Sample records for folate-induced hypermotility response

  1. Pathogenesis of NSAID-induced gastric damage: Importance of cyclooxygenase inhibition and gastric hypermotility

    PubMed Central

    Takeuchi, Koji

    2012-01-01

    This article reviews the pathogenic mechanism of non-steroidal anti-inflammatory drug (NSAID)-induced gastric damage, focusing on the relation between cyclooxygenase (COX) inhibition and various functional events. NSAIDs, such as indomethacin, at a dose that inhibits prostaglandin (PG) production, enhance gastric motility, resulting in an increase in mucosal permeability, neutrophil infiltration and oxyradical production, and eventually producing gastric lesions. These lesions are prevented by pretreatment with PGE2 and antisecretory drugs, and also via an atropine-sensitive mechanism, not related to antisecretory action. Although neither rofecoxib (a selective COX-2 inhibitor) nor SC-560 (a selective COX-1 inhibitor) alone damages the stomach, the combined administration of these drugs provokes gastric lesions. SC-560, but not rofecoxib, decreases prostaglandin E2 (PGE2) production and causes gastric hypermotility and an increase in mucosal permeability. COX-2 mRNA is expressed in the stomach after administration of indomethacin and SC-560 but not rofecoxib. The up-regulation of indomethacin-induced COX-2 expression is prevented by atropine at a dose that inhibits gastric hypermotility. In addition, selective COX-2 inhibitors have deleterious influences on the stomach when COX-2 is overexpressed under various conditions, including adrenalectomy, arthritis, and Helicobacter pylori-infection. In summary, gastric hypermotility plays a primary role in the pathogenesis of NSAID-induced gastric damage, and the response, causally related with PG deficiency due to COX-1 inhibition, occurs prior to other pathogenic events such as increased mucosal permeability; and the ulcerogenic properties of NSAIDs require the inhibition of both COX-1 and COX-2, the inhibition of COX-1 upregulates COX-2 expression in association with gastric hypermotility, and PGs produced by COX-2 counteract the deleterious effect of COX-1 inhibition. PMID:22611307

  2. An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse.

    PubMed

    Pagano, Ester; Capasso, Raffaele; Piscitelli, Fabiana; Romano, Barbara; Parisi, Olga A; Finizio, Stefania; Lauritano, Anna; Marzo, Vincenzo Di; Izzo, Angelo A; Borrelli, Francesca

    2016-01-01

    Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for "CBD botanical drug substance," on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.

  3. An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse

    PubMed Central

    Pagano, Ester; Capasso, Raffaele; Piscitelli, Fabiana; Romano, Barbara; Parisi, Olga A.; Finizio, Stefania; Lauritano, Anna; Marzo, Vincenzo Di; Izzo, Angelo A.; Borrelli, Francesca

    2016-01-01

    Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for “CBD botanical drug substance,” on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage – after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment. PMID:27757083

  4. The role of substance P in the maintenance of colonic hypermotility induced by repeated stress in rats.

    PubMed

    Lu, Ping; Luo, Hesheng; Quan, Xiaojing; Fan, Han; Tang, Qincai; Yu, Guang; Chen, Wei; Xia, Hong

    2016-04-01

    The mechanism underlying chronic stress-induced gastrointestinal (GI) dysmotility has not been fully elucidated and GI hormones have been indicated playing a role in mediating stress-induced changes in GI motor function. Our objective was to study the possible role of substance P (SP) in the colonic hypermotility induced by repeated water avoidance stress (WAS) which mimics irritable bowel syndrome. Male Wistar rats were submitted to WAS or sham WAS (SWAS) (1h/day) for up to 10 consecutive days. Enzyme Immunoassay Kit was used to detect the serum level of SP. The expression of neurokinin-1 receptor (NK1R) was investigated by Immunohistochemistry and Western blotting. The spontaneous contraction of muscle strip was studied in an organ bath system. L-type calcium channel currents (ICa,L) of smooth muscle cells (SMCs) were recorded by whole-cell patch-clamp technique. Fecal pellet expulsion and spontaneous contraction of proximal colon in rats were increased after repeated WAS. The serum level of SP was elevated following WAS. Immunohistochemistry proved the expression of NK1R in mucosa, muscularis and myenteric plexus. Western blotting demonstrated stress-induced up-regulation of NK1R in colon devoid of mucosa and submucosa. Repeated WAS increased the contractile activities of longitudinal muscle and circular muscle strips induced by SP and this effect was reversed by a selective NK1R antagonist. The ICa,L of SMCs in the WAS rats were drastically increased compared to controls after addition of SP. Increased serum SP level and up-regulated NK1R in colon may contribute to stress-induced colonic hypermotility. And L-type calcium channels play a potentially important role in the process of WAS-induced dysmotility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Folate intake, serum folate levels and esophageal cancer risk: an overall and dose-response meta-analysis.

    PubMed

    Zhao, Yan; Guo, Chenyang; Hu, Hongtao; Zheng, Lin; Ma, Junli; Jiang, Li; Zhao, Erjiang; Li, Hailiang

    2017-02-07

    Previously reported findings on the association between folate intake or serum folate levels and esophageal cancer risk have been inconsistent. This study aims to summarize the evidence regarding these relationships using a dose-response meta-analysis approach. We performed electronic searches of the Pubmed, Medline and Cochrane Library electronic databases to identify studies examining the effect of folate on the risk of esophageal cancer. Ultimately, 19 studies were included in the meta-analysis. Summary odds ratios (ORs) were estimated using a random effects model. A linear regression analysis of the natural logarithm of the OR was carried out to assess the possible dose-response relationship between folate intake and esophageal cancer risk. The pooled ORs for esophageal cancer in the highest vs. lowest levels of dietary folate intake and serum folate were 0.63 (95% CI: 0.56-0.71) and 0.71 (95% CI: 0.55-0.92), respectively. The dose-response meta-analysis indicated that a 100 μg/day increment in dietary folate intake reduced the estimate risk of esophageal cancer by 12%. These findings suggest that dietary and serum folate exert a protective effect against esophageal carcinogenesis.

  6. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice

    PubMed Central

    Izzo, Angelo A; Capasso, Raffaele; Aviello, Gabriella; Borrelli, Francesca; Romano, Barbara; Piscitelli, Fabiana; Gallo, Laura; Capasso, Francesco; Orlando, Pierangelo; Di Marzo, Vincenzo

    2012-01-01

    BACKGROUND AND PURPOSE Cannabichromene (CBC) is a major non-psychotropic phytocannabinoid that inhibits endocannabinoid inactivation and activates the transient receptor potential ankyrin-1 (TRPA1). Both endocannabinoids and TRPA1 may modulate gastrointestinal motility. Here, we investigated the effect of CBC on mouse intestinal motility in physiological and pathological states. EXPERIMENTAL APPROACH Inflammation was induced in the mouse small intestine by croton oil. Endocannabinoid (anandamide and 2-arachidonoyl glycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry; TRPA1 and cannabinoid receptors were analysed by quantitative RT-PCR; upper gastrointestinal transit, colonic propulsion and whole gut transit were evaluated in vivo; contractility was evaluated in vitro by stimulating the isolated ileum, in an organ bath, with ACh or electrical field stimulation (EFS). KEY RESULTS Croton oil administration was associated with decreased levels of anandamide (but not 2-arachidonoyl glycerol) and palmitoylethanolamide, up-regulation of TRPA1 and CB1 receptors and down-regulation of CB2 receptors. Ex vivo CBC did not change endocannabinoid levels, but it altered the mRNA expression of TRPA1 and cannabinoid receptors. In vivo, CBC did not affect motility in control mice, but normalized croton oil-induced hypermotility. In vitro, CBC reduced preferentially EFS- versus ACh-induced contractions. Both in vitro and in vivo, the inhibitory effect of CBC was not modified by cannabinoid or TRPA1 receptor antagonists. CONCLUSION AND IMPLICATIONS CBC selectively reduces inflammation-induced hypermotility in vivo in a manner that is not dependent on cannabinoid receptors or TRPA1. PMID:22300105

  7. Subacute combined degeneration of the cord due to folate deficiency: response to methyl folate treatment.

    PubMed Central

    Lever, E G; Elwes, R D; Williams, A; Reynolds, E H

    1986-01-01

    Subacute combined degeneration of the cord is a rare complication of folate deficiency. Disturbance of methylation reactions in nervous tissue probably underlie subacute combined degeneration of the cord arising from folate as well as vitamin B12 deficiency. Methyl tetrahydrofolate is the form in which folic acid is transported into the CNS. Therefore methyl tetrahydrofolate treatment of the neurological and psychiatric manifestations of folate deficiency would seem to be theoretically advantageous. A case of subacute combined degeneration of the cord due to dietary folate deficiency and associated with an organic brain syndrome is reported. There was striking haematological, neurological and psychiatric response to methyl folate treatment. PMID:3783183

  8. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  9. Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice.

    PubMed

    Capasso, R; Borrelli, F; Aviello, G; Romano, B; Scalisi, C; Capasso, F; Izzo, A A

    2008-07-01

    Cannabidiol is a Cannabis-derived non-psychotropic compound that exerts a plethora of pharmacological actions, including anti-inflammatory, neuroprotective and antitumour effects, with potential therapeutic interest. However, the actions of cannabidiol in the digestive tract are largely unexplored. In the present study, we investigated the effect of cannabidiol on intestinal motility in normal (control) mice and in mice with intestinal inflammation. Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine; intestinal inflammation was induced by the irritant croton oil; contractility in vitro was evaluated by stimulating the isolated ileum, in an organ bath, with ACh. In vivo, cannabidiol did not affect motility in control mice, but normalized croton oil-induced hypermotility. The inhibitory effect of cannabidiol was counteracted by the cannabinoid CB1 receptor antagonist rimonabant, but not by the cannabinoid CB2 receptor antagonist SR144528 (N-[-1S-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide), by the opioid receptor antagonist naloxone or by the alpha2-adrenergic antagonist yohimbine. Cannabidiol did not reduce motility in animals treated with the fatty acid amide hydrolase (FAAH) inhibitor N-arachidonoyl-5-hydroxytryptamine, whereas loperamide was still effective. In vitro, cannabidiol inhibited ACh-induced contractions in the isolated ileum from both control and croton oil-treated mice. Cannabidiol selectively reduces croton oil-induced hypermotility in mice in vivo and this effect involves cannabinoid CB1 receptors and FAAH. In view of its low toxicity in humans, cannabidiol may represent a good candidate to normalize motility in patients with inflammatory bowel disease.

  10. Brain-Derived Neurotrophic Factor Contributes to Colonic Hypermotility in a Chronic Stress Rat Model.

    PubMed

    Quan, Xiaojing; Luo, Hesheng; Fan, Han; Tang, Qincai; Chen, Wei; Cui, Ning; Yu, Guang; Xia, Hong

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) has prokinetic effects on gut motility and is increased in the colonic mucosa of irritable bowel syndrome. We aimed to investigate the possible involvement of BDNF in stress-induced colonic hypermotility. Male Wistar rats were exposed to daily 1-h water avoidance stress (WAS) or sham WAS for 10 consecutive days. The presence of BDNF and substance P (SP) in the colonic mucosa was determined using enzyme immunoassay kits. Immunohistochemistry and western blotting were performed to assess the expression of BDNF and its receptor, TrkB. The contractions of muscle strips were studied in an organ bath system. Repeated WAS increased the fecal pellet expulsion and spontaneous contractile activities of the colonic muscle strips. Both BDNF and SP in the colonic mucosa were elevated following WAS. Immunohistochemistry revealed the presence of BDNF and TrkB in the mucosa and myenteric plexus. BDNF and TrkB were both up-regulated in colon devoid of mucosa and submucosa from the stressed rats compared with the control. BDNF pretreatment caused an enhancement of the SP-induced contraction of the circular muscle (CM) strips. TrkB antibody significantly inhibited the contraction of the colonic muscle strips and attenuated the excitatory effects of SP on contractions of the CM strips. Repeated WAS increased the contractile activities of the CM strips induced by SP after BDNF pretreatment, and this effect was reversed by TrkB antibody. The colonic hypermotility induced by repeated WAS may be associated with the increased expression of endogenous BDNF and TrkB. BDNF may have potential clinical therapeutic use in modulating gut motility.

  11. N-acetyltransferase 2 activity and folate levels

    PubMed Central

    Cao, Wen; Strnatka, Diana; McQueen, Charlene A.; Hunter, Robert J.; Erickson, Robert P.

    2010-01-01

    Aims To determine whether increased N-acetyltransferase (NAT) activity might have a toxic effect during development and an influence on folate levels since previous work has shown that only low levels of exogenous NAT can be achieved in constitutionally transgenic mice (Cao, et al, 2005) Main Methods A human NAT1 tet-inducible construct was used that would not be expressed until the inducer was delivered. Human NAT1 cDNA was cloned into pTRE2 and injected into mouse oocytes. Two transgenic lines were crossed to mouse line TgN(rtTahCMV)4Uh containing the CMV promoted “teton.”Measurements of red blood cell folate levels in inbred strains of mice were performed. Key findings Only low levels of human NAT1 could be achieved in kidney (highly responsive in other studies) whether the inducer, doxycycline, was given by gavage or in drinking water.An inverse correlation of folate levels with Nat2 enzyme activity was found. Significance Since increasing NAT1 activity decrease folate in at least one tissue, the detrimental effect of expression of human NAT1 in combination with endogenous mouse Nat2 may be a consequence of increased catabolism of folate. PMID:19932120

  12. Gender and body size affect the response of erythrocyte folate to folic acid treatment.

    PubMed

    Winkels, Renate M; Brouwer, Ingeborg A; Verhoef, Petra; van Oort, Floor V A; Durga, Jane; Katan, Martijn B

    2008-08-01

    The recommended dietary allowance (RDA) differs between men and women for some vitamins, but not for folate. The RDA for folate is derived mainly from metabolic studies in women. We assessed if men differ from women in their response of erythrocyte folate to folic acid supplementation. We used data from 2 randomized placebo-controlled trials with folic acid: a 3-y trial in which subjects ingested 800 mug/d of folic acid (294 men and 112 women) and a 12-wk trial in which 187 men and 129 women ingested 0, 50, 100, 200, 400, 600, or 800 microg/d of folic acid in a parallel design (n = 38-42 per treatment group). In the 3-y trial, the erythrocyte folate concentration increased 10% (143 nmol/L, [95%CI 46, 241]) less in men than in women. In the 12-wk trial, regression analysis showed that the response of erythrocyte folate upon folic acid intake for men was 47 nmol/L lower than for women (P for beta(gender) = 0.022); for an intake of 800 microg/d folic acid, this resulted in a 5% lower response in men than in women. Differences in lean body size explained 56% of the difference in response of erythrocyte folate between men and women in the 3-y trial and 70% in the 12-wk trial. Men need more folic acid than women to achieve the same erythrocyte folate concentration, mainly because men have a larger lean body mass. This could be an indication that the RDA for folate should be higher for men than for women, or that the RDA should be expressed per kilogram of lean body mass.

  13. A NOS3 polymorphism determines endothelial response to folate in children with type 1 diabetes or obesity.

    PubMed

    Wiltshire, Esko J; Peña, Alexia S; MacKenzie, Karen; Bose-Sundernathan, Tulika; Gent, Roger; Couper, Jennifer J

    2015-02-01

    To determine the effect of polymorphisms in NOS3 and folate pathway enzymes on vascular function and folate status and endothelial response to folate in children with diabetes or obesity. A total of 244 subjects (age 13.8 ± 2.8 years, 125 males) were studied for NOS3 and/or folate pathway polymorphisms using polymerase chain reaction/restriction fragment length polymorphism, including at baseline: 139 with type 1 diabetes; 58 with obesity; and 47 controls. The effect of NOS3 genotype on endothelial response to folate (5 mg) was assessed in 85 subjects with diabetes and 28 obese subjects who received active treatment during intervention trials. Vascular function (flow-mediated dilatation [FMD] and glyceryl trinitrate-mediated dilatation), clinical, and biochemical measurements were assessed at baseline and 8 weeks in folate intervention studies. Folate pathway enzyme and NOS3 polymorphisms did not significantly affect baseline vascular function. The polymorphism in intron 4 of endothelial nitric oxide synthase altered endothelial response to folate significantly: in subjects with diabetes FMD improved by 6.4 ± 5% (insertion carriers) vs 2.3 ± 6.6% (deletion carriers), P = .01; in obese subjects FMD improved by 1.8 ± 5.4% (insertion carriers) and deteriorated by -3.2 ± 7.2% (deletion carriers), P = .05. More subjects carrying the insertion normalized FMD after folate supplementation (insertion 64% vs deletion 28%, χ(2) = 10.14, P = .001). A NOS3 polymorphism predicts endothelial response to folate in children with diabetes or obesity, with implications for vascular risk and folate intervention studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer

    PubMed Central

    Wen, Yunfei; Graybill, Whitney S.; Previs, Rebecca A.; Hu, Wei; Ivan, Cristina; Mangala, Lingegowda S.; Zand, Behrouz; Nick, Alpa M.; Jennings, Nicholas B.; Dalton, Heather J.; Sehgal, Vasudha; Ram, Prahlad; Lee, Ju-Seog; Vivas-Mejia, Pablo E.; Coleman, Robert L.; Sood, Anil K.

    2014-01-01

    Purpose Cancer cells are highly dependent on folate metabolism, making them susceptible to drugs that inhibit folate receptor activities. Targeting overexpressed folate receptor alpha (FRα) in cancer cells offers a therapeutic opportunity. We investigated the functional mechanisms of MORAB-003 (farletuzumab), a humanized monoclonal antibody against FRα, in ovarian cancer models. Experimental Design We first examined FRα expression in an array of human ovarian cancer cell lines and then assessed the in vivo effect of MORAB-003 on tumor growth and progression in several orthotopic mouse models of ovarian cancer derived from these cell lines. Molecular mechanisms of tumor cell death induced by MORAB-003 were investigated by cDNA and protein expression profiling analysis. Mechanistic studies were performed to determine the role of autophagy in MORAB-003–induced cell death. Results MORAB-003 significantly decreased tumor growth in the high-FRα IGROV1 and SKOV3ip1 models but not in the low-FRα A2780 model. MORAB-003 reduced proliferation but had no significant effect on apoptosis. Protein expression and cDNA microarray analyses showed that MORAB-003 regulated an array of autophagy-related genes. It also significantly increased expression of LC3 isoform II and enriched autophagic vacuolization. Blocking autophagy with hydroxychloroquine or bafilomycin A1 reversed the growth inhibition induced by MORAB-003. In add, alteration of FOLR1 gene copy number significantly correlated with shorter disease-free survival in patients with ovarian serous cystadenocarcinoma. Conclusions MORAB-003 displays prominent antitumor activity in ovarian cancer models expressing FRα at high levels. Blockade of folate receptor by MORAB-003 induced sustained autophagy and suppressed cell proliferation. PMID:25416196

  15. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  16. EFFECTS OF DIETARY FOLATE ON ARSENIC-INDUCED GENE EXPRESSION IN MICE

    EPA Science Inventory

    Effects of Dietary Folate on Arsenic-induced Gene Expression in Mice

    Arsenic, a drinking water contaminant, is a known carcinogen. Human exposure to inorganic arsenic has been linked to tumors of skin, bladder, lung, and to a lesser extent, kidney and liver. Dietary fola...

  17. Urokinase-type plasminogen activator receptor (uPAR) ligation induces a raft-localized integrin signaling switch that mediates the hypermotile phenotype of fibrotic fibroblasts.

    PubMed

    Grove, Lisa M; Southern, Brian D; Jin, Tong H; White, Kimberly E; Paruchuri, Sailaja; Harel, Efrat; Wei, Ying; Rahaman, Shaik O; Gladson, Candece L; Ding, Qiang; Craik, Charles S; Chapman, Harold A; Olman, Mitchell A

    2014-05-02

    The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5β1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with β1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5β1 integrin and uPAR drive the translocation of α5β1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.

  18. Gene specific epigenetic regulation of hepatic folate transport system is responsible for perturbed cellular folate status during aging and exogenous modulation.

    PubMed

    Ahmad Najar, Rauf; Rahat, Beenish; Hussain, Aashiq; Thakur, Shilpa; Kaur, Jaspreet; Kaur, Jyotdeep; Hamid, Abid

    2016-06-01

    The present study was designed to identify the molecular mechanism of folate modulation and aging on aberrant liver folate transporter system. An in vivo rat model was used, in which weanling, young and adult rats were given folate deficient diet for 3 and 5 months and after 3 months of folate deficiency, one group received physiological folate repletion (2 mg/kg diet) and another group received over supplemented folate diet (8 mg/kg diet) for another 2 months. In adult group, 3 and 5 months of folate deficiency decreased serum and tissue folate levels with decreased uptake of folate, further associated with decreased expression levels of reduced folate carrier (RFC) and increased expression levels of folate exporter (ABCG2) at both mRNA and protein levels, which in turn regulated by promoter hypermethylation of RFC and promoter hypomethylation of ABCG2 gene. Promoter hypermethylation of RFC and promoter hypomethylation of ABCG2 may be attributed to the down regulation of RFC and up regulation of ABCG2 at mRNA and protein levels in conditions of 3 and 5 months of folate deficiency in the adult group. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  20. Folate, Alcohol, and Liver Disease

    PubMed Central

    Medici, Valentina; Halsted, Charles H.

    2013-01-01

    Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of alcoholic liver disease with particular focus on ethanol-induced alterations in methionine metabolism which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of alcoholic liver disease based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. PMID:23136133

  1. Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats.

    PubMed

    Abe, Ikumi; Shirato, Ken; Hashizume, Yoko; Mitsuhashi, Ryosuke; Kobayashi, Ayumu; Shiono, Chikako; Sato, Shogo; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2013-01-01

    Folate (vitamin B(9)) plays key roles in cell growth and proliferation through regulating the synthesis and stabilization of DNA and RNA, and its deficiency leads to lymphocytopenia and granulocytopenia. However, precisely how folate deficiency affects the distribution of a variety of white blood cell subsets, including the minor population of basophils, and the cell specificity of the effects remain unclear. Therefore, we examined the effects of a folate-deficient diet on the circulating number of lymphocyte subsets [T-lymphocytes, B-lymphocytes, and natural killer (NK) cells] and granulocyte subsets (neutrophils, eosinophils, and basophils) in rats. Rats were divided into two groups, with one receiving the folate-deficient diet (FAD group) and the other a control diet (CON group). All rats were pair-fed for 8 weeks. Plasma folate level was dramatically lower in the FAD group than in the CON group, and the level of homocysteine in the plasma, a predictor of folate deficiency was significantly higher in the FAD group than in the CON group. The number of T-lymphocytes, B-lymphocytes, and NK cells was significantly lower in the FAD group than in the CON group by 0.73-, 0.49-, and 0.70-fold, respectively, indicating that B-lymphocytes are more sensitive to folate deficiency than the other lymphocyte subsets. As expected, the number of neutrophils and eosinophils was significantly lower in the FAD group than in the CON group. However, the number of basophils, the least common type of granulocyte, showed transiently an increasing tendency in the FAD group as compared with the CON group. These results suggest that folate deficiency induces lymphocytopenia and granulocytopenia in a cell-specific manner.

  2. EFFECT OF VARYING MATERNAL FOLATE STATUS AND DIETARY FOLATE INTAKE ON RESPONSE TO DIVERSE DEVELOPMENTAL TOXICANTS IN THE RAT

    EPA Science Inventory

    Periconceptional and early pregnancy folate supplements are associated with reduced recurrence and occurrence of birth defects in humans. This study was undertaken to assess the influence of maternal folate status and dietary folate intake on outcome of exposures to diverse terat...

  3. Folate and human reproduction.

    PubMed

    Tamura, Tsunenobu; Picciano, Mary Frances

    2006-05-01

    The influence of folate nutritional status on various pregnancy outcomes has long been recognized. Studies conducted in the 1950s and 1960s led to the recognition of prenatal folic acid supplementation as a means to prevent pregnancy-induced megaloblastic anemia. In the 1990s, the utility of periconceptional folic acid supplementation and folic acid food fortification emerged when they were proven to prevent the occurrence of neural tube defects. These distinctively different uses of folic acid may well be ranked among the most significant public health measures for the prevention of pregnancy-related disorders. Folate is now viewed not only as a nutrient needed to prevent megaloblastic anemia in pregnancy but also as a vitamin essential for reproductive health. This review focuses on the relation between various outcomes of human reproduction (ie, pregnancy, lactation, and male reproduction) and folate nutrition and metabolism, homocysteine metabolism, and polymorphisms of genes that encode folate-related enzymes or proteins, and we identify issues for future research.

  4. Pretreatment red blood cell total folate is associated with response to pemetrexed in stage IV non-squamous non-small-cell lung cancer

    PubMed Central

    Bagley, Stephen J.; Vitale, Steven; Zhang, Suhong; Aggarwal, Charu; Evans, Tracey L.; Alley, Evan W.; Cohen, Roger B.; Langer, Corey J.; Blair, Ian A.; Vachani, Anil; Whitehead, Alexander S.

    2016-01-01

    Objectives Pemetrexed inhibits folate-dependent enzymes involved in pyrimidine and purine synthesis. Prior studies of genetic variation in these enzymes as predictors of pemetrexed efficacy have yielded inconsistent results. We investigated whether red blood cell (RBC) total folate, a phenotypic rather than genotypic marker of cellular folate status, was associated with response to pemetrexed-based chemotherapy in advanced non-squamous non-small-cell lung cancer (NSCLC). Materials and methods We conducted a prospective cohort study of patients with stage IV non-squamous NSCLC receiving first-line chemotherapy containing pemetrexed. Pretreatment RBC total folate was quantified using liquid chromatography/mass spectrometry. We then compared objective response rate (ORR) between patients with RBC total folate concentrations above and below an optimal cut-off value determined from the receiver operating characteristic (ROC) curve. A logistic regression model was used to adjust for age, sex, and use of bevacizumab. Results The ORR was 62% (32 of 52 patients). ROC analysis was used to establish that a RBC total folate cutoff value of 364.6 nM optimally discriminated between pemetrexed responders and non-responders. Patients with RBC total folate below 364.5 nM had an ORR of 27%, compared to 71% in patients with RBC total folate above this value (p=0.01). This difference persisted after adjusting for age, sex, and use of bevacizumab (OR 0.07, 95% CI 0.01 - 0.57, p=0.01). Conclusions Low pretreatment RBC total folate is associated with inferior response to pemetrexed-based chemotherapy in stage IV non-squamous NSCLC. Larger, multicenter studies are needed to validate RBC total folate as a predictive marker of pemetrexed response. PMID:27863923

  5. Characterization and Interrelations of One-Carbon Metabolites in Tissues, Erythrocytes, and Plasma in Mice with Dietary Induced Folate Deficiency

    PubMed Central

    Kopp, Markus; Morisset, Rosalie; Rychlik, Michael

    2017-01-01

    Studies on one-carbon metabolism for the assessment of folate deficiency have focused on either metabolites of folate metabolism or methionine cycle. To bridge the gap between deficiency markers in these pathways we designed a dietary induced folate deficiency study using male C57BL/6N mice. After weaning (3 weeks) mice were fed a defined control diet (1 week) before being fed a folate deficient diet (n = 6 mice) and the control diet (n = 6 mice) for 12 additional weeks. Thereafter, we determined total homocysteine in plasma and folate in erythrocytes as well as S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers in tissues including 5-methyltetrahydrofolate, 5-formyltetrahydrofolate, 5,10-methenyltetrahydrofolate, tetrahydrofolate, 10-formylfolic acid, and folic acid by means of stable isotope dilution assays coupled with liquid chromatography tandem mass spectrometry. In all organs, except heart (mainly 5-mehtyltetrahydrofolate), tetrahydrofolate constitutes the main vitamer. Moreover, in liver tetrahydrofolate was most abundant followed by 5-methyltetrahydrofolate (heart: tetrahydrofolate), 5-formyltetrahydrofolate, and 5,10-methenyltetrahydrofolate. Because of the significant decrease (p < 0.05) of folate status and S-adenosylmethionine/S-adenosylhomocysteine ratio accompanied with increasing S-adenosylhomocysteine (p < 0.05), hepatocytes are most susceptible to folate deficiency. To the best of our knowledge, we herein present the first method for simultaneous quantitation of eight metabolites for both folate and methionine cycle in one tissue sample, tHcy in plasma, and erythrocyte folate to shed light on physiological interrelations of one-carbon metabolism. PMID:28475162

  6. Pretreatment Red Blood Cell Total Folate Concentration Is Associated With Response to Pemetrexed in Stage IV Nonsquamous Non-Small-cell Lung Cancer.

