Science.gov

Sample records for folate transport deficiency

  1. Increased synthesis of folate transporters regulates folate transport in conditions of ethanol exposure and folate deficiency.

    PubMed

    Thakur, Shilpa; More, Deepti; Rahat, Beenish; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2016-01-01

    Excessive alcohol consumption and dietary folate inadequacy are the main contributors leading to folate deficiency (FD). The present study was planned to study regulation of folate transport in conditions of FD and ethanol exposure in human embryonic kidney cell line. Also, the reversible nature of effects mediated by ethanol exposure and FD was determined by folate repletion and ethanol removal. For ethanol treatment, HEK293 cells were grown in medium containing 100 mM ethanol, and after treatment, one group of cells was shifted on medium that was free from ethanol. For FD treatment, cells were grown in folate-deficient medium followed by shifting of one group of cells on folate containing medium. FD as well as ethanol exposure resulted in an increase in folate uptake which was due to an increase in expression of folate transporters, i.e., reduced folate carrier, proton-coupled folate transporter, and folate receptor, both at the mRNA and protein level. The effects mediated by ethanol exposure and FD were reversible on removal of treatment. Promoter region methylation of folate transporters remained unaffected after FD and ethanol exposure. As far as transcription rate of folate transporters is concerned, an increase in rate of synthesis was observed in both ethanol exposure and FD conditions. Additionally, mRNA life of folate transporters was observed to be reduced by FD. An increased expression of folate transporters under ethanol exposure and FD conditions can be attributed to enhanced rate of synthesis of folate transporters. PMID:26433955

  2. Identification of regulatory mechanisms of intestinal folate transport in condition of folate deficiency.

    PubMed

    Thakur, Shilpa; Rahat, Beenish; Hamid, Abid; Najar, Rauf Ahmad; Kaur, Jyotdeep

    2015-10-01

    Folic acid is an essential micronutrient, deficiency of which can lead to disturbance in various metabolic processes of cell. Folate transport across intestine occurs via the involvement of specialized folate transporters viz. proton coupled folate transporter (PCFT) and reduced folate carrier (RFC), which express at the membrane surfaces. The current study was designed to identify the regulatory mechanisms underlying the effects of folate deficiency (FD) on folate transport in human intestinal cell line as well as in rats and to check the reversibility of such effects. Caco-2 cells were grown for five generations in control and FD medium. Following treatment, one subgroup of cells was shifted on folate sufficient medium and grown for three more generations. Similarly, rats were fed an FD diet for 3 and 5 months, and after 3 months of FD treatment, one group of rats were shifted on normal folate-containing diet. Increase in folate transport and expression of folate transporters were observed on FD treatment. However, when cells and rats were shifted to control conditions after treatment, transport and expression of these genes restored to the control level. FD was found to have no impact on promoter methylation of PCFT and RFC; however, messenger RNA stability of transporters was found to be decreased, suggesting some adaptive response. Overall, increased expression of transporters under FD conditions can be attributed to enhanced rate of transcription of folate transporters and also to the increased binding of specificity protein 1 transcription factor to the RFC promoter only. PMID:26168702

  3. Folate Receptor Alpha Defect Causes Cerebral Folate Transport Deficiency: A Treatable Neurodegenerative Disorder Associated with Disturbed Myelin Metabolism

    PubMed Central

    Steinfeld, Robert; Grapp, Marcel; Kraetzner, Ralph; Dreha-Kulaczewski, Steffi; Helms, Gunther; Dechent, Peter; Wevers, Ron; Grosso, Salvatore; Gärtner, Jutta

    2009-01-01

    Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specific folate transport defect that is caused by mutations in the folate receptor 1 (FOLR1) gene coding for folate receptor alpha (FRα). Three patients carrying FOLR1 mutations developed progressive movement disturbance, psychomotor decline, and epilepsy and showed severely reduced folate concentrations in the cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) demonstrated profound hypomyelination, and MR-based in vivo metabolite analysis indicated a combined depletion of white-matter choline and inositol. Retroviral transfection of patient cells with either FRα or FRβ could rescue folate binding. Furthermore, CSF folate concentrations, as well as glial choline and inositol depletion, were restored by folinic acid therapy and preceded clinical improvements. Our studies not only characterize a previously unknown and treatable disorder of early childhood, but also provide new insights into the folate metabolic pathways involved in postnatal myelination and brain development. PMID:19732866

  4. Folate-deficiency anemia

    MedlinePlus

    Folate-deficiency anemia is a decrease in red blood cells (anemia) due to a lack of folate. Folate is a type ... B vitamin. It is also called folic acid. Anemia is a condition in which the body does ...

  5. Folate-deficiency anemia

    MedlinePlus

    ... medlineplus.gov/ency/article/000551.htm Folate-deficiency anemia To use the sharing features on this page, please enable JavaScript. Folate-deficiency anemia is a decrease in red blood cells (anemia) ...

  6. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  7. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2'/') were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsen...

  8. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  9. Folate deficiency affects histone methylation.

    PubMed

    Garcia, Benjamin A; Luka, Zigmund; Loukachevitch, Lioudmila V; Bhanu, Natarajan V; Wagner, Conrad

    2016-03-01

    that the bound THF serves to protect the FAD class of histone demethylases from the destructive effects of formaldehyde generation by formation of 5,10-methylene-THF. We present pilot data showing that decreased folate in livers as a result of dietary folate deficiency is associated with increased levels of methylated lysine 4 of histone 3. This can be a result of decreased LSD1 activity resulting from the decreased folate available to scavenge the formaldehyde produced at the active site caused by the folate deficiency. Because LSD1 can regulate gene expression this suggests that folate may play a more important role than simply serving as a carrier of one-carbon units and be a factor in other diseases associated with low folate. PMID:26880641

  10. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  11. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  12. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  13. The Effect of Folate Deficiency on Neuronal RNA Content

    PubMed Central

    Haltia, Matti

    1970-01-01

    One-day-old chicks were fed a defined ration deficient in folic acid. They were killed at 4 weeks of age when they showed characteristic clinical signs of folate deficiency and extremely low whole blood folate levels. Cerebellar Purkinje cells were dissected out and their total ribonucleic acid (RNA) content was determined by Edström's microchemical technique. The total RNA content of Purkinje cells of the folate deficient chicks was significantly lower than that of control chicks fed a complete ration. The low RNA values of the folate deficient chicks were apparently not only secondary to anaemia or growth retardation, and suggest that severe folate deficiency may directly interfere with neuronal RNA synthesis. The significance of the findings is discussed with reference to human pathology. PMID:5420991

  14. [Treatable Dementia due to Vitamin B12 and Folate Deficiency].

    PubMed

    Yoshizawa, Toshihiro

    2016-04-01

    Vitamin deficiency is one of the major causes of treatable dementia. Specifically, patients suffering from dementia frequentry display low serum levels of vitamin B(12). There is a close metabolic interaction between folate and vitamin B(12). Folate deficiency causes various neuropsychiatric symptoms, which resemble those observed in vitamin B(12) deficiency. This review summarizes, the basic pathophysiology of vitamin B(12) and folate deficiency, its clinical diagnosis, associated neuropsychiatric symptoms such as subacute combined degeneration and dementia, and epidemiological studies of cognitive decline and brain atrophy. PMID:27056859

  15. Reduced expression of folate transporters in kidney of a rat model of folate oversupplementation.

    PubMed

    Thakur, Shilpa; Thakur, Som Dev; Wani, Nissar Ahmad; Kaur, Jyotdeep

    2014-01-01

    Folic acid is the key one-carbon donor required for de novo nucleotide and methionine synthesis. Its deficiency is associated with megaloblastic anemia, cancer and various complications of pregnancy. However, its supplementation results in reduction of neural tube defects and prevention of several types of cancer. The intake of folic acid from fortified food together with the use of nutritional supplements creates a state of folate oversupplementation. Fortification of foods is occurring worldwide with little knowledge of the potential safety and physiologic consequences of intake of such high doses of folic acid. So, we planned to examine the effects of acute and chronic folate oversupplementation on the physiology of renal folate transport in rats. Male Wistar rats were procured and divided into two groups. Rats in group I were given semisynthetic diets containing 2 mg folic acid/kg diet (control) and those in group II were given folate-oversupplemented rat diet, i.e., 20 mg folic acid/kg diet (oversupplemented). Six animals from group I and group II received the treatment for 10 days (acute treatment) and remaining six for 60 days (chronic treatment). In acute folate-oversupplemented rats, 5-[(14)C]-methyltetrahydrofolate uptake was found to be significantly reduced, as compared to chronic folate-oversupplemented and control rats. This reduction in uptake was associated with a significant decrease in the mRNA and protein levels of the folate transporters. Results of the present investigation showed that acute oversupplementation led to a specific and significant down-regulation of renal folate uptake process mediated via transcriptional and translational regulatory mechanism(s). PMID:24306960

  16. The metabolic basis for developmental disorders due to defective folate transport.

    PubMed

    Desai, Ankuri; Sequeira, Jeffrey M; Quadros, Edward V

    2016-07-01

    Folates are essential in the intermediary metabolism of amino acids, synthesis of nucleotides and for maintaining methylation reactions. They are also linked to the production of neurotransmitters through GTP needed for the synthesis of tetrahydrobiopterin. During pregnancy, folate is needed for fetal development. Folate deficiency during this period has been linked to increased risk of neural tube defects. Disturbances of folate metabolism due to genetic abnormalities or the presence of autoantibodies to folate receptor alpha (FRα) can impair physiologic processes dependent on folate, resulting in a variety of developmental disorders including cerebral folate deficiency syndrome and autism spectrum disorders. Overall, adequate folate status has proven to be important during pregnancy as well as neurological development and functioning in neonates and children. Treatment with pharmacologic doses of folinic acid has led to reversal of some symptoms in many children diagnosed with cerebral folate deficiency syndrome and autism, especially in those positive for autoantibodies to FRα. Thus, as the brain continues to develop throughout fetal and infant life, it can be affected and become dysfunctional due to a defective folate transport contributing to folate deficiency. Treatment and prevention of these disorders can be achieved by identification of those at risk and supplementation with folinic acid. PMID:26924398

  17. Dietary folate deficiency with normal red cell folate and circulating blasts.

    PubMed

    Stark, G L; Hamilton, P J

    2003-04-01

    This report describes a 26 year old woman, of Pakistani origin, who presented five months postpartum with severe megaloblastic anaemia as a result of nutritional folate deficiency. This case was unusual in that a small number of myeloblasts were present in the peripheral blood at presentation, and this circulating population temporarily increased in size when folate replacement was begun. We also highlight the need to recognise the non-linear relation between haematocrit and red blood cell folate concentration when the haematocrit is very low (< 0.15) and emphasise the importance of the clinical history. PMID:12663648

  18. Thiamine absorption is not compromised in folate-deficient rats

    SciTech Connect

    Walzem, R.L.; Clifford, A.J.

    1988-11-01

    Thiamine absorption and excretion were assessed in rats with severe folate deficiency (FD) by determining the fate of oral TH-labeled and intravenous UC-labeled thiamine over a 6-h test period. Thiamine status was evaluated in these same rats by measuring transketolase activity levels of blood before (TKA) and after (TPPE) addition of thiamine pyrophosphate to the incubation mixture of the assay procedure. Two additional experiments assessed active transport of thiamine and the effect of dietary succinylsulfathiazole (SST) on TKA and TPPE in rats with moderate FD. Intestinal absorption in general and thiamine absorption in particular and thiamine status were unaltered in rats with severe FD. Inanition associated with severe FD may impair thiamine status. Thiamine absorption by active transport was not compromised in FD, and dietary succinylsulfathiazole did not affect thiamine status.

  19. Folate and Thiamine Transporters mediated by Facilitative Carriers (SLC19A1-3 and SLC46A1) and Folate Receptors

    PubMed Central

    Zhao, Rongbao; Goldman, I. David

    2013-01-01

    The reduced folate carrier (RFC,SLC19A1), thiamine transporter-1 (ThTr1,SLC19A2) and thiamine transporter-2 (ThTr2,SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT,SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  20. Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors.

    PubMed

    Zhao, Rongbao; Goldman, I David

    2013-01-01

    The reduced folate carrier (RFC, SLC19A1), thiamine transporter-1 (ThTr1, SLC19A2) and thiamine transporter-2 (ThTr2, SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT, SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  1. Brief report: autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency.

    PubMed

    Moretti, Paolo; Peters, Sarika U; Del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin; Bacino, Carlos A; Scaglia, Fernando

    2008-07-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects received ADOS and ADI-R testing and met diagnostic criteria for autism or autism spectrum disorders. They exhibited difficulties with transitions, insistence on sameness, unusual sensory interests, and repetitive behaviors. Those with the best language skills largely used repetitive phrases. No mutations were found in folate transporter or folate enzyme genes. These findings demonstrate that autistic features are salient in CFD and suggest that a subset of children with developmental regression, mental retardation, seizures, dyskinesia, and autism may have CNS folate abnormalities. PMID:18027081

  2. Brief Report: Autistic Symptoms, Developmental Regression, Mental Retardation, Epilepsy, and Dyskinesias in CNS Folate Deficiency

    PubMed Central

    Moretti, Paolo; Peters, Sarika U.; del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J.; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin

    2014-01-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects received ADOS and ADI-R testing and met diagnostic criteria for autism or autism spectrum disorders. They exhibited difficulties with transitions, insistence on sameness, unusual sensory interests, and repetitive behaviors. Those with the best language skills largely used repetitive phrases. No mutations were found in folate transporter or folate enzyme genes. These findings demonstrate that autistic features are salient in CFD and suggest that a subset of children with developmental regression, mental retardation, seizures, dyskinesia, and autism may have CNS folate abnormalities. PMID:18027081

  3. Folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh2

    PubMed Central

    Gamble, Mary V; Ahsan, Habibul; Liu, Xinhua; Factor-Litvak, Pam; Ilievski, Vesna; Slavkovich, Vesna; Parvez, Faruque; Graziano, Joseph H

    2007-01-01

    Background Indian Asian men residing in the United Kingdom have a higher prevalence of hyperhomocysteinemia than do their European counterparts. This has been largely attributed to dietary deficiencies in cobalamin associated with vegetarianism among these Indian Asians. Objective We aimed to ascertain the prevalence of folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh. Design Plasma concentrations of homocysteine, folate, and cobalamin and urinary concentrations of creatinine were assessed in 1650 adults in Bangladesh. Results The prevalence of hyperhomocysteinemia (men: >11.4 μmol/L; women: >10.4 μmol/L) was markedly (P < 0.0001) greater among men (63%; x̄ ± SD: 15.3 ± 9.5 μmol/L) than among women (26%; 9.5 ± 4.7 μmol/L). Folate was lower (9.8 ± 6.5 and 12.3 ± 7.6 nmol/L, respectively), whereas cobalamin was higher (281 ± 115 and 256 ± 118 pmol/L, respectively) (P < 0.0001 for both) among men than among women. Folate explained 15% and cobalamin explained 5% of the variation in homocysteine concentrations. For men, folate (P = 0.005) and cobalamin (P = 0.03) were positively correlated with urinary creatinine. Smoking (P < 0.0003) and betelnut use (P < 0.0002) were independent negative predictors of folate. Conclusions Bangladeshi men have a high prevalence of hyperhomocysteinemia, which is more closely associated with folate than with cobalamin, although other factors, eg, smoking and betelnut use, may also contribute to its cause. The positive correlations between urinary creatinine and plasma folate and cobalamin were unanticipated and could suggest that, in marginal nutrition, these vitamins may be limiting for creatine biosynthesis. PMID:15941889

  4. Growing Mouse Oocytes Transiently Activate Folate Transport via Folate Receptors As They Approach Full Size.

    PubMed

    Meredith, Megan; MacNeil, Allison H; Trasler, Jacquetta M; Baltz, Jay M

    2016-06-01

    The folate cycle is central to cellular one-carbon metabolism, where folates are carriers of one-carbon units that are critical for synthesis of purines, thymidylate, and S-adenosylmethionine, the universal methyl donor that forms the cellular methyl pool. Although folates are well-known to be important for early embryo and fetal development, their role in oogenesis has not been clearly established. Here, folate transport proteins were detected in developing neonatal ovaries and growing oocytes by immunohistochemistry, Western blot, and immunofluorescence. The folate receptors FOLR1 and FOLR2 as well as reduced folate carrier 1 (RFC1, SLC19A1 protein) each appeared to be present in follicular cells including granulosa cells. In growing oocytes, however, only FOLR2 immunoreactivity appeared abundant. Localization of apparent FOLR2 immunofluorescence near the plasma membrane increased with oocyte growth and peaked in oocytes as they neared full size. We assessed folate transport using the model folate leucovorin (folinic acid). Unexpectedly, there was a transient burst of folate transport activity for a brief period during oocyte growth as they neared full size, while folate transport was otherwise undetectable for the rest of oogenesis and in fully grown germinal vesicle stage oocytes. This folate transport was inhibited by dynasore, an inhibitor of endocytosis, but insensitive to the anion transport inhibitor stilbene 4-acetamido-40-isothiocyanato-stilbene-2,20-disulfonic acid, consistent with folate receptor-mediated transport but not with RFC1-mediated transport. Thus, near the end of their growth, growing oocytes may take up folates that could support the final stage of oogenesis or be stored to provide the endogenous folates needed in early embryogenesis. PMID:27122634

  5. Diagnosis and management of cerebral folate deficiency. A form of folinic acid-responsive seizures.

    PubMed

    Al-Baradie, Raidah S; Chaudhary, Mohammed W

    2014-10-01

    Folinic acid-responsive seizures (FARS) are a rare treatable cause of neonatal epilepsy. They have characteristic peaks on CSF monoamine metabolite analysis, and have mutations in the ALDH7A1 gene, characteristically found in pyridoxine-dependent epilepsy. There are case reports of patients presenting with seizures at a later age, and with folate deficiency due to different mechanisms with variable response to folinic acid supplementation. Here, we report 2 siblings who presented with global developmental delay and intractable seizures who responded clinically to folinic acid therapy. Their work-up included metabolic and genetic testing. The DNA sequencing was carried out for the ALDH7A1 gene, and the folate receptor 1 (FOLR1) gene. They had very low 5-methyltetrahydrofolate (5-MTHF) in CSF with no systemic folate deficiency and no characteristic peaks on neurotransmitter metabolite chromatogram. A novel mutation in the FOLR1 gene was found. The mutation in this gene is shown to affect CSF folate transport leading to cerebral folate deficiency. The response to treatment with folinic acid was dramatic with improvement in social interaction, mobility, and complete seizure control. We should consider the possibility of this treatable condition in appropriate clinical circumstances early, as diagnosis with favorable outcome depends on the specialized tests. PMID:25274592

  6. Causes of Vitamin B12 and Folate Deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetar...

  7. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  8. Causes of vitamin B12 and folate deficiency.

    PubMed

    Allen, Lindsay H

    2008-06-01

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor vitamin B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetarians (vegans) are at risk for vitamin B12 deficiency, evidence now indicates that low intakes of animal-source foods, such as occur in some lacto-ovo vegetarians and many less-industrialized countries, cause vitamin B12 depletion. Malabsorption of the vitamin is most commonly observed as food-bound cobalamin malabsorption due to gastric atrophy in the elderly, and probably as a result of Helicobacter pylori infection. There is growing evidence that gene polymorphisms in transcobalamins affect plasma vitamin B12 concentrations. The primary cause of folate deficiency is low intake of sources rich in the vitamin, such as legumes and green leafy vegetables, and the consumption of these foods may explain why folate status can be adequate in relatively poor populations. Other situations in which the risk of folate deficiency increases include lactation and alcoholism. PMID:18709879

  9. Regulation of reduced-folate transporter-1 (RFT-1) in retinal pigment epithelial cells by folate

    PubMed Central

    Naggar, Hany; VanElls, Tracy K.; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Purpose Reduced-folate transporter-1 (RFT-1), a typical transport protein with twelve membrane-spanning domains, transports reduced-folates, such as N5-methyltetrahydrofolate (MTF), the predominant circulating form of folate. RFT-1 is localized to the RPE apical membrane and transports folate from RPE to photoreceptor cells. We asked whether RFT-1 activity in RPE is altered under high folate conditions. Methods ARPE-19 cells were cultured 24, 48 or 72 h in medium containing either 0.5 nM, 5.0 nM or 2.26 µM MTF and the activity of RFT-1 was assessed by determining the uptake of N5-MTF. Semi-quantitative RT-PCR and western blot analysis were used to study RFT-1 gene and protein expression. Results Cells treated for 72 h with 2.26 µM MTF showed a significant (40%) decrease in MTF uptake compared to cells exposed to 0.5 nM or 5 nM MTF. The effect of high concentrations of folate on RFT-1 activity was specific. Kinetic analysis showed that folate-induced attenuation of RFT-1 activity was associated with a decrease in the maximal velocity of the transporter, but no change in the substrate affinity. Steady-state levels of RFT-1 mRNA and protein decreased significantly in the presence of excess folate. Conclusions Excess folate levels folate downregulate RFT-1 in RPE. This study represents the first molecular analysis of the regulation of RFT-1 by folate in RPE and reveals attenuation of the activity and expression of a folate transport protein under conditions of high levels of folate. PMID:15875363

  10. Nuclear Enrichment of Folate Cofactors and Methylenetetrahydrofolate Dehydrogenase 1 (MTHFD1) Protect de Novo Thymidylate Biosynthesis during Folate Deficiency*

    PubMed Central

    Field, Martha S.; Kamynina, Elena; Agunloye, Olufunmilayo C.; Liebenthal, Rebecca P.; Lamarre, Simon G.; Brosnan, Margaret E.; Brosnan, John T.; Stover, Patrick J.

    2014-01-01

    Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency. PMID:25213861

  11. Membrane Transporters and Folate Homeostasis; Intestinal Absorption, Transport into Systemic Compartments and Tissues

    PubMed Central

    Zhao, Rongbao; Matherly, Larry H.; Goldman, I. David

    2013-01-01

    Folates, the generic term for the family of B vitamins, are derived entirely from dietary sources, and are key one-carbon donors required for de novo nucleotide and methionine synthesis. These highly hydrophilic molecules utilize genetically distinct and functionally diverse transport systems to enter cells: the reduced folate carrier (RFC), the proton-coupled folate transporter (PCFT), and the folate receptors. Each plays a unique role in mediating folate transport across epithelia and into systemic tissues. With the recent discovery of the mechanism of intestinal folate absorption, and the clarification of the genetic basis for the autosomal recessive disorder, hereditary folate malabsorption, involving loss-of-function mutations in PCFT protein, it is now possible to piece together how these folate transporters contribute, both individually and collectively, to folate homeostasis in humans. This review focuses on the physiological roles of these major folate transporters with a brief consideration of their impact on the pharmacological activities of antifolates. PMID:19173758

  12. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  13. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  14. The proton-coupled folate transporter: physiological and pharmacological roles.

    PubMed

    Zhao, Rongbao; Goldman, I David

    2013-12-01

    Recent studies have identified the proton-coupled folate transporter (PCFT) as the mechanism by which folates are absorbed across the apical brush-border membrane of the small intestine and across the basolateral membrane of the choroid plexus into the cerebrospinal fluid. Both processes are defective when there are loss-of-function mutations in this gene as occurs in the autosomal recessive disorder hereditary folate malabsorption. Because this transporter functions optimally at low pH, antifolates are being developed that are highly specific for PCFT in order to achieve selective delivery to malignant cells within the acidic environment of solid tumors. PCFT has a spectrum of affinities for folates and antifolates that narrows and increases at low pH. Residues have been identified that play a role in folate and proton binding, proton coupling, and oscillation of the carrier between its conformational states. PMID:24383099

  15. The mechanism of folate transport in rabbit reticulocytes

    PubMed Central

    Bobzien, William F.; Goldman, David

    1972-01-01

    Folate transport in phenylhydrazine-induced rabbit reticulocytes was studied with the non-metabolized folate-analog, methotrexate. The time-course of methotrexate uptake into a mixed population of reticulocytes and mature erythrocytes is a two-component process consisting of a small, but rapid, initial uptake phase followed by a much slower uptake component which remains essentially constant over the period of observation. The velocity of the latter uptake component is directly proportional to the per cent reticulocytes and appears to represent a unidirectional influx of methotrexate into these cells. Uptake of methotrexate into reticulocytes was found to have the following characteristics: (a) temperature sensitivity, Q10 of 4; (b) uptake velocity as a function of the extracellular methotrexate concentration approximated Michaelis-Menten kinetics with a maximum transport velocity of 48 pmoles/min per g dry wt; the extracellular methotrexate level at which the uptake velocity was one-half maximum was 1.4 μM; (c) 5-formyltetrahydrofolate markedly inhibited methotrexate uptake but pteroylglutamic acid inhibition was weak; (d) uptake was stimulated in cells preincubated with 5-formyltetrahydrofolate, indicative of hetero-exchange diffusion; (e) uptake was independent of extracellular sodium but was inhibited by anions including nitrate, phosphate, and glucose-6-phosphate; (f) uptake was enhanced by azide plus iodoacetate. These data indicate that folate transport in rabbit reticulocytes is mediated by a carrier mechanism which disappears with reticulocyte maturation. The mechanism of folate transport in rabbit reticulocytes is qualitatively similar to tumor cells previously studied; both appear to have an energy-dependent mechanism limiting folate uptake, and influx in both is inhibited by structurally unrelated inorganic and organic anions. These studies suggest that circulating pteroylglutamic acid is of little importance in meeting the folate requirements of

  16. Folic acid metabolism in vitamin B12-deficient sheep. Depletion of liver folates

    PubMed Central

    Smith, Richard M.; Osborne-White, William S.

    1973-01-01

    1. Metabolism of folate was studied in six ewes in an advanced state of vitamin B12 deficiency as judged by voluntary food intake and in their pair-fed controls receiving vitamin B12. A group of four animals that were maintained throughout the experiment at pasture was also studied. 2. After 34–40 weeks on the cobalt-deficient diet urinary excretion of formiminoglutamate by four deficient animals was about 3.2mmol/day and this was not significantly decreased by injection of three of them with about 4.5μg of [2-14C]folate/kg body weight per day for 5 days. Three days after the last injection retention of [2-14C]folate by the livers of the deficient animals (5.5% of the dose) was lower than that of their pair-fed controls (26% of the dose) but there was no evidence of net retention of injected folate in the livers of either group. Urinary excretion of 14C indicated that renal clearance of folate may have been impaired in very severe vitamin B12 deficiency. 3. As estimated by microbiological assays total folates in the livers of animals at pasture (12.9μg/g) included about 24% of 5-methyltetrahydrofolate as compared with about 72% of a total of 12.5μg/g in three further ewes fed on a stock diet of wheaten hay-chaff and lucerne-chaff. Liver folates of vitamin B12-deficient animals (0.5μg/g) included about 88% of 5-methyltetrahydrofolate as compared with about 51% of a total of 5.2μg/g in pair-fed animals treated with vitamin B12. 4. Chromatography of liver folates of the pair-fed animals permitted quantitative estimates of the pteroylglutamates present. The results showed that the vitamin B12-deficient livers were more severely depleted of tetrahydrofolates and formyltetrahydrofolates than of methyltetrahydrofolates and that as the deficiency developed they were more severely depleted of the higher polyglutamates than of the monoglutamate within each of these classes. Results from animals injected with [2-14C]folate indicated an impairment of the exchange

  17. Interactions of ethanol and folate deficiency in development of alcoholic liver disease in the micropig.

    PubMed

    Halsted, Charles H; Villanueva, Jesus A; Devlin, Angela M; James, S Jill

    2002-01-01

    Folate deficiency is present in most patients with alcoholic liver disease (ALD), whereas folate regulates and alcoholism perturbs intrahepatic methionine metabolism, and S-adenosyl-methionine prevents the development of experimental ALD. Our studies explored the hypothesis that abnormal methionine metabolism is exacerbated by folate deficiency and promotes the development of ALD in the setting of chronic ethanol exposure. Using the micropig animal model, dietary combinations of folate deficiency and a diet containing 40% of kcal as ethanol were followed by measurements of hepatic methionine metabolism and indices of ALD. Alcoholic liver injury, expressed as steatohepatitis in terminal 14 week liver specimens, was evident in micropigs fed the combined ethanol containing and folate deficient diet but not in micropigs fed each diet separately. Perturbations of methionine metabolism included decreased hepatic S-adenosylmethionine and glutathione with increased products of DNA and lipid oxidation. Thus, the development of ALD is linked to abnormal methionine metabolism and is accelerated in the presence of folate deficiency. PMID:12053707

  18. Folate Deficiency Induces Neurodegeneration and Brain Dysfunction in Mice Lacking Uracil DNA Glycosylase

    PubMed Central

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W.; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B.; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H.; Jaenisch, Rudolf

    2008-01-01

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung−/−) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung−/− embryonic fibroblasts, and conferred death of cultured Ung−/− hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung−/− but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung−/− mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency. PMID:18614692

  19. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  20. Review of the magnitude of folate and vitamin B12 deficiencies worldwide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human deficiencies of folate and vitamin B12 result in adverse effects which may be of public health significance, but the magnitude of these deficiencies is unknown. Therefore, we examine the prevalence data currently available, assess global coverage of surveys, determine the frequency with which...

  1. The Major Facilitative Folate Transporters Solute Carrier 19A1 and Solute Carrier 46A1: Biology and Role in Antifolate Chemotherapy of Cancer

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun

    2014-01-01

    This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases. PMID:24396145

  2. Folate deficiency decreases apoptosis of endometrium decidual cells in pregnant mice via the mitochondrial pathway.

    PubMed

    Liao, Xing Gui; Li, Yan Li; Gao, Ru Fei; Geng, Yan Qing; Chen, Xue Mei; Liu, Xue Qing; Ding, Yu Bin; Mu, Xin Yi; Wang, Ying Xiong; He, Jun Lin

    2015-03-01

    It is well known that maternal folate deficiency results in adverse pregnancy outcomes. In addition to aspects in embryonic development, maternal uterine receptivity and the decidualization of stromal cells is also very important for a successful pregnancy. In this study, we focused on endometrium decidualization and investigated whether apoptosis, which is essential for decidualization, was impaired. Flow cytometry and TUNEL detection revealed that apoptosis of mouse endometrium decidual cells was suppressed in the dietary folate-deficient group on Days 7 and 8 of pregnancy (Day 1 = vaginal plug) when decidua regression is initiated. The endometrium decidual tissue of the folate deficiency group expressed less Bax compared to the normal diet group while they had nearly equal expression of Bcl2 protein. Further examination revealed that the mitochondrial transmembrane potential (ΔΨm) decreased, and the fluorescence of diffuse cytoplasmic cytochrome c protein was detected using laser confocal microscopy in normal decidual cells. However, no corresponding changes were observed in the folate-deficient group. Western blotting analyses confirmed that more cytochrome c was released from mitochondria in normal decidual cells. Taken together, these results demonstrated that folate deficiency could inhibit apoptosis of decidual cells via the mitochondrial apoptosis pathway, thereby restraining decidualization of the endometrium and further impairing pregnancy. PMID:25781218

  3. Folate Deficiency Induces Neural Stem Cell Apoptosis by Increasing Homocysteine In Vitro

    PubMed Central

    Zhang, Xu-Mei; Huang, Guo-Wei; Tian, Zhi-Hong; Ren, Da-Lin; X. Wilson, John

    2009-01-01

    Cellular events for neural progenitor cells, such as proliferation and differentiation, are regulated by multiple intrinsic and extrinsic cell signals. Folate plays a central role in central nervous system development, so folate, as an extrinsic signal, may affect neural stem cell (NSC) proliferation and differentiation. In the present study, we investigated the effects of folate deficiency on the cell proliferation, cell apoptosis and homocysteine concentrations in NSCs. NSCs were isolated from fetal rats and identified as NSCs by their expression of immunoreactive nestin. Cell proliferation was quantitated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were detected and confirmed by flow cytometric analysis. We measured homocysteine concentrations in NSCs by high performance liquid chromatography and detected the expression of caspase-3 by western blot method. Folate deficiency not only decreased cell proliferation, but also increased the apoptotic rate of NSCs as demonstrated by the increased expression of early apoptotic markers such as caspase-3, compared to control group (p<0.05). Furthermore, There was a statistically significant increase in homocysteine concentration during folate deficiency in NSCs (p<0.05). These data suggest that folate affects the cell proliferation, apoptosis and homocysteine generation in NSC cells. PMID:19590702

  4. Folate deficiency and FHIT hypermethylation and HPV 16 infection promote cervical cancerization.

    PubMed

    Bai, Li-Xia; Wang, Jin-Tao; Ding, Ling; Jiang, Shi-Wen; Kang, Hui-Jie; Gao, Chen-Fei; Chen, Xiao; Chen, Chen; Zhou, Qin

    2014-01-01

    Fragile histidine triad (FHIT) is a suppressor gene related to cervical cancer through CpG island hypermethylation. Folate is a water-soluble B-vitamin and an important cofactor in one-carbon metabolism. It may play an essential role in cervical lesions through effects on DNA methylation. The purpose of this study was to observe effects of folate and FHIT methylation and HPV 16 on cervical cancer progression. In this study, DNA methylation of FHIT, serum folate level and HPV16 status were measured using methylation-specific polymerase chain reaction (MSP), radioimmunoassay (RIA) and polymerase chain reaction (PCR), respectively, in 310 women with a diagnosis of normal cervix (NC, n=109), cervical intraepithelial neoplasia (CIN, n=101) and squamous cell carcinoma of the cervix (SCC, n=101). There were significant differences in HPV16 status (χ2=36.64, P<0.001), CpG island methylation of FHIT (χ2=71.31, P<0.001) and serum folate level (F=4.57, P=0.011) across the cervical histologic groups. Interaction analysis showed that the ORs only with FHIT methylation (OR=11.47) or only with HPV 16 positive (OR=4.63) or with serum folate level lower than 3.19ng/ml (OR=1.68) in SCC group were all higher than the control status of HPV 16 negative and FHIT unmethylation and serum folate level more than 3.19ng/ml (OR=1). The ORs only with HPV 16 positive (OR=2.58) or with serum folate level lower than 3.19ng/ ml (OR=1.28) in CIN group were all higher than the control status, but the OR only with FHIT methylation (OR=0.53) in CIN group was lower than the control status. HPV 16 positivity was associated with a 7.60-fold increased risk of SCC with folate deficiency and with a 1.84-fold increased risk of CIN. The patients with FHIT methylation and folate deficiency or with FHIT methylation and HPV 16 positive were SCC or CIN, and the patients with HPV 16 positive and FHIT methylation and folate deficiency were all SCC. In conclusion, HPV 16 infection, FHIT methylation and folate

  5. Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish--implication in neural tube defects and Alzheimer's diseases.

    PubMed

    Kao, Tseng-Ting; Chu, Chia-Yi; Lee, Gang-Hui; Hsiao, Tsun-Hsien; Cheng, Nai-Wei; Chang, Nan-Shan; Chen, Bing-Hung; Fu, Tzu-Fun

    2014-11-01

    Folate is a nutrient essential for the development, function and regeneration of nervous systems. Folate deficiency has been linked to many neurological disorders including neural tube defects in fetus and Alzheimer's diseases in the elderly. However, the etiology underlying these folate deficiency-associated diseases is not completely understood. In this study, zebrafish transgenic lines with timing and duration-controllable folate deficiency were developed by ectopically overexpressing a recombinant EGFP-γ-glutamyl hydrolase (γGH). Impeded neural crest cell migration was observed in the transgenic embryos when folate deficiency was induced in early stages, leading to defective neural tube closure and hematopoiesis. Adding reduced folate or N-acetylcysteine reversed the phenotypic anomalies, supporting the causal link between the increased oxidative stress and the folate deficiency-induced abnormalities. When folate deficiency was induced in aged fish accumulation of beta-amyloid and phosphorylated Tau protein were found in the fish brain cryo-sections. Increased autophagy and accumulation of acidic autolysosome were apparent in folate deficient neuroblastoma cells, which were reversed by reduced folate or N-acetylcysteine supplementation. Decreased expression of cathepsin B, a lysosomal protease, was also observed in cells and tissue with folate deficiency. We concluded that folate deficiency-induced oxidative stress contributed to the folate deficiency-associated neuropathogenesis in both early and late stages of life. PMID:25131448

  6. Genetics Home Reference: cerebral folate transport deficiency

    MedlinePlus

    ... fatty substance called myelin that promotes the rapid transmission of nerve impulses. Leukodystrophy contributes to the neurological ... do not begin until late infancy because other mechanisms can compensate for this loss. For example, another ...

  7. Folate Deficiency during Early-Mid Pregnancy Affects the Skeletal Muscle Transcriptome of Piglets from a Reciprocal Cross

    PubMed Central

    Li, Yi; Zhang, Xu; Sun, Yanxiao; Feng, Qiang; Li, Guanglei; Wang, Meng; Cui, Xinxing; Kang, Li; Jiang, Yunliang

    2013-01-01

    Folate deficiency (FD) during pregnancy can cause fetal intrauterine growth restriction in pigs, of which the skeletal dysplasia is a major manifestation. Factors influencing muscle development are very important in the formation of porcine meat quality trait. However, the effect of folate deficiency on skeletal muscle development and its molecular mechanisms are unknown. The objective of this study is to determine the effect of maternal folate deficiency on the skeletal muscle transcriptome of piglets from a reciprocal cross, in which full-sibling Landrace (LR) and full-sibling Chinese local breed Laiwu (LW) pigs were used for reciprocal cross matings, and sows were fed either a folate deficient or a normal diet during early-mid gestation. In addition, the difference in the responsiveness of the piglets to folate deficiency during early-mid pregnancy between reciprocal cross groups was investigated. Longissimus dorsi (LD) muscle samples were collected from newborn piglets and a 4 × 44K Agilent porcine oligo microarray was used for transcriptome analysis of porcine LD muscle. The results showed that folate deficiency during early-mid pregnancy affected piglet body weight, LD muscle fiber number and content of intramuscular triglyceride. The microarray results indicated that 3154 genes were differentially expressed between folate deficient and normal piglets from the LR♂ × LW♀ cross, and 3885 differentially expressed genes (DEGs) in the ones from the LW♂ × LR♀ cross. From functional analyses, sow folate deficiency affected almost all biological processes in the progeny. Lipid metabolism-related genes and associated metabolic pathways were regulated extensively by folate deficiency, especially in LR♂ × LW♀ cross piglets. Most of the genes that are regulated by folate deficiency in the LD muscle of piglets were different between LR♂ × LW♀ and LW♂ × LR♀ crosses, suggesting some epigenetic effects of FD exist in genes underlying myogenesis and

  8. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice

    PubMed Central

    Martínez-Vega, Raquel; Murillo-Cuesta, Silvia; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A.

    2016-01-01

    Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after 2-months, corroborates the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed with folate-deficient (FD) diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background.

  9. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies

    PubMed Central

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5–25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency. PMID:27276031

  10. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies.

    PubMed

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter; Rychlik, Michael

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5-25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency. PMID:27276031

  11. Brief Report: Autistic Symptoms, Developmental Regression, Mental Retardation, Epilepsy, and Dyskinesias in CNS Folate Deficiency

    ERIC Educational Resources Information Center

    Moretti, Paolo; Peters, Sarika U.; del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J.; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin; Bacino, Carlos A.; Scaglia, Fernando

    2008-01-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects…

  12. MATERNAL FOLATE DEFICIENCY AMPLIFIES THE CELLULAR AND TERATOLOGIC EFFECTS OF TOMUDEX

    EPA Science Inventory

    Lau, C., J.E. Andrews, B.E. Grey*, R.G. Hanson*, J.R. Thibodeaux* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, US EPA, ORD, Research Triangle Park, North Carolina. Maternal folate deficiency amplifies the cellular and teratologic effects of Tomudex.
    Maternal fo...

  13. FOLATE DEFICIENCY ENHANCES ARSENIC EFFECTS ON EXPRESSION OF GENES INVOLVED IN EPIDERMAL DIFFERENTIATION

    EPA Science Inventory

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, and bladder. There is evidence that folate deficiency may increase susceptibility to arsenic¿s effects, including arsenic-induced skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm ...

  14. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    SciTech Connect

    Halwachs, Sandra; Lakoma, Cathleen; Gebhardt, Rolf; Schaefer, Ingo; Seibel, Peter; Honscha, Walther

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  15. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice

    PubMed Central

    Wang, Xueqian; Cabrera, Robert M.; Li, Yue; Miller, David S.; Finnell, Richard H.

    2013-01-01

    Folate deficiency has been associated with many adverse clinical manifestations. The blood-brain barrier (BBB), formed by brain capillary endothelial cells, protects the brain from exposure to neurotoxicants. The function of BBB is modulated by multiple ABC transporters, particularly P-glycoprotein. A proton-coupled folate transporter (PCFT)-deficient mouse has been previously described as a model for systemic folate deficiency. Herein, we demonstrate that exposing mouse brain capillaries to the antiepileptic drug, valproic acid (VPA; 5 μM), significantly increased P-glycoprotein transport function in the wild-type animals. A ligand to the aryl hydrocarbon receptor, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), produced a similar induction of P-glycoprotein, which tightened the BBB, thereby increasing the neuroprotection. However, VPA- or TCDD-induced P-glycoprotein transport was blocked in the PCFT-nullizygous mice, indicating that multiple neuroprotective mechanisms are compromised under folate-deficient conditions. Brain capillaries from S-folinic acid (SFA; 40 mg/kg)-treated PCFT-nullizygous mice exhibited increased P-glycoprotein transport following VPA exposure. This suggests that SFA supplementation restored the normal BBB function. In addition, we show that tight-junction proteins are disintegrated in the PCFT mutant mice. Taken together, these findings strongly suggest that folate deficiency disrupts the BBB function by targeting the transporter and tight junctions, which may contribute to the development of neurological disorders.—Wang, X., Cabrera, R. M., Li, Y., Miller, D. S., Finnell, R. H. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice. PMID:23212123

  16. Folate deficiency and DNA-methyltransferase inhibition modulate G-quadruplex frequency.

    PubMed

    François, Maxime; Leifert, Wayne Richard; Tellam, Ross; Fenech, Michael Felix

    2016-07-01

    G-quadruplexes (G4) are highly stable tetra-stranded DNA secondary structures known to mediate gene regulation and to trigger genomic instability events during replication. G4 structural stability can be affected by DNA methylation and oxidation modifications; thus nutrients such as folate that have the ability to alter these processes could potentially modify the genomic occurrence of G4 elements. Hela cells were cultured in a range of folate concentrations or in the presence or absence of 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor. G4 structures were then quantified by immunofluorescence using an automated quantitative imaging system. G4 frequency in Hela cells and nuclei area mean were increased in 20nM folate medium compared with 2000nM folate, as well as in the presence of 5-aza-2'-deoxycytidine when compared to cells non-exposed to 5-aza-2'-deoxycytidine. These changes were exacerbated when pyridostatin, a G4 stabilising ligand, was added to the culture medium. G4 intensity in Hela cells cultured in deficient folate condition with pyridostatin was highly correlated with DNA damage as measured by γH2AX immunofluorescence (r = 0.71). This study showed for the first time that cellular G4 balance is modifiable by low folate concentrations and that these changes may occur as a consequence of DNA hypomethylation. Although the exact mechanism by which these changes occur is unclear, these findings establish the possibility that nutrients could be utilised as a tool for sustaining genome integrity by modifying G4 frequency at a cellular level. PMID:26758645

  17. The cardiac effects of prolonged vitamin B12 and folate deficiency in rats.

    PubMed

    Taban-Shomal, Omid; Kilter, Heiko; Wagner, Alexandra; Schorr, Heike; Umanskaya, Natalia; Hübner, Ulrich; Böhm, Michael; Herrmann, Wolfgang; Herrmann, Markus

    2009-06-01

    In the recent past, hyperhomocysteinemia (HHCY) has been linked to chronic heart failure. Folate and vitamin B12 deficiencies are the common causes of HHCY. The impact of these vitamins on cardiac function and morphology has scarcely been investigated. The aim of this study was to conduct an analysis of the cardiac effect of folate and vitamin B12 deficiency in vivo. Two groups of rats, a control (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10), were fed for 12 weeks with a folate and vitamin B12-free diet or an equicaloric control diet. Plasma and tissue concentrations of HCY, S-adenosyl-homocysteine (SAH), S-adenosyl-methionine (SAM), and brain natriuretic peptide (BNP) were measured. Moreover, echocardiographic and histomorphometric analyses were performed. VitDef animals developed a significant HHCY (Co vs VitDef: 6.8 +/- 2.7 vs 61.1 +/- 12.8 micromol/l, P < 0.001). Fractional shortening, left ventricular dimension at end-diastole and end-systole, posterior wall thickness, perivascular collagen, mast cell number, and BNP tissue levels were comparable in VitDef and Co animals. Interstitial collagen (Co vs VitDef: 6.8 +/- 3.0 vs 4.5 +/- 2.1%, P < 0.05), plasma BNP (Co vs VitDef: 180 +/- 80 vs 70 +/- 60 ng/l, P < 0.05), and tissue HCY (Co vs VitDef: 0.13 +/- 0.07 vs 0.07 +/- 0.04 micromol/g protein, P < 0.05) were lower in VitDef animals. Folate and vitamin B12 deficiency do not affect cardiac function and morphology. PMID:19399644

  18. Vitamins C, E and A and heme oxygenase in rats fed methyl/folate-deficient diets.

    PubMed

    Henning, S M; Swendseid, M E; Ivandic, B T; Liao, F

    1997-01-01

    There is evidence that the development of hepatocarcinoma in rats fed a methyl-deficient diet is associated with oxidative stress. We investigated, therefore, whether the tissue concentrations of the antioxidant vitamins ascorbic acid (AA) and alpha- and gamma-tocopherol (T) are altered in methyl/folate deficiency. We also measured retinol concentrations in tissues and hepatic mRNA expression of heme oxygenase (HO1). A 6% gelatin, 6% casein diet, devoid of choline and folate (CFD) was selected based on the high rate of tumor development in rats fed this diet. Spectrophotometric measurement of AA and HPLC determination of tissue T and retinol showed decreased concentrations of AA in blood; alpha- and gamma-T in lung, heart and plasma, alpha-T and retinol in liver; retinol in lung; and increased expression of hepatic HO1 mRNA. Similar alterations in tissue vitamin concentrations were found when the CFD diet devoid of niacin (CFND) was fed. Reducing alpha-T in the CFND diet (CFNED) further decreased hepatic alpha-T concentrations. These results show that chronic methyl/folate deficiency is associated with a compromised antioxidant defense system. PMID:9378373

  19. Association of folate deficiency and selected tumor marker concentrations in long-term hexavalent chromium exposed population.

    PubMed

    Wang, Tian-Cheng; Song, Yan-Shuang; Yu, Shan-Fa; Zhang, Ji; Wang, Hui; Gu, Yong-En; Chen, Tian; Jia, Guang

    2014-01-01

    Both hexavalent chromium [Cr (VI)] exposure and folate deficiency have been associated with increased cancer risks. Our previous studies have found folate deficiency in Cr (VI) exposed population. Here the relationship between some tumor markers and folate status in long-term Cr (VI) exposure was investigated carefully to show the multiple aspects of Cr (VI) carcinogenesis. A group of 115 workers occupationally exposed to chromate and 60 matched, unexposed controls in Shandong province of China were recruited. Environmental and biological exposure assessments including personal exposure to airborne Cr and Cr contents in erythrocytes were performed. Serum folate, plasma total homocysteine (tHcy) and plasma carcinoembryonic antigen (CEA), neuron specific enolase (NSE), squamous cell carcinoma antigen (SCC), cytokeratin fragment antigen 21-1 (CYFRA 21-1), cancer antigen 72-4 (CA72-4), as well as α-fetoprotein (AFP) were measured. Smoking index (SI) was also calculated to discriminate possible confounding effects of smoking status. Serum folate level decreased significantly, while plasma tHcy, CEA, NSE, SCC, CYFRA21-1, CA72-4 and AFP concentrations increased significantly after Cr (VI) exposure. Meanwhile, plasma CEA, NSE and SCC were negatively correlated with serum folate. SI was negatively correlated with serum folate but positively correlated with plasma tHcy, CEA and NSE levels. Present study suggests that folate deficiency was associated with increased cancer risks and might be affected by smoking in Cr (VI) exposed population. Folate might play a key role in Cr (VI) carcinogenesis although further detailed investigations are needed to clarify the mechanism of this process. PMID:23623598

  20. Pyridoxal phosphate-responsive seizures in a patient with cerebral folate deficiency (CFD) and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM).

    PubMed

    Dill, Patricia; Schneider, Jacques; Weber, Peter; Trachsel, Daniel; Tekin, Mustafa; Jakobs, Cornelis; Thöny, Beat; Blau, Nenad

    2011-11-01

    We present an 8-year-old boy with folate receptor alpha (FRα) defect and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM syndrome). Both conditions are exceptionally rare autosomal recessive inherited diseases mapped to 11q13. Our patient was found to have novel homozygous nonsense mutations in the FOLR1 gene (p.R204X), and FGF3 gene (p.C50X). While the FRα defect is a disorder of brain-specific folate transport accompanied with cerebral folate deficiency (CFD) causing progressive neurological symptoms, LAMM syndrome is a solely malformative condition, with normal physical growth and cognitive development. Our patient presented with congenital deafness, hypotonia, dysphygia and ataxia in early childhood. At the age of 6 years he developed intractable epilepsy, and deteriorated clinically with respiratory arrest and severe hypercapnea at the age of 8 years. In contrast to the previously published patients with a FOLR1 gene defect, our patient presented with an abnormal l-dopa metabolism in CSF and high 3-O-methyl-dopa. Upon oral treatment with folinic acid the boy regained consciousness while the epilepsy could be successfully managed only with additional pyridoxal 5'-phosphate (PLP). This report pinpoints the importance of CSF folate investigations in children with unexplained progressive neurological presentations, even if a malformative syndrome is obviously present, and suggests a trial with PLP in folinic acid-unresponsive seizures. PMID:21752681

  1. Folate transport gene inactivation in mice increases sensitivity to colon carcinogenesis.

    PubMed

    Ma, David W L; Finnell, Richard H; Davidson, Laurie A; Callaway, Evelyn S; Spiegelstein, Ofer; Piedrahita, Jorge A; Salbaum, J Michael; Kappen, Claudia; Weeks, Brad R; James, Jill; Bozinov, Daniel; Lupton, Joanne R; Chapkin, Robert S

    2005-02-01

    Low dietary folate intake is associated with an increased risk for colon cancer; however, relevant genetic animal models are lacking. We therefore investigated the effect of targeted ablation of two folate transport genes, folate binding protein 1 (Folbp1) and reduced folate carrier 1 (RFC1), on folate homeostasis to elucidate the molecular mechanisms of folate action on colonocyte cell proliferation, gene expression, and colon carcinogenesis. Targeted deletion of Folbp1 (Folbp1(+/-) and Folbp1(-/-)) significantly reduced (P < 0.05) colonic Folbp1 mRNA, colonic mucosa, and plasma folate concentration. In contrast, subtle changes in folate homeostasis resulted from targeted deletion of RFC1 (RFC1(+/-)). These animals had reduced (P < 0.05) colonic RFC1 mRNA and exhibited a 2-fold reduction in the plasma S-adenosylmethionine/S-adenosylhomocysteine. Folbp1(+/-) and Folbp1(-/-) mice had larger crypts expressed as greater (P < 0.05) numbers of cells per crypt column relative to Folbp1(+/+) mice. Colonic cell proliferation was increased in RFC1(+/-) mice relative to RFC1(+/+) mice. Microarray analysis of colonic mucosa showed distinct changes in gene expression specific to Folbp1 or RFC1 ablation. The effect of folate transporter gene ablation on colon carcinogenesis was evaluated 8 and 38 weeks post-azoxymethane injection in wild-type and heterozygous mice. Relative to RFC1(+/+) mice, RFC1(+/-) mice developed increased (P < 0.05) numbers of aberrant crypt foci at 8 weeks. At 38 weeks, RFC1(+/-) mice developed local inflammatory lesions with or without epithelial dysplasia as well as adenocarcinomas, which were larger relative to RFC1(+/+) mice. In contrast, Folbp1(+/-) mice developed 4-fold (P < 0.05) more lesions relative to Folbp1(+/+) mice. In conclusion, Folbp1 and RFC1 genetically modified mice exhibit distinct changes in colonocyte phenotype and therefore have utility as models to examine the role of folate homeostasis in colon cancer development. PMID:15705887

  2. Absorption and blood/cellular transport of folate and cobalamin: Pharmacokinetic and physiological considerations.

    PubMed

    Alpers, David H

    2016-07-01

    The systems involving folate and cobalamin have several features in common: 1) their dietary forms require luminal digestion for absorption; 2) intestinal bacteria in the upper intestine synthesize and utilize both vitamins, creating possible competition for the nutrients; 3) there is one major intestinal brush border protein essential for absorption; 4) both are subject to extensive entero-hepatic circulation. Finally, human mutations have confirmed the role of specific transporters and receptors in these processes. There are other features, however, that distinguish the metabolism of these vitamins: 1) upper intestinal bacteria tend to produce folate, while cobalamin (cbl) utilization is more common; 2) cbl absorption requires a luminal binding protein, but folate does not; 3) folate absorption can occur throughout the small bowel, but the cbl receptor, cubilin, is restricted to the distal half of the small bowel; 4) movement into cells uses transporters, exchangers, and symporters, whereas cbl is transferred by receptor-mediated endocytosis; 5) folate is carried in the blood mostly in red blood cells, whereas cbl is carried on specific binding-proteins; 6) folate can enter cells via multiple systems, but cbl uptake into all tissues use the transcobalamin receptor (TC-R), with the asialoglycoprotein receptor (ASGP-R) present in hepatocytes for uptake of haptocorrin-cbl (HC-cbl) complexes. In summary, the systems for absorption and distribution of folate and cobalamin are complex. These complexities help to explain the variable clinical responses after oral administration of the vitamins, especially when provided as supplements. PMID:26586110

  3. Folate deficiency

    MedlinePlus

    ... foods: Beans and legumes Citrus fruits and juices Dark green leafy vegetables such as spinach, asparagus, and ... to the principles of the Health on the Net Foundation (www.hon.ch). The information provided herein ...

  4. Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice.

    PubMed

    Geng, Yanqing; Gao, Rufei; Chen, Xuemei; Liu, Xueqing; Liao, Xinggui; Li, Yanli; Liu, Shangjing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-11-01

    Existing evidence suggests that adverse pregnancy outcomes are closely related with dietary factors. Previous studies in mice have focused on the harm of folate deficiency (FD) on development of embryo, while the effect of low maternal folate levels on maternal intrauterine environment during early pregnancy remains unclear. Since our previous study found that FD treatment of mice causes no apparent defects in embryo implantation but is accompanied by female subfertility, we next chose to investigate a potential role of FD on molecular events after implantation. We observed that the decidual bulges began to be stunted on pregnancy day 6. The results of functional experiments in vivo and in vitro showed that FD inhibited the process of endometrial decidualization. It has been confirmed that DNA methylation participates in decidualization, and folate as a methyl donor could change the methylation patterns of genes. Thus, we hypothesized that FD impairs maternal endometrial decidualization by altering the methylation profiles of related genes. Reduced representation bisulphite sequencing was carried out to detect the methylation profiles of endometrium on pregnancy day 6-8, which is equivalent to the decidualization period in mice. The results confirmed that FD changes the methylation patterns of genome, and GO analysis of the differentially methylated regions revealed that the associated genes mainly participate in biological adhesion, biological regulation, cell proliferation, development, metabolism and signalling. In addition, we found some candidates for regulators of decidual transformation, such as Nr1h3 and Nr5a1. The data indicate that FD inhibits decidualization, possibly by altering methylation patterns of the genome in mice. PMID:26246607

  5. Structure and Function of the Reduced Folate Carrier: A Paradigm of A Major Facilitator Superfamily Mammalian Nutrient Transporter

    PubMed Central

    Matherly, Larry H.; Hou, Zhanjun

    2013-01-01

    Folates are essential for life and folate deficiency contributes to a host of health problems including cardiovascular disease, fetal abnormalities, neurologic disorders, and cancer. Antifolates, represented by methotrexate, continue to occupy a unique niche among the modern day pharmacopoeia for cancer along with other pathologic conditions. This review focuses on the biology of the membrane transport system termed the “reduced folate carrier” or RFC with a particular emphasis on RFC structure and function. The ubiquitously expressed RFC is the major transporter for folates in mammalian cells and tissues. Loss of RFC expression or function portends potentially profound physiologic or developmental consequences. For chemotherapeutic antifolates used for cancer, loss of RFC expression or synthesis of mutant RFC protein with impaired function results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and low levels of substrate for polyglutamate synthesis. The functional properties for RFC were first documented nearly 40 years ago in murine leukemia cells. Since 1994, when RFC was first cloned, tremendous advances in the molecular biology of RFC and biochemical approaches for studying the structure of polytopic membrane proteins have led to an increasingly detailed picture of the molecular structure of the carrier, including its membrane topology, its N-glycosylation, identification of functionally and structurally important domains and amino acids, and helix packing associations. Although no crystal structure for RFC is yet available, biochemical and molecular studies, combined with homology modeling, based on homologous bacterial Major Facilitator Superfamily transporters such as LacY, now permit the development of experimentally testable hypotheses designed to establish RFC structure and mechanism. PMID:18804694

  6. Wernicke's Encephalopathy, Wet Beriberi, and Polyneuropathy in a Patient with Folate and Thiamine Deficiency Related to Gastric Phytobezoar.

    PubMed

    Huertas-González, Nuria; Hernando-Requejo, Virgilio; Luciano-García, Zaida; Cervera-Rodilla, Juan Luis

    2015-01-01

    Background. Wernicke's encephalopathy (WE) is an acute neurological disorder resulting from thiamine deficiency. It is mainly related to alcohol abuse but it can be associated with other conditions such as gastrointestinal disorders. This vitamin deficiency can also present with cardiovascular symptoms, called "wet beriberi." Association with folate deficit worsens the clinical picture. Subject. A 70-year-old man with gastric phytobezoar presented with gait instability, dyspnoea, chest pain associated with right heart failure and pericarditis, and folate deficiency. Furosemide was administered and cardiac symptoms improved but he soon developed vertiginous syndrome, nystagmus, diplopia, dysmetria, and sensitive and motor deficit in all four limbs with areflexia. Results. A cerebral magnetic resonance imaging (MRI) showed typical findings of WE. He was immediately treated with thiamine. Neurological symptoms improved in a few days and abnormal signals disappeared in a follow-up MRI two weeks later. Conclusion. Patients with malabsorption due to gastrointestinal disorders have an increased risk of thiamine deficiency, and folate deficiency can make this vitamin malabsorption worse. An established deficiency mainly shows neurological symptoms, WE, or rarely cardiovascular symptoms, wet beriberi. Early vitamin treatment in symptomatic patients improves prognosis. We recommend administration of prophylactic multivitamins supplements in patients at risk as routine clinical practice. PMID:26697247

  7. Wernicke's Encephalopathy, Wet Beriberi, and Polyneuropathy in a Patient with Folate and Thiamine Deficiency Related to Gastric Phytobezoar

    PubMed Central

    Huertas-González, Nuria; Hernando-Requejo, Virgilio; Luciano-García, Zaida; Cervera-Rodilla, Juan Luis

    2015-01-01

    Background. Wernicke's encephalopathy (WE) is an acute neurological disorder resulting from thiamine deficiency. It is mainly related to alcohol abuse but it can be associated with other conditions such as gastrointestinal disorders. This vitamin deficiency can also present with cardiovascular symptoms, called “wet beriberi.” Association with folate deficit worsens the clinical picture. Subject. A 70-year-old man with gastric phytobezoar presented with gait instability, dyspnoea, chest pain associated with right heart failure and pericarditis, and folate deficiency. Furosemide was administered and cardiac symptoms improved but he soon developed vertiginous syndrome, nystagmus, diplopia, dysmetria, and sensitive and motor deficit in all four limbs with areflexia. Results. A cerebral magnetic resonance imaging (MRI) showed typical findings of WE. He was immediately treated with thiamine. Neurological symptoms improved in a few days and abnormal signals disappeared in a follow-up MRI two weeks later. Conclusion. Patients with malabsorption due to gastrointestinal disorders have an increased risk of thiamine deficiency, and folate deficiency can make this vitamin malabsorption worse. An established deficiency mainly shows neurological symptoms, WE, or rarely cardiovascular symptoms, wet beriberi. Early vitamin treatment in symptomatic patients improves prognosis. We recommend administration of prophylactic multivitamins supplements in patients at risk as routine clinical practice. PMID:26697247

  8. Genetic animal models to decipher the pathogenic effects of vitamin B12 and folate deficiency.

    PubMed

    Peng, Lu; Dreumont, Natacha; Coelho, David; Guéant, Jean-Louis; Arnold, Carole

    2016-07-01

    Vitamin B12 and folate are essential micronutrients that provide methyl groups for cellular methylations through the so-called one-carbon metabolism. Deficits in the absorption and transport or defects of the enzymes can lead to human pathogenesis comprising hematologic, neural, gastrointestinal, hepatic, renal, cardiovascular and developmental manifestations. One-carbon metabolism is a complex, multistep and multi-organ metabolism, and the understanding of the mechanisms at work have benefited from human inborn errors and population studies, as well as from nutritional animal models. Since 15 years, a wide variety of genetically engineered mice has been developed and has proved to be useful to decipher the underlying mechanisms. These genetically engineered mice target all the genes that are important for the intestinal absorption, cellular transport and metabolism of vitamin B12 and folate, which are detailed in this article. In conclusion, these mouse models represent valuable experimental paradigms for human pathogenesis. Since no animal model recapitulates the full spectrum of a human disease, researchers have to choose the one that is the most relevant for their specific needs, and this review may help in this respect. PMID:27178438

  9. Cellular folate vitamer distribution during and after correction of vitamin B12 deficiency: a case for the methylfolate trap.

    PubMed

    Smulders, Y M; Smith, D E C; Kok, R M; Teerlink, T; Swinkels, D W; Stehouwer, C D A; Jakobs, C

    2006-03-01

    Haematological sequellae of vitamin B12 deficiency are attributed to disturbed DNA synthesis, but vitamin B12 itself plays no role in DNA biosynthesis. A proposed explanation for this is the methylfolate trap hypothesis. This hypothesis states that B12 deficiency impairs overall folate metabolism because 5-methyltetrahydrofolate (5MTHF) becomes metabolically trapped. This trap results from the fact that 5MTHF can neither be metabolised via the methionine synthase pathway, nor can it be reconverted to its precursor, methylenetetrahydrofolate. Other manifestations of the methylfolate trap include cellular folate loss because of shorter 5MTHF polyglutamate chains and global hypomethylation. The methylfolate trap has never been demonstrated in humans. We describe a patient with B12 deficiency who was homozygous for the common methylenetetrahydrofolate reductase (MTHFR) C677T mutation. We analysed red blood cell (RBC) folate vitamers and global DNA methylation by liquid chromatography (LC) in combination with tandem mass spectrometry, and 5MTHF polyglutamate length by LC-electrochemical detection. Compared to post-B12 supplementation values, homocysteine was higher (52.9 micromol/l vs. 16.8 micromol/l), RBC folate was lower (268.92 nmol/l vs. 501.2 nmol/l), the 5MTHF fraction of RBC folate was much higher (94.5% vs. 67.4%), polyglutamate chain length was shorter (more tetra- and pentaglutamates), and global DNA methylation was 22% lower. This is the first time that virtually all features of the methylfolate trap hypothesis have been demonstrated in a human with vitamin B12 deficiency. PMID:16445837

  10. Alcohol-associated folate disturbances result in altered methylation of folate-regulating genes.

    PubMed

    Wani, Nissar Ahmad; Hamid, Abid; Kaur, Jyotdeep

    2012-04-01

    Folate plays a critical role in maintaining normal metabolic, energy, differentiation and growth status of all mammalian cells. The steady-state accumulation of folate seems to depend on the activity of two enzymes: folylpolyglutamate synthetase (FPGS), which adds glutamate residues, and gamma-glutamyl hydrolase (GGH), which removes them, enabling it to be transported across the biological membranes. Overexpression of GGH and downregulation of FPGS would be expected to decrease intracellular folate in its polyglutamylated form, thereby increasing efflux of folate and its related molecules, which might lead to resistance to drugs or folate deficiency. The study was sought to delineate the activity of GGH and expression FPGS in tissues involved in folate homeostasis during alcoholism and the epigenetic regulation of these enzymes and transporters regulating intracellular folate levels. We determined the activity of GGH and expression of FPGS in tissues after 3 months of ethanol feeding to rats at 1 g/kg body weight/day. The results showed that there was not any significant change in the activity of folate hydrolyzing enzyme GGH in ethanol-fed rats while there was significant down regulation in the expression of FPGS. Ethanol feeding decreased the total as well as polyglutamated folate levels. There was tissue-specific hyper/hypo methylation of folate transporter genes viz. PCFT and RFC by chronic ethanol feeding. Moreover, hypermethylation of FPGS gene was observed in intestine and kidney without any change in methylation levels of GGH in the ethanol-fed rats. In conclusion, the initial deconjugation of polyglutamylated folate by GGH was not impaired in ethanol-fed rats while the conversion of monoglutamylated folate to polyglutamylated form might be impaired. There was tissue-specific altered methylation of folate transporter genes by chronic ethanol feeding. PMID:22147198

  11. Folate and Vitamin B12 Transport Systems in the Developing Infant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    B vitamin transport systems in infants are not as well studied as those for amino acids and glucose. For most B vitamins, a 2-step process allows for digestion of coenzyme forms of the vitamins in food, followed by specific transport systems for the free vitamin in the intestine. Folate and vitamin ...

