL) nanoparticles. Therefore, P(CL-co-MCL)-folate nanoparticles would be highly beneficial for biomedical and pharmaceutical applications. PMID:21094493

  3. [Treatable Dementia due to Vitamin B12 and Folate Deficiency].

    PubMed

    Yoshizawa, Toshihiro

    2016-04-01

    Vitamin deficiency is one of the major causes of treatable dementia. Specifically, patients suffering from dementia frequentry display low serum levels of vitamin B(12). There is a close metabolic interaction between folate and vitamin B(12). Folate deficiency causes various neuropsychiatric symptoms, which resemble those observed in vitamin B(12) deficiency. This review summarizes, the basic pathophysiology of vitamin B(12) and folate deficiency, its clinical diagnosis, associated neuropsychiatric symptoms such as subacute combined degeneration and dementia, and epidemiological studies of cognitive decline and brain atrophy. PMID:27056859

  4. Utilizing the folate receptor for active targeting of cancer nanotherapeutics

    PubMed Central

    Zwicke, Grant L.; Mansoori, G. Ali; Jeffery, Constance J.

    2012-01-01

    The development of specialized nanoparticles for use in the detection and treatment of cancer is increasing. Methods are being proposed and tested that could target treatments more directly to cancer cells, which could lead to higher efficacy and reduced toxicity, possibly even eliminating the adverse effects of damage to the immune system and the loss of quick replicating cells. In this mini-review we focus on recent studies that employ folate nanoconjugates to target the folate receptor. Folate receptors are highly overexpressed on the surface of many tumor types. This expression can be exploited to target imaging molecules and therapeutic compounds directly to cancerous tissues. PMID:23240070

  5. [Cerebral venous sinus thrombosis associated with hyperhomocysteinemia due to combined deficiencies of folate and vitamin B12].

    PubMed

    Kanaya, Yuhei; Neshige, Shuichiro; Takemaru, Makoto; Shiga, Yuji; Takeshima, Shinichi; Kuriyama, Masaru

    2016-01-01

    A 63-year-old man was admitted to our hospital because of convulsive seizures. Radiological examinations revealed cerebral venous sinus thrombosis in the anterior part of the superior sagittal sinus. He had marked hyperhomocysteinemia (93.5 nmol/ml) due to combined deficiencies of folate and vitamin B12. He was T/T homozygous for methylene tetrahydrofolate reductase C677T polymorphism. He received a supplement therapy of vitamins. First, he was administered folate orally. After 3 months, the serum level of homocysteine decreased to 22.6 nmol/ml (an 86% reduction), but was still above the normal level. Next, an additional supplement therapy of vitamin B12 lowered the homocysteine level to normal (12.3 nmol/ml) after 4 months. These results showed that the increase of homocysteine levels in this patient was mainly caused by the deficiency of folate. Additionally, acquired risk factors like vitamin deficiencies increased the level of serum homocysteine to almost 100 nmol/ml. PMID:26797484

  6. Vision Changes after Space Flight Are Related to Alterations in Folate-Dependent One-Carbon Metabolism

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Gibson, C. Robert; Mader, Thomas H.; Ericson, Karen; Ploutz-Snyder, Robert; Heer, Martina; Zwart, Sara R.

    2011-01-01

    About 20% of astronauts on International Space Station missions have developed measurable ophthalmic changes after flight. This study was conducted to determine whether the folate-dependent 1-carbon pathway is altered in these individuals. Data were modeled to evaluate differences between individuals with ophthalmic changes (n=5) and those without them (n=15). We also correlated mean preflight serum concentrations of the 1-carbon metabolites with changes in measured refraction after flight. Serum homocysteine (HCy), cystathionine, 2-methylcitric acid, and methylmalonic acid concentrations were 25%-45% higher (P<0.001) in astronauts with ophthalmic changes than in those without them. These differences existed before, during, and after flight. Preflight serum HCy and cystathionine, and in-flight serum folate, were significantly (P<0.05) correlated with postflight change in refraction, and preflight serum concentrations of 2-methylcitric acid tended to be associated (P=0.06) with ophthalmic changes. The biochemical differences observed in those with vision issues strongly suggests impairment of the folate-dependent 1-carbon transfer pathway. Impairment of this pathway, by polymorphisms, diet or other means, may interact with components of the microgravity environment to influence these pathophysiologic changes. This study was funded by the NASA Human Research Program.

  7. Pemetrexed alters folate phenotype and inflammatory profile in EA.hy 926 cells grown under low-folate conditions

    PubMed Central

    Hammons, Andrea L.; Summers, Carolyn M.; Jochems, Jeanine; Arora, Jasbir S.; Zhang, Suhong; Blair, Ian A.; Whitehead, Alexander S.