    PubMed

    Bagley, Stephen J; Vitale, Steven; Zhang, Suhong; Aggarwal, Charu; Evans, Tracey L; Alley, Evan W; Cohen, Roger B; Langer, Corey J; Blair, Ian A; Vachani, Anil; Whitehead, Alexander S

    2017-03-01

    Pemetrexed inhibits folate-dependent enzymes involved in pyrimidine and purine synthesis. Previous studies of genetic variation in these enzymes as predictors of pemetrexed efficacy have yielded inconsistent results. We investigated whether red blood cell (RBC) total folate, a phenotypic rather than genotypic, marker of cellular folate status was associated with the response to pemetrexed-based chemotherapy in advanced nonsquamous non-small-cell lung cancer (NSCLC). We conducted a prospective cohort study of patients with stage IV nonsquamous NSCLC receiving first-line chemotherapy containing pemetrexed. The pretreatment RBC total folate level was quantified using liquid chromatography mass spectrometry. We then compared the objective response rate (ORR) between patients with RBC total folate concentrations greater than and less than an optimal cutoff value determined from the receiver operating characteristic curve. A logistic regression model was used to adjust for age, sex, and the use of bevacizumab. The ORR was 62% (32 of 52 patients). Receiver operating characteristic analysis was used to establish that a RBC total folate cutoff value of 364.6 nM optimally discriminated between pemetrexed responders and nonresponders. Patients with RBC total folate < 364.5 nM had an ORR of 27% compared with 71% for patients with RBC total folate > 364.5 nM (P = .01). This difference persisted after adjusting for age, sex, and the use of bevacizumab (odds ratio, 0.07; 95% confidence interval, 0.01-0.57; P = .01). A low pretreatment RBC total folate was associated with an inferior response to pemetrexed-based chemotherapy in stage IV nonsquamous NSCLC. Larger, multicenter studies are needed to validate RBC total folate as a predictive marker of pemetrexed response. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption.

    PubMed

    Kishimoto, Kenji; Kobayashi, Ryoji; Sano, Hirozumi; Suzuki, Daisuke; Maruoka, Hayato; Yasuda, Kazue; Chida, Natsuko; Yamada, Masafumi; Kobayashi, Kunihiko

    2014-07-01

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder. Severe folate deficiency in HFM can result in immunodeficiency. We describe a female infant with HFM who acquired severe Pneumocystis pneumonia. The objective of the present study was to elucidate her immunological phenotype and to examine the time course of immune recovery following parenteral folate therapy. The patient demonstrated a combined immunodeficiency with an impaired T cell proliferation response, pan-hypogammaglobulinemia, and an imbalanced pro-inflammatory cytokine profile. She had normal white blood cell count, normal lymphocyte subsets, and normal complement levels. Two novel mutations were identified within the SLC46A1 gene to produce a compound heterozygote. We confirmed full recovery of her immunological and neurophysiological status with parenteral folate replacement. The time course of recovery of her immunological profile varied widely, however. HFM should be recognized as a unique form of immunodeficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Lower Circulating Folate Induced by a Fidgetin Intronic Variant Is Associated With Reduced Congenital Heart Disease Susceptibility.

    PubMed

    Wang, Dan; Wang, Feng; Shi, Kai-Hu; Tao, Hui; Li, Yang; Zhao, Rui; Lu, Han; Duan, Wenyuan; Qiao, Bin; Zhao, Shi-Min; Wang, Hongyan; Zhao, Jian-Yuan

    2017-05-02

    dihydrofolate reductase via inhibition of their proteasomal degradation, which promoted folate absorption and metabolism. We report a previously undocumented finding that decreased circulating folate levels induced by increased folate transmembrane transport and utilization, as determined by the FIGN intronic variant, serves as a protective mechanism against CHD. Our results may explain why circulating folate levels do not have a good diagnostic value. © 2017 American Heart Association, Inc.

  9. Folate dietary insufficiency and folic acid supplementation similarly impair metabolism and compromise hematopoiesis

    PubMed Central

    Henry, Curtis J.; Nemkov, Travis; Casás-Selves, Matias; Bilousova, Ganna; Zaberezhnyy, Vadym; Higa, Kelly C.; Serkova, Natalie J.; Hansen, Kirk C.; D’Alessandro, Angelo; DeGregori, James

    2017-01-01

    While dietary folate deficiency is associated with increased risk for birth defects and other diseases, evidence suggests that supplementation with folic acid can contribute to predisposition to some diseases, including immune dysfunction and cancer. Herein, we show that diets supplemented with folic acid both below and above the recommended levels led to significantly altered metabolism in multiple tissues in mice. Surprisingly, both low and excessive dietary folate induced similar metabolic changes, which were particularly evident for nucleotide biosynthetic pathways in B-progenitor cells. Diet-induced metabolic changes in these cells partially phenocopied those observed in mice treated with anti-folate drugs, suggesting that both deficiency and excessive levels of dietary folic acid compromise folate-dependent biosynthetic pathways. Both folate deficiency and excessive dietary folate levels compromise hematopoiesis, resulting in defective cell cycle progression, persistent DNA damage, and impaired production of lymphocytes. These defects reduce the reconstitution potential in transplantation settings and increase radiation-induced mortality. We conclude that excessive folic acid supplementation can metabolically mimic dietary folate insufficiency, leading to similar functional impairment of hematopoiesis. PMID:28883079

  10. Systematic Review of Observational Studies with Dose-Response Meta-Analysis between Folate Intake and Status Biomarkers in Adults and the Elderly.

    PubMed

    Novaković, Romana; Geelen, Anouk; Ristić-Medić, Danijela; Nikolić, Marina; Souverein, Olga W; McNulty, Helene; Duffy, Maresa; Hoey, Leane; Dullemeijer, Carla; Renkema, Jacoba M S; Gurinović, Mirjana; Glibetić, Marija; de Groot, Lisette C P G M; Van't Veer, Pieter

    2018-06-07

    Dietary reference values for folate intake vary widely across Europe. MEDLINE and Embase through November 2016 were searched for data on the association between folate intake and biomarkers (serum/plasma folate, red blood cell [RBC] folate, plasma homocysteine) from observational studies in healthy adults and elderly. The regression coefficient of biomarkers on intake (β) was extracted from each study, and the overall and stratified pooled β and SE (β) were obtained by random effects meta-analysis on a double log scale. These dose-response estimates may be used to derive folate intake reference values. For every doubling in folate intake, the changes in serum/plasma folate, RBC folate and plasma homocysteine were +22, +21, and -16% respectively. The overall pooled regression coefficients were β = 0.29 (95% CI 0.21-0.37) for serum/plasma folate (26 estimates from 17 studies), β = 0.28 (95% CI 0.21-0.36) for RBC (13 estimates from 11 studies), and β = -0.21 (95% CI -0.31 to -0.11) for plasma homocysteine (10 estimates from 6 studies). These estimates along with those from randomized controlled trials can be used for underpinning dietary recommendations for folate in adults and elderly. © 2018 S. Karger AG, Basel.

  11. The influence of folate serum levels on depressive mood and mental processing in patients with epilepsy treated with enzyme-inducing anti-epileptic drugs.

    PubMed

    Rösche, J; Uhlmann, C; Weber, R; Fröscher, W

    2003-04-01

    Folate deficiency is common in patients with epilepsy and also occurs in patients with depression or cognitive deficits. This study investigates whether low serum folate levels may contribute to depressive mood and difficulties in mental processing in patients with epilepsy treated with anti-epileptic drugs inducing the cytochrome P450. We analysed the serum folate levels, the score in the Self Rating Depression Scale (SDS) and the results of a bedside test in mental processing in 54 patients with epilepsy. There was a significant negative correlation between the serum folate levels and the score in SDS and significant positive correlations between the score in SDS and the time needed to process an interference task or a letter-reading task. Low serum folate levels may contribute to depressive mood and therefore to difficulties in mental processing. Further studies utilizing total plasma homocysteine as a sensitive measure of functional folate deficiency and more elaborate tests of mental processing are required to elucidate the impact of folate metabolism on depressive mood and cognitive function in patients with epilepsy.

  12. Toxoplasma gondii-infected natural killer cells display a hypermotility phenotype in vivo.

    PubMed

    Ueno, Norikiyo; Lodoen, Melissa B; Hickey, Graeme L; Robey, Ellen A; Coombes, Janine L

    2015-01-01

    Toxoplasma gondii is a highly prevalent intracellular protozoan parasite that causes severe disease in congenitally infected or immunocompromised hosts. T. gondii is capable of invading immune cells and it has been suggested that the parasite harnesses the migratory pathways of these cells to spread through the body. Although in vitro evidence suggests that the parasite further enhances its spread by inducing a hypermotility phenotype in parasitized immune cells, in vivo evidence for this phenomenon is scarce. Here we use a physiologically relevant oral model of T. gondii infection, in conjunction with two-photon laser scanning microscopy, to address this issue. We found that a small proportion of natural killer (NK) cells in mesenteric lymph nodes contained parasites. Compared with uninfected 'bystander' NK cells, these infected NK cells showed faster, more directed and more persistent migratory behavior. Consistent with this, infected NK cells showed impaired spreading and clustering of the integrin, LFA-1, when exposed to plated ligands. Our results provide the first evidence for a hypermigratory phenotype in T. gondii-infected NK cells in vivo, providing an anatomical context for understanding how the parasite manipulates immune cell motility to spread through the host.

  13. Folate

    MedlinePlus

    ... Guidelines for Americans and the U.S. Department of Agriculture's MyPlate . Where can I find out more about ... on food sources of folate: U.S. Department of Agriculture's (USDA) National Nutrient Database Nutrient List for folate ( ...

  14. Assessing the association between natural food folate intake and blood folate concentrations: a systematic review and Bayesian meta-analysis of trials and observational studies.

    PubMed

    Marchetta, Claire M; Devine, Owen J; Crider, Krista S; Tsang, Becky L; Cordero, Amy M; Qi, Yan Ping; Guo, Jing; Berry, Robert J; Rosenthal, Jorge; Mulinare, Joseph; Mersereau, Patricia; Hamner, Heather C

    2015-04-10

    Folate is found naturally in foods or as synthetic folic acid in dietary supplements and fortified foods. Adequate periconceptional folic acid intake can prevent neural tube defects. Folate intake impacts blood folate concentration; however, the dose-response between natural food folate and blood folate concentrations has not been well described. We estimated this association among healthy females. A systematic literature review identified studies (1 1992-3 2014) with both natural food folate intake alone and blood folate concentration among females aged 12-49 years. Bayesian methods were used to estimate regression model parameters describing the association between natural food folate intake and subsequent blood folate concentration. Seven controlled trials and 29 observational studies met the inclusion criteria. For the six studies using microbiologic assay (MA) included in the meta-analysis, we estimate that a 6% (95% Credible Interval (CrI): 4%, 9%) increase in red blood cell (RBC) folate concentration and a 7% (95% CrI: 1%, 12%) increase in serum/plasma folate concentration can occur for every 10% increase in natural food folate intake. Using modeled results, we estimate that a natural food folate intake of ≥ 450 μg dietary folate equivalents (DFE)/day could achieve the lower bound of an RBC folate concentration (~ 1050 nmol/L) associated with the lowest risk of a neural tube defect. Natural food folate intake affects blood folate concentration and adequate intakes could help women achieve a RBC folate concentration associated with a risk of 6 neural tube defects/10,000 live births.

  15. Response of serum and red blood cell folate concentrations to folic acid supplementation depends on methylenetetrahydrofolate reductase C677T genotype: Results from a crossover trial

    PubMed Central

    Anderson, Cheryl A.M.; Beresford, Shirley A. A.; McLerran, Dale; Lampe, Johanna W.; Deeb, Samir; Feng, Ziding; Motulsky, Arno G.

    2013-01-01

    Scope By increasing blood folate concentrations, folic acid supplementation reduces risk for neural tube defect-affected pregnancies, and lowers homocysteine concentrations. We assessed response of red blood cell (RBC) and serum folate to folic acid supplementation, and examined association of response with the genetic polymorphism C677T of the methylenetetrahydrofolate NAD(P)H (MTHFR) gene. Methods and Results Randomized, controlled, crossover trial with two folic acid supplement treatment periods and a 30-week washout period. The primary outcome is blood folate (serum and RBC) concentrations. Volunteers (n=142) aged 18-69 were randomized to two of three doses (0, 200, and 400 μg) of folic acid for twelve weeks. Serum folate response depended on treatment period with significant responses to 200 μg seen only in the second treatment periods (4.4 ng/mL or 3.4 ng/mL). Additionally, serum folate increased as folic acid dose increased to 400 μg (p< 0.01) and response was greater after the washout period (8.7 ng/mL), than after a 6-week run-in (2.3 ng/mL). The differential change attributable to a daily supplement of 400 μg compared to 200 μg was 96.8 ng/mL; while the change attributable to 400 μg compared to 0 μg was 121.4. Increases in RBC folate concentrations with 400 μg occurred within MTHFR gene mutation (C677T); and in the African American group. Conclusions Serum folate concentration is responsive to modest increases in folic acid intake. Red blood cell folate increases only with higher additional doses of folic acid supplementation, and this is true for each MTHFR C677T genotype. PMID:23456769

  16. Novel insights on interactions between folate and lipid metabolism

    PubMed Central

    da Silva, Robin P; Kelly, Karen B; Al Rajabi, Ala; Jacobs, René L

    2014-01-01

    Folate is an essential B vitamin required for the maintenance of AdoMet-dependent methylation. The liver is responsible for many methylation reactions that are used for post-translational modification of proteins, methylation of DNA, and the synthesis of hormones, creatine, carnitine, and phosphatidylcholine. Conditions where methylation capacity is compromised, including folate deficiency, are associated with impaired phosphatidylcholine synthesis resulting in non-alcoholic fatty liver disease and steatohepatitis. In addition, folate intake and folate status have been associated with changes in the expression of genes involved in lipid metabolism, obesity, and metabolic syndrome. In this review, we provide insight on the relationship between folate and lipid metabolism, and an outlook for the future of lipid-related folate research. © 2013 BioFactors, 40(3):277–283, 2014 PMID:24353111

  17. Neural tube defects induced by folate deficiency in mutant curly tail (Grhl3) embryos are associated with alteration in folate one-carbon metabolism but are unlikely to result from diminished methylation

    PubMed Central

    De Castro, Sandra CP; Leung, Kit-yi; Savery, Dawn; Burren, Katie; Rozen, Rima; Copp, Andrew J.; Greene, Nicholas D.E.

    2013-01-01

    Background Folate one-carbon metabolism has been implicated as a determinant of susceptibility to neural tube defects (NTDs), owing to the preventive effect of maternal folic acid supplementation and the higher risk associated with markers of diminished folate status. Methods Folate one-carbon metabolism was compared in curly tail (ct/ct) and genetically matched congenic (+ct/+ct) mouse strains using the deoxyuridine suppression test in embryonic fibroblast cells and by quantifying s-adenosylmethionine (SAM) and s-adenosylhomocysteine (SAH) in embryos using liquid chromatography tandem mass spectrometry. A possible genetic interaction between curly tail and a null allele of 5,10-methylenetetrahydrofolate reductase (MTHFR) was investigated by generation of compound mutant embryos. Results There was no deficit in thymidylate biosynthesis in ct/ct cells but incorporation of exogenous thymidine was lower than in +ct/+ct cells. In +ct/+ct embryos the SAM/SAH ratio was diminished by dietary folate deficiency and normalised by folic acid or myor-inositol treatment, in association with prevention of NTDs. In contrast, folate deficiency caused a significant increase in SAM/SAH ratio in ct/ct embryos. Loss of MTHFR function in curly tail embryos significantly reduced the SAM/SAH ratio but did not cause cranial NTDs or alter the frequency of caudal NTDs. Conclusions Curly tail fibroblasts and embryos, in which Grhl3 expression is reduced, display alterations in one-carbon metabolism, particularly in the response to folate deficiency, compared with genetically-matched congenic controls in which Grhl3 is unaffected. However, unlike folate deficiency, diminished methylation potential appears to be insufficient to cause cranial NTDs in the curly tail strain, and neither does it increase the frequency of caudal NTDs. PMID:20589880

  18. Association between dietary folate intake and blood status of folate and homocysteine in Malaysian adults.

    PubMed

    Chew, Siew-Choo; Khor, Geok-Lin; Loh, Su-Peng

    2011-01-01

    Folate is of prime interest among investigators in nutrition due to its multiple roles in maintaining health, especially in preventing neural tube defects and reducing the risk of cardiovascular diseases. We investigated the effect of dietary folate intake on blood folate, vitamin B(12), vitamin B(6), and homocysteine status. One hundred subjects consisting of Chinese and Malay subjects volunteered to participate in this cross-sectional study. Dietary folate intake was assessed by 24-h dietary recall and a food-frequency questionnaire (FFQ). Serum and red blood cell folate were analyzed using a microbiological assay, while serum vitamin B(12) was determined by electrochemiluminescence immunoassay (ECLIA), and high-performance liquid chromatography (HPLC) was used for the determination of serum vitamin B(6) and homocysteine. The mean folate intake, serum folate, RBC folate, serum vitamin B(12), and B(6), were higher in female subjects, with the exception of serum homocysteine. The Chinese tended to have higher folate intake, serum folate, RBC folate, and vitamin B(12). A positive association was found between folate intake and serum folate while a negative association was found between folate intake and serum homocysteine. Stepwise linear regression of serum folate showed a significant positive coefficient for folate intake whilst a significant negative coefficient was found for serum homocysteine when controlling for age, gender, and ethnicity. In conclusion, high dietary folate intake helps to increase serum folate and to lower the homocysteine levels.

  19. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  20. Determining bioavailability of food folates in a controlled intervention study.

    PubMed

    Hannon-Fletcher, Mary P; Armstrong, Nicola C; Scott, John M; Pentieva, Kristina; Bradbury, Ian; Ward, Mary; Strain, J J; Dunn, Adele A; Molloy, Anne M; Kerr, Maeve A; McNulty, Helene

    2004-10-01

    The concept of dietary folate equivalents (DFEs) in the United States recognizes the differences in bioavailability between natural food folates and the synthetic vitamin, folic acid. However, many published reports on folate bioavailability are problematic because of several confounding factors. We compared the bioavailability of food folates with that of folic acid under controlled conditions. To broadly represent the extent to which natural folates are conjugated in foods, we used 2 natural sources of folate, spinach (50% polyglutamyl folate) and yeast (100% polyglutamyl folate). Ninety-six men were randomly assigned according to their screening plasma homocysteine (tHcy) concentration to 1 of 4 treatment groups for an intervention period of 30 d. Each subject received (daily under supervision) either a folate-depleted "carrier" meal or a drink plus 1) placebo tablet, 2) 200 microg folic acid in a tablet, 3) 200 microg natural folate provided as spinach, or 4) 200 microg natural folate provided as yeast. Among the subjects who completed the intervention, responses (increase in serum folate, lowering of tHcy) relative to those in the placebo group (n = 18) were significant in the folic acid group (n = 18) but not in the yeast folate (n = 19) or the spinach folate (n = 18) groups. Both natural sources of folate were significantly less bioavailable than was folic acid. Overall estimations of folate bioavailability relative to that of folic acid were found to be between 30% (spinach) and 59% (yeast). Relative bioavailability estimates were consistent with the estimates from the metabolic study that were used as a basis to derive the US DFE value.

  1. Role of folate in nonalcoholic fatty liver disease.

    PubMed

    Sid, Victoria; Siow, Yaw L; O, Karmin

    2017-10-01

    Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver conditions that are characterized by steatosis, inflammation, fibrosis, and liver injury. The global prevalence of NAFLD is rapidly increasing in proportion to the rising incidence of obesity and type 2 diabetes. Because NAFLD is a multifaceted disorder with many underlying metabolic abnormalities, currently, there is no pharmacological agent that is therapeutically approved for the treatment of this disease. Folate is a water-soluble B vitamin that plays an essential role in one-carbon transfer reactions involved in nucleic acid biosynthesis, methylation reactions, and sulfur-containing amino acid metabolism. The liver is the primary organ responsible for storage and metabolism of folates. Low serum folate levels have been observed in patients with obesity and diabetes. It has been reported that a low level of endogenous folates in rodents perturbs folate-dependent one-carbon metabolism, and may be associated with development of metabolic diseases such as NAFLD. This review highlights the biological role of folate in the progression of NAFLD and its associated metabolic complications including obesity and type 2 diabetes. Understanding the role of folate in metabolic disease may position this vitamin as a potential therapeutic for NAFLD.

  2. Enhancing the natural folate level in wine using bioengineering and stabilization strategies.

    PubMed

    Liu, Yazheng; Walkey, Christopher J; Green, Timothy J; van Vuuren, Hennie J J; Kitts, David D

    2016-03-01

    Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Folate, colorectal cancer and the involvement of DNA methylation.

    PubMed

    Williams, Elizabeth A

    2012-11-01

    Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1 metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.

  4. Chronic ethanol exposure and folic acid supplementation: fetal growth and folate status in the maternal and fetal guinea pig.

    PubMed

    Hewitt, Amy J; Knuff, Amber L; Jefkins, Matthew J; Collier, Christine P; Reynolds, James N; Brien, James F

    2011-05-01

    Chronic ethanol exposure (CEE) can produce developmental abnormalities in the CNS of the embryo and developing fetus. Folic acid (FA) is an important nutrient during pregnancy and low folate status exacerbates ethanol-induced teratogenicity. This study tested the hypotheses that (1) CEE depletes folate stores in the mother and fetus; and (2) maternal FA supplementation maintains folate stores. CEE decreased fetal body, brain, hippocampus weights, and brain to body weight ratio but not hippocampus to body weight ratio. These effects of CEE were not mitigated by maternal FA administration. The FA regimen prevented the CEE-induced decrease of term fetal liver folate. However, it did not affect maternal liver folate or fetal RBC folate at term, and did not mitigate the nutritional deficit-induced decrease of term fetal hippocampus folate. This study suggests that maternal FA supplementation may have differential effects on folate status in the mother and the fetus. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Interaction between cytotoxic effects of gamma-radiation and folate deficiency in relation to choline reserves.

    PubMed

    Batra, Vipen; Devasagayam, Thomas Paul Asir

    2009-01-08

    The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.

  6. Folate and asthma.

    PubMed

    Blatter, Joshua; Han, Yueh-Ying; Forno, Erick; Brehm, John; Bodnar, Lisa; Celedón, Juan C

    2013-07-01

    Findings from experimental studies and animal models led to the hypothesis that folic acid supplementation during pregnancy confers an increased risk of asthma. This review provides a critical examination of current experimental and epidemiologic evidence of a causal association between folate status and asthma. In industrialized nations, the prevalence of asthma was rising before widespread fortification of foodstuffs with folic acid or folate supplementation before or during pregnancy, thus suggesting that changes in folate status are an unlikely explanation for "the asthma epidemic." Consistent with this ecologic observation, evidence from human studies does not support moderate or strong effects of folate status on asthma. Given known protective effects against neural tube and cardiac defects, there is no reason to alter current recommendations for folic acid supplementation during conception or pregnancy based on findings for folate and asthma. Although we believe that there are inadequate data to exclude a weak effect of maternal folate status on asthma or asthma symptoms, such effects could be examined within the context of very large (and ongoing) birth cohort studies. At this time, there is no justification for funding new studies of folate and asthma.

  7. [Serum folate levels in adolescent population in Madrid, Spain].

    PubMed

    Gil, Ruth; Esteban, Jesús; Hernández, Valentín; Cano, Beatriz; de Oya, Manuel; Gil, Angel

    2008-10-25

    Serum folate concentrations in children are essential to establish values which allow to compare different regions or countries, and raise the possibility of fortifying diet with group B vitamins and folic acid as a secondary prevention against cardiovascular diseases. A cross-sectional epidemiological study was performed to assess serum folate levels in school children, aged 13-15 years, in Madrid. Folate and vitamin B12 determinations were determined in blood samples of fasting children. Genotype C677T of methylentetrahydrofolate reductase (MTHFR) enzyme was determined by polymerase chain reaction. Average folate levels obtained in our study were 7.83 nmol/l (95% confidence interval, 7.42 to 8.23 nmol/l). Median was 6.89 nmol/l (interquartilic range: 5.30 to -9.30 nmol/l). No statistically significant differences were found by gender, age or presence of menstruation. Serum folate concentration decreased significantly with the mutation of the C677T genotype for MTHFR. Prevalence of deficits of folate (< 5.3 nmol/l) was 23.8% and raised significantly with the mutation of the C677T genotype for MTHFR: 18.8% for CC, 20.4% for CT, and 46.7% for TT. This effect was mainly observed in girls after menstruation. Homozygosis mutation in C677T genotype of the enzyme MTHFR induces lower folate levels, mainly in girls after menstruation. 5.3 nmol/l is proposed as a threshold to define deficient serum folate levels in the Spanish adolescent population.