  12. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency.

    PubMed

    Li, Wen-Xing; Dai, Shao-Xing; Zheng, Jun-Juan; Liu, Jia-Qian; Huang, Jing-Fei

    2015-08-01

    Folate deficiency is strongly associated with cardiovascular disease. We aimed to explore the joint effect of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G polymorphisms on folate deficiency in a Chinese hypertensive population. A total of 480 subjects aged 28-75 were enrolled in this study from September 2005-December 2005 from six hospitals in different Chinese regions. Known genotypes were detected by PCR-RFLP methods and serum folate was measured by chemiluminescence immunoassay. Our results showed that MTHFR 677TT and MTR 2756AG + GG were independently associated with a higher risk of folate deficiency (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA p = 0.030, respectively). However, the MTHFR A1298C mutation may confer protection by elevating the serum folate level (p = 0.025). Furthermore, patients carrying two or more risk genotypes showed higher odds of folate deficiency than null risk genotype carriers, especially those carrying four risk genotypes. These findings were verified by generalized multifactor dimensionality reduction (p = 0.0107) and a cumulative effects model (p = 0.001). The results of this study have shown that interactions among homocysteine metabolism gene polymorphisms lead to dramatic elevations in the folate deficiency risk. PMID:26266420

  13. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency

    PubMed Central

    Li, Wen-Xing; Dai, Shao-Xing; Zheng, Jun-Juan; Liu, Jia-Qian; Huang, Jing-Fei

    2015-01-01

    Folate deficiency is strongly associated with cardiovascular disease. We aimed to explore the joint effect of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G polymorphisms on folate deficiency in a Chinese hypertensive population. A total of 480 subjects aged 28–75 were enrolled in this study from September 2005–December 2005 from six hospitals in different Chinese regions. Known genotypes were detected by PCR-RFLP methods and serum folate was measured by chemiluminescence immunoassay. Our results showed that MTHFR 677TT and MTR 2756AG + GG were independently associated with a higher risk of folate deficiency (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA p = 0.030, respectively). However, the MTHFR A1298C mutation may confer protection by elevating the serum folate level (p = 0.025). Furthermore, patients carrying two or more risk genotypes showed higher odds of folate deficiency than null risk genotype carriers, especially those carrying four risk genotypes. These findings were verified by generalized multifactor dimensionality reduction (p = 0.0107) and a cumulative effects model (p = 0.001). The results of this study have shown that interactions among homocysteine metabolism gene polymorphisms lead to dramatic elevations in the folate deficiency risk. PMID:26266420

  14. [Cerebral venous sinus thrombosis associated with hyperhomocysteinemia due to combined deficiencies of folate and vitamin B12].

    PubMed

    Kanaya, Yuhei; Neshige, Shuichiro; Takemaru, Makoto; Shiga, Yuji; Takeshima, Shinichi; Kuriyama, Masaru

    2016-01-01

    A 63-year-old man was admitted to our hospital because of convulsive seizures. Radiological examinations revealed cerebral venous sinus thrombosis in the anterior part of the superior sagittal sinus. He had marked hyperhomocysteinemia (93.5 nmol/ml) due to combined deficiencies of folate and vitamin B12. He was T/T homozygous for methylene tetrahydrofolate reductase C677T polymorphism. He received a supplement therapy of vitamins. First, he was administered folate orally. After 3 months, the serum level of homocysteine decreased to 22.6 nmol/ml (an 86% reduction), but was still above the normal level. Next, an additional supplement therapy of vitamin B12 lowered the homocysteine level to normal (12.3 nmol/ml) after 4 months. These results showed that the increase of homocysteine levels in this patient was mainly caused by the deficiency of folate. Additionally, acquired risk factors like vitamin deficiencies increased the level of serum homocysteine to almost 100 nmol/ml. PMID:26797484

  15. COMMUNICATION: Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    NASA Astrophysics Data System (ADS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Gilman, Vladimir; Shea, Thomas B.

    2008-12-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE-/- mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or -/-, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE-/- cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE-/- cultures, which may be a reflection of the reduced SAM levels in ApoE-/- mice. The differential impact of SAM on ApoE+/+ and -/- neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis.

  16. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    SciTech Connect

    Beck, J.T.; Ullman, B. )

    1989-08-22

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 {mu}M concentration of either activated ({sup 3}H)folate or activated ({sup 3}H)methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labeling of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms.

  17. Functional roles of aspartate residues of the proton-coupled folate transporter (PCFT-SLC46A1); a D156Y mutation causing hereditary folate malabsorption

    PubMed Central

    Shin, Daniel Sanghoon; Min, Sang Hee; Russell, Laura; Zhao, Rongbao; Fiser, Andras

    2010-01-01

    The proton-coupled folate transporter (PCFT; SLC46A1) mediates folate transport into enterocytes in the proximal small intestine; pcft loss-of-function mutations are the basis for hereditary folate malabsorption. The current study explored the roles of Asp residues in PCFT function. A novel, homozygous, loss-of-function mutation, D156Y, was identified in a child of Pakistani origin with hereditary folate malabsorption. Of the 6 other conserved Asp residues, only one, D109, is shown to be required for function. D156Y, along with a variety of other substitutions at this site (Trp, Phe, Val, Asn, or Lys), lacked function due to instability of the PCFT protein. Substantial function was preserved with Glu, Gly, and, to a lesser extent, with Ser, Thr, and Ala substitutions. This correlated with PCFT bio-tinylated at the cell surface. In contrast, all D109 mutants, including D109E, lacked function irrespective of pH (4.5, 5.5, and 7.4) or substrate concentration (0.5-100μM), despite surface expression comparable to wild-type PCFT. Hence, D156 plays a critical role in PCFT protein stability, and D109, located in the first intracellular loop between the second and third transmembrane domains, is absolutely required for PCFT function. PMID:20805364

  18. Methotrexate influx via folate transporters into alveolar epithelial cell line A549.

    PubMed

    Kawami, Masashi; Miyamoto, Mioka; Yumoto, Ryoko; Takano, Mikihisa

    2015-08-01

    Methotrexate (MTX), a drug used for the treatment of certain cancers as well as rheumatoid arthritis, sometimes induces serious interstitial lung injury. Although lung toxicity of MTX is related to its accumulation, the information concerning MTX transport in the lungs is lacking. In this study, we investigated the mechanisms underlying MTX influx into human alveolar epithelial cell line A549. MTX influx into A549 cells was time-, pH-, and temperature-dependent and showed saturation kinetics. The influx was inhibited by folic acid with IC50 values of 256.1 μM at pH 7.4 and 1.6 μM at pH 5.5, indicating that the mechanisms underlying MTX influx would be different at these pHs. We then examined the role of two folate transporters in MTX influx, reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). The expression of RFC and PCFT mRNAs in A549 cells was confirmed by reverse transcription polymerase chain reaction. In addition, MTX influx was inhibited by thiamine monophosphate, an RFC inhibitor, at pH 7.4, and by sulfasalazine, a PCFT inhibitor, at pH 5.5. These results indicated that RFC and PCFT are predominantly involved in MTX influx into A549 cells at pH 7.4 and pH 5.5, respectively. PMID:26190800

  19. Plasma and Red Cell Reference Intervals of 5-Methyltetrahydrofolate of Healthy Adults in Whom Biochemical Functional Deficiencies of Folate and Vitamin B12 Had Been Excluded

    PubMed Central

    Sobczyńska-Malefora, Agata; Harrington, Dominic J.; Voong, Kieran; Shearer, Martin J.

    2014-01-01

    5-Methyltetrahydrofolate (5-MTHF) is the predominant form of folate and a strong determinant of homocysteine concentrations. There is evidence that suboptimal 5-MTHF availability is a risk factor for cardiovascular disease independent of homocysteine. The analysis of folates remains challenging and is almost exclusively limited to the reporting of “total” folate rather than individual molecular forms. The purpose of this study was to establish the reference intervals of 5-MTHF in plasma and red cells of healthy adults who had been prescreened to exclude biochemical evidence of functional deficiency of folate and/or vitamin B12. Functional folate and vitamin B12 status was assessed by respective plasma measurements of homocysteine and methylmalonic acid in 144 healthy volunteers, aged 19–64 years. After the exclusion of 10 individuals, values for 134 subjects were used to establish the upper reference limits for homocysteine (13 μmol/L females and 15 μmol/L males) and methylmalonic acid (430 nmol/L). Subjects with values below these cutoffs were designated as folate and vitamin B12 replete and their plasma and red cell 5-MTHF reference intervals determined, N = 126: 6.6–39.9 nmol/L and 223–1041 nmol/L, respectively. The application of these intervals will assist in the evaluation of folate status and facilitate studies to evaluate the relationship of 5-MTHF to disease. PMID:24527038

  20. Short-term nutritional folate deficiency in rats has a greater effect on choline and acetylcholine metabolism in the peripheral nervous system than in the brain, and this effect escalates with age

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypothesis that age- and tissue-specific differences in choline metabolism is differentially affected by folate deficiency (FD) was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats, who were fed for 10 weeks either a control diet or a folate deficient diet startin...

  1. DNA methylation and expression of the folate transporter genes in colorectal cancer.

    PubMed

    Farkas, Sanja A; Befekadu, Rahel; Hahn-Strömberg, Victoria; Nilsson, Torbjörn K

    2015-07-01

    Folate has a central role in the cell metabolism. This study aims to explore the DNA methylation pattern of the folate transporter genes FOLR1, PCFT, and RFC1 as well as the corresponding protein expressions in colorectal cancer (CRC) tissue and adjacent non-cancerous mucosa (ANCM). Our results showed statistically significant differences in the DNA-methylated fraction of all three genes at several gene regions; we identified three differentially methylated CpG sites in the FOLR1 gene, five CpG sites in the PCFT gene, and six CpG sites in the RFC1 gene. There was a pronounced expression of the FRα and RFC proteins in both the CRC and ANCM tissues, though the expression was attenuated in cancer compared to the paired ANCM tissues. The PCFT protein was undetectable or expressed at a very low level in both tissue types. Higher methylated fractions of the CpG sites 3-5 in the RFC1 gene were associated with a lower protein expression, suggestive of epigenetic regulation by DNA methylation of the RFC1 gene in the colorectal cancer. Our results did not show any association between the RFC and FRα protein expression and tumor stage, TNM classification, or tumor location. In conclusion, this is the first study to simultaneously evaluate both DNA methylation and protein expression of all three folate transporter genes, FOLR1, PCFT, and RFC1, in colorectal cancer. The results encourage further investigation into the possible prognostic implications of folate transporter expression and DNA methylation. PMID:25697897

  2. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    David R. Geter', Tanya M. Moore', Michael H. George', Steve R. Kilburn', Gloria Huggins-Clark', James W. Allen', and Anthony B. DeAngelo' 'National H...

  3. Elevated Homocysteine Level and Folate Deficiency Associated with Increased Overall Risk of Carcinogenesis: Meta-Analysis of 83 Case-Control Studies Involving 35,758 Individuals

    PubMed Central

    Wu, Wei; Guo, Ye; Cui, Wei

    2015-01-01

    Background Results of the association of folate metabolism and carcinogenesis are conflicting. We performed a meta-analysis to examine the effect of the interaction of serum concentration of homocysteine (Hcy), folate, and vitamin B12 and 5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphism on risk of cancer overall. Method Two reviewers independently searched for all published studies of Hcy and cancer in PubMed, EMBASE-MEDLINE and Chinese databases. Pooled results were reported as odds ratios (ORs) and mean differences and presented with 95% confidence intervals (95% CIs) and 2-sided probability values. Results We identified 83 eligible studies of 15,046 cases and 20,712 controls. High level of Hcy but low level of folate was associated with risk of cancer overall, with little effect by type of cancer or ethnicity. Vitamin B12 level was inversely associated with only urinary-system and gastrointestinal carcinomas and for Asian and Middle Eastern patients. As well, MTHFR C677T, A1298C and G1793A polymorphisms were related to elevated serum level of Hcy, and folate and vitamin B12 deficiency. However, only MTHFR C677T homogeneity/wild-type (TT/CC) polymorphism was positively associated with overall risk of cancer. Conclusion Elevated serum Hcy level and folate deficiency are associated with increased overall risk of cancer. PMID:25985325

  4. Two-compartment behavior during transport of folate compounds in L1210 cell plasma membrane vesicles

    SciTech Connect

    Yang, C.H.; Dembo, M.; Sirotnak, F.M.

    1982-01-01

    The transport of (/sup 3/H) 1,L 5-formyltetrahydrofolate, (/sup 3/H) folic acid, and (/sup 3/H)methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.

  5. Folate: a functional food constituent.

    PubMed

    Iyer, Ramya; Tomar, S K

    2009-01-01

    Folate, a water-soluble vitamin, includes naturally occurring food folate and synthetic folic acid in supplements and fortified foods. Mammalian cells cannot synthesize folate and its deficiency has been implicated in a wide variety of disorders. A number of reviews have dwelt up on the health benefits associated with increased folate intakes and many countries possess mandatory folate enrichment programs. Lately, a number of studies have shown that high intakes of folic acid, the chemically synthesized form, but not natural folates, can cause adverse effects in some individuals such as the masking of the hematological manifestations of vitamin B(12) deficiency, leukemia, arthritis, bowel cancer, and ectopic pregnancies. As fermented milk products are reported to contain even higher amounts of folate produced by the food-grade bacteria, primarily lactic acid bacteria (LAB), the focus has primarily shifted toward the natural folate, that is, folate produced by LAB and levels of folate present in foods fermented by/or containing these valuable microorganisms. The proper selection and use of folate-producing microorganisms is an interesting strategy to increase "natural" folate levels in foods. An attempt has been made through this review to share information available in the literature on wide ranging aspects of folate, namely, bioavailability, analysis, deficiency, dietary requirements, and health effects of synthetic and natural folate, dairy and nondairy products as a potential source of folate, microorganisms with special reference to Streptococcus thermophilus as prolific folate producer, and recent insight on modulation of folate production levels in LAB by metabolic engineering. PMID:20492126

  6. 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors

    PubMed Central

    Wang, Lei; Wallace, Adrianne; Raghavan, Sudhir; Deis, Siobhan M.; Wilson, Mike R.; Yang, Si; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Orr, Steven; George, Christina; O’Connor, Carrie; Hou, Zhanjun; Mitchell-Ryan, Shermaine; Dann, Charles E.; Matherly, Larry H.; Gangjee, Aleem

    2016-01-01

    2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]-pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or β (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and β over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting. PMID:26317331

  7. The Intestinal Absorption of Folates

    PubMed Central

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I. David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  8. The intestinal absorption of folates.

    PubMed

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  9. Cadmium-induced neural tube defects and fetal growth restriction: Association with disturbance of placental folate transport.

    PubMed

    Zhang, Gui-Bin; Wang, Hua; Hu, Jun; Guo, Min-Yin; Wang, Ying; Zhou, Yan; Yu, Zhen; Fu, Lin; Chen, Yuan-Hua; Xu, De-Xiang

    2016-09-01

    Previous studies found that maternal Cd exposure on gestational day (GD)9 caused forelimb ectrodactyly and tail deformity, the characteristic malformations. The aim of the present study was to investigate whether maternal Cd exposure on GD8 induces fetal neural tube defects (NTDs). Pregnant mice were intraperitoneally injected with CdCl2 (2.5 or 5.0mg/kg) on GD8. Neither forelimb ectrodactyly nor tail deformity was observed in mice injected with CdCl2 on GD8. Instead, maternal Cd exposure on GD8 resulted in the incidence of NTDs. Moreover, maternal Cd exposure on GD8 resulted in fetal growth restriction. In addition, maternal Cd exposure on GD8 reduced placental weight and diameter. The internal space of maternal and fetal blood vessels in the labyrinth layer was decreased in the placentas of mice treated with CdCl2. Additional experiment showed that placental PCFT protein and mRNA, a critical folate transporter, was persistently decreased when dams were injected with CdCl2 on GD8. Correspondingly, embryonic folate content was markedly decreased in mice injected with CdCl2 on GD8, whereas Cd had little effect on folate content in maternal serum. Taken together, these results suggest that maternal Cd exposure during organogenesis disturbs transport of folate from maternal circulation to the fetuses through down-regulating placental folate transporters. PMID:27417525

  10. Vitamin B12 Deficiency and Elevated Folate Levels: An Unusual Cause of Generalized Tonic-Clonic Seizure

    PubMed Central

    Lubana, Sandeep Singh; Alfishawy, Mostafa; Singh, Navdeep; Atkinson, Sharon

    2015-01-01

    Patient: Male, 49 Final Diagnosis: Generalized tonic-clonic seizures in the setting of vitamin B12 deficiency and elevated folate levels Symptoms: Seizures Medication: — Clinical Procedure: None Specialty: Neurology Objective: Unknown ethiology Background: Vitamin B12 deficiency leads to abnormal myelination or demyelination, resulting in sub-acute combined degeneration, peripheral neuropathy, and psychiatric problems, including delusions, hallucinations, cognitive changes, depression, and dementia. Vitamin B12 deficiency also leads to brain shrinkage and neurodegenerative disorders. Case Report: We report the case of a 49-year-old man presenting with new-onset seizures one and a half years following subtotal gastrectomy due to stage IV gastric adenocarcinoma. The patient did not have any history of head injury. Laboratory tests were negative for any metabolic derangements. There were no signs of infection. MRI brain and EEG were normal and there were no changes in medications. Conclusions: In case of unexplained new-onset seizures, patients should be tested for vitamin B12 and folic acid levels and these should be done as part of the initial work-up. PMID:26101427

  11. Functional elements in the minimal promoter of the human proton-coupled folate transporter

    SciTech Connect

    Stark, Michal; Gonen, Nitzan; Assaraf, Yehuda G.

    2009-10-09

    The proton-coupled folate transporter (PCFT) is the dominant intestinal folate transporter, however, its promoter has yet to be revealed. Hence, we here cloned a 3.1 kb fragment upstream to the first ATG of the human PCFT gene and generated sequential deletion constructs evaluated in luciferase reporter assay. This analysis mapped the minimal promoter to 157 bp upstream to the first ATG. Crucial GC-box sites were identified within the minimal promoter and in its close vicinity which substantially contribute to promoter activity, as their disruption resulted in 94% loss of luciferase activity. We also identified upstream enhancer elements including YY1 and AP1 which, although distantly located, prominently transactivated the minimal promoter, as their inactivation resulted in 50% decrease in reporter activity. This is the first functional identification of the minimal PCFT promoter harboring crucial GC-box elements that markedly contribute to its transcriptional activation via putative interaction with distal YY1 and AP1 enhancer elements.

  12. Methotrexate transport mechanisms: the basis for targeted drug delivery and ß-folate-receptor-specific treatment.

    PubMed

    Fiehn, C

    2010-01-01

    Methotrexate (MTX) plays a pivotal role in the treatment of rheumatoid arthritis (RA). The transport mechanisms with which MTX reaches is target after application are an important part of MTX pharmacology and its concentration in target tissue such as RA synovial membrane might strongly influence the effectiveness of the drug. Physiological plasma protein binding of MTX to albumin is important for the distribution of MTX in the body and relative high concentrations of the drug are found in the liver. However, targeted drug delivery into inflamed joints and increased anti-arthritic efficiency can be obtained by covalent coupling of MTX ex-vivo to human serum albumin (MTX-HSA) or in-vivo to endogenous albumin mediated through the MTX-pro-drug AWO54. High expression of the folate receptor β (FR-β) on synovial macrophages of RA patients and its capacity to mediate binding and uptake of MTX has been demonstrated. To further improve drug treatment of RA, FR-β specific drugs have been developed and were characterised for their therapeutic potency in synovial inflammation. Therefore, different approaches to improve folate inhibitory and FR-β specific therapy of RA beyond MTX are in development and will be described. PMID:21044432

  13. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    SciTech Connect

    Lasry, Inbal; Berman, Bluma; Glaser, Fabian; Jansen, Gerrit; Assaraf, Yehuda G.

    2009-08-28

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.

  14. MRP1 mediates folate transport and antifolate sensitivity in Plasmodium falciparum.

    PubMed

    Rijpma, Sanna R; van der Velden, Maarten; Bilos, Albert; Jansen, Robert S; Mahakena, Sunny; Russel, Frans G M; Sauerwein, Robert W; van de Wetering, Koen; Koenderink, Jan B

    2016-02-01

    Multidrug resistance-associated proteins (MRP) of Plasmodium falciparum have been associated with altered drug sensitivity. Knowledge on MRP substrate specificity is indispensible for the characterization of resistance mechanisms and identifying its physiological roles. An untargeted metabolomics approach detected decreased folate concentrations in red blood cells infected with schizont stage parasites lacking expression of MRP1. Furthermore, a tenfold decrease in sensitivity toward the folate analog methotrexate was detected for parasites lacking MRP1. PfMRP1 is involved in the export of folate from parasites into red blood cells and is therefore a relevant factor for efficient malaria treatment through the folate pathway. PMID:26900081

  15. Cerebral perfusion and oxygenation are impaired by folate deficiency in rat: absolute measurements with noninvasive near-infrared spectroscopy

    PubMed Central

    Hallacoglu, Bertan; Sassaroli, Angelo; Fantini, Sergio; Troen, Aron M

    2011-01-01

    Brain microvascular pathology is a common finding in Alzheimer's disease and other dementias. However, the extent to which microvascular abnormalities cause or contribute to cognitive impairment is unclear. Noninvasive near-infrared spectroscopy (NIRS) can address this question, but its use for clarifying the role of microvascular dysfunction in dementia has been limited due to theoretical and practical considerations. We developed a new noninvasive NIRS method to obtain quantitative, dynamic measurements of absolute brain hemoglobin concentration and oxygen saturation and used it to show significant cerebrovascular impairments in a rat model of diet-induced vascular cognitive impairment. We fed young rats folate-deficient (FD) and control diets and measured absolute brain hemoglobin and hemodynamic parameters at rest and during transient mild hypoxia and hypercapnia. With respect to control animals, FD rats featured significantly lower brain hemoglobin concentration (72±4 μmol/L versus 95±6 μmol/L) and oxygen saturation (54%±3% versus 65%±2%). By contrast, resting arterial oxygen saturation was the same for both groups (96%±4%), indicating that decrements in brain hemoglobin oxygenation were independent of blood oxygen carrying capacity. Vasomotor reactivity in response to hypercapnia was also impaired in FD rats. Our results implicate microvascular abnormality and diminished oxygen delivery as a mechanism of cognitive impairment. PMID:21386853

  16. Delineating the extracellular water-accessible surface of the proton-coupled folate transporter.

    PubMed

    Duddempudi, Phaneendra Kumar; Goyal, Raman; Date, Swapneeta Sanjay; Jansen, Michaela

    2013-01-01

    The proton-coupled folate transporter (PCFT) was recently identified as the major uptake route for dietary folates in humans. The three-dimensional structure of PCFT and its detailed interplay with function remain to be determined. We screened the water-accessible extracellular surface of HsPCFT using the substituted-cysteine accessibility method, to investigate the boundaries between the water-accessible surface and inaccessible buried protein segments. Single-cysteines, engineered individually at 40 positions in a functional cysteine-less HsPCFT background construct, were probed for plasma-membrane expression in Xenopus oocytes with a bilayer-impermeant primary-amine-reactive biotinylating agent (sulfosuccinimidyl 6-(biotinamido) hexanoate), and additionally for water-accessibility of the respective engineered cysteine with the sulfhydryl-selective biotinylating agent 2-((biotinoyl)amino)ethyl methanethiosulfonate. The ratio between Cys-selective over amine-selective labeling was further used to evaluate three-dimensional models of HsPCFT generated by homology / threading modeling. The closest homologues of HsPCFT with a known experimentally-determined three-dimensional structure are all members of one of the largest membrane protein super-families, the major facilitator superfamily (MFS). The low sequence identity--14% or less--between HsPCFT and these templates necessitates experiment-based evaluation and model refinement of homology/threading models. With the present set of single-cysteine accessibilities, the models based on GlpT and PepTSt are most promising for further refinement. PMID:24205192

  17. Mechanistic target of rapamycin (mTOR) regulates trophoblast folate uptake by modulating the cell surface expression of FR-α and the RFC.

    PubMed

    Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2016-01-01

    Folate deficiency in fetal life is strongly associated with structural malformations and linked to intrauterine growth restriction. In addition, limited availability of methyl donors, such as folate, during pregnancy may result in abnormal gene methylation patterns and contribute to developmental programming. The fetus is dependent on placental transfer of folate, however the molecular mechanisms regulating placental folate transport are unknown. We used cultured primary human trophoblast cells to test the hypothesis that mechanistic target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate folate transport by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal folate uptake. Folate uptake stimulated by insulin + IGF-1 was mediated by mTORC2 but did not involve mTORC1. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of FR-α and RFC transporter isoforms without affecting global protein expression. Inhibition of the ubiquitin ligase Nedd4-2 had no effect on folate transport. In conclusion, we report for the first time that mTORC1/C2 are positive regulators of cellular folate uptake by modulating the cell surface abundance of specific transporter isoforms. We propose that regulation of placental folate transport by mTOR signaling provide a direct link between placental function, gene methylation and fetal programming. PMID:27562465

  18. Mechanistic target of rapamycin (mTOR) regulates trophoblast folate uptake by modulating the cell surface expression of FR-α and the RFC

    PubMed Central

    Rosario, Fredrick J.; Powell, Theresa L.; Jansson, Thomas

    2016-01-01

    Folate deficiency in fetal life is strongly associated with structural malformations and linked to intrauterine growth restriction. In addition, limited availability of methyl donors, such as folate, during pregnancy may result in abnormal gene methylation patterns and contribute to developmental programming. The fetus is dependent on placental transfer of folate, however the molecular mechanisms regulating placental folate transport are unknown. We used cultured primary human trophoblast cells to test the hypothesis that mechanistic target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate folate transport by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal folate uptake. Folate uptake stimulated by insulin + IGF-1 was mediated by mTORC2 but did not involve mTORC1. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of FR-α and RFC transporter isoforms without affecting global protein expression. Inhibition of the ubiquitin ligase Nedd4-2 had no effect on folate transport. In conclusion, we report for the first time that mTORC1/C2 are positive regulators of cellular folate uptake by modulating the cell surface abundance of specific transporter isoforms. We propose that regulation of placental folate transport by mTOR signaling provide a direct link between placental function, gene methylation and fetal programming. PMID:27562465

  19. Role of the tryptophan residues in proton-coupled folate transporter (PCFT-SLC46A1) function.

    PubMed

    Najmi, Mitra; Zhao, Rongbao; Fiser, Andras; Goldman, I David

    2016-07-01

    The proton-coupled folate transporter (PCFT) mediates folate absorption across the brush-border membrane of the proximal small intestine and is required for folate transport across the choroid plexus into the cerebrospinal fluid. In this study, the functional role and accessibility of the seven PCFT Trp residues were assessed by the substituted-cysteine accessibility method. Six Trp residues at a lipid-aqueous interface tolerated Cys substitution in terms of protein stability and function. W85C, W202C, and W213C were accessible to N-biotinyl aminoethylmethanethiosulfonate; W48C and W299C were accessible only after treatment with dithiotreitol (DTT), consistent with modification of these residues by an endogenous thiol-reacting molecule and their extracellular location. Neither W107C nor W333C was accessible (even after DTT) consistent with their cytoplasmic orientation. Biotinylation was blocked by pemetrexed only for the W48C (after DTT), W85C, W202C residues. Function was impaired only for the W299C PCFT mutant located in the 4th external loop between the 7th and 8th transmembrane helices. Despite its aqueous location, function could only be fully preserved with Phe and, to a lesser extent, Ala substitutions. There was a 6.5-fold decrease in the pemetrexed influx Vmax and a 3.5- and 6-fold decrease in the influx Kt and Ki, respectively, for the W299S PCFT. The data indicate that the hydrophobicity of the W299 residue is important for function suggesting that during the transport cycle this residue interacts with the lipid membrane thereby impacting on the oscillation of the carrier and, indirectly, on the folate binding pocket. PMID:27251438

  20. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children

    PubMed Central

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C.; Reyes-López, Miguel A.; Quiñones, Luis A.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11–5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62–78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42–191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94–31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05–6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19–31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  1. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children.

    PubMed

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C; Reyes-López, Miguel A; Quiñones, Luis A

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11-5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62-78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42-191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94-31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05-6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19-31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  2. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Strobbe, Simon; Kiekens, Filip; Storozhenko, Sergei; De Steur, Hans; Gellynck, Xavier; Lambert, Willy; Stove, Christophe; Van Der Straeten, Dominique

    2015-10-01

    Biofortification of staple crops could help to alleviate micronutrient deficiencies in humans. We show that folates in stored rice grains are unstable, which reduces the potential benefits of folate biofortification. We obtain folate concentrations that are up to 150 fold higher than those of wild-type rice by complexing folate to folate-binding proteins to improve folate stability, thereby enabling long-term storage of biofortified high-folate rice grains. PMID:26389575

  3. Impaired Clearance of Methotrexate in Organic Anion Transporter 3 (Slc22a8) Knockout Mice: A Gender Specific Impact of Reduced Folates

    PubMed Central

    VanWert, Adam L.; Sweet, Douglas H.

    2010-01-01

    Purpose To elucidate the role of the renal basolateral transporter, Oat3, in the disposition of methotrexate. Materials and Methods Chinese hamster ovary cells expressing mouse Oat3 were used to determine kinetics and specificity of inhibition of methotrexate transport. Methotrexate clearance was then examined in vivo in wildtype and Oat3 knockout mice. Results NSAIDs, ß-lactams, and uremic toxins inhibited mOat3-mediated methotrexate uptake by 70–100%, while folate, leucovorin, and 5-methyltetrahydrofolate inhibited transport by 25–50%. A Km of 60.6±9.3 μM for methotrexate transport was determined. Oat3 knockout mice exhibited reduced methotrexate-to-inulin clearance ratios versus wildtype. Male wildtype mice, but not knockouts or females, demonstrated significantly accelerated methotrexate clearance in response to reduced folates. Reduced folates also markedly inhibited hepatic methotrexate accumulation in males, but not females, and the response was independent of Oat3 function. Conclusions Oat3 contributes to methotrexate clearance, but represents only one component responsible for methotrexate's elimination. Therefore, in patients, dysfunctional hOAT3 polymorphisms or drug competition for hOAT3 transport may severely impact methotrexate elimination only when redundant means of methotrexate removal are also compromised. Furthermore, the present findings suggest that reduced-folate administration only influences methotrexate disposition in males, with the renal reduced-folate response influenced by OAT3 function. PMID:17660957

  4. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring.

    PubMed

    Jadavji, N M; Deng, L; Malysheva, O; Caudill, M A; Rozen, R

    2015-08-01

    Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. The goal of this study was to investigate the behavioral and neurobiological impact of a maternal genetic deficiency in MTHFR or maternal nutritional deficiency of folate or choline during pregnancy on 3-week-old Mthfr(+/+) offspring. Mthfr(+/+) and Mthfr(+/-) females were placed on control diets (CD); and Mthfr(+/+) females were placed on folate-deficient diets (FD) or choline-deficient diets (ChDD) throughout pregnancy and lactation until their offspring were 3weeks of age. Short-term memory was assessed in offspring, and hippocampal tissue was evaluated for morphological changes, apoptosis, proliferation and choline metabolism. Maternal MTHFR deficiency resulted in short-term memory impairment in offspring. These dams had elevated levels of plasma homocysteine when compared with wild-type dams. There were no differences in plasma homocysteine in offspring. Increased apoptosis and proliferation was observed in the hippocampus of offspring from Mthfr(+/-) mothers. In the maternal FD and ChDD study, offspring also showed short-term memory impairment with increased apoptosis in the hippocampus; increased neurogenesis was observed in ChDD offspring. Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory

  5. Folate in Skin Cancer Prevention

    PubMed Central

    Williams, J.D.; Jacobson, Elaine L.; Kim, H.; Kim, M.; Jacobson, M.K.

    2013-01-01

    Skin, the largest, most exposed organ of the body, provides a protective interface between humans and the environment. One of its primary roles is protection against exposure to sunlight, a major source of skin damage where the UV radiation (UVR) component functions as a complete carcinogen. Melanin pigmentation and the evolution of dark skin is an adaptive protective mechanism against high levels of UVR exposure. Recently, the hypothesis that skin pigmentation balances folate preservation and Vitamin D production has emerged. Both micronutrients are essential for reproductive success. Photodegradation of bioactive folates suggests a mechanism for the increased tendency of populations of low melanin pigmentation residing in areas of high UV exposure to develop skin cancers. Folate is proposed as a cancer prevention target for its role in providing precursors for DNA repair and replication, as well as its ability to promote genomic integrity through the generation of methyl groups needed for control of gene expression. The cancer prevention potential of folate has been demonstrated by large-scale epidemiological and nutritional studies indicating that decreased folate status increases the risk of developing certain cancers. While folate deficiency has been extensively documented by analysis of human plasma, folate status within skin has not been widely investigated. Nevertheless, inefficient delivery of micronutrients to skin and photolysis of folate argue that documented folate deficiencies will be present if not exacerbated in skin. Our studies indicate a critical role for folate in skin and the potential to protect sun exposed skin by effective topical delivery as a strategy for cancer prevention. PMID:22116700

  6. Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor α.

    PubMed

    Pourié, Grégory; Martin, Nicolas; Bossenmeyer-Pourié, Carine; Akchiche, Nassila; Guéant-Rodriguez, Rosa Maria; Geoffroy, Andréa; Jeannesson, Elise; El Hajj Chehadeh, Sarah; Mimoun, Khalid; Brachet, Patrick; Koziel, Violette; Alberto, Jean-Marc; Helle, Deborah; Debard, Renée; Leininger, Brigitte; Daval, Jean-Luc; Guéant, Jean-Louis

    2015-09-01

    Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway. PMID:26018677

  7. Role of the fourth transmembrane domain in proton-coupled folate transporter function as assessed by the substituted cysteine accessibility method.

    PubMed

    Shin, Daniel Sanghoon; Zhao, Rongbao; Fiser, Andras; Goldman, I David

    2013-06-15

    The proton-coupled folate transporter (PCFT, SLC46A1) mediates folate transport across the apical brush-border membrane of the proximal small intestine and the basolateral membrane of choroid plexus ependymal cells. Two loss-of-function mutations in PCFT, which are the basis for hereditary folate malabsorption, have been identified within the fourth transmembrane domain (TMD4) in subjects with this disorder. We have employed the substituted Cys accessibility method (SCAM) to study the accessibilities of all residues in TMD4 and their roles in folate substrate binding to the carrier. When residues 146-167 were replaced by Cys, all except R148C were expressed at the cell surface. Modification of five of these substituted Cys residues (positions 147, 152, 157, 158, and 161) by methanethiosulfonate (MTS) reagents led to reduction of PCFT function. All five residues could be labeled with N-biotinylaminoethyl-MTS, and this could be blocked by the high-affinity PCFT substrate pemetrexed. Pemetrexed also protected PCFT mutant function from inhibitory modification of the substituted Cys at positions 157, 158, and 161 by a MTS. The findings indicate that these five residues in TMD4 are accessible to the aqueous translocation pathway, play a role in folate substrate binding, and are likely located within or near the folate binding pocket. A homology model of PCFT places three of these residues, Phe¹⁵⁷, Gly¹⁵⁸, and Leu¹⁶¹, within a breakpoint in the midportion of TMD4, a region that likely participates in alterations in the PCFT conformational state during carrier cycling. PMID:23552283

  8. Gene expression profiling in the fetal cardiac tissue after folate and low dose trichloroethylene exposure

    PubMed Central

    Caldwell, Patricia T.; Manziello, Ann; Howard, Jamie; Palbykin, Brittany; Runyan, Raymond B.; Selmin, Ornella

    2014-01-01

    Background Previous studies show gene expression alterations in rat embryo hearts and cell lines that correspond to the cardio-teratogenic effects of trichloroethylene (TCE) in animal models. One potential mechanism of TCE teratogenicity may be through altered regulation of calcium homeostatic genes with a corresponding inhibition of cardiac function. It has been suggested that TCE may interfere with the folic acid/methylation pathway in liver and kidney and alter gene regulation by epigenetic mechanisms. According to this hypothesis, folate supplementation in the maternal diet should counteract TCE effects on gene expression in the embryonic heart. Approach To identify transcriptional targets altered in the embryonic heart after exposure to TCE, and possible protective effects of folate, we used DNA microarray technology to profile gene expression in embryonic mouse hearts with maternal TCE exposure and dietary changes in maternal folate. Results Exposure to low doses of TCE (10ppb) caused extensive alterations in transcripts encoding proteins involved in transport, ion channel, transcription, differentiation, cytoskeleton, cell cycle and apoptosis. Exogenous folate did not offset the effects of TCE exposure on normal gene expression and both high and low levels of folate produced additional significant changes in gene expression. Conclusions A mechanism where TCE induces a folate deficiency does not explain altered gene expression patterns in the embryonic mouse heart. The data further suggest that use of folate supplementation, in the presence of this toxin, may be detrimental and non-protective of the developing embryo. PMID:19813261

  9. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  10. Initiation of Protein Synthesis by Folate-Sufficient and Folate-Deficient Streptococcus faecalis R: Partial Purification and Properties of Methionyl-Transfer Ribonucleic Acid Synthetase and Methionyl-Transfer Ribonucleic Acid Formyltransferase

    PubMed Central

    Samuel, Charles E.; Rabinowitz, Jesse C.

    1974-01-01

    The initiation of protein synthesis by Streptococcus faecalis R grown in folate-free culture occurs without N-formylation or N-acylation of methionyl-tRNAfMet. Methionyl-tRNA synthetase and methionyl-tRNA formyltransferase were partially purified from S. faecalis grown under normal culture conditions in the presence of folate (plus-folate); the general properties of the enzymes were determined and compared with the properties of the enzymes purified from wild-type cells grown in the absence of folate (minus-folate). S. faecalis methionyl-tRNA synthetase displays optimal activity at pH values between 7.2 and 7.8, requires Mg2+, and has an apparent molecular weight of 106,000, as determined by gel filtration, and 127,000, as determined by sucrose density gradient centrifugation. The Km values of plus-folate methionyl-tRNA synthetase for each of the three substrates in the aminoacylation reaction (l-methionine, adenosine triphosphate, and tRNA) are nearly identical to the respective substrate Michaelis constants of minus-folate methionyl-tRNA synthetase. Furthermore, both plus- and minus-folate S. faecalis methionyl-tRNA synthetases catalyze, at equal rates, the aminoacylation of tRNAfMet and tRNAmMet isolated from either plus-folate or minus-folate cells. S. faecalis methionyl-tRNA formyltransferase displays optimal activity at pH values near 7.0, is stimulated by Mg2+, and has an apparent molecular weight of approximately 29,900 when estimated by sucrose density gradient centrifugation. The Km value of plus-folate formyltransferase for plus-folate Met-tRNAfMet does not differ significantly from that of minus-folate formyltransferase for minus-folate Met-tRNAfMet. Both enzymes can utilize either 10-formyltetrahydrofolate or 10-formyltetrahydropteroyltriglutamate as the formyl donor; the Michaelis constant for the monoglutamyl pteroyl coenzyme is slightly less than that of the triglutamyl pteroyl coenzyme for both transformylases. Tetrahydrofolate and uncharged t

  11. Effects of Cu deficiency on photosynthetic electron transport

    SciTech Connect

    Droppa, M.; Terry, N.; Horvath, G.

    1984-04-01

    The role of copper (Cu) in photosynthetic electron transport was explored by using Cu deficiency in sugar beet as an experimental approach. Copper influenced electron transport at two sites in addition to plastocyanin. Under mild deficiency (0.84 nmol of Cu per cm/sup 2/ of leaf area), electron transport between the two photosystems (PS) is inhibited but not electron transport within PS I or PS II measured separately. The chlorophyll/plastoquinone ratio was normal in Cu-deficient plants. However, the breakpoint in the Arrhenius plot of electron transport was shifted towards a higher temperature. It is concluded that Cu is necessary to maintain the appropriate membrane fluidity to ensure the mobility of plastoquinone molecules to transfer electrons between the two photosystems. Under severe deficiency (0.22 nmol of Cu per cm/sup 2/ of leaf area) both PS II and PS I electron transports were inhibited and to the same extent. PS II electron transport activity could not be restored by adding artifical electron donors. Polypeptides with M/sub r/s of 28,000 and 13,500 were missing in Cu-deficient chloroplast membranes. In PS II particles prepared from normal chloroplasts of spinach, 2 atoms of Cu per reaction center are present. We conclude that Cu influences PS II electron transport either directly, by participation in electron transfer as a constituent of an electron carrier, or indirectly, via the polypeptide composition of the membrane in the PS II complex.

  12. Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry†

    PubMed Central

    Wang, Lei; Cherian, Christina; Desmoulin, Sita Kugel; Polin, Lisa; Deng, Yijun; Wu, Jianmei; Hou, Zhanjun; White, Kathryn; Kushner, Juiwanna; Matherly, Larry H.; Gangjee, Aleem

    2010-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and 4-6 carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FRα, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR- and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC. PMID:20085328

  13. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    Folate and folic acid are forms of the B vitamin that are involved in the synthesis, repair and functioning of DNA and are required for the production and maintenance of cells. Low levels of folate have been associated with several forms of cancer, including colon cancer. Aberran...

  14. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects

    PubMed Central

    Czeizel, Andrew E.; Dudás, Istvan; Vereczkey, Attila; Bánhidy, Ferenc

    2013-01-01

    Diet, particularly vitamin deficiency, is associated with the risk of birth defects. The aim of this review paper is to show the characteristics of common and severe neural-tube defects together with congenital heart defects (CHD) as vitamin deficiencies play a role in their origin. The findings of the Hungarian intervention (randomized double-blind and cohort controlled) trials indicated that periconceptional folic acid (FA)-containing multivitamin supplementation prevented the major proportion (about 90%) of neural-tube defects (NTD) as well as a certain proportion (about 40%) of congenital heart defects. Finally the benefits and drawbacks of three main practical applications of folic acid/multivitamin treatment such as (i) dietary intake; (ii) periconceptional supplementation; and (iii) flour fortification are discussed. The conclusion arrived at is indeed confirmation of Benjamin Franklin’s statement: “An ounce of prevention is better than a pound of care”. PMID:24284617

  15. How well do blood folate concentrations predict dietary folate intakes in a sample of Canadian lactating women exposed to high levels of folate? An observational study

    PubMed Central

    Houghton, Lisa A; Sherwood, Kelly L; O'Connor, Deborah L

    2007-01-01

    Background In 1998, mandatory folic acid fortification of white flour and select cereal grain products was implemented in Canada with the intention to increase dietary folate intakes of reproducing women. Folic acid fortification has produced a dramatic increase in blood folate concentrations among reproductive age women, and a reduction in neural tube defect (NTD)-affected pregnancies. In response to improved blood folate concentrations, many health care professionals are asking whether a folic acid supplement is necessary for NTD prevention among women with high blood folate values, and how reliably high RBC folate concentrations predict folate intakes shown in randomized controlled trials to be protective against NTDs. The objective of this study was to determine how predictive blood folate concentrations and folate intakes are of each other in a sample of well-educated lactating Canadian women exposed to high levels of synthetic folate. Methods The relationship between blood folate concentrations and dietary folate intakes, determined by weighed food records, were assessed in a sample of predominantly university-educated lactating women (32 ± 4 yr) at 4-(n = 53) and 16-wk postpartum (n = 55). Results Median blood folate concentrations of all participants were well above plasma and RBC folate cut-off levels indicative of deficiency (6.7 and 317 nmol/L, respectively) and all, except for 2 subjects, were above the cut-off for NTD-risk reduction (>906 nmol/L). Only modest associations existed between total folate intakes and plasma (r = 0.46, P < 0.001) and RBC (r = 0.36, P < 0.01) folate concentrations at 16-wk postpartum. Plasma and RBC folate values at 16-wk postpartum correctly identified the quartile of folate intake of only 26 of 55 (47%) and 18 of 55 (33%) of subjects, respectively. The mean RBC folate concentration of women consuming 151–410 μg/d of synthetic folate (2nd quartile of intake) did not differ from that of women consuming >410 μg/d (3rd and

  16. Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content.

    PubMed

    Dong, Wei; Cheng, Zhi-jun; Lei, Cai-lin; Wang, Xiao-le; Wang, Jiu-lin; Wang, Jie; Wu, Fu-qing; Zhang, Xin; Guo, Xiu-ping; Zhai, Hu-qu; Wan, Jian-min

    2014-12-01

    Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P < 0.01). Overexpression of two closely related enzymes dihydrofolate synthase (DHFS) and folypolyglutamate synthase (FPGS), which perform the first and further additions of glutamates, produced slightly increase in seed folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants. PMID:25432789

  17. Seasonal folate serum concentrations at different nutrition.

    PubMed

    Krajcovicová-Kudlácková, Marica; Valachovicová, Martina; Blazícek, Pavel

    2013-03-01

    Folic acid (vitamin B9) rich sources are leafy green vegetables, legumes, whole grains, egg yolk, liver, and citrus fruit. In winter and early spring, there could be insufficient supply of vegetables and fruit and thus lower intake of folic acid and possible deficient folic acid blood concentrations. The aim of the study was to assess serum vitamin B9 concentrations depending on the season (the last third of winter - March, the last third of spring - May/June and the beginning of autumn - September) and different nutritional habits (apparently healthy adults non-smoking, non-obese 366 subjects; 204 persons of general population on traditional mixed diet; and 162 long-term lacto-ovo vegetarians). In general population group, the mean concentration of folate in March was low (narrowly above lower reference limit) with high incidence of deficient values - 31.5%. In May/ June vs. March was folate concentration significantly higher with deficient values in 13.2% of individuals. The highest serum values were observed in September with 11.1% of deficient values. In vegetarian vs. non-vegetarian group, significantly higher folate concentrations were found in each season with no deficient values. Folate and vitamin B12 are the regulators of homocysteinemia; plant food lacks of vitamin B12. The deficient folate serum values in March caused the mild hyperhomocysteinemia in 12.3% of individuals vs. only 5.9% and 4.8% of subjects in groups investigated in May/June and September. In spite of high folate concentrations in all investigations and no deficient value, 19.6-22.8% of vegetarians suffer from mild hyperhomocysteinemia as a consequence of deficient vitamin B12 concentrations in one quarter of subjects. As far as the general population is concerned, our findings suggest that winter and early spring are critical seasons in regards to optimal serum folate concentrations. PMID:23741898

  18. Folate and vitamin B12 status in schizophrenic patients

    PubMed Central

    Saedisomeolia, Ahmad; Djalali, Mahmoud; Moghadam, Ali Malekshahi; Ramezankhani, Ozra; Najmi, Laya

    2011-01-01

    BACKGROUND: This study aimed to determine red blood cell (RBC) and serum folate and vitamin B12 levels as well as their intake in schizophrenic patients. METHODS: The folate and cobalamin status of 60 schizophrenic patients (15-55 years) was compared to 60 matched healthy controls using Radio Isotope Dilution Assay (RIDA). RESULTS: Serum and RBC folate in schizophrenic patients was significantly lower than the control group. Mean serum cobalamin levels in the schizophrenic group were higher than controls. CONCLUSIONS: This study showed that folate deficiency is common in schizophrenic patients; therefore, it is important to pay attention to folate levels in these patients. PMID:22247731

  19. Genetics Home Reference: hereditary folate malabsorption

    MedlinePlus

    ... folates) from food. Folates are important for many cell functions, including the production of DNA and its chemical ... the mutated protein is not transported to the cell membrane, and so it is unable to perform its function. A lack of functional PCFT impairs the body's ...

  20. Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase

    PubMed Central

    Wang, Lei; Desmoulin, Sita Kugel; Cherian, Christina; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Fulterer, Andreas; Chang, Min-Hwang; Mitchell, Shermaine; Stout, Mark; Romero, Michael F.; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2011-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series. PMID:21879757

  1. Substituted cysteine accessibility reveals a novel transmembrane 2-3 reentrant loop and functional role for transmembrane domain 2 in the human proton-coupled folate transporter.

    PubMed

    Wilson, Mike R; Hou, Zhanjun; Matherly, Larry H

    2014-09-01

    The proton-coupled folate transporter (PCFT) is a folate-proton symporter highly expressed in solid tumors that can selectively target cytotoxic antifolates to tumors under acidic microenvironment conditions. Predicted topology models for PCFT suggest that the loop domain between transmembrane domains (TMDs) 2 and 3 resides in the cytosol. Mutations involving Asp-109 or Arg-113 in the TMD2-3 loop result in loss of activity. By structural homology to other solute carriers, TMD2 may form part of the PCFT substrate binding domain. In this study we mutated the seven cysteine (Cys) residues of human PCFT to serine, creating Cys-less PCFT. Thirty-three single-Cys mutants spanning TMD2 and the TMD2-3 loop in a Cys-less PCFT background were transfected into PCFT-null HeLa cells. All 33 mutants were detected by Western blotting, and 28 were active for [(3)H]methotrexate uptake at pH 5.5. For the active residues, we performed pulldown assays with membrane-impermeable 2-aminoethyl methanethiosulfonate-biotin and streptavidin beads to determine their aqueous-accessibilities. Multiple residues in TMD2 and the TMD2-3 loop domain reacted with 2-aminoethyl methanethiosulfonate-biotin, establishing aqueous accessibilities. Pemetrexed pretreatment inhibited biotinylation of TMD2 mutants G93C and F94C, and biotinylation of these residues inhibited methotrexate transport activity. Our results suggest that the TMD 2-3 loop domain is aqueous-accessible and forms a novel reentrant loop structure. Residues in TMD2 form an aqueous transmembrane pathway for folate substrates, and Gly-93 and Phe-94 may contribute to a substrate binding domain. Characterization of PCFT structure is essential to understanding the transport mechanism including the critical determinants of substrate binding. PMID:25053408

  2. Substituted Cysteine Accessibility Reveals a Novel Transmembrane 2–3 Reentrant Loop and Functional Role for Transmembrane Domain 2 in the Human Proton-coupled Folate Transporter*

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun; Matherly, Larry H.

    2014-01-01

    The proton-coupled folate transporter (PCFT) is a folate-proton symporter highly expressed in solid tumors that can selectively target cytotoxic antifolates to tumors under acidic microenvironment conditions. Predicted topology models for PCFT suggest that the loop domain between transmembrane domains (TMDs) 2 and 3 resides in the cytosol. Mutations involving Asp-109 or Arg-113 in the TMD2-3 loop result in loss of activity. By structural homology to other solute carriers, TMD2 may form part of the PCFT substrate binding domain. In this study we mutated the seven cysteine (Cys) residues of human PCFT to serine, creating Cys-less PCFT. Thirty-three single-Cys mutants spanning TMD2 and the TMD2-3 loop in a Cys-less PCFT background were transfected into PCFT-null HeLa cells. All 33 mutants were detected by Western blotting, and 28 were active for [3H]methotrexate uptake at pH 5.5. For the active residues, we performed pulldown assays with membrane-impermeable 2-aminoethyl methanethiosulfonate-biotin and streptavidin beads to determine their aqueous-accessibilities. Multiple residues in TMD2 and the TMD2-3 loop domain reacted with 2-aminoethyl methanethiosulfonate-biotin, establishing aqueous accessibilities. Pemetrexed pretreatment inhibited biotinylation of TMD2 mutants G93C and F94C, and biotinylation of these residues inhibited methotrexate transport activity. Our results suggest that the TMD 2–3 loop domain is aqueous-accessible and forms a novel reentrant loop structure. Residues in TMD2 form an aqueous transmembrane pathway for folate substrates, and Gly-93 and Phe-94 may contribute to a substrate binding domain. Characterization of PCFT structure is essential to understanding the transport mechanism including the critical determinants of substrate binding. PMID:25053408

  3. Folate content in different strawberry genotypes and folate status in healthy subjects after strawberry consumption.

    PubMed

    Tulipani, Sara; Romandini, Stefania; Alvarez Suarez, Josè M; Capocasa, Franco; Mezzetti, Bruno; Busco, Franco; Bamonti, Fabrizia; Novembrino, Cristina; Battino, Maurizio

    2008-01-01

    Folate is a micronutrient essential in a variety of biological processes, and an adequate dietary folate intake seems to play a crucial role in health promotion and disease prevention. The importance of strawberry as a natural food source of folate has been recognised only recently, and few pilot studies have investigated the impact of strawberry intake on human folate status. In this study, firstly, we evaluated the folate content of different commercial varieties (Alba, Irma, Patty, Adria, Sveva) and advanced selections (AN99.78.51; AN94.414.52; AN00.239.55) of strawberry. Significant differences were observed among genotypes, confirming the breeding approach as a reliable tool to increase folate content in strawberry. Secondly, the variety Sveva was selected for a medium-term strawberry consumption study, in order to check if a 2-weeks strawberry intake could have any effects on folate status and plasma homocysteine levels, in healthy subjects. An average 3.4% increase in serum folate was observed, however without any statistical significance, as shown by reference change value of each analyte in each subject. This study should be considered as a first pilot investigation, and further investigations are strongly hoped to evaluate the potential impact of strawberry consumption on human folate status, particularly in the case of a previously diagnosed deficiency. PMID:19706971

  4. Intact Lysosome Transport and Phagosome Function Despite Kinectin Deficiency

    PubMed Central

    Plitz, Thomas; Pfeffer, Klaus

    2001-01-01

    The mechanism of cargo coupling to kinesin motor proteins is a fundamental issue in organelle transport along microtubules. Kinectin has been postulated to function as a membrane anchor protein that attaches various organelles to the prototype motor protein kinesin. To verify the biological relevance of kinectin in vivo, the murine kinectin gene was disrupted by homologous recombination. Unexpectedly, kinectin-deficient mice were viable and fertile, and no gross abnormalities were observed up to 1 year of age. The assembly of the endoplasmic reticulum was essentially unaffected in kinectin-deficient cells. Mitochondria appeared to be correctly distributed throughout the cytoplasm along the microtubules. Furthermore, the stationary distribution and the bidirectional movement of lysosomes did not depend on kinectin. Kinectin-deficient phagocytes internalized and cleared bacteria, indicating that phagosome trafficking and maturation are functional without kinectin. Thus, these data unequivocally indicate that kinectin is not essential for trafficking of lysosomes, phagosomes, and mitochondria in vivo. PMID:11486041

  5. Relative bioavailability of folate from the traditional food plant Moringa oleifera L. as evaluated in a rat model.

    PubMed

    Saini, R K; Manoj, P; Shetty, N P; Srinivasan, K; Giridhar, P

    2016-01-01

    Moringa oleifera is an affordable and rich source of dietary folate. Quantification of folate by HPLC showed that 5-formyl-5,6,7,8-tetrahydrofolic acid (502.1 μg/100 g DW) and 5,6,7,8-tetrahydrofolic acid (223.9 μg/100 g DW) as the most dominant forms of folate in M. oleifera leaves. The bioavailability of folate and the effects of folate depletion and repletion on biochemical and molecular markers of folate status were investigated in Wistar rats. Folate deficiency was induced by keeping the animals on a folate deficient diet with 1 % succinyl sulfathiazole (w/w). After the depletion period, animals were repleted with different levels of folic acid and M. oleifera leaves as a source of folate. Feeding the animals on a folate deficient diet for 7 weeks caused a significant (3.4-fold) decrease in serum folate content, compared to non-depleted control animals. Relative bioavailability of folate from dehydrated leaves of M. oleifera was 81.9 %. During folate depletion and repletion, no significant changes in liver glycine N-methyl transferase and 5-methyltetrahydrofolate-homocysteine methyltransferase expression were recorded. In RDA calculations, only 50 % of natural folate is assumed to be bioavailable. Therefore, the bioavailability of folate from Moringa is much higher, suggesting that M. oleifera based food can be used as a significant source of folate. PMID:26787970

  6. Creatine transporter deficiency: Novel mutations and functional studies.

    PubMed

    Ardon, O; Procter, M; Mao, R; Longo, N; Landau, Y E; Shilon-Hadass, A; Gabis, L V; Hoffmann, C; Tzadok, M; Heimer, G; Sada, S; Ben-Zeev, B; Anikster, Y

    2016-09-01

    X-linked cerebral creatine deficiency (MIM 300036) is caused by deficiency of the creatine transporter encoded by the SLC6A8 gene. Here we report three patients with this condition from Israel. These unrelated patients were evaluated for global developmental delays and language apraxia. Borderline microcephaly was noted in one of them. Diagnosis was prompted by brain magnetic resonance imaging and spectroscopy which revealed normal white matter distribution, but absence of the creatine peak in all three patients. Biochemical testing indicated normal plasma levels of creatine and guanidinoacetate, but an increased urine creatine/creatinine ratio. The diagnosis was confirmed by demonstrating absent ([14])C-creatine transport in fibroblasts. Molecular studies indicated that the first patient is hemizygous for a single nucleotide change substituting a single amino acid (c.619 C > T, p.R207W). Expression studies in HeLa cells confirmed the causative role of the R207W substitution. The second patient had a three base pair deletion in the SLC6A8 gene (c.1222_1224delTTC, p.F408del) as well as a single base change (c.1254 + 1G > A) at a splicing site in the intron-exon junction of exon 8, the latter occurring de novo. The third patient, had a three base pair deletion (c.1006_1008delAAC, p.N336del) previously reported in other patients with creatine transporter deficiency. These three patients are the first reported cases of creatine transporter deficiency in Israel. PMID:27408820

  7. Folate and Alzheimer: when time matters.

    PubMed

    Hinterberger, Margareta; Fischer, Peter

    2013-01-01

    Folate is necessary for DNA and mtDNA integrity and via folate/B12-dependent methionine cycle for methylation of multiple substrates (epigenetic DNA and enzymes) and methylation of homocysteine. During embryogenesis, folate deficiency is a risk factor for neural tube defects and late in life for cognitive decline and Alzheimer's dementia (AD). It induces several Alzheimer pathomechanisms like oxidative stress, Ca(++) influx, accumulation of hyperphosphorylated tau and β-amyloid. But impact of folic acid supplementation on prevention or delay of dementia is a matter of debate. Six out of seven randomized controlled trials (RCT) with B vitamin intervention periods between 2 and 5.4 years reported about cognitive benefits in the supplemented groups mainly for those subjects with high homocysteine or low folate levels at baseline. This review tries to demonstrate the connection between folate deficiency and AD, analyses selected epidemiologic studies and RCT on folate/B12/homocysteine with long-observation periods (≥ 2 years RCT; ≥ 4 years observational) and attempts to find explanations for the controversy in literature like short follow-up, heterogeneity of subjects concerning age, recruitment, baseline cognition, inclusion criteria and probably "misleading"(not representative for the past) folate/B12/homocysteine levels due to not reported short-term use of multivitamins or food-fortification. Population-based studies-epidemiologic and interventional-starting in the fourth decade would provide the best information about the impact of folate on later development of AD. Mandatory folate fortification areas will be important future field studies for-like neural tube defects-hopefully declining AD incidence and disproving safety concerns. PMID:22627695

  8. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Storozhenko, Sergei; Stove, Christophe; Lambert, Willy; Van Der Straeten, Dominique

    2013-11-01

    Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes. PMID:23771598

  9. In vitamin B12 deficiency, higher serum folate is assoicated with increased total homocysteine (tHcy) and methlmalonic acid (MMA) concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a recent study of older participants (age >/= 60 y) in the 1999-2002 National Health and Nutrition Examination Survey (NHANES), we showed that a combination of high serum folate and low vitamin B-12 status was associated with higher prevalence of cognitive impairment and anemia than other combina...

  10. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid ...

  11. Folate status and neural tube defects.

    PubMed

    Molloy, A M; Mills, J L; Kirke, P N; Weir, D G; Scott, J M

    1999-01-01

    Periconceptional folic acid supplementation prevents approximately 70% of neural tube defects (NTDs). While most women carrying affected fetuses do not have deficient blood folate levels, the risk of having an NTD affected child is inversely correlated with pregnancy red cell folate levels. Current research is focused on the discovery of genetic abnormalities in folate related enzymes which might explain the role of folate in NTD prevention. The first candidate gene to emerge was the C677T variant of 5,10-methylenetetrahydrofolate reductase. Normal subjects who are homozygous for the mutation (TT) have red cell folate status some 20% lower than expected. It is now established that the prevalence of the TT genotype is significantly higher among spina bifida cases and their parents. Nevertheless, our studies show that the variant does not account for the reduced blood folate levels in many NTD affected mothers. We conclude that low maternal folate status may in itself be the most important risk factor for NTDs and that food fortification may be the only population strategy of benefit in the effort to eliminate NTDs. PMID:10609896

  12. Evaluation of proton-coupled folate transporter (SLC46A1) polymorphisms as risk factors for neural tube defects and oral clefts.

    PubMed

    VanderMeer, Julia E; Carter, Tonia C; Pangilinan, Faith; Mitchell, Adam; Kurnat-Thoma, Emma; Kirke, Peadar N; Troendle, James F; Molloy, Anne M; Munger, Ronald G; Feldkamp, Marcia L; Mansilla, Maria A; Mills, James L; Murray, Jeff C; Brody, Lawrence C

    2016-04-01

    Many folate-related genes have been investigated for possible causal roles in neural tube defects (NTDs) and oral clefts. However, no previous reports have examined the major gene responsible for folate uptake, the proton-coupled folate transporter (SLC46A1). We tested for association between these birth defects and single nucleotide polymorphisms in the SLC46A1 gene. The NTD study population included 549 complete and incomplete case-family triads, and 999 controls from Ireland. The oral clefts study population comprised a sample from Utah (495 complete and incomplete case-family triads and 551 controls) and 221 Filipino multiplex cleft families. There was suggestive evidence of increased NTD case risk with the rs17719944 minor allele (odds ratio (OR): 1.29; 95% confidence intervals (CI): [1.00-1.67]), and decreased maternal risk of an NTD pregnancy with the rs4795436 minor allele (OR: 0.62; [0.39-0.99]). In the Utah sample, the rs739439 minor allele was associated with decreased case risk for cleft lip with cleft palate (genotype relative risk (GRR): 0.56 [0.32-0.98]). Additionally, the rs2239907 minor allele was associated with decreased case risk for cleft lip with cleft palate in several models, and with cleft palate only in a recessive model (OR: 0.41; [0.20-0.85]). These associations did not remain statistically significant after correcting for multiple hypothesis testing. Nominal associations between SLC46A1 polymorphisms and both Irish NTDs and oral clefts in the Utah population suggest some role in the etiology of these birth defects, but further investigation in other populations is needed. © 2016 Wiley Periodicals, Inc. PMID:26789141

  13. Novel insights on interactions between folate and lipid metabolism.

    PubMed

    da Silva, Robin P; Kelly, Karen B; Al Rajabi, Ala; Jacobs, René L

    2014-01-01

    Folate is an essential B vitamin required for the maintenance of AdoMet-dependent methylation. The liver is responsible for many methylation reactions that are used for post-translational modification of proteins, methylation of DNA, and the synthesis of hormones, creatine, carnitine, and phosphatidylcholine. Conditions where methylation capacity is compromised, including folate deficiency, are associated with impaired phosphatidylcholine synthesis resulting in non-alcoholic fatty liver disease and steatohepatitis. In addition, folate intake and folate status have been associated with changes in the expression of genes involved in lipid metabolism, obesity, and metabolic syndrome. In this review, we provide insight on the relationship between folate and lipid metabolism, and an outlook for the future of lipid-related folate research. PMID:24353111

  14. Thiamine transporter-2 deficiency: outcome and treatment monitoring

    PubMed Central

    2014-01-01

    Background The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse. Methods We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature. Results At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10–40 mg/kg/day) and biotin (1–2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring. Conclusions ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patients. PMID:24957181

  15. Cerebral folate receptor autoantibodies in autism spectrum disorder

    PubMed Central

    Frye, R E; Sequeira, J M; Quadros, E V; James, S J; Rossignol, D A

    2013-01-01

    Cerebral folate deficiency (CFD) syndrome is a neurodevelopmental disorder typically caused by folate receptor autoantibodies (FRAs) that interfere with folate transport across the blood–brain barrier. Autism spectrum disorders (ASDs) and improvements in ASD symptoms with leucovorin (folinic acid) treatment have been reported in some children with CFD. In children with ASD, the prevalence of FRAs and the response to leucovorin in FRA-positive children has not been systematically investigated. In this study, serum FRA concentrations were measured in 93 children with ASD and a high prevalence (75.3%) of FRAs was found. In 16 children, the concentration of blocking FRA significantly correlated with cerebrospinal fluid 5-methyltetrahydrofolate concentrations, which were below the normative mean in every case. Children with FRAs were treated with oral leucovorin calcium (2 mg kg−1 per day; maximum 50 mg per day). Treatment response was measured and compared with a wait-list control group. Compared with controls, significantly higher improvement ratings were observed in treated children over a mean period of 4 months in verbal communication, receptive and expressive language, attention and stereotypical behavior. Approximately one-third of treated children demonstrated moderate to much improvement. The incidence of adverse effects was low. This study suggests that FRAs may be important in ASD and that FRA-positive children with ASD may benefit from leucovorin calcium treatment. Given these results, empirical treatment with leucovorin calcium may be a reasonable and non-invasive approach in FRA-positive children with ASD. Additional studies of folate receptor autoimmunity and leucovorin calcium treatment in children with ASD are warranted. PMID:22230883

  16. The distribution of serum folate concentration and red blood cell indices in alcoholics.

    PubMed

    Cylwik, Bogdan; Naklicki, Marcin; Gruszewska, Ewa; Szmitkowski, Maciej; Chrostek, Lech

    2013-01-01

    Chronic alcohol consumption leads to malnutrition and to the deficiency of many vitamins. One of the most important is folate deficiency. Folate deficiency disrupts the process of hematopoiesis, which can be evaluated by the changes of red cell indices. The aim of this study was to determine the hematological disturbances by the measurement of red blood cell indices in a Polish population of chronic alcoholics according to folate status. We studied 80 consecutive chronic alcoholic men and 30 healthy controls. Patients were divided into 2 groups according to the folate concentration. The serum folate and vitamin B12 concentration and the blood count were determined. We have shown that the serum folate concentration was decreased in 40% of alcoholics, but there was no folate deficiency and the level of vitamin B12 was normal. There was no correlation between folate, vitamin B12 and hematological indices. We have observed that most hematological parameters (Hb, RBCs, and Hct) in alcoholics were decreased and only two of them (MCV and MCHC) were increased in comparison with the controls. We observed no significant correlation between the RBCs indices and the weekly alcohol intake, but the correlation between RBCs, Hb, Hct and the duration of dependence have been shown. We concluded that, there is no folate deficiency in the Polish alcoholic population but the abusers with low folate levels may already have some RBCs indices affected. It means that the Polish alcoholic population consumes a sufficient amount of vitamins, which prevents the occurrence of hematological disturbances. PMID:23535533

  17. Human Folate Bioavailability

    PubMed Central

    Ohrvik, Veronica E.; Witthoft, Cornelia M.