    2014-01-01

    Elevated homocysteine is a risk marker for several major human pathologies. Emerging evidence suggests that perturbations of folate/homocysteine metabolism can directly modify production of inflammatory mediators. Pemetrexed acts by inhibiting thymidylate synthetase (TYMS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT). EA.hy 926 cells grown under low (“Lo”) and high (“Hi”) folate conditions were treated with pemetrexed. The concentrations of several intracellular folate derivatives were measured using LC-MRM/MS. Lo cells had lower total folate concentrations and a different distribution of the intracellular folate derivatives than Hi cells. Treatment with pemetrexed caused a decrease in individual folate analytes. Microarray analysis showed that several genes were significantly up or down-regulated in pemetrexed treated Lo cells. Several of the significantly up-regulated transcripts were inflammatory. Changes in transcript levels of selected targets, including C3, IL-8, and DHFR, were confirmed by quantitative RT-PCR. C3 and IL-8 transcript levels were increased in pemetrexed-treated Lo cells relative to Lo controls; DHFR transcript levels were decreased. In Lo cells, IL-8 and C3 protein concentrations were increased following pemetrexed treatment. Pemetrexed drug treatment was shown in this study to have effects that lead to an increase in pro-inflammatory mediators in Lo cells. No such changes were observed in Hi cells, suggesting that pemetrexed could not modify the inflammatory profile in the context of cellular folate sufficiency. PMID:22975265

  8. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine

    PubMed Central

    Xie, M; Zhang, H; Xu, Y; Liu, T; Chen, S; Wang, J; Zhang, T

    2013-01-01

    Immunohistochemistry and an immunofluorescence technique was used to detect folate receptor expression in tissue samples and cell lines of head and neck squamous carcinoma, including 20 tissue samples of nasopharyngeal carcinoma, 16 tissue samples of laryngeal carcinoma, and HNE-1, HNE-2, CNE-1, CNE-2, SUNE-1, 5–8F, and Hep-2 cell lines. Iron staining, electron microscopy, and magnetic resonance imaging were used to observe endocytosis of folate-conjugated cisplatin-loaded magnetic nanoparticles (CDDP-FA-ASA-MNP) in cultured cells and transplanted tumors. As shown by immunohistochemistry, 83.3% (30/36) of the head and neck squamous carcinomas expressed the folate receptor versus none in the control group (0/24). Only the HNE-1 and Hep-2 cell lines expressed the folate receptor, and the other five cell lines did not. Endocytosis of CDDP-FA-ASA-MNP was seen in HNE-1 and Hep-2 cells by iron staining and electron microscopy. A similar result was seen in transplanted tumors in nude mice. Magnetic resonance imaging showed low signal intensity of HNE-1 cells and HNE-1 transplanted tumors on T2-weighted images after uptake of CDDP-FA-ASA-MNP, and this was not seen in CNE-2 transplanted tumors. In conclusion, head and neck squamous carcinoma cell strongly expressed the folate receptor, while normal tissue did not. The folate receptor can mediate endocytosis of folate-conjugated anticancer nanomedicines, and lays the foundation for molecular targeted treatment of cancer. PMID:23874095

  9. Folate Catabolites in Spot Urine as Non-Invasive Biomarkers of Folate Status during Habitual Intake and Folic Acid Supplementation

    PubMed Central

    Niesser, Mareile; Demmelmair, Hans; Weith, Thea; Moretti, Diego; Rauh-Pfeiffer, Astrid; van Lipzig, Marola; Vaes, Wouter; Koletzko, Berthold; Peissner, Wolfgang

    2013-01-01

    Background Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Aim Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Study Design and Methods Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Results Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Conclusion Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics. PMID:23457526

  10. The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects

    PubMed Central

    Coppedè, Fabio

    2015-01-01

    Almost 15 years ago it was hypothesized that polymorphisms of genes encoding enzymes involved in folate metabolism could lead to aberrant methylation of peri-centromeric regions of chromosome 21, favoring its abnormal segregation during maternal meiosis. Subsequently, more than 50 small case-control studies investigated whether or not maternal polymorphisms of folate pathway genes could be risk factors for the birth of a child with Down syndrome (DS), yielding conflicting and inconclusive results. However, recent meta-analyses of those studies suggest that at least three of those polymorphisms, namely MTHFR 677C>T, MTRR 66A>G, and RFC1 80G>A, are likely to act as maternal risk factors for the birth of a child with trisomy 21, revealing also complex gene-nutrient interactions. A large-cohort study also revealed that lack of maternal folic acid supplementation at peri-conception resulted in increased risk for a DS birth due to errors occurred at maternal meiosis II in the aging oocyte, and it was shown that the methylation status of chromosome 21 peri-centromeric regions could favor recombination errors during meiosis leading to its malsegregation. In this regard, two recent case-control studies revealed association of maternal polymorphisms or haplotypes of the DNMT3B gene, coding for an enzyme required for the regulation of DNA methylation at centromeric and peri-centromeric regions of human chromosomes, with risk of having a birth with DS. Furthermore, congenital heart defects (CHD) are found in almost a half of DS births, and increasing evidence points to a possible contribution of lack of folic acid supplementation at peri-conception, maternal polymorphisms of folate pathway genes, and resulting epigenetic modifications of several genes, at the basis of their occurrence. This review summarizes available case-control studies and literature meta-analyses in order to provide a critical and up to date overview of what we currently know in this field. PMID:26161087