  8. Validation of Folate-Enriched Eggs as a Functional Food for Improving Folate Intake in Consumers

    PubMed Central

    Altic, Leslie; McNulty, Helene; Hoey, Leane; McAnena, Liadhan; Pentieva, Kristina

    2016-01-01

    Functional foods enriched with folate may be beneficial as a means of optimizing folate status in consumers. We recently developed novel eggs enriched with folate through folic acid supplementation of the hen’s feed, but their potential to influence consumer folate status is unknown because the natural folate forms incorporated into the eggs may not necessarily be retained during storage and cooking. This study aimed to determine the stability of natural folates in folate-enriched eggs under typical conditions of storage and cooking. Total folate was determined by microbiological assay following tri-enzyme treatment in folate-enriched eggs and un-enriched (barn and free-range) on the day they were laid, after storage (up to 27 days) and after using four typical cooking methods (boiling, poaching, frying, scrambling) for different durations. On the day of laying, the folate content of enriched eggs was found to be significantly higher than that of un-enriched barn or free-range eggs (mean ± SD; 123.2 ± 12.4 vs. 41.2 ± 2.8 vs. 65.6 ± 18.5 µg/100 g; p < 0.001). Storage at refrigerator and room temperature for periods up to the Best Before date resulted in no significant losses to the folate content of folate-enriched eggs. Furthermore, folate in enriched eggs remained stable when cooked by four typical methods for periods up to the maximum cooking time (e.g., 135 ± 22.5, 133.9 ± 23.0 and 132.5 ± 35.1; p = 0.73, for raw, scrambled for 50 s and scrambled for 2 min, respectively). Thus, natural folates in folate-enriched eggs remain highly stable with little or no losses following storage and cooking. These findings are important because they demonstrate the feasibility of introducing folate-enriched eggs into the diet of consumers as functional foods with enriched folate content. Further studies will confirm their effectiveness in optimizing the biomarker folate status of consumers. PMID:27916895

  9. Validation of Folate-Enriched Eggs as a Functional Food for Improving Folate Intake in Consumers.

    PubMed

    Altic, Leslie; McNulty, Helene; Hoey, Leane; McAnena, Liadhan; Pentieva, Kristina

    2016-11-30

    Functional foods enriched with folate may be beneficial as a means of optimizing folate status in consumers. We recently developed novel eggs enriched with folate through folic acid supplementation of the hen's feed, but their potential to influence consumer folate status is unknown because the natural folate forms incorporated into the eggs may not necessarily be retained during storage and cooking. This study aimed to determine the stability of natural folates in folate-enriched eggs under typical conditions of storage and cooking. Total folate was determined by microbiological assay following tri-enzyme treatment in folate-enriched eggs and un-enriched (barn and free-range) on the day they were laid, after storage (up to 27 days) and after using four typical cooking methods (boiling, poaching, frying, scrambling) for different durations. On the day of laying, the folate content of enriched eggs was found to be significantly higher than that of un-enriched barn or free-range eggs (mean ± SD; 123.2 ± 12.4 vs. 41.2 ± 2.8 vs. 65.6 ± 18.5 µg/100 g; p < 0.001). Storage at refrigerator and room temperature for periods up to the Best Before date resulted in no significant losses to the folate content of folate-enriched eggs. Furthermore, folate in enriched eggs remained stable when cooked by four typical methods for periods up to the maximum cooking time (e.g., 135 ± 22.5, 133.9 ± 23.0 and 132.5 ± 35.1; p = 0.73, for raw, scrambled for 50 s and scrambled for 2 min, respectively). Thus, natural folates in folate-enriched eggs remain highly stable with little or no losses following storage and cooking. These findings are important because they demonstrate the feasibility of introducing folate-enriched eggs into the diet of consumers as functional foods with enriched folate content. Further studies will confirm their effectiveness in optimizing the biomarker folate status of consumers.

  10. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  11. Critical evaluation of lowering the recommended dietary intake of folate.

    PubMed

    Obeid, Rima; Koletzko, Berthold; Pietrzik, Klaus

    2014-04-01

    We evaluated the recommendation of the Austrian, German, and Swiss Societies for Nutrition of lowering dietary folate intake from 400 to 300 μg dietary folate equivalents/d. A dose-response relation exists between folate intake or plasma level and disease risk within the normal range. Improving folate status can prevent between 30% and 75% of neural tube defects. A prepregnancy plasma folate of >18.0 nmol/L (mean 26.1 nmol/L) is associated with low total homocysteine (tHcy) (<10.0 μmol/L) and optimal prevention of birth defects. Because the closure of the neural tube occurs in the first 8 weeks after conception, women with low prepregnancy folate intake cannot achieve maximal risk reduction. The Austrian, German, and Swiss Societies for Nutrition recommend that young women should additionally supplement with 400 μg folic acid at least 4 weeks before conception. This short time window is not sufficient to achieve optimal plasma folate and tHcy levels in the majority of women. Factors affecting the relation between folate intake and blood biomarkers are total folate intake, baseline plasma folate, time available for supplement use, dose and form (folic acid or methyl folate), genetic polymorphisms, physiological and lifestyle factors. Lowering the recommended dietary folate intake may have important public health consequences. Elderly people and young women are at risk for diseases related to folate shortage. Reducing birth defects through supplementation of folic acid remains a poor option, as <20% of young women (i.e., in Germany) supplement with the vitamin. Recommending adequate food folate intake is crucial for reaching the target protective plasma folate levels in the population. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Folate and vitamin B12 improved alcohol-induced hyperhomocysteinemia in rats.

    PubMed

    Chen, Ya-Ling; Yang, Sien-Sing; Peng, Hsiang-Chi; Hsieh, Yi-Ching; Chen, Jiun-Rong; Yang, Suh-Ching

    2011-10-01

    The purpose of this study was to investigate the protective effects of combined treatment of folate and vitamin B12 against alcoholic liver disease. Male Wistar rats weighing about 160 g were divided into four groups: an ethanol group fed an ethanol liquid diet; a control group pair-fed an isoenergetic diet without ethanol; an ethanol and vitamin group fed an ethanol-containing diet that was supplemented with folate (10 mg/kg of body weight per day) and vitamin B12 (0.5 mg/kg of body weight per day); and a control and vitamin group fed an isoenergetic diet without ethanol, which was supplemented with folate (10 mg/kg of body weight per day) and vitamin B12 (0.5 mg/kg of body weight per day). After 16 wk, the plasma folate concentration in the ethanol group was significantly lower than in the other three groups. The plasma homocysteine concentration in the ethanol group was significantly higher than in the other three groups. The hepatic matrix metalloproteinase-2 concentration in the ethanol group was significantly higher than in the control and ethanol/vitamin groups. Furthermore, the plasma homocysteine concentration at the 16th week and the hepatic matrix metalloproteinase-2 concentration showed a significant positive correlation in rats of each group. In addition, pathologic evidence of liver fibrosis was observed only in the ethanol group. Furthermore, hepatic cytochrome 2E1 protein expression in group E increased significantly. These results suggest that combined treatment of folate and vitamin B12 can alleviate alcoholic liver injury that may be related to normalization of plasma homocysteine levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis

    PubMed Central

    Hayashi, Makoto; Tanaka, Mina; Yamamoto, Saki; Nakagawa, Taro; Kanai, Masatake; Anegawa, Aya; Ohnishi, Miwa; Mimura, Tetsuro; Nishimura, Mikio

    2017-01-01

    Abstract Regulation of sucrose–starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant seedlings exhibited shortened hypocotyls and accumulated starch in etioplasts when supplied with exogenous sucrose/glucose. Similar starch accumulation from exogenous sucrose was observed in mutant chloroplasts, when photosynthesis was prevented by organ culture in darkness. Molecular genetic analyses revealed that the mutant was defective in plastidial folylpolyglutamate synthetase, one of the enzymes engaged in folate biosynthesis. Active folate derivatives are important biomolecules that function as cofactors for a variety of enzymes. Exogenously supplied 5-formyl-tetrahydrofolate abrogated the mutant phenotypes, indicating that the fpgs1-4 mutant produced insufficient folate derivative levels. In addition, the antifolate agents methotrexate and 5-fluorouracil induced starch accumulation from exogenously supplied sucrose in dark-grown seedlings of wild-type Arabidopsis. These results indicate that plastidial folate suppresses starch biosynthesis triggered by sugar influx into non-photosynthetic cells, demonstrating a hitherto unsuspected link between plastidial folate and starch metabolism. PMID:28586467

  14. Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation

    PubMed Central

    Balashova, Olga A.; Visina, Olesya

    2017-01-01

    Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that knockdown of folate receptor 1 (Folr1; also known as FRα) impairs neural tube formation and leads to NTDs. Folr1 knockdown in neural plate cells only is necessary and sufficient to induce NTDs. Folr1-deficient neural plate cells fail to constrict, resulting in widening of the neural plate midline and defective neural tube closure. Pharmacological inhibition of folate action by methotrexate during neurulation induces NTDs by inhibiting folate interaction with its uptake systems. Our findings support a model in which the folate receptor interacts with cell adhesion molecules, thus regulating the apical cell membrane remodeling and cytoskeletal dynamics necessary for neural plate folding. Further studies in this organism could unveil novel cellular and molecular events mediated by folate and lead to new ways of preventing NTDs. PMID:28255006

  15. Growing Mouse Oocytes Transiently Activate Folate Transport via Folate Receptors As They Approach Full Size.

    PubMed

    Meredith, Megan; MacNeil, Allison H; Trasler, Jacquetta M; Baltz, Jay M

    2016-06-01

    The folate cycle is central to cellular one-carbon metabolism, where folates are carriers of one-carbon units that are critical for synthesis of purines, thymidylate, and S-adenosylmethionine, the universal methyl donor that forms the cellular methyl pool. Although folates are well-known to be important for early embryo and fetal development, their role in oogenesis has not been clearly established. Here, folate transport proteins were detected in developing neonatal ovaries and growing oocytes by immunohistochemistry, Western blot, and immunofluorescence. The folate receptors FOLR1 and FOLR2 as well as reduced folate carrier 1 (RFC1, SLC19A1 protein) each appeared to be present in follicular cells including granulosa cells. In growing oocytes, however, only FOLR2 immunoreactivity appeared abundant. Localization of apparent FOLR2 immunofluorescence near the plasma membrane increased with oocyte growth and peaked in oocytes as they neared full size. We assessed folate transport using the model folate leucovorin (folinic acid). Unexpectedly, there was a transient burst of folate transport activity for a brief period during oocyte growth as they neared full size, while folate transport was otherwise undetectable for the rest of oogenesis and in fully grown germinal vesicle stage oocytes. This folate transport was inhibited by dynasore, an inhibitor of endocytosis, but insensitive to the anion transport inhibitor stilbene 4-acetamido-40-isothiocyanato-stilbene-2,20-disulfonic acid, consistent with folate receptor-mediated transport but not with RFC1-mediated transport. Thus, near the end of their growth, growing oocytes may take up folates that could support the final stage of oogenesis or be stored to provide the endogenous folates needed in early embryogenesis. © 2016 by the Society for the Study of Reproduction, Inc.

  16. Correspondence of folate dietary intake and biomarker data123

    PubMed Central

    Fulgoni, Victor L; Taylor, Christine L; Pfeiffer, Christine M; Thuppal, Sowmyanarayanan V; McCabe, George P; Yetley, Elizabeth A

    2017-01-01

    Background: Public health concerns with regard to both low and high folate status exist in the United States. Recent publications have questioned the utility of self-reported dietary intake data in research and monitoring. Objectives: The purpose of this analysis was to examine the relation between self-reported folate intakes and folate status biomarkers and to evaluate their usefulness for several types of applications. Design: We examined usual dietary intakes of folate by using the National Cancer Institute method to adjust two 24-h dietary recalls (including dietary supplements) for within-person variation and then compared these intakes with serum and red blood cell (RBC) folate among 4878 men and nonpregnant, nonlactating women aged ≥19 y in NHANES 2011–2012, a nationally representative, cross-sectional survey, with respect to consistency across prevalence estimates and rank order comparisons. Results: There was a very low prevalence (<1%) of folate deficiency when serum (<7 nmol/L) and RBC (<305 nmol/L) folate were considered, whereas a higher proportion of the population reported inadequate total dietary folate intakes (6%). Similar patterns of change occurred between intakes and biomarkers of folate status when distributions were examined (i.e., dose response), particularly when diet was expressed in μg. Intakes greater than the Tolerable Upper Intake Level greatly increased the odds of having high serum folate (OR: 17.6; 95% CI: 5.5, 56.0). Conclusions: When assessing folate status in the United States, where fortification and supplement use are common, similar patterns in the distributions of diet and biomarkers suggest that these 2 types of status indicators reflect the same underlying folate status; however, the higher prevalence estimates for inadequate intakes compared with biomarkers suggest, among other factors, a systematic underestimation bias in intake data. Caution is needed in the use of dietary folate data to estimate the prevalence of

  17. Smart pH- and reduction-dual-responsive folate-PEG-coated polymeric lipid vesicles for tumor-triggered targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Wang, Hanjie; Liu, Zhongyun; Wang, Liangliang; Wang, Xiaomin; Su, Lin; Chang, Jin

    2014-06-01

    To improve their therapeutic index, designed nanocarriers should preferentially accumulate in tumor tissues and then rapidly enter tumor cells to release the encapsulated drugs in a triggered manner. In this article, a new kind of a smart pH- and reduction-dual-responsive drug delivery system based on folate-PEG-coated polymeric lipid vesicles (FPPLVs) formed from amphiphilic dextran derivatives was designed and prepared successfully. PEG chains with pH-sensitive hydrazone bonds, stearyl alcohol (SA) chains with reduction-sensitive disulfide bonds and folate were connected to a dextran main chain. The newly developed FPPLVs had a nano-sized structure (~50 nm) with a PEG coating. The in vitro DOX release profiles showed that the FPPLVs achieved a triggered drug release in response to acidic pH and reducing environments due to the cleavage of hydrazone bonds and disulfide bonds. It has also been demonstrated by an in vitro cellular uptake study that the FPPLVs lose their PEG coating as well as expose the folate in acidic conditions, which allows them to efficiently enter tumor cells through ligand-receptor interactions. In vitro cytotoxicity measurements also confirmed that FPPLVs exhibited pronounced antitumor activity against HeLa cells. These results suggest that FPPLVs are promising carriers for smart antitumor drug delivery applications.To improve their therapeutic index, designed nanocarriers should preferentially accumulate in tumor tissues and then rapidly enter tumor cells to release the encapsulated drugs in a triggered manner. In this article, a new kind of a smart pH- and reduction-dual-responsive drug delivery system based on folate-PEG-coated polymeric lipid vesicles (FPPLVs) formed from amphiphilic dextran derivatives was designed and prepared successfully. PEG chains with pH-sensitive hydrazone bonds, stearyl alcohol (SA) chains with reduction-sensitive disulfide bonds and folate were connected to a dextran main chain. The newly developed FPPLVs had a

  18. Vitamin-responsive disorders: cobalamin, folate, biotin, vitamins B1 and E.

    PubMed

    Baumgartner, Matthias R

    2013-01-01

    The catalytic properties of many enzymes depend on the participation of vitamins as obligatory cofactors. Vitamin B12 (cobalamin) and folic acid (folate) deficiencies in infants and children classically present with megaloblastic anemia and are often accompanied by neurological signs. A number of rare inborn errors of cobalamin and folate absorption, transport, cellular uptake, and intracellular metabolism have been delineated and identification of disease-causing mutations has improved our ability to diagnose and treat many of these conditions. Two inherited defects in biotin metabolism are known, holocarboxylase synthetase and biotinidase deficiency. Both lead to multiple carboxylase deficiency manifesting with metabolic acidosis, neurological abnormalities, and skin rash. Thiamine-responsive megaloblastic anemia is characterized by megaloblastic anemia, non-type I diabetes, and sensorineural deafness that responds to pharmacological doses of thiamine (vitamin B1). Individuals affected with inherited vitamin E deficiencies including ataxia with isolated vitamin E deficiency and abetalipoproteinemia present with a spinocerebellar syndrome similar to patients with Friedreich's ataxia. If started early, treatment of these defects by oral or parenteral administration of the relevant vitamin often results in correction of the metabolic defect and reversal of the signs of disease, stressing the importance of early and correct diagnosis in these treatable conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Folate intake and the MTHFR C677T genotype influence choline status in young Mexican American women☆

    PubMed Central

    Abratte, Christian M.; Wang, Wei; Li, Rui; Moriarty, David J.; Caudill, Marie A.

    2009-01-01

    Numerous studies have reported a relationship between folate status, the methylenetetrahydrofolate reductase (MTHFR) 677C→T variant and disease risk. Although folate and choline metabolism are inter-related, only limited data are available on the relationship between choline and folate status in humans. This study sought to examine the influences of folate intake and the MTHFR 677C→T variant on choline status. Mexican-American women (n =43; 14 CC, 12 CT and 17 TT) consumed 135 μg/day as dietary folate equivalents (DFE) for 7 weeks followed by randomization to 400 or 800 μg DFE/day for 7 weeks. Throughout the study, total choline intake remained unchanged at ∼350 mg/day. Plasma concentrations of betaine, choline, glycerophosphocholine, phosphatidylcholine and sphingomyelin were measured via LC-MS/MS for Weeks 0, 7 and 14. Phosphatidylcholine and sphingomyelin declined ( P=.001, P=.009, respectively) in response to folate restriction and increased ( P=.08, P=.029, respectively) in response to folate treatment. The increase in phosphatidylcholine occurred in response to 800 ( P=.03) not 400 ( P=.85) μg DFE/day (week×folate interaction, P=.017). The response of phosphatidylcholine to folate intake appeared to be influenced by MTHFR C677T genotype. The decline in phosphatidylcholine during folate restriction occurred primarily in women with the CC or CT genotype and not in the TT genotype (week×genotype interaction, P=.089). Moreover, when examined independent of folate status, phosphatidylcholine was higher ( P <.05) in the TT genotype relative to the CT genotype. These data suggest that folate intake and the MTHFR C677T genotype influence choline status in humans. PMID:17588738

  20. Gene promoter DNA methylation patterns have a limited role in orchestrating transcriptional changes in the fetal liver in response to maternal folate depletion during pregnancy.

    PubMed

    McKay, Jill A; Adriaens, Michiel; Evelo, Chris T; Ford, Dianne; Mathers, John C

    2016-09-01

    Early-life exposures are critical in fetal programming and may influence function and health in later life. Adequate maternal folate consumption during pregnancy is essential for healthy fetal development and long-term offspring health. The mechanisms underlying fetal programming are poorly understood, but are likely to involve gene regulation. Epigenetic marks, including DNA methylation, regulate gene expression and are modifiable by folate supply. We observed transcriptional changes in fetal liver in response to maternal folate depletion and hypothesized that these changes are concomitant with altered gene promoter methylation. Female C57BL/6J mice were fed diets containing 2 or 0.4 mg folic acid/kg for 4 wk before mating and throughout pregnancy. At 17.5-day gestation, genome-wide gene expression and promoter methylation were measured by microarray analysis in male fetal livers. While 989 genes were differentially expressed, 333 promoters had altered methylation (247 hypermethylated, 86 hypomethylated) in response to maternal folate depletion. Only 16 genes had both expression and methylation changes. However, most methylation changes occurred in genomic regions neighboring expression changes. In response to maternal folate depletion, altered expression at the mRNA level was not associated with altered promoter methylation of the same gene in fetal liver. © 2016 The Authors. Molecular Nutrition & Food Research Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis.

    PubMed

    Hayashi, Makoto; Tanaka, Mina; Yamamoto, Saki; Nakagawa, Taro; Kanai, Masatake; Anegawa, Aya; Ohnishi, Miwa; Mimura, Tetsuro; Nishimura, Mikio

    2017-08-01

    Regulation of sucrose-starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant seedlings exhibited shortened hypocotyls and accumulated starch in etioplasts when supplied with exogenous sucrose/glucose. Similar starch accumulation from exogenous sucrose was observed in mutant chloroplasts, when photosynthesis was prevented by organ culture in darkness. Molecular genetic analyses revealed that the mutant was defective in plastidial folylpolyglutamate synthetase, one of the enzymes engaged in folate biosynthesis. Active folate derivatives are important biomolecules that function as cofactors for a variety of enzymes. Exogenously supplied 5-formyl-tetrahydrofolate abrogated the mutant phenotypes, indicating that the fpgs1-4 mutant produced insufficient folate derivative levels. In addition, the antifolate agents methotrexate and 5-fluorouracil induced starch accumulation from exogenously supplied sucrose in dark-grown seedlings of wild-type Arabidopsis. These results indicate that plastidial folate suppresses starch biosynthesis triggered by sugar influx into non-photosynthetic cells, demonstrating a hitherto unsuspected link between plastidial folate and starch metabolism. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  2. Folates in lettuce: a pilot study

    PubMed Central

    Johansson, Madelene; Jägerstad, Margaretha; Frølich, Wenche

    2007-01-01

    Background Leafy vegetables are good sources of folates and food shops nowadays offer an increasing number of lettuce varieties. Objective To obtain data on the folate content and forms in common lettuce varieties and spinach sold in the Nordic countries, and to investigate effects of different storage conditions and preparations in the consumer's home or at lunchtime restaurants. Design Folate was analysed in eight different lettuce varieties and spinach using a validated high-performance liquid chromatographic method and the detected forms of folates were confirmed by a mass spectrometric detector [liquid chromatography–mass spectrometry (LC-MS)] following heat extraction, deconjugation with rat serum and purification by solid-phase extraction. Results Folate content, expressed in folic acid equivalents, in the lettuce samples varied six-fold, from 30 to 198 µg 100 g−1 on a fresh weight basis. The folate content was decreased by 14% after storage at 4°C for 8 days and by 2–40% after storage at 22°C for 2–4 h, depending on whether samples were stored as whole leaves, or small torn or cut pieces. LC-MS confirmed the identity of the folate forms: H4folate, 5-CH3-H4folate, 5-HCO-H4folate and 10-HCO-H4folate. Conclusion The considerable variation in folate content between varieties of lettuce in this pilot study, with one variety reaching the level found in spinach, indicates the potential to increase folate intake considerably by choosing folate-rich varieties of lettuce and storing at low temperatures.

  3. Contribution of Auger/conversion electrons to renal side effects after radionuclide therapy: preclinical comparison of (161)Tb-folate and (177)Lu-folate.

    PubMed

    Haller, Stephanie; Pellegrini, Giovanni; Vermeulen, Christiaan; van der Meulen, Nicholas P; Köster, Ulli; Bernhardt, Peter; Schibli, Roger; Müller, Cristina

    2016-12-01

    The radiolanthanide (161)Tb has, in recent years, attracted increasing interest due to its favorable characteristics for medical application. (161)Tb exhibits similar properties to the widely-used therapeutic radionuclide (177)Lu. In contrast to (177)Lu, (161)Tb yields a significant number of short-ranging Auger/conversion electrons (≤50 keV) during its decay process. (161)Tb has been shown to be more effective for tumor therapy than (177)Lu if applied using the same activity. The purpose of this study was to investigate long-term damage to the kidneys after application of (161)Tb-folate and compare it to the renal effects caused by (177)Lu-folate. Renal side effects were investigated in nude mice after the application of different activities of (161)Tb-folate (10, 20, and 30 MBq per mouse) over a period of 8 months. Renal function was monitored by the determination of (99m)Tc-DMSA uptake in the kidneys and by measuring blood urea nitrogen and creatinine levels in the plasma. Histopathological analysis was performed by scoring of the tissue damage observed in HE-stained kidney sections from euthanized mice. Due to the co-emitted Auger/conversion electrons, the mean absorbed renal dose of (161)Tb-folate (3.0 Gy/MBq) was about 24 % higher than that of (177)Lu-folate (2.3 Gy/MBq). After application of (161)Tb-folate, kidney function was reduced in a dose- and time-dependent manner, as indicated by the decreased renal uptake of (99m)Tc-DMSA and the increased levels of blood urea nitrogen and creatinine. Similar results were obtained when (177)Lu-folate was applied at the same activity. Histopathological investigations confirmed comparable renal cortical damage after application of the same activities of (161)Tb-folate and (177)Lu-folate. This was characterized by collapsed tubules and enlarged glomeruli with fibrin deposition in moderately injured kidneys and glomerulosclerosis in severely damaged kidneys. Tb-folate induced dose-dependent radionephropathy over

  4. Genetic assessment and folate receptor autoantibodies in infantile-onset cerebral folate deficiency (CFD) syndrome.

    PubMed

    Ramaekers, V Th; Segers, K; Sequeira, J M; Koenig, M; Van Maldergem, L; Bours, V; Kornak, U; Quadros, E V

    2018-05-01

    Cerebral folate deficiency (CFD) syndromes are defined as neuro-psychiatric conditions with low CSF folate and attributed to different causes such as autoantibodies against the folate receptor-alpha (FR) protein that can block folate transport across the choroid plexus, FOLR1 gene mutations or mitochondrial disorders. High-dose folinic acid treatment restores many neurologic deficits. Among 36 patients from 33 families the infantile-onset CFD syndrome was diagnosed based on typical clinical features and low CSF folate. All parents were healthy. Three families had 2 affected siblings, while parents from 4 families were first cousins. We analysed serum FR autoantibodies and the FOLR1 and FOLR2 genes. Among three consanguineous families homozygosity mapping attempted to identify a monogenetic cause. Whole exome sequencing (WES) was performed in the fourth consanguineous family, where two siblings also suffered from polyneuropathy as an atypical finding. Boys (72%) outnumbered girls (28%). Most patients (89%) had serum FR autoantibodies fluctuating over 5-6 weeks. Two children had a genetic FOLR1 variant without pathological significance. Homozygosity mapping failed to detect a single autosomal recessive gene. WES revealed an autosomal recessive polynucleotide kinase 3´phosphatase (PNKP) gene abnormality in the siblings with polyneuropathy. Infantile-onset CFD was characterized by serum FR autoantibodies as its predominant pathology whereas pathogenic FOLR1 gene mutations were absent. Homozygosity mapping excluded autosomal recessive inheritance of any single responsible gene. WES in one consanguineous family identified a PNKP gene abnormality that explained the polyneuropathy and also its contribution to the infantile CFD syndrome because the PNKP gene plays a dual role in both neurodevelopment and immune-regulatory function. Further research for candidate genes predisposing to FRα-autoimmunity is suggested to include X-chromosomal and non-coding DNA regions

  5. Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice.

    PubMed

    Beaudin, Anna E; Abarinov, Elena V; Malysheva, Olga; Perry, Cheryll A; Caudill, Marie; Stover, Patrick J

    2012-01-01

    Low dietary choline intake has been proposed to increase the risk of neural tube defects (NTDs) in human populations. Mice with reduced Shmt1 expression exhibit a higher frequency of NTDs when placed on a folate- and choline-deficient diet and may represent a model of human NTDs. The individual contribution of dietary folate and choline deficiency to NTD incidence in this mouse model is not known. To dissociate the effects of dietary folate and choline deficiency on Shmt1-related NTD sensitivity, we determined NTD incidence in embryos from Shmt1-null dams fed diets deficient in either folate or choline. Shmt1(+/+) and Shmt1(-/-) dams were maintained on a standard AIN93G diet (Dyets), an AIN93G diet lacking folate (FD), or an AIN93G diet lacking choline (CD). Virgin Shmt1(+/+) and Shmt1(-/-) dams were crossed with Shmt1(+/-) males, and embryos were examined for the presence of NTDs at embryonic day (E) 11.5 or E12.5. Exencephaly was observed only in Shmt1(-/-) embryos isolated from dams maintained on the FD diet (P = 0.004). Approximately 33% of Shmt1(-/-)embryos (n = 18) isolated from dams maintained on the FD diet exhibited exencephaly. NTDs were not observed in any embryos isolated from dams maintained on the CD (n = 100) or control (n = 152) diets or in any Shmt1(+/+) (n = 78) or Shmt1(+/-) embryos (n = 182). Maternal folate deficiency alone is sufficient to induce NTDs in response to embryonic Shmt1 disruption.

  6. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability.