    2011-01-01

    The vitamin folate is recognized as beneficial health-wise in the prevention of neural tube defects, anemia, cardiovascular diseases, poor cognitive performance, and some forms of cancer. However, suboptimal dietary folate intake has been reported in a number of countries. Several national health authorities have therefore introduced mandatory food fortification with synthetic folic acid, which is considered a convenient fortificant, being cost-efficient in production, more stable than natural food folate, and superior in terms of bioavailability and bioefficacy. Other countries have decided against fortification due to the ambiguous role of synthetic folic acid regarding promotion of subclinical cancers and other adverse health effects. This paper reviews recent studies on folate bioavailability after intervention with folate from food. Our conclusions were that limited folate bioavailability data are available for vegetables, fruits, cereal products, and fortified foods, and that it is difficult to evaluate the bioavailability of food folate or whether intervention with food folate improves folate status. We recommend revising the classical approach of using folic acid as a reference dose for estimating the plasma kinetics and relative bioavailability of food folate. PMID:22254106

  18. A novel mouse model of creatine transporter deficiency

    PubMed Central

    Baroncelli, Laura; Alessandrì, Maria Grazia; Tola, Jonida; Putignano, Elena; Migliore, Martina; Amendola, Elena; Gross, Cornelius; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2014-01-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement  and behavioral disturbances, language and speech impairment ( OMIM #300352). CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT −/y murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease. PMID:25485098

  19. Enhancing the natural folate level in wine using bioengineering and stabilization strategies.

    PubMed

    Liu, Yazheng; Walkey, Christopher J; Green, Timothy J; van Vuuren, Hennie J J; Kitts, David D

    2016-03-01

    Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate. PMID:26471523

  20. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption.

    PubMed

    Kishimoto, Kenji; Kobayashi, Ryoji; Sano, Hirozumi; Suzuki, Daisuke; Maruoka, Hayato; Yasuda, Kazue; Chida, Natsuko; Yamada, Masafumi; Kobayashi, Kunihiko

    2014-07-01

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder. Severe folate deficiency in HFM can result in immunodeficiency. We describe a female infant with HFM who acquired severe Pneumocystis pneumonia. The objective of the present study was to elucidate her immunological phenotype and to examine the time course of immune recovery following parenteral folate therapy. The patient demonstrated a combined immunodeficiency with an impaired T cell proliferation response, pan-hypogammaglobulinemia, and an imbalanced pro-inflammatory cytokine profile. She had normal white blood cell count, normal lymphocyte subsets, and normal complement levels. Two novel mutations were identified within the SLC46A1 gene to produce a compound heterozygote. We confirmed full recovery of her immunological and neurophysiological status with parenteral folate replacement. The time course of recovery of her immunological profile varied widely, however. HFM should be recognized as a unique form of immunodeficiency. PMID:24691418

  1. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-01

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement. PMID:25548870

  2. Targeting Nonsquamous Nonsmall Cell Lung Cancer via the Proton-Coupled Folate Transporter with 6-Substituted Pyrrolo[2,3-d]Pyrimidine Thienoyl Antifolates.

    PubMed

    Wilson, Mike R; Hou, Zhanjun; Yang, Si; Polin, Lisa; Kushner, Juiwanna; White, Kathryn; Huang, Jenny; Ratnam, Manohar; Gangjee, Aleem; Matherly, Larry H

    2016-04-01

    Pemetrexed (PMX) is a 5-substituted pyrrolo[2,3-d]pyrimidine antifolate used for therapy of nonsquamous nonsmall cell lung cancer (NS-NSCLC). PMX is transported by the reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). Unlike RFC, PCFT is active at acidic pH levels characterizing the tumor microenvironment. By real-time reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, PCFT transcripts and proteins were detected in primary NS-NSCLC specimens. In six NS-NSCLC cell lines (A549, H1437, H460, H1299, H1650, and H2030), PCFT transcripts and proteins were detected by real-time RT-PCR and western blots, respectively. 6-Substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates related to PMX [compound 1 (C1) and compound 2 (C2), respectively] are selective substrates for PCFT over RFC. In the NS-NSCLC cell lines, both [(3)H]PMX and [(3)H]C2 were transported by PCFT. C1 and C2 inhibited proliferation of the NS-NSCLC cell lines; A549, H460, and H2030 cells were more sensitive to C1 than to PMX. C1 and C2 inhibited glycinamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis. When treated at pH 6.8, which favors PCFT uptake, C1 and C2 inhibited clonogenicity of H460 cells greater than PMX; PMX inhibited clonogenicity more than C1 or C2 at pH 7.2, which favors RFC transport over PCFT. Knockdown of PCFT in H460 cells resulted in decreased [(3)H]PMX and [(3)H]C2 transport and decreased growth inhibition by C1 and C2, and to a lesser extent by PMX. In vivo efficacy of C1 was seen toward H460 tumor xenografts in severe-combined immunodeficient mice. Our results suggest that 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates offer significant promise for treating NS-NSCLC by selective uptake by PCFT. PMID:26837243

  3. Perinatal folate supply: relevance in health outcome parameters.

    PubMed

    Fekete, Katalin; Berti, Cristiana; Cetin, Irene; Hermoso, Maria; Koletzko, Berthold V; Decsi, Tamás

    2010-10-01

    The importance of physiological supply of folate is well recognized in human health; the crucial roles of folate in one-carbon metabolism for physiological DNA synthesis and cell division, as well as in the conversion of homocysteine (Hcy) to methionine, and subsequently, to S-adenosylmethionine, have been convincingly demonstrated. Improved folate status may reduce the risk of macrocytic anaemia, cardiovascular diseases, neuropsychiatric disorders and adverse pregnancy outcomes. Inadequate folate status results in a decrease in the methylation cycle and in increased blood levels of the neurotoxic Hcy. The aim of this review is to provide insight into the influence of folate status on pregnancy health outcomes, and to consider increasing evidence of a link between the extent of genome/epigenome damage and elevated risk for adverse obstetrical endpoints. Pregnant women are at risk for folate insufficiency because of the increased need for folate for rapid fetal growth, placental development and enlargement of the uterus. Inadequate folate status may cause fetal malformations, impaired fetal growth, pre-term delivery and maternal anaemia. Even some diseases of the placenta may arise from folate deficiencies. Fetal growth seems to be vulnerable to maternal folate status during the periconception period, because it has the potential to affect both the closure of the neural tube and several epigenetic mechanisms within the placenta and the fetus. Mainly on the basis of the well recognized link between maternal folate status and fetal neural tube defects, women are advised to receive folic acid supplement during the periconceptional period. Because an adequate folate supply seems to play an important role in the implantation and development of the placenta and in improving endothelial function, folic acid supplementation in the late first trimester or early second trimester might also be beneficial. PMID:22296249

  4. Effect of chronic kidney disease on the expression of thiamin and folic acid transporters

    PubMed Central

    Bukhari, Farhan J.; Moradi, Hamid; Gollapudi, Pavan; Ju Kim, Hyun; Vaziri, Nosratola D.; Said, Hamid M.

    2011-01-01

    Background. Chronic kidney disease (CKD) is associated with significant cardiovascular, neurological and metabolic complications. Thiamin and folate are essential for growth, development and normal cellular function, and their uptake is mediated by regulated transport systems. While plasma folate and thiamin levels are generally normal in patients with CKD, they commonly exhibit features resembling vitamin deficiency states. Earlier studies have documented impaired intestinal absorption of several B vitamins in experimental CKD. In this study, we explored the effect of CKD on expression of folate and thiamin transporters in the key organs and tissues. Methods. Sprague-Dawley rats were randomized to undergo 5/6 nephrectomy or sham operation and observed for 12 weeks. Plasma folate and thiamin concentrations and gene expression of folate (RFC, PCFT) and thiamin transporters (THTR-1 and THTR-2) were determined in the liver, brain, heart and intestinal tissues using real-time PCR. Hepatic protein abundance of these transporters was determined using western blot analysis. Results. Plasma folate and thiamin levels were similar between the CKD and the control groups. However, expressions of both folate (RFC and PCFT) and thiamin (THTR-1, THTR-2) transporters were markedly reduced in the small intestine, heart, liver and brain of the CKD animals. Liver protein abundance of folate and thiamin transporters was significantly reduced in the CKD animals when compared with the sham-operated controls. Furthermore, we found a significant reduction in mitochondrial folate and thiamin transporters in the CKD animals. Conclusions. CKD results in marked down-regulation in the expression of folate and thiamin transporters in the intestine, heart, liver and brain. These events can lead to reduced intestinal absorption and impaired cellular homeostasis of these essential micronutrients despite their normal plasma levels. PMID:21149507

  5. Folate Deficiency Triggers an Oxidative-Nitrosative Stress-Mediated Apoptotic Cell Death and Impedes Insulin Biosynthesis in RINm5F Pancreatic Islet β–Cells: Relevant to the Pathogenesis of Diabetes

    PubMed Central

    Wang, Yu-Huei; Chen, Chia-Hui; Mau, Shin-Yi; Ho, Chun-Te; Chang, Pey-Jium; Liu, Tsan-Zon; Chen, Ching-Hsein

    2013-01-01

    It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca2+) store leading to cytosolic Ca2+ overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular gluthathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes. PMID:24223745

  6. Folate deficiency triggers an oxidative-nitrosative stress-mediated apoptotic cell death and impedes insulin biosynthesis in RINm5F pancreatic islet β-cells: relevant to the pathogenesis of diabetes.

    PubMed

    Hsu, Hung-Chih; Chiou, Jeng-Fong; Wang, Yu-Huei; Chen, Chia-Hui; Mau, Shin-Yi; Ho, Chun-Te; Chang, Pey-Jium; Liu, Tsan-Zon; Chen, Ching-Hsein

    2013-01-01

    It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca(2+)) store leading to cytosolic Ca(2+) overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular glutathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes. PMID:24223745

  7. NADPH-cytochrome P-450 reductase, cytochrome P-450 2C11 and P-450 1A1, and the aryl hydrocarbon receptor in livers of rats fed methyl-folate-deficient diets.

    PubMed

    Zhang, J; Henning, S M; Heber, D; Choi, J; Wang, Y; Swendseid, M E; Go, V L

    1997-01-01

    We investigated three hepatic cytochrome P-450 isozymes and the aryl hydrocarbon (Ah) receptor in rats fed one of the following three diets for 15 months: a diet containing the AIN vitamin mixture (control), the control diet devoid of choline and folate (CFD), or the CFD diet devoid of niacin (CFND). Hepatic tumors developed in all CFD- and CFND-fed rats. Western blot analyses of nontumor hepatic tissue showed that NADPH-cytochrome P-450 reductase (P-450 reductase) increased significantly in the CFD and CFND groups compared with the control group. Hepatic cytochrome P-450 2C11 (CYP2C11) was not detectable in the CFD and CFND groups compared with the control group. Ah receptor and cytochrome P-450 1A1 (CYP1A1) were detected in higher amounts in livers of both deficient groups. CYP1A1 is an enzyme associated with bioactivation of exogenous genotoxins. To our knowledge, this is the first time it has been shown that CYP1A1 and the Ah receptor are induced by dietary deficiencies. PMID:9290122

  8. Folate Deficiency Triggered Apoptosis of Synoviocytes: Role of Overproduction of Reactive Oxygen Species Generated via NADPH Oxidase/Mitochondrial Complex II and Calcium Perturbation.

    PubMed

    Hsu, Hung-Chih; Chang, Wen-Ming; Wu, Jin-Yi; Huang, Chin-Chin; Lu, Fung-Jou; Chuang, Yi-Wen; Chang, Pey-Jium; Chen, Kai-Hua; Hong, Chang-Zern; Yeh, Rang-Hui; Liu, Tsan-Zon; Chen, Ching-Hsein

    2016-01-01

    Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA. PMID:26771387

  9. Folate Deficiency Triggered Apoptosis of Synoviocytes: Role of Overproduction of Reactive Oxygen Species Generated via NADPH Oxidase/Mitochondrial Complex II and Calcium Perturbation

    PubMed Central

    Wu, Jin-Yi; Huang, Chin-Chin; Lu, Fung-Jou; Chuang, Yi-Wen; Chang, Pey-Jium; Chen, Kai-Hua; Hong, Chang-Zern; Yeh, Rang-Hui; Liu, Tsan-Zon; Chen, Ching-Hsein

    2016-01-01

    Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA. PMID:26771387

  10. Structural determinants of human proton-coupled folate transporter oligomerization: role of GXXXG motifs and identification of oligomeric interfaces at transmembrane domains 3 and 6

    PubMed Central

    Wilson, Mike R.; Kugel, Sita; Huang, Jenny; Wilson, Lucas J.; Wloszczynski, Patrick A.; Ye, Jun; Matherly, Larry H.; Hou, Zhanjun

    2016-01-01

    The human proton-coupled folate transporter (hPCFT) is expressed in solid tumours and is active at pHs characterizing the tumour microenvironment. Recent attention focused on exploiting hPCFT for targeting solid tumours with novel cytotoxic anti-folates. hPCFT has 12 transmembrane domains (TMDs) and forms homo-oligomers with functional significance. The hPCFT primary sequence includes GXXXG motifs in TMD2 (G93XXXG97) and TMD4 (G155XXXG159). To investigate roles of these motifs in hPCFT function, stability and surface expression, we mutated glycine to leucine to generate single or multiple substitution mutants. Only the G93L and G159L mutants preserved substantial [3H]methotrexate (Mtx) transport when expressed in hPCFT-null (R1-11) HeLa cells. Transport activity of the glycine-to-leucine mutants correlated with surface hPCFT by surface biotinylation and confocal microscopy with ECFP*-tagged hPCFTs, suggesting a role for GXXXG in hPCFT stability and intracellular trafficking. When co-expressed in R1-11 cells, haemagglutinin-tagged glycine-to-leucine mutants and His10-tagged wild-type (WT) hPCFT co-associated on nickel affinity columns, suggesting that the GXXXG motifs are not directly involved in hPCFT oligomerization. This was substantiated by in situ FRET experiments with co-expressed ECFP*- and YFP-tagged hPCFT. Molecular modelling of dimeric hPCFT structures showed juxtaposed TMDs 2, 3, 4 and 6 as potential structural interfaces between monomers. hPCFT cysteine insertion mutants in TMD3 (Q136C and L137C) and TMD6 (W213C, L214C, L224C, A227C, F228C, F230C and G231C) were expressed in R1-11 cells and cross-linked with 1,6-hexanediyl bismethanethiosulfonate, confirming TMD juxtapositions. Altogether, our results imply that TMDs 3 and 6 provide critical interfaces for formation of hPCFT oligomers, which might be facilitated by the GXXXG motifs in TMD2 and TMD4. PMID:25877470

  11. Drugs and vitamin B12 and folate metabolism.

    PubMed

    Lindenbaum, J

    1983-01-01

    Deficiency of either folic acid or vitamin B12 may interfere with DNA synthesis and result in megaloblastic anemia or other conditions. These 2 vitamins have dissimilar molecular structures and are present in different foods; they are also absorbed and metabolized differently. In 201 consecutive cases of megaloblastic anemia, for 90% the cause was alcoholism and poor diet; 0.5% (1 case) was related to oral contraceptives (OCs). Megaloblastic anemia due to folate deficiency has occasionally been reported in patients with inflammatory bowel disease and has been attributed to poor diet, impaired absorption, and increased tissue utilization of folate. Sulfasalazine, a compound containing a sulfa drug and a salicylate that is broken down to its active components by the gut flora, is widely used in the treatment of inflammatory bowel disease and has been shown to impair the absorption of folic acid, polyglutamyl folate, and methyl-tetrahydrofolic acid in patients with these disorders. There is also evidence suggesting an interaction between anticonvulsant drugs and folate balance. A number of cases of megaloblastic anemia due to folate deficiency have been reported in women taking OCs. While in some cases no apparent cause for the megaloblastic anemia other than contraceptive therapy was demonstrated, in many patients other underlying disorders that were likely to disturb folate balance such as celiac disease, decreased dietary vitamin intake, and the administration of other drugs known to affect folate status have also been present. There is no convincing evidence that sex steroids affect folate absorption; about 20% of women taking OCs were found to have mild megaloblastic changes on Papanicolaou smears. These changes disappered after folic acid therapy, suggesting that OCs may cause an increased demand for folate limited to the reproductive system. Another finding is of low serum cobalamin levels in women using OCs; this appears however to be a laboratory abnormality

  12. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet

    SciTech Connect

    Tryndyak, Volodymyr P.; Latendresse, John R.; Montgomery, Beverly; Ross, Sharon A.; Beland, Frederick A.; Rusyn, Ivan; Pogribny, Igor P.

    2012-07-01

    MicroRNAs (miRNAs) are a class of small, conserved, tissue-specific regulatory non-coding RNAs that modulate a variety of biological processes and play a fundamental role in the pathogenesis of major human diseases, including nonalcoholic fatty liver disease (NAFLD). However, the association between inter-individual differences in susceptibility to NAFLD and altered miRNA expression is largely unknown. In view of this, the goals of the present study were (i) to determine whether or not individual differences in the extent of NAFLD-induced liver injury are associated with altered miRNA expression, and (ii) assess if circulating blood miRNAs may be used as potential biomarkers for the noninvasive evaluation of the severity of NAFLD. A panel of seven genetically diverse strains of inbred male mice (A/J, C57BL/6J, C3H/HeJ, 129S/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were fed a choline- and folate-deficient (CFD) diet for 12 weeks. This diet induced liver injury in all mouse strains; however, the extent of NAFLD-associated pathomorphological changes in the livers was strain-specific, with A/J, C57BL/6J, and C3H/HeJ mice being the least sensitive and WSB/EiJ mice being the most sensitive. The morphological changes in the livers were accompanied by differences in the levels of hepatic and plasma miRNAs. The levels of circulating miR-34a, miR-122, miR-181a, miR-192, and miR-200b miRNAs were significantly correlated with a severity of NAFLD-specific liver pathomorphological features, with the strongest correlation occurring with miR-34a. These observations suggest that the plasma levels of miRNAs may be used as biomarkers for noninvasive monitoring the extent of NAFLD-associated liver injury and susceptibility to NAFLD. -- Highlights: ► Choline- and folate-deficiency induces a strain-specific fatty liver injury in mice. ► The extent of liver pathology was accompanied by the changes in microRNA expression. ► The levels of circulating microRNAs mirror the magnitude of

  13. Clinical utility of folate-containing oral contraceptives

    PubMed Central

    Lassi, Zohra S; Bhutta, Zulfiqar A

    2012-01-01

    Folate is a generic term for a water-soluble B-complex vitamin which plays an important role in protein synthesis and metabolism and other processes related to cell multiplication and tissue growth. Pregnant and lactating women are at increased risk of folic acid deficiency because generally their dietary folate is insufficient to meet their physiological requirements and the metabolic demands of the growing fetus. The evidence pertaining to the reduction of the risk of neural tube defects (NTDs) due to folate is so compelling that supplementation with 400 μg of folic acid to all women trying to conceive until 12 weeks of pregnancy has been recommended by every relevant authority. A recent Cochrane review has also found protective effects of folate supplementation in occurrence and reoccurrence of NTDs. Despite food fortification and targeted public health campaigns promoting folic acid supplementation, 4,300,000 new cases occur each year worldwide resulting in an estimated 41,000 deaths and 2.3 million disability-adjusted life years (DALYS). This article will review the burden and risk factors of NTDS, and the role of folate in preventing NTDs. It will also describe different modes of supplementing folate and the newer evidence of the effectiveness of adding folate in oral contraceptives for raising serum and red blood cell folate levels. PMID:22570577

  14. Glucose transporter 1 deficiency syndrome and hemiplegic migraines as a dominant presenting clinical feature.

    PubMed

    Mohammad, Shekeeb S; Coman, David; Calvert, Sophie

    2014-12-01

    Glucose transporter 1 deficiency syndrome (OMIM 606777) is a treatable epileptic encephalopathy caused by mutations in the SLC2A1 gene (OMIM 138140) causing impaired glucose transport into the brain. The classical phenotype is associated with seizures, developmental delay, ataxia and spasticity; however, milder phenotypes are emerging. We describe an 8-year-old boy with glucose transporter 1 deficiency syndrome whose clinical presentation was dominated by hemiplegic migraines that resolved with institution of a modified Atkins diet. PMID:25440161

  15. Potential role of folate in pre-eclampsia.

    PubMed

    Singh, Mansi Dass; Thomas, Philip; Owens, Julie; Hague, William; Fenech, Michael

    2015-10-01

    Dietary deficiencies of folate and other B vitamin cofactors involved in one-carbon metabolism, together with genetic polymorphisms in key folate-methionine metabolic pathway enzymes, are associated with increases in circulating plasma homocysteine, reduction in DNA methylation patterns, and genome instability events. All of these biomarkers have also been associated with pre-eclampsia. The aim of this review was to explore the literature and identify potential knowledge gaps in relation to the role of folate at the genomic level in either the etiology or the prevention of pre-eclampsia. A systematic search strategy was designed to identify citations in electronic databases for the following terms: folic acid supplementation AND pre-eclampsia, folic acid supplementation AND genome stability, folate AND genome stability AND pre-eclampsia, folic acid supplementation AND DNA methylation, and folate AND DNA methylation AND pre-eclampsia. Forty-three articles were selected according to predefined selection criteria. The studies included in the present review were not homogeneous, which made pooled analysis of the data very difficult. The present review highlights associations between folate deficiency and certain biomarkers observed in various tissues of women at risk of pre-eclampsia. Further investigation is required to understand the role of folate in either the etiology or the prevention of pre-eclampsia. PMID:26359215

  16. Iatrogenic nutritional deficiencies.

    PubMed

    Young, R C; Blass, J P

    1982-01-01

    This article catalogs the nutritional deficiencies inadvertently introduced by certain treatment regimens. Specifically, the iatrogenic effects on nutrition of surgery, hemodialysis, irradiation, and drugs are reviewed. Nutritional problems are particularly frequent consequences of surgery on the gastrointestinal tract. Gastric surgery can lead to deficiencies of vitamin B12, folate, iron, and thiamine, as well as to metabolic bone disease. The benefits of small bowel bypass are limited by the potentially severe nutritional consequences of this procedure. Following bypass surgery, patients should be monitored for signs of possible nutritional probems such as weight loss, neuropathy, cardiac arrhythmias, loss of stamina, or changes in mental status. Minimal laboratory tests should include hematologic evaluation, B12, folate, iron, albumin, calcium, phosphorus, alkaline phosphatase, transaminases, sodium, potassium, chloride, and carbon dioxide levels. Roentgenologic examination of the bone should also be obtained. Loss of bone substance is a major consequence of many forms of treatment, and dietary supplementation with calcium is warranted. Patients undergoing hemodialysis have shown carnitine and choline deficiencies, potassium depletion, and hypovitaminosis, as well as osteomalacia. Chronic drug use may alter intake, synthesis, absorption, transport, storage, metabolism, or excretion of nutrients. Patients vary markedly in the metabolic effects of drugs, and recommendations for nutrition must be related to age, sex, reproductive status, and genetic endowment. Moreover, the illness being treated can itself alter nutritional requirements and the effect of the treatment on nutrient status. The changes in nutritional levels induced by use of estrogen-containing oral contraceptives (OCs) are obscure; however, the effects on folate matabolism appear to be of less clinical import than previously suggested. Reduction in pyridoxine and serum vitamin B12 levels has been

  17. Folate exacerbates the effects of ethanol on peripubertal mouse mammary gland development.

    PubMed

    Masso-Welch, Patricia A; Tobias, Menachem E; Vasantha Kumar, Shyam C; Bodziak, MaryLou; Mashtare, Terry; Tamburlin, Judith; Koury, Stephen T

    2012-05-01

    Alcohol consumption is linked with increased breast cancer risk in women, even at low levels of ingestion. The proposed mechanisms whereby ethanol exerts its effects include decreased folate levels resulting in diminished DNA synthesis and repair, and/or acetaldehyde-generated DNA damage. Based on these proposed mechanisms, we hypothesized that ethanol would have increased deleterious effects during periods of rapid mammary gland epithelial proliferation, such as peripuberty, and that folate deficiency alone might mimic and/or exacerbate the effects of ethanol. To test this hypothesis, weight-matched 28-35 day old CD2F1 female mice were pair-fed liquid diets ±3.2% ethanol, ±0.1% folate for 4 weeks. Folate status was confirmed by assay of liver and kidney tissues. In folate deficient mice, no significant ethanol-induced changes to the mammary gland were observed. Folate replete mice fed ethanol had an increased number of ducts per section, due to an increased number of terminal short branches. Serum estrogen levels were increased by ethanol, but only in folate replete mice. These results demonstrate that folate deficiency alone does not mimic the effects of ethanol, and that folate deficiency in the presence of ethanol blocks proliferative effects of ethanol on the mammary ductal tree. PMID:22440688

  18. Folate and neural tube defects: The role of supplements and food fortification.

    PubMed

    Ami, Noam; Bernstein, Mark; Boucher, François; Rieder, Michael; Parker, Louise

    2016-04-01

    Periconceptional folic acid significantly reduces the risk of neural tube defects. It is difficult to achieve optimal levels of folate by diet alone, even with fortification of flour, especially because flour consumption in Canada is slightly decreasing. Intermittent concerns have been raised concerning possible deleterious effects of folate supplementation, including the masking of symptoms of vitamin B12 deficiency and an association with cancer, especially colorectal cancer. Both concerns have been disproved. The Canadian Paediatric Society endorses the following steps to enhance folate intake in women of child-bearing age: encouraging the consumption of folate-rich foods such as leafy vegetables, increasing the level of folate food fortification, taking a supplement containing folate and B12, and providing free folate supplementation to disadvantaged women of child-bearing age. These recommendations are consistent with those of the Society of Obstetricians and Gynaecologists of Canada. PMID:27398055

  19. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling, and folate uptake in human colonic epithelial cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell...

  20. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition

    PubMed Central

    Wibowo, Ardian S.; Singh, Mirage; Reeder, Kristen M.; Carter, Joshua J.; Kovach, Alexander R.; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E.

    2013-01-01

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases. PMID:23934049

  1. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 2. Transport studies, photoaffinity labeling, and identification of the membrane carrier protein for methotrexate from murine L1210 cells

    SciTech Connect

    Price, E.M.; Freisheim, J.H.

    1987-07-28

    A membrane-derived component of the methotrexate/one-carbon-reduced folate transport system in murine L1210 cells has been identified by using a photoaffinity analogue of methotrexate. The compound, a radioiodinated 4-azidosalicylyl derivative of the lysine analogue of methotrexate, is transported into murine L1210 cells in a temperature-dependent, sulfhydryl reagent inhibitable manner with a K/sub t/ of 506 +/- 79 nM and a V/sub max/ of 17.9 +/- 4.2 pmol min/sup -1/ (mg of total cellular protein)/sup -1/. Uptake of the iodinated compound at 200 nM is inhibited by low amounts of methotrexate. The parent compounds of the iodinated photoprobe inhibit (/sup 3/H)methotrexate uptake, with the uniodinated 4-azidosalicylyl derivative exhibiting a K/sub i/ of 66 +/- 21 nM. UV irradiation, at 4 /sup 0/C, of a cell suspension that had been incubated with the probe results in the covalent modification of a 46K-48K protein. This can be demonstrated when the plasma membranes from the labeled cells are analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Labeling of this protein occurs half-maximally at a reagent concentration that correlates with the K/sub t/ for transport of the iodinated compound. Protection against labeling of this protein by increasing amounts of methotrexate parallels the concentration dependence of inhibition of photoprobe uptake by methotrexate. Evidence that, in the absence of irradiation and at 37/sup 0/C, the iodinated probe is actually internalized is demonstrated by the labeling of two soluble proteins (M/sub r/ 38K and 21K) derived from the cell homogenate supernatant.

  2. Folate and asthma.

    PubMed

    Blatter, Joshua; Han, Yueh-Ying; Forno, Erick; Brehm, John; Bodnar, Lisa; Celedón, Juan C

    2013-07-01

    Findings from experimental studies and animal models led to the hypothesis that folic acid supplementation during pregnancy confers an increased risk of asthma. This review provides a critical examination of current experimental and epidemiologic evidence of a causal association between folate status and asthma. In industrialized nations, the prevalence of asthma was rising before widespread fortification of foodstuffs with folic acid or folate supplementation before or during pregnancy, thus suggesting that changes in folate status are an unlikely explanation for "the asthma epidemic." Consistent with this ecologic observation, evidence from human studies does not support moderate or strong effects of folate status on asthma. Given known protective effects against neural tube and cardiac defects, there is no reason to alter current recommendations for folic acid supplementation during conception or pregnancy based on findings for folate and asthma. Although we believe that there are inadequate data to exclude a weak effect of maternal folate status on asthma or asthma symptoms, such effects could be examined within the context of very large (and ongoing) birth cohort studies. At this time, there is no justification for funding new studies of folate and asthma. PMID:23650899

  3. The methylation, neurotransmitter, and antioxidant connections between folate and depression.

    PubMed

    Miller, Alan L

    2008-09-01

    Depression is common - one-fourth of the U.S. population will have a depressive episode sometime in life. Folate deficiency is also relatively common in depressed people, with approximately one-third of depressed individuals having an outright deficiency. Folate is a water-soluble B-vitamin necessary for the proper biosynthesis of the monoamine neurotransmitters serotonin, epinephrine, and dopamine. The active metabolite of folate, 5-methyltetrahydrofolate (5-MTHF, L-methylfolate), participates in re-methylation of the amino acid metabolite homocysteine, creating methionine. S-adenosylmethionine (SAMe), the downstream metabolite of methionine, is involved in numerous biochemical methyl donation reactions, including reactions forming monoamine neurotransmitters. Without the participation of 5-MTHF in this process, SAMe and neurotransmitter levels decrease in the cerebrospinal fluid, contributing to the disease process of depression. SAMe supplementation was shown to improve depressive symptoms. 5-MTHF also appears to stabilize, enhance production of, or possibly act as a substitute for, tetrahydrobiopterin (BH4), an essential cofactor in monoamine neurotransmitter biosynthesis. There are few intervention studies of folic acid or 5-MTHF as a stand-alone treatment for depression related to folate deficiency; however, the studies that have been conducted are promising. Depressed individuals with low serum folate also tend to not respond well to selective serotonin reuptake inhibitor (SSRI) antidepressant drugs. Correcting the insufficiency by dosing folate along with the SSRI results in a significantly better antidepressant response. PMID:18950248

  4. The role of folate metabolism in orofacial development and clefting.

    PubMed

    Wahl, Stacey E; Kennedy, Allyson E; Wyatt, Brent H; Moore, Alexander D; Pridgen, Deborah E; Cherry, Amanda M; Mavila, Catherine B; Dickinson, Amanda J G

    2015-09-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects. PMID:26144049

  5. Present and future of folate biofortification of crop plants.

    PubMed

    Blancquaert, Dieter; De Steur, Hans; Gellynck, Xavier; Van Der Straeten, Dominique

    2014-03-01

    Improving nutritional health is one of the major socio-economic challenges of the 21st century, especially with the continuously growing and ageing world population. Folate deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. More and more countries are adapting policies to fight folate deficiency, mostly by fortifying foods with folic acid. However, there is growing concern about this practice, calling for alternative or complementary strategies. In addition, fortification programmes are often inaccessible to remote and poor populations where folate deficiency is most prevalent. Enhancing folate content in staple crops by metabolic engineering is a promising, cost-effective strategy to eradicate folate malnutrition worldwide. Over the last decade, major progress has been made in this field. Nevertheless, engineering strategies have thus far been implemented on a handful of plant species only and need to be transferred to highly consumed staple crops to maximally reach target populations. Moreover, successful engineering strategies appear to be species-dependent, hence the need to adapt them in order to biofortify different staple crops with folate. PMID:24574483

  6. Folate in depression: efficacy, safety, differences in formulations, and clinical issues.

    PubMed

    Fava, Maurizio; Mischoulon, David

    2009-01-01

    Supplementation with folate may help reduce depressive symptoms. Folate, a naturally occurring B vitamin, is needed in the brain for the synthesis of norepinephrine, serotonin, and dopamine. Three forms of folate are commonly used: folic acid, 5-methyltetrahydrofolate (5-MTHF) (also known as methylfolate and L-methylfolate), and folinic acid. Some forms may be more bioavailable than others in patients with a genetic polymorphism and in those who take particular medications or use alcohol. Folic acid augmentation in depressed patients may reduce residual symptoms. The 5-MTHF formulation indicated efficacy as adjunctive therapy or monotherapy in reducing depressive symptoms in patients with normal and low folate levels, improving cognitive function and reducing depressive symptoms in elderly patients with dementia and folate deficiency, and reducing depressive and somatic symptoms in patients with depression and alcoholism. Adjunctive folinic acid reduced depressive symptoms in patients who were partially responsive or nonresponsive to a selective serotonin reuptake inhibitor. Evidence for the efficacy of folate in improving cognitive symptoms is equivocal, but most studies used folic acid. Although the studies reviewed have limitations and, historically, concerns have been raised about the role of folate in increasing cancer risk, masking B(12) deficiency, and worsening depressive symptoms, folate is generally well tolerated, and 5-MTHF may be less likely to incur some of these risks. Several forms of folate appear to be safe and efficacious in some individuals with major depressive disorder, but more information is needed about dosage and populations most suited to folate therapy. PMID:19909688

  7. Effect of folate status and methylenetetrahydrofolate reductase genotypes on the complications and outcome of high dose methotrexate chemotherapy in north Indian children with acute lymphoblastic leukemia

    PubMed Central

    Moulik, Nirmalya Roy; Kumar, Archana; Agrawal, Suraksha; Mahdi, Abbas Ali; Kumar, Ashutosh

    2016-01-01

    Purpose: The genes of the folate metabolic pathway have been associated with toxicities during high dose methotrexate therapy for childhood ALL, however, the importance of intrinsic folate status in this regard is unclear. Methods: In the present study the effect of precourse folate levels and MTHFR genotypes on the complications during high dose methotrexate chemotherapy in children with ALL were examined. Results: Twenty-one children were studied. Folate deficiency was associated with higher incidence of neutropenia (P = 0.03) and longer duration of chemotherapy interruption (P = 0.009). Children with MTHFR1298 mutations needed more red cell transfusion (P = 0.03). All 3 deaths encountered were seen in folate deficient children. Conclusions: Folate deficiency was associated with higher complications during high dose methotrexate therapy, the implications of which are important especially in resource poor settings with high prevalence of folate deficiency. PMID:27168705

  8. Folate metabolism in malaria

    PubMed Central

    Ferone, Robert

    1977-01-01

    It is known that malaria parasites are inhibited by sulfonamides and antifolate compounds, require 4-aminobenzoic acid for growth, and respond only partly to intact folic and folinic acids. Biochemical data obtained during the last decade on the synthesis of nucleic acid precursors and on folate enzymes in malaria support the hypothesis that malaria parasites are similar to microorganisms that synthesize folate cofactors de novo. Sulfa drugs inhibit plasmodial dihydropteroate synthase (EC 2.5.1.15). Pyrimethamine and many other antifolate compounds bind to tetrahydrofolate dehydrogenase (EC 1.5.1.3) of the parasite more tightly than to the host enzyme. However, the metabolic consequences of the depletion of folate cofactors as a result of drug inhibition are not yet known. Other areas to be studied are the origin of the pteridine moiety of folates, the addition of glutamate(s) in folate cofactor biosynthesis, the means by which intact, exogenous folates affect malarial growth, and demonstration of the enzymes and reactions involving N5-methyl tetrahydrofolate. PMID:338184

  9. [Folate and breast cancer risk: a systematic review].

    PubMed

    Castillo-L, Cecilia; Tur, Josep A; Uauy, Ricardo

    2012-02-01

    An increased folate intake may be beneficial in deficient populations. However, in women with adequate levels it may not deliver additional benefits while it may increase the risk for some forms of cancer. A systematic literature review of benefits or risks of folate in the development of breast cancer was performed using MEDLINE, systematic review of selected articles and references of the selected articles looking specifically at serum folate levels, dietary folate intake or total folate intake and the risk of developing breast cancer. Fourteen case-control studies, fourteen cohort studies, seven case-control nested studies, two randomized trials and two meta-analyses were selected for analysis based on pre-established criteria. The reviewed evidence does not support the hypothesis that higher intakes of dietary folate reduce the risk for breast cancer. Some studies showed a higher risk of breast cancer in populations exposed to high folate intake post fortification, especially when folic acid is used. The results support the need to be cautious and to limit the exposure of women to high intakes of folic acid, especially in countries with mandatory food fortification. PMID:22739957

  10. Effects of alcohol on folate metabolism: implications for carcinogenesis.

    PubMed

    Mason, Joel B; Choi, Sang-Woon

    2005-04-01

    Epidemiologic observations implicate excess ethanol ingestion as well as low dietary folate intake as risk factors for several cancers. Moreover, the epidemiologic observations support the concept of a synergistic effect between these two factors. Such a relation is biologically plausible because ethanol impedes the bioavailability of dietary folate and is known to inhibit select folate-dependent biochemical reactions. For example, alcohol ingestion in animals is known to inhibit folate-mediated methionine synthesis and thereby may interrupt critical methylation processes that are mediated by the activated form of methionine that provides substrate for biologic methylation, S-adenosylmethionine. Consistent with this observed inhibition of methionine synthesis is the observation that chronic alcohol ingestion in laboratory animals is known to produce hypomethylation of DNA in the colonic mucosa, a constant feature of early colorectal neoplasia. Inhibition of methionine synthase also creates a "methylfolate trap," analogous to what occurs in vitamin B12 deficiency. In addition, some evidence indicates that alcohol may redirect the utilization of folate toward serine synthesis and thereby may interfere with a critical function of methylenetetrahydrofolate, thymidine synthesis. Although a mechanistic link between alcohol and impaired folate metabolism in the genesis of cancer is still not definitively established, such a link should be pursued in future studies because of the intimate metabolic relation between alcohol and folate metabolism. PMID:16054985

  11. Maternal bile acid transporter deficiency promotes neonatal demise

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-ze; Frank, Matthew W.; Calabrese, Christopher; Krausz, Kristopher W.; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O.; Gonzalez, Frank J.; Schuetz, John D.

    2015-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition. PMID:26416771

  12. Folate in potato tubers: effects of genotype, location, storage, and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folates (vitamin B9) are essential micronutrients in the human diet. Deficiency in folate intake is a leading cause of birth defects and is implicated in several other diseases. As the fourth most consumed staple food in the world and the most consumed vegetable in the West, potato is a logical targ...

  13. Folate and vitamin B12 status in Latin America and the Caribbean: An update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The current magnitude of folate and vitamin B12 deficiency in Latin America and the Caribbean is uncertain. Objective: To summarize data on plasma or serum vitamin B12 and folate concentrations in Latin America and the Caribbean reported since 1990, a period that covers the era before an...

  14. Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: B vitamins such as folate, vitamin B-6, and vitamin B-12 are coenzymes that are important for DNA integrity and stability. Deficiency in these B vitamins may promote tumor carcinogenesis. Objective: We prospectively evaluated plasma concentrations of folate, pyridoxal 5'-phosphate (PLP; ...

  15. Folate Augmentation of Treatment--Evaluation for Depression (FolATED): randomised trial and economic evaluation.

    PubMed Central

    Bedson, Emma; Bell, Diana; Carr, Daniel; Carter, Ben; Hughes, Dyfrig; Jorgensen, Andrea; Lewis, Helen; Lloyd, Keith; McCaddon, Andrew; Moat, Stuart; Pink, Joshua; Pirmohamed, Munir; Roberts, Seren; Russell, Ian; Sylvestre, Yvonne; Tranter, Richard; Whitaker, Rhiannon; Wilkinson, Clare; Williams, Nefyn

    2014-01-01

    BACKGROUND Folate deficiency is associated with depression. Despite the biological plausibility of a causal link, the evidence that adding folate enhances antidepressant treatment is weak. OBJECTIVES (1) Estimate the clinical effectiveness and cost-effectiveness of folic acid as adjunct to antidepressant medication (ADM). (2) Explore whether baseline folate and homocysteine predict response to treatment. (3) Investigate whether response to treatment depends on genetic polymorphisms related to folate metabolism. DESIGN FolATED (Folate Augmentation of Treatment - Evaluation for Depression) was a double-blind and placebo-controlled, but otherwise pragmatic, randomised trial including cost-utility analysis. To yield 80% power of detecting standardised difference on the Beck Depression Inventory version 2 (BDI-II) of 0.3 between groups (a 'small' effect), FolATED trialists sought to analyse 358 participants. To allow for an estimated loss of 21% of participants over three time points, we planned to randomise 453. SETTINGS Clinical - Three centres in Wales - North East Wales, North West Wales and Swansea. Trial management - North Wales Organisation for Randomised Trials in Health in Bangor University. Biochemical analysis - University Hospital of Wales, Cardiff. Genetic analysis - University of Liverpool. PARTICIPANTS Four hundred and seventy-five adult patients presenting to primary or secondary care with confirmed moderate to severe depression for which they were taking or about to start ADM, and able to consent and complete assessments, but not (1) folate deficient, vitamin B12 deficient, or taking folic acid or anticonvulsants; (2) misusing drugs or alcohol, or suffering from psychosis, bipolar disorder, malignancy or other unstable or terminal illness; (3) (planning to become) pregnant; or (4) participating in other clinical research. INTERVENTIONS Once a day for 12 weeks experimental participants added 5 mg of folic acid to their ADM, and control participants

  16. Glucose Transporter Type 1 Deficiency Syndrome with Carbohydrate-Responsive Symptoms but without Epilepsy

    ERIC Educational Resources Information Center

    Koy, Anne; Assmann, Birgit; Klepper, Joerg; Mayatepek, Ertan

    2011-01-01

    Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is caused by a defect in glucose transport across the blood-brain barrier. The main symptoms are epilepsy, developmental delay, movement disorders, and deceleration of head circumference. A ketogenic diet has been shown to be effective in controlling epilepsy in GLUT1-DS. We report a female…

  17. The Molecular Basis of Folate Salvage in Plasmodium falciparum

    PubMed Central

    Salcedo-Sora, J. Enrique; Ochong, Edwin; Beveridge, Susan; Johnson, David; Nzila, Alexis; Biagini, Giancarlo A.; Stocks, Paul A.; O'Neill, Paul M.; Krishna, Sanjeev; Bray, Patrick G.; Ward, Stephen A.

    2011-01-01

    Tetrahydrofolates are essential cofactors for DNA synthesis and methionine metabolism. Malaria parasites are capable both of synthesizing tetrahydrofolates and precursors de novo and of salvaging them from the environment. The biosynthetic route has been studied in some detail over decades, whereas the molecular mechanisms that underpin the salvage pathway lag behind. Here we identify two functional folate transporters (named PfFT1 and PfFT2) and delineate unexpected substrate preferences of the folate salvage pathway in Plasmodium falciparum. Both proteins are localized in the plasma membrane and internal membranes of the parasite intra-erythrocytic stages. Transport substrates include folic acid, folinic acid, the folate precursor p-amino benzoic acid (pABA), and the human folate catabolite pABAGn. Intriguingly, the major circulating plasma folate, 5-methyltetrahydrofolate, was a poor substrate for transport via PfFT2 and was not transported by PfFT1. Transport of all folates studied was inhibited by probenecid and methotrexate. Growth rescue in Escherichia coli and antifolate antagonism experiments in P. falciparum indicate that functional salvage of 5-methyltetrahydrofolate is detectable but trivial. In fact pABA was the only effective salvage substrate at normal physiological levels. Because pABA is neither synthesized nor required by the human host, pABA metabolism may offer opportunities for chemotherapeutic intervention. PMID:21998306

  18. Critical Issues in the Study of Magnesium Transport Systems and Magnesium Deficiency Symptoms in Plants

    PubMed Central

    Kobayashi, Natsuko I.; Tanoi, Keitaro

    2015-01-01

    Magnesium (Mg) is the second most abundant cation in living cells. Over 300 enzymes are known to be Mg-dependent, and changes in the Mg concentration significantly affects the membrane potential. As Mg becomes deficient, starch accumulation and chlorosis, bridged by the generation of reactive oxygen species, are commonly found in Mg-deficient young mature leaves. These defects further cause the inhibition of photosynthesis and finally decrease the biomass. Recently, transcriptome analysis has indicated the transcriptinal downregulation of chlorophyll apparatus at the earlier stages of Mg deficiency, and also the potential involvement of complicated networks relating to hormonal signaling and circadian oscillation. However, the processes of the common symptoms as well as the networks between Mg deficiency and signaling are not yet fully understood. Here, for the purpose of defining the missing pieces, several problems are considered and explained by providing an introduction to recent reports on physiological and transcriptional responses to Mg deficiency. In addition, it has long been unclear whether the Mg deficiency response involves the modulation of Mg2+ transport system. In this review, the current status of research on Mg2+ transport and the relating transporters are also summarized. Especially, the rapid progress in physiological characterization of the plant MRS2 gene family as well as the fundamental investigation about the molecular mechanism of the action of bacterial CorA proteins are described. PMID:26404266

  19. Critical Issues in the Study of Magnesium Transport Systems and Magnesium Deficiency Symptoms in Plants.

    PubMed

    Kobayashi, Natsuko I; Tanoi, Keitaro

    2015-01-01

    Magnesium (Mg) is the second most abundant cation in living cells. Over 300 enzymes are known to be Mg-dependent, and changes in the Mg concentration significantly affects the membrane potential. As Mg becomes deficient, starch accumulation and chlorosis, bridged by the generation of reactive oxygen species, are commonly found in Mg-deficient young mature leaves. These defects further cause the inhibition of photosynthesis and finally decrease the biomass. Recently, transcriptome analysis has indicated the transcriptinal downregulation of chlorophyll apparatus at the earlier stages of Mg deficiency, and also the potential involvement of complicated networks relating to hormonal signaling and circadian oscillation. However, the processes of the common symptoms as well as the networks between Mg deficiency and signaling are not yet fully understood. Here, for the purpose of defining the missing pieces, several problems are considered and explained by providing an introduction to recent reports on physiological and transcriptional responses to Mg deficiency. In addition, it has long been unclear whether the Mg deficiency response involves the modulation of Mg2+ transport system. In this review, the current status of research on Mg2+ transport and the relating transporters are also summarized. Especially, the rapid progress in physiological characterization of the plant MRS2 gene family as well as the fundamental investigation about the molecular mechanism of the action of bacterial CorA proteins are described. PMID:26404266

  20. Cobalamin, folate, methylmalonic acid, homocysteine, and gastritis markers in dementia.

    PubMed

    Nägga, K; Rajani, R; Mårdh, E; Borch, K; Mårdh, S; Marcusson, J

    2003-01-01

    The prevalence of dementia disorders, cobalamin and/or folate deficiency as well as gastritis increases with age. To investigate whether there is an association between these conditions, plasma homocysteine (Hcy), serum methylmalonic acid, serum cobalamin and blood folate concentrations were measured. Gastritis was indirectly diagnosed by measuring serum antibodies against H,K-ATPase, HELICOBACTER PYLORI and intrinsic factor, using enzyme-linked immunosorbent assays. The studied groups consisted of 47 patients with Alzheimer's disease (AD), 9 with AD pathology in combination with additive vascular lesions, 59 with vascular dementia, 8 who were cognitively impaired, and 101 control cases. Plasma Hcy concentrations were significantly elevated in the dementia groups, with the highest levels in patients with vascular pathology. We conclude that hyperhomocysteinemia is a common finding in patients with dementia disorders of different etiologies. The markers for gastritis did not contribute to an elucidation of a possible connection between this condition, dementia disorders, or cobalamin/folate deficiency. PMID:14512723

  1. An investigation of folate-related genetic factors in the determination of birthweight.

    PubMed

    Relton, Caroline L; Pearce, Mark S; Burn, John; Parker, Louise

    2005-09-01

    Recent evidence suggests that maternal folate status in early gestation is a significant determinant of infant birthweight. Folate metabolism is known to be controlled by genetic factors, with a number of polymorphic variations in folate metabolising genes identified, several of which have well-documented functional effects. The current study investigated whether folate-related polymorphic variation, in association with low maternal folate status, influences birthweight. Red blood cell (RBC) folate analysis and genotyping of five polymorphisms in folate-related genes [Methylenetetrahydrofolate reductase (MTHFR) 677C>T; MTHFR 1298A>C; cystathionine-beta-synthase (CbetaS) 844ins68bp; serine hydroxymethyltransferase (SHMT) 1420C>T; reduced folate carrier-1 (RFC-1) 80G>A] were undertaken in mothers and infants from 998 pregnancies. These data were analysed in relation to infant birthweight, adjusted for gender and gestational age (z-score). Low maternal RBC folate status was associated with reduced infant birthweight. None of the genetic variants studied showed an independent association with infant birthweight. However, two genetic variants were shown to have a significant effect on birthweight when found in association with low maternal RBC folate status. When individuals with variant genotypes and mothers with folate in the lowest quintile were compared with wild-type individuals and mothers with folate in the highest quintile, the following differences in mean birthweight (z-score) were observed; maternal MTHFR 677C>T (-0.56 [95% CI -1.00, -0.12]P=0.01) and infant CbetaS 844ins68bp (-0.71 [95% CI -1.97, -0.07]P=0.03). The findings of this study suggest that folate-related genetic polymorphisms do not directly influence infant birthweight. However, when placed on a background of deficient maternal nutritional status, they may detrimentally affect fetal growth. PMID:16115288

  2. Glucose transporter type 1 deficiency syndrome effectively treated with modified Atkins diet.

    PubMed

    Haberlandt, Edda; Karall, Daniela; Jud, Veronika; Baumgartner, Sara Sigl; Zotter, Sibylle; Rostasy, Kevin; Baumann, Matthias; Scholl-Buergi, Sabine

    2014-04-01

    This is a report on the successful treatment of a 6-year-old girl with genetically proven glucose transporter type 1 deficiency syndrome (GLUT1-DS) with modified Atkins diet (MAD). GLUT1-DS is an inborn disorder of glucose transport across the blood-brain barrier, which leads to energy deficiency of the brain with a broad spectrum of neurological symptoms including therapy-resistant epilepsy. Usually classical ketogenic diet (KD) is the standard treatment for patients with GLUT1-DS. Treatment with MAD, a variant of KD, for an observation period of 17 months resulted in improvement of seizures, alertness, cognitive abilities, and electroencephalography in this patient. PMID:23888468

  3. Folate and alcohol consumption and the risk of lung cancer

    SciTech Connect

    Bandera, E.V.; Graham, S.; Freudenheim, J.L.; Marshall, J.R.; Haughey, B.P.; Swanson, M.; Brasure, J.; Wilkinson, G. )

    1991-03-11

    Because both folate deficiency and alcohol intake have been hypothesized to be lung cancer risk factors, the authors examined the effect of folate and alcohol consumption on risk of lung cancer in a case-control study conducted 1980-1984. Usual dietary intake of 450 histologically confirmed lung cancer cases and 902 controls, all Western New York residents, was ascertained using a modified food frequency questionnaire. Folate intake was not associated with lung cancer risk. After adjusting for age, cigarette smoking, education, and carotene intake, the odds ratio (OR) for the highest category of folate intake was 1.59 in males and 1.34 in females. There was some indication of a protective effect of folate only among women who never smoked. There was a suggestion of a positive association of alcohol intake with lung cancer risk in males, independent of age, education, cigarette smoking, and carotene. Consumers of more than 9 beers per month had an OR of 1.51 compared to non-drinkers. In both sexes, there was an indication of an interaction between beer ingestion and cigarette smoking. While folate intake did not appear to affect risk of lung cancer, the association of alcohol intake with risk independent of cigarette smoking deserves further inquiry.

  4. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  5. Gene-environment interactions reveal a homeostatic role for cholesterol metabolism during dietary folate perturbation in mice

    PubMed Central

    Kitami, Toshimori; Rubio, Renee; O'Brien, William; Quackenbush, John; Nadeau, Joseph H.

    2008-01-01

    Dietary folate supplementation can dramatically reduce the severity and incidence of several common birth defects and adult diseases that are associated with anomalies in homocysteine and folate metabolism. The common polymorphisms that adversely affect these metabolic pathways do not fully account for the particular birth defects and adult diseases that occur in at-risk individuals. To test involvement of folate, homocysteine, and other pathways in disease pathogenesis and treatment response, we analyzed global and pathway-specific changes in gene expression and levels of selected metabolites after depletion and repletion of dietary folate in two genetically distinct inbred strains of mice. Compared with the C57BL/6J strain, A/J showed greater homeostatic response to folate perturbation by retaining a higher serum folate level and minimizing global gene expression changes. Remarkably, folate perturbation led to systematic strain-specific differences only in the expression profile of the cholesterol biosynthesis pathway and to changes in levels of serum and liver total cholesterol. By genetically increasing serum and liver total cholesterol levels in APOE-deficient mice, we modestly but significantly improved folate retention during folate depletion, suggesting that homeostasis among the homocysteine, folate and cholesterol metabolic pathways contributes to the beneficial effects of dietary folate supplementation. PMID:18697859

  6. Bacterial Folates Provide an Exogenous Signal for C. elegans Germline Stem Cell Proliferation.

    PubMed

    Chaudhari, Snehal N; Mukherjee, Madhumati; Vagasi, Alexandra S; Bi, Gaofeng; Rahman, Mohammad M; Nguyen, Christine Q; Paul, Ligi; Selhub, Jacob; Kipreos, Edward T

    2016-07-11

    Here we describe an in vitro primary culture system for Caenorhabditis elegans germline stem cells. This culture system was used to identify a bacterial folate as a positive regulator of germ cell proliferation. Folates are a family of B-complex vitamins that function in one-carbon metabolism to allow the de novo synthesis of amino acids and nucleosides. We show that germ cell proliferation is stimulated by the folate 10-formyl-tetrahydrofolate-Glun both in vitro and in animals. Other folates that can act as vitamins to rescue folate deficiency lack this germ cell stimulatory activity. The bacterial folate precursor dihydropteroate also promotes germ cell proliferation in vitro and in vivo, despite its inability to promote one-carbon metabolism. The folate receptor homolog FOLR-1 is required for the stimulation of germ cells by 10-formyl-tetrahydrofolate-Glun and dihydropteroate. This work defines a folate and folate-related compound as exogenous signals to modulate germ cell proliferation. PMID:27404357

  7. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Flattem, N. L.; Jordan, J.; Jacob, G.; Black, B. K.; Biaggioni, I.; Blakely, R. D.; Robertson, D.

    2000-01-01

    BACKGROUND: Orthostatic intolerance is a syndrome characterized by lightheadedness, fatigue, altered mentation, and syncope and associated with postural tachycardia and plasma norepinephrine concentrations that are disproportionately high in relation to sympathetic outflow. We tested the hypothesis that impaired functioning of the norepinephrine transporter contributes to the pathophysiologic mechanism of orthostatic intolerance. METHODS: In a patient with orthostatic intolerance and her relatives, we measured postural blood pressure, heart rate, plasma catecholamines, and systemic norepinephrine spillover and clearance, and we sequenced the norepinephrine-transporter gene and evaluated its function. RESULTS: The patient had a high mean plasma norepinephrine concentration while standing, as compared with the mean (+/-SD) concentration in normal subjects (923 vs. 439+/-129 pg per milliliter [5.46 vs. 2.59+/-0.76 nmol per liter]), reduced systemic norepinephrine clearance (1.56 vs. 2.42+/-0.71 liters per minute), impairment in the increase in the plasma norepinephrine concentration after the administration of tyramine (12 vs. 56+/-63 pg per milliliter [0.07 vs. 0.33+/-0.37 pmol per liter]), and a disproportionate increase in the concentration of plasma norepinephrine relative to that of dihydroxyphenylglycol. Analysis of the norepinephrine-transporter gene revealed that the proband was heterozygous for a mutation in exon 9 (encoding a change from guanine to cytosine at position 237) that resulted in more than a 98 percent loss of function as compared with that of the wild-type gene. Impairment of synaptic norepinephrine clearance may result in a syndrome characterized by excessive sympathetic activation in response to physiologic stimuli. The mutant allele in the proband's family segregated with the postural heart rate and abnormal plasma catecholamine homeostasis. CONCLUSIONS: Genetic or acquired deficits in norepinephrine inactivation may underlie hyperadrenergic

  8. Folate depletion impairs DNA excision repair in the colon of the rat

    PubMed Central

    Choi, S; Kim, Y; Weitzel, J; Mason, J

    1998-01-01

    Background/Aims—Diminished folate status appears to promote colonic carcinogenesis by, as of yet, undefined mechanisms. Impaired DNA repair plays a significant role in the evolution of many colon cancers. Since folate is essential for the de novo synthesis of nucleotides and since folate depletion has previously been associated with excessive DNA strand breaks, it was hypothesised that folate depletion may impair DNA repair. Studies were therefore performed to examine whether folate depletion affects the two major categories of DNA repair. 
Methods—Study 1: eight weanling male Sprague-Dawley rats were fed on diets containing either 0 or 8 mg folate/kg diet with 1% succinylsulphathiazole for four weeks. After viable colonocytes had been harvested, DNA excision repair was evaluated by a single cell gel electrophoresis assay. Study 2: eighteen animals were fed on similar diets for five weeks. Also in study 2, 18 additional rats were fed on the same defined diet without succinylsulphathiazole for 15 weeks. Weekly injections with the procarcinogen, 1,2-dimethylhydrazine (20 mg base/kg), were administered to the latter group of animals. Five microsatellite loci from different chromosomes were investigated for instability in hepatic and colonic DNA. 
Results—In study 1, a significantly retarded rate of DNA excision repair was observed in the folate deficient colonocytes compared with controls (p<0.05). In study 2, there was no evidence of instability at the five microsatellite loci associated with either short or long term folate depletion. 
Conclusions—Folate deficiency impairs DNA excision repair in rat colonic mucosa; a similar degree of deficiency, even when administered in conjunction with a colonic carcinogen, did not produce evidence of a widespread defect in mismatch repair. 

 Keywords: folate; colon cancer; DNA repair; single cell gel electrophoresis; microsatellite instability; rat PMID:9771411

  9. Familial orthostatic tachycardia due to norepinephrine transporter deficiency

    NASA Technical Reports Server (NTRS)

    Robertson, D.; Flattem, N.; Tellioglu, T.; Carson, R.; Garland, E.; Shannon, J. R.; Jordan, J.; Jacob, G.; Blakely, R. D.; Biaggioni, I.

    2001-01-01

    Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family. CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.

  10. LOW FOLATE STATUS IS ASSOCIATED WITH IMPAIRED COGNITIVE FUNCTION AND DEMENTIA IN THE SACRAMENTO AREA LATINO STUDY ON AGING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Low folate status is associated with poor cognitive function and dementia in the elderly. Since 1998, grain products in the United States have been fortified with folic acid, which has reduced the prevalence of folate deficiency and hyperhomocysteinemia. OBJECTIVE: We investigated wheth...

  11. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  12. Serotonin transporter deficiency in rats contributes to impaired object memory.

    PubMed

    Olivier, J D A; Jans, L A W; Blokland, A; Broers, N J; Homberg, J R; Ellenbroek, B A; Cools, A R

    2009-11-01

    Serotonin is well known for its role in affection, but less known for its role in cognition. The serotonin transporter (SERT) has an essential role in serotonergic neurotransmission as it determines the magnitude and duration of the serotonin signal in the synaptic cleft. There is evidence to suggest that homozygous SERT knockout rats (SERT(-/-)), as well as humans with the short SERT allele, show stronger cognitive effects than wild-type control rats (SERT(+/+)) and humans with the long SERT allele after acute tryptophan depletion. In rats, SERT genotype is known to affect brain serotonin levels, with SERT(-/-) rats having lower intracellular basal serotonin levels than wild-type rats in several brain areas. In the present study, it was investigated whether SERT genotype affects memory performance in an object recognition task with different inter-trial intervals. SERT(-/-), heterozygous SERT knockout (SERT(+/-)) and SERT(+/+) rats were tested in an object recognition test applying an inter-trial interval of 2, 4 and 8 h. SERT(-/-) and SERT(+/-) rats showed impaired object memory with an 8 h inter-trial interval, whereas SERT(+/+) rats showed intact object memory with this inter-trial interval. Although brain serotonin levels cannot fully explain the SERT genotype effect on object memory in rats, these results do indicate that serotonin is an important player in object memory in rats, and that lower intracellular serotonin levels lead to enhanced memory loss. Given its resemblance with the human SERT-linked polymorphic region and propensity to develop depression-like symptoms, our findings may contribute to further understanding of mechanisms underlying cognitive deficits in depression. PMID:19740092

  13. Jejunal Perfusion of Simple and Conjugated Folates in Tropical Sprue

    PubMed Central

    Corcino, José J.; Reisenauer, Ann M.; Halsted, Charles H.

    1976-01-01

    Absorption of labeled simple 3′,5′,9′-3H pteroylmonoglutamate, ([3H]PG-1) and conjugated pteroyl-μ[14C]glutamyl-γ-hexaglutamate, ([14C]PG-7) folates was assessed in six patients with tropical sprue, before and after 6 mo of treatment, utilizing jejunal perfusion and urinary recovery techniques. Degradation products of [14C]PG-7 which were produced during perfusion were identified by DEAE-cellulose column chromatography. Jejunal mucosal activities of folate conjugase, lactase, sucrase, and maltase were measured in every patient. Malabsorption of both [3H]PG-1 and [14C]PG-7 was found in every untreated patient, with significant improvement after therapy. The urinary excretion of 3H and 14C paralleled the luminal disappearance of both isotopes. The chromatographic patterns of intraluminal degradation products of [14C]PG-7 obtained during perfusion did not differ from those previously found in normal subjects and were similar in studies performed before and after treatment. The activity of folate conjugase was increased in the mucosa of the untreated patients when compared to the post-treatment levels while the activities of mucosal lactase, sucrase, and maltase were originally low and increased significantly after therapy. These observations suggest that folate conjugase originates at a different mucosal locus than the brush border disaccharidases, and are consistent with previous evidence that folate conjugase is an intracellular enzyme. The present studies have demonstrated unequivocal malabsorption of both simple and conjugated folates in tropical sprue. In tropical sprue, folate malabsorption is the reflection of impaired folate transport and not of impaired hydrolysis. PMID:16695965

  14. IMPAIRED INTESTINAL VITAMIN B1 (THIAMIN) UPTAKE IN THIAMIN TRANSPORTER-2 DEFICIENT MICE

    PubMed Central

    Reidling, Jack C.; Lambrecht, Nils; Kassir, Mohammad; Said, Hamid M.

    2016-01-01

    BACKGROUND & AIMS Intestinal thiamin uptake process is vital for maintaining normal body homeostasis of the vitamin; in vitro studies suggest that both thiamin transporter-1 (THTR-1) and -2 (THTR-2) are involved. Mutations in THTR-1 cause thiamin-responsive megaloblastic anemia (TRMA), a tissue specific disease associated with diabetes mellitus, megaloblastic anemia, and sensorineural deafness. However in patients with TRMA, plasma thiamin levels are within normal range, indicating that THTR2 (or another carrier) could provide sufficient intestinal thiamin absorption. We tested this possibility and examined the role of THTR-2 in uptake of thiamin in the intestine of mice. METHODS THTR-2 deficient mice were generated by SLC19A3 gene knockout and used to examine intestinal uptake of thiamin in vitro (isolated cells) and in vivo (intact intestinal loops). We also examined intestinal thiamin uptake in THTR-1 deficient mice. RESULTS Intestine of THTR-2 deficient mice had reduced uptake of thiamin compared to those of wild –type littermate mice (p<0.01); this reduction was associated with a decrease (p<0.01) in blood thiamin levels in THTR-2 deficient mice. However, intestinal uptake of thiamin in THTR-1 deficient mice was not significantly different from that of wild-type littermate animals. Level of expression of THTR-1 was not altered in the intestine of THTR-2 deficient mice, but level of expression of THTR-2 was up-regulated in the intestine of THTR-1 deficient mice. CONCLUSION THTR-2 is required for normal uptake of thiamin in the intestine and can fulfill normal levels of uptake in conditions associated with THTR-1 dysfunction. PMID:19879271

  15. Performance, serum biochemical responses, and gene expression of intestinal folate transporters of young and older laying hens in response to dietary folic acid supplementation and challenge with Escherichia coli lipopolysaccharide.

    PubMed

    Jing, M; Munyaka, P M; Tactacan, G B; Rodriguez-Lecompte, J C; O, K; House, J D

    2014-01-01

    The present study was conducted to investigate the effects of dietary folic acid (FA) supplementation on performance, serum biochemical indices, and mRNA abundance of intestinal folate transporters in young and older laying hens after acute lipopolysaccharide (LPS) challenge. Two experiments were conducted separately involving 48 Shaver White young laying hens (24 wk of age) in experiment 1 and 48 Shaver White older laying hens (58 wk of age) in experiment 2. Birds were fed 2 diets in a complete randomized design. The diets were wheat-soybean meal based, with or without supplemental 4 mg of FA/kg of diet. Birds were fed for 8 wk, during which time feed consumption and egg production were monitored. At the end of each feeding experiment, 6 hens from each dietary treatment were injected intravenously with 8 mg/kg of BW of either Escherichia coli LPS or sterile saline. Four hours after injection, blood and intestinal samples were collected for further analysis. Compared with the control, dietary FA supplementation increased egg weight and egg mass and decreased serum glucose levels in the young laying hens, and reduced serum uric acid in the older laying hens (P < 0.05). Relative to saline injection, plasma homocysteine, serum calcium, and phosphorus levels were found to be lower in both young and older laying hens after LPS challenge (P < 0.05). Other serum biochemical variables and the mRNA expression of 2 folate transport genes in the small and large intestine were differentially affected by LPS challenge, and some of those responses varied with the age of the birds. Additionally, interactions between diet and LPS challenge were specifically found in the older laying hens. In summary, in addition to improving production performance, there were effects of dietary FA supplementation and its interaction with LPS challenge on biochemical constituents, and age played a role in the development of responses to diet and bacterial LPS infections. PMID:24570431

  16. Nutrient Intake Values for Folate during Pregnancy and Lactation Vary Widely around the World

    PubMed Central

    Stamm, Rosemary A.; Houghton, Lisa A.

    2013-01-01

    Folate is a B-vitamin with particular importance during reproduction due to its role in the synthesis and maintenance of DNA. Folate is well known for its role in preventing neural tube defects (NTDs) during the periconceptional period. There is also an increased need for folate throughout pregnancy to support optimal growth and development of the fetus and blood volume expansion and tissue growth of the mother. During lactation, women are at risk of folate deficiency due to increased demands to accommodate milk folate levels. Nutrient Intake Values (NIVs) for folate have been calculated to take into account additional needs during pregnancy and lactation. However, these values vary widely between countries. For example, the folate requirement that is set to meet the needs of almost all healthy women during pregnancy varies from 300 µg/day in the United Kingdom to 750 µg/day in Mexico. Currently, there is no accepted standardized terminology or framework for establishing NIVs. This article reviews country-specific NIVs for folate during pregnancy and lactation and the basis for setting these reference values. PMID:24084052

  17. Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model.

    PubMed

    Castorena-Torres, Fabiola; Ramos-Parra, Perla A; Hernández-Méndez, Rogelio V; Vargas-García, Andrés; García-Rivas, Gerardo; de la Garza, Rocío I Díaz

    2014-03-01

    Folate deficiency is a global health problem related to neural tube defects, cardiovascular disease, dementia, and cancer. Considering that folic acid (FA) supply through industrialized foods is the most successful intervention, limitations exist for its complete implementation worldwide. Biofortification of plant foods, on the other hand, could be implemented in poor areas as a complementary alternative. A biofortified tomato fruit that accumulates high levels of folates was previously developed. In this study, we evaluated short-term folate bioavailability in rats infused with this folate-biofortified fruit. Fruit from tomato segregants hyperaccumulated folates during an extended ripening period, ultimately containing 3.7-fold the recommended dietary allowance in a 100-g portion. Folate-depleted Wistar rats separated in three groups received a single dose of 1 nmol of folate/g body weight in the form of lyophilized biofortified tomato fruit, FA, or synthetic 5-CH3-THF. Folate bioavailability from the biofortified tomato was comparable to that of synthetic 5-CH3-THF, with areas under the curve (AUC(0-∞)) of 2,080 ± 420 and 2,700 ± 220 pmol · h/mL, respectively (P = 0.12). Whereas, FA was less bioavailable with an AUC(0-∞) of 750 ± 10 pmol · h/mL. Fruit-supplemented animals reached maximum levels of circulating folate in plasma at 2 h after administration with a subsequent steady decline, while animals treated with FA and synthetic 5-CH3-THF reached maximum levels at 1 h. Pharmacokinetic parameters revealed that biofortified tomato had slower intestinal absorption than synthetic folate forms. This is the first study that demonstrates the bioavailability of folates from a biofortified plant food, showing its potential to improve folate deficiency. PMID:24445671

  18. Mutation at the folate receptor 4 locus modulates gene expression profiles in the mouse uterus in response to preconceptual folate supplementation

    PubMed Central

    Salbaum, J. michael; Kruger, Claudia; Kappen, Claudia

    2013-01-01

    Periconceptional supplementation of folic acid to the diet of women is considered a great success for a public health intervention. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has lead to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental - for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize the response to a preconceptional regimen of supplementation with folinic acid, we performed gene expression profiling experiments on uterus tissue of pregnant mice with either wildtype alleles or targeted disruption at the folate receptor 4 locus. We observed that, depending on the genetic background, folinic acid supplementation affects expression of genes that contribute to lipid metabolism, protein synthesis, mitochondrial function, cell cycle, and cell activation. The extent of the response is strongly modulated by the genetic background. Finally, we provide evidence that folinic acid supplementation in the mutant paradigm affects histone methylation status, a potential mechanisms of gene regulation in this model. PMID:23651732

  19. Folate intake, MTHFR genotype, and sex modulate choline metabolism in mice.

    PubMed

    Chew, Tina W; Jiang, Xinyin; Yan, Jian; Wang, Wei; Lusa, Amanda L; Carrier, Bradley J; West, Allyson A; Malysheva, Olga V; Brenna, J Thomas; Gregory, Jesse F; Caudill, Marie A

    2011-08-01

    Choline and folate are interrelated in 1-carbon metabolism, mostly because of their shared function as methyl donors for homocysteine remethylation. Folate deficiency and mutations of methylenetetrahydrofolate reductase (MTHFR) reduce the availability of a major methyl donor, 5-methyltetrahydrofolate, which in turn may lead to compensatory changes in choline metabolism. This study investigated the hypothesis that reductions in methyl group supply, either due to dietary folate deficiency or Mthfr gene deletion, would modify tissue choline metabolism in a sex-specific manner. Mthfr wild type (+/+) or heterozygous (+/-) knockout mice were randomized to a folate-deficient or control diet for 8 wk during which time deuterium-labeled choline (d9-choline) was consumed in the drinking water (~10 μmol/d). Mthfr heterozygosity did not alter brain choline metabolite concentrations, but it did enhance their labeling in males (P < 0.05) and tended to do so in females (P < 0.10), a finding consistent with greater turnover of dietary choline in brains of +/- mice. Dietary folate deficiency in females yielded 52% higher (P = 0.027) hepatic glycerophosphocholine, which suggests that phosphatidylcholine (PtdCho) degradation was enhanced. Labeling of the hepatic PtdCho in d3 form was also reduced (P < 0.001) in females, which implies that fewer of the dietary choline-derived methyl groups were used for de novo PtdCho biosynthesis under conditions of folate insufficiency. Males responded to folate restriction with a doubling (P < 0.001) of hepatic choline dehydrogenase transcripts, a finding consistent with enhanced conversion of choline to the methyl donor, betaine. Collectively, these data show that several adaptations in choline metabolism transpire as a result of mild perturbations in folate metabolism, presumably to preserve methyl group homeostasis. PMID:21697299

  20. The neurology of folic acid deficiency.

    PubMed

    Reynolds, E H

    2014-01-01

    The metabolism of folic acid and the metabolism of vitamin B12 are intimately linked such that deficiency of either vitamin leads to an identical megaloblastic anemia. The neurologic manifestations of folate deficiency overlap with those of vitamin B12 deficiency and include cognitive impairment, dementia, depression, and, less commonly, peripheral neuropathy and subacute combined degeneration of the spinal cord. In both deficiency states there is often dissociation between the neuropsychiatric and the hematologic complications. There is a similar overlap and dissociation between neurologic and hematologic manifestations of inborn errors of folate and vitamin B12 metabolism. Low folate and raised homocysteine levels are risk factors for dementia, including Alzheimer's disease, and depression. Even when folate deficiency is secondary to psychiatric illness due to apathy or poor diet it may eventually aggravate the underlying disorder in a vicious circle effect. Clinical responses to treatment with folates are usually slow over weeks and months, probably due to the efficient blood-brain barrier mechanism for the vitamin, perhaps in turn related to the experimentally demonstrated excitatory properties of folate derivatives. The inappropriate administration of folic acid in the presence of vitamin B12 deficiency may lead to both neurologic and, later, hematologic relapse. Impaired maternal folate intake and status increases the risk of neural tube defects. Periconceptual prophylactic administration of the vitamin reduces, but does not eliminate the risk of neural tube defects even in the absence of folate deficiency. Folates and vitamin B12 have fundamental roles in central nervous system function at all ages, especially in purine, thymidine, neucleotide, and DNA synthesis, genomic and nongenomic methylation and, therefore, in tissue growth, differentiation and repair. There is interest in the potential role of both vitamins in the prevention of disorders of central

  1. Exon-specific DNA hypomethylation of the p53 gene of rat colon induced by dimethylhydrazine. Modulation by dietary folate.

    PubMed Central

    Kim, Y. I.; Pogribny, I. P.; Salomon, R. N.; Choi, S. W.; Smith, D. E.; James, S. J.; Mason, J. B.

    1996-01-01

    Folate deficiency enhances colorectal carcinogenesis in dimethylhydrazine-treated rats. Folate is an important mediator of DNA methylation, an epigenetic modification of DNA that is known to be dysregulated in the early stages of colorectal cancer. This study investigated the effect of dimethylhydrazine on DNA methylation of the colonic p53 gene and the modulation of this effect by dietary folate. Sprague-Dawley rats were fed diets containing 0, 2, 8, or 40 mg of folate/kg of diet. Five weeks after diet initiation, dimethylhydrazine was injected weekly for fifteen weeks. Folate-depleted and folate-replete control animals did not receive dimethylhydrazine and were fed the 0- and 8-mg folate diets, respectively. The extent of p53 methylation was determined by a quantitative HpaII-polymerase chain reaction. In exons 6 and 7, significant p53 hypomethylation was observed in all dimethylhydrazine-treated rats relative to controls (P < 0.01), independent of dietary folate. In exon 8, significant p53 hypomethylation was observed only in the dimethylhydrazine-treated folate-depleted rats compared with controls (P = 0.038) and was effectively overcome by increasing levels of dietary folate (P = 0.008). In this model, dimethylhydrazine induces exon-specific p53 hypomethylation. In some exons, this occurs independent of dietary folate, and in others, increasing levels of dietary folate effectively override the induction of hypomethylation in a dose-responsive manner. This may be a mechanism by which increasing levels of dietary folate inhibit colorectal carcinogenesis. PMID:8863662

  2. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.

    PubMed

    Eroglu, Seckin; Meier, Bastian; von Wirén, Nicolaus; Peiter, Edgar

    2016-02-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. PMID:26668333

  3. Intestinal folate absorption

    PubMed Central

    Strum, Williamson; Nixon, Peter F.; Bertino, Joseph B.; Binder, Henry J.

    1971-01-01

    Intestinal absorption of the monoglutamate form of the principal dietary and circulating folate compound, 5-methyltetrahydrofolic acid (5-MTHF), was studied in the rat utilizing a synthetic highly purified radiolabeled diastereoisomer. Chromatography confirmed that the compound was not altered after transfer from the mucosa to the serosa. Accumulation against a concentration gradient was not observed in duodenal, jejunal, or ileal segments at 5-MTHF concentration from 0.5 to 500 nmoles/liter. Unidirectional transmural flux determination also did not indicate a significant net flux. Mucosal to serosal transfer of 5-MTHF was similar in all segments of the intestine and increased in a linear fashion with increased initial mucosal concentrations. Further, no alteration in 5-MTHF transfer was found when studied in the presence of metabolic inhibitors or folate compounds. These results indicate that 5-MTHF is not absorbed by the rat small intestine by a carrier-mediated system and suggest that 5-MTHF transfer most likely represents diffusion. Images PMID:5564397

  4. Folate and vitamin B12 status of adolescent girls in northern Nigeria.

    PubMed Central

    VanderJagt, D. J.; Spelman, K.; Ambe, J.; Datta, P.; Blackwell, W.; Crossey, M.; Glew, R. H.

    2000-01-01

    The diets of populations in many developing countries are low in folate and vitamin B12 and a deficiency of either of these vitamins results in increased risk for cardiovascular disease and neural tube defects. The rates of neural tube defects in Nigeria are among the highest reported worldwide. Since many girls marry at an early age in northern Nigeria, we therefore determined the folate and vitamin B12 status of adolescent girls between 12 and 16 years of age in Maiduguri, Nigeria. The mean serum folate concentration for subjects was 15.3 +/- 5.2 nmol/L. Whereas only four subjects (2.4%) had serum folate concentrations lower than 6.8 nmol/L, a level indicative of negative folate balance, 9% of the subjects had serum vitamin B12 concentrations at or below 134 pmol/L, the lower limit of the reference range for their age group. Serum homocysteine was measured in 56 of the 162 subjects and the mean level was 15.9 +/- 5.0 mumol/L. The majority of subjects had serum homocysteine concentrations above the upper limit of the reference range for their age group. We conclude that the adolescent girls we studied were at greater risk for vitamin B12 deficiency than folate deficiency. This conclusion is consistent with the fact that their diet included few foods that contained vitamin B12. PMID:10946529

  5. A candidate mouse model for Hartnup disorder deficient in neutral amino acid transport.

    PubMed

    Symula, D J; Shedlovsky, A; Guillery, E N; Dove, W F

    1997-02-01

    The mutant mouse strain HPH2 (hyperphenylalaninemia) was isolated after N-ethyl-N-nitrosourea (ENU) mutagenesis on the basis of delayed plasma clearance of an injected load of phenylalanine. Animals homozygous for the recessive hph2 mutation excrete elevated concentrations of many of the neutral amino acids in the urine, while plasma concentrations of these amino acids are normal. In contrast, mutant homozygotes excrete normal levels of glucose and phosphorus. These data suggest an amino acid transport defect in the mutant, confirmed in a small reduction in normalized values of 14C-labeled glutamine uptake by kidney cortex brush border membrane vesicles (BBMV). The hyperaminoaciduria pattern is very similar to that of Hartnup Disorder cases also show niacin deficiency symptoms, of Hartnup Disorder cases also show niacin deficiency symptoms, which are thought to be multifactorially determined. Similarly, the HPH2 mouse exhibits a niacin-reversible syndrome that is modified by diet and by genetic background. Thus, HPH2 provides a candidate mouse model for the study of Hartnup Disorder, an amino acid transport deficiency and a multifactorial disease in the human. PMID:9060408

  6. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study

    PubMed Central

    Kurian, Manju A; Li, Yan; Zhen, Juan; Meyer, Esther; Hai, Nebula; Christen, Hans-Jürgen; Hoffmann, Georg F; Jardine, Philip; von Moers, Arpad; Mordekar, Santosh R; O'Callaghan, Finbar; Wassmer, Evangeline; Wraige, Elizabeth; Dietrich, Christa; Lewis, Timothy; Hyland, Keith; Heales, Simon JR; Sanger, Terence; Gissen, Paul; Assmann, Birgit E; Reith, Maarten EA; Maher, Eamonn R

    2010-01-01

    Summary Background Dopamine transporter deficiency syndrome is the first identified parkinsonian disorder caused by genetic alterations of the dopamine transporter. We describe a cohort of children with mutations in the gene encoding the dopamine transporter (SLC6A3) with the aim to improve clinical and molecular characterisation, reduce diagnostic delay and misdiagnosis, and provide insights into the pathophysiological mechanisms. Methods 11 children with a biochemical profile suggestive of dopamine transporter deficiency syndrome were enrolled from seven paediatric neurology centres in the UK, Germany, and the USA from February, 2009, and studied until June, 2010. The syndrome was characterised by detailed clinical phenotyping, biochemical and neuroradiological studies, and SLC6A3 mutation analysis. Mutant constructs of human dopamine transporter were used for in-vitro functional analysis of dopamine uptake and cocaine-analogue binding. Findings Children presented in infancy (median age 2·5 months, range 0·5–7) with either hyperkinesia (n=5), parkinsonism (n=4), or a mixed hyperkinetic and hypokinetic movement disorder (n=2). Seven children had been initially misdiagnosed with cerebral palsy. During childhood, patients developed severe parkinsonism-dystonia associated with an eye movement disorder and pyramidal tract features. All children had raised ratios of homovanillic acid to 5-hydroxyindoleacetic acid in cerebrospinal fluid, of range 5·0–13·2 (normal range 1·3–4·0). Homozygous or compound heterozygous SLC6A3 mutations were detected in all cases. Loss of function in all missense variants was recorded from in-vitro functional studies, and was supported by the findings of single photon emission CT DaTSCAN imaging in one patient, which showed complete loss of dopamine transporter activity in the basal nuclei. Interpretation Dopamine transporter deficiency syndrome is a newly recognised, autosomal recessive disorder related to impaired dopamine

  7. Unusual phenotype of glucose transport protein type 1 deficiency syndrome: A case report and literature review

    PubMed Central

    Posar, Annio; Santucci, Margherita

    2014-01-01

    The glucose transport protein type 1 (GLUT1) deficit causes a chronic brain energy failure. The classic phenotype of GLUT1 deficiency syndrome is characterized by: Mild to severe motor delay and mental retardation; infantile-onset epilepsy; head growth deceleration; movement disorders (ataxia, dystonia, spasticity); and non-epileptic paroxysmal events (intermittent ataxia, periodic confusion, recurrent headaches). During last years the classic phenotype of this syndrome, as originally reported, has expanded. We report the atypical phenotype of a boy with GLUT1 deficiency syndrome, characterized by mild mental retardation and drug-resistant absence seizures with onset at the age of 6 years, without movement disorders nor decrease of head circumference. A prompt diagnosis of this disorder is mandatory since the ketogenic diet might represent an effective treatment. PMID:24891901

  8. Unusual phenotype of glucose transport protein type 1 deficiency syndrome: A case report and literature review.

    PubMed

    Posar, Annio; Santucci, Margherita

    2014-01-01

    The glucose transport protein type 1 (GLUT1) deficit causes a chronic brain energy failure. The classic phenotype of GLUT1 deficiency syndrome is characterized by: Mild to severe motor delay and mental retardation; infantile-onset epilepsy; head growth deceleration; movement disorders (ataxia, dystonia, spasticity); and non-epileptic paroxysmal events (intermittent ataxia, periodic confusion, recurrent headaches). During last years the classic phenotype of this syndrome, as originally reported, has expanded. We report the atypical phenotype of a boy with GLUT1 deficiency syndrome, characterized by mild mental retardation and drug-resistant absence seizures with onset at the age of 6 years, without movement disorders nor decrease of head circumference. A prompt diagnosis of this disorder is mandatory since the ketogenic diet might represent an effective treatment. PMID:24891901

  9. A novel SLC6A8 mutation associated with motor dysfunction in a child exhibiting creatine transporter deficiency

    PubMed Central

    Cervera-Acedo, Cristina; Lopez, Maria; Aguirre-Lamban, Jana; Santibañez, Paula; Garcia-Oguiza, Alberto; Poch-Olive, Maria Luisa; Dominguez-Garrido, Elena

    2015-01-01

    Creatine transporter (CT) deficiency is an X-linked disorder caused by mutations in the SLC6A8 gene. We describe a clinical, biochemical and molecular examination of a child with X-linked cerebral creatine deficiency. Increased urinary creatine/creatinine ratio, abnormal brain proton magnetic resonance spectroscopy and reduced creatine transport confirmed the clinical diagnosis. SLC6A8 analysis revealed a novel mutation that was hemizygous in the child and not detected in his mother. CT deficiency should be considered in children, especially males, with mental retardation. PMID:27081545

  10. Megaloblastic anaemia, cobalamin, and folate.

    PubMed Central

    Chanarin, I

    1987-01-01

    Developments relating to cobalamin and folate are reviewed. Current work on the relations between these two coenzymes are discussed, particularly those that have emerged in studies using nitrous oxide, which inactivates cobalamin. PMID:3312306

  11. Alterations in Adhesion, Transport, and Membrane Characteristics in an Adhesion-Deficient Pseudomonad

    PubMed Central

    DeFlaun, M. F.; Oppenheimer, S. R.; Streger, S.; Condee, C. W.; Fletcher, M.

    1999-01-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. We compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435. PMID:9925613

  12. Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad

    SciTech Connect

    DeFlaun, M.F.; Streger, S.; Condee, C.W.; Oppenheimer, S.R.; Fletcher, M.

    1999-02-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. The authors compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435.

  13. Organic cation transporter 3: Keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice

    PubMed Central

    Baganz, Nicole L.; Horton, Rebecca E.; Calderon, Alfredo S.; Owens, W. Anthony; Munn, Jaclyn L.; Watts, Lora T.; Koldzic-Zivanovic, Nina; Jeske, Nathaniel A.; Koek, Wouter; Toney, Glenn M.; Daws, Lynette C.

    2008-01-01

    Mood disorders cause much suffering and are the single greatest cause of lost productivity worldwide. Although multiple medications, along with behavioral therapies, have proven effective for some individuals, millions of people lack an effective therapeutic option. A common serotonin (5-HT) transporter (5-HTT/SERT, SLC6A4) polymorphism is believed to confer lower 5-HTT expression in vivo and elevates risk for multiple mood disorders including anxiety, alcoholism, and major depression. Importantly, this variant is also associated with reduced responsiveness to selective 5-HT reuptake inhibitor antidepressants. We hypothesized that a reduced antidepressant response in individuals with a constitutive reduction in 5-HTT expression could arise because of the compensatory expression of other genes that inactivate 5-HT in the brain. A functionally upregulated alternate transporter for 5-HT may prevent extracellular 5-HT from rising to levels sufficiently high enough to trigger the adaptive neurochemical events necessary for therapeutic benefit. Here we demonstrate that expression of the organic cation transporter type 3 (OCT3, SLC22A3), which also transports 5-HT, is upregulated in the brains of mice with constitutively reduced 5-HTT expression. Moreover, the OCT blocker decynium-22 diminishes 5-HT clearance and exerts antidepressant-like effects in these mice but not in WT animals. OCT3 may be an important transporter mediating serotonergic signaling when 5-HTT expression or function is compromised. PMID:19033200

  14. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes.

    PubMed

    Delépine, Chloé; Meziane, Hamid; Nectoux, Juliette; Opitz, Matthieu; Smith, Amos B; Ballatore, Carlo; Saillour, Yoann; Bennaceur-Griscelli, Annelise; Chang, Qiang; Williams, Emily Cunningham; Dahan, Maxime; Duboin, Aurélien; Billuart, Pierre; Herault, Yann; Bienvenu, Thierry

    2016-01-01

    Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2(308/y) male mice. These findings represent a first step toward the validation of an innovative treatment for RTT. PMID:26604147

  15. Endo-Lysosomal Dysfunction in Human Proximal Tubular Epithelial Cells Deficient for Lysosomal Cystine Transporter Cystinosin

    PubMed Central

    Van Den Heuvel, Lambertus; Pastore, Anna; Dijkman, Henry; De Matteis, Maria Antonietta; Levtchenko, Elena N.

    2015-01-01

    Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC) deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles. PMID:25811383

  16. Folate metabolism and the risk of Down syndrome.

    PubMed

    Patterson, David

    2008-10-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy can reduce the risk of certain problems including neural tube defects. It has been suggested that certain versions (polymorphisms) of some genes can increase the risk of conceiving a baby with Down syndrome. If this is the case, then people with Down syndrome may be more likely to carry these forms of these genes and to experience associated problems in folate metabolism. Studies to date have found conflicting results, suggesting that these gene variants may be part of a more complex picture. In this issue, a further study reports no association between the presence of a common polymorphism of one of these genes and the risk of having a child with Down syndrome among mothers of Northern Indian origin. This article reviews these challenging findings and looks at where investigations can now go to resolve these issues. PMID:19026278

  17. A 138-kDa glycoprotein from Dictyostelium membranes with folate deaminase and folate binding activity.

    PubMed

    Greiner, R A; Jacobs-Krahnen, D; Mutzel, R; Malchow, D; Wurster, B

    1992-03-15

    A 138-kDa glycoprotein comprising folate deaminase activity was purified to apparent homogeneity from membranes of Dictyostelium discoideum. Deaminase activity could be effectively inhibited by p-chloromercuriphenylsulfonate. This treatment protected folate from deamination and thus allowed investigation of folate binding to deaminase fractions. Two types of folate binding sites, differing in affinity and specificity, were detected on the folate deaminase glycoprotein. One type displays high affinity and binds folate stronger than N10-methylfolate. This binding site appears to be identical with the catalytic site of folate deaminase. The other type of binding site shows lower affinity but prefers N10-methylfolate relative to folate. A similar preference for N10-methylfolate was observed in chemotaxis tests pointing to the possibility that the second type of binding site is involved in chemotactic perception of folate compounds. Folate perception and deamination could thus be performed by activities residing on the same polypeptide. PMID:1544893

  18. FOLATE CONTENT IN SELECT DRY BEAN GENOTYPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry edible beans are a good natural source of folate (½-cup serving of cooked beans provide 35% daily value of folate). Recognized healthful benefits of folate in the human diet include reduced birth defects, decreased plasma homocysteine level which is a risk factor in cardiovascular disease, reduc...

  19. Serum Folate Shows an Inverse Association with Blood Pressure in a Cohort of Chinese Women of Childbearing Age: A Cross-Sectional Study

    PubMed Central

    Shen, Minxue; Tan, Hongzhuan; Zhou, Shujin; Retnakaran, Ravi; Smith, Graeme N.; Davidge, Sandra T.; Trasler, Jacquetta; Walker, Mark C.; Wen, Shi Wu

    2016-01-01

    Background It has been reported that higher folate intake from food and supplementation is associated with decreased blood pressure (BP). The association between serum folate concentration and BP has been examined in few studies. We aim to examine the association between serum folate and BP levels in a cohort of young Chinese women. Methods We used the baseline data from a pre-conception cohort of women of childbearing age in Liuyang, China, for this study. Demographic data were collected by structured interview. Serum folate concentration was measured by immunoassay, and homocysteine, blood glucose, triglyceride and total cholesterol were measured through standardized clinical procedures. Multiple linear regression and principal component regression model were applied in the analysis. Results A total of 1,532 healthy normotensive non-pregnant women were included in the final analysis. The mean concentration of serum folate was 7.5 ± 5.4 nmol/L and 55% of the women presented with folate deficiency (< 6.8 nmol/L). Multiple linear regression and principal component regression showed that serum folate levels were inversely associated with systolic and diastolic BP, after adjusting for demographic, anthropometric, and biochemical factors. Conclusions Serum folate is inversely associated with BP in non-pregnant women of childbearing age with high prevalence of folate deficiency. PMID:27182603

  20. Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice12345

    PubMed Central

    Beaudin, Anna E; Abarinov, Elena V; Malysheva, Olga; Perry, Cheryll A; Caudill, Marie; Stover, Patrick J

    2012-01-01

    Background: Low dietary choline intake has been proposed to increase the risk of neural tube defects (NTDs) in human populations. Mice with reduced Shmt1 expression exhibit a higher frequency of NTDs when placed on a folate- and choline-deficient diet and may represent a model of human NTDs. The individual contribution of dietary folate and choline deficiency to NTD incidence in this mouse model is not known. Objective: To dissociate the effects of dietary folate and choline deficiency on Shmt1-related NTD sensitivity, we determined NTD incidence in embryos from Shmt1-null dams fed diets deficient in either folate or choline. Design: Shmt1+/+ and Shmt1−/− dams were maintained on a standard AIN93G diet (Dyets), an AIN93G diet lacking folate (FD), or an AIN93G diet lacking choline (CD). Virgin Shmt1+/+ and Shmt1−/− dams were crossed with Shmt1+/− males, and embryos were examined for the presence of NTDs at embryonic day (E) 11.5 or E12.5. Results: Exencephaly was observed only in Shmt1−/− embryos isolated from dams maintained on the FD diet (P = 0.004). Approximately 33% of Shmt1−/−embryos (n = 18) isolated from dams maintained on the FD diet exhibited exencephaly. NTDs were not observed in any embryos isolated from dams maintained on the CD (n = 100) or control (n = 152) diets or in any Shmt1+/+ (n = 78) or Shmt1+/− embryos (n = 182). Conclusion: Maternal folate deficiency alone is sufficient to induce NTDs in response to embryonic Shmt1 disruption. PMID:22134951

  1. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation.

    PubMed

    Park, Julien H; Hogrebe, Max; Grüneberg, Marianne; DuChesne, Ingrid; von der Heiden, Ava L; Reunert, Janine; Schlingmann, Karl P; Boycott, Kym M; Beaulieu, Chandree L; Mhanni, Aziz A; Innes, A Micheil; Hörtnagel, Konstanze; Biskup, Saskia; Gleixner, Eva M; Kurlemann, Gerhard; Fiedler, Barbara; Omran, Heymut; Rutsch, Frank; Wada, Yoshinao; Tsiakas, Konstantinos; Santer, René; Nebert, Daniel W; Rust, Stephan; Marquardt, Thorsten

    2015-12-01

    SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders. PMID:26637979

  2. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation

    PubMed Central

    Park, Julien H.; Hogrebe, Max; Grüneberg, Marianne; DuChesne, Ingrid; von der Heiden, Ava L.; Reunert, Janine; Schlingmann, Karl P.; Boycott, Kym M.; Beaulieu, Chandree L.; Mhanni, Aziz A.; Innes, A. Micheil; Hörtnagel, Konstanze; Biskup, Saskia; Gleixner, Eva M.; Kurlemann, Gerhard; Fiedler, Barbara; Omran, Heymut; Rutsch, Frank; Wada, Yoshinao; Tsiakas, Konstantinos; Santer, René; Nebert, Daniel W.; Rust, Stephan; Marquardt, Thorsten

    2015-01-01

    SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders. PMID:26637979

  3. Nutritional Deficiencies and Phospholipid Metabolism

    PubMed Central

    Gimenez, María S.; Oliveros, Liliana B.; Gomez, Nidia N.

    2011-01-01

    Phospholipids are important components of the cell membranes of all living species. They contribute to the physicochemical properties of the membrane and thus influence the conformation and function of membrane-bound proteins, such as receptors, ion channels, and transporters and also influence cell function by serving as precursors for prostaglandins and other signaling molecules and modulating gene expression through the transcription activation. The components of the diet are determinant for cell functionality. In this review, the effects of macro and micronutrients deficiency on the quality, quantity and metabolism of different phospholipids and their distribution in cells of different organs is presented. Alterations in the amount of both saturated and polyunsaturated fatty acids, vitamins A, E and folate, and other micronutrients, such as zinc and magnesium, are discussed. In all cases we observe alterations in the pattern of phospholipids, the more affected ones being phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The deficiency of certain nutrients, such as essential fatty acids, fat-soluble vitamins and some metals may contribute to a variety of diseases that can be irreversible even after replacement with normal amount of the nutrients. Usually, the sequelae are more important when the deficiency is present at an early age. PMID:21731449

  4. Sugar transport regulation: comparative characterization of the effect of NADH CoQ reductase deficiency in two cell culture systems.

    PubMed

    Germinario, R J; Continelli, L; Pratt, S

    2000-11-01

    In this report, we have characterized the upregulation of glucose transport in two different respiration-deficient fibroblast cell cultures. We have demonstrated that glucose transport increases in respiration-deficient cells as measured by 2 deoxy D-glucose transport and is readily observed in both the WG750 human and G14 Chinese hamster fibroblast respiration-deficient cell lines when compared with the MCH55 normal human and V79 parental Chinese hamster cell lines, respectively. Using subcellular fractionation techniques, the GLUT 1 glucose transporter was found located predominantly in the plasma membrane-enriched fraction of the human and hamster cell lines. In human cells, the expression of the GLUT 1 glucose transporter was elevated three-fold in the plasma membrane-enriched fraction of the WG750 respiration-deficient mutant cells. In the Chinese hamster cell lines, the respiration-deficient G14 cells exhibited no such GLUT 1 glucose transporter elevation in the plasma membrane-enriched fraction, yet expressed a >2-fold increase in glucose transport. Furthermore, the G14 cells had a similar content of GLUT 1 glucose transporter in the plasma membrane fraction when compared with the V79 parental cell line. Using Western blot analysis, the GLUT 1 glucose transporter in G14 cells exhibited a different mobility on a polyacrylamide gel when compared with the mobility of the GLUT 1 glucose transporter of the V79 cell line. This differential mobility of the glucose transporters in the hamster cells appeared to be related to glycosylation differences of the glucose transporters. Although normal human and hamster cell lines exhibited significant increases in insulin-stimulated sugar transport (P < 0.05), the two respective respiration-deficient cell lines exhibited no significant increases in insulin-stimulated sugar transport (P > 0.05). Additionally, the expression of the GLUT 1 mRNA in the human WG750 mutant cells was elevated when compared with GLUT 1 mRNA in

  5. Mutation in Folate Metabolism Causes Epigenetic Instability and Transgenerational Effects On Development

    PubMed Central

    Padmanabhan, Nisha; Jia, Dongxin; Geary-Joo, Colleen; Wu, Xuchu; Ferguson-Smith, Anne C.; Fung, Ernest; Bieda, Mark C.; Snyder, Floyd F.; Gravel, Roy A.; Cross, James C.; Watson, Erica D.

    2013-01-01

    SUMMARY The importance of maternal folate consumption for normal development is well established. Yet, the molecular mechanism linking folate metabolism to development remains poorly understood. The enzyme methionine synthase reductase (MTRR) is necessary for utilization of methyl groups from the folate cycle. We found that a hypomorphic mutation of the mouse Mtrr gene results in intrauterine growth restriction, developmental delay and congenital malformations including neural tube, heart and placental defects. Importantly, these defects were dependent upon the Mtrr genotypes of the maternal grandparents. Furthermore, we observed widespread epigenetic instability associated with altered gene expression in the placentas of wildtype grandprogeny of Mtrr-deficient maternal grandparents. Embryo transfer experiments revealed two epigenetic mechanisms of Mtrr deficiency in mice: adverse effects on their wildtype daughters’ uterine environment leading to growth defects in wildtype grandprogeny, and the appearance of congenital malformations independent of maternal environment that persist for five generations, likely through transgenerational epigenetic inheritance. PMID:24074862

  6. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency.

    PubMed

    Pérez-Dueñas, Belén; Serrano, Mercedes; Rebollo, Mónica; Muchart, Jordi; Gargallo, Eva; Dupuits, Celine; Artuch, Rafael

    2013-05-01

    Thiamine transporter-2 deficiency is a recessive disease caused by mutations in the SLC19A3 gene. Patients manifest acute episodes of encephalopathy; symmetric lesions in the cortex, basal ganglia, thalami or periaqueductal gray matter, and a dramatic response to biotin or thiamine. We report a 30-day-old patient with mutations in the SLC19A3 gene who presented with acute encephalopathy and increased level of lactate in the blood (8.6 mmol/L) and cerebrospinal fluid (7.12 mmol/L), a high excretion of α-ketoglutarate in the urine, and increased concentrations of the branched-chain amino acids leucine and isoleucine in the plasma. MRI detected bilateral and symmetric cortico-subcortical lesions involving the perirolandic area, bilateral putamina, and medial thalami. Some lesions showed low apparent diffusion coefficient values suggesting an acute evolution; others had high values likely to be subacute or chronic, most likely related to the perinatal period. After treatment with thiamine and biotin, irritability and opisthotonus disappeared, and the patient recovered consciousness. Biochemical disturbances also disappeared within 48 hours. After discontinuing biotin, the patient remained stable for 6 months on thiamine supplementation (20 mg/kg/day). The examination revealed subtle signs of neurologic sequelae, and MRI showed necrotic changes and volume loss in some affected areas. Our observations suggest that patients with thiamine transporter 2 deficiency may be vulnerable to metabolic decompensation during the perinatal period, when energy demands are high. Thiamine defects should be excluded in newborns and infants with lactic acidosis because prognosis largely depends on the time from diagnosis to thiamine supplementation. PMID:23589815

  7. ABCA2 transporter deficiency reduces incidence of TRAMP prostate tumor metastasis and cellular chemotactic migration

    PubMed Central

    Mack, Jody T.; Helke, Kristi L.; Normand, Gabrielle; Green, CoDanielle; Townsend, Danyelle M.; Tew, Kenneth D.

    2010-01-01

    In order to study the effects of ATP-binding cassette transporter 2 (ABCA2) deficiency on the progression of prostate cancer, congenic Abca2 knockout (KO) mice were crossed to the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. ABCA2 expression was elevated in wild-type/TRAMP (WT/Tg) dorsal prostate, a region comprising the most aggressive tumors in this model, compared to non-transgenic WT mice. Primary prostate tumor progression was similar in KO/Tg and WT/Tg mice with respect to pathological score, prostate tumor growth, as calculated using MRI volumetry, and proliferative index, as determined by PCNA immunostaining. Vimentin, a marker of the epithelial-mesenchymal transition, was expressed at similar levels in prostate, but elevated in histologically normal seminal vesicles (SV) in KO/Tg mice (P < 0.02), concomitant with an increased SV volume (P < 0.01). These changes in the SV did not exacerbate the metastatic phenotype of this disease model; rather, KO/Tg mice aged 20-25 weeks had no detectable metastases while 38% of WT/Tg developed metastases to lung and/or lymph nodes. The absence of a metastatic phenotype in KO/Tg mice was reprised in stable ABCA2 knockdown (KD) cells where chemotactic, but not random, migration was impaired (P = 0.0004). Expression levels of sphingolipid biosynthetic enzymes were examined due to the established link of the transporter with sphingolipid homeostasis. Galactosylceramide synthase (GalCerS) mRNA levels were over 8-fold higher in KD cells (P = 0.001), while lactosylceramide synthase (LacCerS) and CTP:choline cytidylyltransferase (CCT) were significantly reduced (P < 0.0001 and 0.03, respectively). Overall, we demonstrate that ABCA2 deficiency inhibits prostate tumor metastasis in vivo and decreases chemotactic potential of cells, conceivably due to altered sphingolipid metabolism. PMID:21041019

  8. Folates in lettuce: a pilot study

    PubMed Central

    Johansson, Madelene; Jägerstad, Margaretha; Frølich, Wenche

    2007-01-01

    Background Leafy vegetables are good sources of folates and food shops nowadays offer an increasing number of lettuce varieties. Objective To obtain data on the folate content and forms in common lettuce varieties and spinach sold in the Nordic countries, and to investigate effects of different storage conditions and preparations in the consumer's home or at lunchtime restaurants. Design Folate was analysed in eight different lettuce varieties and spinach using a validated high-performance liquid chromatographic method and the detected forms of folates were confirmed by a mass spectrometric detector [liquid chromatography–mass spectrometry (LC-MS)] following heat extraction, deconjugation with rat serum and purification by solid-phase extraction. Results Folate content, expressed in folic acid equivalents, in the lettuce samples varied six-fold, from 30 to 198 µg 100 g−1 on a fresh weight basis. The folate content was decreased by 14% after storage at 4°C for 8 days and by 2–40% after storage at 22°C for 2–4 h, depending on whether samples were stored as whole leaves, or small torn or cut pieces. LC-MS confirmed the identity of the folate forms: H4folate, 5-CH3-H4folate, 5-HCO-H4folate and 10-HCO-H4folate. Conclusion The considerable variation in folate content between varieties of lettuce in this pilot study, with one variety reaching the level found in spinach, indicates the potential to increase folate intake considerably by choosing folate-rich varieties of lettuce and storing at low temperatures.

  9. Characterization of Folate in Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The folate levels in a group of raw and roasted samples selected from the 2007 and the 2008 Uniform Peanut Performance Trials (UPPT) and from a set of raw samples from the Core of the Core of the Peanut Germplasm collection grown in 2006 and 2008 were determined. The samples were digested in protea...

  10. Folate and carcinogenesis-mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large and growing body of both pre-clinical and clinical studies pertaining to colorectal neoplasms constitutes the most compelling evidence for the protective effect of folate against the development of cancer, although evidence is also accruing in this regard for cancers of the breast, lung, pan...

  11. A Humanized Mouse Model for the Reduced Folate Carrier

    PubMed Central

    Patterson, David; Graham, Christine; Cherian, Christina; Matherly, Larry H.

    2008-01-01

    The ubiquitously expressed reduced folate carrier (RFC) or SLC19A1 is recognized to be an essential transport system for folates in mammalian cells and tissues. In addition to its generalized role as a folate transporter, RFC provides specialized tissue functions including absorption across intestinal/colonic epithelia, transport across the basolateral membrane of renal proximal tubules, transplacental transport of folates, and folate transport across the blood-brain barrier. The human RFC (hRFC) gene is regulated by 5 major upstream non-coding regions (designated A1/A2, A, B, C, and D), each transcribed from a unique promoter. Altogether, at least 14 distinct hRFC transcripts can be envisaged in which different 5’ untranslated regions (UTRs) are fused to a common splice acceptor region (positions -1 to -49) within the first coding exon with a common 1776 bp coding sequence. The 5’ non-coding regions are characterized by alternate transcription start sites, multiple splice forms, and selective tissue distributions. Alternate 5’UTRs impact mRNA stabilities and translation efficiencies, and result in synthesis of modified hRFC proteins translated from upstream AUGs. In this report, we describe production and characterization of transgenic mice (TghRFC1) containing a functional hRFC gene and of humanized mice in which the mRFC gene is inactivated and an active hRFC gene has been introduced. The mice appear to be healthy and to breed well. Analysis of tissue specificity of expression in both the TghRFC1 and humanized hRFC mice by real-time RT-PCR demonstrates that the hRFC gene is expressed with a specificity closely resembling that seen in human tissues. For the humanized hRFC mice, levels of B and A1/A2 5’UTRs predominated in all mice/tissues, thus resembling results in normal human tissues. Lower levels of A and C 5’UTRs were also detected. The availability of humanized mouse models for hRFC will permit investigators to address critical unanswered

  12. A humanized mouse model for the reduced folate carrier.

    PubMed

    Patterson, David; Graham, Christine; Cherian, Christina; Matherly, Larry H

    2008-02-01

    The ubiquitously expressed reduced folate carrier (RFC) or SLC19A1 is recognized to be an essential transport system for folates in mammalian cells and tissues. In addition to its generalized role as a folate transporter, RFC provides specialized tissue functions including absorption across intestinal/colonic epithelia, transport across the basolateral membrane of renal proximal tubules, transplacental transport of folates, and folate transport across the blood-brain barrier. The human RFC (hRFC) gene is regulated by five major upstream non-coding regions (designated A1/A2, A, B, C, and D), each transcribed from a unique promoter. Altogether, at least 14 distinct hRFC transcripts can be envisaged in which different 5' untranslated regions (UTRs) are fused to a common splice acceptor region (positions -1 to -49) within the first coding exon with a common 1776bp coding sequence. The 5' non-coding regions are characterized by alternate transcription start sites, multiple splice forms, and selective tissue distributions. Alternate 5' UTRs impact mRNA stabilities and translation efficiencies, and result in synthesis of modified hRFC proteins translated from upstream AUGs. In this report, we describe production and characterization of transgenic mice (TghRFC1) containing a functional hRFC gene and of humanized mice in which the mRFC gene is inactivated and an active hRFC gene has been introduced. The mice appear to be healthy and to breed well. Analysis of tissue specificity of expression in both the TghRFC1 and humanized hRFC mice by real-time RT-PCR demonstrates that the hRFC gene is expressed with a specificity closely resembling that seen in human tissues. For the humanized hRFC mice, levels of B and A1/A2 5' UTRs predominated in all mice/tissues, thus resembling results in normal human tissues. Lower levels of A and C 5' UTRs were also detected. The availability of humanized mouse models for hRFC will permit investigators to address critical unanswered questions

  13. Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1.

    PubMed

    Uraguchi, Shimpei; Kato, Yuichi; Hanaoka, Hideki; Miwa, Kyoko; Fujiwara, Toru

    2014-01-01

    Nutrient deficiency in soil poses a widespread agricultural problem. Boron (B) is an essential micronutrient in plants, and its deficiency causes defects in both vegetative and reproductive growth in various crops in the field. In Arabidopsis thaliana, increased expression of a major borate transporter gene AtBOR1 or boric acid channel gene AtNIP5;1 improves plant growth under B-deficient conditions. In this study, we examined whether high expression of a borate transporter gene increases B accumulation in shoots and improves the growth of tomato plant, a model of fruit-bearing crops, under B-deficient conditions. We established three independent transgenic tomato plants lines expressing AtBOR1 using Agrobacterium-mediated transformation of tomato (Solanum lycopersicum L. cv. Micro-Tom). Reverse transcription-polymerase chain reaction (RT-PCR) analysis confirmed that two lines (Line 1 and Line 2) more strongly expressed AtBOR1 than Line 3. Wild-type plants and the transgenic plants were grown hydroponically under B-sufficient and B-deficient conditions. Wild-type and Line 3 (weakly expressing transgenic line) showed a defect in shoot growth under B-deficient conditions, especially in the development of new leaves. However, seedlings of Line 1 and Line 2, the transgenic lines showing strong AtBOR1 expression, did not show the B-deficiency phenotype in newly developing leaves. In agreement with this phenotype, shoot biomass under low-B conditions was higher in the strongly expressing AtBOR1 line. B concentrations in leaves or fruits were also higher in Line 2 and Line 1. The present study demonstrates that strong expression of AtBOR1 improved growth in tomato under B-deficient conditions. PMID:24744768

  14. Vitamin B12, folate and iron levels in primary nocturnal enuresis

    PubMed Central

    Albayrak, Sebahattin; Zengin, Kürsad; Tanik, Serhat; Daar, Ghaniya; Ozdamar, Mustafa Yasar; Bakirtas, Hasan; Imamoglu, M. Abdurrahim; Gurdal, Mesut

    2015-01-01

    Objective: Folate, vitamin B12 and iron are important vitamin and minerals which play role in the development of nervous system. The aim of this study was looking at the presence of folate, vitamin B12 and iron deficiency among patients with Primary nocturnal enuresis (PNE) and possible relation between the delay of central nervous system (CNS) development, PNE and folate, vitamin B12 and iron states. Methods: Consecutively applied forty patients with PNE (23 girls and 17 boys) and otherwise normal thirty control subjects (17 girls and 13 boys) were included in the study. Average ages (in range) of PNE and the control group were 9.2(6-12) years and 9.3 (6-12) years accordingly. Age, height, weight, complete blood count, blood vitamin B12, folate, ferritin and iron values of both groups were recorded and compared to each other. Results: Average vitamin B12 and folate levels of patients with PNE were significantly and statistically lower compared to those of the control group. Average blood iron of patients with PNE was significantly higher than that of the control group and also average ferritin level of the PNE group was detected to be higher than the control group but this relation was statistically insignificant. Conclusion: Primary nocturnal enuresis is related to the delay in CNS maturation so it was thought that low vitamin B12 and folate which were found in patients with PNE may have role in the delay of CNS maturation. Additionally, further studies are needed to investigate the role of vitamin B12 and folate either alone or as combination in treatment of patients with PNE who have low vitamin B12and folate level. PMID:25878620

  15. Dietary and blood folate status of Malaysian women of childbearing age.

    PubMed

    Khor, Geok Lin; Duraisamy, G; Loh, Su Peng; Green, Timothy

    2006-01-01

    The protective role of folic acid taken during the periconceptual period in reducing the occurrence of neural tube defects (NTD) has been well documented by epidemiological evidence, randomized controlled trials and intervention studies. Much of the evidence is derived from western populations while similar data on Asian subjects is relatively nascent. Baseline data on folate status of Malaysian women is lacking, while NTD prevalence is estimated as 10 per 10,000 births. This study was conducted with the objective of determining the dietary and blood folate status of Malaysian women of childbearing age. A total of 399 women comprising 140 Malay, 131 Chinese and 128 Indian subjects were recruited from universities and worksites in the suburbs of Kuala Lumpur. Inclusion criteria were that the subjects were not pregnant or breastfeeding, not taking folic acid supplements, not habitual drinkers or smokers. Based on a 24-hour recall, the median intake level for folate was 66 microg (15.7-207.8 microg), which amounts to 16.5% of the Malaysian Recommended Nutrient Intakes level. The median (5-95th percentiles) values for plasma and red cell folate (RBC) concentrations were 11 (4-33) nmol/L and 633 (303-1209) nmol/L respectively. Overall, nearly 15.1% showed plasma folate deficiency (< 6.8 nmol/L), with Indian subjects having the highest prevalence (21.5%). Overall prevalence of RBC folate deficiency (<363 nmol/L) was 9.3%, and an almost similar level prevailed for each ethnic group. Only 15.2% had RBC concentration exceeding 906 nmol/L, which is associated with a very low risk of NTD. The result of this study point to the need for intervention strategies to improve the blood folate status of women of childbearing age, so that they have adequate protection against the occurrence of NTD at birth. PMID:16837426

  16. Folates and aging: Role in mild cognitive impairment, dementia and depression.

    PubMed

    Araújo, João Ricardo; Martel, Fátima; Borges, Nuno; Araújo, João Manuel; Keating, Elisa

    2015-07-01

    In almost all tissues, including the brain, folates are required for one-carbon transfer reactions, which are essential for the synthesis of DNA and RNA nucleotides, the metabolism of amino acids and the occurrence of methylation reactions. The aim of this paper is to review the impact of folate status on the risk of development of neuropsychiatric disorders in older individuals. The prevalence of folate deficiency is high among individuals aged ≥ 65 years mainly due to reduced dietary intake and intestinal malabsorption. Population-based studies have demonstrated that a low folate status is associated with mild cognitive impairment, dementia (particularly Alzheimer's disease) and depression in healthy and neuropsychiatric diseased older individuals. The proposed mechanisms underlying that association include hyperhomocysteinemia, lower methylation reactions and tetrahydrobiopterin levels, and excessive misincorporation of uracil into DNA. However, currently, there is no consistent evidence demonstrating that folic acid supplementation improves cognitive function or slows cognitive decline in healthy or cognitively impaired older individuals. In conclusion, folate deficiency seems to be an important contributor for the onset and progression of neuropsychiatric diseases in the geriatric population but additional studies are needed in order to increase the knowledge of this promising, but still largely unexplored, area of research. PMID:25939915

  17. Effects of developmental iron deficiency and post-weaning iron repletion on the levels of iron transporter proteins in rats

    PubMed Central

    Oh, Sugyoung; Shin, Pill-kyung

    2015-01-01

    BACKGROUND/OBJECTIVES Iron deficiency in early life is associated with developmental problems, which may persist until later in life. The question of whether iron repletion after developmental iron deficiency could restore iron homeostasis is not well characterized. In the present study, we investigated the changes of iron transporters after iron depletion during the gestational-neonatal period and iron repletion during the post-weaning period. MATERIALS/METHODS Pregnant rats were provided iron-deficient (< 6 ppm Fe) or control (36 ppm Fe) diets from gestational day 2. At weaning, pups from iron-deficient dams were fed either iron-deficient (ID group) or control (IDR group) diets for 4 week. Pups from control dams were continued to be fed with the control diet throughout the study period (CON). RESULTS Compared to the CON, ID rats had significantly lower hemoglobin and hematocrits in the blood and significantly lower tissue iron in the liver and spleen. Hepatic hepcidin and BMP6 mRNA levels were also strongly down-regulated in the ID group. Developmental iron deficiency significantly increased iron transporters divalent metal transporter 1 (DMT1) and ferroportin (FPN) in the duodenum, but decreased DMT1 in the liver. Dietary iron repletion restored the levels of hemoglobin and hematocrit to a normal range, but the tissue iron levels and hepatic hepcidin mRNA levels were significantly lower than those in the CON group. Both FPN and DMT1 protein levels in the liver and in the duodenum were not different between the IDR and the CON. By contrast, DMT1 in the spleen was significantly lower in the IDR, compared to the CON. The splenic FPN was also decreased in the IDR more than in the CON, although the difference did not reach statistical significance. CONCLUSIONS Our findings demonstrate that iron transporter proteins in the duodenum, liver and spleen are differentially regulated during developmental iron deficiency. Also, post-weaning iron repletion efficiently

  18. Cobalamin and Folate Status in 6 to 35 Months Old Children Presenting with Acute Diarrhea in Bhaktapur, Nepal

    PubMed Central

    Ulak, Manjeswori; Chandyo, Ram K.; Adhikari, Ramesh K.; Sharma, Pushpa R.; Sommerfelt, Halvor; Refsum, Helga; Strand, Tor A.

    2014-01-01

    Background Cobalamin and folate are essential micronutrients and are important in DNA and RNA synthesis, cell proliferation, growth, hematopoiesis, and cognitive function. However, data on cobalamin and folate status are lacking particularly from young children residing in low and middle income countries. Objective To measure cobalamin and folate status and identifies their predictors among 6 to 35 months old children presenting with acute diarrhea. Design This was a cross-sectional study in 823 children presenting with acute diarrhea. We measured plasma cobalamin, folate, methylmalonic acid and total homocysteine who sought treatment for acute diarrhea between June 1998 and August 2000. Results The mean (SD) plasma concentrations of cobalamin, folate, total homocysteine and methylmalonic acid were 206 (124) pmol/L, 55 (32) nmol/L, 11.4 (5.6) µmol/L and 0.79 (1.2) µmol/L, respectively. The prevalence of low plasma cobalamin (<150 pmol/L) was 41% but less than 2% (15) children had low folate concentration (<10 nmol/L). Plasma homocysteine and methylmalonic acid concentrations were negatively associated with cobalamin concentration but not associated with folate status. The prevalence of cobalamin deficiency was higher in breastfed than non-breastfed children (44% vs 24%; p = <0.001). The prevalence of hyperhomocysteinemia (>10 µmol/L) and elevated methylmalonic acid (>0.28 µmol/L) were 73% and 52%, respectively. In the regression analyses, the plasma cobalamin concentration was positively associated with age, and introduction of animal or formula milk. Conclusions Our study indicated that poor cobalamin status was common particularly among breastfed children. Folate deficiency was virtually none existent. Possible consequences of cobalamin deficiency in young children need to be explored. PMID:24594935

  19. Compliance with Iron-Folate Supplement and Associated Factors among Antenatal Care Attendant Mothers in Misha District, South Ethiopia: Community Based Cross-Sectional Study

    PubMed Central

    Arega Sadore, Abinet; Abebe Gebretsadik, Lakew; Aman Hussen, Mamusha

    2015-01-01

    Background. In Ethiopia, higher proportions of pregnant women are anemic. Despite the efforts to reduce iron deficiency anemia during pregnancy, only few women took an iron supplement as recommended. Thus, this study aimed to assess compliance with iron-folate supplement and associated factors among antenatal care attendant mothers in Misha district, South Ethiopia. Method. Community based cross-sectional study supported with in-depth interview was conducted from March 1 to March 30, 2015. The sample size was determined using single population proportion to 303. Simple random sampling technique was used to select the study participants. Bivariate and multivariable logistic regression analyses were employed to identify factors associated with compliance to iron-folate supplement. Results. The compliance rate was found to be 39.2%. Mothers knowledge of anemia (AOR = 4.451, 95% CI = (2.027,9.777)), knowledge of iron-folate supplement (AOR = 3.509, 95% CI = (1.442,8.537)), and counseling on iron-folate supplement (AOR = 4.093, 95% CI = (2.002,8.368)) were significantly associated with compliance to iron-folate supplement. Conclusions. Compliance rate of iron-folate supplementation during pregnancy remains very low. This study showed that providing women with clear instructions about iron-folate tablet intake and educating them on the health benefits of the iron-folate tablets can increase compliance with iron-folate supplementation. PMID:26839573

  20. Compliance with Iron-Folate Supplement and Associated Factors among Antenatal Care Attendant Mothers in Misha District, South Ethiopia: Community Based Cross-Sectional Study.

    PubMed

    Arega Sadore, Abinet; Abebe Gebretsadik, Lakew; Aman Hussen, Mamusha

    2015-01-01

    Background. In Ethiopia, higher proportions of pregnant women are anemic. Despite the efforts to reduce iron deficiency anemia during pregnancy, only few women took an iron supplement as recommended. Thus, this study aimed to assess compliance with iron-folate supplement and associated factors among antenatal care attendant mothers in Misha district, South Ethiopia. Method. Community based cross-sectional study supported with in-depth interview was conducted from March 1 to March 30, 2015. The sample size was determined using single population proportion to 303. Simple random sampling technique was used to select the study participants. Bivariate and multivariable logistic regression analyses were employed to identify factors associated with compliance to iron-folate supplement. Results. The compliance rate was found to be 39.2%. Mothers knowledge of anemia (AOR = 4.451, 95% CI = (2.027,9.777)), knowledge of iron-folate supplement (AOR = 3.509, 95% CI = (1.442,8.537)), and counseling on iron-folate supplement (AOR = 4.093, 95% CI = (2.002,8.368)) were significantly associated with compliance to iron-folate supplement. Conclusions. Compliance rate of iron-folate supplementation during pregnancy remains very low. This study showed that providing women with clear instructions about iron-folate tablet intake and educating them on the health benefits of the iron-folate tablets can increase compliance with iron-folate supplementation. PMID:26839573

  1. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  2. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  3. Professor John Scott, folate and neural tube defects.

    PubMed

    Hoffbrand, A Victor

    2014-02-01

    John Scott (1940-2013) was born in Dublin where he was to spend the rest of his career, both as an undergraduate and subsequently Professor of Biochemistry and Nutrition at Trinity College. His research with the talented group of scientists and clinicians that he led has had a substantial impact on our understanding of folate metabolism, mechanisms of its catabolism and deficiency. His research established the leading theory of folate involvement with vitamin B12 in the pathogenesis of vitamin B12 neuropathy. He helped to establish the normal daily intake of folate and the increased requirements needed either in food or as a supplement before and during pregnancy to prevent neural tube defects. He also suggested a dietary supplement of vitamin B12 before and during pregnancy to reduce the risk of neural tube defects. It would be an appropriate epitaph if fortification of food with folic acid became mandatory in the UK and Ireland, as it is in over 70 other countries. PMID:24224721

  4. Monocarboxylate Transporter 1 is Deficient on Microvessels in the Human Epileptogenic Hippocampus

    PubMed Central

    Lauritzen, Fredrik; de Lanerolle, Nihal C.; Lee, Tih-Shih W.; Spencer, Dennis D.; Kim, Jung H.; Bergersen, Linda H.; Eid, Tore

    2010-01-01

    Monocarboxylate transporter 1 (MCT1) facilitates the transport of important metabolic fuels (lactate, pyruvate and ketone bodies) and possibly also acidic drugs such as valproic acid across the blood brain barrier. Because an impaired brain energy metabolism and resistance to antiepileptic drugs are common features of temporal lobe epilepsy (TLE), we sought to study the expression of MCT1 in the brain of patients with this disease. Immunohistochemistry and immunogold electron microscopy were used to assess the distribution of MCT1 in brain specimens from patients with TLE and concomitant hippocampal sclerosis (referred to as mesial TLE or MTLE (n = 15)), patients with TLE and no hippocampal sclerosis (non-MTLE, n = 13) and neurologically normal autopsy subjects (n = 8). MCT1 was present on an extensive network of microvessels throughout the hippocampal formation in autopsy controls and to a lesser degree in non-MTLE. Patients with MTLE were markedly deficient in MCT1 on microvessels in several areas of the hippocampal formation, especially CA1, which exhibited a 37 to 48% loss of MCT1 on the plasma membrane of endothelial cells when compared with non-MTLE. These findings suggest that the uptake of blood-derived monocarboxylate fuels and possibly also acidic drugs, such as valproic acid, is perturbed in the epileptogenic hippocampus, particularly in MTLE. We hypothesize that the loss of MCT1 on brain microvessels is mechanistically involved in the pathophysiology of drug-resistant TLE, and propose that re-expression of MCT1 may represent a novel therapeutic approach for this disease. PMID:21081165

  5. Serotonin transporter deficient mice are vulnerable to escape deficits following inescapable shocks

    PubMed Central

    Muller, Jeff M; Morelli, Emanuela; Ansorge, Mark; Gingrich, Jay A

    2014-01-01

    Modulation of serotonin transporter (5-HTT) function causes changes in affective behavior, both in humans and rodents. Stressful life events likewise affect emotional behavior. In humans, a low-expressing genetic 5-htt variant, the s allele of the 5-htt linked promoter region, has been associated with increased risk for depression only where there was a history of stressful life events. To investigate this gene by environment interaction in mice, we compared the effects of inescapable shocks on the behavior of wild-type (5-htt+/+), heterozygote (5-htt+/−), and serotonin transporter deficient (5-htt−/−) mice. Inescapable shocks induce behavioral changes including a shock escape deficit, in a subsequent test when escape is possible. Confirming a gene by environment interaction, we found that stress increases escape latencies in a gene-dose dependent manner (5-htt−/− > 5-htt+/− > 5-htt +/+), where as there were no differences among the genotypes in the unstressed condition. The vulnerability to increased escape latency could not be accounted for by enhanced fear learning, as 5-htt−/− mice did not show heightened fear conditioning. The interaction of 5-htt genotype and stress appeared to produce a selective behavioral vulnerability, because no interaction of 5-htt genotype and stress was observed in other measures of anxiety and depression-linked behavior, including the open field, novelty suppressed feeding, and forced swim tests. We replicated prior findings that the 5-htt−/− displays heightened anxiety and depression-like behavior at baseline (unstressed condition). In conclusion, our data offers the possibility for future investigation of the neural basis underlying 5-htt genotype by stress interaction demonstrated here. PMID:20955517

  6. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine and DNA uracil concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Folate is an essential nutrient which supports nucleotide synthesis and biological methylation reactions. Diminished folate status results in chromosome breakage and is associated with several diseases including colorectal cancer. Folate status is also inversely related to plasma homocys...

  7. Female mice heterozygous for creatine transporter deficiency show moderate cognitive deficits.

    PubMed

    Hautman, Emily R; Kokenge, Amanda N; Udobi, Kenea C; Williams, Michael T; Vorhees, Charles V; Skelton, Matthew R

    2014-01-01

    Creatine transporter (CrT) deficiency (CTD) is an X-linked disorder characterized by intellectual disability and speech delay. There have been reports that show female carriers have clinical symptoms. We have created CrT knockout (CrT(-/y)) mice in which males show severe cognitive deficits as a model of this disorder. The purpose of this study was to examine if the female carrier mice show cognitive deficits. Reductions in Cr levels as well as CrT transcript were observed in the brains of the female CrT(+/-) mice. CrT(+/-) mice show hyperactivity and increased latency to find the cued platform in the Morris water maze (MWM). CrT(+/-) female mice showed deficits in MWM hidden platform acquisition but not during reversal testing. Memory deficits on probe trials were observed during both phases. Novel object recognition memory and contextual fear memory were not affected in female CrT(+/-) mice. Female CrT(+/-) mice show moderate cognitive deficits, which is consistent with some of the human data. Female CrT(+/-) mice could prove to be beneficial in further understanding CTD and testing therapeutic approaches. PMID:23716276

  8. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice.