    PubMed

    Saini, Ramesh Kumar; Nile, Shivraj Hariram; Keum, Young-Soo

    2016-11-01

    Folates (Vitamin B 9 ) include both naturally occurring folates and synthetic folic acid used in fortified foods and dietary supplements. Folate deficiency causes severe abnormalities in one-carbon metabolism can result chronic diseases and developmental disorders, including neural tube defects. Mammalian cells cannot synthesize folates de novo; therefore, diet and dietary supplements are the only way to attain daily folate requirements. In the last decade, significant advancements have been made to enhance the folate content of rice, tomato, common bean and lettuce by using genetic engineering approaches. Strategies have been developed to improve the stability of folate pool in plants. Folate deglutamylation through food processing and thermal treatment has the potential to enhance the bioavailability of folate. This review highlights the recent developments in biosynthesis, composition, bioavailability, enhanced production by elicitation and metabolic engineering, and methods of analysis of folate in food. Additionally, future perspectives in this context are identified. Detailed knowledge of folate biosynthesis, degradation and salvage are the prime requirements to efficiently engineer the plants for the enhancement of overall folate content. Similarly, consumption of a folate-rich diet with enhanced bioavailability is the best way to maintain optimum folate levels in the body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Autism and Folate Deficiency

    DTIC Science & Technology

    2010-05-01

    social interaction that remains to be characterized more fully. Conclusion Ablation of genes in the folate pathway may result in abnormal adult...W81XWH-09-1-0246 TITLE: Autism and Folate Deficiency PRINCIPAL INVESTIGATOR: Richard H. Finnell, Ph.D...5a. CONTRACT NUMBER W81XWH-09-1-0246 Autism and Folate Deficiency 5b. GRANT NUMBER AR080064-Concept Award 5c. PROGRAM ELEMENT NUMBER

  8. Changing micronutrient intake through (voluntary) behaviour change. The case of folate.

    PubMed

    Jensen, Birger B; Lähteenmäki, Liisa; Grunert, Klaus G; Brown, Kerry A; Timotijevic, Lada; Barnett, Julie; Shepherd, Richard; Raats, Monique M

    2012-06-01

    The objective of this study was to relate behaviour change mechanisms to nutritionally relevant behaviour and demonstrate how the different mechanisms can affect attempts to change these behaviours. Folate was used as an example to illuminate the possibilities and challenges in inducing behaviour change. The behaviours affecting folate intake were recognised and categorised. Behaviour change mechanisms from "rational model of man", behavioural economics, health psychology and social psychology were identified and aligned against folate-related behaviours. The folate example demonstrated the complexity of mechanisms influencing possible behavioural changes, even though this only targets the intake of a single micronutrient. When considering possible options to promote folate intake, the feasibility of producing the desired outcome should be related to the mechanisms of required changes in behaviour and the possible alternatives that require no or only minor changes in behaviour. Dissecting the theories provides new approaches to food-related behaviour that will aid the development of batteries of policy options when targeting nutritional problems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The association of DNA damage response and nucleotide level modulation with the antibacterial mechanism of the anti-folate drug trimethoprim.

    PubMed

    Sangurdekar, Dipen P; Zhang, Zhigang; Khodursky, Arkady B

    2011-11-28

    Trimethoprim is a widely prescribed antibiotic for a variety of bacterial infections. It belongs to a class of anti-metabolites - antifolates - which includes drugs used against malarial parasites and in cancer therapy. However, spread of bacterial resistance to the drug has severely hampered its clinical use and has necessitated further investigations into its mechanism of action and treatment regimen. Trimethoprim selectively starves bacterial cells for tetrahydrofolate, a vital cofactor necessary for the synthesis of several metabolites. The outcome (bacteriostatic or bactericidal) of such starvation, however, depends on the availability of folate-dependent metabolites in the growth medium. To characterize this dependency, we investigated in detail the regulatory and structural components of Escherichia coli cellular response to trimethoprim in controlled growth and supplementation conditions. We surveyed transcriptional responses to trimethoprim treatment during bacteriostatic and bactericidal conditions and analyzed associated gene sets/pathways. Concurrent starvation of all folate dependent metabolites caused growth arrest, and this was accompanied by induction of general stress and stringent responses. Three gene sets were significantly associated with the bactericidal effect of TMP in different media including LB: genes of the SOS regulon, genes of the pyrimidine nucleotide biosynthetic pathway and members of the multiple antibiotic resistance (mar) regulon controlled by the MarR repressor. However, the SOS response was identified as the only universal transcriptional signature associated with the loss of viability by direct thymine starvation or by folate stress. We also used genome-wide gene knock-out screen to uncover means of sensitization of bacteria to the drug. We observed that among a number of candidate genes and pathways, the effect of knock-outs in the deoxyribose nucleotide salvage pathway, encoded by the deoCABD operon and under the control of

  10. Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content.

    PubMed

    Dong, Wei; Cheng, Zhi-jun; Lei, Cai-lin; Wang, Xiao-le; Wang, Jiu-lin; Wang, Jie; Wu, Fu-qing; Zhang, Xin; Guo, Xiu-ping; Zhai, Hu-qu; Wan, Jian-min

    2014-12-01

    Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P < 0.01). Overexpression of two closely related enzymes dihydrofolate synthase (DHFS) and folypolyglutamate synthase (FPGS), which perform the first and further additions of glutamates, produced slightly increase in seed folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants.

  11. Quantifying the dose-response relationship between circulating folate concentrations and colorectal cancer in cohort studies: a meta-analysis based on a flexible meta-regression model.

    PubMed

    Chuang, Shu-Chun; Rota, Matteo; Gunter, Marc J; Zeleniuch-Jacquotte, Anne; Eussen, Simone J P M; Vollset, Stein Emil; Ueland, Per Magne; Norat, Teresa; Ziegler, Regina G; Vineis, Paolo

    2013-10-01

    Most epidemiologic studies on folate intake suggest that folate may be protective against colorectal cancer, but the results on circulating (plasma or serum) folate are mostly inconclusive. We conducted a meta-analysis of case-control studies nested within prospective studies on circulating folate and colorectal cancer risk by using flexible meta-regression models to test the linear and nonlinear dose-response relationships. A total of 8 publications (10 cohorts, representing 3,477 cases and 7,039 controls) were included in the meta-analysis. The linear and nonlinear models corresponded to relative risks of 0.96 (95% confidence interval (CI): 0.91, 1.02) and 0.99 (95% CI: 0.96, 1.02), respectively, per 10 nmol/L of circulating folate in contrast to the reference value. The pooled relative risks when comparing the highest with the lowest category were 0.80 (95% CI: 0.61, 0.99) for radioimmunoassay and 1.03 (95% CI: 0.83, 1.22) for microbiological assay. Overall, our analyses suggest a null association between circulating folate and colorectal cancer risk. The stronger association for the radioimmunoassay-based studies could reflect differences in cohorts and study designs rather than assay performance. Further investigations need to integrate more accurate measurements and flexible modeling to explore the effects of folate in the presence of genetic, lifestyle, dietary, and hormone-related factors.

  12. Recent Developments in Folate Nutrition.

    PubMed

    Naderi, Nassim; House, James D

    The term folate (vitamin B9) refers to a group of water-soluble compounds that are nutritionally essential for the support of optimal human health and development. Folates participate in numerous one-carbon transfer reactions, including the methylation of important biomolecules (lipids, amino acids, DNA). A deficiency of folate leads to pathological outcomes including anemia and impairments in reproductive health and fetal development. Due to the linkage of impaired folate status with an increased prevalence of neural tube defects (NTDs) in babies, several jurisdictions required the fortification of the food supply with folic acid, a synthetic and stable form of folate. Data from the postfortification era have provided strong evidence for the reduction of NTDs due to folic acid fortification. However, concern is now growing with respect to the amount of synthetic folic acid within the human food supply. Excess folic acid intake has been linked to a masking of vitamin B12 deficiency, and concerns regarding the promotion of folate-sensitive cancers, including colorectal cancer. New strategies to ensure the supply of optimal folate to at-risk populations may be needed, including the use of biofortification approaches, in order to address recent concerns. © 2018 Elsevier Inc. All rights reserved.

  13. Folate content and availability in Malaysian cooked foods.

    PubMed

    Chew, S C; Khor, G L; Loh, S P

    2012-12-01

    Data on folate availability of Malaysian cooked foods would be useful for estimation of dietary folate intake; however such information is scarce. A total of 53 samples of frequently consumed foods in Malaysia were selected from the Nutrient Composition of Malaysian Foods. Folate content was determined using HPLC method hyphenated with a stainless steel C18 column and ultraviolet detector (lambda = 280 nm). The index of folate availability was defined as the proportion of folate identified as monoglutamyl derivatives from the total folate content. Total folate content of different food samples varied from 30-95 microg/100g fresh weight. Among rice-based dishes, the highest and the lowest total folate was in coconut milk rice (nasi lemak) and ghee rice (nasi minyak), respectively. In noodle dishes, fried rice noodle (kuey teow goreng) and curry noodle (mee kari) had the highest folate contents. The highest index of folate availability was in a flat rice noodle dish (kuey teow bandung) (12.13%), while the lowest was in a festival cake (kuih bakul) (0.13%). Folate content was found to be negatively related to its availability. This study determined folate content and folate availability in commonly consumed cooked foods in Malaysia. The uptake of folate from foods with high folate content may not be necessarily high as folate absorption also depends on the capacity of intestinal deconjugation and the presence of high fibre in the foods.

  14. Maternal Prepregnancy Folate Intake and Risk of Spontaneous Abortion and Stillbirth

    PubMed Central

    Gaskins, Audrey J.; Rich-Edwards, Janet W.; Hauser, Russ; Williams, Paige L.; Gillman, Matthew W.; Ginsburg, Elizabeth S.; Missmer, Stacey A.; Chavarro, Jorge E.

    2014-01-01

    Objective To evaluate prospectively the relationship between prepregnancy folate intake and risk of spontaneous abortion and stillbirth. Methods Women in the Nurses’ Health Study-II who self-reported a pregnancy between 1992 and 2009 were included in this analysis. Dietary folate and supplement use was assessed every 4 years, starting in 1991, by a food-frequency questionnaire. Pregnancies were self-reported, with case pregnancies lost spontaneously (spontaneous abortion <20 weeks of gestation and stillbirth 20+ weeks of gestation) and comparison pregnancies ending in ectopic pregnancy, induced abortion, or live birth. Results Among the 11,072 women, 15,950 pregnancies were reported of which 2,756(17.3%) ended in spontaneous abortion and 120(0.8%) ended in stillbirth. Compared to women in the lowest quintile of prepregnancy folate intake (<285μg/day), those in the highest quintile (>851μg/day) had a relative risk (RR) of spontaneous abortion of 0.91 (95% CI 0.82,1.02) after multivariable adjustment (P-trend=0.04). This association was primarily attributable to intake of folate from supplements. Compared to women without supplemental folate intake (0μg/day), those in the highest category (>730μg/day) had a RR of spontaneous abortion of 0.80 (95% CI 0.71,0.90) after multivariable adjustment (P-trend=<0.001). The association of prepregnancy supplemental folate with risk of spontaneous abortion was consistent across gestational period of loss. A similar inverse trend was observed with the risk of stillbirth, which fell short of conventional significance (P-trend=0.06). Conclusions Higher intake of folate from supplements was associated with reduced risk of spontaneous abortion. Women at risk of pregnancy should use supplemental folate for neural tube defect prevention and because it may decrease the risk of spontaneous abortion,. PMID:24901281

  15. Maternal prepregnancy folate intake and risk of spontaneous abortion and stillbirth.

    PubMed

    Gaskins, Audrey J; Rich-Edwards, Janet W; Hauser, Russ; Williams, Paige L; Gillman, Matthew W; Ginsburg, Elizabeth S; Missmer, Stacey A; Chavarro, Jorge E

    2014-07-01

    To evaluate prospectively the relationship between prepregnancy folate intake and risk of spontaneous abortion and stillbirth. Women in the Nurses' Health Study II who self-reported a pregnancy between 1992 and 2009 were included in this analysis. Dietary folate and supplement use was assessed every 4 years, starting in 1991, by a food frequency questionnaire. Pregnancies were self-reported with case pregnancies lost spontaneously (spontaneous abortion less than 20 weeks of gestation and stillbirth 20+ weeks of gestation) and comparison pregnancies ending in ectopic pregnancy, induced abortion, or live birth. Among the 11,072 women, 15,950 pregnancies were reported of which 2,756 (17.3%) ended in spontaneous abortion and 120 (0.8%) ended in stillbirth. Compared with women in the lowest quintile of prepregnancy folate intake (less than 285 micrograms/d), those in the highest quintile (greater than 851 micrograms/d) had a relative risk of spontaneous abortion of 0.91 (95% confidence interval [CI] 0.82-1.02) after multivariable adjustment (P trend=.04). This association was primarily attributable to intake of folate from supplements. Compared with women without supplemental folate intake (0 micrograms/d), those in the highest category (greater than 730 micrograms/d) had a relative risk of spontaneous abortion of 0.80 (95% CI 0.71-0.90) after multivariable adjustment (P trend <.001). The association of prepregnancy supplemental folate with risk of spontaneous abortion was consistent across gestational period of loss. A similar inverse trend was observed with the risk of stillbirth, which fell short of conventional significance (P trend=.06). Higher intake of folate from supplements was associated with reduced risk of spontaneous abortion. Women at risk of pregnancy should use supplemental folate for neural tube defect prevention and because it may decrease the risk of spontaneous abortion. : II.

  16. NK Cell–Mediated Antitumor Effects of a Folate-Conjugated Immunoglobulin are Enhanced by Cytokines

    PubMed Central

    Kondadasula, SriVidya; Skinner, Cassandra C.; Mundy-Bosse, Bethany L.; Luedke, Eric; Jones, Natalie B.; Mani, Aruna; Roda, Julie; Karpa, Volodymyr; Li, Hong; Li, Jilong; Elavazhagan, Saranya; La Perle, Krista M.; Schmitt, Alessandra C.; Lu, Yanhui; Zhang, Xiaoli; Pan, Xueliang; Mao, Hsaioyin; Davis, Melanie; Jarjoura, David; Butchar, Jonathan P.; Poi, Ming; Phelps, Mitch; Tridandapani, Susheela; Byrd, John C.; Caligiuri, Michael A.; Lee, Robert J.; Carson, William E.

    2016-01-01

    Optimally effective antitumor therapies would not only activate immune effector cells, but engage them at the tumor. Folate-conjugated to immunoglobulin (F-IgG) could direct innate immune cells with Fc receptors to folate receptor–expressing cancer cells. F-IgG bound to human KB and HeLa cells, as well as murine L1210JF, a folate receptor (FR) overexpressing cancer cell line, as determined by flow cytometry. Recognition of F-IgG by NK cell Fc receptors led to phosphorylation of the ERK transcription factor and increased NK cell expression of CD69. Lysis of KB tumor cells by NK cells increased about 5-fold after treatment with F-IgG, an effect synergistically enhanced by treatment with IL2, IL12, IL15, or IL21 (P < 0.001). F-IgG also enhanced the lysis of chronic lymphocytic leukemia cells by autologous NK cells. NK cells significantly increased production of IFNγ, MIP-1α, and RANTES in response to F-IgG–coated KB target cells in the presence of the NK cell–activating cytokine IL12, and these coculture supernatants induced significant T cell chemotaxis P < 0.001). F-IgG–coated targets also stimulated FcR-mediated monocyte effector functions. Studies in a murine leukemia model confirmed the intratumoral localization and antitumor activity of F-IgG, as well as enhancement of its effects by IL12 (P = 0.05). The antitumor effect of this combination was dependent on NK cells and led to decreased tumor cell proliferation in vivo. Thus, F-IgG can induce an immune response against FR-positive tumor cells that is mediated by NK cells and can be augmented by cytokine therapy. PMID:26865456

  17. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Wei, Lulu; Lu, Beibei; Cui, Lin; Peng, Xueying; Wu, Jianning; Li, Deqiang; Liu, Zhiyong; Guo, Xuhong

    2017-12-01

    A novel type of amphiphilic pH-responsive folate-poly(ɛ-caprolactone)- block-poly(2-hydroxyethylmethacrylate)- co-poly(2-(dimethylamino)-ethylmethacrylate) (FA-PCL- b-P(HEMA- co-DMAEMA)) (MFP) block copolymers were designed and synthesized via atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) techniques. The molecular structures of the copolymers were confirmed with 1H NMR, FTIR and GPC measurements. The critical micelle concentration (CMC) of MFP in aqueous solution was extremely low (about 6.54 mg/L). The in vitro release behavior of DOX-loaded micelles was significantly accelerated when the pH value of solution decreased from 7.4 to 5.0. In vitro antitumor efficiency was evaluated by incubating DOX-loaded micelles with Hela cells. The results demonstrated that this copolymer possessed excellent biocompatibility, and FA-decorated micelles MFP showed higher cellular uptake than those micelles without the FA moiety, indicating their unique targetability. These folate-conjugated biodegradable micelles are highly promising for targeted cancer chemothe-rapy.

  18. Neurological Disease associated with Folate Deficiency

    PubMed Central

    Reynolds, E. H.; Rothfeld, P.; Pincus, Jonathen H.

    1973-01-01

    In a general medical hospital population the neurological status of 24 patients with severe folate deficiency was compared with that of a control group of 21 patients with normal serum folate. A significant increase of organic brain syndrome and pyramidal tract damage was found in the folate-deficient group. These findings were independent of the degree of anaemia or the presence of alcoholism. These data are consistent with the view that severe folate deficiency may cause neurological deficits. PMID:4703098

  19. Cryptophane-Folate Biosensor for 129Xe NMR

    DTIC Science & Technology

    2014-12-01

    folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix . Cancer Epidemiol. Biomarkers Prev. 8...conjugated cryptophane was developed for targeting cryptophane to membrane-bound folate receptors that are overexpressed in many human cancers . The...through a folate receptor-mediated pathway. Flow cytometry revealed 10-fold higher cellular internalization in KB cancer cells overexpressing folate

  20. Folate status and concentrations of serum folate forms in the US population: National Health and Nutrition Examination Survey 2011-2.

    PubMed

    Pfeiffer, Christine M; Sternberg, Maya R; Fazili, Zia; Lacher, David A; Zhang, Mindy; Johnson, Clifford L; Hamner, Heather C; Bailey, Regan L; Rader, Jeanne I; Yamini, Sedigheh; Berry, R J; Yetley, Elizabeth A

    2015-06-28

    Serum and erythrocyte (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured the serum folate forms (5-methyltetrahydrofolate (5-methylTHF), unmetabolised folic acid (UMFA), non-methyl folate (sum of tetrahydrofolate (THF), 5-formyltetrahydrofolate (5-formylTHF), 5,10-methenyltetrahydrofolate (5,10-methenylTHF)) and MeFox (5-methylTHF oxidation product)) by HPLC-MS/MS and RBC total folate by microbiologic assay in US population ≥ 1 year (n approximately 7500) participating in the National Health and Nutrition Examination Survey 2011-2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37·5 nmol/l; 100 %), UMFA (1·21 nmol/l; 99·9 %), MeFox (1·53 nmol/l; 98·8 %), and THF (1·01 nmol/l; 85·2 %) were mostly detectable. 5-FormylTHF (3·6 %) and 5,10-methenylTHF (4·4 %) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86·7 %); UMFA (4·0 %), non-methyl folate (4·7 %) and MeFox (4·5 %) contributed smaller amounts. Age was positively related to MeFox, but showed a U-shaped pattern for other folates. We generally noted sex and race/ethnic biomarker differences and weak (Spearman's r< 0·4) but significant (P< 0·05) correlations with physiological and lifestyle variables. Fasting, kidney function, smoking and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiological and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological

  1. Extremely high concentration of folates in premature newborns.

    PubMed

    Zikavska, T; Brucknerova, I

    2014-01-01

    Extremely high concentration of folates in premature newborns: case reports. Folates are a group of water soluble compounds, which are important for metabolic processes in human body. These are important during periods of rapid cell growth. The most accurate indicator of long-term folate level status in the body is the determination of red blood cell (RBC) folate concentrations. The optimal level of RBC folate is not known in neonatal period. Authors discuss the reasons for extremely high level of RBC folate concentrations. In our work we present the cases of two premature newborns with extremely high level of RBC folate concentrations, which were analyzed immunochemically on the first day of life and after six weeks of life. In both cases we measured RBC folate concentrations on the 1st day of life. After 6 weeks we found extremely high RBC folate concentration level (5516.67 ng/ml) in the first case after RBC transfusions. In second case after two months of life the RBC folate concentration level was doubled (2335.1 ng/ml) until 24 hours after RBC transfusion compared to levels after birth. The normal range of RBC folate values vary in newborns. The upper limit of daily dose of folic acid in pregnancy and neonatal period is not known. On the other hand it is an easily excreted water-soluble vitamin but in premature newborn it can lead to the disruption of metabolic balance and slow its degradation. Some factors can have an impact on RBC folate concentration. Blood transfusion can be one of the main influences on RBC folate concentration. To clarify these mechanisms further studies are required (Ref. 29).

  2. Folate status and concentrations of serum folate forms in the US population: National Health and Nutrition Examination Survey 2011–2

    PubMed Central

    Pfeiffer, Christine M.; Sternberg, Maya R.; Fazili, Zia; Lacher, David A.; Zhang, Mindy; Johnson, Clifford L.; Hamner, Heather C.; Bailey, Regan L.; Rader, Jeanne I.; Yamini, Sedigheh; Berry, R. J.; Yetley, Elizabeth A.

    2016-01-01

    Serum and red blood cell (RBC) total folate are indicators of folate status. No nationally representative population data exist for folate forms. We measured serum folate forms [5-methyltetrahydrofolate (5-methylTHF), unmetabolized folic acid (UMFA), non-methyl folate (sum of THF, 5-formylTHF, 5,10-methenylTHF), and MeFox (5-methylTHF oxidation product)] by HPLC-MS/MS and RBC total folate by microbiologic assay in US persons ≥1 year (n ~7500) participating in the National Health and Nutrition Examination Survey 2011–2. Data analysis for serum total folate was conducted including and excluding MeFox. Concentrations (geometric mean; detection rate) of 5-methylTHF (37.5 nmol/L; 100%), UMFA (1.21 nmol/L; 99.9%), MeFox (1.53 nmol/L; 98.8%), and THF (1.01 nmol/L; 85.2%) were mostly detectable. 5-FormylTHF (3.6%) and 5,10-methenylTHF (4.4%) were rarely detected. The biggest contributor to serum total folate was 5-methylTHF (86.7%); UMFA (4.0%), non-methyl folate (4.7%), and MeFox (4.5%) contributed smaller amounts. Age was positively related to MeFox but showed a U-shaped pattern for other folates. We generally noted sex and race-ethnic biomarker differences and weak (Spearman r <0.4) but significant (P <0.05) correlations with physiologic and lifestyle variables. Fasting, kidney function, smoking, and alcohol intake showed negative associations. BMI and body surface area showed positive associations with MeFox but negative associations with other folates. All biomarkers showed significantly higher concentrations with recent folic acid-containing dietary supplement use. These first-time population data for serum folate forms generally show similar associations with demographic, physiologic, and lifestyle variables as serum total folate. Patterns observed for MeFox may suggest altered folate metabolism dependent on biological characteristics. PMID:25917925

  3. Identification of Transport-critical Residues in a Folate Transporter from the Folate-Biopterin Transporter (FBT) Family*

    PubMed Central

    Eudes, Aymerick; Kunji, Edmund R. S.; Noiriel, Alexandre; Klaus, Sebastian M. J.; Vickers, Tim J.; Beverley, Stephen M.; Gregory, Jesse F.; Hanson, Andrew D.

    2010-01-01

    The Synechocystis Slr0642 protein and its plastidial Arabidopsis (Arabidopsis thaliana) ortholog At2g32040 belong to the folate-biopterin transporter (FBT) family within the major facilitator superfamily. Both proteins transport folates when expressed in Escherichia coli. Because the structural requirements for transport activity are not known for any FBT protein, we applied mutational analysis to identify residues that are critical to transport and interpreted the results using a comparative structural model based on E. coli lactose permease. Folate transport was assessed via the growth of an E. coli pabA abgT strain, which cannot synthesize or take up folates or p-aminobenzoylglutamate. In total, 47 residues were replaced with Cys or Ala. Mutations at 22 positions abolished folate uptake without affecting Slr0642 expression in membranes, whereas other mutations had no effect. Residues important for function mostly line the predicted central cavity and are concentrated in the core α-helices H1, H4, H7, and H10. The essential residue locations are consistent with a folate-binding site lying roughly equidistant from both faces of the transporter. Arabidopsis has eight FBT proteins besides At2g32040, often lacking conserved critical residues. When six of these proteins were expressed in E. coli or in Leishmania folate or pterin transporter mutants, none showed evidence of folate or pterin transport activity, and only At2g32040 was isolated by functional screening of Arabidopsis cDNA libraries in E. coli. Such negative data could reflect roles in transport of other substrates. These studies provide the first insights into the native structure and catalytic mechanism of FBT family carriers. PMID:19923217

  4. Folate and DNA Methylation: A Review of Molecular Mechanisms and the Evidence for Folate's Role2

    PubMed Central

    Yang, Thomas P.; Berry, Robert J; Bailey, Lynn B.

    2012-01-01

    ABSTRACT DNA methylation is an epigenetic modification critical to normal genome regulation and development. The vitamin folate is a key source of the one carbon group used to methylate DNA. Because normal mammalian development is dependent on DNA methylation, there is enormous interest in assessing the potential for changes in folate intake to modulate DNA methylation both as a biomarker for folate status and as a mechanistic link to developmental disorders and chronic diseases including cancer. This review highlights the role of DNA methylation in normal genome function, how it can be altered, and the evidence of the role of folate/folic acid in these processes. PMID:22332098

  5. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis

    PubMed Central

    Thomas, Thommey P.; Goonewardena, Sascha N.; Majoros, Istvan; Kotlyar, Alina; Cao, Zhengyi; Leroueil, Pascale R.; Baker, James R.

    2011-01-01

    Objective To investigate the uptake of a poly(amidoamine) dendrimer (generation 5 (G5)) nanoparticle covalently conjugated to polyvalent folic acid (FA) as the targeting ligand into macrophages, and the activity of a FA- and methotrexate-conjugated dendrimer (G5-FA-MTX) as a therapeutic for the inflammatory disease of arthritis. Methods In vitro studies were performed in macrophage cell lines and in isolated mouse macrophages to check the cellular uptake of fluorescently tagged G5-FA nanoparticles, using flow cytometry and confocal microscopy. In vivo studies were conducted in a rat model of collagen-induced arthritis to evaluate the therapeutic potential of G5-FA-MTX. Results Folate targeted dendrimer bound and internalized in a receptor-specific manner into both folate receptor β-expressing macrophage cell lines and primary mouse macrophages. The G5-FA-MTX acts as a potent anti-inflammatory agent and reduces arthritis-induced inflammatory parameters such as ankle swelling, paw volume, cartilage damage, bone resorption and body weight decrease. Conclusion The use of folate-targeted nanoparticles to specifically target MTX into macrophages may provide an effective clinical approach for anti-inflammatory therapy in rheumatoid arthritis. PMID:21618461

  6. Association of Maternal Prepregnancy BMI and Plasma Folate concentrations with Child Metabolic Health

    PubMed Central

    Wang, Guoying; Hu, Frank B.; Mistry, Kamila B.; Zhang, Cuilin; Ren, Fazheng; Huo, Yong; Paige, David; Bartell, Tami; Hong, Xiumei; Caruso, Deanna; Ji, Zhicheng; Chen, Zhu; Ji, Yuelong; Pearson, Colleen; Ji, Hongkai; Zuckerman, Barry; Cheng, Tina L.; Wang, Xiaobin

    2016-01-01

    Importance Previous reports have linked maternal prepregnancy obesity with low folate concentrations and child overweight or obesity (OWO) in separate studies. The role of maternal folate concentrations, alone or in combination with maternal OWO, in child metabolic health has not been examined in a prospective birth cohort. Objective We tested the hypotheses that maternal folate concentrations can significantly affect child metabolic health and that maternal sufficient folate concentrations can mitigate prepregnancy obesity-induced child metabolic risk. Design Prospective birth cohort study Setting The Boston Medical Center, MA, USA Participants This study included 1517 mother-child dyads recruited at birth from 1998–2012 and followed prospectively up to 9 years (median age: 6.2 years, range: 2–9 years). Main Outcomes and Measures Child BMI z-score calculated according to U.S. reference data, OWO defined as BMI≥85th percentile for age and gender, and metabolic biomarkers (leptin, insulin, and adiponectin). Results An “L-shaped” relationship between maternal folate concentrations and child OWO was observed: the risk of OWO was higher in the lowest quartile (Q1) as compared to Q2–Q4 with an odds ratio (OR) of 1.45 (95% confidence interval [CI], 1.13 to 1.87). The highest risk of child OWO was found among children of obese mothers with low folate concentrations (OR, 3.05, 95%CI, 1.91 to 4.86) compared to children of normal weight mothers with folate concentrations in Q2–Q4 after accounting for multiple covariables. Among children of obese mothers, their risk of OWO was associated with 43% reduction (OR, 0.57, 95%CI, 0.34–0.95) if their mothers had folate concentrations in Q2–Q4 compared to Q1. Similar patterns were observed for child metabolic biomarkers. Conclusions and Relevance In this urban low-income prospective birth cohort, we demonstrated an L-shaped relationship between maternal plasma folate concentrations and child OWO and the benefit of

  7. Preclinical evaluation of isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu for folate receptor-positive tumor targeting.