    PubMed

    Aida, Tomomi; Yoshida, Junichi; Nomura, Masatoshi; Tanimura, Asami; Iino, Yusuke; Soma, Miho; Bai, Ning; Ito, Yukiko; Cui, Wanpeng; Aizawa, Hidenori; Yanagisawa, Michiko; Nagai, Terumi; Takata, Norio; Tanaka, Kenji F; Takayanagi, Ryoichi; Kano, Masanobu; Götz, Magdalena; Hirase, Hajime; Tanaka, Kohichi

    2015-06-01

    An increase in the ratio of cellular excitation to inhibition (E/I ratio) has been proposed to underlie the pathogenesis of neuropsychiatric disorders, such as autism spectrum disorders (ASD), obsessive-compulsive disorder (OCD), and Tourette's syndrome (TS). A proper E/I ratio is achieved via factors expressed in neuron and glia. In astrocytes, the glutamate transporter GLT1 is critical for regulating an E/I ratio. However, the role of GLT1 dysfunction in the pathogenesis of neuropsychiatric disorders remains unknown because mice with a complete deficiency of GLT1 exhibited seizures and premature death. Here, we show that astrocyte-specific GLT1 inducible knockout (GLAST(CreERT2/+)/GLT1(flox/flox), iKO) mice exhibit pathological repetitive behaviors including excessive and injurious levels of self-grooming and tic-like head shakes. Electrophysiological studies reveal that excitatory transmission at corticostriatal synapse is normal in a basal state but is increased after repetitive stimulation. Furthermore, treatment with an N-methyl-D-aspartate (NMDA) receptor antagonist memantine ameliorated the pathological repetitive behaviors in iKO mice. These results suggest that astroglial GLT1 has a critical role in controlling the synaptic efficacy at corticostriatal synapses and its dysfunction causes pathological repetitive behaviors. PMID:25662838

  9. Astroglial Glutamate Transporter Deficiency Increases Synaptic Excitability and Leads to Pathological Repetitive Behaviors in Mice

    PubMed Central

    Aida, Tomomi; Yoshida, Junichi; Nomura, Masatoshi; Tanimura, Asami; Iino, Yusuke; Soma, Miho; Bai, Ning; Ito, Yukiko; Cui, Wanpeng; Aizawa, Hidenori; Yanagisawa, Michiko; Nagai, Terumi; Takata, Norio; Tanaka, Kenji F; Takayanagi, Ryoichi; Kano, Masanobu; Götz, Magdalena; Hirase, Hajime; Tanaka, Kohichi

    2015-01-01

    An increase in the ratio of cellular excitation to inhibition (E/I ratio) has been proposed to underlie the pathogenesis of neuropsychiatric disorders, such as autism spectrum disorders (ASD), obsessive-compulsive disorder (OCD), and Tourette's syndrome (TS). A proper E/I ratio is achieved via factors expressed in neuron and glia. In astrocytes, the glutamate transporter GLT1 is critical for regulating an E/I ratio. However, the role of GLT1 dysfunction in the pathogenesis of neuropsychiatric disorders remains unknown because mice with a complete deficiency of GLT1 exhibited seizures and premature death. Here, we show that astrocyte-specific GLT1 inducible knockout (GLASTCreERT2/+/GLT1flox/flox, iKO) mice exhibit pathological repetitive behaviors including excessive and injurious levels of self-grooming and tic-like head shakes. Electrophysiological studies reveal that excitatory transmission at corticostriatal synapse is normal in a basal state but is increased after repetitive stimulation. Furthermore, treatment with an N-methyl-D-aspartate (NMDA) receptor antagonist memantine ameliorated the pathological repetitive behaviors in iKO mice. These results suggest that astroglial GLT1 has a critical role in controlling the synaptic efficacy at corticostriatal synapses and its dysfunction causes pathological repetitive behaviors. PMID:25662838

  10. A parametric study of golf car and personal transport vehicle braking stability and their deficiencies.

    PubMed

    Seluga, Kristopher J; Baker, Lowell L; Ojalvo, Irving U

    2009-07-01

    This paper describes research and parametric analyses of braking effectiveness and directional stability for golf cars, personal transport vehicles (PTVs) and low speed vehicles (LSVs). It is shown that current designs, which employ brakes on only the rear wheels, can lead to rollovers if the brakes are applied while traveling downhill. After summarizing the current state of existing safety standards and brake system designs, both of which appear deficient from a safety perspective, a previously developed dynamic simulation model is used to identify which parameters have the greatest influence on the vehicles' yaw stability. The simulation results are then used to parametrically quantify which combination of these factors can lead to yaw induced rollover during hard braking. Vehicle velocity, steering input, path slope and tire friction are all identified as important parameters in determining braking stability, the effects of which on rollover propensity are presented graphically. The results further show that when vehicles are equipped with front brakes or four-wheel brakes, the probability of a yaw induced rollover is almost entirely eliminated. Furthermore, the parametric charts provided may be used as an aid in developing guidelines for golf car and PTV path design if rear brake vehicles are used. PMID:19540974

  11. Creatine transporter deficiency leads to increased whole body and cellular metabolism.

    PubMed

    Perna, Marla K; Kokenge, Amanda N; Miles, Keila N; Udobi, Kenea C; Clark, Joseph F; Pyne-Geithman, Gail J; Khuchua, Zaza; Skelton, Matthew R

    2016-08-01

    Creatine (Cr) is a guanidino compound required for rapid replenishment of ATP in cells with a high-energy demand. In humans, mutations in the Cr transporter (CRT;SLC6A8) prevent Cr entry into tissue and result in a significant intellectual impairment, epilepsy, and aphasia. The lack of Cr on both the whole body and cellular metabolism was evaluated in Crt knockout (Crt (-/y) ) mice, a high-fidelity model of human CRT deficiency. Crt (-/y) mice have reduced body mass and, however, show a twofold increase in body fat. There was increased energy expenditure in a home cage environment and during treadmill running in Crt (-/y) mice. Consistent with the increases in the whole-body metabolic function, Crt (-/y) mice show increased cellular metabolism as well. Mitochondrial respiration increased in skeletal muscle fibers and hippocampal lysates from Crt (-/y) mice. In addition, Crt (-/y) mice had increased citrate synthase activity, suggesting a higher number of mitochondria instead of an increase in mitochondrial activity. To determine if the increase in respiration was due to increased mitochondrial numbers, we measured oxygen consumption in an equal number of mitochondria from Crt (+/y) and Crt (-/y) mice. There were no changes in mitochondrial respiration when normalized to mitochondrial number, suggesting that the increase in respiration observed could be to higher mitochondrial content in Crt (-/y) mice. PMID:27401086

  12. Folate and vitamin B12 status and dietary intake of anaemic adolescent schoolgirls in the delta region of Myanmar.

    PubMed

    Htet, Min Kyaw; Fahmida, Umi; Thurnham, David I; Hlaing, Lwin Mar; Akib, Arwin; Utomo, Budi; Houghton, Lisa A

    2016-07-01

    The aim of the present study was to assess the prevalence of deficiency of folate and vitamin B12 and, simultaneously, the nutrient intake adequacy of folate, vitamin B12, iron, vitamin A, vitamin C, vitamin B6 and calcium in 391 adolescent anaemic (Hb<120 g/l) schoolgirls living in the delta region of Myanmar (Burma). Dietary intakes were assessed using a 3 d estimated food record. The distribution of observed intakes calculated from the food records were adjusted for usual intakes, and the prevalence of inadequacy was estimated using the estimated average requirement cut-point method. Median (first, third quartile) serum folate and vitamin B12 concentrations were 6·5 (4·6, 8·5) nmol/l and 612·8 (443·2, 795·2) pmol/l, respectively. The prevalence of folate deficiency defined as <6·8 nmol/l was 54 %; however, vitamin B12 deficiency defined as <148 pmol/l was negligible (<1 %). The prevalence of inadequate intake of folate was high (100 %) as was the prevalence of inadequate intakes of vitamin A, vitamin C, vitamin B6 and calcium, ranging from 60 to 100 %. Red meat or poultry was rarely consumed, but fish was consumed on a daily basis. Green leafy vegetables were also consumed frequently but consumption of dairy products was uncommon. Folate deficiency was high, and the prevalence of inadequate intake of folate among other key micronutrients was relatively common in this sample of anaemic adolescent schoolgirls. Appropriate strategies such as food fortification and dietary diversification are needed to improve the micronutrient status of these young women to ensure optimal health and future reproductive success. PMID:26481660

  13. Relation between Vitamin B12 and Folate Status, and Hemoglobin Concentration and Parasitemia during Acute Malaria Infections in Colombia

    PubMed Central

    Caicedo, Olga; Villamor, Eduardo; Forero, Yibby; Ziade, José; Pérez, Pilar; Quiñones, Francisco; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2010-01-01

    Anemia is a common complication of human malaria. Since micronutrient deficiencies are highly prevalent in malaria-endemic areas and appear to contribute to anemia etiology, we conducted a cross-sectional study in Tumaco, Colombia, to examine the associations between plasma vitamin B12 or erythrocyte folate concentrations and hemoglobin (Hb) among 96 adults with predominantly Plasmodium falciparum malaria. Prevalence of folate and vitamin B12 deficiencies were 26.0% and 26.6%, respectively. There was an inverse, linear relation between folate and Hb concentrations. Adjusted difference in Hb between lowest and highest folate quartiles was 1 g/dL (p = 0.04; p, test for trend = 0.01). Vitamin B12 was not associated with Hb concentrations and did not modify the associations between folate and Hb. Incidentally, body mass index (BMI) was inversely associated with parasitemia and risk of clinical malaria. Future longitudinal studies are warranted to determine the potential pathophysiological role of folate in malaria-related anemia. PMID:19931503

  14. GNMT expression increases hepatic folate contents and folate-dependent methionine synthase-mediated homocysteine remethylation.

    PubMed

    Wang, Yi-Cheng; Chen, Yi-Ming; Lin, Yan-Jun; Liu, Shih-Ping; Chiang, En-Pei Isabel

    2011-01-01

    Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therapies, is not understood completely. In the present study, we investigated the impacts of GNMT expression on cell growth, folate status, methylfolate-dependent reactions and antifolate cytotoxicity. GNMT-diminished hepatoma cell lines transfected with GNMT were cultured under folate abundance or restriction. Folate-dependent homocysteine remethylation fluxes were investigated using stable isotopic tracers and gas chromatography/mass spectrometry. Folate status was compared between wild-type (WT), GNMT transgenic (GNMT(tg)) and GNMT knockout (GNMT(ko)) mice. In the cell model, GNMT expression increased folate concentration, induced folate-dependent homocysteine remethylation, and reduced antifolate methotrexate cytotoxicity. In the mouse models, GNMT(tg) had increased hepatic folate significantly, whereas GNMT(ko) had reduced folate. Liver folate levels correlated well with GNMT expressions (r = 0.53, P = 0.002); and methionine synthase expression was reduced significantly in GNMT(ko), demonstrating impaired methylfolate-dependent metabolism by GNMT deletion. In conclusion, we demonstrated novel findings that restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Studies on how GNMT expression impacts the distribution of different folate cofactors and the regulation of specific folate dependent reactions are underway. PMID:21210071

  15. Neuropsychological profile and clinical effects of arginine treatment in children with creatine transport deficiency

    PubMed Central

    2012-01-01

    Background SLC6A8, an X-linked gene, encodes the creatine transporter (CRTR) and its mutations lead to cerebral creatine (Cr) deficiency which results in mental retardation, speech and language delay, autistic-like behaviour and epilepsy (CRTR-D, OMIM 300352). CRTR-D represents the most frequent Cr metabolism disorder but, differently from Cr synthesis defects, that are partially reversible by oral Cr supplementation, does not respond to Cr treatment even if precociously administrated. The precursors of Cr are the non-essential amino acids Glycine (Gly) and Arginine (Arg), which have their own transporters at the brain–blood barrier level and, therefore, their supplementation appears an attractive and feasible therapeutic option aimed at stimulating Cr endogenous synthesis and, in this way, at overcoming the block of Cr transport within the brain. However, until now the effects of Arg and/or Gly supplementation on Cr brain levels and behaviour have been controversial. Methods In this study five Italian male patients affected by CRTR-D were supplemented with oral L-Arg at a dosage of 300 mg/kg/day divided into 3 doses, for 24–36 months. Biochemical and plasmatic amino acids examinations and thyroid hormone dosages were periodically performed. Moreover, Proton and Phosphorus Magnetic Resonance Spectroscopy (MRS) was monitored during follow-up in concurrence with neuropsychological evaluations. Results During L-Arg treatment a clinical improvement in motor skills and to a lesser extent in communication and attention was observed. In addition, all patients had a reduction in the number and frequency of epileptic seizures. Daily living skills appeared also to be positively influenced by L-Arg treatment. Moreover, Total Cr and especially PhosphoCr, evaluated by proton and phosphorus spectroscopy, showed a mild increase, although well below the normal range. Conclusion This study provides information to support the effectiveness of L-Arg supplement treatment in

  16. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome.

    PubMed

    Ortigoza-Escobar, Juan Darío; Molero-Luis, Marta; Arias, Angela; Oyarzabal, Alfonso; Darín, Niklas; Serrano, Mercedes; Garcia-Cazorla, Angels; Tondo, Mireia; Hernández, María; Garcia-Villoria, Judit; Casado, Mercedes; Gort, Laura; Mayr, Johannes A; Rodríguez-Pombo, Pilar; Ribes, Antonia; Artuch, Rafael; Pérez-Dueñas, Belén

    2016-01-01

    Thiamine transporter-2 deficiency is caused by mutations in the SLC19A3 gene. As opposed to other causes of Leigh syndrome, early administration of thiamine and biotin has a dramatic and immediate clinical effect. New biochemical markers are needed to aid in early diagnosis and timely therapeutic intervention. Thiamine derivatives were analysed by high performance liquid chromatography in 106 whole blood and 38 cerebrospinal fluid samples from paediatric controls, 16 cerebrospinal fluid samples from patients with Leigh syndrome, six of whom harboured mutations in the SLC19A3 gene, and 49 patients with other neurological disorders. Free-thiamine was remarkably reduced in the cerebrospinal fluid of five SLC19A3 patients before treatment. In contrast, free-thiamine was slightly decreased in 15.2% of patients with other neurological conditions, and above the reference range in one SLC19A3 patient on thiamine supplementation. We also observed a severe deficiency of free-thiamine and low levels of thiamine diphosphate in fibroblasts from SLC19A3 patients. Surprisingly, pyruvate dehydrogenase activity and mitochondrial substrate oxidation rates were within the control range. Thiamine derivatives normalized after the addition of thiamine to the culture medium. In conclusion, we found a profound deficiency of free-thiamine in the CSF and fibroblasts of patients with thiamine transporter-2 deficiency. Thiamine supplementation led to clinical improvement in patients early treated and restored thiamine values in fibroblasts and cerebrospinal fluid. PMID:26657515

  17. Intracellular in vitro probe acylcarnitine assay for identifying deficiencies of carnitine transporter and carnitine palmitoyltransferase-1.

    PubMed

    Purevsuren, Jamiyan; Kobayashi, Hironori; Hasegawa, Yuki; Yamada, Kenji; Takahashi, Tomoo; Takayanagi, Masaki; Fukao, Toshiyuki; Fukuda, Seiji; Yamaguchi, Seiji

    2013-02-01

    Mitochondrial fatty acid oxidation (FAO) disorders are caused by defects in one of the FAO enzymes that regulates cellular uptake of fatty acids and free carnitine. An in vitro probe acylcarnitine (IVP) assay using cultured cells and tandem mass spectrometry is a tool to diagnose enzyme defects linked to most FAO disorders. Extracellular acylcarnitine (AC) profiling detects carnitine palmitoyltransferase-2, carnitine acylcarnitine translocase, and other FAO deficiencies. However, the diagnosis of primary carnitine deficiency (PCD) or carnitine palmitoyltransferase-1 (CPT1) deficiency using the conventional IVP assay has been hampered by the presence of a large amount of free carnitine (C0), a key molecule deregulated by these deficiencies. In the present study, we developed a novel IVP assay for the diagnosis of PCD and CPT1 deficiency by analyzing intracellular ACs. When exogenous C0 was reduced, intracellular C0 and total AC in these deficiencies showed specific profiles clearly distinguishable from other FAO disorders and control cells. Also, the ratio of intracellular to extracellular C0 levels showed a significant difference in cells with these deficiencies compared with control. Hence, intracellular AC profiling using the IVP assay under reduced C0 conditions is a useful method for diagnosing PCD or CPT1 deficiency. PMID:23143007

  18. Effect of long-term supplementation of folate on folate status in plasma and erythrocytes.

    PubMed

    Heseker, H; Schmitt, G

    1987-06-01

    Folate nutritional status was estimated by radioassay of folate levels in plasma and erythrocytes during and after a long-term supplementation of folic acid. A 1-mg dose of folic acid per day was administered orally to 6 healthy subjects for 17 weeks. After 4 weeks of supplementation the mean folate concentration in plasma reached 11 ng/ml and remained constant thereafter, but decreased exponentially after stopping the supplementation. However, the folate concentrations in reticulocytes and erythrocytes increased linearly in all subjects during the supplementation. These results suggest that folate-rich, young erythrocytes are mixed at a constant rate with circulating ripe ones, which have a lower folate content, during folate supplementation. PMID:3668697

  19. Periconceptional folate consumption is associated with neonatal DNA methylation modifications in neural crest regulatory and cancer development genes.

    PubMed

    Gonseth, Semira; Roy, Ritu; Houseman, E Andres; de Smith, Adam J; Zhou, Mi; Lee, Seung-Tae; Nusslé, Sébastien; Singer, Amanda W; Wrensch, Margaret R; Metayer, Catherine; Wiemels, Joseph L

    2015-01-01

    Folate deficiency during early embryonic development constitutes a risk factor for neural tube defects and potentially for childhood leukemia via unknown mechanisms. We tested whether folate consumption during the 12 months prior to conception induced DNA methylation modifications at birth in healthy neonates with a genome-wide and agnostic approach. We hypothesized that DNA methylation in genes involved in neural tube development and/or cancer susceptibility would be affected by folate exposure. We retrospectively assessed folate exposure at the time of conception by food-frequency questionnaires administered to the mothers of 343 healthy newborns. We measured genome-wide DNA methylation from neonatal blood spots. We implemented a method based on bootstrap resampling to decrease false-positive findings. Folate was inversely associated with DNA methylation throughout the genome. Among the top folate-associated genes that were replicated in an independent Gambian study were TFAP2A, a gene critical for neural crest development, STX11, a gene implicated in acute myeloid leukemia, and CYS1, a candidate gene for cystic kidney disease. Reduced periconceptional folate intake was associated with increased methylation and, in turn, decreased gene expression at these 3 loci. The top folate-sensitive genes defined by their associated CpG sites were enriched for numerous transcription factors by Gene Set Enrichment Analysis, including those implicated in cancer development (e.g., MYC-associated zinc finger protein). The influence of estimated periconceptional folate intake on neonatal DNA methylation levels provides potential mechanistic insights into the role of this vitamin in the development of neural tube defects and childhood cancers. PMID:26646725

  20. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport.

    PubMed Central

    Rebouche, C J; Engel, A G

    1984-01-01

    The human primary carnitine deficiency syndromes are potentially fatal disorders affecting children and adults. The molecular etiologies of these syndromes have not been determined. In this investigation, we considered the hypothesis that these syndromes result from defective transport of carnitine into tissues, particularly skeletal muscle. The problem was approached by mathematical modeling, by using the technique of kinetic compartmental analysis. A tracer dose of L-[methyl-3H]carnitine was administered intravenously to six normal subjects, one patient with primary muscle carnitine deficiency (MCD), and four patients with primary systemic carnitine deficiency (SCD). Specific radioactivity was followed in plasma for 28 d. A three-compartment model (extracellular fluid, muscle, and "other tissues") was adopted. Rate constants, fluxes, pool sizes, and turnover times were calculated. Results of these calculations indicated reduced transport of carnitine into muscle in both forms of primary carnitine deficiency. However, in SCD, the reduced rate of carnitine transport was attributed to reduced plasma carnitine concentration. In MCD, the results are consistent with an intrinsic defect in the transport process. Abnormal fluctuations of the plasma carnitine, but of a different form, occurred in MCD and SCD. The significance of these are unclear, but in SCD they suggest abnormal regulation of the muscle/plasma carnitine concentration gradient. In 8 of 11 subjects, carnitine excretion was less than dietary carnitine intake. Carnitine excretion rates calculated by kinetic compartmental analysis were higher than corresponding rates measured directly, indicating degradation of carnitine. However, we found no radioactive metabolites of L-[methyl-3H]carnitine in urine. These observations suggest that dietary carnitine was metabolized in the gastrointestinal tract. PMID:6707204

  1. Opposing roles of folate in prostate cancer.

    PubMed

    Rycyna, Kevin J; Bacich, Dean J; O'Keefe, Denise S

    2013-12-01

    The US diet has been fortified with folic acid to prevent neural tube defects since 1998. The Physician Data Queries from the National Cancer Institute describe folate as protective against prostate cancer, whereas its synthetic analog, folic acid, is considered to increase prostate cancer risk when taken at levels easily achievable by eating fortified food or taking over-the-counter supplements. We review the present literature to examine the effects of folate and folic acid on prostate cancer, help interpret previous epidemiologic data, and provide clarification regarding the apparently opposing roles of folate for patients with prostate cancer. A literature search was conducted in Medline to identify studies investigating the effect of nutrition and specifically folate and folic acid on prostate carcinogenesis and progression. In addition, the National Health and Nutrition Examination Survey database was analyzed for trends in serum folate levels before and after mandatory fortification. Folate likely plays a dual role in prostate carcinogenesis. There remains conflicting epidemiologic evidence regarding folate and prostate cancer risk; however, there is growing experimental evidence that higher circulating folate levels can contribute to prostate cancer progression. Further research is needed to clarify these complex relationships. PMID:23992971

  2. [Roles of folate metabolism in prostate cancer].

    PubMed

    Sun, Fei-vu; Hu, Qing-feng; Xia, Guo-wei

    2015-07-01

    Epidemiological surveys show that folic acid can prevent prostate cancer, but fortified folic acid may increase the risk of the malignancy. The physician data queries from the National Cancer Institute of the USA describe folate as protective against prostate cancer, whereas its synthetic analog, folic acid, is considered to increase prostate cancer risk when taken at levels easily achievable by eating fortified food or taking over-the-counter supplements. We review the current literature to examine the effects of folate and folic acid on prostate cancer, help interpret previous epidemiologic data, and provide a clarification regarding the apparently opposing roles of folate for patients with prostate cancer. A literature search was conducted in Medline to identify studies investigating the effect of nutrition and specifically folate and folic acid on prostate carcinogenesis and progression. In addition, the National Health and Nutrition Examination Survey database was analyzed for the trends in serum folate levels before and after mandatory fortification. Folate likely plays a dual role in prostate carcinogenesis. There remains some conflicting epidemiologic evidence regarding folate and prostate cancer risk. However, there is growing experimental evidence that higher circulating folate levels can contribute to prostate cancer progression. Further research is needed to clarify these complex relationships. PMID:26333231

  3. Folate and brain function in the elderly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE OF REVIEW: Over the past several decades, folate has emerged as an important nutrient in several key conditions of concern to the elderly. Subclinical levels of folate inadequacy can have significant negative impacts on health in older individuals. RECENT FINDINGS: Serum and red blood cell...

  4. Folate status in type 2 diabetic patients with and without retinopathy

    PubMed Central

    Malaguarnera, Giulia; Gagliano, Caterina; Salomone, Salvatore; Giordano, Maria; Bucolo, Claudio; Pappalardo, Antonino; Drago, Filippo; Caraci, Filippo; Avitabile, Teresio; Motta, Massimo

    2015-01-01

    Background Folate deficiency is associated with cardiovascular disease, megaloblastic anemia, and with hyperhomocysteinemia. This study has been undertaken to investigate the role of folate status during the progression of the diabetic retinopathy. Methods We measured the plasma levels of homocysteine, folic acid, and red cell folate in 70 diabetic type 2 patients with nonproliferative diabetic retinopathy (NPDR), 65 with proliferative diabetic retinopathy (PDR), 96 without diabetic retinopathy, and 80 healthy subjects used as a control group. Results We found higher plasma levels of homocysteine in the NPDR group compared to the control group (P<0.001) and in the PDR group compared to control group (P<0.001) and NPDR group (P<0.01). The severity of diabetic retinopathy was associated with lower folic acid and red cell folate levels, and a significant difference was observed between PDR and NPDR groups (P<0.05). Conclusion The folate status could play a role in the development and progression of diabetic retinopathy. PMID:26300625

  5. Role of the folate receptor in ovarian cancer treatment: evidence, mechanism, and clinical implications.

    PubMed

    Vergote, Ignace B; Marth, Christian; Coleman, Robert L

    2015-03-01

    Folate can be transported into the cell by the reduced folate carrier (RFC), the proton-coupled folate transporter (PCFT), or the folate receptor (FR), of which various isoforms exist. While the RFC and PCFT are expressed by many normal cells, the FR is present only in a small proportion of normal tissues. In these tissues, the FR expression level is often low and restricted to the apical surface of polarized epithelial cells. In contrast, FR is expressed on the blood-accessible basal and lateral membranes of many types of epithelial cancer. Considering that FR is expressed in few nonmalignant cell types on luminal membranes generally not accessible for molecules transported in the blood, FR is considered a promising antitumor target. As FR expression seems associated with tumor progression and prognosis, anticancer therapies targeting FR are currently being developed, such as farletuzumab (Morphotek, Exton, PA, USA), IMGN853 (ImmunoGen, Waltham, MA, USA), vintafolide, and EC1456 (both Endocyte Inc., West Lafayette, IN, USA). FR expression could be used as a response-predictive biomarker for these treatments. The ability to identify patients and treat them with an effective therapy based on the known expression of the tumor marker would, indeed, be the next step in predictive medicine for these patients. This review summarizes the role of FR in ovarian cancer and the value of FR as a prognostic biomarker for ovarian cancer and a response-predictive biomarker for folate-targeted therapeutics. PMID:25564455

  6. Plasma homocysteine levels related to interactions between folate status and methylenetetrahydrofolate reductase: a study in 52 healthy subjects.

    PubMed

    Zittoun, J; Tonetti, C; Bories, D; Pignon, J M; Tulliez, M

    1998-11-01

    Hyperhomocysteinemia, a risk factor for vascular disease, is related to vitamin B12, vitamin B6, and especially folate deficiency, or to genetic factors such as mutations in methylenetetrahydrofolate reductase (MTHFR), an enzyme involved in the remethylation pathway of homocysteine to methionine. Recently, a C677 --> T mutation identified in the MTHFR gene was found to be frequently associated with decreased MTHFR activity and an elevated plasma homocysteine concentration. Since hyperhomocysteinemia seems to be determined by both genetic and environmental factors, we studied the interactions between MTHFR (phenotype and genotype) and folate status, including methyltetrahydrofolate (methylTHF), the product of MTHFR, on the homocysteine concentration in 52 healthy subjects, (28 women and 24 men; mean age, 32.7 years). MTHFR activity seems to be dependent on folate status, as shown by a lower activity in folate-deficient subjects and a return to normal values after supplementation with folic acid, and also by a decreased enzymatic activity on phytohemagglutinin (PHA)-stimulated lymphocytes grown in a folic acid-deficient medium. Conversely, the C677 --> T mutation seems to influence folate metabolism. Subjects who were homozygous for this mutation (+/+) had significantly higher plasma homocysteine and lower plasma folate and total and methylfolate levels in red blood cells (RBCs) than heterozygous (+/-) and normal (-/-) subjects. The ratio of RBC methylfolate to RBC total folate was, respectively, 0.27 in +/+, 0.66 in +/-, and 0.71 in -/-. This mutation seems to have an impact on methylTHF generation. These data illustrate the interactions between nutritional and genetic factors. PMID:9826223

  7. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis1[OPEN

    PubMed Central

    2016-01-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. PMID:26668333

  8. Stable expression of a recombinant sodium-dependent, pyrimidine-selective nucleoside transporter (CNT1) in a transport-deficient mouse leukemia cell line.

    PubMed

    Crawford, C R; Cass, C E; Young, J D; Belt, J A

    1998-01-01

    Previous studies of nucleoside transport in mammalian cells have identified two types of activities: the equilibrative nucleoside transporters and concentrative, Na+-nucleoside cotransporters. Characterization of the concentrative nucleoside transporters has been hampered by the presence in most cells and tissues of multiple transporters with overlapping permeant specificities. With the recent cloning of cDNAs encoding rat and human members of the concentrative nucleoside transporter (CNT) family, it is now possible to study the concentrative transporters in isolation by use of functional expression systems. We report here the isolation of a nucleoside transport-deficient subline of L1210 mouse leukemia (L1210/DNC3) that is a suitable recipient for stable expression of cloned nucleoside transporter cDNAs. We have used L1210/DNC3 as the recipient in gene transfer studies to develop a stable cell line (L1210/DU5) that produces the recombinant concentrative nucleoside transporter with selectivity for pyrimidine nucleosides (CNT1) that was initially identified in rat intestine (Q.Q. Huang, S.Y. Yao, M.W. Ritzel, A.R.P. Paterson, C.E. Cass, and J.D. Young. 1994. J. Biol. Chem. 269: 17,757-17,760). L1210/DU5 was used to examine the permeant selectivity of recombinant rat CNT1 by comparing a series of nucleoside analogs with respect to (i) inhibition of inward fluxes of [3H]thymidine, (ii) initial rates of transport of 3H-analog, and (iii) cytotoxicity to L1210/DU5 versus the parental transport-deficient cell line. By all three criteria, recombinant CNT1 transported 5-fluoro-2'-deoxyuridine and 5-fluorouridine well and cytosine arabinoside poorly. Although some purine nucleosides (2'-deoxyadenosinedeoxyadeno-2'-deoxyadenosine, 7-deazaadenosine) were potent inhibitors of CNT1, they were poor permeants when uptake was measured directly by analysis of isotopic fluxes or indirectly by comparison of cytotoxicity ratios. We conclude that comparison of analog cytotoxicity to L

  9. Folate-homocysteine interrelations: potential new markers of folate status.

    PubMed

    Lucock, M D; Daskalakis, I; Schorah, C J; Lumb, C H; Oliver, M; Devitt, H; Wild, J; Dowell, A C; Levene, M I

    1999-05-01

    We report a transient drop in plasma Hcy and Cys following a single oral dose of PteGlu. The thiol change was concomitant with both the peak plasma 5CH3H4PteGlu1 level (by HPLC) and the maximum plasma Lactobacillus casei activity which reflects absorption of unmodified PteGlu. The significant reciprocal association of Hcy with radioassay RBC folate (r = -0.28, 99% CI -0.48, -0.05, P = 0.0016), serum folate (r = -0.37, 99% CI -0.56, -16, P = 0.0001), and vitamin B12 (r = -0.42, 99% CI -0.59, -21, P = 0.0001) is shown and reflects the long-term nutritional effect of B vitamins on this important, potentially atherogenic thiol. These are now well-established associations. We extend the potential for investigation of folate metabolism in health and disease by evaluating a range of new folate indices which are based on erythrocyte coenzymes. These have been looked at independently and in association with established parameters. Erythrocyte methylfolates (mono- to hexaglutamate-5CH3H4PteGlu1-6), formylfolates (tri- to pentaglutamate-5CHOH4PteGlu3-5),formiminotetrahydrofolate (formiminoH4PteGlu1), unsubstituted tetrahydrofolate (H4PteGlu1), andpara-aminobenzoylglutamate (P-ABG) have been measured by HPLC with fluorescence detection. A positive linear association exists between (i) H4PteGlu1 and radioassay RBC folate (r = 0.50, 99% CI 0. 07, 0.77, P = 0.0036), and (ii) H4PteGlu1 and tetraglutamates of both formyl- and methylfolate (r = 0.52, 99% CI 0.10, 0.78, P = 0. 0022, and r = 0.56, 99% CI 0.15, 0.80, P = 0.0009, respectively). Since, in addition, a reciprocal linear association exists between Hcy and tetraglutamyl formylfolate (r = -0.41, 99% CI -0.73, 0.05, P = 0.0206), erythrocyte tetraglutamates may be a good reflection of the bodies' active coenzyme pools. Pentaglutamyl formylfolate, the longest oligo-gamma-glutamyl chain form of this coenzyme may be a good indicator of folate depletion. The abundance of this coenzyme both increases with increasing Hcy (r = 0

  10. Folate nutrition is optimal in exclusively breast-fed infants but inadequate in some of their mothers and in formula-fed infants.

    PubMed

    Salmenperä, L; Perheentupa, J; Siimes, M A

    1986-01-01

    Plasma concentrations of folate were studied in a group of exclusively breast-fed infants and their mothers (their numbers gradually decreased from 200 at birth to 7 at 12 months) and in infants completely weaned to a cow's milk formula (containing 35 micrograms of folate/L) and solid foods. The exclusively breast-fed infants were in no danger of folate deficiency; their plasma levels were elevated after the age of 2 months and, on average, were 2.0-3.3-fold higher than maternal levels throughout the study. None of these infants had an inadequate plasma concentration, whereas up to 5% of the mothers had values less than or equal to 3 micrograms/L, despite supplementation during lactation with 0.1 mg folate/day. In the formula-fed infants, 69-94% of the plasma folate concentrations lay below the lowest concentration for the breast-fed infants. Although no infant had signs of anemia or macrocytosis in red cell indices, the infants weaned earliest had the lowest hemoglobin concentrations (p = 0.09) and the highest mean corpuscular volume (MCV) values (p = 0.06) at 9 months of age. Thus, an infant fed a formula containing the recommended amount of folate runs a risk of folate deficiency. PMID:3958855

  11. Retained folates in the rat.

    PubMed Central

    Barford, P A; Staff, R J; Blair, J A

    1977-01-01

    The retention of radioactivity after doses of 14C- and 3H-labelled folic acid is described. Radioactivity was retained in liver, kidney and gut of rats for some time after administration of the dose. The retained radioactivity could not be displaced by large doses of unlabelled folic acid or unlabelled 5-methyltetrahydrofolate. 14C- and 3H-labbelled folates showed similar chromatographic behaviour onion-exchange chromatography to 5-methyltetrahydrofolate, and on ion-exchange and gel-permeation chromatography to synthetic pteroylhepta-gamma-glutamate. PMID:883955

  12. Membrane folate-binding proteins are responsible for folate-protein conjugate endocytosis into cultured cells.

    PubMed Central

    Leamon, C P; Low, P S

    1993-01-01

    Folate-protein conjugates have been shown to bind to and enter HeLa and KB cells by receptor-mediated endocytosis [Leamon and Low (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 5572-5576]. Although these cells contain a membrane folate-binding protein (FBP) involved in the uptake of free folate, no studies have been conducted to evaluate whether the folate-protein conjugates enter cells via the same protein. To address this issue, HeLa cell monolayers were treated with folate-labelled 125I-RNAase under various conditions characteristic of FBP-mediated folate uptake. Folate-labelled 125I-RNAase was found to bind to cells with high affinity (Kd = 24 nM), and like the free vitamin, its binding could be competitively blocked by excess free folate. Furthermore, binding could be reversed by either washing the cells with acid/saline, pH 3.0, or by treating the cells with phosphatidyl-inositol-specific phospholipase C, an enzyme known to release FBP from cell surfaces. Because cells pretreated with anti-FBP serum were unable to bind folate conjugates, and since the same antiserum identified a single 65 kDa band reminiscent of FBPs found in many other tissues, we conclude that a classical FBP is responsible for the uptake of folate-protein conjugates by receptor-bearing cells. Images Figure 5 PMID:8387781

  13. Redefining the Pediatric Phenotype of X-Linked Monocarboxylate Transporter 8 (MCT8) Deficiency: Implications for Diagnosis and Therapies.

    PubMed

    Matheus, Maria Gisele; Lehman, Rebecca K; Bonilha, Leonardo; Holden, Kenton R

    2015-10-01

    X-linked monocarboxylate transporter 8 (MCT8) deficiency results from a loss-of-function mutation in the monocarboxylate transporter 8 gene, located on chromosome Xq13.2 (Allan-Herndon-Dudley syndrome). Affected boys present early in life with neurodevelopment delays but have pleasant dispositions and commonly have elevated serum triiodothyronine. They also have marked axial hypotonia and quadriparesis but surprisingly little spasticity early in their disease course. They do, however, have subtle involuntary movements, most often dystonia. The combination of hypotonia and dystonia presents a neurorehabilitation challenge and explains why spasticity-directed therapies have commonly produced suboptimal responses. Our aim was to better define the spectrum of motor disability and to elucidate the neuroanatomic basis of the motor impairments seen in MCT8 deficiency using clinical observation and brain magnetic resonance imaging (MRI) in a cohort of 6 affected pediatric patients. Our findings identified potential imaging biomarkers and suggest that rehabilitation efforts targeting dystonia may be more beneficial than those targeting spasticity in the prepubertal pediatric MCT8 deficiency population. PMID:25900139

  14. Folate Metabolism and Human Reproduction

    PubMed Central

    Thaler, C. J.

    2014-01-01

    Folate metabolism affects ovarian function, implantation, embryogenesis and the entire process of pregnancy. In addition to its well-established effect on the incidence of neural tube defects, associations have been found between reduced folic acid levels and increased homocysteine concentrations on the one hand, and recurrent spontaneous abortions and other complications of pregnancy on the other. In infertility patients undergoing IVF/ICSI treatment, a clear correlation was found between plasma folate concentrations and the incidence of dichorionic twin pregnancies. In patients supplemented with 0.4 mg/d folic acid undergoing ovarian hyperstimulation and oocyte pick-up, carriers of the MTHFR 677T mutation were found to have lower serum estradiol concentrations at ovulation and fewer oocytes could be retrieved from them. It appears that these negative effects can be compensated for in full by increasing the daily dose of folic acid to at least 0.8 mg. In carriers of the MTHFR 677TT genotype who receive appropriate supplementation, AMH concentrations were found to be significantly increased, which could indicate a compensatory mechanism. AMH concentrations in homozygous carriers of the MTHFR 677TT genotype could even be overestimated, as almost 20 % fewer oocytes are retrieved from these patients per AMH unit compared to MTHFR 677CC wild-type individuals. PMID:25278626

  15. Sucrase-isomaltase deficiency in humans. Different mutations disrupt intracellular transport, processing, and function of an intestinal brush border enzyme.

    PubMed Central

    Naim, H Y; Roth, J; Sterchi, E E; Lentze, M; Milla, P; Schmitz, J; Hauri, H P

    1988-01-01

    Eight cases of congenital sucrase-isomaltase deficiency were studied at the subcellular and protein level with monoclonal antibodies against sucrase-isomaltase. At least three phenotypes were revealed: one in which sucrase-isomaltase protein accumulated intracellularly probably in the endoplasmic reticulum, as a membrane-associated high-mannose precursor, one in which the intracellular transport of the enzyme was apparently blocked in the Golgi apparatus, and one in which catalytically altered enzyme was transported to the cell surface. All patients expressed electrophoretically normal or near normal high-mannose sucrase-isomaltase. The results suggest that different, probably small, mutations in the sucrase-isomaltase gene lead to the synthesis of transport-incompetent or functionally altered enzyme which results in congenital sucrose intolerance. Images PMID:3403721

  16. Nutri-epigenomic Studies Related to Neural Tube Defects: Does Folate Affect Neural Tube Closure Via Changes in DNA Methylation?

    PubMed

    Rochtus, Anne; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs), affecting 1-2 per 1000 pregnancies, are severe congenital malformations that arise from the failure of neurulation during early embryonic development. The methylation hypothesis suggests that folate prevents NTDs by stimulating cellular methylation reactions. Folate is central to the one-carbon metabolism that produces pyrimidines and purines for DNA synthesis and for the generation of the methyldonor S-adenosyl-methionine. This review focuses on the relation between the folate-mediated one-carbon metabolism, DNA methylation and NTDs. Studies will be discussed that investigated global or locus-specific DNA methylation differences in patients with NTDs. Folate deficiency may increase NTD risk by decreasing DNA methylation, but to date, human studies vary widely in study design in terms of analyzing different clinical subtypes of NTDs, using different methylation quantification assays and using DNA isolated from diverse types of tissues. Some studies have focused mainly on global DNA methylation differences while others have quantified specific methylation differences for imprinted genes, transposable elements and DNA repair enzymes. Findings of global DNA hypomethylation and LINE-1 hypomethylation suggest that epigenetic alterations may disrupt neural tube closure. However, current research does not support a linear relation between red blood cell folate concentration and DNA methylation. Further studies are required to better understand the interaction between folate, DNA methylation changes and NTDs. PMID:26349489

  17. The therapeutic effect of methotrexate-conjugated Pluronic-based polymeric micelles on the folate receptor-rich tumors treatment

    PubMed Central

    Chen, Yanzuo; Zhang, Wei; Huang, YuKun; Gao, Feng; Sha, Xianyi; Lou, Kaiyan; Fang, Xiaoling

    2015-01-01

    The therapeutic effect of methotrexate (MTX)-conjugated Pluronic-based polymeric mixed micelles (F127/P105-MTX) on the folate receptor-overexpressing tumors treatment was investigated in this study. Due to its high structural similarity to folic acid and the high expression of folate receptor in most solid tumors, MTX serves as not only a cytotoxic agent but also a homing ligand. Cellular uptake and the endocytic mechanism studies of MTX-conjugated mixed micelles were performed in folate receptor-rich KBv and folate receptor-deficient A-549 cancer cells. Additionally, the efficacy and safety studies of F127/P105-MTX in KBv tumor-bearing mice were evaluated. Results indicate that F127/P105-MTX significantly enhanced the cellular uptake in KBv cells as compared to that of conventional non-MTX-conjugated mixed micelles. Moreover, the results showed that F127/P105-MTX can be internalized by both caveolae- and clathrin-mediated endocytosis in energy-dependent and folate receptor-dependent manners. The in vitro and in vivo antitumor efficacies of F127/P105-MTX were significantly enhanced in comparison with MTX-entrapped mixed micelles. Furthermore, no acute toxicities to hematological system and major organs have been observed after intravenous administration during the regimen. Therefore, our results suggest that F127/P105-MTX could be an effective and safe nano-drug delivery system for cancer therapy, especially for the folate receptor-rich cancer treatment. PMID:26150715

  18. Lipid peroxidation and electrogenic ion transport in the jejunum of the vitamin E deficient rat.

    PubMed Central

    Lindley, K J; Goss-Sampson, M A; Muller, D P; Milla, P J

    1994-01-01

    Increased concentrations of reactive oxygen species in children with depleted antioxidant defences have been implicated in a cycle of malnutrition, malabsorption, and infection leading to protracted diarrhoea. A rat model of chronic vitamin E deficiency has been used to study the effects of antioxidant depletion on jejunal structure and function in vitro. Basal intestinal short circuit current (Isc), a measure of net electrogenic ion movement across the intestinal epithelium, was greater in chronically vitamin E deficient jejuna than controls, as was the electrogenic secretory response to aminophylline and Escherichia coli STa but not to bethanechol. The galactose stimulated current was also greater in vitamin E deficient jejuna. Indices of lipid peroxidation (concentrations of thiobarbituric acid reactive substances and malondialdehyde) were increased in the vitamin E deficient small bowel. Small intestinal brush border membranes from vitamin E deficient animals displayed changes in both static and dynamic components of membrane fluidity measured by steady state fluorescence polarography. The results of these studies support the hypothesis that oxidative stress in subjects with compromised antioxidant defences results in small intestinal hypersecretion, which could predispose to or perpetuate protracted diarrhoea. Images Figure 5 PMID:8307446

  19. Effects of 1,25-dihydroxyvitamin D3 on colonic calcium transport in vitamin D-deficient and normal rats.

    PubMed

    Favus, M J; Langman, C B

    1984-03-01

    To determine whether prior vitamin D intake influences the intestinal calcium absorptive action of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], we measured in vitro the two unidirectional transepithelial fluxes of calcium across descending colon segments from rats fed either a vitamin D-deficient or normal diet and injected with either 10, 25, or 75 ng of 1,25(OH)2D3 or vehicle alone. Vitamin D deficiency abolished net calcium absorption [J net, -2 +/- 2 vs. 12 +/- 2 (SE) nmol X cm-2 X h-1, P less than 0.001], and 10 ng of 1,25(OH)2D3 raised J net to levels found in normal rats. Larger doses (25 and 75 ng) increased J net above levels in normal rats given the same dose. In normal rats only 75 ng of 1,25(OH)2D3 increased calcium J net above vehicle control values (12 +/- 2 vs. 38 +/- 4 nmol X cm-2 X h-1, P less than 0.001). Circulating 1,25(OH)2D3 measured by radioreceptor assay was well correlated with calcium transport. For each dose of 1,25(OH)2D3 higher serum 1,25(OH)2D3 levels were reached in vitamin D-deficient rats. Only the 75-ng dose increased circulating 1,25(OH)2D3 and colonic calcium transport in normal rats. Intravenous [3H]-1,25(OH)2D3 disappeared more rapidly from the circulation of normal rats, suggesting that accelerated metabolic degradative processes for 1,25(OH)2D3 may be present in normal but not in vitamin D-deficient rats and may account for the lack of a biological response to 1,25(OH)2D3 in normal animals. PMID:6546644

  20. Maternal micronutrient deficiency leads to alteration in the kidney proteome in rat pups.

    PubMed

    Ahmad, Shadab; Basak, Trayambak; Anand Kumar, K; Bhardwaj, Gourav; Lalitha, A; Yadav, Dilip K; Chandak, Giriraj Ratan; Raghunath, Manchala; Sengupta, Shantanu

    2015-09-01

    Maternal nutritional deficiency significantly perturbs the offspring's physiology predisposing them to metabolic diseases during adulthood. Vitamin B12 and folate are two such micronutrients, whose deficiency leads to elevated homocysteine levels. We earlier generated B12 and/or folate deficient rat models and using high-throughput proteomic approach, showed that maternal vitamin B12 deficiency modulates carbohydrate and lipid metabolism in the liver of pups through regulation of PPAR signaling pathway. In this study, using similar approach, we identified 26 differentially expressed proteins in the kidney of pups born to mothers fed with vitamin B12 deficient diet while only four proteins were identified in the folate deficient group. Importantly, proteins like calreticulin, cofilin 1 and nucleoside diphosphate kinase B that are involved in the functioning of the kidney were upregulated in B12 deficient group. Our results hint towards a larger effect of vitamin B12 deficiency compared to that of folate presumably due to greater elevation of homocysteine in vitamin B12 deficient group. In view of widespread vitamin B12 and folate deficiency and its association with several diseases like anemia, cardiovascular and renal diseases, our results may have large implications for kidney diseases in populations deficient in vitamin B12 especially in vegetarians and the elderly people.This article is part of a Special Issue entitled: Proteomics in India. PMID:25982389

  1. Prenatal choline deficiency increases choline transporter expression in the septum and hippocampus during postnatal development and in adulthood in rats.

    PubMed

    Mellott, Tiffany J; Kowall, Neil W; Lopez-Coviella, Ignacio; Blusztajn, Jan Krzysztof

    2007-06-01

    Supplementation of maternal diet with the essential nutrient, choline, during the second half of pregnancy in rats causes long-lasting improvements in spatial memory in the offspring and protects them from the memory decline characteristic of old age. In contrast, prenatal choline deficiency is associated with poor performance in certain cognitive tasks. The mechanism by which choline influences learning and memory remains unclear; however, it may involve changes to the hippocampal cholinergic system. Previously, we showed that the hippocampi of prenatally [embryonic days (E) 11-17] choline-deficient animals have increased synthesis of acetylcholine (ACh) from choline transported by the high-affinity choline transporter (CHT) and reduced ACh content relative to the control and to the E11-17 choline-supplemented rats. In the current study, we found that, during postnatal period [postnatal days (P) 18-480], prenatal choline deficiency increased the expression of CHT mRNA in the septum and CHT mRNA and protein levels in the hippocampus and altered the pattern of CHT immunoreactivity in the dentate gyrus. CHT immunoreactivity was more prominent in the inner molecular layer in prenatally choline-deficient rats compared to controls and prenatally choline-supplemented animals. In addition, in all groups, we observed a population of hilar interneurons that were CHT-immunoreactive. These neurons are the likely source of the hippocampal CHT mRNA as their number correlated with the levels of this mRNA. The abundance of hippocampal CHT mRNA rose between P1 and P24 and then declined reaching 60% of the P1 value by P90. These data show that prenatal availability of choline alters its own metabolism (i.e., CHT expression). While the upregulated CHT expression during the period of prenatal choline deficiency may be considered as a compensatory mechanism that could enhance ACh synthesis when choline supply is low, the persistent upregulation of CHT expression subsequent to the

  2. FOLATE AND VITAMIN B6 INTAKE AND RISK OF COLON CANCER IN RELATION TO P53 MUTATIONAL STATUS

    PubMed Central

    Schernhammer, Eva S.; Ogino, Shuji; Fuchs, Charles S.

    2009-01-01

    BACKGROUND AND AIMS Considerable evidence suggests a low-folate diet increases colorectal cancer risk, although a recent randomized trial indicates that folate supplementation may not reduce the risk of adenoma recurrence. In laboratory models, folate deficiency appears to induce p53 mutation. METHODS We immunohistochemically assayed p53 expression in paraffin-fixed colon cancer specimens in a large prospective cohort of women with 22 years of follow-up, to examine the relationship of folate intake and intake of other one-carbon nutrients to risks by tumor p53-mutational status. RESULTS A total of 399 incident colon cancers accessible for p53 expression were available. The effect of folate differed significantly according to p53 mutational status (Pheterogeneity = 0.01). Compared with women reporting less than 200 μg of folate per day, the multivariate relative risks (RRs) for p53 overexpressing (mutated) cancers were 0.54 (95% CI, 0.36-0.81) for women who consumed 200-299 μg per day, 0.42 (95% CI, 0.24-0.76) for those who consumed 300-399 μg per day, and 0.54 (95% CI, 0.35-0.83) for ≥ 400 μg per day. In contrast, total folate intake had no influence on wild-type tumors (RR, 1.05; 95% CI, 0.73-1.51, comparing ≥ 400 to < 200 μg per day). Similarly, high vitamin B6 intake conferred a protective effect on p53-mutated cancers (top versus bottom quintile, RR, 0.57; 95% CI, 0.35-0.94; Pheterogeneity = 0.01) but had no effect on p53 wild-type tumors. CONCLUSIONS We found that low folate and vitamin B6 intake was associated with an increased risk of p53 mutated colon cancers but not wild-type tumors. PMID:18619459

  3. Effect of dietary iron deficiency and overload on the expression of ZIP metal-ion transporters in rat liver

    PubMed Central

    Nam, Hyeyoung; Knutson, Mitchell D.

    2015-01-01

    The mammalian ZIP (Zrt-, Irt-like Protein) family of transmembrane transport proteins consists of 14 members that share considerable homology. ZIP proteins have been shown to mediate the cellular uptake of the essential trace elements zinc, iron, and manganese. The aim of the present study was to determine the effect of dietary iron deficiency and overload on the expression of all 14 ZIP transporters in the liver, the main site of iron storage. Weanling male rats (n=6/group) were fed iron-deficient (FeD), iron-adequate (FeA), or iron-overloaded (FeO) diets in two independent feeding studies. In study 1, diets were based on the TestDiet 5755 formulation and contained iron at 9 ppm (FeD), 215 ppm (FeA), and 27,974 ppm (3% FeO). In study 2, diets were based on the AIN-93G formulation and contained iron at 9 ppm Fe (FeD), 50 ppm Fe (FeA), or 18916 ppm (2% FeO). After 3 weeks, the FeD diets depleted liver non-heme iron stores and induced anemia, whereas FeO diets resulted in hepatic iron overload. Quantitative RT-PCR revealed that ZIP5 mRNA levels were 3- and 8-fold higher in 2% FeO and 3% FeO livers, respectively, compared with FeA controls. In both studies, a consistent downregulation of ZIP6, ZIP7, and ZIP10 was also observed in FeO liver relative to FeA controls. Studies in H4IIE hepatoma cells further documented that iron loading affects the expression of these ZIP transporters. Overall, our data suggest that ZIP5, ZIP6, ZIP7, and ZIP10 are regulated by iron, indicating that they may play a role in hepatic iron/metal homeostasis during iron deficiency and overload. PMID:21826460

  4. Low Folate and Selenium in the Mouse Maternal Diet Alters Liver Gene Expression Patterns in the Offspring after Weaning

    PubMed Central

    Barnett, Matthew P.G.; Bermingham, Emma N.; Young, Wayne; Bassett, Shalome A.; Hesketh, John E.; Maciel-Dominguez, Anabel; McNabb, Warren C.; Roy, Nicole C.

    2015-01-01

    During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring. PMID:26007332

  5. Nutritional Intake and Status of Cobalamin and Folate among Non-Pregnant Women of Reproductive Age in Bhaktapur, Nepal.

    PubMed

    Chandyo, Ram K; Ulak, Manjeswori; Sommerfelt, Halvor; Schneede, Jørn; Ueland, Per M; Strand, Tor A

    2016-01-01

    Cobalamin and folate are especially important for women of childbearing age due to their ubiquitous role in fetal growth and development. Population-based data on cobalamin and folate status are lacking from Nepal, where diets are mostly vegetarian. The objectives of the study were to investigate cobalamin and folate intake and status, and to explore associations with socio-demographics, anthropometrics, anemia, and dietary habits. Following a random selection of geographical clusters, we collected blood samples from 500 non-pregnant women and 24-h dietary recalls and food frequency questionnaires from a subsample of 379 women. Twenty percent of the women did not consume any food containing cobalamin during the days recalled, and in 72% nutritional cobalamin intake was <1 μg/day. Eighty-four percent of the women had cobalamin intake lower than the estimated average requirement (EAR) (<2 μg/day). In contrast, only 12% of the women had a folate intake less than 100 μg per day, whereas 62% had intake between 100 and 320 μg. Low plasma cobalamin (<150 pmol/L) was found in 42% of the women, most of whom (88%) also had elevated levels of methylmalonic acid. Our results indicated a high prevalence of nutritional cobalamin deficiency, while folate deficiency was uncommon. PMID:27338469

  6. Nutritional Intake and Status of Cobalamin and Folate among Non-Pregnant Women of Reproductive Age in Bhaktapur, Nepal

    PubMed Central

    Chandyo, Ram K.; Ulak, Manjeswori; Sommerfelt, Halvor; Schneede, Jørn; Ueland, Per M.; Strand, Tor A.

    2016-01-01

    Cobalamin and folate are especially important for women of childbearing age due to their ubiquitous role in fetal growth and development. Population-based data on cobalamin and folate status are lacking from Nepal, where diets are mostly vegetarian. The objectives of the study were to investigate cobalamin and folate intake and status, and to explore associations with socio-demographics, anthropometrics, anemia, and dietary habits. Following a random selection of geographical clusters, we collected blood samples from 500 non-pregnant women and 24-h dietary recalls and food frequency questionnaires from a subsample of 379 women. Twenty percent of the women did not consume any food containing cobalamin during the days recalled, and in 72% nutritional cobalamin intake was <1 μg/day. Eighty-four percent of the women had cobalamin intake lower than the estimated average requirement (EAR) (<2 μg/day). In contrast, only 12% of the women had a folate intake less than 100 μg per day, whereas 62% had intake between 100 and 320 μg. Low plasma cobalamin (<150 pmol/L) was found in 42% of the women, most of whom (88%) also had elevated levels of methylmalonic acid. Our results indicated a high prevalence of nutritional cobalamin deficiency, while folate deficiency was uncommon. PMID:27338469

  7. Folate Insufficiency Due to Celiac Disease in a 49-Year-Old Woman of Southeast Asian-Indian Ethnicity.

    PubMed

    Datta Mitra, Ananya; Gupta, Asha; Jialal, Ishwarlal

    2016-08-01

    The clinical presentation of celiac disease has evolved from chronic diarrhea and malnutrition to mild nutrient insufficiencies. Recently diagnosed adults with celiac disease should be assessed for micronutrient deficiencies because early institution of a gluten-free diet (GFD) prevents morbidity and reduces the incidence of gastrointestinal malignant neoplasms and osteoporosis. In this report, we present the case of a 49-year-old woman of Southeast Asian-Indian descent living in the United States who had folate insufficiency, as manifested by low serum and red blood cell (RBC) folate levels. Further investigation, including serologic testing and intestinal biopsy, confirmed a diagnosis of celiac disease and other nutrient deficiencies. Managing the condition of this patient with folate supplements and implementation of a recommended GFD reversed the folate insufficiency. In conclusion, when serum and/or RBC levels are low in a person of Southeast Asian-Indian descent living in a country with folate fortification of the grain supply, such as the United States, the medical team needs to look for an organic cause, as in our patient, to diagnose and manage celiac disease early and, hopefully, forestall complications. PMID:27406144

  8. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  9. Folate augmentation of antidepressant response.

    PubMed

    Owen, R T

    2013-12-01

    The use of two antidepressants from the initiation of treatment in major depressive disorder has been investigated in several recent studies and forms a paradigm shift in the pharmacotherapy of the condition. Several, but not all, trials have claimed improved response and remission rates with the combinations as opposed to monotherapy. The use of folate preparations (folic and folinic acid and l-meth-ylfolate) have shown effective augmentation of antidepressant response in a variety of controlled and open-label settings in patients with normo- and hypofolatemic status. Several recent trials using L-methylfolate, the active and more bioavailable form of folic acid, have shown promising adjunctive use with a well-tolerated adverse event profile. PMID:24524097

  10. Folate

    MedlinePlus

    ... the mouth as well as changes in the color of the skin, hair, or fingernails. Women who ... Office of Dietary Supplements Frequently Asked Questions: Which brand(s) of dietary supplements should I purchase? For information ...

  11. Micronutrient Status in Female University Students: Iron, Zinc, Copper, Selenium, Vitamin B12 and Folate

    PubMed Central

    Fayet-Moore, Flavia; Petocz, Peter; Samman, Samir

    2014-01-01

    Young women are at an increased risk of micronutrient deficiencies, particularly due to higher micronutrient requirements during childbearing years and multiple food group avoidances. The objective of this study was to investigate biomarkers of particular micronutrients in apparently healthy young women. Female students (n = 308; age range 18–35 year; Body Mass Index 21.5 ± 2.8 kg/m2; mean ± SD) were recruited to participate in a cross-sectional study. Blood samples were obtained from participants in the fasted state and analysed for biomarkers of iron status, vitamin B12, folate, homocysteine, selenium, zinc, and copper. The results show iron deficiency anaemia, unspecified anaemia, and hypoferritinemia in 3%, 7% and 33.9% of participants, respectively. Low vitamin B12 concentrations (<120 pmol/L) were found in 11.3% of participants, while 4.7% showed sub-clinical deficiency based on serum methylmalonic acid concentrations >0.34 μmol/L. Folate concentrations below the reference range were observed in 1.7% (serum) or 1% (erythrocytes) of participants, and 99.7% of the participant had erythrocyte-folate concentrations >300 nmol/L. Serum zinc concentrations <10.7 μmol/L were observed in 2% of participants. Serum copper and selenium concentrations were below the reference range in 23% and 11% of participants, respectively. Micronutrient deficiencies including iron and vitamin B12, and apparent excess of folate are present in educated Australian female students of childbearing age, including those studying nutrition. The effects of dietary behaviours and food choices on markers of micronutrient status require further investigation. PMID:25401503

  12. Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency.

    PubMed

    Skelton, Matthew R; Schaefer, Tori L; Graham, Devon L; Degrauw, Ton J; Clark, Joseph F; Williams, Michael T; Vorhees, Charles V

    2011-01-01

    Mutations in the creatine (Cr) transporter (CrT; Slc6a8) gene lead to absence of brain Cr and intellectual disabilities, loss of speech, and behavioral abnormalities. To date, no mouse model of CrT deficiency exists in which to understand and develop treatments for this condition. The purpose of this study was to generate a mouse model of human CrT deficiency. We created mice with exons 2-4 of Slc6a8 flanked by loxP sites and crossed these to Cre:CMV mice to create a line of ubiquitous CrT knockout expressing mice. Mice were tested for learning and memory deficits and assayed for Cr and neurotransmitter levels. Male CrT(⁻/y) (affected) mice lack Cr in the brain and muscle with significant reductions of Cr in other tissues including heart and testes. CrT(⁻/y) mice showed increased path length during acquisition and reversal learning in the Morris water maze. During probe trials, CrT(⁻/y) mice showed increased average distance from the platform site. CrT(⁻/y) mice showed reduced novel object recognition and conditioned fear memory compared to CrT(+/y). CrT(⁻/y) mice had increased serotonin and 5-hydroxyindole acetic acid in the hippocampus and prefrontal cortex. Ubiquitous CrT knockout mice have learning and memory deficits resembling human CrT deficiency and this model should be useful in understanding this disorder. PMID:21249153

  13. Ex-ante evaluation of biotechnology innovations: the case of folate biofortified rice in China.

    PubMed

    De Steur, Hans; Blancquaert, Dieter; Gellynck, Xavier; Lambert, Willy; Van Der Straeten, Dominique

    2012-12-01

    In order to valorize novel biotechnology innovations, there is a need to evaluate ex-ante their market potential. A case in point is biofortification, i.e. the enhancement of the micronutrient content of staple crops through conventional or genetic breeding techniques. In a recent article in Nature Biotechnology, for example, De Steur et al. (2010) demonstrated the large potential consumer health benefits of folate biofortified rice as a means to reduce folate deficiency and Neural-Tube Defects. By focusing on a Chinese high-risk region of Neural-Tube Defects, the current study defines the potential cost-effectiveness of this genetically modified crop where the need to improve folate intake levels is highest. Building on the Disability-Adjusted Life Years (DALY) approach, both the potential health impacts and costs of its implementation are measured and benchmarked against similar innovations. The results show that this transgenic crop could be a highly cost-effective product innovation (US$ 120.34 - US$ 40.1 per DALY saved) to alleviate the large health burden of folate deficiency and reduce the prevalence of neural-tube birth defects. When compared with other biofortified crops and target regions, folate biofortified rice in China has a relatively high health impact and moderate cost-effectiveness. This research further supports the need for, and importance of ex-ante evaluation studies in order to adequately market and, thus, valorize biotechnology innovations. Although the cost-effectiveness analysis enables to illustrate the market potential of innovative agricultural biotechnology research, further research is required to address policy issues on transgenic biofortification, such as biosafety regulatory requirements. PMID:23072390

  14. Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene.

    PubMed

    Hidalgo, Andrés; Ma, Songhui; Peired, Anna J; Weiss, Linnea A; Cunningham-Rundles, Charlotte; Frenette, Paul S

    2003-03-01

    Leukocyte adhesion deficiency type 2 (LADII) is characterized by defective selectin ligand formation, recurrent infection, and mental retardation. This rare syndrome has only been described in 2 kindreds of Middle Eastern descent who have differentially responded to exogenous fucose treatment. The molecular defect was recently ascribed to single and distinct missense mutations in a putative Golgi guanosine diphosphate (GDP)-fucose transporter. Here, we describe a patient of Brazilian origin with features of LADII. Sequencing of the GDP-fucose transporter revealed a novel single nucleotide deletion producing a shift in the open-reading frame and severe truncation of the polypeptide. Overexpression of the mutant protein in the patient's fibroblasts did not rescue fucosylation, suggesting that the deletion ablated the activity of the transporter. Administration of oral L-fucose to the patient produced molecular and clinical responses, as measured by the appearance of selectin ligands, normalization of neutrophil counts, and prevention of infectious recurrence. The lower neutrophil counts paralleled improved neutrophil interactions with activated endothelium in cremasteric venules of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. However, fucose supplementation induced autoimmune neutropenia and the appearance of H antigen on erythrocytes, albeit without evidence of intravascular hemolysis. The robust response to fucose despite a severely truncated transporter suggests alternative means to transport GDP-fucose into the Golgi complex. PMID:12406889

  15. Folate status and health: challenges and opportunities.

    PubMed

    Obeid, Rima; Oexle, Konrad; Rißmann, Anke; Pietrzik, Klaus; Koletzko, Berthold

    2016-04-01

    Each year approximately 2400 pregnancies develop folic acid-preventable spina bifida and anencephaly in Europe. Currently, 70% of all affected pregnancies are terminated after prenatal diagnosis. The prevalence of neural tube defects (NTDs) has been significantly lowered in more than 70 countries worldwide by applying fortification with folic acid. Periconceptional supplementation of folic acid also reduces the risk of congenital heart diseases, preterm birth, low birth weight, and health problems associated with child mortality and morbidity. All European governments failed to issue folic acid fortification of centrally processed and widely eaten foods in order to prevent NTDs and other unwanted birth outcomes. The estimated average dietary intake of folate in Germany is 200 μg dietary folate equivalents (DFE)/day. More than half of German women of reproductive age do not consume sufficient dietary folate to achieve optimal serum or red blood cell folate concentrations (>18 or 1000 nmol/L, respectively) necessary to prevent spina bifida and anencephaly. To date, targeted supplementation is recommended in Europe, but this approach failed to reduce the rate of NTDs during the last 10 years. Public health centers for prenatal care and fortification with folic acid in Europe are urgently needed. Only such an action will sufficiently improve folate status, prevent at least 50% of the NTD cases, reduce child mortality and morbidity, and alleviate other health problems associated with low folate such as anemia. PMID:25825915

  16. Attenuation of high sucrose diet–induced insulin resistance in ABC transporter deficient white mutant of Drosophila melanogaster

    PubMed Central

    Navrotskaya, Valeriya; Oxenkrug, Gregory; Vorobyova, Lyudmila; Summergrad, Paul

    2016-01-01

    Exposure to high sugar diet (HSD) is an experimental model of insulin resistance (IR) and type 2 diabetes (T2D) in mammals and insects. In Drosophila, HSD-induced IR delays emergence of pupae from larvae and eclosion of imago from pupae. Understanding of mechanisms of IR/T2D is essential for refining T2D prevention and treatment strategies. Dysregulation of tryptophan (Trp)-kynurenine (Kyn) pathway was suggested as one of the mechanisms of IR/T2D development. Rate-limiting enzyme of Trp-Kyn pathway in Drosophila is Trp 2,3-dioxygenase (TDO), an evolutionary conserved ortholog of human TDO. We previously reported attenuation of HSD-induced IR in vermilion mutants with inactive TDO. Conversion of Trp to Kyn is regulated not only by TDO activity but by intracellular Trp transport via ATP-binding cassette (ABC) transporter encoded by white gene in Drosophila. In order to evaluate the possible impact of deficient intracellular Trp transport on the inducement of IR by HSD, we compared the effect of HSD on pre-imago development in wild type flies, Canton-Special (C-S), and C-S flies containing white gene, white (C-S). Presence of white gene attenuated (by 50%) HSD-induced delay of pupae emergence from larvae and female and male imago eclosion from pupae. Present study together with our earlier report reveals that both decreased TDO activity (due to vermilion gene mutation) or deficient Trp transport into cell without affecting TDO levels (due to white gene mutation) attenuate HSD-induced development of IR in Drosophila model of T2D. Our data provide further support for hypothesis that dysregulation of Trp-Kyn pathway is one of the pathophysiological mechanisms and potential target for early diagnosis, prevention and treatment of IR/T2D. PMID:27375855

  17. Protective effect of mesoporous silica particles on encapsulated folates.

    PubMed

    Ruiz-Rico, María; Daubenschüz, Hanna; Pérez-Esteve, Édgar; Marcos, María D; Amorós, Pedro; Martínez-Máñez, Ramón; Barat, José M

    2016-08-01

    Mesoporous silica particles (MSPs) are considered suitable supports to design gated materials for the encapsulation of bioactive molecules. Folates are essential micronutrients which are sensitive to external agents that provoke nutritional deficiencies. Folates encapsulation in MSPs to prevent degradation and to allow their controlled delivery is a promising strategy. Nevertheless, no information exists about the protective effect of MSPs encapsulation to prevent their degradation. In this work, 5-formyltetrahydrofolate (FO) and folic acid (FA) were entrapped in MSPs functionalized with polyamines, which acted as pH-dependent molecular gates. The stability of free and entrapped vitamins after acidic pH, high temperature and light exposure was studied. The results showed the degradation of FO after high temperature and acidic pH, whereas entrapped FO displayed enhanced stability. Free FA was degraded by light, but MSPs stabilized the vitamin. The obtained results point toward the potential use of MSPs as candidates to enhance stability and to improve the bioavailability of functional biomolecules. PMID:27235728

  18. Nature and nurture in vitamin B12 deficiency.

    PubMed

    Zschocke, J; Schindler, S; Hoffmann, G F; Albani, M

    2002-07-01

    We report on a child in whom severe nutritional vitamin B12 deficiency was exacerbated by a genetic impairment of the folate cycle, causing reduced CSF concentrations of the methyl group donor 5-methyltetrahydrofolate. Some patients with vitamin B12 deficiency may benefit from high dose folic acid supplementation, even if plasma concentrations are high. PMID:12089131

  19. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice.

    PubMed

    Sun, Huwei; Tao, Jinyuan; Liu, Shangjun; Huang, Shuangjie; Chen, Si; Xie, Xiaonan; Yoneyama, Koichi; Zhang, Yali; Xu, Guohua

    2014-12-01

    Strigolactones (SLs) or their derivatives have recently been defined as novel phytohormones that regulate root development. However, it remains unclear whether SLs mediate root growth in response to phosphorus (P) and nitrogen (N) deficiency. In this study, the responses of root development in rice (Oryza sativa L.) to different levels of phosphate and nitrate supply were investigated using wild type (WT) and mutants defective in SL synthesis (d10 and d27) or insensitive to SL (d3). Reduced concentration of either phosphate or nitrate led to increased seminal root length and decreased lateral root density in WT. Limitation of either P or N stimulated SL production and enhanced expression of D10, D17, and D27 and suppressed expression of D3 and D14 in WT roots. Mutation of D10, D27, or D3 caused loss of sensitivity of root response to P and N deficiency. Application of the SL analogue GR24 restored seminal root length and lateral root density in WT and d10 and d27 mutants but not in the d3 mutant, suggesting that SLs were induced by nutrient-limiting conditions and led to changes in rice root growth via D3. Moreover, P or N deficiency or GR24 application reduced the transport of radiolabelled indole-3-acetic acid and the activity of DR5::GUS auxin reporter in WT and d10 and d27 mutants. These findings highlight the role of SLs in regulating rice root development under phosphate and nitrate limitation. The mechanisms underlying this regulatory role involve D3 and modulation of auxin transport from shoots to roots. PMID:24596173

  20. A Role for Diminished GABA Transporter Activity in the Cortical Discharge Phenotype of MeCP2-Deficient Mice.

    PubMed

    Zhang, Liang; Wither, Robert G; Lang, Min; Wu, Chiping; Sidorova-Darmos, Elena; Netchev, Hristo; Matolcsy, Catherine B; Snead, Orlando Carter; Eubanks, James H

    2016-05-01

    Cortical network hyper-excitability is a common phenotype in mouse models lacking the transcriptional regulator methyl-CPG-binding protein 2 (MeCP2). Here, we implicate enhanced GABAB receptor activity stemming from diminished cortical expression of the GABA transporter GAT-1 in the genesis of this network hyper-excitability. We found that administering the activity-dependent GABAB receptor allosteric modulator GS-39783 to female Mecp2(+/-) mice at doses producing no effect in wild-type mice strongly potentiated their basal rates of spontaneous cortical discharge activity. Consistently, administering the GABAB receptor antagonist CGP-35348 significantly decreased basal discharge activity in these mice. Expression analysis revealed that while GABAB or extra-synaptic GABAA receptor prevalence is preserved in the MeCP2-deficient cortex, the expression of GAT-1 is significantly reduced from wild-type levels. This decrease in GAT-1 expression is consequential, as low doses of the GAT-1 inhibitor NO-711 that had no effects in wild-type mice strongly exacerbated cortical discharge activity in female Mecp2(+/-) mice. Taken together, these data indicate that the absence of MeCP2 leads to decreased cortical levels of the GAT-1 GABA transporter, which facilitates cortical network hyper-excitability in MeCP2-deficient mice by increasing the activity of cortical GABAB receptors. PMID:26499511

  1. Deficiency in the divalent metal transporter 1 augments bleomycin-induced lung injury

    EPA Science Inventory

    Exposure to bleomycin can result in an inflammatory lung injury. The biological effect of this anti-neoplastic agent is dependent on its coordination of iron with subsequent oxidant generation. In lung cells, divalent metal transporter 1 (DMT1) can participate in metal transport ...

  2. Uracil misincorporation into DNA of leukocytes of young women with positive folate balance depends on plasma vitamin B12 concentrations and methylenetetrahydrofolate reductase polymorphisms. A pilot study.

    PubMed

    Kapiszewska, Maria; Kalemba, Malgorzata; Wojciech, Urszula; Milewicz, Tomasz

    2005-08-01

    Changes in the folate and vitamin B12 status in the body influence the extent of uracil misincorporation (UrMis) into DNA, which is one of the biomarkers of genomic stability and, thus, portends a risk of cancer. In our study, the level of UrMis into DNA was evaluated by the comet assay (using the specific DNA repair enzyme, uracil DNA glycosylase) in leukocytes from blood donated by healthy young women with positive folate balance achieved by 4 weeks of folic acid supplementation (400 microg/day). The nutritional status was evaluated on the basis of nine food diaries recorded by the subjects during two winter months. The data were computerized, and the intake of nutrients and micronutrients was estimated using the DIETA 2 program (Food and Nutrition Institute, Warsaw, Poland) linked to recently updated Polish food tables. The plasma folate and vitamin B12 concentration, as well as methylenetetrahydrofolate reductase (MTHFR) polymorphisms, were evaluated to determine their influence on the level of UrMis into DNA. The mean value of B12 intake for all subjects reached 100% of the Polish recommended dietary allowances (RDA), whereas the mean value of folate intake, before folate supplementation, was 50%, suggesting moderate deficiency. Folic acid supplementation brought the folate intake way above the RDA, and plasma folate concentration in each individual was above the deficient range (mean value 14.67 ng/ml). The UrMis did not correlate with the plasma folate concentration, but the level of UrMis was significantly lower in subjects with plasma vitamin B12 concentration above 400 pg/ml (P=.02) only after folic acid supplementation. The concentration of folate in plasma correlated (Pfolate in plasma was significantly lower in subjects with the MTHFR 677 (CT+TT) polymorphism, which was accompanied by a

  3. Differential susceptibity of transgenic mice lacking one or both apolipoprotein alleles to folate and vitamin E deprivation.

    PubMed

    Shea, Thomas B; Ortiz, Daniela; Rogers, Eugene

    2004-06-01

    The E4 allele of apolipoprotein E (ApoE) is associated with neurodegeneration in part due to increased oxidative stress. Transgenic mice lacking ApoE (-/-) represent a model for the consequences of deficiencies in ApoE function. Dietary deficiency in folate and vitamin E has previously been shown to potentiate the impact of ApoE deficiency; ApoE-/- mice deprived of folate and vitamin E for 1 month demonstrated increased oxidative damage in brain tissue and impaired cognitive performance as compared to ApoE+/+ mice. Since individuals homozygous for E4 can demonstrate more increased risk for neurodegeneration and an earlier age of onset than individuals heterozygous for E4, we tested the impact of folate and vitamin E deprivation on ApoE+/- mice. Thiobarbituric acid-reactive substances in brain tissue of ApoE+/- were significantly increased compared to ApoE+/+ mice, but this increase was less than that observed in ApoE-/- mice. By contrast, livers of ApoE+/- and -/- mice displayed an identical increase over that of +/+ mice. ApoE-/- mice, but not +/- or +/+ mice, exhibited impaired cognitive performance in maze trials when deprived of folate and vitamin E. These findings support the notion that homozygous deficiency of ApoE function can be more severe than heterozygous deficiency. They further suggest that the impact of partial deficiency in ApoE function may present a latent risk that may manifest only when compounded by other factors such as dietary deficiency. PMID:15201481

  4. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats.

    PubMed

    Masereeuw, Rosalinde; Notenboom, Sylvia; Smeets, Pascal H E; Wouterse, Alfons C; Russel, Frans G M

    2003-11-01

    Previous studies with mutant transport-deficient rats (TR(-)), in which the multidrug resistance protein 2 (Mrp2) is lacking, have emphasized the importance of this transport protein in the biliary excretion of a wide variety of glutathione conjugates, glucuronides, and other organic anions. Mrp2 is also present in the luminal membrane of proximal tubule cells of the kidney, but little information is available on its role in the renal excretion of xenobiotics. The authors compared renal transport of the fluorescent Mrp2 substrates calcein, fluo-3, and lucifer yellow (LY) between perfused kidneys isolated from Wistar Hannover (WH) and TR(-) rats. Isolated rat kidneys were perfused with 100 nM of the nonfluorescent calcein-AM or 500 nM fluo3-AM, which enter the tubular cells by diffusion and are hydrolyzed intracellularly into the fluorescent anion. The urinary excretion rates of calcein and fluo-3 were 3 to 4 times lower in perfused kidneys from TR(-) rats compared with WH rats. In contrast, the renal excretion of LY (10 micro M, free anion) was somewhat delayed but appeared unimpaired in TR(-) rats. Membrane vesicles from Sf9 cells expressing human MRP2 or human MRP4 indicated that MRP2 exhibits a preferential affinity for calcein and fluo-3, whereas LY is a better substrate for MRP4. We conclude that the renal clearance of the Mrp2 substrates calcein and fluo-3 is significantly reduced in TR(-) rat; for LY, the absence of the transporter may be compensated for by (an)other organic anion transporter(s). PMID:14569083

  5. [Folate and iron in fertile age women from a Venezuelan community affected by incidence of neural tube defects].

    PubMed

    Mariela, Montilva; Jham, Papale; Nieves, García-Casal María; Yelitza, Berné; Yudith, Ontiveros; Lourdes, Durán

    2010-06-01

    The objective of this transversal study was to determine folate and iron nutritional status of women in fertile age from Municipio Jiménez, Lara State, Venezuela. The sampling was probabilistic by conglomerates from the urban and rural areas, selecting 15 conglomerates from which women between 12 and 45 years (269), were studied. After signing informed consent, participating were interviewed for personal data, antecedents related to folate and iron, socioeconomic data (Graffar-Mendez Castellano method and unsatisfied basic needs). In blood sample was determined Hemoglobin, and Erythrocytic Folate (FE). Serum was obtained to determine Ferritin and Serum Folate (FS). 53.53% of the sample presented low FS levels, 10.78% were FS deficient. Severe FE deficiency was present in 80.7% of the cases, moderate deficiency affected 5.9%. For both tests, median was higher for women in treatment with Acido Fólico or pregnant (p = 0.000), median for FE was higher for adults (p = 0.001) and in non poor women (p = 0.011). There were no significant differences for coffee, alcohol, anticonceptive consumption, urban or rural resident or socioeconomic strata. The prevalence of anemia was 11.2% being significantly more frequent in adults than in adolescents (p = 0.029) and in urban women (p = 0.042). Low ferritin were found in 37.3% of the sample, the effect of different variables was not statistically significant. In conclusion, there is a high prevalence of iron and folate deficiencies in women of fertile age from Municipio Jiménez, which could constitute a conditioning factor for the appearance of neural tube defects. PMID:21427880

  6. Transporters involved in renal excretion of N-carbamoylglutamate, an orphan drug to treat inborn n-acetylglutamate synthase deficiency.

    PubMed

    Schwob, Elisabeth; Hagos, Yohannes; Burckhardt, Gerhard; Burckhardt, Birgitta C

    2014-12-15

    Inborn defects in N-acetylglutamate (NAG) synthase (NAGS) cause a reduction of NAG, an essential cofactor for the initiation of the urea cycle. As a consequence, blood ammonium concentrations are elevated, leading to severe neurological disorders. The orphan drug N-carbamoylglutamate (NCG; Carbaglu), efficiently overcomes NAGS deficiency. However, not much is known about the transporters involved in the uptake, distribution, and elimination of the divalent organic anion NCG. Organic anion-transporting polypeptides (OATPs) as well as organic anion transporters (OATs) working in cooperation with sodium dicarboxylate cotransporter 3 (NaDC3) accept a wide variety of structurally unrelated drugs. To test for possible interactions with OATPs and OATs, the impact of NCG on these transporters in stably transfected human embryonic kidney-293 cells was measured. The two-electrode voltage-clamp technique was used to monitor NCG-mediated currents in Xenopus laevis oocytes that expressed NaDC3. Neither OATPs nor OAT2 and OAT3 interacted with NCG, but OAT1 transported NCG. In addition, NCG was identified as a high-affinity substrate of NaDC3. Preincubation of OAT4-transfected human embryonic kidney-293 cells with NCG showed an increased uptake of estrone sulfate, the reference substrate of OAT4, indicating efflux of NCG by OAT4. In summary, NaDC3 and, to a lesser extent, OAT1 are likely to be responsible for the uptake of NCG from the blood. Efflux of NCG across the luminal membrane into the tubular lumen probably occurs by OAT4 completing renal secretion of this drug. PMID:25354943

  7. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice.

    PubMed

    Lee, Sichul; Kim, Sun A; Lee, Joohyun; Guerinot, Mary Lou; An, Gynheung

    2010-06-01

    Zinc is an essential micronutrient for several physiological and biochemical processes. To investigate its transport in rice, we characterized OsZIP8, a rice ZIP (Zrt, Irt-like Protein) gene that is strongly up-regulated in shoots and roots under Zn deficiency. OsZIP8 could complement the growth defect of Zn-uptake yeast mutant. The OsZIP8-GFP fusion proteins were localized to the plasma membrane, suggesting that OsZIP8 is a plasma membrane zinc transporter in rice. Activation and overexpression of this gene disturbed the zinc distribution in rice plants, resulting in lower levels in shoots and mature seeds, but an increase in the roots. Field-grown transgenic plants were shorter than the WT. Under treatment with excess zinc, transgenics contained less zinc in their shoots but accumulated more in the roots. Altogether, these results demonstrate that OsZIP8 is a zinc transporter that functions in Zn uptake and distribution. Furthermore, zinc homeostasis is important to the proper growth and development of rice. PMID:20496122

  8. Impaired insulin-stimulated glucose transport in ATM-deficient mouse skeletal muscle.

    PubMed

    Ching, James Kain; Spears, Larry D; Armon, Jennifer L; Renth, Allyson L; Andrisse, Stanley; Collins, Roy L; Fisher, Jonathan S

    2013-06-01

    There are reports that ataxia telangiectasia mutated (ATM) plays a role in insulin-stimulated Akt phosphorylation, although this is not the case in some cell types. Because Akt plays a key role in insulin signaling, which leads to glucose transport in skeletal muscle, the predominant tissue in insulin-stimulated glucose disposal, we examined whether insulin-stimulated Akt phosphorylation and (or) glucose transport would be decreased in skeletal muscle of mice lacking functional ATM, compared with muscle from wild-type mice. We found that in vitro insulin-stimulated Akt phosphorylation was normal in soleus muscle from mice with 1 nonfunctional allele of ATM (ATM+/-) and from mice with 2 nonfunctional alleles (ATM-/-). However, insulin did not stimulate glucose transport or the phosphorylation of AS160 in ATM-/- soleus. ATM protein level was markedly higher in wild-type extensor digitorum longus (EDL) than in wild-type soleus. In EDL from ATM-/- mice, insulin did not stimulate glucose transport. However, in contrast to findings for soleus, insulin-stimulated Akt phosphorylation was blunted in ATM-/- EDL, concomitant with a tendency for insulin-stimulated phosphatidylinositol 3-kinase activity to be decreased. Together, the findings suggest that ATM plays a role in insulin-stimulated glucose transport at the level of AS160 in muscle comprised of slow and fast oxidative-glycolytic fibers (soleus) and at the level of Akt in muscle containing fast glycolytic fibers (EDL). PMID:23724874

  9. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  10. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency.

    PubMed

    Thomine, Sébastien; Lelièvre, Françoise; Debarbieux, Elise; Schroeder, Julian I; Barbier-Brygoo, Hélène

    2003-06-01

    Metal homeostasis is critical for the survival of living organisms, and metal transporters play central roles in maintaining metal homeostasis in the living cells. We have investigated the function of a metal transporter of the NRAMP family, AtNRAMP3, in Arabidopsis thaliana. A previous study showed that AtNRAMP3 expression is upregulated by iron (Fe) starvation and that AtNRAMP3 protein can transport Fe. In the present study, we used AtNRAMP3 promoter beta-glucoronidase (GUS) fusions to show that AtNRAMP3 is expressed in the vascular bundles of roots, stems, and leaves under Fe-sufficient conditions. This suggests a function in long-distance metal transport within the plant. Under Fe-starvation conditions, the GUS activity driven by the AtNRAMP3 promoter is upregulated without any change in the expression pattern. We analyze the impact of AtNRAMP3 disruption and overexpression on metal accumulation in plants. Under Fe-sufficient conditions, AtNRAMP3 overexpression or disruption does not lead to any change in the plant metal content. Upon Fe starvation, AtNRAMP3 disruption leads to increased accumulation of manganese (Mn) and zinc (Zn) in the roots, whereas AtNRAMP3 overexpression downregulates Mn accumulation. In addition, overexpression of AtNRAMP3 downregulates the expression of the primary Fe uptake transporter IRT1 and of the root ferric chelate reductase FRO2. Expression of AtNRAMP3::GFP fusion protein in onion cells or Arabidopsis protoplasts shows that AtNRAMP3 protein localizes to the vacuolar membrane. To account for the results presented, we propose that AtNRAMP3 influences metal accumulation and IRT1 and FRO2 gene expression by mobilizing vacuolar metal pools to the cytosol. PMID:12787249

  11. Summary of Vadose -- Zone Conceptual Models for Flow and Contaminant Transport and 1999 - 2003 Progress on Resolving Deficiencies in Understanding the Vadose Zone at the INEEL

    SciTech Connect

    Robert C. Starr; Dana L. Dettmers; Brennon R. Orr; Thomas R. Wood

    2003-12-01

    The thick vadose zone that underlies the Idaho National Engineering and Environmental Laboratory has been recognized both as an avenue through which contaminants disposed at or near the ground surface can migrate to groundwater in the underlying Eastern Snake River Plain aquifer, and as a barrier to the movement of contaminants into the aquifer. Flow and contaminant transport in the vadose zone at the INEEL is complicated by the highly heterogeneous nature of the geologic framework and by the variations in the behavior of different contaminants in the subsurface. The state of knowledge concerning flow and contaminant transport in the vadose zone at and near the INEEL IN 1999 was summarized in Deficiencies in Vadose Zone Understanding at the Idaho National Engineering and Environmental Laboratory (Wood et al., 2000). These authors identified deficiencies in knowledge of flow and contaminant transport processes in the vadose zone, and provided recommendations for additional work that should be conducted to address these deficiencies. In the period since (Wood et al., 2000) was prepared, research has been published that, to some degree, address these deficiencies. This document provides a bibliography of reports, journal articles, and conference proceedings published 1999 through mid-2003 that are relevant to the vadose zone at or near the INEEL and provides a brief description of each work. Publications that address specific deficiencies or recommendations are identified, and pertinent information from selected publications is presented.

  12. Purification of folate binding factor in normal umbilical cord serum.

    PubMed Central

    Kamen, B A; Caston, J D

    1975-01-01

    Human umbilical cord serum was found to contain both free folate and folate complexed to a high-molecular weight factor. The complexed folate was bound to a very high affinity binder and was present in concentrations equivalent to as much as 60 ng of 5-methyltetrahydrofolic acid per ml of serum. Acidification of the serum caused disassociation of the folate-binder complex. Released folates were separated from binder by Sephadex gel filtration, zonal centrifugation through sucrose gradients, or adsorption onto activated charcoal. The separated binding factor, either saturated or unsaturated with folate, had a molecular weight of about 40,000 on Sephadex G-200 chromatography. Binding of [3H]pteroylglutamic acid was rapid and, as in the original endogenous folate-binder complex, was essentially irreversible at neutral pH. The affinity and specificity of the binder were examined by competition experiments using [3H]pteroylglutamic acid and nonradioactive folate derivatives. Oxidized folates were bound in preference to reduced derivatives, but only three to four times more unlabeled 5-methyltetrahydrofolic acid than pteroylglutamic acid was required to produce an equal level of competition. The strong affinity for 5-methyltetrahydrofolic acid, the main serum folate, suggests that the binder could be part of the mechanism by which the fetus concentrates maternally supplied folate for its growth and development. PMID:676

  13. Cryptophane-Folate Biosensor for 129Xe NMR

    PubMed Central

    2015-01-01

    Folate-conjugated cryptophane was developed for targeting cryptophane to membrane-bound folate receptors that are overexpressed in many human cancers. The cryptophane biosensor was synthesized in 20 nonlinear steps, which included functionalization with folate recognition moiety, solubilizing peptide, and Cy3 fluorophore. Hyperpolarized 129Xe NMR studies confirmed xenon binding to the folate-conjugated cryptophane. Cellular internalization of biosensor was monitored by confocal laser scanning microscopy and quantified by flow cytometry. Competitive blocking studies confirmed cryptophane endocytosis through a folate receptor-mediated pathway. Flow cytometry revealed 10-fold higher cellular internalization in KB cancer cells overexpressing folate receptors compared to HT-1080 cells with normal folate receptor expression. The biosensor was determined to be nontoxic in HT-1080 and KB cells by MTT assay at low micromolar concentrations typically used for hyperpolarized 129Xe NMR experiments. PMID:25438187

  14. Folate and neurological function: epidemiology perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews and summarizes published literature on the relationship between folate status and Alzheimer’s disease, age-related cognitive impairment, and depression. Much of this research was motivated by the hypothesis that high circulating levels of the sulfur-containing amino acid ho...

  15. Folate, vitamin B12 and human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared func...

  16. UK Policy on Folate Fortification of Foods

    ERIC Educational Resources Information Center

    Malcolm, Alan

    2004-01-01

    The UK Food Standards Agency has decided not to recommend fortification of foods with folate, the family of vitamins associated with the prevention of neural tube defects in babies. This is a change in attitude from previous recommendations made by a series of committees and reports in the UK. Notably, it differs from US policy on the matter. The…

  17. Germ Cells Need Folate to Proliferate.

    PubMed

    Walker, Amy K

    2016-07-11

    In this issue of Developmental Cell, Chaudhari and colleagues (2016) use a novel method to create an in vitro proliferative cell line from tumorous C. elegans germ cells, and in the process discover that bacterial folates act as signals for proliferation, independent of their roles as vitamins. PMID:27404353

  18. “Wigglesworthia morsitans” Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness

    PubMed Central

    Snyder, Anna K.

    2015-01-01

    Closely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosoma spp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacterium Wigglesworthia. Extensive concordant evolution with associated Wigglesworthia species has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci between Wigglesworthia genomes may prove instrumental toward host species-specific biological traits. Genome distinctions between “Wigglesworthia morsitans” (harbored within Glossina morsitans bacteriomes) and the basal species Wigglesworthia glossinidia (harbored within Glossina brevipalpis bacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that these W. morsitans pathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced by W. morsitans is demonstrated to be pivotal for G. morsitans sexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of the Wigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control. PMID:26025907

  19. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations

    PubMed Central

    de Crécy-Lagard, Valérie; El Yacoubi, Basma; de la Garza, Rocío Díaz; Noiriel, Alexandre; Hanson, Andrew D

    2007-01-01

    Background Folate synthesis and salvage pathways are relatively well known from classical biochemistry and genetics but they have not been subjected to comparative genomic analysis. The availability of genome sequences from hundreds of diverse bacteria, and from Arabidopsis thaliana, enabled such an analysis using the SEED database and its tools. This study reports the results of the analysis and integrates them with new and existing experimental data. Results Based on sequence similarity and the clustering, fusion, and phylogenetic distribution of genes, several functional predictions emerged from this analysis. For bacteria, these included the existence of novel GTP cyclohydrolase I and folylpolyglutamate synthase gene families, and of a trifunctional p-aminobenzoate synthesis gene. For plants and bacteria, the predictions comprised the identities of a 'missing' folate synthesis gene (folQ) and of a folate transporter, and the absence from plants of a folate salvage enzyme. Genetic and biochemical tests bore out these predictions. Conclusion For bacteria, these results demonstrate that much can be learnt from comparative genomics, even for well-explored primary metabolic pathways. For plants, the findings particularly illustrate the potential for rapid functional assignment of unknown genes that have prokaryotic homologs, by analyzing which genes are associated with the latter. More generally, our data indicate how combined genomic analysis of both plants and prokaryotes can be more powerful than isolated examination of either group alone. PMID:17645794

  20. Blocking and Binding Folate Receptor Alpha Autoantibodies Identify Novel Autism Spectrum Disorder Subgroups

    PubMed Central

    Frye, Richard E.; Delhey, Leanna; Slattery, John; Tippett, Marie; Wynne, Rebecca; Rose, Shannon; Kahler, Stephen G.; Bennuri, Sirish C.; Melnyk, Stepan; Sequeira, Jeffrey M.; Quadros, Edward

    2016-01-01

    Folate receptor α (FRα) autoantibodies (FRAAs) are prevalent in autism spectrum disorder (ASD). They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD and FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristics. Thus, in this study we measured both blocking and binding FRAAs, physiological measurements including indices of redox and methylation metabolism and inflammation as well as serum folate and B12 concentrations and measurements of development and behavior in 94 children with ASD. Children positive for the binding FRAA were found to have higher serum B12 levels as compared to those negative for binding FRAAs while children positive for the blocking FRAA were found to have relatively better redox metabolism and inflammation markers as compared to those negative for blocking FRAAs. In addition, ASD children positive for the blocking FRAA demonstrated better communication on the Vineland Adaptive Behavior Scale, stereotyped behavior on the Aberrant Behavioral Checklist and mannerisms on the Social Responsiveness Scale. This study suggests that FRAAs are associated with specific physiological and behavioral characteristics in children with ASD and provides support for the notion that these biomarkers may be useful for subgrouping children with ASD, especially with respect to targeted treatments. PMID:27013943

  1. Blocking and Binding Folate Receptor Alpha Autoantibodies Identify Novel Autism Spectrum Disorder Subgroups.

    PubMed

    Frye, Richard E; Delhey, Leanna; Slattery, John; Tippett, Marie; Wynne, Rebecca; Rose, Shannon; Kahler, Stephen G; Bennuri, Sirish C; Melnyk, Stepan; Sequeira, Jeffrey M; Quadros, Edward

    2016-01-01

    Folate receptor α (FRα) autoantibodies (FRAAs) are prevalent in autism spectrum disorder (ASD). They disrupt the transportation of folate across the blood-brain barrier by binding to the FRα. Children with ASD and FRAAs have been reported to respond well to treatment with a form of folate known as folinic acid, suggesting that they may be an important ASD subgroup to identify and treat. There has been no investigation of whether they manifest unique behavioral and physiological characteristics. Thus, in this study we measured both blocking and binding FRAAs, physiological measurements including indices of redox and methylation metabolism and inflammation as well as serum folate and B12 concentrations and measurements of development and behavior in 94 children with ASD. Children positive for the binding FRAA were found to have higher serum B12 levels as compared to those negative for binding FRAAs while children positive for the blocking FRAA were found to have relatively better redox metabolism and inflammation markers as compared to those negative for blocking FRAAs. In addition, ASD children positive for the blocking FRAA demonstrated better communication on the Vineland Adaptive Behavior Scale, stereotyped behavior on the Aberrant Behavioral Checklist and mannerisms on the Social Responsiveness Scale. This study suggests that FRAAs are associated with specific physiological and behavioral characteristics in children with ASD and provides support for the notion that these biomarkers may be useful for subgrouping children with ASD, especially with respect to targeted treatments. PMID:27013943

  2. Folate deprivation induces BCRP (ABCG2) expression and mitoxantrone resistance in Caco-2 cells.

    PubMed

    Lemos, Clara; Kathmann, Ietje; Giovannetti, Elisa; Dekker, Henk; Scheffer, George L; Calhau, Conceição; Jansen, Gerrit; Peters, Godefridus J

    2008-10-01

    Folates can induce the expression and activity of the breast-cancer-resistance-protein (BCRP) and the multidrug-resistance-protein-1 (MRP1). Our aim was to study the time-dependent effect of folate deprivation/supplementation on (i) BCRP and MRP expression and (ii) on drug resistance mediated by these transporters. Therefore Caco-2 colon cancer cells usually grown in standard RPMI-medium containing supraphysiological folic acid (FA) concentrations (2.3 muM; high-folate, HF) were gradually adapted to more physiological folate concentrations (1 nM leucovorin (LV) or 1 nM FA; low-folate, LF), resulting in the sublines Caco-2-LF/LV and Caco-2-LF/FA. Caco-2-LF/LV and LF/FA cells exhibited a maximal increase of 5.2- and 9.6-fold for BCRP-mRNA and 3.9- and 5.7-fold for BCRP protein expression, respectively, but no major changes on MRP expression. Overexpression of BCRP in the LF-cells resulted in 3.6- to 6.3-fold resistance to mitoxantrone (MR), which was completely reverted by the BCRP inhibitor Ko143. On the other hand, LF-adapted cells were markedly more sensitive to methotrexate than the HF-counterpart, both after 4-hr (9,870- and 23,923-fold for Caco-2-LF/LV and LF/FA, respectively) and 72-hr (11- and 22-fold for Caco-2-LF/LV and LF/FA, respectively) exposure. Immunofluorescent staining observed with a confocal-laser-scan-microscope revealed that in Caco-2 cells (both HF and LF), BCRP is mainly located in the cytoplasm. In conclusion, folate deprivation induces BCRP expression associated with MR resistance in Caco-2 cells. The intracellular localization of BCRP in these cells suggests that this transporter is not primarily extruding its substrates out of the cell, but rather to an intracellular compartment where folates can be kept as storage. PMID:18623116

  3. Low temperature transport measurements on atomically smooth metallic and oxygen deficient strontium titanate

    NASA Astrophysics Data System (ADS)

    Barquist, C. S.; Kwak, I. H.; Bauer, J.; Edmonds, T.; Biswas, A.; Lee, Y.

    2014-12-01

    Atomically smooth, TiO2 terminated SrTiO3 (STO) substrates were prepared using a combination of chemical and thermal annealing treatments. The TiO2 terminated surface was obtained by etching with aqua regia solution and thermal annealing at 1000 °C for 30 min. The subsequent vacuum annealing at 830 °C for 10 min generated an atomically smooth and metallic surface of STO. In this paper, we report low temperature transport measurements down to 50 mK on these samples which clearly exhibit a metallic temperature dependence in the resistance. The samples show no sign of superconductivity down to the lowest temperatures.The Rsquare(T) data provide information on the physical origin of metallic behavior in STO, which might also be relevant to the current research interest in oxide interfaces.

  4. Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3(-) transport and reduces survival in CFTR-deficient mice.

    PubMed

    Liu, Xuemei; Li, Taolang; Riederer, Brigitte; Lenzen, Henrike; Ludolph, Lisa; Yeruva, Sunil; Tuo, Biguang; Soleimani, Manoocher; Seidler, Ursula

    2015-06-01

    Slc26a9 is an anion transporter that is strongly expressed in the stomach and lung. Slc26a9 variants were recently found associated with a higher incidence of meconium ileus in cystic fibrosis (CF) infants, raising the question whether Slc26a9 is expressed in the intestine and what its functional role is. Slc26a9 messenger RNA (mRNA) was found highly expressed in the mucosae of the murine and human upper gastrointestinal tract, with an abrupt decrease in expression levels beyond the duodenum. Absence of SLC26a9 expression strongly increased the intestinally related mortality in cystic fibrosis transmembrane conductance regulator (CFTR)-deficient mice. Proximal duodenal JHCO3(-) and fluid secretion were reduced in the absence of Slc26a9 expression. In the proximal duodenum of young Slc26a9 KO mice, the glands and villi/crypts were elongated and proliferation was enhanced. This difference was lost with ageing, as were the alterations in fluid movement, whereas the reduction in JHCO3(-) remained. Laser dissection followed by qPCR suggested Slc26a9 expression to be crypt-predominant in the duodenum. In summary, deletion of Slc26a9 caused bicarbonate secretory and fluid absorptive changes in the proximal duodenal mucosa and increased the postweaning death rates in CFTR-deficient mice. Functional alterations in the duodenum were most prominent at young ages. We assume that the association of meconium ileus and Slc26a9 variants may be related to maldigestion and impaired downstream signaling caused by loss of upper GI tract digestive functions, aggravating the situation of lack of secretion and sticky mucus at the site of obstruction in CF intestine. PMID:24965066

  5. Vitamin B-12 and folate status in relation to decline in scores on the Mini-Mental State Examination in the Framingham Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochemical evidence of low vitamin B-12 status is common in seniors, but its clinical relevance is unclear. Vitamin B-12 deficiency can result in rapid, irreversible cognitive decline – a phenomenon that has been linked to high folate status. Our objective was to investigate the cognitive significa...

  6. DIETARY SELENIUIM (SE) AND FOLATE AFFECT DIMETHYLHYDRAZINE (DMH)-INDUCED ABERRANT CRYPT FORMATION, GLOBAL DNA METHYLATION AND ONE-CARBON METABOLISM IN RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several observations implicate a role for DNA methylation in cancer pathogenesis. Although both Se and folate deficiency have been shown to cause global DNA hypomethylation and increased cancer susceptibility, the nutrients have different effects on one-carbon metabolism. Thus, the purpose of this s...

  7. Chronic Vitamin C Deficiency Promotes Redox Imbalance in the Brain but Does Not Alter Sodium-Dependent Vitamin C Transporter 2 Expression

    PubMed Central

    Paidi, Maya D.; Schjoldager, Janne G.; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-01-01

    Vitamin C (VitC) has several roles in the brain acting both as a specific and non-specific antioxidant. The brain upholds a very high VitC concentration and is able to preferentially retain VitC even during deficiency. The accumulation of brain VitC levels much higher than in blood is primarily achieved by the sodium dependent VitC transporter (SVCT2). This study investigated the effects of chronic pre-and postnatal VitC deficiency as well as the effects of postnatal VitC repletion, on brain SVCT2 expression and markers of oxidative stress in young guinea pigs. Biochemical analyses demonstrated significantly decreased total VitC and an increased percentage of dehydroascorbic acid, as well as increased lipid oxidation (malondialdehyde), in the brains of VitC deficient animals (p < 0.0001) compared to controls. VitC repleted animals were not significantly different from controls. No significant changes were detected in either gene or protein expression of SVCT2 between groups or brain regions. In conclusion, chronic pre-and postnatal VitC deficiency increased brain redox imbalance but did not increase SVCT2 expression. Our findings show potential implications for VitC deficiency induced negative effects of redox imbalance in the brain and provide novel insight to the regulation of VitC in the brain during deficiency. PMID:24787032

  8. Reduced MTHFD1 Activity in Male Mice Perturbs Folate- and Choline-Dependent One-Carbon Metabolism as Well as Transsulfuration12

    PubMed Central

    Field, Martha S.; Shields, Kelsey S.; Abarinov, Elena V.; Malysheva, Olga V.; Allen, Robert H.; Stabler, Sally P.; Ash, Jessica A.; Strupp, Barbara J.; Stover, Patrick J.; Caudill, Marie A.

    2013-01-01

    Impaired utilization of folate is caused by insufficient dietary intake and/or genetic variation and has been shown to prompt changes in related pathways, including choline and methionine metabolism. These pathways have been shown to be sensitive to variation within the Mthfd1 gene, which codes for a folate-metabolizing enzyme responsible for generating 1-carbon (1-C)–substituted folate derivatives. The Mthfd1gt/+ mouse serves as a potential model of human Mthfd1 loss-of-function genetic variants that impair MTHFD1 function. This study investigated the effects of the Mthfd1gt/+ genotype and folate intake on markers of choline, folate, methionine, and transsulfuration metabolism. Male Mthfd1gt/+ and Mthfd1+/+ mice were randomly assigned at weaning (3 wk of age) to either a control (2 mg/kg folic acid) or folate-deficient (0 mg/kg folic acid) diet for 5 wk. Mice were killed at 8 wk of age following 12 h of food deprivation; blood and liver samples were analyzed for choline, methionine, and transsulfuration biomarkers. Independent of folate intake, mice with the Mthfd1gt/+ genotype had higher hepatic concentrations of choline (P = 0.005), betaine (P = 0.013), and dimethylglycine (P = 0.004) and lower hepatic concentrations of glycerophosphocholine (P = 0.002) relative to Mthfd1+/+ mice. Mthfd1gt/+ mice also had higher plasma concentrations of homocysteine (P = 0.0016) and cysteine (P < 0.001) as well as lower plasma concentrations of methionine (P = 0.0003) and cystathionine (P = 0.011). The metabolic alterations observed in Mthfd1gt/+ mice indicate perturbed choline and folate-dependent 1-C metabolism and support the future use of Mthfd1gt/+ mice as a tool to investigate the impact of impaired 1-C metabolism on disease outcomes. PMID:23190757

  9. Effects of preparation and cooking of folic acid-fortified foods on the availability of folic acid in a folate depletion/repletion rat model.

    PubMed

    O'Leary, K; Sheehy, P J

    2001-09-01

    The practice of food fortification with folic acid offers the potential to increase the folate intake of the general population. To fully exploit the potential of fortification for raising folate nutriture, appropriate food vehicles need to be selected. Selection should involve determination of the availability of folic acid as affected by characteristics of the carrier food, food matrix, food preparation, and cooking. The present study investigated the effects of preparation and cooking of a range of folic acid-fortified foods on the folate status of folate-deficient rats. Fifty-six weanling male rats (Wistar strain) were fed a folate-deficient diet containing 1% succinyl sulfathiazole for 28 days. Following depletion, six rats were randomly assigned to each of eight repletion diets containing cooked or uncooked meringue mix, quick bread mix, brownie mix, or pizza base mix. The test foods were fortified with 1400 microg of folic acid/kg of food and incorporated as 19% of the repletion diets. Each of the first four groups was pair-fed a diet containing a cooked fortified food with another group fed the corresponding uncooked fortified food. After a further 28 days, plasma, liver, and kidney folate concentrations were determined by microbiological assay. Mean plasma and liver folate concentrations of rats fed diets containing cooked fortified foods were similar to those of rats fed uncooked fortified foods. Preparation and cooking did not affect the availability of folic acid from the selected cereal-based convenience foods in this rat model system, suggesting that these foods are appropriate vehicles for fortification with folic acid. PMID:11559162

  10. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10- year-old children in South India.

    PubMed

    Veena, Sargoor R; Krishnaveni, Ghattu V; Srinivasan, Krishnamachari; Wills, Andrew K; Muthayya, Sumithra; Kurpad, Anura V; Yajnik, Chittaranjan S; Fall, Caroline H D

    2010-05-01

    Folate and vitamin B-12 are essential for normal brain development. Few studies have examined the relationship of maternal folate and vitamin B-12 status during pregnancy and offspring cognitive function. To test the hypothesis that lower maternal plasma folate and vitamin B-12 concentrations and higher plasma homocysteine concentrations during pregnancy are associated with poorer neurodevelopment, 536 children (aged 9-10 y) from the Mysore Parthenon birth cohort underwent cognitive function assessment during 2007-2008 using 3 core tests from the Kaufman Assessment Battery, and additional tests measuring learning, long-term storage/retrieval, attention and concentration, and visuo-spatial and verbal abilities. Maternal folate, vitamin B-12, and homocysteine concentrations were measured at 30 +/- 2 wk gestation. During pregnancy, 4% of mothers had low folate concentrations (<7 nmol/L), 42.5% had low vitamin B-12 concentrations (<150 pmol/L), and 3% had hyperhomocysteinemia (>10 micromol/L). The children's cognitive test scores increased by 0.1-0.2 SD per SD increase across the entire range of maternal folate concentrations (P < 0.001 for all), with no apparent associations at the deficiency level. The associations with learning, long-term storage/retrieval, visuo-spatial ability, attention, and concentration were independent of the parents' education, socioeconomic status, religion, and the child's sex, age, current size, and folate and vitamin B-12 concentrations. There were no consistent associations of maternal vitamin B-12 and homocysteine concentrations with childhood cognitive performance. In this Indian population, higher maternal folate, but not vitamin B-12, concentrations during pregnancy predicted better childhood cognitive ability. It also suggests that, in terms of neurodevelopment, the concentration used to define folate deficiency may be set too low. PMID:20335637

  11. Regulation of Tyrosine Hydroxylase Expression and Phosphorylation in Dopamine Transporter-Deficient Mice.

    PubMed

    Salvatore, Michael F; Calipari, Erin S; Jones, Sara R

    2016-07-20

    Tyrosine hydroxylase (TH) and dopamine transporters (DATs) regulate dopamine (DA) neurotransmission at the biosynthesis and reuptake steps, respectively. Dysfunction or loss of these proteins occurs in impaired locomotor or addictive behavior, but little is known about the influence of DAT expression on TH function. Differences in TH phosphorylation, DA tissue content, l-DOPA biosynthesis, and DA turnover exist between the somatodendritic and terminal field compartments of nigrostriatal and mesoaccumbens pathways. We examined whether differential DAT expression affects these compartmental differences in DA regulation by comparing TH expression and phosphorylation at ser31 and ser40. In heterozygous DAT knockout (KO) (+/-) mice, DA tissue content and DA turnover were unchanged relative to wild-type mice, despite a 40% reduction in DAT protein expression. In DAT KO (-/-) mice, DA turnover increased in all DA compartments, but DA tissue content decreased (90-96%) only in terminal fields. TH protein expression and phosphorylation were differentially affected within DA pathway compartments by relative expression of DAT. TH protein decreased (∼74%), though to a significantly lesser extent than DA, in striatum and nucleus accumbens (NAc) in DAT -/- mice, with no decrease in substantia nigra or ventral tegmental area. Striatal ser31 TH phosphorylation and recovery of DA relative to TH protein expression in DAT +/- and DAT -/- mice decreased, whereas ser40 TH phosphorylation increased ∼2- to 3-fold in striatum and NAc of DAT -/- mice. These results suggest that DAT expression affects TH expression and phosphorylation largely in DA terminal field compartments, further corroborating evidence for dichotomous regulation of TH between somatodendritic and terminal field compartments of the nigrostriatal and mesoaccumbens pathways. PMID:27124386

  12. Cell-surface targeting of α2-adrenergic receptors — Inhibition by a transport deficient mutant through dimerization

    PubMed Central

    Zhou, Fuguo; Filipeanu, Catalin M.; Duvernay, Matthew T.; Wu, Guangyu

    2009-01-01

    We previously demonstrated that the α2B-adrenergic receptor mutant, in which the F(x)6IL motif in the membrane-proximal carboxyl terminus were mutated to alanines (α2B-ARm), is deficient in export from the endoplasmic reticulum (ER). In this report, we determined if α2B-ARm could modulate transport from the ER to the cell surface and signaling of its wild-type counterpart. Transient expression of α2B-ARm in HEK293T cells markedly inhibited cell-surface expression of wild-type α2B-AR, as measured by radioligand binding. Subcellular localization demonstrated that α2B-ARm trapped α2B-AR in the ER. The α2B-AR was shown to form homodimers and heterodimers with α2B-ARm as measured by co-immunoprecipitation of the receptors tagged with green fluorescent protein and hemagglutinin epitopes. In addition to α2B-AR, the transport of α2A-AR and α2C-AR to the cell surface was also inhibited by α2B-ARm. Furthermore, transient expression of α2B-ARm significantly reduced cell-surface expression of endogenous α2-AR in NG108-15 and HT29 cells. Consistent with its effect on α2-AR cell-surface expression, α2B-ARm attenuated α2A-AR- and α2B-AR-mediated ERK1/2 activation. These data demonstrated that the ER-retained mutant α2B-ARm conferred a dominant negative effect on the cell-surface expression of wild-type α2-AR, which is likely mediated through heterodimerization. These data indicate a crucial role of ER export in the regulation of cell-surface targeting and signaling of G protein-coupled receptors. PMID:15961277

  13. The association between circulating total folate and folate vitamers with overall survival after postmenopausal breast cancer diagnosis.

    PubMed

    McEligot, Archana Jaiswal; Ziogas, Argyrios; Pfeiffer, Christine M; Fazili, Zia; Anton-Culver, Hoda

    2015-01-01

    We studied the relationship between plasma total folate and folate vitamer concentrations [5-methyltetrahydrofolic acid, pteroylglutamic acid (folic acid) and tetrahydrofolic acid] with overall survival after breast cancer diagnosis. A secondary aim was to assess the relationship between folic acid supplement use with circulating total folate and folate vitamer concentrations. Participants were postmenopausal women diagnosed with breast cancer (n = 498) with an average follow-up of 6.7 yr. Plasma total folate and folate vitamers were measured by isotope-dilution LC-MS/MS in samples collected at or postdiagnosis. Cox proportional multivariate hazards models (controlled for stage, age at diagnosis, body mass index, parity, hormone replacement therapy use, treatment, alcohol use, folic acid use, and energy intake), were used to assess overall survival after breast cancer diagnosis. We found that the relative risk of dying for women with plasma total folate concentrations in the highest quartile was 59% lower (hazard ratio: 0.41, 95% confidence interval: 0.19-0.90) compared with the lowest quartile. Data on supplement use showed that women taking folic acid supplements had significantly higher circulating total folate and folate vitamer concentrations (P < 0.0001), suggesting that increased folate consumption through diet and/or supplementation may improve prognosis after breast cancer diagnosis. PMID:25647689

  14. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate.

    PubMed

    Yoo, Hyuk Sang; Park, Tae Gwan

    2004-11-24

    For folate-receptor-targeted anti-cancer therapy, doxorubicin aggregates in a nano-scale size were produced employing doxorubicin-polyethylene glycol-folate (DOX-PEG-FOL) conjugate. Doxorubicin and folate were respectively conjugated to alpha- and omega-terminal end group of a PEG chain. The conjugates assisted to form doxorubicin nano-aggregates with an average size of 200 nm in diameter when combined with an excess amount of deprotonated doxorubicin in an aqueous phase. Hydrophobically deprotonated doxorubicin molecules were aggregated within the core, while the DOX-PEG-FOL conjugates stabilized the aggregates with exposing folate moieties on the surface. The doxorubicin nano-aggregates showed a greater extent of intracellular uptake against folate-receptor-positive cancer cells than folate-receptor-negative cells, indicating that the cellular uptake occurred via a folate-receptor-mediated endocytosis mechanism. They also exhibited more potent cytotoxic effect on KB cells than free doxorubicin. In a human tumor xenograft nude mouse model, folate-targeted doxorubicin nano-aggregates significantly reduced the tumor volume compared to non-targeted doxorubicin aggregates or free doxorubicin. These results suggested that folate-targeted doxorubicin nano-aggregates could be a potentially useful delivery system for folate-receptor-positive cancer cells. PMID:15544872

  15. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    PubMed

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects. PMID:25841994

  16. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts.

    PubMed

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin

    2016-01-01

    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts. PMID:26684407

  17. Electric transport coefficients in highly epitaxial LaBaCo2O5 + δ films with "p-to-n" transition induced by oxygen deficiency

    NASA Astrophysics Data System (ADS)

    Shaibo, J.; Zhang, Q. Y.; Wang, Y. Q.; Hu, H. C.; Li, X. N.; Pan, L. J.

    2016-08-01

    Electric transport coefficients such as carrier type, density, and mobility are the important physical parameters in designing functional devices. In this work, we report the study on the electric transport coefficients of the highly epitaxial LaBaCo2O5 + δ (LBCO) films, which were discussed as a function of electric conductivity for the first time and compared with the results calculated by the theory for mixed conduction. The mobility in the LBCO films was determined to be ˜0.85 and ˜40 cm2/V s for holes and electrons, respectively, and the density of p-type carriers strongly depends on the oxygen deficiency. Solid evidence is presented to demonstrate that the oxygen deficiency cannot make LBCO materials changed from p- to n-type. The n-type conduction observed in experiment is a counterfeit phenomenon caused by the deficiency in Hall measurement, rather than a realistic transition induced by oxygen deficiency. In addition, the temperature-dependent conductivity was discussed using the differential coefficients, which might be useful in the study of the samples with magnetic transition.

  18. Vitamin paradox in obesity: Deficiency or excess?

    PubMed

    Zhou, Shi-Sheng; Li, Da; Chen, Na-Na; Zhou, Yiming

    2015-08-25

    Since synthetic vitamins were used to fortify food and as supplements in the late 1930s, vitamin intake has significantly increased. This has been accompanied by an increased prevalence of obesity, a condition associated with diabetes, hypertension, cardiovascular disease, asthma and cancer. Paradoxically, obesity is often associated with low levels of fasting serum vitamins, such as folate and vitamin D. Recent studies on folic acid fortification have revealed another paradoxical phenomenon: obesity exhibits low fasting serum but high erythrocyte folate concentrations, with high levels of serum folate oxidation products. High erythrocyte folate status is known to reflect long-term excess folic acid intake, while increased folate oxidation products suggest an increased folate degradation because obesity shows an increased activity of cytochrome P450 2E1, a monooxygenase enzyme that can use folic acid as a substrate. There is also evidence that obesity increases niacin degradation, manifested by increased activity/expression of niacin-degrading enzymes and high levels of niacin metabolites. Moreover, obesity most commonly occurs in those with a low excretory reserve capacity (e.g., due to low birth weight/preterm birth) and/or a low sweat gland activity (black race and physical inactivity). These lines of evidence raise the possibility that low fasting serum vitamin status in obesity may be a compensatory response to chronic excess vitamin intake, rather than vitamin deficiency, and that obesity could be one of the manifestations of chronic vitamin poisoning. In this article, we discuss vitamin paradox in obesity from the perspective of vitamin homeostasis. PMID:26322161

  19. Lentils (Lens culinaris L.), a rich source of folates.

    PubMed

    Sen Gupta, Debjyoti; Thavarajah, Dil; Knutson, Phil; Thavarajah, Pushparajah; McGee, Rebecca J; Coyne, Clarice J; Kumar, Shiv

    2013-08-14

    The potential for genetic biofortification of U.S.-grown lentils ( Lens culinaris L.) with bioavailable folate has not been widely studied. The objectives of this study were (1) to determine the folate concentration of 10 commercial lentil cultivars grown in Minot and McLean counties, North Dakota, USA, in 2010 and 2011, (2) to determine the genotype (G) × environmental (E) interactions for folate concentration in lentil cultivars, and (3) to compare the folate concentration of other pulses [field peas ( Pisum sativum L.) and chickpea ( Cicer arietinum L.)] grown in the United States. Folate concentration in lentil cultivars ranged from 216 to 290 μg/100 g with a mean of 255 μg/100 g. In addition, lentil showed higher folate concentration compared to chickpea (42-125 μg/100 g), yellow field pea (41-55 μg/100 g), and green field pea (50-202 μg/100 g). A 100 g serving of lentils could provide a significant amount of the recommended daily allowance of dietary folates (54-73%) for adults. A significant year × location interaction on lentil folate concentration was observed; this indicates that possible location sourcing may be required for future lentil folate research. PMID:23865478

  20. Compilation of a standardised international folate database for EPIC.

    PubMed

    Nicolas, Geneviève; Witthöft, Cornelia M; Vignat, Jérôme; Knaze, Viktoria; Huybrechts, Inge; Roe, Mark; Finglas, Paul; Slimani, Nadia

    2016-02-15

    This paper describes the methodology applied for compiling an "international end-user" folate database. This work benefits from the unique dataset offered by the European Prospective Investigation into Cancer and Nutrition (EPIC) (N=520,000 subjects in 23 centres). Compilation was done in four steps: (1) identify folate-free foods then find folate values for (2) folate-rich foods common across EPIC countries, (3) the remaining "common" foods, and (4) "country-specific" foods. Compiled folate values were concurrently standardised in terms of unit, mode of expression and chemical analysis, using information in national food composition tables (FCT). 43-70% total folate values were documented as measured by microbiological assay. Foods reported in EPIC were either matched directly to FCT foods, treated as recipes or weighted averages. This work has produced the first standardised folate dataset in Europe, which was used to calculate folate intakes in EPIC; a prerequisite to study the relation between folate intake and diseases. PMID:26433299

  1. Clinical studies of intestinal folate conjugases.

    PubMed

    Halsted, C H; Beer, W H; Chandler, C J; Ross, K; Wolfe, B M; Bailey, L; Cerda, J J

    1986-03-01

    Clinical differences between the two human intestinal mucosal folate conjugases were assessed by measurement of their activities in normal individuals and in patients with chronic diarrhea of differing causes. Intracellular folate conjugase (ICFC) was 15-fold more active than brush border folate conjugase (BBFC) in jejunal mucosa from seven obese patients undergoing elective gastric bypass surgery. The activity of ICFC was similar among normal volunteers and patients with diarrhea of unknown origin (DUO), gluten-sensitive enteropathy (GSE), inflammatory bowel disease (IBD), and the short bowel syndrome (IBD-SBS). By contrast, BBFC, sucrase, and lactase were decreased significantly in GSE, and BBFC was increased in IBD-SBS. The activity of BBFC correlated with lactase and with sucrase in the normal subjects and in patients with DUO, whereas no correlations were found with the activity of ICFC in any group. Our clinical studies confirm that ICFC and BBFC are different enzymes. ICFC is not affected by intestinal disease, whereas the activity of jejunal BBFC, like that of other brush border enzymes, is decreased by mucosal injury and is also capable of adapting to distal small intestinal disease or surgical resection. PMID:3081671

  2. Prevalence and severity of micronutrient deficiency: a cross-sectional study among adolescents in Sri Lanka

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to determine the prevalence of micronutrient deficiencies (iron, zinc and folate) in Sri Lankan adolescent school children and the extent to which multiple micronutrient deficiencies exist in this population, a cross-sectional survey (2003) in the Galle district of the micronutrient and ant...

  3. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  4. Bioavailability of food folates and evaluation of food matrix effects with a rat bioassay.

    PubMed

    Clifford, A J; Heid, M K; Peerson, J M; Bills, N D

    1991-04-01

    Folate bioavailability of beef liver, lima beans, peas, spinach, mushrooms, collards, orange juice and wheat germ was estimated with a protocol of folate depletion-repletion using growth and liver, serum and erythrocyte folate of weanling male rats. Diets with 125, 250 and 375 micrograms folic acid/kg were standards. Individual foods were incorporated into a folate-free amino acid-based diet alone (250 micrograms folate/kg diet from food) or mixed with folic acid (125 micrograms folate from food + 125 micrograms folic acid) to evaluate folate bioavailability and effects of food matrix. Beef liver and orange juice folates were as available as folic acid, whereas those of wheat germ were less bioavailable. Folates of peas and spinach were also less available than folic acid using liver and serum folate concentrations and total liver folate as response criteria, but they were not lower when based on growth and erythrocyte folate concentrations. Lima bean, mushroom and collard folates were as available as folic acid using four of five response criteria. Folate bioavailability of all foods generally exceeded 70%. All response criteria gave approximately equivalent results, indicating that growth and tissue folate levels are appropriate criteria. No food matrix effects were observed for any food except lima beans. Foods rich in polyglutamyl folates were less bioavailable than those of foods rich in short-chain folates. PMID:2007897

  5. Thermal degradation of folates under varying oxygen conditions.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Cuvelier, Marie-Elisabeth; Courtois, Francis; Rychlik, Michael; Renard, Catherine M G C

    2014-12-15

    Folate losses in thermally treated foods are mainly due to oxidation. Other mechanisms and folate vitamers behaviour are poorly described. Our study evaluated oxygen impact on total folate degradation and derivatives' evolution during thermal treatments. Spinach and green bean purees were heated, in an instrumented reactor, in anaerobic conditions, under an oxygen partial pressure of 40 kPa. Folates were stable in the absence of oxygen, whilst they were degraded under 40 kPa of oxygen. Total folate showed a sharp decrease in the first hour driven by the degradation of 5-CH3-H4folate, followed by a plateau due to the formyl derivatives and minor compounds stability. The different evolution of the main derivatives was confirmed by the degradation of 5-CH3-H4folate and folic acid in solution, under the same conditions of oxygen concentrations. The stability of folic acid and the high susceptibility of 5-CH3-H4folate to degradation in the presence of oxygen were confirmed. PMID:25038652

  6. Lentils (Lens culinaris L.), a rich source of folates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulses contain folates in the form of reduced tetrahydrofolate which is the biologically active form absorbed in the jejunum. Genetic biofortification potential of US-grown lentils (Lens culinaris L.) with the bioavailable form of folate has not been widely studied. The objectives of this study wer...

  7. Folates in Asian noodles: III. Fortification, impact of processing, and enhancement of folate intakes.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    Asian noodles, a widely consumed staple food, were evaluated as potential vehicles for fortification with folic acid. Samples of white salted, yellow alkaline, and instant noodles, prepared under controlled laboratory conditions, were fortified and folates were measured at each stage of processing using a microbiological assay. Although the 3 styles showed differing patterns of retention, overall losses were slightly more than 40% and were similar for all styles. White salted and yellow alkaline noodles showed no significant decrease in total folate content during production. In contrast, significant losses occurred for instant noodles during steaming and deep-frying of the noodle strands. In all cases, substantial losses occurred during subsequent cooking of the dried noodles. Fortification at a rate of 50% of the reference value per serving resulted in retention of folate at levels corresponding to 30% following cooking, whereas unfortified noodles contributed less than 4% per serving. It is concluded that fortifying Asian noodles provides an effective means for enhancing folate intake. PMID:17995717

  8. Folate: metabolism, genes, polymorphisms and the associated diseases.

    PubMed

    Nazki, Fakhira Hassan; Sameer, Aga Syed; Ganaie, Bashir Ahmad

    2014-01-01

    Folate being an important vitamin of B Complex group in our diet plays an important role not only in the synthesis of DNA but also in the maintenance of methylation reactions in the cells. Folate metabolism is influenced by several processes especially its dietary intake and the polymorphisms of the associated genes involved. Aberrant folate metabolism, therefore, affects both methylation as well as the DNA synthesis processes, both of which have been implicated in the development of various diseases. This paper reviews the current knowledge of the processes involved in folate metabolism and consequences of deviant folate metabolism, particular emphasis is given to the polymorphic genes which have been implicated in the development of various diseases in humans, like vascular diseases, Down's syndrome, neural tube defects, psychiatric disorders and cancers. PMID:24091066

  9. Assessing the Association between Natural Food Folate Intake and Blood Folate Concentrations: A Systematic Review and Bayesian Meta-Analysis of Trials and Observational Studies

    PubMed Central

    Marchetta, Claire M.; Devine, Owen J.; Crider, Krista S.; Tsang, Becky L.; Cordero, Amy M.; Qi, Yan Ping; Guo, Jing; Berry, Robert J.; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C.

    2015-01-01

    Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992–3 2014) with both natural food folate intake alone and blood folate concentration among females aged 12–49 years. Bayesian methods were used to estimate regression model parameters describing the association between natural food folate intake and subsequent blood folate concentration. Seven controlled trials and 29 observational studies met the inclusion criteria. For the six studies using microbiologic assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval (CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase in natural food folate intake. Using modeled results, we estimate that a natural food folate intake of ≥450 μg dietary folate equivalents (DFE)/day could achieve the lower bound of an RBC folate concentration (~1050 nmol/L) associated with the lowest risk of a neural tube defect. Natural food folate intake affects blood folate concentration and adequate intakes could help women achieve a RBC folate concentration associated with a risk of 6 neural tube defects/10,000 live births. PMID:25867949

  10. [Folates in the treatment of depression].

    PubMed

    Erbe, S; Pellert, U N

    2014-02-01

    Depression is an important and often recurrent illness. An initial antidepressant trial is effective at achieving remission for about 30 % of patients when prescribed as monotherapy, with the majority of patients returning as partial or non-responders. Suboptimal serum and red blood cell folate levels have been associated with a poorer response to antidepressant therapy, a greater severity of symptoms, later onset of clinical improvement, and overall treatment resistance. This article reviews the evidence for L-methylfolate and folic acid as antidepressive agents in depression and discusses their clinical use. PMID:24519190

  11. Human peptide transporter deficiency: importance of HLA-B in the presentation of TAP-independent EBV antigens.

    PubMed

    de la Salle, H; Houssaint, E; Peyrat, M A; Arnold, D; Salamero, J; Pinczon, D; Stevanovic, S; Bausinger, H; Fricker, D; Gomard, E; Biddison, W; Lehner, P; UytdeHaag, F; Sasportes, M; Donato, L; Rammensee, H G; Cazenave, J P; Hanau, D; Tongio, M M; Bonneville, M

    1997-05-15

    Two siblings with a peptide TAP deficiency were recently described. Despite poor cell surface expression of HLA class I molecules, these patients were not unusually susceptible to viral infections. The majority of the cell surface-expressed class I molecules were HLA-B products as assessed by cytofluorometry and biochemical analysis. Analysis of two peptides eluted from the class I molecules expressed by TAP-deficient EBV B lymphoblastoid cell lines indicated that both were derived from cytosolic proteins and presented by HLA-B molecules. Peripheral alphabeta CD8+ T cells were present and their TCR repertoire was polyclonal. Most of the alphabeta CD8+ T cell clones studied (21 of 22) were nonreactive against cells expressing normal levels of the same HLA alleles as those of the TAP-deficient patients. However, it was possible to isolate one cytotoxic CD8+ alphabeta T cell clone recognizing the EBV protein LMP2 presented by HLA-B molecules on TAP-deficient cells. These observations suggest that in the TAP-deficient patients, CD8+ alphabeta T cells could mature and be recruited in immune responses to mediate HLA class I-restricted cytotoxic defense against viral infections. They also strengthen the physiologic importance of a TAP-independent processing pathway of the LMP2 protein, which was previously shown to contain several other TAP-independent epitopes. PMID:9144467

  12. Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum.