    PubMed

    Kim, Woo Hyoung; Kim, Chang Guhn; Kim, Myoung Hyoun; Kim, Dae-Weung; Park, Cho Rong; Park, Ji Yong; Lee, Yun-Sang; Youn, Hyewon; Kang, Keon Wook; Jeong, Jae Min; Chung, June-Key

    2016-06-01

    The purpose of the present study was to prepare isostructural Tc-99m- and Re-188-folate-Gly-Gly-Cys-Glu (folate-GGCE), and to evaluate the feasibility of their use for folate receptor (FR)-targeted molecular imaging and as theranostic agents in a mouse tumor model. Folate-GGCE was synthesized using solid-phase peptide synthesis and radiolabeled with Tc-99m or Re-188. Radiochemical characterization was performed by radio-high-performance liquid chromatography. The biodistribution of Tc-99m-folate-GGCE was studied, with or without co-injection of excess free folate, in mice bearing both FR-positive (KB cell) and FR-negative (HT1080 cell) tumors. Biodistribution of Re-188-folate-GGCE was studied in mice bearing KB tumors. Serial planar scintigraphy was performed in the dual tumor mouse model after intravenous injection of Tc-99m-folate-GGCE. Serial micro-single photon emission computed tomography/computed tomography (SPECT/CT) studies were performed, with or without co-injection of excess free folate, in the mouse tumor model after injection of Tc-99m-folate-GGCE or Re-188-folate-GGCE. The radiolabeling efficiency and radiochemical stability of Tc-99m- and Re-188-folate-GGCE were more than 95 % for up to 4 h after radiolabeling. Uptake of Tc-99m-folate-GGCE at 1, 2, and 4 h after injection in KB tumor was 16.4, 23.2, and 17.6 % injected dose per gram (%ID/g), respectively. This uptake was suppressed by 97.4 % when excess free folate was co-administered. Tumor:normal organ ratios at 4 h for blood, liver, lung, muscle, and kidney were 54.3, 25.2, 38.3, 97.8, and 0.3, respectively. Tumor uptake of Re-188-folate-GGCE at 2, 4, 8, and 16 h after injection was 17.4, 21.7, 24.1, and 15.6 %ID/g, respectively. Tumor:normal organ ratios at 8 h for blood, liver, lung, muscle, and kidney were 126.8, 21.9, 54.8, 80.3, and 0.4, respectively. KB tumors were clearly visualized at a high intensity using serial scintigraphy and micro-SPECT/CT in mice injected with Tc-99m- or Re

  8. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition.

    PubMed

    Wibowo, Ardian S; Singh, Mirage; Reeder, Kristen M; Carter, Joshua J; Kovach, Alexander R; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E

    2013-09-17

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.

  9. [Folate, vitamin B12 and human health].

    PubMed

    Brito, Alex; Hertrampf, Eva; Olivares, Manuel; Gaitán, Diego; Sánchez, Hugo; Allen, Lindsay H; Uauy, Ricardo

    2012-11-01

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared functions and intertwined metabolic pathways that define the size of the "methyl donor" pool utilized in multiple metabolic pathways; these include DNA methylation and synthesis of nucleic acids. In Chile, folate deficiency is virtually nonexistent, while vitamin B12 deficiency affects approximately 8.5-51% depending on the cut-off value used to define deficiency. Folate is found naturally mainly in vegetables or added as folic acid to staple foods. Vitamin B12 in its natural form is present only in foods of animal origin, which is why deficit is more common among strict vegetarians and populations with a low intake of animal foods. Poor folate status in vulnerable women of childbearing age increases the risk of neural tube birth defects, so the critical time for the contribution of folic acid is several months before conception since neural tube closure occurs during the first weeks of life. The absorption of vitamin B12 from food is lower in older adults, who are considered to have higher risk of gastric mucosa atrophy, altered production of intrinsic factor and acid secretion. Deficiency of these vitamins is associated with hematological disorders. Vitamin B12 deficiency can also induce clinical and sub-clinical neurological and of other disorders. The purpose of this review is to provide an update on recent advances in the basic and applied knowledge of these vitamins relative to human health.

  10. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine and DNA uracil concentrations

    USDA-ARS?s Scientific Manuscript database

    Background: Folate is an essential nutrient which supports nucleotide synthesis and biological methylation reactions. Diminished folate status results in chromosome breakage and is associated with several diseases including colorectal cancer. Folate status is also inversely related to plasma homocys...

  11. Folates in Asian noodles: III. Fortification, impact of processing, and enhancement of folate intakes.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    Asian noodles, a widely consumed staple food, were evaluated as potential vehicles for fortification with folic acid. Samples of white salted, yellow alkaline, and instant noodles, prepared under controlled laboratory conditions, were fortified and folates were measured at each stage of processing using a microbiological assay. Although the 3 styles showed differing patterns of retention, overall losses were slightly more than 40% and were similar for all styles. White salted and yellow alkaline noodles showed no significant decrease in total folate content during production. In contrast, significant losses occurred for instant noodles during steaming and deep-frying of the noodle strands. In all cases, substantial losses occurred during subsequent cooking of the dried noodles. Fortification at a rate of 50% of the reference value per serving resulted in retention of folate at levels corresponding to 30% following cooking, whereas unfortified noodles contributed less than 4% per serving. It is concluded that fortifying Asian noodles provides an effective means for enhancing folate intake.

  12. Effect of germination and thermal treatments on folates in rye.

    PubMed

    Kariluoto, Susanna; Liukkonen, Kirsi-Helena; Myllymäki, Olavi; Vahteristo, Liisa; Kaukovirta-Norja, Anu; Piironen, Vieno

    2006-12-13

    Effects of germination conditions and thermal processes on folate contents of rye were investigated. Total folate contents were determined microbiologically with Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism, and individual folates were determined by high-performance liquid chromatography after affinity chromatographic purification. Germination increased the folate content by 1.7-3.8-fold, depending on germination temperature, with a maximum content of 250 micro g/100 g dry matter. Hypocotylar roots with their notably high folate concentrations (600-1180 micro g/100 g dry matter) contributed 30-50% of the folate contents of germinated grains. Germination altered the proportions of folates, increasing the proportion of 5-methyltetrahydrofolate and decreasing the proportion of formylated folate compounds. Thermal treatments (extrusion, autoclaving and puffing, and IR and toasting) resulted in significant folate losses. However, folate levels in grains that were germinated and then were heat processed were higher than for native (nongerminated) grains. Opportunities to optimize rye processing to enhance folate levels in rye-based foods are discussed.

  13. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions

    PubMed Central

    Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.

    2016-01-01

    The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691

  14. Folate restriction and methylenetetrahydrofolate reductase 677T polymorphism decreases adoMet synthesis via folate-dependent remethylation in human-transformed lymphoblasts.

    PubMed

    Chiang, E-P; Wang, Y-C; Tang, F-Y

    2007-04-01

    The homozygous mutation (677TT) in the methylenetetrahydrofolate reductase (MTHFR) gene reduces enzyme activity and alters cellular folate composition. Previous epidemiological studies reported a potential protective effect of MTHFR677C --> T against acute lymphocytic leukemia and malignant lymphoma, but the mechanism remains to be determined. We investigated the biochemical impacts of MTHFR677C --> T on cellular S-adenosyl methionine (adoMet) synthesis, global DNA methylation, and de novo purine synthesis, all of which are potential regulatory pathways involved in tumorigenesis. Metabolic fluxes of homocysteine remethylation and de novo purine synthesis were compared between Epstein-Barr virus-transformed lymphoblasts expressing MTHFR 677C and MTHFR 677T using stable isotopic tracers and GCMS. MTHFR TT genotype significantly reduced folate-dependent remethylation under folate restriction, reflecting limited methylated folates under folate restriction. Data also suggested increased formylated folate pool and increased purine synthesis when folate is adequate. The impacts of MTHFR 677T polymorphism appeared closely related to folate status, and such alterations may modulate metabolic pathways involved in cancer onset/progression. The advantage of de novo purine synthesis found in the MTHFR TT genotype may account for the protective effect of MTHFR in hematological malignancies. These transformed cells are potential models for studying the consequences of human genetic variation and cancer pathogenesis.

  15. Homogeneous bioluminescence competitive binding assay for folate based on a coupled glucose-6-phosphate dehydrogenase--bacterial luciferase enzyme system.

    PubMed

    Huang, W; Feltus, A; Witkowski, A; Daunert, S

    1996-05-01

    A homogeneous bioluminescence competitive binding assay for folate was developed by using a coupled enzyme system of glucose-6-phosphate dehydrogenase (G6PDH) and bacterial luciferase. A highly substituted G6PDH-folate conjugate was prepared by employing an N-hydroxysuccinimide/carbodiimide method. Folate binding protein inhibits the activity of the conjugate. In the presence of folate, there is a competition between folate and the G6PDH-folate conjugate for the binding site of the folate binding protein, and the activity of the conjugate is recovered. Thus, the concentration of folate can be related to the activity of the G6PDH-folate conjugate, which is directly related to the bioluminescence produced by the coupled enzyme reaction. Using this assay, dose-response curves with a detection limit of 2.5 x 10(-8) M folate were obtained, which is an improvement of an order of magnitude with respect to an assay that monitors G6PDH activity spectrophotometrically. The assay was validated using vitamin tablets and a cell culture medium.

  16. Enhancement of the folate content in Egyptian pita bread

    PubMed Central

    Hefni, Mohammed; Witthöft, Cornelia M.

    2012-01-01

    Introduction Egypt has a high incidence of neural tube defects related to folate deficiency. One major food source for folate is pita (baladi) bread, which is consumed daily. Bioprocessing (e.g. germination) has been reported to increase the folate content in cereals. The aim was to produce pita bread with increased folate content using germinated wheat flour (GWF). Methods Prior to milling the effects of germination and drying conditions on folate content in wheat grains were studied. Pita bread was baked from wheat flour substituted with different levels of GWF. The folate content in dough and bread and rheological properties of dough were determined. Results Germination of wheat grains resulted in, depending on temperature, 3- to 4-fold higher folate content with a maximum of 61 µg/100 g DM (dry matter). The folate content in both flour and bread increased 1.5 to 4-fold depending on the level of flour replacement with GWF. Pita bread baked with 50% sieved GWF was acceptable with respect to colour and layer separation, and had a folate content of 50 µg/100 g DM compared with 30 µg/100 g DM in conventional pita bread (0% GWF). Conclusion Using 50% GWF, pita bread with increased folate content, acceptable for the Egyptian consumer, was produced. Consumption of this bread would increase the average daily folate intake by 75 µg. PMID:22489220

  17. Enhancement of the folate content in Egyptian pita bread.

    PubMed

    Hefni, Mohammed; Witthöft, Cornelia M

    2012-01-01

    Egypt has a high incidence of neural tube defects related to folate deficiency. One major food source for folate is pita (baladi) bread, which is consumed daily. Bioprocessing (e.g. germination) has been reported to increase the folate content in cereals. The aim was to produce pita bread with increased folate content using germinated wheat flour (GWF). Prior to milling the effects of germination and drying conditions on folate content in wheat grains were studied. Pita bread was baked from wheat flour substituted with different levels of GWF. The folate content in dough and bread and rheological properties of dough were determined. Germination of wheat grains resulted in, depending on temperature, 3- to 4-fold higher folate content with a maximum of 61 µg/100 g DM (dry matter). The folate content in both flour and bread increased 1.5 to 4-fold depending on the level of flour replacement with GWF. Pita bread baked with 50% sieved GWF was acceptable with respect to colour and layer separation, and had a folate content of 50 µg/100 g DM compared with 30 µg/100 g DM in conventional pita bread (0% GWF). Using 50% GWF, pita bread with increased folate content, acceptable for the Egyptian consumer, was produced. Consumption of this bread would increase the average daily folate intake by 75 µg.

  18. DNA methyltransferase mediates dose-dependent stimulation of neural stem cell proliferation by folate.

    PubMed

    Li, Wen; Yu, Min; Luo, Suhui; Liu, Huan; Gao, Yuxia; Wilson, John X; Huang, Guowei

    2013-07-01

    The proliferative response of neural stem cells (NSCs) to folate may play a critical role in the development, function and repair of the central nervous system. It is important to determine the dose-dependent effects of folate in NSC cultures that are potential sources of transplantable cells for therapies for neurodegenerative diseases. To determine the optimal concentration and mechanism of action of folate for stimulation of NSC proliferation in vitro, NSCs were exposed to folic acid or 5-methyltetrahydrofolate (5-MTHF) (0-200 μmol/L) for 24, 48 or 72 h. Immunocytochemistry and methyl thiazolyl tetrazolium assay showed that the optimal concentration of folic acid for NSC proliferation was 20-40 μmol/L. Stimulation of NSC proliferation by folic acid was associated with DNA methyltransferase (DNMT) activation and was attenuated by the DNMT inhibitor zebularine, which implies that folate dose-dependently stimulates NSC proliferation through a DNMT-dependent mechanism. Based on these new findings and previously published evidence, we have identified a mechanism by which folate stimulates NSC growth. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. In Vivo Kinetics of Formate Metabolism in Folate-deficient and Folate-replete Rats*

    PubMed Central

    Morrow, Gregory P.; MacMillan, Luke; Lamarre, Simon G.; Young, Sara K.; MacFarlane, Amanda J.; Brosnan, Margaret E.; Brosnan, John T.

    2015-01-01

    It is now established that the mitochondrial production of formate is a major process in the endogenous generation of folate-linked one-carbon groups. We have developed an in vivo approach involving the constant infusion of [13C]formate until isotopic steady state is attained to measure the rate of endogenous formate production in rats fed on either a folate-replete or folate-deficient diet. Formate was produced at a rate of 76 μmol·h−1·100 g of body weight−1 in the folate-replete rats, and this was decreased by 44% in folate-deficient rats. This decreased formate production was confirmed in isolated rat liver mitochondria where formate production from serine, the principal precursor of one-carbon groups, was decreased by 85%, although formate production from sarcosine and dimethylglycine (choline metabolites) was significantly increased. We attribute this unexpected result to the demonstrated production of formaldehyde by sarcosine dehydrogenase and dimethylglycine dehydrogenase from their respective substrates in the absence of tetrahydrofolate and subsequent formation of formate by formaldehyde dehydrogenase. Comparison of formate production with the ingestion of dietary formate precursors (serine, glycine, tryptophan, histidine, methionine, and choline) showed that ∼75% of these precursors were converted to formate, indicating that formate is a significant, although underappreciated end product of choline and amino acid oxidation. Ingestion of a high protein diet did not result in increased production of formate, suggesting a regulation of the conversion of these precursors at the mitochondrial level to formate. PMID:25480787

  20. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies

    PubMed Central

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5–25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency. PMID:27276031

  1. Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis.

    PubMed

    Sadaka, Carmen; Ellsworth, Edmund; Hansen, Paul Robert; Ewin, Richard; Damborg, Peter; Watts, Jeffrey L

    2018-06-06

    Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop- o -benzyl-desmethylabyssomicin C constitute promising candidates for such programs.

  2. Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies.

    PubMed

    Ramaekers, V T; Thöny, B; Sequeira, J M; Ansseau, M; Philippe, P; Boemer, F; Bours, V; Quadros, E V

    2014-12-01

    Auto-antibodies against folate receptor alpha (FRα) at the choroid plexus that block N(5)-methyltetrahydrofolate (MTHF) transfer to the brain were identified in catatonic schizophrenia. Acoustic hallucinations disappeared following folinic acid treatment. Folate transport to the CNS prevents homocysteine accumulation and delivers one-carbon units for methyl-transfer reactions and synthesis of purines. The guanosine derivative tetrahydrobiopterin acts as common co-factor for the enzymes producing dopamine, serotonin and nitric oxide. Our study selected patients with schizophrenia unresponsive to conventional treatment. Serum from these patients with normal plasma homocysteine, folate and vitamin B12 was tested for FR autoantibodies of the blocking type on serial samples each week. Spinal fluid was analyzed for MTHF and the metabolites of pterins, dopamine and serotonin. The clinical response to folinic acid treatment was evaluated. Fifteen of 18 patients (83.3%) had positive serum FR auto-antibodies compared to only 1 in 30 controls (3.3%) (χ(2)=21.6; p<0.0001). FRα antibody titers in patients fluctuated over time varying between negative and high titers, modulating folate flux to the CNS, which explained low CSF folate values in 6 and normal values in 7 patients. The mean±SD for CSF MTHF was diminished compared to previously established controls (t-test: 3.90; p=0.0002). A positive linear correlation existed between CSF MTHF and biopterin levels. CSF dopamine and serotonin metabolites were low or in the lower normal range. Administration of folinic acid (0.3-1mg/kg/day) to 7 participating patients during at least six months resulted in clinical improvement. Assessment of FR auto-antibodies in serum is recommended for schizophrenic patients. Clinical negative or positive symptoms are speculated to be influenced by the level and evolution of FRα antibody titers which determine folate flux to the brain with up- or down-regulation of brain folate intermediates

  3. Plasma folate levels and risk of spontaneous abortion.

    PubMed

    George, Lena; Mills, James L; Johansson, Anna L V; Nordmark, Anna; Olander, Bodil; Granath, Fredrik; Cnattingius, Sven

    2002-10-16

    Both folate deficiency and folic acid supplements have been reported to increase the risk of spontaneous abortion. The results are inconclusive, however, and measurements of folate have not been available in all studies. To study the association between plasma folate levels and the risk of spontaneous abortion. Population-based, matched, case-control study of case women with spontaneous abortion and control women from January 1996 through December 1998 in Uppsala County, Sweden. Plasma folate measurements were available for 468 cases and 921 controls at 6 to 12 gestational weeks. Risk of spontaneous abortion vs maternal plasma folate level. Compared with women with plasma folate levels between 2.20 and 3.95 ng/mL (5.0 and 8.9 nmol/L), women with low (< or =2.19 ng/mL [< or =4.9 nmol/L]) folate levels were at increased risk of spontaneous abortion (adjusted odds ratio [OR], 1.47; 95% confidence interval [CI], 1.01-2.14), whereas women with higher folate levels (3.96-6.16 ng/mL [9.0-13.9 nmol/L] and > or =6.17 ng/mL [> or =14.0 nmol/L]) showed no increased risk of spontaneous abortion (OR, 0.84; 95% CI, 0.59-1.20; and OR, 0.74; 95% CI, 0.47-1.16, respectively). Low folate levels were associated with a significantly increased risk when the fetal karyotype was abnormal (OR, 1.95; 95% CI, 1.09-3.48) but not when the fetal karyotype was normal (OR, 1.11; 95% CI, 0.55-2.24) or unknown (OR, 1.45; 95% CI, 0.90-2.33). Low plasma folate levels were associated with an increased risk of early spontaneous abortion.

  4. Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells1234

    PubMed Central

    Tang, Ying-Sheng; Khan, Rehana A; Xiao, Suhong; Hansen, Deborah K; Stabler, Sally P; Kusumanchi, Praveen; Jayaram, Hiremagalur N; Antony, Aśok C

    2017-01-01

    Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded. Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency. Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo. Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5′-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine–triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hn

  5. Folates in plants: research advances and progress in crop biofortification

    NASA Astrophysics Data System (ADS)

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-03-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today’s knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  6. Mechanisms of Membrane Transport of Folates into Cells and Across Epithelia

    PubMed Central

    Zhao, Rongbao; Diop-Bove, Ndeye; Visentin, Michele; Goldman, I. David

    2013-01-01

    Until recently, the transport of folates into cells and across epithelia has been interpreted primarily within the context of two transporters with high affinity and specificity for folates, the reduced folate carrier and the folate receptors. However, there were discrepancies between the properties of these transporters and characteristics of folate transport in many tissues, most notably the intestinal absorption of folates, in terms of pH dependency and substrate specificity. With the recent cloning of the proton-coupled folate transporter (PCFT) and the demonstration that this transporter is mutated in hereditary folate malabsorption, an autosomal recessive disorder, the molecular basis for this low-pH transport activity is now understood. This review focuses on the properties of PCFT and briefly addresses the two other folate-specific transporters along with other facilitative and ATP-binding cassette (ABC) transporters with folate transport activities. The role of these transporters in the vectorial transport of folates across epithelia is considered. PMID:21568705

  7. Association Between Maternal Prepregnancy Body Mass Index and Plasma Folate Concentrations With Child Metabolic Health.

    PubMed

    Wang, Guoying; Hu, Frank B; Mistry, Kamila B; Zhang, Cuilin; Ren, Fazheng; Huo, Yong; Paige, David; Bartell, Tami; Hong, Xiumei; Caruso, Deanna; Ji, Zhicheng; Chen, Zhu; Ji, Yuelong; Pearson, Colleen; Ji, Hongkai; Zuckerman, Barry; Cheng, Tina L; Wang, Xiaobin

    2016-08-01

    Previous reports have linked maternal prepregnancy obesity with low folate concentrations and child overweight or obesity (OWO) in separate studies. To our knowledge, the role of maternal folate concentrations, alone or in combination with maternal OWO, in child metabolic health has not been examined in a prospective birth cohort. To test the hypotheses that maternal folate concentrations can significantly affect child metabolic health and that sufficient maternal folate concentrations can mitigate prepregnancy obesity-induced child metabolic risk. This prospective birth cohort study was conducted at the Boston Medical Center, Boston, Massachusetts. It included 1517 mother-child dyads recruited at birth from 1998 to 2012 and followed up prospectively up to 9 years from 2003 to 2014. Child body mass index z score calculated according to US reference data, OWO defined as a body mass index in the 85th percentile or greater for age and sex, and metabolic biomarkers (leptin, insulin, and adiponectin). The mean (SD) age was 28.6 (6.5) years for mothers and 6.2 (2.4) years for the children. An L-shaped association between maternal folate concentrations and child OWO was observed: the risk for OWO was higher among those in the lowest quartile (Q1) as compared with those in Q2 through Q4, with an odds ratio of 1.45 (95% CI, 1.13-1.87). The highest risk for child OWO was found among children of obese mothers with low folate concentrations (odds ratio, 3.05; 95% CI, 1.91-4.86) compared with children of normal-weight mothers with folate concentrations in Q2 through Q4 after accounting for multiple covariables. Among children of obese mothers, their risk for OWO was associated with a 43% reduction (odds ratio, 0.57; 95% CI, 0.34-0.95) if their mothers had folate concentrations in Q2 through Q4 compared with Q1. Similar patterns were observed for child metabolic biomarkers. In this urban low-income prospective birth cohort, we demonstrated an L-shaped association between

  8. Controlled release of folic acid through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Katyal, Henna; Mohanty, Sanat

    2014-11-01

    The present study explores folate nanoparticles as nano-carriers for controlled drug delivery. Cross-linked nanoparticles of liquid crystalline folates are composed of ordered stacks. This paper shows that the folate nanoparticles can be made with less than 5% loss in folate ions. In addition, this study shows that folate nanoparticles can disintegrate in a controlled fashion resulting in controlled release of the folate ions. Release can be controlled by the size of nanoparticles, the extent of cross-linking and the choice of cross-linking cation. The effect of different factors like agitation, pH, and temperature on folate release was also studied. Studies were also carried out to show the effect of release medium and role of ions in the release medium on disruption of folate assembly. Copyright © 2014. Published by Elsevier B.V.

  9. Folate-Dependent Purine Nucleotide Biosynthesis in Humans.

    PubMed

    Baggott, Joseph E; Tamura, Tsunenobu

    2015-09-01

    Purine nucleotide biosynthesis de novo (PNB) requires 2 folate-dependent transformylases-5'-phosphoribosyl-glycinamide (GAR) and 5'-phosphoribosyl-5-aminoimidazole-4-carboxamide (AICAR) transformylases-to introduce carbon 8 (C8) and carbon 2 (C2) into the purine ring. Both transformylases utilize 10-formyltetrahydrofolate (10-formyl-H4folate), where the formyl-carbon sources include ring-2-C of histidine, 3-C of serine, 2-C of glycine, and formate. Our findings in human studies indicate that glycine provides the carbon for GAR transformylase (exclusively C8), whereas histidine and formate are the predominant carbon sources for AICAR transformylase (C2). Contrary to the previous notion, these carbon sources may not supply a general 10-formyl-H4folate pool, which was believed to equally provide carbons to C8 and C2. To explain these phenomena, we postulate that GAR transformylase is in a complex with the trifunctional folate-metabolizing enzyme (TFM) and serine hydroxymethyltransferase to channel carbons of glycine and serine to C8. There is no evidence for channeling carbons of histidine and formate to AICAR transformylase (C2). GAR transformylase may require the TFM to furnish 10-formyl-H4folate immediately after its production from serine to protect its oxidation to 10-formyldihydrofolate (10-formyl-H2folate), whereas AICAR transformylase can utilize both 10-formyl-H2folate and 10-formyl-H4folate. Human liver may supply AICAR to AICAR transformylase in erythrocytes/erythroblasts. Incorporation of ring-2-C of histidine and formate into C2 of urinary uric acid presented a circadian rhythm with a peak in the morning, which corresponds to the maximum DNA synthesis in the bone marrow, and it may be useful in the timing of the administration of drugs that block PNB for the treatment of cancer and autoimmune disease. © 2015 American Society for Nutrition.

  10. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  11. Folate receptor‐targeted aminoglycoside‐derived polymers for transgene expression in cancer cells

    PubMed Central

    Godeshala, Sudhakar; Nitiyanandan, Rajeshwar; Thompson, Brian; Goklany, Sheba; Nielsen, David R.

    2016-01-01

    Abstract Targeted delivery of anticancer therapeutics can potentially overcome the limitations associated with current chemotherapeutic regimens. Folate receptors are overexpressed in several cancers, including ovarian, triple‐negative breast and bladder cancers, making them attractive for targeted delivery of nucleic acid therapeutics to these tumors. This work describes the synthesis, characterization and evaluation of folic acid‐conjugated, aminoglycoside‐derived polymers for targeted delivery of transgenes to breast and bladder cancer cell lines. Transgene expression was significantly higher with FA‐conjugated aminoglycoside‐derived polymers than with Lipofectamine, and these polymers demonstrated minimal cytotoxicty. Competitive inhibition using free folic acid significantly reduced transgene expression efficacy of folate‐targeted polymers, suggesting a role for folate receptor‐mediated uptake. High efficacy FA‐targeted polymers were employed to deliver a plasmid expressing the TRAIL protein, which induced death in cancer cells. These results indicate that FA‐conjugated aminoglycoside‐derived polymers are promising for targeted delivery of nucleic acids to cancer cells that overexpress folate receptors. PMID:29313013

  12. Nutriepigenetic regulation by folate-homocysteine-methionine axis: a review.

    PubMed

    Bhargava, Seema; Tyagi, S C

    2014-02-01

    Although normally folic acid is given during pregnancy, presumably to prevent neural tube defects, the mechanisms of this protection are unknown. More importantly it is unclear whether folic acid has other function during development. It is known that folic acid re-methylates homocysteine (Hcy) to methionine by methylene tetrahydrofolate reductase-dependent pathways. Folic acid also generates high-energy phosphates, behaves as an antioxidant and improves nitric oxide (NO) production by endothelial NO synthase. Interestingly, during epigenetic modification, methylation of DNA/RNA generate homocysteine unequivocally. The enhanced overexpression of methyl transferase lead to increased yield of Hcy. The accumulation of Hcy causes vascular dysfunction, reduces perfusion in the muscles thereby causing musculopathy. Another interesting fact is that children with severe hyperhomocysteinaemia (HHcy) have skeletal deformities, and do not live past teenage. HHcy is also associated with the progeria syndrome. Epilepsy is primarily caused by inhibition of gamma-amino-butyric-acid (GABA) receptor, an inhibitory neurotransmitter in the neuronal synapse. Folate deficiency leads to HHcy which then competes with GABA for binding on the GABA receptors. With so many genetic and clinical manifestations associated with folate deficiency, we propose that folate deficiency induces epigenetic alterations in the genes and thereby results in disease.

  13. Biomarkers of Nutrition for Development-Folate Review.

    PubMed

    Bailey, Lynn B; Stover, Patrick J; McNulty, Helene; Fenech, Michael F; Gregory, Jesse F; Mills, James L; Pfeiffer, Christine M; Fazili, Zia; Zhang, Mindy; Ueland, Per M; Molloy, Anne M; Caudill, Marie A; Shane, Barry; Berry, Robert J; Bailey, Regan L; Hausman, Dorothy B; Raghavan, Ramkripa; Raiten, Daniel J

    2015-07-01

    The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate's history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development. © 2015 American Society for Nutrition.

  14. Optimization of the trienzyme extraction for the microbiological assay of folate in vegetables.

    PubMed

    Chen, Liwen; Eitenmiller, Ronald R

    2007-05-16

    Response surface methodology was applied to optimize the trienzyme digestion for the extraction of folate from vegetables. Trienzyme extraction is a combined enzymatic digestion by protease, alpha-amylase, and conjugase (gamma-glutamyl hydrolase) to liberate the carbohydrate and protein-bound folates from food matrices for total folate analysis. It is the extraction method used in AOAC Official Method 2004.05 for assay of total folate in cereal grain products. Certified reference material (CRM) 485 mixed vegetables was used to represent the matrix of vegetables. Regression and ridge analysis were performed by statistical analysis software. The predicted second-order polynomial model was adequate (R2 = 0.947), without significant lack of fit (p > 0.1). Both protease and alpha-amylase have significant effects on the extraction. Ridge analysis gave an optimum trienzyme digestion time: Pronase, 1.5 h; alpha-amylase, 1.5 h; and conjugase, 3 h. The experimental value for CRM 485 under this optimum digestion was close to the predicted value from the model, confirming the validity and adequacy of the model. The optimized trienzyme digestion condition was applied to five vegetables and yielded higher folate levels than the trienzyme digestion parameters employed in AOAC Official Method 2004.05.

  15. Genomic DNA Hypomethylation Is Associated with Neural Tube Defects Induced by Methotrexate Inhibition of Folate Metabolism

    PubMed Central

    Wang, Xiuwei; Guan, Zhen; Chen, Yan; Dong, Yanting; Niu, Yuhu; Wang, Jianhua; Zhang, Ting; Niu, Bo

    2015-01-01

    DNA methylation is thought to be involved in the etiology of neural tube defects (NTDs). However, the exact mechanism between DNA methylation and NTDs remains unclear. Herein, we investigated the change of methylation in mouse model of NTDs associated with folate dysmetabolism by use of ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS), microarray, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Real time quantitative PCR. Results showed that NTD neural tube tissues had lower concentrations of 5-methyltetrahydrofolate (5-MeTHF, P = 0.005), 5-formyltetrahydrofolate (5-FoTHF, P = 0.040), S-adenosylmethionine (SAM, P = 0.004) and higher concentrations of folic acid (P = 0.041), homocysteine (Hcy, P = 0.006) and S-adenosylhomocysteine (SAH, P = 0.045) compared to control. Methylation levels of genomic DNA decreased significantly in the embryonic neural tube tissue of NTD samples. 132 differentially methylated regions (35 low methylated regions and 97 high methylated regions) were selected by microarray. Two genes (Siah1b, Prkx) in Wnt signal pathway demonstrated lower methylated regions (peak) and higher expression in NTDs (P<0.05; P<0.05). Results suggest that DNA hypomethylation was one of the possible epigenetic variations correlated with the occurrence of NTDs induced by folate dysmetabolism and that Siah1b, Prkx in Wnt pathway may be candidate genes for NTDs. PMID:25822193

  16. Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency.

    PubMed

    Bach, Margund; Savini, Claudia; Krufczik, Matthias; Cremer, Christoph; Rösl, Frank; Hausmann, Michael

    2017-08-08

    to the repair machinery. In conclusion, these data demonstrated a folate-dependent repair activity and chromatin re-organization on the SMLM nanoscale level. This offers new opportunities to further investigate folate-induced chromatin re-organization and the associated mechanisms.

  17. Targeting the folate receptor: improving efficacy in inorganic medicinal chemistry.

    PubMed

    Carron, Pauraic Mc; Crowley, Aisling; O'Shea, Denis; McCann, Malachy; Howe, Orla; Hunt, Mary; Devereux, Michael

    2018-02-09

    The discovery of the high-affinity, high-specificity folate receptor in mamalian kidney cells, coupled with the ability of folate to enter cells by folate receptor-mediated endocytosis and the subsequent elucidation of the folate receptor's overexpression in specific cancer cell types; heralded the arrival of the area of chemotherapeutic folate targeting. The application of purely organic folate-based small-molecule drug conjugates that selectively target the folate receptor, which is over expressed in several diseases such as cancer, is well established. The application of inorganic folate-targeted drugs offers significant potential to expand and enhance this therapeutic approach. From the data made available to date, it is apparent that this aspect of inorganic medicinal chemistry is in its youth but has the capability to contribute greatly to cancer research, both in therapy and diagnosis. The union of folate-receptor targeting and inorganic medicine may also lead to the development of treatments for disorders such as chronic-inflammation, tuberculosis, neurodegenerative disease and leishmaniasis. In this review, we summarize what is known about the coordination chemistry of folic acid and the therapeutic potential of such complexes. We also describe approaches adopted to conjugate platinum drugs to folate- or folate-carrier- systems and their prospective ability to overcome problems associated with unwanted side-effects and resistance by improving their delivery and/or selectivity. The literature pertaining to non-platinum metal complex conjugates with folic acid is also reviewed revealing that this is an area that offers significant potential to develop targeted therapeutic approaches in areas such as chemotherapy and molecular imaging for diagnostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Esophageal hypermotility: cause or effect?

    PubMed

    Crespin, O M; Tatum, R P; Yates, R B; Sahin, M; Coskun, K; Martin, A V; Wright, A; Oelschlager, B K; Pellegrini, C A

    2016-07-01

    . Postoperatively, all 38 patients had normal distal esophageal acid exposure. Of these 38 patients, symptoms resolved in 28 and improved in 10. Of six patients (one with NE, two JHE, and three with HTLES) that underwent postoperative esophageal manometry, five exhibited normal motility. Typical reflux symptoms are common among patients with esophageal hypermotility disorders. Abnormal 24-hour pH monitoring is present in the majority of patients with who report typical reflux symptoms and almost half of patients who report respiratory symptoms. Conversely, the majority of patients who report dysphagia or chest pain have normal distal esophageal acid exposure. Based on a small number of patients in this study, it also appears that motility disorders often improve after LNF. LNF is associated with resolution or improvement in reflux related symptoms and esophageal motility parameters in patients exhibiting abnormal esophageal acid exposure. This suggests that patient symptoms are due to abnormal acid exposure and not the motility disorder. © 2015 International Society for Diseases of the Esophagus.

  19. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism.

    PubMed

    Wani, Nissar Ahmad; Kaur, Jyotdeep

    2011-03-01

    We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down-regulation of the proton-coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism. Copyright © 2010 Wiley-Liss, Inc.

  20. Seasonal folate serum concentrations at different nutrition.

    PubMed

    Krajcovicová-Kudlácková, Marica; Valachovicová, Martina; Blazícek, Pavel

    2013-03-01

    Folic acid (vitamin B9) rich sources are leafy green vegetables, legumes, whole grains, egg yolk, liver, and citrus fruit. In winter and early spring, there could be insufficient supply of vegetables and fruit and thus lower intake of folic acid and possible deficient folic acid blood concentrations. The aim of the study was to assess serum vitamin B9 concentrations depending on the season (the last third of winter - March, the last third of spring - May/June and the beginning of autumn - September) and different nutritional habits (apparently healthy adults non-smoking, non-obese 366 subjects; 204 persons of general population on traditional mixed diet; and 162 long-term lacto-ovo vegetarians). In general population group, the mean concentration of folate in March was low (narrowly above lower reference limit) with high incidence of deficient values - 31.5%. In May/ June vs. March was folate concentration significantly higher with deficient values in 13.2% of individuals. The highest serum values were observed in September with 11.1% of deficient values. In vegetarian vs. non-vegetarian group, significantly higher folate concentrations were found in each season with no deficient values. Folate and vitamin B12 are the regulators of homocysteinemia; plant food lacks of vitamin B12. The deficient folate serum values in March caused the mild hyperhomocysteinemia in 12.3% of individuals vs. only 5.9% and 4.8% of subjects in groups investigated in May/June and September. In spite of high folate concentrations in all investigations and no deficient value, 19.6-22.8% of vegetarians suffer from mild hyperhomocysteinemia as a consequence of deficient vitamin B12 concentrations in one quarter of subjects. As far as the general population is concerned, our findings suggest that winter and early spring are critical seasons in regards to optimal serum folate concentrations.

  1. [Determination of folate content in ready-to-eat food products].

    PubMed

    Fajardo Martín, Violeta; Alonso-Aperte, Elena; Varela-Moreiras, Gregorio

    2013-01-01

    In the last years, the consumption of ready-to-eat foods has become an increasing part of the current Spanish diet. Accordingly, the nutritional composition of these food categories should be investigated in order to estimate its contribution to vitamin and nutrient intakes, in particular its folate content. The broad lack of folate data in food composition tables and databases justifies this approach. The aim of this work was to screen the current availability and to supply new folate data in ready-to-eat commercial products in the Spanish market. Seventeen ready-to-eat foods, including mainly vegetable ingredients, were analysed for total folate content using a validated method that relies on Lactobacillus casei ssp. rhamnosus chloramphenicol-resistant folate dependent growth. The accuracy of the analytical procedure was checked using a certified reference material and by a recovery test. Mean TF content ranged from 13.6 to 103.8 μg/100 g in different food matrices on a fresh weight basis. Higher TF quantity was found for vegetable hamburguers, recipes including chickpeas, peas or artichockes. Selected precooked products were also analysed after a soft heat treatment as recommended by the manufacter before its consumption. No significant differences were found in the folate content after processing. The coefficient of variation for the duplicates of the same product was less than 15%. Folate content in ready-to-eat products indicates the potential to considerably increase folate intake by choosing folate-rich foods. There have been no previous reports on folate data in chilled ready-to-eat meals. The present data will assist dietary studies to estimate and evaluate the adequacy of population folate intakes. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  2. Epigenetic Mechanisms of Folate Nutrition in Breast Cancer

    DTIC Science & Technology

    2011-04-01

    relationships between folate , one carbon metabolism, DNA methylation and gene expression within the context of breast cancer. Our hypothesis is that the...lentivirus plasmids containing miRNA against DHFR and AHCY. 2. Test effects of folate deficiency on global and gene specific DNA methylation and gene...including mammary tumors. The B vitamin folate is required for the synthesis of purines, thymidine, and S-adenosylmethionine (SAM), the methyl donor for DNA

  3. Red blood cell folate and plasma folate are not associated with risk of incident colorectal cancer in the Women's Health Initiative observational study.

    PubMed

    Neuhouser, Marian L; Cheng, Ting-Yuan David; Beresford, Shirley A A; Brown, Elissa; Song, Xiaoling; Miller, Joshua W; Zheng, Yingye; Thomson, Cynthia A; Shikany, James M; Vitolins, Mara Z; Rohan, Thomas; Green, Ralph; Ulrich, Cornelia M

    2015-08-15

    The relationship between folate and colorectal cancer (CRC) risk is unclear. We investigated the association of two biomarkers of folate status, plasma folate and red blood cell (RBC) folate, with CRC risk using a nested case-control design in the Women's Health Initiative Observational Study. Postmenopausal women (n = 93,676) aged 50-79 years were enrolled in the Women's Health Initiative Observational Study (1993-1998). A fasting blood draw and extensive health, dietary and lifestyle data were collected upon enrollment. Through 2008, 988 incident CRC cases were reported and confirmed with medical records adjudication. Cases and controls were matched on age (± 3 years), enrollment date (± 1 year), race/ethnicity, blood draw date (± 6 months) and hysterectomy status. Plasma and RBC folate were determined by radio assay. Folate biomarker values were divided into quartiles, and conditional logistic regression estimated odds ratios (ORs) and 95% confidence intervals (CI) for the associations of folate with total CRC, by tumor site and by stage at diagnosis. Additional analyses examined whether risks varied across time periods corresponding to the United States folic acid fortification policy: prefortification (1994-1995), perifortification (1996-1997) and postfortification (1998). ORs for overall CRC risk comparing Q4 vs. Q1 were 0.91 (95% CI 0.67-1.24) and 0.91 (95% CI 0.67-1.23) for RBC and plasma folate, respectively. There were no changes in risk attributable to food supply fortification. These results do not support an overall association of folate with CRC risk and suggest that folic acid fortification of the US food supply did not alter the associations in these postmenopausal women. © 2015 UICC.

  4. Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine.

    PubMed

    Watanabe, Sho; Ohtani, Yuta; Tatsukami, Yohei; Aoki, Wataru; Amemiya, Takashi; Sukekiyo, Yasunori; Kubokawa, Seiichi; Ueda, Mitsuyoshi

    2017-06-14

    Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of genetically modified foods are under strict regulation. Here, we developed a new approach to achieve folate biofortification in spinach (Spinacia oleracea) without genetic modification. We hydroponically cultivated spinach with the addition of three candidate compounds expected to fortify folate. As a result of liquid chromatography tandem mass spectrometry analysis, we found that the addition of phenylalanine increased the folate content up to 2.0-fold (306 μg in 100 g of fresh spinach), representing 76.5% of the recommended daily allowance for adults. By measuring the intermediates of folate biosynthesis, we revealed that phenylalanine activated folate biosynthesis in spinach by increasing the levels of pteridine and p-aminobenzoic acid. Our approach is a promising and practical approach to cultivate nutrient-enriched vegetables.

  5. Consumer preferences for micronutrient strategies in China. A comparison between folic acid supplementation and folate biofortification.

    PubMed

    De Steur, Hans; Feng, Shuyi; Xiaoping, Shi; Gellynck, Xavier

    2014-06-01

    Despite public health efforts, folate deficiency is still largely prevalent in poor, rural populations and continues to cause a large burden of disease. The present paper determines and compares consumer preferences for two folate strategies: folic acid supplementation v. folate biofortification, i.e. the enhancement of the folate content in staple crops. Experimental auctions with non-repeated information rounds are applied to rice in order to obtain willingness-to-pay for folate products. Thereby, GM or non-GM folate-biofortified rice (FBR) is auctioned together with rice that is supplemented with free folic acid pills (FAR). Shanxi Province (China) as a high-risk region of folate deficiency. One hundred and twenty-six women of childbearing age, divided into a school (n 60) and market sample (n 66). Despite differences according to the targeted sample, a general preference for folate biofortification is observed, regardless of the applied breeding technology. Premiums vary between 33·9 % (GM FBR), 36·5 % (non-GM FBR) and 19·0 % (FAR). Zero bidding behaviour as well as the product choice question, respectively, support and validate these findings. The targeted sample, the timing of the auction, the intention to consume GM food and the responsibility for rice purchases are considered key determinants of product choice. A novel ex-post negative valuation procedure shows low consistency in zero bidding. While the low attractiveness of FAR provides an additional argument for the limited effectiveness of past folic acid supplementation programmes, the positive reactions towards GM FBR further support its potential as a possible complementary micronutrient intervention.

  6. Justifying the "Folate trap" in folic acid fortification programs.

    PubMed

    Mahajan, Niraj N; Mahajan, Kshitija N; Soni, Rajani N; Gaikwad, Nilima L

    2007-01-01

    Many countries have now adopted fortification, where folic acid is added to flour and intended to benefit all with rise in blood folate level. During many transformations of folate from one form to another, a proportion is accidentally converted to N(5)-methyl-THF, an inactive metabolite, the so-called "folate trap". Consideration should be given to including B(12) as well as folic acid in any program of supplementation or food fortification to prevent NTDs. This is especially applicable to developing countries like India where the majority of women are vegetarians and have borderline levels of vitamin B(12). Administration of [6S]-5-MTHF is more effective than is folic acid supplementation at improving folate status. Therefore, we urge to reconsider the "folate trap" in folic acid fortification programs.

  7. The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas

    PubMed Central

    Lucock, Mark; Veysey, Martin; Beckett, Emma

    2018-01-01

    Vitamin D is unique in being generated in our skin following ultraviolet radiation (UVR) exposure. Ongoing research into vitamin D must therefore always consider the influence of UVR on vitamin D processes. The close relationship between vitamin D and UVR forms the basis of the “vitamin D–folate hypothesis”, a popular theory for why human skin colour has evolved as an apparent adaption to UVR environments. Vitamin D and folate have disparate sensitivities to UVR; whilst vitamin D may be synthesised following UVR exposure, folate may be degraded. The vitamin D–folate hypothesis proposes that skin pigmentation has evolved as a balancing mechanism, maintaining levels of these vitamins. There are several alternative theories that counter the vitamin D–folate hypothesis. However, there is significant overlap between these theories and the now known actions of vitamin D and folate in the skin. The focus of this review is to present an update on the vitamin D–folate hypothesis by integrating these current theories and discussing new evidence that supports associations between vitamin D and folate genetics, UVR, and skin pigmentation. In light of recent human migrations and seasonality in disease, the need for ongoing research into potential UVR-responsive processes within the body is also discussed. PMID:29710859

  8. [Folates and fetal programming: role of epigenetics and epigenomics].

    PubMed

    Guéant, Jean-Louis; Daval, Jean-Luc; Vert, Paul; Nicolas, Jean-Pierre

    2012-12-01

    Folates are needed for synthesis of methionine, the precursor of S-adenosyl methionine (SAM). They play therefore a key role in nutrition and epigenomics by fluxing monocarbons towards synthesis or methylation of DNA and RNA, and methylation of gene transregulators, respectively. The deficiency produces intrauterine growth retardation and birth dejects. Folate deficiency deregulates epigenomic mechanisms related to fetal programming through decreased cellular availability of SAM. Epigenetic mechanisms of folate deficiency are illustrated by inheritance of coat colour of agouti mice model and altered expression of Igf2/H19 imprinting genes. Dietary exposure to fumonisin FB1 acts synergistically with folate deficiency on alterations of heterochromatin assembly. Deficiency in folate and vitamin B12 produces impaired fatty acid oxidation in liver and heart through imbalanced methylation and acetylation of PGC1-alpha and decreased expression of SIRT1, and long-lasting cognitive disabilities through impaired hippocampal cell proliferation, differentiation and plasticity and atrophy of hippocampal CA1. Deciphering these mechanisms will help understand the discordances between experimental models and population studies on folate supplementation.

  9. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Effect of Folate and Folate Plus Zinc Supplementation on Endocrine Parameters and Sperm Characteristics in Sub-Fertile Men: A Systematic Review and Meta-Analysis.

    PubMed

    Irani, Morvarid; Amirian, Malihe; Sadeghi, Ramin; Lez, Justine Le; Latifnejad Roudsari, Robab

    2017-08-29

    To evaluate the effect of folate and folate plus zinc supplementation on endocrine parameters and sperm characteristics in sub fertile men. We conducted a systematic review and meta-analysis. Electronic databases of Medline, Scopus , Google scholar and Persian databases (SID, Iran medex, Magiran, Medlib, Iran doc) were searched from 1966 to December 2016 using a set of relevant keywords including "folate or folic acid AND (infertility, infertile, sterility)".All available randomized controlled trials (RCTs), conducted on a sample of sub fertile men with semen analyses, who took oral folic acid or folate plus zinc, were included. Data collected included endocrine parameters and sperm characteristics. Statistical analyses were done by Comprehensive Meta-analysis Version 2. In total, seven studies were included. Six studies had sufficient data for meta-analysis. "Sperm concentration was statistically higher in men supplemented with folate than with placebo (P < .001)". However, folate supplementation alone did not seem to be more effective than the placebo on the morphology (P = .056) and motility of the sperms (P = .652). Folate plus zinc supplementation did not show any statistically different effect on serum testosterone (P = .86), inhibin B (P = .84), FSH (P = .054), and sperm motility (P = .169) as compared to the placebo. Yet, folate plus zinc showed statistically higher effect on the sperm concentration (P < .001), morphology (P < .001), and serum folate level (P < .001) as compared to placebo. Folate plus zinc supplementation has a positive effect on sperm characteristics in sub fertile men. However, these results should be interpreted with caution due to the important heterogeneity of the studies included in this meta-analysis. Further trials are still needed to confirm the current findings.

  11. The role of the folate pathway in pancreatic cancer risk

    PubMed Central

    Chittiboyina, Shirisha; Chen, Zhongxue; Chiorean, E. Gabriela; Kamendulis, Lisa M.

    2018-01-01

    Background Pancreatic cancer is the third leading cause of cancer related deaths in the United States. Several dietary factors have been identified that modify pancreatic cancer risk, including low folate levels. In addition to nutrition and lifestyle determinants, folate status may be influenced by genetic factors such as single nucleotide polymorphisms (SNPs). In the present study, we investigated the association between folate levels, genetic polymorphisms in genes of the folate pathway, and pancreatic cancer. Methods Serum and red blood cell (RBC) folate levels were measured in pancreatic cancer and control subjects. Genotypes were determined utilizing Taqman probes and SNP frequencies between cases and controls were assessed using Fisher’s exact test. Logistic regression was used to estimate the odds ratio (OR) and corresponding 95% confidence intervals (CIs) to measure the association between genotypes and pancreatic cancer risk. The association between folate levels and SNP expression was calculated using one-way ANOVA. Results Mean RBC folate levels were significantly lower in pancreatic cancer cases compared to unrelated controls (508.4 ± 215.9 ng/mL vs 588.3 ± 229.2 ng/mL, respectively) whereas serum folate levels were similar. Irrespective of cancer status, several SNPs were found to be associated with altered serum folate concentrations, including the D919G SNP in methionine synthase (MTR), the L474F SNP in serine hydroxymethyl transferase 1 (SHMT1) and the V175M SNP in phosphatidyl ethanolamine methyltransferase (PEMT). Further, the V allele of the A222V SNP and the E allele of the E429A SNP in methylene tetrahydrofolate reductase (MTHFR) were associated with low RBC folate levels. Pancreatic cancer risk was found to be significantly lower for the LL allele of the L78R SNP in choline dehydrogenase (CHDH; OR = 0.29; 95% CI 0.12–0.76); however, it was not associated with altered serum or RBC folate levels. PMID:29474406

  12. Folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh2

    PubMed Central

    Gamble, Mary V; Ahsan, Habibul; Liu, Xinhua; Factor-Litvak, Pam; Ilievski, Vesna; Slavkovich, Vesna; Parvez, Faruque; Graziano, Joseph H

    2007-01-01

    Background Indian Asian men residing in the United Kingdom have a higher prevalence of hyperhomocysteinemia than do their European counterparts. This has been largely attributed to dietary deficiencies in cobalamin associated with vegetarianism among these Indian Asians. Objective We aimed to ascertain the prevalence of folate and cobalamin deficiencies and hyperhomocysteinemia in Bangladesh. Design Plasma concentrations of homocysteine, folate, and cobalamin and urinary concentrations of creatinine were assessed in 1650 adults in Bangladesh. Results The prevalence of hyperhomocysteinemia (men: >11.4 μmol/L; women: >10.4 μmol/L) was markedly (P < 0.0001) greater among men (63%; x̄ ± SD: 15.3 ± 9.5 μmol/L) than among women (26%; 9.5 ± 4.7 μmol/L). Folate was lower (9.8 ± 6.5 and 12.3 ± 7.6 nmol/L, respectively), whereas cobalamin was higher (281 ± 115 and 256 ± 118 pmol/L, respectively) (P < 0.0001 for both) among men than among women. Folate explained 15% and cobalamin explained 5% of the variation in homocysteine concentrations. For men, folate (P = 0.005) and cobalamin (P = 0.03) were positively correlated with urinary creatinine. Smoking (P < 0.0003) and betelnut use (P < 0.0002) were independent negative predictors of folate. Conclusions Bangladeshi men have a high prevalence of hyperhomocysteinemia, which is more closely associated with folate than with cobalamin, although other factors, eg, smoking and betelnut use, may also contribute to its cause. The positive correlations between urinary creatinine and plasma folate and cobalamin were unanticipated and could suggest that, in marginal nutrition, these vitamins may be limiting for creatine biosynthesis. PMID:15941889

  13. FOLATE DEFICIENCY ENHANCES ARSENIC EFFECTS ON EXPRESSION OF GENES INVOLVED IN EPIDERMAL DIFFERENTIATION

    EPA Science Inventory

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, and bladder. There is evidence that folate deficiency may increase susceptibility to arsenic¿s effects, including arsenic-induced skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm ...

  14. Mechanistic insights of intestinal absorption and renal conservation of folate in chronic alcoholism.

    PubMed

    Wani, Nissar Ahmad; Thakur, Shilpa; Najar, Rauf Ahmad; Nada, Ritambhara; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2013-03-01

    Folate mediated one-carbon metabolism is of fundamental importance for various cellular processes, including DNA synthesis and methylation of biological molecules. Due to the exogenous requirement of folate in mammals, there exists a well developed epithelial folate transport system for regulation of normal folate homeostasis. The intestinal and renal folate uptake is tightly and diversely regulated and disturbances in folate homeostasis like in alcoholism have pathological consequences. The study was sought to delineate the regulatory mechanism of folate uptake in intestine and reabsorption in renal tubular cells that could evaluate insights of malabsorption during alcoholism. The folate transporters PCFT and RFC were found to be associated with lipid rafts of membrane surfaces in intestine and kidney. Importantly, the observed lower intestinal and renal folate uptake was associated with decreased levels of folate transporter viz. PCFT and RFC in lipid rafts of intestinal and renal membrane surfaces. The decreased association of folate transporters in lipid rafts was associated with decreased protein and mRNA levels. In addition, immunohistochemical studies showed that alcoholic conditions deranged that localization of PCFT and RFC. These findings could explain the possible mechanistic insights that may result in folate malabsorption during alcoholism. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Aspects of Weak Interactions between Folate and Glycine Betaine.