    PubMed

    Roncel, Mercedes; González-Rodríguez, Antonio A; Naranjo, Belén; Bernal-Bayard, Pilar; Lindahl, Anna M; Hervás, Manuel; Navarro, José A; Ortega, José M

    2016-01-01

    Iron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum. TL was used to determine the effects of iron deficiency on photosystem II (PSII) activity. Excitation of iron-replete P. tricornutum cells with single turn-over flashes induced the appearance of TL glow curves with two components with different peaks of temperature and contributions to the total signal intensity: the B band (23°C, 63%), and the AG band (40°C, 37%). Iron limitation did not significantly alter these bands, but induced a decrease of the total TL signal. Far red excitation did not increase the amount of the AG band in iron-limited cells, as observed for iron-replete cells. The effect of iron deficiency on the photosystem I (PSI) activity was also examined by measuring the changes in P700 redox state during illumination. The electron donation to PSI was substantially reduced in iron-deficient cells. This could be related with the important decline on cytochrome c 6 content observed in these cells. Iron deficiency also induced a marked increase in light sensitivity in P. tricornutum cells. A drastic increase in the level of peroxidation of chloroplast lipids was detected in iron-deficient cells even when grown under standard conditions at low light intensity. Illumination with a light intensity of 300 μE m(-2) s(-1) during different time periods caused a dramatic disappearance in TL signal in cells grown under low iron concentration, this treatment not affecting to the signal in iron-replete cells. The results of this work suggest that iron deficiency induces partial blocking of the electron transfer between PSII and PSI, due to a lower concentration of the electron donor cytochrome c 6. This

  13. Iron Deficiency Induces a Partial Inhibition of the Photosynthetic Electron Transport and a High Sensitivity to Light in the Diatom Phaeodactylum tricornutum

    PubMed Central

    Roncel, Mercedes; González-Rodríguez, Antonio A.; Naranjo, Belén; Bernal-Bayard, Pilar; Lindahl, Anna M.; Hervás, Manuel; Navarro, José A.; Ortega, José M.

    2016-01-01

    Iron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum. TL was used to determine the effects of iron deficiency on photosystem II (PSII) activity. Excitation of iron-replete P. tricornutum cells with single turn-over flashes induced the appearance of TL glow curves with two components with different peaks of temperature and contributions to the total signal intensity: the B band (23°C, 63%), and the AG band (40°C, 37%). Iron limitation did not significantly alter these bands, but induced a decrease of the total TL signal. Far red excitation did not increase the amount of the AG band in iron-limited cells, as observed for iron-replete cells. The effect of iron deficiency on the photosystem I (PSI) activity was also examined by measuring the changes in P700 redox state during illumination. The electron donation to PSI was substantially reduced in iron-deficient cells. This could be related with the important decline on cytochrome c6 content observed in these cells. Iron deficiency also induced a marked increase in light sensitivity in P. tricornutum cells. A drastic increase in the level of peroxidation of chloroplast lipids was detected in iron-deficient cells even when grown under standard conditions at low light intensity. Illumination with a light intensity of 300 μE m-2 s-1 during different time periods caused a dramatic disappearance in TL signal in cells grown under low iron concentration, this treatment not affecting to the signal in iron-replete cells. The results of this work suggest that iron deficiency induces partial blocking of the electron transfer between PSII and PSI, due to a lower concentration of the electron donor cytochrome c6. This

  14. Methyl deficient diet aggravates experimental colitis in rats.

    PubMed

    Chen, Min; Peyrin-Biroulet, Laurent; George, Amandine; Coste, Florence; Bressenot, Aude; Bossenmeyer-Pourie, Carine; Alberto, Jean-Marc; Xia, Bing; Namour, Bernard; Guéant, Jean-Louis

    2011-11-01

    Inflammatory bowel diseases (IBD) result from complex interactions between environmental and genetic factors. Low blood levels of vitamin B12 and folate and genetic variants of related target enzymes are associated with IBD risk, in population studies. To investigate the underlying mechanisms, we evaluated the effects of a methyl-deficient diet (MDD, folate, vitamin B12 and choline) in an experimental model of colitis induced by dextran sodium sulphate (DSS), in rat pups from dams subjected to the MDD during gestation and lactation. Four groups were considered (n = 12-16 per group): C DSS(-) (control/DSS(-)), D DSS(-) (deficient/DSS(-)), C DSS(+) (control/DSS(+)) and D DSS(+) (deficient/DSS(+)). Changes in apoptosis, oxidant stress and pro-inflammatory pathways were studied within colonic mucosa. In rat pups, the MDD produced a decreased plasma concentration of vitamin B12 and folate and an increased homocysteine (7.8 ± 0.9 versus 22.6 ± 1.2 μmol/l, P < 0.001). The DSS-induced colitis was dramatically more severe in the D DSS(+) group compared with each other group, with no change in superoxide dismutase and glutathione peroxidase activity, but decreased expression of caspase-3 and Bax, and increased Bcl-2 levels. The mRNA levels of tumour necrosis factor (TNF)-α and protein levels of p38, cytosolic phospolipase A2 and cyclooxygenase 2 were significantly increased in the D DSS(+) pups and were accompanied by a decrease in the protein level of tissue inhibitor of metalloproteinases (TIMP)3, a negative regulator of TNF-α. MDD may cause an overexpression of pro-inflammatory pathways, indicating an aggravating effect of folate and/or vitamin B12 deficiency in experimental IBD. These findings suggest paying attention to vitamin B12 and folate deficits, frequently reported in IBD patients. PMID:21199330

  15. Folate targeted polymeric 'green' nanotherapy for cancer

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeja; Binulal, N. S.; Mony, Ullas; Manzoor, Koyakutty; Nair, Shantikumar; Menon, Deepthy

    2010-07-01

    The concept of 'green' chemotherapy by employing targeted nanoparticle mediated delivery to enhance the efficacy of phytomedicines is reported. Poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating a well known nutraceutical namely, grape seed extract (GSE)—'NanoGSE'—was prepared by a nanoprecipitation technique. The drug-loaded nanoparticles of size ~ 100 nm exhibited high colloidal stability at physiological pH. Molecular receptor targeting of this nanophytomedicine against folate receptor over-expressing cancers was demonstrated in vitro by conjugation with a potential cancer targeting ligand, folic acid (FA). Fluorescence microscopy and flow cytometry data showed highly specific cellular uptake of FA conjugated NanoGSE on folate receptor positive cancer cells. Studies were also conducted to investigate the efficiency of targeted (FA conjugated) versus non-targeted (non-FA conjugated) nanoformulations in causing cancer cell death. The IC50 values were lowered by a factor of ~ 3 for FA-NanoGSE compared to the free drug, indicating substantially enhanced bioavailability to the tumor cells, sparing the normal ones. Receptor targeting of FA-NanoGSE resulted in a significant increase in apoptotic index, which was also quantified by flow cytometry and fluorescence microscopy. This in vitro study provides a basis for the use of nanoparticle mediated delivery of anticancer nutraceuticals to enhance bioavailability and effectively target cancer by a 'green' approach.

  16. Mechanisms of folate losses during processing: diffusion vs. heat degradation.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Maingonnat, Jean-François; Rychlik, Michael; Renard, Catherine M G C

    2014-08-15

    Though folates are sensitive to heat treatments, leaching appears to be a major mechanism involved in folate losses in vegetables during processing. The aim of our study was to study folate diffusivity and degradation from spinach and green beans, in order to determine the proportion of each mechanism involved in folate losses. Folate diffusivity constant, calculated according to Fick's second law (Crank, 1975), was 7.4×10(-12) m(2)/s for spinach and 5.8×10(-10) m(2)/s for green beans, which is the same order of magnitude as for sugars and acids for each vegetable considered. Folate thermal degradation kinetics was not monotonous in spinach and green beans especially at 45 °C and did not follow a first order reaction. The proportion of vitamers changed markedly after thermal treatment, with a better retention of formyl derivatives. For spinach, folate losses were mainly due to diffusion while for green beans thermal degradation seemed to be preponderant. PMID:24679802

  17. Production of folate by bacteria isolated from oat bran.

    PubMed

    Kariluoto, Susanna; Edelmann, Minnamari; Herranen, Mirkka; Lampi, Anna-Maija; Shmelev, Anton; Salovaara, Hannu; Korhola, Matti; Piironen, Vieno

    2010-09-30

    Twenty bacteria isolated from three commercial oat bran products were tested for their folate production capability. The bacteria as well as some reference organisms were grown until early stationary phase on a rich medium (YPD), and the amount of total folate in the separated cell mass and the culture medium (supernatant) was determined by microbiological assay. Folate vitamer distribution was determined for eight bacteria including one isolated from rye flakes. For seven bacteria the effect of temperature and pH on folate production was studied in more detail. Relatively large amount of folate was both produced in the cell biomass (up to 20.8microg/g) and released to the culture medium (up to 0.38microg/g) by studied bacteria. The best producers were characterized as Bacillus subtilis ON4, Chryseobacterium sp. NR7, Janthinobacterium sp. RB4, Pantoea agglomerans ON2, and Pseudomonas sp ON8. The level of folate released in culture medium was the highest for B. subtilis ON5, Chryseobacterium sp. NR7, Curtobacterium sp. ON7, Enterococcus durans ON9, Janthinobacterium sp. RB4, Paenibacillus sp. ON10, Propionibacterium sp. RB9, and Staphylococcus kloosii RB7. Marked differences in the distribution of folate vitamers among the bacterial strains were revealed by the HPLC analysis. The main vitamers were tetrahydrofolate, 5,10-methenyltetrahydrofolate, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate. Increase in the folate content during bacterial growth was accompanied by proportional increase in the 5-methyltetrahydrofolate content and decrease of 5-formyltetrahydrofolate. 10-Formylfolic acid dominated in the culture media of four bacteria, and Janthinobacterium sp. RB4 was also found to excrete 5-methyltetrahydrofolate. Intracellular folate content was higher when the bacteria were grown at 28 degrees C than at 18 degrees C or 37 degrees C and also higher at pH 7 than at pH 5.5. PMID:20708290

  18. Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery.

    PubMed

    Zhang, Yan; Li, Jiashi; Lang, Meidong; Tang, Xiaolin; Li, Lei; Shen, Xizhong

    2011-02-01

    In this paper, folate conjugated poly(ε-caprolactone-co-4-maleate-ε-caprolactone) (P(CL-co-MCL)-folate) was prepared by a carbodiimide coupling reaction, i.e., the vitamin folic acid (FA) was covalently linked to the main chain of the maleate-functionalized polymer, poly(ε-caprolactone-co-4-maleate-ε-caprolactone) (P(CL-co-MCL)). Then the 5-Fluorouracil (5-FU) loaded nanoparticles of P(CL-co-MCL)-folate were achieved by solvent-evaporation method. Their properties were extensively studied by dynamic light scattering (DLS) and scan electron microscopy (SEM). DLS and SEM showed that the nanoparticles were in a well-defined spherical shape with a uniform size distribution. We also investigated the entrapment and in vitro release behavior, which indicated that the release speed of 5-FU could be well controlled and the release half-life period could reach 16.86h, which was 26.4 times longer than that of pure 5-FU. The in vitro targeting test displayed that the 5-FU loaded P(CL-co-MCL)-folate nanoparticles exhibited an enhanced cell inhibition because folate targeting increased the concentration of 5-FU loaded P(CL-co-MCL)-folate nanoparticles in the tumor cells with folate receptor overexpressed. Meanwhile, the tumor inhibition of 5-FU loaded P(CL-co-MCL)-folate nanoparticles was much higher than that of pure 5-FU and that of 5-FU loaded P(CL-co-MCL) nanoparticles. Therefore, P(CL-co-MCL)-folate nanoparticles would be highly beneficial for biomedical and pharmaceutical applications. PMID:21094493

  19. Utilizing the folate receptor for active targeting of cancer nanotherapeutics

    PubMed Central

    Zwicke, Grant L.; Mansoori, G. Ali; Jeffery, Constance J.

    2012-01-01

    The development of specialized nanoparticles for use in the detection and treatment of cancer is increasing. Methods are being proposed and tested that could target treatments more directly to cancer cells, which could lead to higher efficacy and reduced toxicity, possibly even eliminating the adverse effects of damage to the immune system and the loss of quick replicating cells. In this mini-review we focus on recent studies that employ folate nanoconjugates to target the folate receptor. Folate receptors are highly overexpressed on the surface of many tumor types. This expression can be exploited to target imaging molecules and therapeutic compounds directly to cancerous tissues. PMID:23240070

  20. Pemetrexed alters folate phenotype and inflammatory profile in EA.hy 926 cells grown under low-folate conditions

    PubMed Central

    Hammons, Andrea L.; Summers, Carolyn M.; Jochems, Jeanine; Arora, Jasbir S.; Zhang, Suhong; Blair, Ian A.; Whitehead, Alexander S.

    2014-01-01

    Elevated homocysteine is a risk marker for several major human pathologies. Emerging evidence suggests that perturbations of folate/homocysteine metabolism can directly modify production of inflammatory mediators. Pemetrexed acts by inhibiting thymidylate synthetase (TYMS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide formyltransferase (GARFT). EA.hy 926 cells grown under low (“Lo”) and high (“Hi”) folate conditions were treated with pemetrexed. The concentrations of several intracellular folate derivatives were measured using LC-MRM/MS. Lo cells had lower total folate concentrations and a different distribution of the intracellular folate derivatives than Hi cells. Treatment with pemetrexed caused a decrease in individual folate analytes. Microarray analysis showed that several genes were significantly up or down-regulated in pemetrexed treated Lo cells. Several of the significantly up-regulated transcripts were inflammatory. Changes in transcript levels of selected targets, including C3, IL-8, and DHFR, were confirmed by quantitative RT-PCR. C3 and IL-8 transcript levels were increased in pemetrexed-treated Lo cells relative to Lo controls; DHFR transcript levels were decreased. In Lo cells, IL-8 and C3 protein concentrations were increased following pemetrexed treatment. Pemetrexed drug treatment was shown in this study to have effects that lead to an increase in pro-inflammatory mediators in Lo cells. No such changes were observed in Hi cells, suggesting that pemetrexed could not modify the inflammatory profile in the context of cellular folate sufficiency. PMID:22975265

  1. Expression of folate receptors in nasopharyngeal and laryngeal carcinoma and folate receptor-mediated endocytosis by molecular targeted nanomedicine

    PubMed Central

    Xie, M; Zhang, H; Xu, Y; Liu, T; Chen, S; Wang, J; Zhang, T

    2013-01-01

    Immunohistochemistry and an immunofluorescence technique was used to detect folate receptor expression in tissue samples and cell lines of head and neck squamous carcinoma, including 20 tissue samples of nasopharyngeal carcinoma, 16 tissue samples of laryngeal carcinoma, and HNE-1, HNE-2, CNE-1, CNE-2, SUNE-1, 5–8F, and Hep-2 cell lines. Iron staining, electron microscopy, and magnetic resonance imaging were used to observe endocytosis of folate-conjugated cisplatin-loaded magnetic nanoparticles (CDDP-FA-ASA-MNP) in cultured cells and transplanted tumors. As shown by immunohistochemistry, 83.3% (30/36) of the head and neck squamous carcinomas expressed the folate receptor versus none in the control group (0/24). Only the HNE-1 and Hep-2 cell lines expressed the folate receptor, and the other five cell lines did not. Endocytosis of CDDP-FA-ASA-MNP was seen in HNE-1 and Hep-2 cells by iron staining and electron microscopy. A similar result was seen in transplanted tumors in nude mice. Magnetic resonance imaging showed low signal intensity of HNE-1 cells and HNE-1 transplanted tumors on T2-weighted images after uptake of CDDP-FA-ASA-MNP, and this was not seen in CNE-2 transplanted tumors. In conclusion, head and neck squamous carcinoma cell strongly expressed the folate receptor, while normal tissue did not. The folate receptor can mediate endocytosis of folate-conjugated anticancer nanomedicines, and lays the foundation for molecular targeted treatment of cancer. PMID:23874095

  2. The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency Signaling.

    PubMed

    Saenchai, Chorpet; Bouain, Nadia; Kisko, Mushtak; Prom-U-Thai, Chanakan; Doumas, Patrick; Rouached, Hatem

    2016-01-01

    Plants survival depends on their ability to cope with multiple nutrient stresses that often occur simultaneously, such as the limited availability of essential elements inorganic phosphate (Pi), zinc (Zn), and iron (Fe). Previous research has provided information on the genes involved in efforts by plants to maintain homeostasis when a single nutrient (Pi, Zn, or Fe) is depleted. Recent findings on nutritional stress suggest that plant growth capacity is influenced by a complex tripartite interaction between Pi, Zn, and Fe homeostasis. However, despite its importance, how plants integrate multiple nutritional stimuli into complex developmental programs, and which genes are involved in this tripartite (Pi ZnFe) interaction is still not clear. The aim of this study was to examine the physiological and molecular responses of rice (Oriza sativa L.) to a combination of Pi, Zn, and/or Fe deficiency stress conditions. Results showed that Fe deficiency had the most drastic single-nutrient effect on biomass, while the Zn deficiency-effect depended on the presence of Pi in the medium. Interestingly, the observed negative effect of Fe starvation was alleviated by concomitant Pi or PiZn depletion. Members of the OsPHO1 family showed a differential transcriptional regulation in response PiZnFe combinatory stress conditions. Particularly, the transcripts of the OsPHO1;1 sense and its natural antisense cis-NatPHO1;1 showed the highest accumulation under PiZn deficiency. In this condition, the Ospho1;1 mutants showed over-accumulation of Fe in roots compared to wild type plants. These data reveal coordination between pathways involved in Fe transport and PiZn signaling in rice which involves the OsPHO1; 1, and support the hypothesis of a genetic basis for Pi, Zn, and Fe signaling interactions in plants. PMID:27092147

  3. The Involvement of OsPHO1;1 in the Regulation of Iron Transport Through Integration of Phosphate and Zinc Deficiency Signaling

    PubMed Central

    Saenchai, Chorpet; Bouain, Nadia; Kisko, Mushtak; Prom-u-thai, Chanakan; Doumas, Patrick; Rouached, Hatem

    2016-01-01

    Plants survival depends on their ability to cope with multiple nutrient stresses that often occur simultaneously, such as the limited availability of essential elements inorganic phosphate (Pi), zinc (Zn), and iron (Fe). Previous research has provided information on the genes involved in efforts by plants to maintain homeostasis when a single nutrient (Pi, Zn, or Fe) is depleted. Recent findings on nutritional stress suggest that plant growth capacity is influenced by a complex tripartite interaction between Pi, Zn, and Fe homeostasis. However, despite its importance, how plants integrate multiple nutritional stimuli into complex developmental programs, and which genes are involved in this tripartite (Pi ZnFe) interaction is still not clear. The aim of this study was to examine the physiological and molecular responses of rice (Oriza sativa L.) to a combination of Pi, Zn, and/or Fe deficiency stress conditions. Results showed that Fe deficiency had the most drastic single-nutrient effect on biomass, while the Zn deficiency-effect depended on the presence of Pi in the medium. Interestingly, the observed negative effect of Fe starvation was alleviated by concomitant Pi or PiZn depletion. Members of the OsPHO1 family showed a differential transcriptional regulation in response PiZnFe combinatory stress conditions. Particularly, the transcripts of the OsPHO1;1 sense and its natural antisense cis-NatPHO1;1 showed the highest accumulation under PiZn deficiency. In this condition, the Ospho1;1 mutants showed over-accumulation of Fe in roots compared to wild type plants. These data reveal coordination between pathways involved in Fe transport and PiZn signaling in rice which involves the OsPHO1; 1, and support the hypothesis of a genetic basis for Pi, Zn, and Fe signaling interactions in plants. PMID:27092147

  4. Folate Catabolites in Spot Urine as Non-Invasive Biomarkers of Folate Status during Habitual Intake and Folic Acid Supplementation

    PubMed Central

    Niesser, Mareile; Demmelmair, Hans; Weith, Thea; Moretti, Diego; Rauh-Pfeiffer, Astrid; van Lipzig, Marola; Vaes, Wouter; Koletzko, Berthold; Peissner, Wolfgang

    2013-01-01

    Background Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Aim Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Study Design and Methods Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Results Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Conclusion Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics. PMID:23457526

  5. Neural Tube Defects, Folate, and Immune Modulation

    PubMed Central

    Fathe, Kristin; Finnell, Richard H.; Taylor, Stephen M.; Woodruff, Trent M.

    2014-01-01

    Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored. PMID:24078477

  6. Creatine deficiency syndromes.

    PubMed

    Schulze, Andreas

    2003-02-01

    Since the first description of a creatine deficiency syndrome, the guanidinoacetate methyltransferase (GAMT) deficiency, in 1994, the two further suspected creatine deficiency syndromes--the creatine transporter (CrT1) defect and the arginine:glycine amidinotransferase (AGAT) deficiency were disclosed. GAMT and AGAT deficiency have autosomal-recessive traits, whereas the CrT1 defect is a X-linked disorder. All patients reveal developmental delay/regression, mental retardation, and severe disturbance of their expressive and cognitive speech. The common feature of all creatine deficiency syndromes is the severe depletion of creatine/phosphocreatine in the brain. Only the GAMT deficiency is in addition characterized by accumulation of guanidinoacetic acid in brain and body fluids. Guanidinoacetic acid seems to be responsible for intractable seizures and the movement disorder, both exclusively found in GAMT deficiency. Treatment with oral creatine supplementation is in part successful in GAMT and AGAT deficiency, whereas in CrT1 defect it is not able to replenish creatine in the brain. Treatment of combined arginine restriction and ornithine substitution in GAMT deficiency is capable to decrease guanidinoacetic acid permanently and improves the clinical outcome. The lack of the creatine/phosphocreatine signal in the patient's brain by means of in vivo proton magnetic resonance spectroscopy is the common finding and the diagnostic clue in all three diseases. In AGAT deficiency guanidinoacetic acid is decreased, whereas creatine in blood was found to be normal. On the other hand the CrT1 defect is characterized by an increased concentration of creatine in blood and urine whereas guanidinoacetic acid concentration is normal. The increasing number of patients detected very recently suffering from a creatine deficiency syndrome and the unfavorable outcome highlights the need of further attempts in early recognition of affected individuals and in optimizing its treatment

  7. Association between folate status and cervical intraepithelial neoplasia

    PubMed Central

    Zhao, W; Hao, M; Wang, Y; Feng, N; Wang, Z; Wang, W; Wang, J; Ding, L

    2016-01-01

    Background/Objectives: To investigate the effect of folate status on cervical intraepithelial neoplasia (CIN) progression and its relationship with high-risk human papillomavirus (hrHPV). Subjects/Methods: We evaluated 20 000 sexually active women aged <65 years in Yangqu County by using a questionnaire; the subjects were also screened using the ThinPrep cytologic test (TCT). Patients with abnormal TCT results (other than glandular cell abnormalities) who were willing to provide informed consent were further diagnosed using colposcopy and histopathological examination. We investigated 247 cases of low-grade cervical squamous intraepithelial lesions (LSIL), 125 cases of high-grade cervical squamous intraepithelial lesions (HSIL) and 877 controls. A 24-item food frequency questionnaire was filled out by the investigator to estimate the consumption of dietary folate. Positivity for hrHPV from residual exfoliated cervical cells was tested; serum folate was also measured. Results: The hrHPV infection rate in HSIL patients (77.6%) was higher than that in LSIL (33.2%) and control (32.0%) patients. Dietary folate intakes in controls, LSIL and HSIL were 306.9±176.6, 321.8±168.0 and 314.7±193.8 μg/kcal, respectively. The levels of serum folate in controls, LSIL and HSIL were 18.2±7.9, 15.9±7.1 and 14.3±7.5 nmol/l, respectively. Increased CIN correlated with higher rates of hrHPV infection and lower levels of serum folate. Conclusions: Low levels of serum folate may increase the risk of CIN progression. Furthermore, potential synergy may exist between low serum folate levels and hrHPV infection to promote CIN development. PMID:27026426

  8. Cobalamin inactivation by nitrous oxide produces severe neurological impairment in fruit bats: protection by methionine and aggravation by folates

    SciTech Connect

    van der Westhuyzen, J.; Fernandes-Costa, F.; Metz, J.

    1982-11-01

    Nitrous oxide, which inactivates cobalamin when administered to fruit bats, results in severe neurological impairment leading to ataxia, paralysis and death. This occurs after about 6 weeks in animals depleted of cobalamin by dietary restriction, and after about 10 weeks in cobalamin replete bats. Supplementation of the diet with pteroylglutamic acid caused acceleration of the neurological impairment--the first unequivocal demonstration of aggravation of the neurological lesion in cobalamin deficiency by pteroylglutamic acid. The administration of formyltetrahydropteroylglutamic acid produced similar aggravation of the neurological lesion. Supplementation of the diet with methionine protected the bats from neurological impairment, but failed to prevent death. Methionine supplementation protected against the exacerbating effect of folate, preventing the development of neurological changes. These findings lend support to the hypothesis that the neurological lesion in cobalamin deficiency may be related to a deficiency in the methyl donor S-adenosylmethionine which follows diminished synthesis of methionine.

  9. Cytotoxicity of momordin-folate conjugates in cultured human cells.

    PubMed

    Leamon, C P; Low, P S

    1992-12-15

    We have shown previously that macromolecules can be nondestructively delivered into cultured cells via folate receptor-mediated endocytosis if the macromolecules are conjugated to folic acid prior to addition to receptor-bearing cells (Leamon, C.P., and Low, P. S. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 5572-5576). Although an intracellular destination of the folate-linked proteins could be easily documented, the spatial resolution of the earlier data was insufficient to evaluate whether any endocytosed material was delivered into the cytosol. To resolve this issue, a folate-toxin conjugate was constructed using the impermeable ribosome-inactivating protein, momordin. Diminution of [3H]leucine incorporation into newly synthesized protein was then employed as a quantitative measure of the entry of the toxin into the cytosol. In studies with both HeLa and KB cells, cellular protein synthesis was found to be inhibited in a time- and concentration-dependent manner by the momordin-folate conjugate, but not by the underivatized toxin. IC50 values centered around 10(-9) M for the folate-linked samples. These observations provide direct evidence that folate conjugates not only reach the cytosol, but do so in a functionally active form. PMID:1460001

  10. Assessment of pyridoxine and folate intake in migraine patients

    PubMed Central

    Sadeghi, Omid; Maghsoudi, Zahra; Khorvash, Fariborz; Ghiasvand, Reza; Askari, Gholamreza

    2016-01-01

    Background: Migraine is a highly prevalent disorder worldwide. It affects 10–20% of the population during their lifetime. Recent studies have indicated that supplementation with folate and pyridoxine improves migraine symptoms. This study was undertaken to evaluate dietary intake of folate and pyridoxine in migraine patients and assessed their association with the frequency of migraine attacks. Materials and Methods: This is a case–control study performed on 124 migraine patients and 130 non-migraine subjects. Individuals’ common dietary intake was determined by using a valid semi-quantitative 168-item food frequency questionnaire (FFQ). Data had been analyzed using independent t-test using SPSS software (version 18). Results: In this study, we found that migraine patients had lower intake of dietary folate compared with control group, but energy and pyridoxine intake were not different between the two groups. Further analysis among men and women revealed no statistically significant changes in these relationships. In addition, we found no significant association between dietary intake of pyridoxine and folate with the frequency of migraine attacks. Conclusion: Migraine patients had lower dietary intake of folate, compared with non-migraine group subjects. There was no significant association between folate and pyridoxine intake with the frequency of migraine attacks. Further studies are needed to confirm our findings. PMID:27110544

  11. Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma.

    PubMed

    Motoyama, Keiichi; Onodera, Risako; Tanaka, Nao; Kameyama, Kazuhisa; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

    2015-01-01

    Melanoma is a life-threatening disorder and its incidence is increasing gradually. Despite the numerous treatment approaches, conventional systemic chemotherapy has not reduced the mortality rate among melanoma patients, probably due to the induction of toxicity to normal tissues. Recently, we have developed folate-conjugated methyl-β-cyclodextrin (FA-M-β-CyD) and clarified its potential as a new antitumor agent involved in autophagic cell death. However, it remains uncertain whether FA-M-β-CyD exerts anticancer effects against melanomas. Therefore, in this study, we investigated the effects of FA-M-β-CyD on the folate receptor-α (FR-α)-expressing melanoma cell-selective cytotoxic effect. FA-M-β-CyD showed cytotoxic effects in Ihara cells, a human melanoma cell line expressing FR-α. In sharp contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered Ihara cells [FR-α(+)] through FR-α-mediated endocytosis. Additionally, FA-M-β-CyD elicited the formation of autophagosomes in Ihara cells. Notably, FA-M-β-CyD suppressed melanoma growth in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double deficient mice bearing Ihara cells. Therefore, these results suggest that FA-M-β-CyD could be utilized as a potent anticancer agent for melanoma chemotherapy by regulating autophagy. PMID:25757918

  12. The epidemiology of global micronutrient deficiencies.

    PubMed

    Bailey, Regan L; West, Keith P; Black, Robert E

    2015-01-01

    Micronutrients are essential to sustain life and for optimal physiological function. Widespread global micronutrient deficiencies (MNDs) exist, with pregnant women and their children under 5 years at the highest risk. Iron, iodine, folate, vitamin A, and zinc deficiencies are the most widespread MNDs, and all these MNDs are common contributors to poor growth, intellectual impairments, perinatal complications, and increased risk of morbidity and mortality. Iron deficiency is the most common MND worldwide and leads to microcytic anemia, decreased capacity for work, as well as impaired immune and endocrine function. Iodine deficiency disorder is also widespread and results in goiter, mental retardation, or reduced cognitive function. Adequate zinc is necessary for optimal immune function, and deficiency is associated with an increased incidence of diarrhea and acute respiratory infections, major causes of death in those <5 years of age. Folic acid taken in early pregnancy can prevent neural tube defects. Folate is essential for DNA synthesis and repair, and deficiency results in macrocytic anemia. Vitamin A deficiency is the leading cause of blindness worldwide and also impairs immune function and cell differentiation. Single MNDs rarely occur alone; often, multiple MNDs coexist. The long-term consequences of MNDs are not only seen at the individual level but also have deleterious impacts on the economic development and human capital at the country level. Perhaps of greatest concern is the cycle of MNDs that persists over generations and the intergenerational consequences of MNDs that we are only beginning to understand. Prevention of MNDs is critical and traditionally has been accomplished through supplementation, fortification, and food-based approaches including diversification. It is widely accepted that intervention in the first 1,000 days is critical to break the cycle of malnutrition; however, a coordinated, sustainable commitment to scaling up nutrition at the

  13. An unusual role of folate in the self-assembly of heparin-folate conjugates into nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Jianquan; Ma, Daoshuang; Lu, Qian; Wu, Shaoxiong; Lee, Gee Young; Lane, Lucas A.; Li, Bin; Quan, Li; Wang, Yiqing; Nie, Shuming

    2015-09-01

    Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging.Tumor targeting agents including antibodies, peptides, and small molecules, are often used to improve the delivery efficiency of nanoparticles. Despite numerous studies investigating the abilities of targeting agents to increase the accumulation of nanosized therapeutics within diseased tissues, little attention has been focused on how these ligands can affect the self-assembly of the nanoparticle's modified polymer constituents upon chemical conjugation. Here we present an actively tumor targeted nanoparticle constructed via the self-assembly of a folate modified heparin. Folate conjugation unexpectedly allowed the self-assembly of heparin, where a majority of the folate molecules (>80%) resided inside the core of the nanoparticle. The folate-heparin nanoparticles could also physically encapsulate lipophilic fluorescent dyes, enabling the use of the constructs as activatable fluorescent probes for targeted in vivo tumor imaging. Electronic supplementary information (ESI) available: NMR spectra and fluorescent images of HF-488 with cancer

  14. Neural Tube Defect Induction by Fumonisin B1 in LM/Bc Mice Fed Folate Deficient or Folate Replete Diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides and F. proliferatum. FB1 is found in corn-based foods and evidence suggests that it is a risk factor for neural tube defects (NTD). The mechanism(s) underlying NTD induction by FB1 in the sensitive LM/Bc mouse model is not well...

  15. Overview of a roundtable on NHANES monitoring of biomarkers of folate and vitamin B-12 status: measurement procedure issues123456

    PubMed Central

    Johnson, Clifford L

    2011-01-01

    A roundtable dialogue to discuss “NHANES Monitoring of Biomarkers of Folate and Vitamin B-12 Status” took place in July 2010. This article provides an overview of the meeting and this supplement issue. Although the focus of the roundtable dialogue was on the measurement of folate and vitamin B-12 status biomarkers in NHANES, this article also describes the relevance and importance of these issues for clinical and research laboratories. The roundtable identified the microbiological assay (MA) as the gold standard for measurement of serum and red blood cell folate concentrations. The roundtable noted that differences in results between the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA) that NHANES 1991–1994 and 1999–2006 used and the MA that NHANES 2007–2010 used will require adjustment equations to evaluate time trends. The roundtable found that the close agreement between the serum results for the MA and liquid chromatography–tandem mass spectrometry (LC-MS/MS) procedures supported the conversion to LC-MS/MS for serum folate in future NHANES. The roundtable recognized the uncertainty about whether subclinical vitamin B-12 deficiency is a public health concern but encouraged reinstatement of at least one circulating vitamin B-12 measure and one functional vitamin B-12 status measure in future NHANES. The use of serum vitamin B-12 and plasma methylmalonic acid would provide continuity with past NHANES. The roundtable supported the continued use of the National Institute of Standards and Technology (NIST) reference materials in NHANES biomarker analyses and the further development of additional reference materials by the NIST. PMID:21593504

  16. Transport to cell surface of intestinal sucrase-isomaltase is blocked in the Golgi apparatus in a patient with congenital sucrase-isomaltase deficiency.

    PubMed Central

    Hauri, H P; Roth, J; Sterchi, E E; Lentze, M J

    1985-01-01

    A case of congenital sucrase-isomaltase deficiency in man was investigated. An intestinal biopsy sample from a 5-year-old girl lacked sucrase but possessed low residual isomaltase activity. Immunoelectron microscopy with monoclonal antibodies to sucrase-isomaltase in biopsy samples from healthy subjects revealed that sucrase-isomaltase was confined predominantly to the microvillus membrane of enterocytes and there was minimal labeling of the Golgi apparatus. In the patient immunoreactive sucrase-isomaltase was found almost exclusively in about three trans-Golgi cisternae and associated vesicular structures, while no specific labeling was associated with the microvillus membrane. Immunoprecipitation experiments with iodinated mucosal homogenates and a mixture of four monoclonal antibodies to sucrase-isomaltase revealed absence of enzyme subunits in the patients but presence of a Mr 210,000 protein that was also expressed in normal control biopsy specimens. This protein presumably is the high-mannose precursor of sucrase-isomaltase. Additional proteins of Mr 160,000-200,000 found in the patient but not in normal subjects might correspond to the crossreacting material found in the Golgi apparatus of the patient. Overall, the findings suggest that in the patient sucrase-isomaltase is synthesized and transported to the Golgi apparatus, where further transport is interrupted. The data imply that signals in sucrase-isomaltase that mediate its transfer from the endoplasmic reticulum to the Golgi apparatus differ from those mediating its transport from the Golgi apparatus to the cell surface. Images PMID:3925457

  17. Multiple Viral Ligands Naturally Presented by Different Class I Molecules in Transporter Antigen Processing-Deficient Vaccinia Virus-Infected Cells

    PubMed Central

    Lorente, Elena; Infantes, Susana; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Vilches, Carlos; Lemonnier, François A.; Admon, Arie

    2012-01-01

    The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease. PMID:22031944

  18. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M

    2013-01-01

    It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-13C3]heptanoate was examined in the normal mouse brain and in G1D by 13C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in 13C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and 13C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752

  19. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain.

    PubMed

    Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M

    2013-02-01

    It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-(13)C(3)]heptanoate was examined in the normal mouse brain and in G1D by (13)C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in (13)C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and (13)C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752

  20. Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations.

    PubMed

    Ivanov, Alexander G; Hendrickson, Luke; Krol, Marianna; Selstam, Eva; Oquist, Gunnar; Hurry, Vaughan; Huner, Norman P A

    2006-08-01

    Compared with wild type, the dgd1 mutant of Arabidopsis thaliana exhibited a lower amount of PSI-related Chl-protein complexes and lower abundance of the PSI-associated polypeptides, PsaA, PsaB, PsaC, PsaL and PsaH, with no changes in the levels of Lhca1-4. Functionally, the dgd1 mutant exhibited a significantly lower light-dependent, steady-state oxidation level of P700 (P700(+)) in vivo, a higher intersystem electron pool size, restricted linear electron transport and a higher rate of reduction of P700(+) in the dark, indicating an increased capacity for PSI cyclic electron transfer compared with the wild type. Concomitantly, the dgd1 mutant exhibited a higher sensitivity to and incomplete recovery of photoinhibition of PSI. Furthermore, dgd1 exhibited a lower capacity to undergo state transitions compared with the wild type, which was associated with a higher reduction state of the plastoquinone (PQ) pool. We conclude that digalactosyl-diacylglycerol (DGDG) deficiency results in PSI acceptor-side limitations that alter the flux of electrons through the photosynthetic electron chain and impair the regulation of distribution of excitation energy between the photosystems. These results are discussed in terms of thylakoid membrane domain reorganization in response to DGDG deficiency in A. thaliana. PMID:16854937

  1. Intracellular transport of MHC class II and associated invariant chain in antigen presenting cells from AP-3-deficient mocha mice.

    PubMed

    Sevilla, L M; Richter, S S; Miller, J

    2001-06-15

    MHC class II-restricted antigen presentation requires trafficking of newly synthesized class II-invariant chain complexes from the trans-Golgi network to endosomal, peptide-loading compartments. This transport is mediated by dileucine-like motifs within the cytosolic tail of the invariant chain. Although these signals have been well characterized, the cytosolic proteins that interact with these dileucine signals and mediate Golgi sorting and endosomal transport have not been identified. Recently, an adaptor complex, AP-3, has been identified that interacts with dileucine motifs and mediates endosomal/lysosomal transport in yeast, Drosophila, and mammals. In this report, we have assessed class II-invariant chain trafficking in a strain of mice (mocha) which lacks expression of AP-3. Our studies demonstrate that the lack of AP-3 does not affect the kinetics of invariant chain degradation, the route of class II-invariant chain transport, or the rate and extent of class II-peptide binding as assessed by the generation of SDS-stable dimers. The possible role of other known or unknown adaptor complexes in class II-invariant chain transport is discussed. PMID:11520080

  2. Iron deficiency anemia

    PubMed Central

    Naigamwalla, Dinaz Z.; Webb, Jinelle A.; Giger, Urs

    2012-01-01

    Iron is essential to virtually all living organisms and is integral to multiple metabolic functions. The most important function is oxygen transport in hemoglobin. Iron deficiency anemia in dogs and cats is usually caused by chronic blood loss and can be discovered incidentally as animals may have adapted to the anemia. Severe iron deficiency is characterized by a microcytic, hypochromic, potentially severe anemia with a variable regenerative response. Iron metabolism and homeostasis will be reviewed, followed by a discussion of diagnostic testing and therapeutic recommendations for dogs and cats with iron deficiency anemia. PMID:22942439

  3. Identification and measurement of the folates in sheep liver

    PubMed Central

    Osborne-White, William S.; Smith, Richard M.

    1973-01-01

    1. Methods are described for the extraction, separation by ion-exchange chromatography and estimation by microbiological assay of the folates in sheep liver. 2. Injection of [2-14C]-pteroylglutamate into a sheep fed on a stock diet led to extensive labelling of chromatographically separable liver folates. About 12% of the label in the liver could not be extracted by the method used. 3. Liver folates were examined in five ewes fed on restricted amounts of a diet of wheaten hay-chaff and gluten and injected weekly with vitamin B12. Chromatographic separation was followed by microbiological assay with Lactobacillus casei, Streptococcus faecalis R. and Pediococcus cerevisiae both before and after treatment of fractions with conjugase (γ-glutamylcarboxypeptidase). Evidence was obtained that the folates present were predominantly polyglutamate forms of tetrahydropteroylglutamate, 5-methyltetrahydropteroylglutamate and 5- (and 10-) formyltetrahydropteroylglutamates. Differences in the responses of the assay organisms permitted quantitative distinction between these three main classes of folates. 4. Methyltetrahydrofolates were eluted in seven successive peaks that were separated by constant increments in the logarithm of eluant [Pi]. A similar relationship existed for seven successive peaks of tetrahydrofolate and may also have existed for each of the two series of formyltetrahydrofolates. 5. Based on these and other observations it is proposed that sheep liver folates consist predominantly of the mono- to hepta-glutamates of each of the reduced pteroates identified. The methods employed allowed quantitative determinations to be made of most of the folates present. The predominant forms were hexaglutamates. 6. Four components active for L. casei were detected that could not be identified. Three of them were polyglutamates. PMID:4204321

  4. Biomarkers of folate status in NHANES: a roundtable summary123456

    PubMed Central

    Pfeiffer, Christine M; Phinney, Karen W; Fazili, Zia; Lacher, David A; Bailey, Regan L; Blackmore, Sheena; Bock, Jay L; Brody, Lawrence C; Carmel, Ralph; Curtin, L Randy; Durazo-Arvizu, Ramón A; Eckfeldt, John H; Green, Ralph; Gregory, Jesse F; Hoofnagle, Andrew N; Jacobsen, Donald W; Jacques, Paul F; Molloy, Anne M; Massaro, Joseph; Mills, James L; Nexo, Ebba; Rader, Jeanne I; Selhub, Jacob; Sempos, Christopher; Shane, Barry; Stabler, Sally; Stover, Patrick; Tamura, Tsunenobu; Tedstone, Alison; Thorpe, Susan J; Johnson, Clifford L; Picciano, Mary Frances

    2011-01-01

    A roundtable to discuss the measurement of folate status biomarkers in NHANES took place in July 2010. NHANES has measured serum folate since 1974 and red blood cell (RBC) folate since 1978 with the use of several different measurement procedures. Data on serum 5-methyltetrahydrofolate (5MTHF) and folic acid (FA) concentrations in persons aged ≥60 y are available in NHANES 1999–2002. The roundtable reviewed data that showed that folate concentrations from the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA; used in NHANES 1991–1994 and NHANES 1999–2006) were, on average, 29% lower for serum and 45% lower for RBC than were those from the microbiological assay (MA), which was used in NHANES 2007–2010. Roundtable experts agreed that these differences required a data adjustment for time-trend analyses. The roundtable reviewed the possible use of an isotope-dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) measurement procedure for future NHANES and agreed that the close agreement between the MA and LC-MS/MS results for serum folate supported conversion to the LC-MS/MS procedure. However, for RBC folate, the MA gave 25% higher concentrations than did the LC-MS/MS procedure. The roundtable agreed that the use of the LC-MS/MS procedure to measure RBC folate is premature at this time. The roundtable reviewed the reference materials available or under development at the National Institute of Standards and Technology and recognized the challenges related to, and the scientific need for, these materials. They noted the need for a commutability study for the available reference materials for serum 5MTHF and FA. PMID:21593502

  5. Prospects in Folate Receptor-Targeted Radionuclide Therapy

    PubMed Central

    Müller, Cristina; Schibli, Roger

    2013-01-01

    Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD < 10−9 M) the vitamin folic acid has emerged as an almost ideal targeting agent. Therefore, a variety of folic acid radioconjugates for nuclear imaging have been developed. However, in spite of the large number of cancer patients who could benefit of a folate-based radionuclide therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic

  6. Vitamin B12 and Folate Test

    MedlinePlus

    ... a person with signs and symptoms of significant malnutrition or dietary malabsorption. This may include people with, ... deficiency, such as people with a history of malnutrition or a condition related to malabsorption . These tests ...

  7. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles.

    PubMed

    Kantheti, P; Qiao, X; Diaz, M E; Peden, A A; Meyer, G E; Carskadon, S L; Kapfhamer, D; Sufalko, D; Robinson, M S; Noebels, J L; Burmeister, M

    1998-07-01

    The mouse mutant mocha, a model for the Hermansky-Pudlak storage pool deficiency syndrome, is characterized by defective platelets, coat and eye color dilution, lysosomal abnormalities, inner ear degeneration, and neurological deficits. Here, we show that mocha is a null allele of the delta subunit of the adaptor-like protein complex AP-3, which is associated with coated vesicles budding from the trans-Golgi network, and that AP-3 is missing in mocha tissues. In mocha brain, the ZnT-3 transporter is reduced, resulting in a lack of zinc-associated Timm historeactivity in hippocampal mossy fibers. Our results demonstrate that the AP-3 complex is responsible for cargo selection to lysosome-related organelles such as melanosomes and platelet dense granules as well as to neurotransmitter vesicles. PMID:9697856

  8. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice.

    PubMed

    Yonekawa, Y; Harada, A; Okada, Y; Funakoshi, T; Kanai, Y; Takei, Y; Terada, S; Noda, T; Hirokawa, N

    1998-04-20

    The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron- specific microtubule plus end-directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769-780). To elucidate the function of KIF1A in vivo, we disrupted the KIF1A gene in mice. KIF1A mutants died mostly within a day after birth showing motor and sensory disturbances. In the nervous systems of these mutants, the transport of synaptic vesicle precursors showed a specific and significant decrease. Consequently, synaptic vesicle density decreased dramatically, and clusters of clear small vesicles accumulated in the cell bodies. Furthermore, marked neuronal degeneration and death occurred both in KIF1A mutant mice and in cultures of mutant neurons. The neuronal death in cultures was blocked by coculture with wild-type neurons or exposure to a low concentration of glutamate. These results in cultures suggested that the mutant neurons might not sufficiently receive afferent stimulation, such as neuronal contacts or neurotransmission, resulting in cell death. Thus, our results demonstrate that KIF1A transports a synaptic vesicle precursor and that KIF1A-mediated axonal transport plays a critical role in viability, maintenance, and function of neurons, particularly mature neurons. PMID:9548721

  9. [Methylenetetrahydrofolate reductase deficiency-induced schizophrenia in a school-age boy].

    PubMed

    Wang, Qiao; Liu, Jing; Liu, Yu-Peng; Li, Xi-Yuan; Ma, Yan-Yan; Wu, Tong-Fei; Ding, Yuan; Song, Jin-Qing; Wang, Yu-Jie; Yang, Yan-Ling

    2014-01-01

    Methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare autosomal recessive disorder. It is known that MTHFR deficiency may result in hyperhomocysteinemia, but MTHFR deficiency-induced schizophrenia has been rarely reported. Here we present the clinical course, biochemical and genetic characteristics of schizophrenia resulted from MTHFR deficiency in a school-age boy. He was 13 years old. He was admitted with a two-year history of fear, auditory hallucination, learning difficulty, sleeping problems, irascibility, drowsing and giggling. At admission, he had significantly elevated plasma and urine levels of total homocysteine, significantly decreased levels of folate in serum and cerebrospinal fluid, and a normal blood concentration of methionine. Further DNA sequencing analysis showed 665C>T homozygous mutations in the MTHFR gene. The patient was diagnosed with MTHFR deficiency-associated schizophrenia and treatment with calcium folinate, vitamin B12, vitamin B6, and betaine was initiated. After the treatment for 1 week, his plasma and urine levels of homocysteine were decreased to a normal range and the clinical symptoms were significantly improved. After 3 months of treatment, the patient returned to school. He is now living with normal school life. In summary, children with late-onset MTHFR deficiency and secondary cerebral folate deficiency may lead to schizophrenia. This rare condition can be early diagnosed through analyses of blood and urine total homocysteine, amino acids in blood and folate in blood and cerebral fluid and successfully treated with folinic acid, vitamin B6, vitamin B12 and betaine. PMID:24461181

  10. A Program of Nutritional Education in Schools Reduced the Prevalence of Iron Deficiency in Students

    PubMed Central

    García-Casal, María Nieves; Landaeta-Jiménez, Maritza; Puche, Rafael; Leets, Irene; Carvajal, Zoila; Patiño, Elijú; Ibarra, Carlos

    2011-01-01

    The objective was to determine the prevalence of iron, folates and retinol deficiencies in school children and to evaluate the changes after an intervention of nutritional education. The project was developed in 17 schools. The sample included 1,301 children (678 males and 623 females). A subsample of 480 individuals, was randomly selected for drawing blood for biochemical determinations before and after the intervention of nutritional education, which included in each school: written pre and post-intervention tests, 6 workshops, 2 participative talks, 5 game activities, 1 cooking course and 1 recipe contest. Anthropometrical and biochemical determinations included weight, height, body-mass index, nutritional status, hematocrit, serum ferritin, retinol and folate concentrations. There was high prevalence of iron (25%), folates (75%) and vitamin A (43%) deficiencies in school children, with a low consumption of fruit and vegetables, high consumption of soft drinks and snacks and almost no physical activity. The nutritional education intervention produced a significant reduction in iron deficiency prevalence (25 to 14%), and showed no effect on vitamin A and folates deficiencies. There was a slight improvement in nutritional status. This study shows, through biochemical determinations, that nutritional education initiatives and programs have an impact improving nutritional health in school children. PMID:21547083

  11. Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice.

    PubMed

    Stoffel, Wilhelm; Körner, Rafael; Wachtmann, Dagmar; Keller, Bernhard U

    2004-09-28

    The high affinity, Na(+)-dependent, electrogenic glial L-glutamate transporters GLAST1 and GLT1, and two neuronal EAAC1 and EAAT4, regulate the neurotransmitter concentration in excitatory synapses of the central nervous system. We dissected the function of the individual transporters in the monogenic null allelic mouse lines, glast1(-/-) and eaac1(-/-), and the derived double mutant glast(-/-)eaac1(-/-). Unexpectedly, the biochemical analysis and the behavioral phenotypes of these null allelic mouse lines were inconspicuous. Inhibition studies of the Na(+)-dependent glutamate transport by plasma membrane vesicles and by isolated astrocytes of wt and glast1(-/-) mouse brains indicated the pivotal compensatory role of GLT1 in the absence particularly of GLAST1 and GLAST1 and EAAC1 mutant mice. In electrophysiological studies, the decay rate of excitatory postsynaptic currents (EPSCs) of Purkinje cells (PC) after selective activation of parallel and climbing fibers proved to be similar in wt and eaac1(-/-), but was significantly prolonged in glast1(-/-) PCs. Bath application of the glutamate uptake blocker SYM2081 prolonged EPSC decay profiles in both wt and double mutant glast1(-/-)eaac1(-/-) PCs by 286% and 229%, respectively, indicating a prominent role of compensatory glutamate transport in shaping glast1(-/-)eaac1(-/-) EPSCs. PMID:15363892

  12. Biocompatibility of folate-modified chitosan nanoparticles

    PubMed Central

    Chakraborty, Subhankari Prasad; Sahu, Sumanta Kumar; Pramanik, Panchanan; Roy, Somenath

    2012-01-01

    Objective To evaluate the acute toxicity of carboxymethyl chitosan-2, 2′ ethylenedioxy bis-ethylamine-folate (CMC-EDBE-FA) and as well as possible effect on microbial growth and in vitro cell cyto-toxicity. Methods CMC-EDBE-FA was prepared on basis of carboxymethyl chitosan tagged with folic acid by covalently linkage through 2, 2′ ethylenedioxy bis-ethylamine. In vivo acute toxicity, in vitro cyto-toxicity and antimicrobial activity of CMC-EDBE-FA nanoparticle were determined. Results Vancomycin exhibited the antibacterial activity against vancomycin sensitive Staphylococcus aureus, but CMC-EDBE-FA nanoparticle did not give any antibacterial activity as evidenced by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), disc agar diffusion (DAD) and killing kinetic assay. Further, the CMC-EDBE-FA nanoparticle showed no signs of in vivo acute toxicity up to a dose level of 1 000 mg/kg p.o., and as well as in vitro cyto-toxicity up to 250 µg/mL. Conclusions These findings suggest that CMC-EDBE-FA nanoparticle is expected to be safe for biomedical applications. PMID:23569900

  13. Synthesis of folate receptor-targeted photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fang, Yanyan; Wang, Xiaopu; Zou, Qianli; Zhao, Yuxia; Wu, Feipeng

    2014-11-01

    A series of amphiphilic benzylidene cycloalkanes ketone photosensitizers C1-C4 with or without folate receptor-targeted agent were designed and synthesized. Their photophysical properties and in vitro photodynamic therapy (PDT) effects were studied. The results showed that all compounds exhibited appropriate lipid-water partition coefficients and high reactive oxygen yields. The introduction of the folate receptor-targeted agent had no obvious influence on the basic photophysical & photochemical properties of C2 and C4 compared to those of their corresponding prototype compounds (C1 and C3). In vitro studies were carried out using MCF-7 cells (FR+), Hela cells (FR+) and A549 cells (FR-), which represented different levels of folate receptor (FR) expression. All of C1-C4 showed low dark toxicity and superior PDT effects compared with the clinical drug PSD-007 (a mixture of porphyrins). What's more, folate receptor-targeted photosensitizers (C2 and C4) achieved higher accumulation and more excellent PDT effects in MCF-7 cells (FR+) and Hela cells (FR+) than photosensitizers (C1 and C3) without folate receptor-targeted agent and PSD-007. The photocytotoxicity of these photosensitizers showed no obvious differences in A549 cells (FR-).

  14. N-acetyltransferase 2 activity and folate levels

    PubMed Central

    Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.

    2010-01-01

    Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120

  15. Cerebrospinal fluid folate and cobalamin levels in febrile convulsion.

    PubMed

    Osifo, B O; Lukanmbi, F A; Familusi, J B

    1985-05-01

    Folate and cobalamin parameters were studied in the serum and cerebrospinal fluid of 40 febrile paediatric patients. Eighteen of these children were in a state of febrile convulsion while the remaining 22 were non-convulsing. The serum folate concentration of all the patients was higher than that of the control group but the highest value was found in the convulsing children. There was no significant difference in the CSF folate levels between the two groups of patients. The serum cobalamin levels of the patients were significantly lower than those of the control children and the lowest mean was observed in the convulsing state. On the other hand, there was no difference in the CSF cobalamin between the convulsing and non-convulsing children. These results confirm that there is an effective blood-brain barrier system for folate even when serum folate levels are higher than normal. There is also a definite decrease in serum cobalamin during pyrexia but this decrease is more apparent in the convulsing state. The role of cobalamin metabolism in convulsion is not clear. PMID:4009203

  16. Peptide Anchor for Folate-Targeted Liposomal Delivery.

    PubMed

    Nogueira, Eugénia; Mangialavori, Irene C; Loureiro, Ana; Azoia, Nuno G; Sárria, Marisa P; Nogueira, Patrícia; Freitas, Jaime; Härmark, Johan; Shimanovich, Ulyana; Rollett, Alexandra; Lacroix, Ghislaine; Bernardes, Gonçalo J L; Guebitz, Georg; Hebert, Hans; Moreira, Alexandra; Carmo, Alexandre M; Rossi, Juan Pablo F C; Gomes, Andreia C; Preto, Ana; Cavaco-Paulo, Artur

    2015-09-14

    Specific folate receptors are abundantly overexpressed in chronically activated macrophages and in most cancer cells. Directed folate receptor targeting using liposomes is usually achieved using folate linked to a phospholipid or cholesterol anchor. This link is formed using a large spacer like polyethylene glycol. Here, we report an innovative strategy for targeted liposome delivery that uses a hydrophobic fragment of surfactant protein D linked to folate. Our proposed spacer is a small 4 amino acid residue linker. The peptide conjugate inserts deeply into the lipid bilayer without affecting liposomal integrity, with high stability and specificity. To compare the drug delivery potential of both liposomal targeting systems, we encapsulated the nuclear dye Hoechst 34580. The eventual increase in blue fluorescence would only be detectable upon liposome disruption, leading to specific binding of this dye to DNA. Our delivery system was proven to be more efficient (2-fold) in Caco-2 cells than classic systems where the folate moiety is linked to liposomes by polyethylene glycol. PMID:26241560

  17. Biomarkers of Nutrition for Development—Folate Review12345

    PubMed Central

    Bailey, Lynn B; Stover, Patrick J; McNulty, Helene; Fenech, Michael F; Gregory, Jesse F; Mills, James L; Pfeiffer, Christine M; Fazili, Zia; Zhang, Mindy; Ueland, Per M; Molloy, Anne M; Caudill, Marie A; Shane, Barry; Berry, Robert J; Bailey, Regan L; Hausman, Dorothy B; Raghavan, Ramkripa; Raiten, Daniel J

    2015-01-01

    The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate’s history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development. PMID:26451605

  18. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate.

    PubMed

    Esmaeili, Farnaz; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Atyabi, Fatemeh; Seyedabadi, Mohammad; Malekshahi, Mazda Rad; Amini, Mohsen; Dinarvand, Rassoul

    2008-06-01

    For folate-receptor-targeted anticancer therapy, docetaxel (DTX) nanoparticles (NPs) were produced employing polylactide-co-glycolide-polyethylene glycol-folate (PLGA-PEG-FOL) conjugate. The FOL-conjugated di-block copolymer was synthesized by coupling the PLGA-PEG-NH(2) di-block copolymer with an activated folic acid. It was expected that FOL moieties were exposed on the micellar surface. The conjugates assisted in the formation of DTX NPs with an average size of 200 nm in diameter through an emulsification/solvent diffusion method. The FOL-targeted NPs showed a greater extent of intracellular uptake in FOL-receptor-positive cancer cells (SKOV3) in comparison with the non-targeted NPs, indicating that the FOL-receptor-mediated endocytosis mechanism could have a role in the cellular uptake of NPs. These results suggested that FOL-targeted DTX NPs could be a potentially useful delivery system for FOL-receptor-positive cancer cells. PMID:18569286

  19. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells.

    PubMed

    Siafaka, P; Betsiou, M; Tsolou, A; Angelou, E; Agianian, B; Koffa, M; Chaitidou, S; Karavas, E; Avgoustakis, K; Bikiaris, D

    2015-12-01

    The aim of this study was the preparation of novel polyester nanoparticles based on folic acid (FA)-functionalized poly(ethylene glycol)-poly(propylene succinate) (PEG-PPSu) copolymer and loaded with the new anticancer drug ixabepilone (IXA). These nanoparticles may serve as a more selective (targeted) treatment of breast cancer tumors overexpressing the folate receptor. The synthesized materials were characterized by (1)H-NMR, FTIR, XRD and DSC. The nanoparticles were prepared by a double emulsification and solvent evaporation method and characterized with regard to their morphology by scanning electron microscopy, drug loading with HPLC-UV and size by dynamic light scattering. An average size of 195 nm and satisfactory drug loading efficiency (3.5%) were observed. XRD data indicated that IXA was incorporated into nanoparticles in amorphous form. The nanoparticles exhibited sustained drug release properties in vitro. Based on in vitro cytotoxicity studies, the blank FA-PEG-PPSu nanoparticles were found to be non-toxic to the cells. Fluorescent nanoparticles were prepared by conjugating Rhodanine B to PEG-PPSu, and live cell, fluorescence, confocal microscopy was applied in order to demonstrate the ability of FA-PEG-PPSu nanoparticles to enter into human breast cancer cells expressing the folate receptor. PMID:26543021

  20. Relative Dominance of Physical versus Chemical Effects on the Transport of Adhesion-Deficient Bacteria in Intact Cores from South Oyster, Virginia

    SciTech Connect

    Dong, Hailang; Onstott, Tullis C.; Deflaun, Mary F.; Fuller, Mark E.; Scheibe, Timothy D. ); Streger, Sheryl H.; Rothmel, Randi K.; Mailloux, Brian J.

    2002-03-01

    Bacterial transport experiments were conducted using intact sediment cores collected near South Oyster, VA to delineate the relative importance of physical and chemical heterogeneity in controlling transport of an adhesion-deficient bacterial strain. The sediments consisted of quartz and feldspar with a variable amount of clay and metal hydroxide coatings on the grains. A nonmotile, gram-negative indigenous groundwater strain, designated as Comamonas sp. DA001, was injected into the cores along with a conservative tracer bromide (Br). Bacterial breakthrough preceded the arrival of Br. This differential advection phenomenon can be accounted for by reduction of the effective porosity for the bacteria relative to Br. The distribution of cells remaining in the core was highly variable, ranging from nearly uniform concentrations to exponentially decreasing concentrations. The fraction of bacterial retention in the core was positively correlated with the abundance of the metal hydroxides and negatively correlated with grain size. Because grain size was correlated with the abundance of the metal hydroxide coatings, it was difficult to separate the effects of grain size and mineralogy. The fraction of the bacterial retention accounted for by the effect of grain size exhibited no correlation with the abundance of the metal hydroxides, indicating that the bacterial retention was primarily controlled by grain size. Reasons for the lack of influence of mineralogy on bacterial retention include (1) the slightly negatively charged bacterial surfaces; (2) insufficient heterogeneity of sediment surface properties; and (3) the masking of the positive charge of the metal hydroxide surfaces by adsorbed organic carbon (up to 1180 ppm). This study demonstrates that the laboratory based bacterial transport experiments are effective in delineating physical versus chemical controlling factors, and provide an important link to field-based bacterial transport studies.

  1. Exploring folate diversity in wild and primitive potatoes for modern crop improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malnutrition is one of the world’s largest health concerns. Folate (a.k.a. vitamin B9) is essential in the human diet and without adequate folate intake several serious health concerns such as congenital birth defects and an increased risk of stroke and heart disease can occur. Most people’s folate ...

  2. Schizophyllan-folate conjugate as a new non-cytotoxic and cancer-targeted antisense carrier.

    PubMed

    Hasegawa, Teruaki; Fujisawa, Tomohisa; Haraguchi, Shuichi; Numata, Munenori; Karinaga, Ryouji; Kimura, Taro; Okumura, Shiro; Sakurai, Kazuo; Shinkai, Seiji

    2005-01-17

    Schizophyllan having folate-appendages was synthesized from native schizophyllan through NaIO(4)-oxidation and the subsequent reductive amination in aqueous ammonia followed by amido-coupling with folic acid. The resulting folate-appended schizophyllan can form stable complex with poly(dA), show specific affinity toward folate binding protein, and mediate effective antisense activity in cancer cells. PMID:15603948

  3. Determination of folate concentrations in diverse potato germplasm using a trienzyme extraction and microbiological assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined total folate concentrations of potato tubers from 67 cultivars, advanced breeding lines, or wild species. Folates were extracted by a tri-enzyme treatment and analyzed by using a Lactobacillus rhamnosus microbiological assay. Folate concentrations varied from 521 ± 96 to 1373 ± 230 ng/...

  4. 77 FR 63336 - Certain Reduced Folate Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... COMMISSION Certain Reduced Folate Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein... States after importation of certain reduced folate nutraceutical products and l-methylfolate raw... certain reduced folate nutraceutical products and l-methylfolate raw ingredients used therein...

  5. 77 FR 57115 - Certain Reduced Folate; Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... COMMISSION Certain Reduced Folate; Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein... Trade Commission has received a complaint entitled Certain Reduced Folate Nutraceutical Products and L... within the United States after importation of certain reduced folate nutraceutical products and...

  6. Declining levels of erythrocyte folate during the postpartum period among Hispanic women living on the Texas-Mexico border.

    PubMed

    O'Rourke, K M; Redlinger, T E; Waller, D K

    2000-05-01

    Hispanic women have higher parity and shorter interbirth intervals than women of other ethnic groups. Thus, they are more likely to become pregnant relatively soon after giving birth, which may place these women at risk of low or deficient levels of specific nutrients. Folic acid is of particular concern because recent studies suggest that maternal use of folic acid supplements may be associated with better reproductive outcomes. The purpose of this study was to assess folic acid levels in postpartum Hispanic women. Using a cross-sectional design, we measured erythrocyte folate values for 188 low-income Hispanic women 1-12 months postpartum who were receiving services at the Women, Infants, and Children (WIC) clinics in El Paso, Texas. An interview was administered to collect information on diet, vitamin use, and method of infant feeding. Mean erythrocyte folate levels decreased from >1300 ng/ml during the first 4 months postpartum to a low of 1017 ng/ml by 12 months postpartum, for an overall decrease of approximately 23% (p = 0.004). Use of postpartum vitamin supplements was significantly associated with higher folate levels. However, only 35% of mothers used vitamins beyond 1 month postpartum. Study results suggest that these mothers may be at risk of developing low or deficient levels of folic acid during the postpartum period. Educational campaigns targeting these women as well as other groups of postpartum women should encourage them to comply with the U.S. Public Health Service recommendation that women of childbearing age consume 0.4 mg of folic acid daily. PMID:10868612

  7. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor): Biological perspectives.