    PubMed

    Bhojane, Purva P; Duff, Michael R; Bafna, Khushboo; Rimmer, Gabriella P; Agarwal, Pratul K; Howell, Elizabeth E

    2016-11-15

    Folate, or vitamin B 9 , is an important compound in one-carbon metabolism. Previous studies have found weaker binding of dihydrofolate to dihydrofolate reductase in the presence of osmolytes. In other words, osmolytes are more difficult to remove from the dihydrofolate solvation shell than water; this shifts the equilibrium toward the free ligand and protein species. This study uses vapor-pressure osmometry to explore the interaction of folate with the model osmolyte, glycine betaine. This method yields a preferential interaction potential (μ 23 /RT value). This value is concentration-dependent as folate dimerizes. The μ 23 /RT value also tracks the deprotonation of folate's N3-O4 keto-enol group, yielding a pK a of 8.1. To determine which folate atoms interact most strongly with betaine, the interaction of heterocyclic aromatic compounds (as well as other small molecules) with betaine was monitored. Using an accessible surface area approach coupled with osmometry measurements, deconvolution of the μ 23 /RT values into α values for atom types was achieved. This allows prediction of μ 23 /RT values for larger molecules such as folate. Molecular dynamics simulations of folate show a variety of structures from extended to L-shaped. These conformers possess μ 23 /RT values from -0.18 to 0.09 m -1 , where a negative value indicates a preference for solvation by betaine and a positive value indicates a preference for water. This range of values is consistent with values observed in osmometry and solubility experiments. As the average predicted folate μ 23 /RT value is near zero, this indicates folate interacts almost equally well with betaine and water. Specifically, the glutamate tail prefers to interact with water, while the aromatic rings prefer betaine. In general, the more protonated species in our small molecule survey interact better with betaine as they provide a source of hydrogens (betaine is not a hydrogen bond donor). Upon deprotonation of the small

  16. Folate supplementation in schizophrenia: a possible role for MTHFR genotype.

    PubMed

    Hill, Michele; Shannahan, Kelsey; Jasinski, Sarah; Macklin, Eric A; Raeke, Lisa; Roffman, Joshua L; Goff, Donald C

    2011-04-01

    Folate deficiency and the methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism have been linked to negative symptoms in schizophrenia both independently and synergistically. This study examined the effect of folate supplementation on negative symptoms overall and in relation to MTHFR 677C>T genotype. Forty-six stable adult schizophrenia outpatients were enrolled and 32 were randomised, double-blind, in a parallel-group, twelve week add-on trial of folate 2mg/d or matching placebo. The primary outcome measure was change from baseline to week 12 on the modified SANS total score using a mixed-model analysis. In addition, we measured the effect of MTHFR genotype on treatment effects and on changes in serum folate by grouping participants with T/T genotype together with C/T genotype and comparing their interactions to patients with C/C genotype. Twenty-eight participants completed the trial. Folate supplementation did not significantly affect negative symptoms compared to placebo across the entire cohort. However, there was a significant genotype×treatment effect on negative symptoms (F=7.13, df=1,39, p=0.01). In addition, MTHFR status significantly moderated the relationship between change in serum folate and change in negative symptoms: among participants with at least one copy of the T allele negative symptoms were more likely to improve with increased serum folate (p=0.03). We did not detect a therapeutic benefit of folate supplementation in a sample of patients with residual negative symptoms. However, a possible association between genotypes associated with reduced MTHFR activity and benefit from folate supplementation should be investigated further. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Arthritis imaging using a near-infrared fluorescence folate-targeted probe

    PubMed Central

    Chen, Wei-Tsung; Mahmood, Umar; Weissleder, Ralph; Tung, Ching-Hsuan

    2005-01-01

    A recently developed near-infrared fluorescence-labeled folate probe (NIR2-folate) was tested for in vivo imaging of arthritis using a lipopolysaccharide intra-articular injection model and a KRN transgenic mice serum induction mouse model. In the lipopolysaccharide injection model, the fluorescence signal intensity of NIR2-folate (n = 12) and of free NIR2 (n = 5) was compared between lipopolysaccharide-treated and control joints. The fluorescence signal intensity of the NIR2-folate probe at the inflammatory joints was found to be significantly higher than the control normal joints (up to 2.3-fold, P < 0.001). The NIR2-free dye injection group showed a persistent lower enhancement ratio than the NIR2-folate probe injection group. Excessive folic acid was also given to demonstrate a competitive effect with the NIR2-folate. In the KRN serum transfer model (n = 4), NIR2-folate was applied at different time points after serum transfer, and the inflamed joints could be detected as early as 30 hours after arthritogenic antibody transfer (1.8-fold increase in signal intensity). Fluorescence microscopy, histology, and immunohistochemistry validated the optical imaging results. We conclude that in vivo arthritis detection was feasible using a folate-targeted near-infrared fluorescence probe. This receptor-targeted imaging method may facilitate improved arthritis diagnosis and early assessment of the disease progress by providing an in vivo characterization of active macrophage status in inflammatory joint diseases. PMID:15743478

  18. Erythrocyte volume, folate levels, and the presence of methylenetetrahydrofolate reductase polymorphism.

    PubMed

    García-García, Inés; García-Fragoso, Lourdes; Renta, Jessicca; Arce, Sylvia; Cadilla, Carmen L

    2002-03-01

    Homozygosity for a common polymorphism in the 5,10 methylenetetrahydrofolate reductase (MTHFR) gene (C677T) has been associated to an increased risk of neural tube defects as well as derangements in folate, homocysteine, and hematological parameters. This study analyzed the relationship between folate levels, the erythrocyte volume, and the presence of homozygosity for the C677T polymorphism in a group of 126 Puerto Rican healthy women of childbearing age. Blood samples were analyzed for erythrocyte mean corpuscular volume (MCV), mean erythrocyte hemoglobin content (MCH), folate, and RBC folate. Homozygosity for the C677T mutation was determined by PCR. Thirty-two percent (32%) of women used a folic acid supplement during the three months prior to sampling. Mean folate and RBC folate levels were within the normal range. Individuals homozygous for the MTHFR C677T polymorphism had no elevation of MCV (p = 0.70) or MCH (p = 0.68). Women in the lower quartile of folate levels did not show differences in their MCV or MCH. In this sample of Puerto Rican women, homozygosity for the C677T MTHFR polymorphism was not associated to elevations of MCV or MCH even in the presence of lower folate levels.

  19. Total folate content and retention in rosehips (Rosa ssp.) after drying.

    PubMed

    Strålsjö, Lena; Alklint, Charlotte; Olsson, Marie E; Sjöholm, Ingegerd

    2003-07-16

    Folate concentrations in rosehips and commercial rosehip products and factors affecting folate retention during drying were investigated. On the basis of the raw material studied during 3 years, rosehips were shown to be a rich folate source, 400-600 microg/100 g based on dry matter and 160-185 microg/100 g based on the fresh weight (edible part). Rosehips are not often consumed fresh; therefore, drying to produce stable semimanufactures is a crucial step. The degradation of folate was shown to be dependent on the drying time until the water activity was below 0.75. The required drying time was reduced by cutting the rosehips in slices and to some extent also by increasing the temperature. Retention of folate and ascorbic acid was affected by the same factors, and high content of ascorbic acid could provide a possible protection for folate degradation.

  20. Folate content and retention in commonly consumed vegetables in the South Pacific.

    PubMed

    Maharaj, Prayna P P; Prasad, Surendra; Devi, Riteshma; Gopalan, Romila

    2015-09-01

    This paper reports the effect of boiling and frying on the retention of folate in commonly consumed Fijian vegetables (drumstick leaves, taro leaves, bele leaves, amaranth leaves, fern/ota, okra and French bean). The folate content was determined by microbiological assay (Lactobacillus casei rhamnosus) and tri-enzyme (protease, α-amylase and chicken pancreas conjugase) extraction treatment. The folate loss varied among the vegetables from 10-64% on boiling while 1-36% on frying. The higher folate loss was observed during boiling. The folate content in the water derived after boiling different vegetables ranged from 11.9 ± 0.5 to 61.6 ± 2.5 μg/100mL. The folate loss on boiling was accounted for in the cooking water. The predominant way of folate loss on boiling was leaching rather than thermal degradation which makes boiling the better choice of cooking the studied vegetables for folate intake, provided the cooking water is consumed together with the vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Natural variation of folate tuber content in potato

    USDA-ARS?s Scientific Manuscript database

    Folates are essential vitamins in the human diet. Folate deficiency is still a common worldwide problem that is linked to various serious disorders, such as birth defects, certain types of cardiovascular diseases and cancers, megaloblastic anemia, impaired cognitive performance and depression. There...

  2. Vitamin B12 and folate levels in long-term vegans.

    PubMed

    Bar-Sella, P; Rakover, Y; Ratner, D

    1990-06-01

    Serum vitamin B12, serum folate and red blood cell (RBC) folate levels were examined among 36 strict vegans of 5-35 years' duration. Vitamin B12 levels among the vegans were generally lower than in a control population. Most of the vegans had vitamin B12 values less than 200 pg/ml. RBC folate levels were normal but serum folate levels among the vegans were higher than among the controls. None of the vegans had any hematologic evidence of vitamin B12 deficiency, however four of them had neurologic complaints. Long-standing vegans should be monitored for vitamin B12 levels.

  3. Association of Folate Level in Blood with the Risk of Schizophrenia.

    PubMed

    Ding, Yujie; Ju, Mingliang; He, Lin; Chen, Wenzhong

    2017-01-01

    The aim of this study was to evaluate the association between folate level and the risk of schizophrenia and to identify possible biomarker for schizophrenia. Data about folate were extracted from 16 high quality studies. The association of folate level in blood and schizophrenia was evaluated using standardized mean difference (SMD) and 95% confidence interval (CI). Totally 1183 (52.1%) cases and 1089 (47.9%) controls were included in the current metaanalysis. Folate level in schizophrenia patients was significantly lower than that in healthy controls (SMD= -0.65; 95% CI: [-0.86, -0.45]; P <0.00001). Subgroup analysis demonstrated that the decreased folate level was found in both Asian and European patients (SMD=-0.86, P<0.00001; SMD=-0.44, P<0.00001, respectively), while there were no significant differences in patients from other areas (P>0.05). Sensitivity analysis confirmed that these results were stable and reliable, no publication bias existed in our meta-analysis based on Egger's and Begg's tests (P=0.48 and 0.30, respectively). These results suggest that decreased folate may be a risk factor for schizophrenia. More epidemiological and biochemistry studies are required to describe how folate or folate supplementation play roles in the progress of schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Low-dose radiation potentiates the therapeutic efficacy of folate receptor-targeted hapten therapy.

    PubMed

    Sega, Emanuela I; Lu, Yingjuan; Ringor, Michael; Leamon, Christopher P; Low, Philip S

    2008-06-01

    Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm(3) before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapy with low-dose radiotherapy. Mice bearing 300-mm(3) subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon alpha) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm(3). More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.

  5. Folate and Breast Cancer: Role of Intake, Blood Levels, and Metabolic Gene Polymorphisms

    DTIC Science & Technology

    2006-06-01

    polymorphisms . The specific aims are 1) methodological training in the analysis of gene - gene and gene -environment interactions by studying folate...evaluation of folate intake, plasma folate, and metabolic gene polymorphisms in relation to breast cancer risk: Months 1-19. b. Prepare blood samples...isolated for the folate and gene polymorphism assays among the 184 cases and matched controls. The folate assays are on-going at this time and over

  6. Aspects of Weak Interactions between Folate and Glycine Betaine

    PubMed Central

    2016-01-01

    Folate, or vitamin B9, is an important compound in one-carbon metabolism. Previous studies have found weaker binding of dihydrofolate to dihydrofolate reductase in the presence of osmolytes. In other words, osmolytes are more difficult to remove from the dihydrofolate solvation shell than water; this shifts the equilibrium toward the free ligand and protein species. This study uses vapor-pressure osmometry to explore the interaction of folate with the model osmolyte, glycine betaine. This method yields a preferential interaction potential (μ23/RT value). This value is concentration-dependent as folate dimerizes. The μ23/RT value also tracks the deprotonation of folate’s N3–O4 keto–enol group, yielding a pKa of 8.1. To determine which folate atoms interact most strongly with betaine, the interaction of heterocyclic aromatic compounds (as well as other small molecules) with betaine was monitored. Using an accessible surface area approach coupled with osmometry measurements, deconvolution of the μ23/RT values into α values for atom types was achieved. This allows prediction of μ23/RT values for larger molecules such as folate. Molecular dynamics simulations of folate show a variety of structures from extended to L-shaped. These conformers possess μ23/RT values from −0.18 to 0.09 m–1, where a negative value indicates a preference for solvation by betaine and a positive value indicates a preference for water. This range of values is consistent with values observed in osmometry and solubility experiments. As the average predicted folate μ23/RT value is near zero, this indicates folate interacts almost equally well with betaine and water. Specifically, the glutamate tail prefers to interact with water, while the aromatic rings prefer betaine. In general, the more protonated species in our small molecule survey interact better with betaine as they provide a source of hydrogens (betaine is not a hydrogen bond donor). Upon deprotonation of the small molecule

  7. Folate intake in a Swedish adult population: Food sources and predictive factors.

    PubMed

    Monteagudo, Celia; Scander, Henrik; Nilsen, Bente; Yngve, Agneta

    2017-01-01

    Introduction : Folate plays an important role in cell metabolism, but international studies show that intake is currently below recommendations, especially among women. The study objective was to identify folate food sources by food group, gender, and age group, and to identify factors influencing folate intake, based on food consumption data for Swedish adults in the 2010-11 Riksmaten study. M ethods : The sample included a representative Swedish population aged 18-80 years ( n  = 1657; 56.3% female). Food and nutrient intakes were estimated from self-reported food records during 4 consecutive days. Food consumption was categorized into 26 food groups. Stepwise regression was used to analyze food groups as folate sources for participants. Factors predicting the highest folate intake (third tertile) were determined by logistic regression analysis. Results : Vegetables and pulses represented the most important folate source for all age groups and both genders, especially in women aged 45-64 years (49.7% of total folate intake). The next folate source in importance was dairy products for the youngest group (18-30 years), bread for men, and fruit and berries for women. The likelihood of being in the highest tertile of folate intake (odds ratio = 1.69, 95% confidence interval 1.354-2.104) was higher for men. Influencing factors for folate intake in the highest tertile were low body mass index and high educational level in the men, and high educational level, vegetarian diet, organic product consumption, non-smoking, and alcohol consumption within recommendations in the women. Conclusion : This study describes the folate intake per food group of Swedish adults according to the 2010-11 Riksmaten survey, identifying vegetables and pulses as the most important source. Data obtained on factors related to folate consumption may be useful for the development of specific nutrition education programs to increase the intake of this vitamin in high-risk groups.

  8. Folate intake in a Swedish adult population: Food sources and predictive factors

    PubMed Central

    Monteagudo, Celia; Scander, Henrik; Nilsen, Bente; Yngve, Agneta

    2017-01-01

    ABSTRACT Introduction: Folate plays an important role in cell metabolism, but international studies show that intake is currently below recommendations, especially among women. The study objective was to identify folate food sources by food group, gender, and age group, and to identify factors influencing folate intake, based on food consumption data for Swedish adults in the 2010–11 Riksmaten study. Methods: The sample included a representative Swedish population aged 18–80 years (n = 1657; 56.3% female). Food and nutrient intakes were estimated from self-reported food records during 4 consecutive days. Food consumption was categorized into 26 food groups. Stepwise regression was used to analyze food groups as folate sources for participants. Factors predicting the highest folate intake (third tertile) were determined by logistic regression analysis. Results: Vegetables and pulses represented the most important folate source for all age groups and both genders, especially in women aged 45–64 years (49.7% of total folate intake). The next folate source in importance was dairy products for the youngest group (18–30 years), bread for men, and fruit and berries for women. The likelihood of being in the highest tertile of folate intake (odds ratio = 1.69, 95% confidence interval 1.354–2.104) was higher for men. Influencing factors for folate intake in the highest tertile were low body mass index and high educational level in the men, and high educational level, vegetarian diet, organic product consumption, non-smoking, and alcohol consumption within recommendations in the women. Conclusion: This study describes the folate intake per food group of Swedish adults according to the 2010–11 Riksmaten survey, identifying vegetables and pulses as the most important source. Data obtained on factors related to folate consumption may be useful for the development of specific nutrition education programs to increase the intake of this vitamin in high

  9. Folate nutrition and growth in infancy.

    PubMed Central

    Matoth, Y; Zehavi, I; Topper, E; Klein, T

    1979-01-01

    The effect of suboptimal folate nutrtion on the growing infant was studied in a population of infants fed a diet based on boiled, pasteurised cows' milk. One group of infants received a daily supplement of 1 mg folic acid from age 2 months, while the other group received a placebo. The infants were seen at bimonthly intervals. In the supplemented group the red cell folate level had increased to twice its pretreatment value by 4 months, and remained at this high level to the end of the first year. Hb concentration and incidence of anaemia were similar in both groups. The incidence of infection in the two groups did not differ. Weights and lengths attained at 6 months, and the rate of gain from 2 to 6 months were higher in infants whose folate levels were above the median value than in those below it. In the second half of the first year the differences between the two groups were no longer evident. PMID:518108

  10. Folate nutrition and growth in infancy.

    PubMed

    Matoth, Y; Zehavi, I; Topper, E; Klein, T

    1979-09-01

    The effect of suboptimal folate nutrtion on the growing infant was studied in a population of infants fed a diet based on boiled, pasteurised cows' milk. One group of infants received a daily supplement of 1 mg folic acid from age 2 months, while the other group received a placebo. The infants were seen at bimonthly intervals. In the supplemented group the red cell folate level had increased to twice its pretreatment value by 4 months, and remained at this high level to the end of the first year. Hb concentration and incidence of anaemia were similar in both groups. The incidence of infection in the two groups did not differ. Weights and lengths attained at 6 months, and the rate of gain from 2 to 6 months were higher in infants whose folate levels were above the median value than in those below it. In the second half of the first year the differences between the two groups were no longer evident.

  11. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats.

    PubMed

    Chandrasekar, Durairaj; Sistla, Ramakrishna; Ahmad, Farhan J; Khar, Roop K; Diwan, Prakash V

    2007-01-01

    The aim of this study was to synthesize folate-dendrimer conjugates as suitable vehicle for site specific delivery of anti-arthritic drug (indomethacin) to inflammatory regions and to determine its targeting efficiency, biodistribution in adjuvant induced arthritic rats. Folic acid was coupled to the surface amino groups of G4-PAMAM dendrimer (G4D) via a carbodiimide reaction and loaded with indomethacin. The conjugates were characterized by (1)H-NMR and IR spectroscopy. The drug content and percent encapsulation efficiency increased with increasing folate content for the dendrimer conjugates. The in vitro release rate was decreased for the folate conjugates when compared with unconjugated dendrimer (DNI). The plasma concentration profile showed a biphasic curve indicating rapid distribution followed by slow elimination. The AUC(0-infinity), half-life and residence time of indomethacin in inflamed paw was higher for folate-dendrimer conjugates. The time-averaged relative drug exposure (r(e)) of the drug in paw and overall drug targeting efficiency (T(e)) were higher for folate conjugate with 21 folate moieties (4.1 and 2.78, respectively) when compared with DNI (1.91 and 1.88, respectively). This study demonstrated the superiority of active targeting over dendrimer mediated passive targeting and also for the first time, folate-mediated targeting of an anti-arthritic drug to the inflammatory tissues.

  12. Folate deprivation induces cell cycle arrest at G0/G1 phase and apoptosis in hippocampal neuron cells through down-regulation of IGF-1 signaling pathway.

    PubMed

    Yang, Yang; Li, Xi; Sun, Qinwei; He, Bin; Jia, Yimin; Cai, Demin; Zhao, Ruqian

    2016-10-01

    Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P<0.01) down-regulated, while SLC19A1 was up-regulated (P<0.01) in FD group. FD cells exhibited significantly (P<0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P<0.01) down-regulated and IGF-1 concentration was decreased (P<0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P<0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biomarkers of Nutrition for Development—Folate Review12345

    PubMed Central

    Bailey, Lynn B; Stover, Patrick J; McNulty, Helene; Fenech, Michael F; Gregory, Jesse F; Mills, James L; Pfeiffer, Christine M; Fazili, Zia; Zhang, Mindy; Ueland, Per M; Molloy, Anne M; Caudill, Marie A; Shane, Barry; Berry, Robert J; Bailey, Regan L; Hausman, Dorothy B; Raghavan, Ramkripa; Raiten, Daniel J

    2015-01-01

    The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate’s history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development. PMID:26451605

  14. Effect of Freezing, Thermal Pasteurization, and Hydrostatic Pressure on Fractionation and Folate Recovery in Egg Yolk.

    PubMed

    Naderi, Nassim; Pouliot, Yves; House, James D; Doyen, Alain

    2017-09-06

    In this study, the impact of pasteurization and freezing of raw material, as performed at a commercial scale, on egg yolk fractionation and folate recovery was assessed. Freezing induced denaturation of the lipoproteins in egg yolk, which prevented further fractionation of the yolk. Thermal pasteurization of egg yolk at 61.1 °C for 3.5 min as well as high hydrostatic pressure (HHP) treatment (400 MPa for 5 min) did not change (p < 0.05) the composition of egg yolk or yolk fractions after their recovery by centrifugation. Expressed as dry matter, folate in pasteurized yolk was measured to be 599 μg/100 g, while its concentration reached 1969.7 μg/100 g for pasteurized granule and 1902.5 μg/100 g for HHP-treated granule. Folate was not detected in plasma, emphasizing the complete separation of yolk folate into granule. Further, we studied the effect of HHP on different dilutions of egg yolk, which were then fractionated. Egg yolk was diluted with water at different concentrations (0.1, 1.0, 10, 25, and 50%), HHP-treated at 400 MPa for 5 min, and centrifuged. Characterization of the compositions of the separated granule and plasma followed. Folate was stable under the HHP conditions used. However, HHP caused separation of folate from the yolk structure into water-soluble plasma. After HHP processing, the amount of folate detected in the plasma fraction was significantly (p < 0.05) higher (1434.9 μg/100 g) in the 25% diluted samples but was significantly (p < 0.05) lower in HHP-treated granule samples. Native sodium dodecyl sulfate-polyacrylamide gel electrophoresis results showed that phosvitin, α-livetin, and apovitellenin VIa were the proteins most resistant to HHP. This study confirms that dilution of egg yolk before HHP treatment can significantly (p < 0.05) change the composition of granule and plasma fractions after centrifugal fractionation of egg yolk.

  15. Folate bioavailability from foods rich in folates assessed in a short term human study using stable isotope dilution assays.

    PubMed

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2015-01-01

    Different sources of folate may have different bioavailability and hence may impact the standard definition of folate equivalents. In order to examine this, a short term human study was undertaken to evaluate the relative native folate bioavailabilities from spinach, Camembert cheese and wheat germs compared to pteroylmonoglutamic acid as the reference dose. The study had a single-centre, randomised, four-treatment, four-period, four-sequence, cross-over design, i.e. the four (food) items to be tested (referred to as treatments) were administered in sequences according to the Latin square, so that each experimental treatment occurred only once within each sequence and once within each study period. Each of the 24 subjects received the four experimental items separated by a 14-day equilibrium phase and received a pteroylmonoglutamic acid supplement for 14 days before the first testing and between the testings for saturation of body pools. Folates in test foods, plasma and urine samples were determined by stable isotope dilution assays, and in urine and plasma, the concentrations of 5-methyltetrahydrofolate were evaluated. Standard non-compartmental methods were applied to determine the biokinetic parameters C(max), t(max) and AUC from baseline corrected 5-methyltetrahydrofolate concentrations within the interval from 0 to 12 hours. The variability of AUC and C(max) was moderate for spinach and oral solution of pteroylmonoglutamic acid but high for Camembert cheese and very high for wheat germs. The median t(max) was lowest for spinach, though t(max) showed a high variability among all treatments. When comparing the ratio estimates of AUC and C(max) for the different test foods, highest bioavailability was found for spinach followed by that for wheat germs and Camembert cheese. The results underline the dependence of folate bioavailability on the type of food ingested. Therefore, the general assumption of 50% bioavailability as the rationale behind the definition of

  16. Water soluble folate-chitosan nanogels crosslinked by genipin.

    PubMed

    Pujana, Maite Arteche; Pérez-Álvarez, Leyre; Iturbe, L Carlos Cesteros; Katime, Issa

    2014-01-30

    Folate-chitosan conjugates were prepared by a concurrent functionalization and crosslinking reaction with the natural crosslinker genipin. Genipin molecule was employed simultaneously as crosslinker agent and spacer molecule in order to allow the functionalization with folic acid for active tumor targeting. The reaction was carried out in reverse microemulsion which provided colloidal size and monodisperse particle size distribution. The water solubility of the obtained folate-genipin-chitosan nanogels was studied as function of the pH of the medium and all nanoparticles were totally dispersible at physiological pH. The enzymatic degradability of the nanogels in a lysozyme solution was evaluated at acidic and physiological pH. QELS analyses of the swelling behavior of the nanogels with the pH did not show a clear pH-sensitivity. However, the study on the loading and release capacity of 5-fluorouracil revealed an interesting pH-responsive behavior of the nanogels that makes them promising as nanodevices for targeted anticancer drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    PubMed

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.

  18. MTHFR Gene and Serum Folate Interaction on Serum Homocysteine Lowering: Prospect for Precision Folic Acid Treatment.

    PubMed

    Huang, Xiao; Qin, Xianhui; Yang, Wenbin; Liu, Lishun; Jiang, Chongfei; Zhang, Xianglin; Jiang, Shanqun; Bao, Huihui; Su, Hai; Li, Ping; He, Mingli; Song, Yun; Zhao, Min; Yin, Delu; Wang, Yu; Zhang, Yan; Li, Jianping; Yang, Renqang; Wu, Yanqing; Hong, Kui; Wu, Qinhua; Chen, Yundai; Sun, Ningling; Li, Xiaoying; Tang, Genfu; Wang, Binyan; Cai, Yefeng; Hou, Fan Fan; Huo, Yong; Wang, Hong; Wang, Xiaobin; Cheng, Xiaoshu

    2018-03-01

    This post hoc analysis of the CSPPT (China Stroke Primary Prevention Trial) assessed the individual variation in total homocysteine (tHcy)-lowering response after an average 4.5 years of 0.8 mg daily folic acid therapy in Chinese hypertensive adults and evaluated effect modification by methylenetetrahydrofolate reductase ( MTHFR ) C677T genotypes and serum folate levels. This analysis included 16 413 participants from the CSPPT, who were randomly assigned to 2 double-blind treatment groups: either 10-mg enalapril+0.8-mg folic acid or 10-mg enalapril, daily and had individual measurements of serum folate and tHcy levels at baseline and exit visits and MTHFR C677T genotypes. Mean baseline tHcy levels were comparable between the 2 treatment groups (14.5±8.5 versus 14.4±8.1 μmol/L; P =0.561). After 4.5 years of treatment, mean tHcy levels were reduced to 12.7±6.1 μmol/L in the enalapril+folic acid group, but almost stayed the same in the enalapril group (14.4±7.9 μmol/L, group difference: 1.61 μmol/L; 11% reduction). More importantly, tHcy lowering varied by MTHFR genotypes and serum folate levels. Compared with CC and CT genotypes, participants with the TT genotype had a more prominent L-shaped curve between tHcy and serum folate levels and required higher folate levels (at least 15 ng/mL) to eliminate the differences in tHcy by genotypes. Compared with CC or CT, tHcy in the TT group manifested a heightened L-shaped curve from low to high folate levels, but this difference in tHcy by genotype was eliminated when plasma folate levels reach ≈15 ng/mL or higher. Our data raised the prospect to tailor folic acid therapy according to individual MTHFR C677T genotype and folate status. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00794885. © 2018 American Heart Association, Inc.