    PubMed

    Holm, Jan; Bruun, Susanne W; Hansen, Steen I

    2015-10-01

    This review analyzes how interplay between folate binding and changes in folate binding protein (FBP) conformation/self-association affects the biological function of FBP. Concentration-dependent, reversible self-association of hydrophobic apo-FBP at pI=7.4 is associated with decreased affinity for folate, probably due to shielding of binding sites between interacting hydrophobic patches. Titration with folate removes apo-monomers, favoring dissociation of self-associated apo-FBP into apo-monomers. Folate anchors to FBP through a network of hydrogen bonds and hydrophobic interactions, and the binding induces a conformational change with formation of hydrophilic and stable holo-FBP. Holo-FBP exhibits a ligand-mediated concentration-dependent self-association into multimers of great thermal and chemical stability due to strong intermolecular forces. Both ligand and FBP are thus protected against biological/physicochemical decomposition. In biological fluids with low FBP concentrations, e.g., saliva, semen and plasma, hydrophobic apo-monomers and hydrophilic holo-monomers associate into stable asymmetrical complexes with aberrant binding kinetics unless detergents, e.g., cholesterol or phospholipids are present. PMID:26116148

  8. Dietary intake of folate and co-factors in folate metabolism, MTHFR polymorphisms, and reduced rectal cancer.

    PubMed

    Murtaugh, Maureen A; Curtin, Karen; Sweeney, Carol; Wolff, Roger K; Holubkov, Richard; Caan, Bette J; Slattery, Martha L

    2007-03-01

    Little is known about the contribution of polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR) and the folate metabolism pathway in rectal cancer alone. Data were from participants in a case-control study conducted in Northern California and Utah (751 cases and 979 controls). We examined independent associations and interactions of folate, B vitamins, methionine, alcohol, and MTHFR polymorphisms (MTHFR C677T and A1298C) with rectal cancer. Dietary folate intake was associated with a reduction in rectal cancer OR 0.66, 95% CI 0.48-0.92 (>475 mcg day compared to < or = 322 mcg) as was a combination of nutrient intakes contributing to higher methyl donor status (OR 0.79, 95% CI 0.66-0.95). Risk was reduced among women with the 677 TT genotype (OR 0.54, 95% CI 0.30-0.9), but not men (OR 1.11, 95% CI 0.70-1.76) and with the 1298 CC genotype in combined gender analysis (OR 0.67, 95% CI 0.46-0.98). These data are consistent with a protective effect of increasing dietary folate against rectal cancer and suggest a protective role of the MTHFR 677 TT genotype in women and 1298 CC in men and women. Folate intake, low methyl donor status, and MTHFR polymorphisms may play independent roles in the etiology of rectal cancer. PMID:17245555

  9. Detergent activation of the binding protein in the folate radioassay

    SciTech Connect

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  10. The association of gastric cancer risk with plasma folate, cobalamin, and methylenetetrahydrofolate reductase polymorphisms in the European Prospective Investigation into Cancer and Nutrition.

    PubMed

    Vollset, Stein Emil; Igland, Jannicke; Jenab, Mazda; Fredriksen, Ase; Meyer, Klaus; Eussen, Simone; Gjessing, Håkon K; Ueland, Per Magne; Pera, Guillem; Sala, Núria; Agudo, Antonio; Capella, Gabriel; Del Giudice, Giuseppe; Palli, Domenico; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, H Bas; Carneiro, Fátima; Pala, Valeria; Vineis, Paolo; Tumino, Rosario; Panico, Salvatore; Berglund, Göran; Manjer, Jonas; Stenling, Roger; Hallmans, Göran; Martínez, Carmen; Dorronsoro, Miren; Barricarte, Aurelio; Navarro, Carmen; Quirós, José R; Allen, Naomi; Key, Timothy J; Bingham, Sheila; Linseisen, Jakob; Kaaks, Rudolf; Overvad, Kim; Tjønneland, Anne; Büchner, Frederike L; Peeters, Petra H M; Numans, Mattijs E; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Trichopoulou, Antonia; Lund, Eiliv; Slimani, Nadia; Ferrari, Pietro; Riboli, Elio; González, Carlos A

    2007-11-01

    Previous studies have shown inconsistent associations of folate intake and polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene with gastric cancer risk. Our nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort is the first prospective study of blood folate levels and gastric cancer. Gastric cancer cases (n=247) and controls (n=631) were matched for study center, age, sex, and time of blood donation. Two common single nucleotide polymorphisms of the MTHFR gene were determined, as were plasma concentrations of folate, cobalamin (vitamin B12), total homocysteine, and methylmalonic acid (cobalamin deficiency marker) in prediagnostic plasma. Risk measures were calculated with conditional logistic regression. Although no relations were observed between plasma folate or total homocysteine concentrations and gastric cancer, we observed a trend toward lower risk of gastric cancer with increasing cobalamin concentrations (odds ratio, 0.79 per SD increase in cobalamin; P=0.01). Further analyses showed that the inverse association between cobalamin and gastric cancer was confined to cancer cases with low pepsinogen A levels (marker of severe chronic atrophic gastritis) at the time of blood sampling. The 677 C-->T MTHFR polymorphism was not associated with gastric cancer, but we observed an increased risk with the variant genotype of the 1298 A-->C polymorphism (odds ratio, 1.47 for CC versus AA; P=0.04). In conclusion, we found no evidence of a role of folate in gastric cancer etiology. However, we observed increased gastric cancer risk at low cobalamin levels that was most likely due to compromised cobalamin status in atrophic gastritis preceding gastric cancer. PMID:18006931

  11. Water Transport Properties of Cortical Cells in Roots of Nitrogen- and Phosphorus-Deficient Cotton Seedlings 1

    PubMed Central

    Radin, John W.; Matthews, Mark A.

    1989-01-01

    Growth-limiting deficiencies of N or P substantially decrease the hydraulic conductance of cotton (Gossypium hirsutum L.) roots. This shift could result from decreased hydraulic conductivity of cells in the radial flow pathway. A pressure microprobe was used to study water relations of cortical cells in roots of cotton seedlings stressed for N or P. During 10 days of seedling growth on a complete nutrient solution, root cell turgor was stable at 0.4 to 0.5 megapascal, the volumetric elastic modulus increased slowly from 6 to 10 megapascals, and the half-time for water exchange increased from 10 to 15 seconds. In seedlings transferred to N-free solution for 10 days, final values for each of those parameters were approximately doubled. Root cell hydraulic conductivity (cell Lp) was 1.4 × 10−7 meters per second per megapascal at the time of transfer. In the well-nourished controls, cell Lp decreased over 10 days to 38% of the initial value, but in the N-stressed plants it decreased much more sharply, reaching 6% of the initial value after 10 days. Transfer to solutions without P or with an intermediate level of N also decreased cell Lp. The changes in root cell Lp were consistent with nutrient effects on intact-root water relations demonstrated earlier. However, cell Lp was about half that of the intact root, implying that substantial water flow may follow an apoplastic pathway, bypassing the cortical cells from which these values were derived. PMID:16666523

  12. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism

    PubMed Central

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-01-01

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape. PMID:27097688

  13. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    PubMed

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-01-01

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape. PMID:27097688

  14. Effects of folic acid deficiency and MTHFRC677T polymorphisms on cytotoxicity in human peripheral blood lymphocytes

    SciTech Connect

    Wu Xiayu; Liang Ziqing; Zou Tianning; Wang Xu

    2009-02-13

    Apoptosis (APO) and necrosis (NEC) are two different types of cell death occurring in response to cellular stress factors. Cells with DNA damage may undergo APO or NEC. Folate is an essential micronutrient associated with DNA synthesis, repair and methylation. Methylenetetrahydrofolate reductase (MTHFR) regulates intracellular folate metabolism. Folate deficiency and MTHFR C677T polymorphisms have been shown to be related to DNA damage. To verify the cytotoxic effects of folate deficiency on cells with different MTHFR C677T genotypes, 15 human peripheral lymphocyte cases with different MTHFR C677T genotypes were cultured in folic acid (FA)-deficient and -sufficient media for 9 days. Cytotoxicity was quantified using the frequencies of APO and NEC as endpoints, the nuclear division index (NDI), and the number of viable cells (NVC). These results showed that FA is an important factor in reducing cytotoxicity and increasing cell proliferation. Lymphocytes with the TT genotype proliferated easily under stress and exhibited different responses to FA deficiency than lymphocytes with the CC and CT genotypes. A TT individual may accumulate more cytotoxicity under cytotoxic stress, suggesting that the effects of FA deficiency on cytotoxicity are greater than the effects in individuals with the other MTHFR C677T variants.

  15. Increased chromosome fragility as a consequence of blood folate levels, smoking status, and coffee consumption

    SciTech Connect

    Chen, A.T.L.; Reidy, J.A.; Annest, J.L.; Welty, T.K.; Zhou, H. )

    1989-01-01

    Chromosome fragility in 96 h, low-folate cultures was found to be associated with smoking status, coffee consumption, and blood folate level. The higher proportion of cells with chromosome aberrations in cigarette smokers was attributable to lower red cell folate levels in smokers compared with nonsmokers. There was a positive linear relationship between the average cups of coffee consumed per day and the proportion of cells with aberrations. This association was independent of the effects of smoking and red cell folate level. These data suggest that smoking history, coffee consumption, and red cell folate level are important considerations for the design and interpretation of fragile site studies in cancer cytogenetics.

  16. The identification of the folate conjugates found in rat liver 48 h after the administration of radioactively labelled folate tracers.

    PubMed Central

    Connor, M J; Blair, J A

    1980-01-01

    About 70% of the radioactivity retained in the livers of rats dosed 48 h earlier with radioactively labelled folate was incorporated into two folate conjugates. The major derivative was purified and isolated by Sephadex G-15, DEAE-cellulose and DEAE-Sephadex ion-exchange column chromatography and paper chromatography. It was identified as 10-formylpteroylpentaglutamate by a combination of spectral, microbiological, chemical and chromatographic techniques. The minor conjugate, though less well characterized, exhibited similar properties and was assigned the structure 10-formylpteroyltetraglutamate. 10-Formylpteroylpentaglutamate (2.0nmol/g) and 10-formylpteroyltetraglutamate (0.25nmol/g) comprised about 20% of the total endogenous hepatic folate as determined by microbiological assay (Lactobacillus casei after conjugase treatment. PMID:6892769

  17. Folate bioavailability from foods rich in folates assessed in a short term human study using stable isotope dilution assays.

    PubMed

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2015-01-01

    Different sources of folate may have different bioavailability and hence may impact the standard definition of folate equivalents. In order to examine this, a short term human study was undertaken to evaluate the relative native folate bioavailabilities from spinach, Camembert cheese and wheat germs compared to pteroylmonoglutamic acid as the reference dose. The study had a single-centre, randomised, four-treatment, four-period, four-sequence, cross-over design, i.e. the four (food) items to be tested (referred to as treatments) were administered in sequences according to the Latin square, so that each experimental treatment occurred only once within each sequence and once within each study period. Each of the 24 subjects received the four experimental items separated by a 14-day equilibrium phase and received a pteroylmonoglutamic acid supplement for 14 days before the first testing and between the testings for saturation of body pools. Folates in test foods, plasma and urine samples were determined by stable isotope dilution assays, and in urine and plasma, the concentrations of 5-methyltetrahydrofolate were evaluated. Standard non-compartmental methods were applied to determine the biokinetic parameters C(max), t(max) and AUC from baseline corrected 5-methyltetrahydrofolate concentrations within the interval from 0 to 12 hours. The variability of AUC and C(max) was moderate for spinach and oral solution of pteroylmonoglutamic acid but high for Camembert cheese and very high for wheat germs. The median t(max) was lowest for spinach, though t(max) showed a high variability among all treatments. When comparing the ratio estimates of AUC and C(max) for the different test foods, highest bioavailability was found for spinach followed by that for wheat germs and Camembert cheese. The results underline the dependence of folate bioavailability on the type of food ingested. Therefore, the general assumption of 50% bioavailability as the rationale behind the definition of

  18. Folate Receptor β Regulates Integrin CD11b/CD18 Adhesion of a Macrophage Subset to Collagen.

    PubMed

    Machacek, Christian; Supper, Verena; Leksa, Vladimir; Mitulovic, Goran; Spittler, Andreas; Drbal, Karel; Suchanek, Miloslav; Ohradanova-Repic, Anna; Stockinger, Hannes

    2016-09-15

    Folate, also known as vitamin B9, is necessary for essential cellular functions such as DNA synthesis, repair, and methylation. It is supplied to the cell via several transporters and receptors, including folate receptor (FR) β, a GPI-anchored protein belonging to the folate receptor family. As FRβ shows a restricted expression to cells of myeloid origin and only a subset of activated macrophages and placental cells have been shown to express functional FRβ, it represents a promising target for future therapeutic strategies. In this study, we performed affinity purification and mass spectrometric analysis of the protein microenvironment of FRβ in the plasma membrane of human FRβ(+) macrophages and FRβ-transduced monocytic THP-1 cells. In this manner, we identified a novel role of FRβ: that is, we report functional interactions of FRβ with receptors mediating cellular adhesion, in particular the CD11b/CD18 β2 integrin heterodimer complement receptor type 3/Mac-1. This interaction results in impeded adhesion of FRβ(+) human primary macrophages and THP-1 cells to collagen in comparison with their FRβ(-) counterparts. We further show that FRβ is only expressed by human macrophages when differentiated with M-CSF. These findings thus identify FRβ as a novel CD11b/CD18 regulator for trafficking and homing of a subset of macrophages on collagen. PMID:27534550

  19. Community-level micronutrient fortification of school lunch meals improved vitamin A, folate, and iron status of schoolchildren in Himalayan villages of India.

    PubMed

    Osei, Akoto K; Rosenberg, Irwin H; Houser, Robert F; Bulusu, Saraswati; Mathews, Minnie; Hamer, Davidson H

    2010-06-01

    Anemia and micronutrient deficiencies are common among Indian schoolchildren. We assessed the effectiveness of micronutrient fortification of meals cooked and fortified at school on anemia and micronutrient status of schoolchildren in Himalayan villages of India. In this placebo-controlled, cluster-randomized study, 499 schoolchildren (6-10 y) received either multiple micronutrients (treatment group) or placebo (control group) as part of school meals (6 d/wk) for 8 mo. Both groups were dewormed at the beginning of the study. The micronutrient premix provided 10 mg iron, 375 microg vitamin A, 4.2 mg zinc, 225 microg folic acid, and 1.35 microg vitamin B-12 for each child per day (approximately 75% recommended dietary allowance). Blood samples drawn before and after the intervention were analyzed for hemoglobin, ferritin, retinol, zinc, folate, and vitamin B-12. Baseline prevalence of anemia (37%), iron deficiency anemia (10%), low serum ferritin (24%), retinol (56%), zinc (74%), folate (68%), and vitamin B-12 (17%) did not differ between groups. Postintervention, fewer in the treatment group had lower serum retinol [odds ratio (OR) (95% CI): 0.57 (0.33-0.97)] and folate [OR (95% CI): 0.47 (0.26-0.84)] than the control group. The serum vitamin B-12 concentration decreased in both groups, but the magnitude of change was less in the treatment than in the control group (P < 0.05). Total body iron (TBI) increased in both groups; however, the change was greater in the treatment than in the control group (P < 0.05). Micronutrient fortification of school meals by trained school personnel was effective in improving vitamin A, folate, and TBI status while also reducing the magnitude of a decrease in vitamin B-12 status. PMID:20410083

  20. Focal Thalamic Degeneration from Ethanol and Thiamine Deficiency is Associated with Neuroimmune Gene Induction, Microglial Activation, and Lack of Monocarboxylic Acid Transporters

    PubMed Central

    Qin, Liya; Crews, Fulton T

    2014-01-01

    Background Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Methods Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Results Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Conclusions Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism. PMID

  1. Hyperhomocysteinemia and cobalamin deficiency in young Asian Indians in the United States.

    PubMed

    Carmel, Ralph; Mallidi, Padmaja V; Vinarskiy, Simon; Brar, Shabneet; Frouhar, Zohreh

    2002-06-01

    Hyperhomocysteinemia, a risk factor for vascular disease, may be a particular problem in Asian Indians, but information is limited, especially in the U.S., despite its growing Asian population. Moreover, suggestions have been made that folate deficiency is responsible for the hyperhomocysteinemia in Indians. Therefore, we studied homocysteine status in healthy Asian Indians in the U.S. prospectively, determined the frequency of cobalamin and folate deficiency as contributors to it, and examined whether food-cobalamin absorption contributed to cobalamin deficiency. Homocysteine levels were higher in Asian Indian men than in 4 other ethnic groups (P < 0.0001); 10/39 Indian men (25.6%) were hyperhomocysteinemic. Cobalamin levels were lower in Indian men (P = 0.000005) and women (P = 0.03) than in non-Indians; low levels were found more frequently in both Indian men (23/39; 59.0%) and women (5/21; 23.8%) than in others. Measuring methylmalonic acid in 10 selected subjects showed that the low cobalamin levels reflected cobalamin deficiency, and high methylmalonic acid levels were found in some subjects without hyperhomocysteinemia. Evidence of folate deficiency was not found in any subjects. Food-cobalamin absorption was normal in all 13 Indian subjects tested, including those with Helicobacter pylori infection. The results show that hyperhomocysteinemia is strikingly common in apparently healthy, young Asian Indian men. The cause appears to be cobalamin deficiency, which affected more than half of the Indian men, may be largely subclinical, is underestimated by homocysteine levels alone which were not always abnormal, and is probably largely dietary in origin. Folate deficiency is rare. This public health problem is amenable to prevention and treatment in this growing segment of the U.S. population. It was, parenthetically, noteworthy that many of the affected subjects were young physician trainees. PMID:12111783

  2. Unusual magnetic and transport properties of oxygen deficient Sr2Fe1-xCoxMoO6-d

    NASA Astrophysics Data System (ADS)

    Chang, Hong; García-Hernández, Mar; Alonso, Jose Antonio

    2006-10-01

    In the title compounds the oxygen voids have a significant influence over the transport properties, compared with the parent stoichiometric compounds (Sr2FeMoO6 and Sr2CoMoO6) where the oxygen defects have little impact on the crystallographic and magnetic properties. For Sr2FeMoO6-d and Sr2Fe0.95Co0.05MoO6-d, the oxygen voids simply decrease the magnetoresistance (MR) without altering the contours, and for x ⩾0.1 at the expense of the decreased low field MR, the oxygen voids enhance MR at high applied field, which is 6%-8% larger than the parent compounds for 0.2⩽x⩽0.7. Remarkably enough, the antiferromagnetic Sr2Fe0.1Co0.9MoO6-d exhibits record negative magnetoresistance ratio MR =((R(H,T)-R(0,T))/R(0,T))×100% as high as 99%.

  3. Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice.

    PubMed

    Nogueira, Eugénia; Lager, Franck; Le Roux, Delphine; Nogueira, Patrícia; Freitas, Jaime; Charvet, Celine; Renault, Gilles; Loureiro, Ana; Almeida, Catarina R; Ohradanova-Repic, Anna; Machacek, Christian; Bernardes, Gonçalo J L; Moreira, Alexandra; Stockinger, Hannes; Burnet, Michael; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Bismuth, Georges; Cavaco-Paulo, Artur

    2015-12-01

    Methotrexate is the first line of treatment of rheumatoid arthritis. Since many patients become unresponsive to methotrexate treatment, only very expensive biological therapies are effective and increased methotrexate tolerance strategies need to be identified. Here we propose the encapsulation of methotrexate in a new liposomal formulation using a hydrophobic fragment of surfactant protein conjugated to a linker and folate to enhance their tolerance and efficacy. In this study we aim to evaluate the efficiency of this system to treat rheumatoid arthritis, by targeting folate receptor β present at the surface of activated macrophages, key effector cells in this pathology. The specificity of our liposomal formulation to target folate receptor β was investigated both in vitro as in vivo using a mouse model of arthritis (collagen-induced arthritis in DBA/1J mice strain). In both systems, the liposomal constructs were shown to be highly specific and efficient in targeting folate receptor β. These liposomal formulations also significantly increase the clinical benefit of the encapsulated methotrexate in vivo in arthritic mice, together with reduced expression of CD39 and CD73 ectonucleotidases by joint-infiltrating macrophages. Thus, our formulation might be a promising cost effective way to treat rheumatoid arthritis and delay or reduce methotrexate intolerance. PMID:26510317

  4. Quantification of Niacin and Folate Contents in Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts (Arachis hypogaea L.) are known to be sources of several important B-vitamins, including niacin and folate. Recent research has shown that therapeutic doses of niacin are beneficial for vascular health; therefore, determination of the concentrations found in current varieties in production ...

  5. Functional interactions between the LRP6 WNT co-receptor and folate supplementation.

    PubMed

    Gray, Jason D; Nakouzi, Ghunwa; Slowinska-Castaldo, Bozena; Dazard, Jean-Eudes; Rao, J Sunil; Nadeau, Joseph H; Ross, M Elizabeth

    2010-12-01

    Crooked tail (Cd) mice bear a gain-of-function mutation in Lrp6, a co-receptor for canonical WNT signaling, and are a model of neural tube defects (NTDs), preventable with dietary folic acid (FA) supplementation. Whether the FA response reflects a direct influence of FA on LRP6 function was tested with prenatal supplementation in LRP6-deficient embryos. The enriched FA (10 ppm) diet reduced the occurrence of birth defects among all litters compared with the control (2 ppm FA) diet, but did so by increasing early lethality of Lrp6(-/-) embryos while actually increasing NTDs among nulls alive at embryonic days 10-13 (E10-13). Proliferation in cranial neural folds was reduced in homozygous Lrp6(-/-) mutants versus wild-type embryos at E10, and FA supplementation increased proliferation in wild-type but not mutant neuroepithelia. Canonical WNT activity was reduced in LRP6-deficient midbrain-hindbrain at E9.5, demonstrated in vivo by a TCF/LEF-reporter transgene. FA levels in media modulated the canonical WNT response in NIH3T3 cells, suggesting that although FA was required for optimal WNT signaling, even modest FA elevations attenuated LRP5/6-dependent canonical WNT responses. Gene expression analysis in embryos and adults showed striking interactions between targeted Lrp6 deficiency and FA supplementation, especially for mitochondrial function, folate and methionine metabolism, WNT signaling and cytoskeletal regulation that together implicate relevant signaling and metabolic pathways supporting cell proliferation, morphology and differentiation. We propose that FA supplementation rescues Lrp6(Cd/Cd) fetuses by normalizing hyperactive WNT activity, whereas in LRP6-deficient embryos, added FA further attenuates reduced WNT activity, thereby compromising development. PMID:20843827

  6. Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice

    PubMed Central

    Wolf, Karen; Braun, Attila; Haining, Elizabeth J.; Tseng, Yu-Lun; Kraft, Peter; Schuhmann, Michael K.; Gotru, Sanjeev K.; Chen, Wenchun; Hermanns, Heike M.; Stoll, Guido; Lesch, Klaus-Peter; Nieswandt, Bernhard

    2016-01-01

    Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt-/-) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt-/- platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca2+ entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt-/- platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt-/- mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt-/- mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization. PMID:26800051

  7. Iron deficiency in the tropics.

    PubMed

    Fleming, A F

    1982-06-01

    Iron in food is classified as belonging to the haem pool, the nonhaem pool, and extraneous sources. Haem iron is derived from vegetable and animal sources with varying bioavailability. Hookworm infestation of the intestinal tract affects 450 million people in the tropics. Schistosoma mansoni caused blood loss in 7 Egyptian patients of 7.5- 25.9 ml/day which is equivalent to a daily loss of iron of .6-7.3 mg daily urinary loss of iron in 9 Egyptian patients. Trichuris trichiura infestation by whipworm is widespread in children with blood loss of 5 ml/day/worm. The etiology of anemia in children besides iron deficiency includes malaria, bacterial or viral infections, folate deficiency and sickle-cell disease. Severe infections cause profound iron-deficiency anemia in children in central American and Malaysia. Plasmodium falciparum malaria-induced anaemia in tropical Africa lowers the mean haemoglobin concentration in the population by 2 g/dI, causing profound anaemia in some. The increased risk of premature delivery, low birthweight, fetal abnormalities, and fetal death is directly related to the degree of maternal anemia. Perinatal mortality was reduced from 38 to 4% in treated anemic mothers. Mental performance was significantly lower in anemic school children and improved after they received iron. Supplements of iron, soy-protein, calcium, and vitamins given to villagers with widespread malnutrition, iron deficiency, and hookworm infestation in Colombia reduced enteric infections in children. Severe iron-deficiency anemia was treated in adults in northern Nigeria by daily in Ferastral 10 ml, which is equivalent to 500 mg of iron per day. Choloroquine, folic acid, rephenium hydroxynaphthoate, and tetrachlorethylene treat adults with severe iron deficiency from hookworm infestation in rural tropical Africa. Blood transfusion is indicated if the patient is dying of anaemia or is pregnant with a haemoglobin concentration 6 gm/dl. In South East Asia, mg per day

  8. Methylenetetrahydrofolate reductase deficiency: importance of early diagnosis.

    PubMed

    Fattal-Valevski, A; Bassan, H; Korman, S H; Lerman-Sagie, T; Gutman, A; Harel, S

    2000-08-01

    Methylenetetrahydrofolate reductase deficiency is the most common inborn error of folate metabolism and should be suspected when homocystinuria is combined with hypomethioninemia. The main clinical findings are neurologic signs such as severe developmental delay, marked hypotonia, seizures, microcephaly, apnea, and coma. Most patients present in early life. The infantile form is severe, with rapid deterioration leading to death usually within 1 year. Treatment with betaine has been shown to be efficient in lowering homocysteine concentrations and returning methionine to normal, but the clinical response is variable. We report two brothers with methylenetetrahydrofolate reductase deficiency: the first was undiagnosed and died at 8 months of age from neurologic deterioration and apnea, while his brother, who was treated with betaine from the age of 4 months, is now 3 years old and has developmental delay. PMID:10961793

  9. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    PubMed

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. PMID:27233822

  10. A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach.

    PubMed

    Dörre, K; Olczak, M; Wada, Y; Sosicka, P; Grüneberg, M; Reunert, J; Kurlemann, G; Fiedler, B; Biskup, S; Hörtnagel, K; Rust, S; Marquardt, T

    2015-09-01

    Congenital disorders of glycosylation (CDG) are a group of hereditary metabolic diseases characterized by abnormal glycosylation of proteins and lipids. Often, multisystem disorders with central nervous system involvement and a large variety of clinical symptoms occur. The main characteristics are developmental delay, seizures, and ataxia. In this paper we report the clinical and biochemical characteristics of a 5-year-old girl with a defective galactosylation of N-glycans, resulting in developmental delay, muscular hypotonia, epileptic seizures, inverted nipples, and visual impairment. Next generation sequencing revealed a de novo mutation (c.797G > T, p.G266V) in the X-chromosomal gene SLC35A2 (solute carrier family 35, UDP-galactose transporter, member A2; MIM 300896). While this mutation was found heterozygous, random X-inactivation of the normal allele will lead to loss of normal SLC35A2 activity in respective cells. The functional relevance of the mutation was demonstrated by complementation of UGT-deficient MDCK-RCA(r) and CHO-Lec8 cells by normal UGT-expression construct but not by the mutant version. The effect of dietary galactose supplementation on glycosylation was investigated, showing a nearly complete normalization of transferrin glycosylation. PMID:25778940

  11. EFFECT OF ABOMASAL INFUSION OF FORMATE ON MILK PROTEIN OF COWS FED A METHIONINE-DEFICIENT DIET

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon from formate is transferred to the methyl group of Met in milk protein via the folate cycle. We hypothesized that post-ruminal formate infusion to dairy cows would partially compensate for dietary Met deficiency and enhance milk protein production. Six midlactation cows were used in a balance...

  12. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis.

    PubMed

    Lee, R J; Low, P S

    1994-02-01

    Folic acid was covalently conjugated to 66-nm liposomes via spacers of various lengths in an attempt to target the liposomes to KB cells expressing folate receptors. Spacers of short and intermediate lengths were unable to mediate association of folate-conjugated liposomes with receptor-bearing cells, however, use of a 250 A polyethyleneglycol spacer (PEG, M(r) approximately 3350) permitted avid uptake of the liposomes at approximately 2.5 x 10(5) sites/cell. The binding of folate-PEG liposomes to KB cells could be competitively inhibited by excess free folate or by antiserum against the folate receptor, demonstrating the interaction is mediated by the cell surface folate-binding protein. Following binding, cell-associated folate-PEG liposomes were internalized by folate-receptor-mediated endocytosis at 37 degrees C but not at 4 degrees C. These folate-PEG liposomes show potential for delivering large quantities of low molecular weight compounds nondestructively into folate receptor-bearing cells. PMID:8106354

  13. Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement.

    PubMed

    Robinson, Bruce R; Sathuvalli, Vidyasagar; Bamberg, John; Goyer, Aymeric

    2015-01-01

    Malnutrition is one of the world's largest health concerns. Folate (also known as vitamin B₉) is essential in the human diet, and without adequate folate intake, several serious health concerns, such as congenital birth defects and an increased risk of stroke and heart disease, can occur. Most people's folate intake remains sub-optimal, even in countries that have a folic acid food fortification program in place. Staple crops, such as potatoes, represent an appropriate organism for biofortification through traditional breeding based on their worldwide consumption and the fact that modern cultivars only contain about 6% of the daily recommended intake of folate. To start breeding potatoes with enhanced folate content, high folate potato material must be identified. In this study, 250 individual plants from 77 accessions and 10 Solanum species were screened for their folate content using a tri-enzyme extraction and microbial assay. There was a 10-fold range of folate concentrations among individuals. Certain individuals within the species Solanum tuberosum subsp. andigenum, Solanum vernei and Solanum boliviense have the potential to produce more than double the folate concentrations of commercial cultivars, such as Russet Burbank. Our results show that tapping into the genetic diversity of potato is a promising approach to increase the folate content of this important crop. PMID:26670256

  14. In situ enrichment of folate by microorganisms in beta-glucan rich oat and barley matrices.

    PubMed

    Kariluoto, Susanna; Edelmann, Minnamari; Nyström, Laura; Sontag-Strohm, Tuula; Salovaara, Hannu; Kivelä, Reetta; Herranen, Mirkka; Korhola, Matti; Piironen, Vieno

    2014-04-17

    The objective was to study folate production of yeast strains, bacteria isolated from oat bran, and selected lactic acid bacteria as well as one propionibacterium in oat and barley based models. Simultaneously, we aimed at sustaining the stability of viscosity, representing the physicochemical state of beta-glucan. Total folate contents were determined microbiologically and vitamers for selected samples by UHPLC. Folate in yeast cells comprised mainly 5-methyltetrahydrofolate and tetrahydrofolate. Folate production by microbes in YPD medium was different to that in cereal fermentations where vitamers included 5-methyltetrahydrofolate, 5,10-methenyltetrahydrofolate and formylated derivatives. Microbes producing significant amounts of folate without affecting viscosity were Saccharomyces cerevisiae ALKO743 and Candida milleri ABM4949 among yeasts and Pseudomonas sp. ON8 and Janthinobacterium sp. RB4 among bacteria. Net folate production was up to 120 ng/g after 24 h fermentation and could increase during 2-week storage. Glucose addition increased the proportion of 5-methyltetrahydrofolate. Streptococcus thermophilus ABM5097, Lactobacillus reuteri, and Propionibacterium sp. ABM5378 produced folate but in lower concentrations. Both endogenous and added microbes contribute to folate enhancement. Selection of microbes with folate producing capability and limited hydrolytic activity will enable the development of products rich in folate and beta-glucan. PMID:24561828

  15. Exploring Folate Diversity in Wild and Primitive Potatoes for Modern Crop Improvement

    PubMed Central

    Robinson, Bruce R.; Sathuvalli, Vidyasagar; Bamberg, John; Goyer, Aymeric

    2015-01-01

    Malnutrition is one of the world’s largest health concerns. Folate (also known as vitamin B9) is essential in the human diet, and without adequate folate intake, several serious health concerns, such as congenital birth defects and an increased risk of stroke and heart disease, can occur. Most people’s folate intake remains sub-optimal, even in countries that have a folic acid food fortification program in place. Staple crops, such as potatoes, represent an appropriate organism for biofortification through traditional breeding based on their worldwide consumption and the fact that modern cultivars only contain about 6% of the daily recommended intake of folate. To start breeding potatoes with enhanced folate content, high folate potato material must be identified. In this study, 250 individual plants from 77 accessions and 10 Solanum species were screened for their folate content using a tri-enzyme extraction and microbial assay. There was a 10-fold range of folate concentrations among individuals. Certain individuals within the species Solanum tuberosum subsp. andigenum, Solanum vernei and Solanum boliviense have the potential to produce more than double the folate concentrations of commercial cultivars, such as Russet Burbank. Our results show that tapping into the genetic diversity of potato is a promising approach to increase the folate content of this important crop. PMID:26670256

  16. Folate supplementation increases genomic DNA methylation in the liver of elder rats.

    PubMed

    Choi, Sang-Woon; Friso, Simonetta; Keyes, Mary K; Mason, Joel B

    2005-01-01

    The availability of folate is implicated as a determinant of DNA methylation, a functionally important feature of DNA. Nevertheless, when this phenomenon has been examined in the rodent model, the effect has not always been observed. Several reasons have been postulated for the inconsistency between studies: the rodent is less dependent on folate as a methyl source than man; juvenile animals, which most studies use, are more resistant to folate depletion than old animals; methods to measure genomic DNA methylation might not be sensitive enough to detect differences. We therefore examined the relationship between folate and genomic DNA methylation in an elder rat model with a newly developed method that can measure genomic DNA methylation sensitively and precisely. Thirty-nine 1-year-old rats were divided into three groups and fed a diet containing 0, 4.5 or 18 mumol folate/kg (folate-deplete, -replete and -supplemented groups, respectively). Rats were killed at 8 and 20 weeks. At both time points, mean liver folate concentrations increased incrementally between the folate-deplete, -replete and -supplemented rats (P for trend <0.001) and by 20 weeks hepatic DNA methylation also increased incrementally between the folate-deplete, -replete and -supplemented rats (P for trend=0.025). At both time points folate-supplemented rats had significantly increased levels of DNA methylation compared with folate-deplete rats (P<0.05). There was a strong correlation between hepatic folate concentration and genomic DNA methylation in the liver (r 0.48, P=0.004). In the liver of this animal model, dietary folate over a wide range of intakes modulates genomic DNA methylation. PMID:15705222

  17. Do Thai women of child bearing age need pre-conceptional supplementation of dietary folate?

    PubMed

    Sirikulchayanonta, Chutima; Madjupa, Kannatcha; Chongsuwat, Rewadee; Pandii, Wongdyan

    2004-01-01

    Recent studies in western countries have indicated that women with low serum folate before pregnancy have greater risk of giving birth to babies with neural tube defects, and preconceptional folate supplementation has been recommended to prevent such defects. To determine whether Thai women needed folate supplementation before pregnancy, we carried out a cross-sectional study from September 2001 to January 2002. The objectives were to determine serum folate levels among women of child-bearing age and their relationship to dietary folate intake. One hundred and sixty-five apparently healthy, volunteer women aged 15 - 45 years were recruited from the Family Planning Clinic, Mother and Child Hospital, Health Promotion Centre, Region I, Bangkok. Data on general characteristics, nutritional status and dietary folate intake were recorded while venous blood was drawn for serum folate analysis. Results showed that 65.5% of the study group had low dietary folate intake, that 18% had low serum folate, and that there was a significant correlation between dietary intake and serum level (r = 0.68, P<0.001). There were also significant correlations between serum level and body mass index, (r =0.13, P<0.001). However, there were no significant associations between serum level and age, educational level, occupation, family income, or duration vegetables were stored in the refrigerator before consumption. In conclusion, there is preliminary evidence that some pregnant Thai women may have sufficiently low serum folate levels to put their babies at risk. We recommend further study on a larger scale to confirm whether folate supplementation is needed for Thai women at child bearing age. In the interim, it may be wise for obstetricians to measure serum folate in pregnant women to determine whether folate supplementation is required. PMID:15003917

  18. Exposure to Folate Receptor Alpha Antibodies during Gestation and Weaning Leads to Severe Behavioral Deficits in Rats: A Pilot Study

    PubMed Central

    Sequeira, Jeffrey M.; Desai, Ankuri; Berrocal-Zaragoza, Maria I.; Murphy, Michelle M.; Fernandez-Ballart, Joan D.; Quadros, Edward V.

    2016-01-01

    The central nervous system continues to develop during gestation and after birth, and folate is an essential nutrient in this process. Folate deficiency and folate receptor alpha autoantibodies (FRα-AuAb) have been associated with pregnancy-related complications and neurodevelopmental disorders. In this pilot study, we investigated the effect of exposure to FRα antibodies (Ab) during gestation (GST), the pre-weaning (PRW), and the post weaning (POW) periods on learning and behavior in adulthood in a rat model. In the open field test and novel object recognition task, which examine locomotor activity and anxiety-like behavior, deficits in rats exposed to Ab during gestation and pre-weaning (GST+PRW) included more time spent in the periphery or corner areas, less time in the central area, frequent self-grooming akin to stereotypy, and longer time to explore a novel object compared to a control group; these are all indicative of increased levels of anxiety. In the place avoidance tasks that assess learning and spatial memory formation, only 30% of GST+PRW rats were able to learn the passive place avoidance task. None of these rats learned the active place avoidance task indicating severe learning deficits and cognitive impairment. Similar but less severe deficits were observed in rats exposed to Ab during GST alone or only during the PRW period, suggesting the extreme sensitivity of the fetal as well as the neonatal rat brain to the deleterious effects of exposure to Ab during this period. Behavioral deficits were not seen in rats exposed to antibody post weaning. These observations have implications in the pathology of FRα-AuAb associated with neural tube defect pregnancy, preterm birth and neurodevelopmental disorders including autism. PMID:27011008

  19. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism. PMID:25736695

  20. CHRONIC CIGARETTE SMOKING IS ASSOCIATED WITH DIMINISHED FOLATE STATUS, ALTERED FOLATE FORM DISTRIBUTION, AND INCREASED GENETIC DAMAGE IN THE BUCCAL MUCOSA OF HEALTHY ADULTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Smoking causes genetic damage in buccal cells and increases the risk of oral cancer. Since folate is instrumental in DNA synthesis and repair, it is a determinant of genetic stability and therefore might attenuate the genotoxic effects of smoking. Objective: To compare folate metabolites...

  1. Folate status and concentrations of serum folate forms in the US population: National Health and Nutrition Examination Survey 2011-2.

    PubMed

    Pfeiffer, Christine M; Sternberg, Maya R; Fazili, Zia; Lacher, David A; Zhang, Mindy; Johnson, Clifford L; Hamner, Heather C; Bailey, Regan L; Rader, Jeanne I; Yamini, Sedigheh; Berry, R J; Yetley, Elizabeth A

    2015-06-28

    Serum and erythrocyte (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured the serum folate forms (5-methyltetrahydrofolate (5-methylTHF), unmetabolised folic acid (UMFA), non-methyl folate (sum of tetrahydrofolate (THF), 5-formyltetrahydrofolate (5-formylTHF), 5,10-methenyltetrahydrofolate (5,10-methenylTHF)) and MeFox (5-methylTHF oxidation product)) by HPLC-MS/MS and RBC total folate by microbiologic assay in US population ≥ 1 year (n approximately 7500) participating in the National Health and Nutrition Examination Survey 2011-2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37·5 nmol/l; 100 %), UMFA (1·21 nmol/l; 99·9 %), MeFox (1·53 nmol/l; 98·8 %), and THF (1·01 nmol/l; 85·2 %) were mostly detectable. 5-FormylTHF (3·6 %) and 5,10-methenylTHF (4·4 %) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86·7 %); UMFA (4·0 %), non-methyl folate (4·7 %) and MeFox (4·5 %) contributed smaller amounts. Age was positively related to MeFox, but showed a U-shaped pattern for other folates. We generally noted sex and race/ethnic biomarker differences and weak (Spearman's r< 0·4) but significant (P< 0·05) correlations with physiological and lifestyle variables. Fasting, kidney function, smoking and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiological and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological

  2. Folate status and concentrations of serum folate forms in the US population: National Health and Nutrition Examination Survey 2011–2

    PubMed Central

    Pfeiffer, Christine M.; Sternberg, Maya R.; Fazili, Zia; Lacher, David A.; Zhang, Mindy; Johnson, Clifford L.; Hamner, Heather C.; Bailey, Regan L.; Rader, Jeanne I.; Yamini, Sedigheh; Berry, R. J.; Yetley, Elizabeth A.

    2016-01-01

    Serum and red blood cell (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured serum folate forms [5-methyltetrahydrofolate (5-methylTHF), unmetabolized folic acid (UMFA), non-methyl folate (sum of THF, 5-formylTHF, 5,10-methenylTHF), and MeFox (5-methylTHF oxidation product)] by HPLC-MS/MS and RBC total folate by microbiologic assay in US persons ≥1 year (n ~7500) participating in the National Health and Nutrition Examination Survey 2011–2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37.5 nmol/L; 100%), UMFA (1.21 nmol/L; 99.9%), MeFox (1.53 nmol/L; 98.8%), and THF (1.01 nmol/L; 85.2%) were mostly detectable. 5-FormylTHF (3.6%) and 5,10-methenylTHF (4.4%) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86.7%); UMFA (4.0%), non-methyl folate (4.7%), and MeFox (4.5%) contributed smaller amounts. Age was positively related to MeFox but showed a U-shaped pattern for other folates. We generally noted sex and race-ethnic biomarker differences and weak (Spearman r <0.4) but significant (P <0.05) correlations with physiologic and lifestyle variables. Fasting, kidney function, smoking, and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiologic, and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological characteristics. PMID:25917925

  3. Evaluation of the novel folate receptor ligand [18F]fluoro-PEG-folate for macrophage targeting in a rat model of arthritis

    PubMed Central

    2013-01-01

    Introduction Detection of (subclinical) synovitis is relevant for both early diagnosis and monitoring of therapy of rheumatoid arthritis (RA). Previously, the potential of imaging (sub)clinical arthritis was demonstrated by targeting the translocator protein in activated macrophages using (R)-[11C]PK11195 and positron emission tomography (PET). Images, however, also showed significant peri-articular background activity. The folate receptor (FR)-β is a potential alternative target for imaging activated macrophages. Therefore, the PET tracer [18F]fluoro-PEG-folate was synthesized and evaluated in both in vitro and ex vivo studies using a methylated BSA induced arthritis model. Methods [18F]fluoro-PEG-folate was synthesized in a two-step procedure. Relative binding affinities of non-radioactive fluoro-PEG-folate, folic acid and naturally circulating 5-methyltetrahydrofolate (5-Me-THF) to FR were determined using KB cells with high expression of FR. Both in vivo [18F]fluoro-PEG-folate PET and ex vivo tissue distribution studies were performed in arthritic and normal rats and results were compared with those of the established macrophage tracer (R)-[11C]PK11195. Results [18F]fluoro-PEG-folate was synthesized with a purity >97%, a yield of 300 to 1,700 MBq and a specific activity between 40 and 70 GBq/µmol. Relative in vitro binding affinity for FR of F-PEG-folate was 1.8-fold lower than that of folic acid, but 3-fold higher than that of 5-Me-THF. In the rat model, [18F]fluoro-PEG-folate uptake in arthritic knees was increased compared with both contralateral knees and knees of normal rats. Uptake in arthritic knees could be blocked by an excess of glucosamine-folate, consistent with [18F]fluoro-PEG-folate being specifically bound to FR. Arthritic knee-to-bone and arthritic knee-to-blood ratios of [18F]fluoro-PEG-folate were increased compared with those of (R)-[11C]PK11195. Reduction of 5-Me-THF levels in rat plasma to those mimicking human levels increased absolute

  4. The interrelationship between ligand binding and thermal unfolding of the folate binding protein. The role of self-association and pH.

    PubMed

    Holm, Jan; Babol, Linnea N; Markova, Natalia; Lawaetz, Anders J; Hansen, Steen I

    2014-03-01

    The present study utilized a combination of DLS (dynamic light scattering) and DSC (differential scanning calorimetry) to address thermostability of high-affinity folate binding protein (FBP), a transport protein and cellular receptor for the vitamin folate. At pH7.4 (pI=7-8) ligand binding increased concentration-dependent self-association of FBP into stable multimers of holo-FBP. DSC of 3.3μM holo-FBP showed Tm (76°C) and molar enthalpy (146kcalM(-1)) values increasing to 78°C and 163kcalM(-1) at 10μM holo-FBP, while those of apo-FBP were 55°C and 105kcalM(-1). Besides ligand binding, intermolecular forces involved in concentration-dependent multimerization thus contribute to the thermostability of holo-FBP. Hence, thermal unfolding and dissociation of holo-FBP multimers occur simultaneously consistent with a gradual decrease from octameric to monomeric holo-FBP (10μM) in DLS after a step-wise rise in temperature to 78°C≈Tm. Stable holo-FBP multimers may protect naturally occurring labile folates against decomposition or bacterial utilization. DSC established an interrelationship between diminished folate binding at pH5, especially in NaCl-free buffers, and low thermostability. Positively charged apo-FBP was almost completely unfolded and aggregated at pH5 (Tm 38°C) and holo-FBP, albeit more thermostable, was labile with aggregation tendency. Addition of 0.15M NaCl increased thermostability of apo-FBP drastically, and even more so that of holo-FBP. Electrostatic forces thus seem to contribute to a diminished thermostability at low pH. Fluorescence spectroscopy after irreversible thermal unfolding of FBP revealed a weak-affinity folate binding. PMID:24374293

  5. Iron deficiency.

    PubMed

    Scrimshaw, N S

    1991-10-01

    The world's leading nutritional problem is iron deficiency. 66% of children and women aged 15-44 years in developing countries have it. Further, 10-20% of women of childbearing age in developed countries are anemic. Iron deficiency is identified with often irreversible impairment of a child's learning ability. It is also associated with low capacity for adults to work which reduces productivity. In addition, it impairs the immune system which reduces the body's ability to fight infection. Iron deficiency also lowers the metabolic rate and the body temperature when exposed to cold. Hemoglobin contains nearly 73% of the body's iron. This iron is always being recycled as more red blood cells are made. The rest of the needed iron does important tasks for the body, such as binds to molecules that are reservoirs of oxygen for muscle cells. This iron comes from our diet, especially meat. Even though some plants, such as spinach, are high in iron, the body can only absorb 1.4-7% of the iron in plants whereas it can absorb 20% of the iron in red meat. In many developing countries, the common vegetarian diets contribute to high rates of iron deficiency. Parasitic diseases and abnormal uterine bleeding also promote iron deficiency. Iron therapy in anemic children can often, but not always, improve behavior and cognitive performance. Iron deficiency during pregnancy often contributes to maternal and perinatal mortality. Yet treatment, if given to a child in time, can lead to normal growth and hinder infections. However, excess iron can be damaging. Too much supplemental iron in a malnourished child promotes fatal infections since the excess iron is available for the pathogens use. Many countries do not have an effective system for diagnosing, treating, and preventing iron deficiency. Therefore a concerted international effort is needed to eliminate iron deficiency in the world. PMID:1745900

  6. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine.

    PubMed

    Henry, Rebekah; Vithanage, Nuwan; Harrison, Paul; Seemann, Torsten; Coutts, Scott; Moffatt, Jennifer H; Nation, Roger L; Li, Jian; Harper, Marina; Adler, Ben; Boyce, John D

    2012-01-01

    We recently demonstrated that colistin resistance in Acinetobacter baumannii can result from mutational inactivation of genes essential for lipid A biosynthesis (Moffatt JH, et al., Antimicrob. Agents Chemother. 54:4971-4977). Consequently, strains harboring these mutations are unable to produce the major Gram-negative bacterial surface component, lipopolysaccharide (LPS). To understand how A. baumannii compensates for the lack of LPS, we compared the transcriptional profile of the A. baumannii type strain ATCC 19606 to that of an isogenic, LPS-deficient, lpxA mutant strain. The analysis of the expression profiles indicated that the LPS-deficient strain showed increased expression of many genes involved in cell envelope and membrane biogenesis. In particular, upregulated genes included those involved in the Lol lipoprotein transport system and the Mla-retrograde phospholipid transport system. In addition, genes involved in the synthesis and transport of poly-β-1,6-N-acetylglucosamine (PNAG) also were upregulated, and a corresponding increase in PNAG production was observed. The LPS-deficient strain also exhibited the reduced expression of genes predicted to encode the fimbrial subunit FimA and a type VI secretion system (T6SS). The reduced expression of genes involved in T6SS correlated with the detection of the T6SS-effector protein AssC in culture supernatants of the A. baumannii wild-type strain but not in the LPS-deficient strain. Taken together, these data show that, in response to total LPS loss, A. baumannii alters the expression of critical transport and biosynthesis systems associated with modulating the composition and structure of the bacterial surface. PMID:22024825

  7. Maternal dietary folate and/or vitamin B12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring.

    PubMed

    Kumar, Kalle Anand; Lalitha, Anumula; Pavithra, Dhandapani; Padmavathi, Inagadapa J N; Ganeshan, Manisha; Rao, Kalashikam Rajender; Venu, Lagishetty; Balakrishna, Nagala; Shanker, Nemani Hari; Reddy, Singi Umakar; Chandak, Giriraj Ratan; Sengupta, Shantanu; Raghunath, Manchala

    2013-01-01

    Maternal vitamin deficiencies are associated with low birth weight and increased perinatal morbidity and mortality. We hypothesize that maternal folate and/or vitamin B(12) restrictions alter body composition and fat metabolism in the offspring. Female weaning Wistar rats received ad libitum for 12 weeks a control diet (American Institute of Nutrition-76A) or the same with restriction of folate, vitamin B(12) or both (dual deficient) and, after confirming vitamin deficiency, were mated with control males. The pregnant/lactating mothers and their offspring received their respective diets throughout. Biochemical and body composition parameters were determined in mothers before mating and in offspring at 3, 6, 9 and 12 months of age. Vitamin restriction increased body weight and fat and altered lipid profile in female Wistar rats, albeit differences were significant with only B(12) restriction. Offspring born to vitamin-B(12)-restricted dams had lower birth weight, while offspring of all vitamin-restricted dams weighed higher at/from weaning. They had higher body fat (specially visceral fat) from 3 months and were dyslipidemic at 12 months, when they had high circulating and adipose tissue levels of tumor necrosis factor α, leptin and interleukin 6 and low levels of adiponectin and interleukin 1β. Vitamin-restricted offspring had higher activities of hepatic fatty acid synthase and acetyl-CoA-carboxylase and higher plasma cortisol levels. In conclusion, maternal and peri-/postnatal folate and/or vitamin B(12) restriction increased visceral adiposity (due to increased corticosteroid stress), altered lipid metabolism in rat offspring perhaps by modulating adipocyte function and may thus predispose them to high morbidity later. PMID:22703962

  8. Micronutrient deficiencies in pediatric and young adult intestinal transplant patients

    PubMed Central

    Ubesie, Agozie C; Cole, Conrad R; Nathan, Jaimie D; Tiao, Greg M; Alonso, Maria H; Mezoff, Adam G; Henderson, Carol J; Kocoshis, Samuel A

    2013-01-01

    Background Intestinal transplant recipients are at risk for micronutrient deficiency due to the slow process of post-transplant adaptation. Another contributing factor is calcineurin inhibitor-induced renal tubular dysfunction. Patients are typically supplemented with micronutrients during parenteral nutrition; however the risk of deficiency may persist even after a successful transition to full enteral nutrition. Objective To determine the prevalence of, and associated risk factors for, iron, zinc, magnesium, phosphorus, selenium, copper, folate, vitamins A, D, E and B12 deficiency in pediatric intestinal transplant recipients after successful transition to full enteral nutrition. Method A retrospective review of prospectively collected data from children who underwent intestinal transplantation at Cincinnati Children's Hospital Medical Center. Deficiencies of various micronutrients were defined using the hospital reference values. Results Twenty-one intestinal transplant recipients, aged one to 23 years that were successfully transitioned to full enteral nutrition were included in the study. The prevalence of micronutrient deficiency was 95.2%. The common deficient micronutrients were iron (94.7%) and magnesium (90.5%). Age ≤10 years (P=0.002) and tube feeding (P= 0.02) were significant risk factors for micronutrient deficiencies. Conclusion Pediatric intestinal transplant recipients have a high risk of micronutrient and mineral deficiencies. These deficiencies were more common among younger patients and those who received jejunal feeding. PMID:23919810

  9. Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease.

    PubMed

    Bravatà, Valentina

    2015-02-01

    Breast cancer (BC) represents a highly heterogeneous tumour at both the clinical and molecular levels. Single-nucleotide polymorphisms (SNPs) of the folate-metabolising enzyme methylenetetrahydrofolate-reductase (MTHFR) may modify the association between folate intake and BC and influence plasma folate concentration. The role of folate in BC is equivocal, association studies between the common MTHFR SNPs C677T and A1298C and BC risk are controversial. In this study, I have reviewed observed associations between folate intake, as well as its blood levels, and BC. The purpose of this review is to analyse the role of folate and the two SNPs associated with reduced enzyme activity in BC. I explored the most relevant and updated work that emphasises positive and negative associations among these variables. My findings indicate that no definitive conclusions can be drawn from the studies on this topic. However, this manuscript highlights variables that could be useful to explore in further association analyses. PMID:25318348

  10. Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer.

    PubMed

    Raz, Shachar; Stark, Michal; Assaraf, Yehuda G

    2016-09-01

    Mammalians are devoid of autonomous biosynthesis of folates and hence must obtain them from the diet. Reduced folate cofactors are B9-vitamins which play a key role as donors of one-carbon units in the biosynthesis of purine nucleotides, thymidylate and amino acids as well as in a multitude of methylation reactions including DNA, RNA, histone and non-histone proteins, phospholipids, as well as intermediate metabolites. The products of these S-adenosylmethionine (SAM)-dependent methylations are involved in the regulation of key biological processes including transcription, translation and intracellular signaling. Folate-dependent one-carbon metabolism occurs in several subcellular compartments including the cytoplasm, mitochondria, and nucleus. Since folates are essential for DNA replication, intracellular folate cofactors play a central role in cancer biology and inflammatory autoimmune disorders. In this respect, various folate-dependent enzymes catalyzing nucleotide biosynthesis have been targeted by specific folate antagonists known as antifolates. Currently, antifolates are used in drug treatment of multiple human cancers, non-malignant chronic inflammatory disorders as well as bacterial and parasitic infections. An obligatory key component of intracellular folate retention and intracellular homeostasis is (anti)folate polyglutamylation, mediated by the unique enzyme folylpoly-γ-glutamate synthetase (FPGS), which resides in both the cytoplasm and mitochondria. Consistently, knockout of the FPGS gene in mice results in embryonic lethality. FPGS catalyzes the addition of a long polyglutamate chain to folates and antifolates, hence rendering them polyanions which are efficiently retained in the cell and are now bound with enhanced affinity by various folate-dependent enzymes. The current review highlights the crucial role that FPGS plays in maintenance of folate homeostasis under physiological conditions and delineates the plethora of the molecular mechanisms

  11. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    PubMed

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans. PMID:16213050

  12. Effect of freezing technology and storage conditions on folate content in selected vegetables.

    PubMed

    Czarnowska, Marta; Gujska, Elzbieta

    2012-12-01

    Folates (B vitamins) are essential for the proper function of many bodily processes. Although a rich natural source are vegetables, the literature lacks data on the effect of the pre-treatment and freezing technologies used in vegetable processing and frozen storage time on the folate content in these materials. Moreover, since folates are very unstable nutrients, the amount available in processed and stored foods can be significantly lower than in raw products. In tested vegetables (green beans, yellow beans, peas, cauliflower, broccoli and spinach), one folate form was identified, 5-methyltetrahydrofolate (5-CH₃-H₄folate). It was observed that pre-treatment and freezing technology significantly (p < 0.05) decreased 5-CH₃-H₄folate content only in vegetables with the largest degree of fragmentation (cut and briquetted spinach) and the smallest size (peas). In all analyzed samples, the 5-CH₃-H₄folate content decreased with the time of frozen storage. In frozen cauliflower, the 5-CH₃-H₄folate loss exceeded 95 % compared to the fresh product just after the third month of frozen storage. Meanwhile, in green and yellow beans, significant 5-CH₃-H₄folate losses (at the level of 75 % and 95 %, respectively) were observed no earlier than after the 9th month of frozen storage. PMID:22983767

  13. Expression of Folate Pathway Genes in Stage III Colorectal Cancer Correlates with Recurrence Status Following Adjuvant Bolus 5-FU-Based Chemotherapy

    PubMed Central

    Odin, Elisabeth; Sondén, Arvid; Gustavsson, Bengt; Carlsson, Göran; Wettergren, Yvonne

    2015-01-01

    Colorectal cancer is commonly treated with 5-fluorouracil and 5-formyltetrahydrofolate (leucovorin). Metabolic action of leucovorin requires several enzymatic steps that are dependent on expression of corresponding coding genes. To identify folate pathway genes with possible impact on leucovorin metabolism, a retrospective study was performed on 193 patients with stage III colorectal cancer. Relative expression of 22 genes putatively involved in leucovorin transport, polyglutamation and metabolism was determined in tumor and mucosa samples using quantitative real-time polymerase chain reaction. After surgery, patients received adjuvant 5-fluorouracil-based bolus chemotherapy with leucovorin during six months, and were followed for 3 to 5 years. Cox regression analysis showed that high tumoral expression of the genes SLC46A1/PCFT (proton-coupled folate transporter) and SLC19A1/RFC-1 (reduced folate carrier 1) correlated significantly (p < 0.001 and p < 0.01, respectively) with a decreased risk of recurrent disease, measured as disease-free survival (DFS). These two genes are involved in the transport of folates into the cells and each functions optimally at a different pH. We conclude that SLC46A1/PCFT and SLC19A1/RFC-1 are associated with DFS of patients with colorectal cancer and hypothesize that poor response to 5-fluorouracil plus leucovorin therapy in some patients may be linked to low expression of these genes. Such patients might need a more intensified therapeutic approach than those with high gene expression. Future prospective studies will determine if the expression of any of these genes can be used to predict response to leucovorin. PMID:26193446

  14. Expression of Folate Pathway Genes in Stage III Colorectal Cancer Correlates with Recurrence Status Following Adjuvant Bolus 5-FU-Based Chemotherapy.

    PubMed

    Odin, Elisabeth; Sondén, Arvid; Gustavsson, Bengt; Carlsson, Göran; Wettergren, Yvonne

    2015-01-01

    Colorectal cancer is commonly treated with 5-fluorouracil and 5-formyltetrahydrofolate (leucovorin). Metabolic action of leucovorin requires several enzymatic steps that are dependent on expression of corresponding coding genes. To identify folate pathway genes with possible impact on leucovorin metabolism, a retrospective study was performed on 193 patients with stage III colorectal cancer. Relative expression of 22 genes putatively involved in leucovorin transport, polyglutamation and metabolism was determined in tumor and mucosa samples using quantitative real-time polymerase chain reaction. After surgery, patients received adjuvant 5-fluorouracil-based bolus chemotherapy with leucovorin during six months, and were followed for 3 to 5 years. Cox regression analysis showed that high tumoral expression of the genes SLC46A1/PCFT (proton-coupled folate transporter) and SLC19A1/RFC-1 (reduced folate carrier 1) correlated significantly (p < 0.001 and p < 0.01, respectively) with a decreased risk of recurrent disease, measured as disease-free survival (DFS). These two genes are involved in the transport of folates into the cells and each functions optimally at a different pH. We conclude that SLC46A1/PCFT and SLC19A1/RFC-1 are associated with DFS of patients with colorectal cancer and hypothesize that poor response to 5-fluorouracil plus leucovorin therapy in some patients may be linked to low expression of these genes. Such patients might need a more intensified therapeutic approach than those with high gene expression. Future prospective studies will determine if the expression of any of these genes can be used to predict response to leucovorin. PMID:26193446

  15. Folates and S-adenosylmethionine for major depressive disorder.

    PubMed

    Papakostas, George I; Cassiello, Clair F; Iovieno, Nadia

    2012-07-01

    Interest in nonpharmaceutical supplements for treating major depressive disorder (MDD) has increased significantly, both among patients and among clinicians during the past decades. Despite the large array of antidepressants (ADs) available, many patients continue to experience relatively modest response and remission rates, in addition to a burden of side effects that can hinder treatment compliance and acceptability. In this article, we review the literature on folates and S-adenosylmethionine (SAMe), 2 natural compounds linked in the 1-carbon cycle metabolic pathway, for which substantial evidence supports their involvement in mood disorders. Background information, efficacy data, proposed mechanisms of action, and side effects are reviewed. Based on existing data, supplementation with SAMe, as well as with various formulations of folates, appears to be efficacious and well tolerated in reducing depressive symptoms. Compared with other forms of folates, 5-methyltetrahydrofolate (L-methylfolate or 5-MTHF) may represent a preferable treatment option for MDD given its greater bioavailability in patients with a genetic polymorphism, and the lower risk of specific side effects associated with folic acid. Although further randomized controlled trials in this area appear warranted, SAMe and L-methylfolate may represent a useful addition to the AD armamentarium. PMID:22762295

  16. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    PubMed Central

    Müller, Cristina; Reber, Josefine; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice. PMID:24633429

  17. Chemical synthesis of deuterated folate monoglutamate and in vivo assessment of urinary excretion of deuterated folates in man

    SciTech Connect

    Gregory, J.F. III; Toth, J.P.

    1988-04-01

    The synthesis and in vivo application of stable-isotopically labeled folic acid was investigated to devise methods suitable for studies of folate metabolism in human subjects. Glutamate-labeled tetradeutero-pteroylglutamic acid (d4-folic acid) was prepared by mixed anhydride coupling of N10-trifluoroacetylpteroic acid and dimethyl L-(3,3,4,4-2H4)glutamic acid, saponification in sodium deuteroxide, and chromatographic purification. Retention of the isotopic label was verified by proton NMR and mass spectrometry of the para-aminobenzoylglutamic acid product of C9-N10 bond cleavage. A method was devised for determination of of isotopic enrichment of urinary d4-folates derived from orally administered d4-folic acid using affinity chromatographic purification, chemical cleavage of the C9-N10 bond, HPLC isolation of the p-(2H4)aminobenzoylglutamate product, followed by negative-ion chemical-ionization gas chromatography/mass spectrometry. Data concerning the urinary excretion of d4-folates derived from an oral dose of d4-folic acid in an adult human are presented.

  18. Transient Neonatal Zinc Deficiency Caused by a Heterozygous G87R Mutation in the Zinc Transporter ZnT-2 (SLC30A2) Gene in the Mother Highlighting the Importance of Zn2+ for Normal Growth and Development

    PubMed Central

    Miletta, Maria Consolata; Kernland, Kristin; Schöni, Martin H.; Petkovic, Vibor; Flück, Christa E.; Eblé, Andrée; Mullis, Primus E.

    2013-01-01

    Suboptimal dietary zinc (Zn2+) intake is increasingly appreciated as an important public health issue. Zn2+ is an essential mineral, and infants are particularly vulnerable to Zn2+ deficiency, as they require large amounts of Zn2+ for their normal growth and development. Although term infants are born with an important hepatic Zn2+ storage, adequate Zn2+ nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn2+ to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn2+ deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn2+ homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn2+ by transporting it from the cytoplasm into various intracellular organelles and by moving Zn2+ into extracellular space. Zips increase intracellular Zn2+ by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn2+ homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone. PMID:24194756

  19. The role of folate in malaria - implications for home fortification programmes among children aged 6-59 months.

    PubMed

    Kupka, Roland

    2015-12-01

    Folic acid and iron supplementation has historically been recommended as the preferred anaemia control strategy among preschoolers in sub-Saharan Africa and other resource-poor settings, but home fortification of complementary foods with multiple micronutrient powders (MNPs) can now be considered the preferred approach. The World Health Organization endorses home fortification with MNPs containing at least iron, vitamin A and zinc to control childhood anaemia, and calls for concomitant malaria control strategies in malaria endemic regions. Among other micronutrients, current MNP formulations generally include 88 μg folic acid (corresponding to 100% of the Recommended Nutrient Intake). The risks and benefits of providing supplemental folic acid at these levels are unclear. The limited data available indicate that folate deficiency may not be a major public health problem among children living in sub-Saharan Africa and supplemental folic acid may therefore not have any benefits. Furthermore, supraphysiological, and possibly even physiological, folic acid dosages may favour Plasmodium falciparum growth, inhibit parasite clearance of sulphadoxine-pyrimethamine (SP)-treated malaria and increase subsequent recrudescence. Even though programmatic options to limit prophylactic SP use or to promote the use of insecticide treated bed nets may render the use of folic acid safer, programmatic barriers to these approaches are likely to persist. Research is needed to characterise the prevalence of folate deficiency among young children worldwide and to design safe MNP and other types of fortification approaches in sub-Sahara Africa. In parallel, updated global guidance is needed for MNP programmes in these regions. PMID:26756732

  20. Introduction: Prevalence of Micronutrient Deficiencies in Latin America and the Caribbean.

    PubMed

    López de Romaña, Daniel; Olivares, Manuel; Brito, Alex

    2015-06-01

    This Food and Nutrition Bulletin supplement summarizes updated prevalence data on micronutrient deficiencies in Latin America and the Caribbean (LAC). In order to provide an updated view of micronutrient status in LAC, systematic reviews were performed utilizing national health surveys and research-oriented studies focused on the prevalence of deficiencies of vitamin A, folate, anemia (as a proxy of iron deficiency), and zinc. Results show that the prevalence of vitamin A deficiency has been reduced in many countries, folate deficiency is now almost non-existent, low or marginal vitamin B12 status is still prevalent in most locations, anemia remains a public health problem among children under 6 years of age and women of childbearing age in most surveyed countries, and there is a high prevalence of zinc deficiency in children under 6 years of age and girls and women 12 to 49 years of age. Thus, regardless of improvements in the overall rates of economic growth in LAC, deficiencies of these micronutrients still remain a public health problem. PMID:26125199