  19. Folate Deficiency, Atopy, and Severe Asthma Exacerbations in Puerto Rican Children

    PubMed Central

    Blatter, Joshua; Brehm, John M.; Sordillo, Joanne; Forno, Erick; Boutaoui, Nadia; Acosta-Pérez, Edna; Alvarez, María; Colón-Semidey, Angel; Weiss, Scott T.; Litonjua, Augusto A.; Canino, Glorisa

    2016-01-01

    Background: Little is known about folate and atopy or severe asthma exacerbations. We examined whether folate deficiency is associated with number of positive skin tests to allergens or severe asthma exacerbations in a high-risk population and further assessed whether such association is explained or modified by vitamin D status. Methods: Cross-sectional study of 582 children aged 6 to 14 years with (n = 304) and without (n = 278) asthma in San Juan, Puerto Rico. Folate deficiency was defined as plasma folate less than or equal to 20 ng/ml. Our outcomes were the number of positive skin tests to allergens (range, 0–15) in all children and (in children with asthma) one or more severe exacerbations in the previous year. Logistic and negative binomial regression models were used for the multivariate analysis. All multivariate models were adjusted for age, sex, household income, residential proximity to a major road, and (for atopy) case/control status; those for severe exacerbations were also adjusted for use of inhaled corticosteroids and vitamin D insufficiency (a plasma 25[OH]D < 30 ng/ml). Measurements and Main Results: In a multivariate analysis, folate deficiency was significantly associated with an increased degree of atopy and 2.2 times increased odds of at least one severe asthma exacerbation (95% confidence interval for odds ratio, 1.1–4.6). Compared with children who had normal levels of both folate and vitamin D, those with both folate deficiency and vitamin D insufficiency had nearly eightfold increased odds of one or more severe asthma exacerbation (95% confidence interval for adjusted odds ratio, 2.7–21.6). Conclusions: Folate deficiency is associated with increased degree of atopy and severe asthma exacerbations in school-aged Puerto Ricans. Vitamin D insufficiency may further increase detrimental effects of folate deficiency on severe asthma exacerbations. PMID:26561879

  20. Folate Deficiency, Atopy, and Severe Asthma Exacerbations in Puerto Rican Children.

    PubMed

    Blatter, Joshua; Brehm, John M; Sordillo, Joanne; Forno, Erick; Boutaoui, Nadia; Acosta-Pérez, Edna; Alvarez, María; Colón-Semidey, Angel; Weiss, Scott T; Litonjua, Augusto A; Canino, Glorisa; Celedón, Juan C

    2016-02-01

    Little is known about folate and atopy or severe asthma exacerbations. We examined whether folate deficiency is associated with number of positive skin tests to allergens or severe asthma exacerbations in a high-risk population and further assessed whether such association is explained or modified by vitamin D status. Cross-sectional study of 582 children aged 6 to 14 years with (n = 304) and without (n = 278) asthma in San Juan, Puerto Rico. Folate deficiency was defined as plasma folate less than or equal to 20 ng/ml. Our outcomes were the number of positive skin tests to allergens (range, 0-15) in all children and (in children with asthma) one or more severe exacerbations in the previous year. Logistic and negative binomial regression models were used for the multivariate analysis. All multivariate models were adjusted for age, sex, household income, residential proximity to a major road, and (for atopy) case/control status; those for severe exacerbations were also adjusted for use of inhaled corticosteroids and vitamin D insufficiency (a plasma 25[OH]D < 30 ng/ml). In a multivariate analysis, folate deficiency was significantly associated with an increased degree of atopy and 2.2 times increased odds of at least one severe asthma exacerbation (95% confidence interval for odds ratio, 1.1-4.6). Compared with children who had normal levels of both folate and vitamin D, those with both folate deficiency and vitamin D insufficiency had nearly eightfold increased odds of one or more severe asthma exacerbation (95% confidence interval for adjusted odds ratio, 2.7-21.6). Folate deficiency is associated with increased degree of atopy and severe asthma exacerbations in school-aged Puerto Ricans. Vitamin D insufficiency may further increase detrimental effects of folate deficiency on severe asthma exacerbations.

  1. Plasma folate, related genetic variants, and colorectal cancer risk in EPIC.

    PubMed

    Eussen, Simone J P M; Vollset, Stein Emil; Igland, Jannicke; Meyer, Klaus; Fredriksen, Ase; Ueland, Per Magne; Jenab, Mazda; Slimani, Nadia; Boffetta, Paolo; Overvad, Kim; Tjønneland, Anne; Olsen, Anja; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Morois, Sophie; Weikert, Cornelia; Pischon, Tobias; Linseisen, Jakob; Kaaks, Rudolf; Trichopoulou, Antonia; Zilis, Demosthenes; Katsoulis, Michael; Palli, Domenico; Berrino, Franco; Vineis, Paolo; Tumino, Rosario; Panico, Salvatore; Peeters, Petra H M; Bueno-de-Mesquita, H Bas; van Duijnhoven, Fränzel J B; Gram, Inger Torhild; Skeie, Guri; Lund, Eiliv; González, Carlos A; Martínez, Carmen; Dorronsoro, Miren; Ardanaz, Eva; Navarro, Carmen; Rodríguez, Laudina; Van Guelpen, Bethany; Palmqvist, Richard; Manjer, Jonas; Ericson, Ulrika; Bingham, Sheila; Khaw, Kay-Tee; Norat, Teresa; Riboli, Elio

    2010-05-01

    A potential dual role of folate in colorectal cancer (CRC) is currently subject to debate. We investigate the associations between plasma folate, several relevant folate-related polymorphisms, and CRC risk within the large European Prospective Investigation into Cancer and Nutrition cohort. In this nested case-control study, 1,367 incident CRC cases were matched to 2,325 controls for study center, age, and sex. Risk ratios (RR) were estimated with conditional logistic regression and adjusted for smoking, education, physical activity, and intake of alcohol and fiber. Overall analyses did not reveal associations of plasma folate with CRC. The RR (95% confidence interval; Ptrend) for the fifth versus the first quintile of folate status was 0.94 (0.74-1.20; 0.44). The polymorphisms MTHFR677C-->T, MTHFR1298A-->C, MTR2756A-->G, MTRR66A-->G, and MTHFD11958G-->A were not associated with CRC risk. However, in individuals with the lowest plasma folate concentrations, the MTHFR 677TT genotype showed a statistically nonsignificant increased CRC risk [RR (95% CI; Ptrend) TT versus CC=1.39 (0.87-2.21); 0.12], whereas those with the highest folate concentrations showed a nonsignificant decreased CRC risk [RR TT versus CC=0.74 (0.39-1.37); 0.34]. The SLC19A180G-->A showed a positive association with CRC risk [RR AA versus GG 1.30 (1.06-1.59); <0.01]. This large European prospective multicenter study did not show an association of CRC risk with plasma folate status nor with MTHFR polymorphisms. Findings of the present study tend to weaken the evidence that folate plays an important role in CRC carcinogenesis. However, larger sample sizes are needed to adequately address potential gene-environment interactions. Copyright (c) 2010 AACR

  2. Effect of Pre-treatment Nutritional Status, Folate and Vitamin B12 Levels on Induction Chemotherapy in Children with Acute Lymphoblastic Leukemia.

    PubMed

    Tandon, Sneha; Moulik, Nirmalya Roy; Kumar, Archana; Mahdi, Abbas Ali; Kumar, Ashutosh

    2015-05-01

    To evaluate pre-treatment undernutrition, and folate and B12 deficiency in children with acute lymphoblastic leukemia, and their correlation with complications and outcome of induction chemotherapy. Observational study. Tertiary care teaching hospital in Northern India. 50 children with acute lymphoblastic leukemia. Children were assessed for nutritional status (Weight for age Z-score, serum albumin, folate and B12) at presentation, and were followed-up during induction for bone marrow response, counts and outcome. Folate and B12 were repeated twice at monthly intervals after induction. Univariate and multivariate analyses were done to determine the association of nutritional parameters with the outcome variables. Baseline undernutrition was observed in 66%, hypo-albuminemia in 32.6%, folate deficiency in 41.3% and B12 deficiency in 36.9% of included children. Significant decline in folate levels was noted on serial assays during chemotherapy (P=0.001). Folate deficient children had higher risk for delayed marrow recovery and counts on day 14 (P=0.007 and P=0.001). Hypoalbuminemia (P=0.04), B12 deficiency (P=0.001) and folate (P=0.03) deficiency were associated with toxic deaths during induction. Baseline nutritional deficiencies negatively influence the outcome and occurrence of complications during induction chemotherapy in children with acute lymphoblastic leukemia.

  3. The role of folate metabolism in orofacial development and clefting

    PubMed Central

    Wahl, Stacey E.; Kennedy, Allyson E.; Wyatt, Brent H.; Moore, Alexander D.; Pridgen, Deborah E.; Cherry, Amanda M.; Mavila, Catherine B.; Dickinson, Amanda J.G.

    2015-01-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects. PMID:26144049

  4. Polymorphism of SLC25A32, the folate transporter gene, is associated with plasma folate levels and bone fractures in Japanese postmenopausal women.

    PubMed

    Urano, Tomohiko; Shiraki, Masataka; Saito, Mitsuru; Sasaki, Noriko; Ouchi, Yasuyoshi; Inoue, Satoshi

    2014-10-01

    Elevation of homocysteine is associated with an increased risk for bone fractures. We previously reported that the methylenetetrahydrofolate reductase (MTHFR) gene polymorphism is associated with homocysteine levels and fracture. The association between the fracture and folate levels or their related gene polymorphisms is not completely clear. We speculated that the SLC25A32 gene, the mitochondrial inner membrane folate transporter, also could be implicated in the regulation of folate metabolism and fracture. A total of 851 Japanese postmenopausal women participated in the association study between the single nucleotide polymorphism genotype and plasma homocysteine or folate. We also tested the association between the candidate single nucleotide polymorphism and 663 postmenopausal women. The AA genotype of rs2241777 single nucleotide polymorphism at the 3'UTR region in the SLC25A32 gene was associated with lower plasma folate concentration compared with the other genotypes in 851 postmenopausal women. A total of 674 postmenopausal ambulatory Japanese women were followed up for 5.5 ± 0.1 years (mean ± SE). The AA genotype groups also showed an apparently higher rate and earlier onset of incident fractures than the other genotypes. A total of 407 participants had >70% young-adult mean bone mineral density at the start of the observation. These results show that the SLC25A32 gene polymorphism could be a risk factor for lower folate concentration and future fracture. © 2013 Japan Geriatrics Society.

  5. Low-Dose Radiation Potentiates the Therapeutic Efficacy of Folate Receptor-Targeted Hapten Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sega, Emanuela I.; Lu Yingjuan; Ringor, Michael

    2008-06-01

    Purpose: Human cancers frequently overexpress a high-affinity cell-surface receptor for the vitamin folic acid. Highly immunogenic haptens can be targeted to folate receptor-expressing cell surfaces by administration of folate-hapten conjugates, rendering the decorated tumor cell surfaces more recognizable by the immune system. Treatment of antihapten-immunized mice with folate-hapten constructs results in elimination of moderately sized tumors by the immune system. However, when subcutaneous tumors exceed 300 mm{sup 3} before initiation of therapy, antitumor activity is significantly decreased. In an effort to enhance the efficacy of folate-targeted hapten immunotherapy (FTHI) against large tumors, we explored the combination of targeted hapten immunotherapymore » with low-dose radiotherapy. Methods and Materials: Mice bearing 300-mm{sup 3} subcutaneous tumors were treated concurrently with FTHI (500 nmol/kg of folate conjugated to fluorescein isothiocyanate, 20,000 U/dose of interleukin 2, and 25,000 U/dose of interferon {alpha}) and low-dose radiotherapy (3 Gy/dose focused directly on the desired tumor mass). The efficacy of therapy was evaluated by measuring tumor volume. Results: Tumor growth analyses show that radiotherapy synergizes with FTHI in antihapten-immunized mice, thereby allowing for cures of animals bearing tumors greater than 300 mm{sup 3}. More importantly, nonirradiated distal tumor masses in animals containing locally irradiated tumors also showed improved response to hapten immunotherapy, suggesting that not all tumor lesions must be identified and irradiated to benefit from the combination therapy. Conclusions: These results suggest that simultaneous treatment with FTHI and radiation therapy can enhance systemic antitumor activity in tumor-bearing mice.« less

  6. The fibre-folate debate in colo-rectal cancer.

    PubMed

    Bingham, Sheila

    2006-02-01

    Intervention and prospective studies showing no effect of fibre in protection against colo-rectal cancer have challenged consensus recommendations that population intakes of fibre should be increased to reduce the risk of colo-rectal cancer. The European Prospective Investigation of Cancer and Nutrition (EPIC) of 519 978 individuals aged 25-70 years is the largest prospective study of diet and cancer to date worldwide. It incorporates ten different European countries in order to increase heterogeneity in dietary habits and calibration procedures to reduce measurement error. Data for 1065 reported cases of colo-rectal cancer were reported in 2003. There was a 40% reduction in risk for the highest quintile v. lowest quintile of fibre in food after calibration. It has been suggested that these effects were a result of confounding by folate and other factors. Although there are a number of hypotheses to explain why folate should be protective in colo-rectal cancer, a meta-analysis has shown that folate in food may be protective but there is no effect of total folate (i.e. food plus supplements). In a further analysis of 1826 cases in EPIC, identified in the latest follow-up, the inclusion of an additional 761 cases has confirmed the previously published results, with a strong and significant reduction in colo-rectal cancer of approximately 9% reduction in risk for each uncalibrated quintile increase in fibre (P<0.001 for linear trend) compared with an 8% reduction in the previous report, which had not been adjusted for folate. Inclusion of the other covariates (physical activity, alcohol, smoking and red and processed meat) with folate has confirmed this significant inverse association for colon cancer and strengthened the association with left-sided colon cancer (P < 0.001).

  7. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit

    USDA-ARS?s Scientific Manuscript database

    Little is known about how plants regulate their folate content, including whether the expression of folate biosynthesis genes is orchestrated during development or modulated by folate levels. Nor is much known about how folate levels impact the expression of other genes. These points were addressed ...

  8. Temperature effects on separation of Gd3+ from Gd-DTPA-folate using nanofiltration method

    NASA Astrophysics Data System (ADS)

    Rahayu, I.; Indraneli, R. P.; Yuliyati, Y. B.; Anggraeni, A.; Soedjanaatmadja, U. M. S.; Bahti, H. H.

    2018-05-01

    MRI is one of the best techniques in medical diagnostics. Contrast agents are used to improve the visual of organs that are difficult to distinguish through MRI. Gd-DTPA-folate is one of the specific contrast agents against cancer diagnosis, because it has a high affinity to folate receptors. In the complexing Gd-DTPA-folate, does not rule out the complexity step runs imperfectly, so there is still Gd3+ in the Gd-DTPA-folate complex. The separation of Gd3+ from the Gd-DTPA-folate complex is important to eliminate toxic effects on the contrast agent. This study aims to determine the effect of temperature on the separation of Gd-DTPA-folate from Gd3+ with nanofiltration. The method are preparation Gd-DTPA-folate from GdCl3.6H2O and DTPA-folate by reflux method, then separated Gd-DTPA-folate complex from Gd3+ with nanofiltration at variation temperature (40, 41, 42, 43, 44oC ). Then, the values of flux and rejection coefficients were analyzed. The results showed that the optimum temperature for the separation of Gd3+ from Gd-DTPA-folate was achieved at 42.6°C with the rejection coefficient of 24% and the permeate flux of 403 L.m-2.h-1.

  9. Blood levels of folate at birth and risk of childhood leukemia

    PubMed Central

    Chokkalingam, Anand P.; Chun, Danielle S.; Noonan, Emily J.; Pfeiffer, Christine M.; Zhang, Mindy; Month, Stacy R.; Taggart, Denah R.; Wiemels, Joseph L.; Metayer, Catherine; Buffler, Patricia A.

    2013-01-01

    Background A role for folate in cancer etiology has long been suspected due to folate’s function as a cofactor in DNA methylation and maintenance of DNA synthesis. Previous case-control studies examining the association between risk of childhood acute lymphoblastic leukemia (ALL) and mothers’ self-reported folate intake and supplementation have been inconclusive. Materials and Methods We utilized a quantitative microbiologic assay to measure newborn folate concentrations in archived dried bloodspots collected at birth from 313 incident ALL cases, 44 incident acute myeloid leukemia (AML) cases, and 405 matched population-based controls. Results Overall, we found no difference in hemoglobin-normalized newborn folate concentrations (HbFol, nmol/g) between ALL cases and controls (2.76 vs. 2.77, p=0.97) or between AML cases and controls (2.93 vs. 2.76, p=0.32). Null results persisted after stratification by both birth period (1982-94, 1995-98, and 1999-2002) to account for the start of folate fortification of grain products in the US, and by self-reported maternal pre-pregnancy supplement use. Similarly, no association was observed for major ALL subgroups. Conclusions Our results do not support an association between birth folate concentrations and risk of childhood AML or major ALL subgroups. Impact However, they do not rule out a role for folate through exposures after birth or in early stages of fetal development. PMID:23576692

  10. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy.

    PubMed

    Samadian, Hadi; Hosseini-Nami, Samira; Kamrava, Seyed Kamran; Ghaznavi, Habib; Shakeri-Zadeh, Ali

    2016-11-01

    Conventional cancer treatment methods suffer from many limitations such as non-specificity and low efficacy in discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials that basically take advantage of various targeting approaches. Targeted nanomaterials selectively bind to the cancer cells and affect them with minor effects on healthy cells. Folic acid (folate) is an essential molecule in DNA synthesis pathway which is highly needed for cancer cell duplication. Some certain cancer cells overexpress folate receptors higher than normal cells, and this fact is the basis of folate targeting strategy. There are many publications reporting various folate conjugated nanomaterials among which folate-conjugated gold nanoparticles hold great promises in targeted cancer therapy. Gold nanoparticles have been identified as promising candidates for new cancer therapy modalities because of biocompatibility, easy synthesis and functionalization, chemo-physical stability, and optical tunable characteristics. In the last decade, there has been a significant explosion in gold nanoparticles research, with a rapid increase in publications related to the area of biomedicine. Although there are many reports published on "gold nanoparticles" and "folate targeting," there are a few reports on "folate-conjugated gold nanoparticles" in biomedical literature. This paper intends to review and illustrate the recent advances in biomedicine which have been designed on the basis of folate-conjugated gold nanoparticles.

  11. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice.

    PubMed

    McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C

    2011-07-01

    DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (p<0.05). Blood-derived DNA methylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Role of Folate Transport in Antifolate Drug Action in Trypanosoma brucei*

    PubMed Central

    Dewar, Simon; Sienkiewicz, Natasha; Ong, Han B.; Wall, Richard J.; Horn, David

    2016-01-01

    The aim of this study was to identify and characterize mechanisms of resistance to antifolate drugs in African trypanosomes. Genome-wide RNAi library screens were undertaken in bloodstream form Trypanosoma brucei exposed to the antifolates methotrexate and raltitrexed. In conjunction with drug susceptibility and folate transport studies, RNAi knockdown was used to validate the functions of the putative folate transporters. The transport kinetics of folate and methotrexate were further characterized in whole cells. RNA interference target sequencing experiments identified a tandem array of genes encoding a folate transporter family, TbFT1–3, as major contributors to antifolate drug uptake. RNAi knockdown of TbFT1–3 substantially reduced folate transport into trypanosomes and reduced the parasite's susceptibly to the classical antifolates methotrexate and raltitrexed. In contrast, knockdown of TbFT1–3 increased susceptibly to the non-classical antifolates pyrimethamine and nolatrexed. Both folate and methotrexate transport were inhibited by classical antifolates but not by non-classical antifolates or biopterin. Thus, TbFT1–3 mediates the uptake of folate and classical antifolates in trypanosomes, and TbFT1–3 loss-of-function is a mechanism of antifolate drug resistance. PMID:27703008

  13. Updated folate data in the Dutch Food Composition Database and implications for intake estimates

    PubMed Central

    Westenbrink, Susanne; Jansen-van der Vliet, Martine; van Rossum, Caroline

    2012-01-01

    Background and objective Nutrient values are influenced by the analytical method used. Food folate measured by high performance liquid chromatography (HPLC) or by microbiological assay (MA) yield different results, with in general higher results from MA than from HPLC. This leads to the question of how to deal with different analytical methods in compiling standardised and internationally comparable food composition databases? A recent inventory on folate in European food composition databases indicated that currently MA is more widely used than HPCL. Since older Dutch values are produced by HPLC and newer values by MA, analytical methods and procedures for compiling folate data in the Dutch Food Composition Database (NEVO) were reconsidered and folate values were updated. This article describes the impact of this revision of folate values in the NEVO database as well as the expected impact on the folate intake assessment in the Dutch National Food Consumption Survey (DNFCS). Design The folate values were revised by replacing HPLC with MA values from recent Dutch analyses. Previously MA folate values taken from foreign food composition tables had been recalculated to the HPLC level, assuming a 27% lower value from HPLC analyses. These recalculated values were replaced by the original MA values. Dutch HPLC and MA values were compared to each other. Folate intake was assessed for a subgroup within the DNFCS to estimate the impact of the update. Results In the updated NEVO database nearly all folate values were produced by MA or derived from MA values which resulted in an average increase of 24%. The median habitual folate intake in young children was increased by 11–15% using the updated folate values. Conclusion The current approach for folate in NEVO resulted in more transparency in data production and documentation and higher comparability among European databases. Results of food consumption surveys are expected to show higher folate intakes when using the

  14. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.

    PubMed

    Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Bharti, Shreekant; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S

    2017-08-01

    The aim of this work was to formulate chitosan-folate conjugated multi-walled carbon nanotubes for the lung cancer targeted delivery of docetaxel. The chitosan-folate conjugate was synthesized and the conjugation was confirmed by Fourier transform infrared spectroscopy. The multi-walled carbon nanotubes were characterized for their particle size, polydispersity, zeta potential, surface morphology, drug encapsulation efficiency and in vitro release study. The in vitro cellular uptake, cytotoxicity, and cell cycle analysis of the docetaxel/coumarin-6 loaded multi-walled carbon nanotubes were carried out to compare the effectiveness of the formulations. The biocompatibility and safety of chitosan-folate conjugated multi-walled carbon nanotubes was analyzed by lung histopathology in comparison with marketed docetaxel formulation (Docel™) and acylated multi-walled carbon nanotubes. The cellular internalization study shown that the chitosan-folate conjugated multi-walled carbon nanotubes could be easily internalized into the lung cancer cells through a folate receptor-mediated endocytic pathway. The IC 50 values exhibited that chitosan-folate conjugated multi-walled carbon nanotubes could be 89-fold more effective than Docel™ in human lung cancer cells (A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Solar cycle predicts folate-sensitive neonatal genotypes at discrete phases of the first trimester of pregnancy: a novel folate-related human embryo loss hypothesis.

    PubMed

    Lucock, Mark; Glanville, Tracey; Yates, Zoë; Walker, James; Furst, John; Simpson, Nigel

    2012-08-01

    Folate, a key periconceptional nutrient, is ultraviolet light (UV-R) sensitive. We therefore hypothesise that a relationship exists between sunspot activity, a proxy for total solar irradiance (particularly UV-R) reaching Earth, and the occurrence of folate-sensitive, epigenomic-related neonatal genotypes during the first trimester of pregnancy. Limited data is provided to support the hypothesis that the solar cycle predicts folate-related human embryo loss: 379 neonates born at latitude 54°N between 1998 and 2000 were examined for three folate-sensitive, epigenome-related polymorphisms, with solar activity for trimester one accessed via the Royal Greenwich Observatory-US Air force/National Oceanic and Atmospheric Administration Sunspot Database (34,110 total observation days). Logistic regression showed solar activity predicts C677T-methylenetetrahydrofolate reductase (C677T-MTHFR) and A66G-methionine synthase reductase (A66G-MSR) genotype at discrete phases of trimester one. Total and maximal sunspot activity predicts C677T-MTHFR genotype for days 31-60 of trimester one (p=0.0181 and 0.0366, respectively) and A66G-MSR genotype for days 61-90 of trimester one (p=0.0072 and 0.0105, respectively). Loss of UV-R sensitive folate associated with the sunspot cycle might therefore interact with variant folate genes to perturb DNA methylation and/or elaboration of the primary base sequence (thymidylate synthesis), as well as increase embryo-toxic homocysteine. We hypothesise that this may influence embryo viability leading to 677CC-MTHFR and 66GG-MSR embryo loss at times of increased solar activity. This provides an interesting and plausible link between well recognised 'folate gene originated developmental disorders' and 'solar activity/seasonality modulated developmental disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. High plasma folate is negatively associated with leukocyte telomere length in Framingham Offspring cohort.

    PubMed

    Paul, Ligi; Jacques, Paul F; Aviv, Abraham; Vasan, Ramachandran S; D'Agostino, Ralph B; Levy, Daniel; Selhub, Jacob

    2015-03-01

    Shortening of telomeres, the protective structures at the ends of eukaryotic chromosomes, is associated with age-related pathologies. Telomere length is influenced by DNA integrity and DNA and histone methylation. Folate plays a role in providing precursors for nucleotides and methyl groups for methylation reactions and has the potential to influence telomere length. We determined the association between leukocyte telomere length and long-term plasma folate status (mean of 4 years) in Framingham Offspring Study (n = 1,044, females = 52.1 %, mean age 59 years) using data from samples collected before and after folic acid fortification. Leukocyte telomere length was determined by Southern analysis and fasting plasma folate concentration using microbiological assay. There was no significant positive association between long-term plasma folate and leukocyte telomere length among the Framingham Offspring Study participants perhaps due to their adequate folate status. While the leukocyte telomere length in the second quintile of plasma folate was longer than that in the first quintile, the difference was not statistically significant. The leukocyte telomere length of the individuals in the fifth quintile of plasma folate was shorter than that of those in the second quintile by 180 bp (P < 0.01). There was a linear decrease in leukocyte telomere length with higher plasma folate concentrations in the upper four quintiles of plasma folate (P for trend = 0.001). Multivitamin use was associated with shorter telomeres in this cohort (P = 0.015). High plasma folate status possibly resulting from high folic acid intake may interfere with the role of folate in maintaining telomere integrity.

  17. Causes of vitamin B12 and folate deficiency.

    PubMed

    Allen, Lindsay H

    2008-06-01

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor vitamin B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetarians (vegans) are at risk for vitamin B12 deficiency, evidence now indicates that low intakes of animal-source foods, such as occur in some lacto-ovo vegetarians and many less-industrialized countries, cause vitamin B12 depletion. Malabsorption of the vitamin is most commonly observed as food-bound cobalamin malabsorption due to gastric atrophy in the elderly, and probably as a result of Helicobacter pylori infection. There is growing evidence that gene polymorphisms in transcobalamins affect plasma vitamin B12 concentrations. The primary cause of folate deficiency is low intake of sources rich in the vitamin, such as legumes and green leafy vegetables, and the consumption of these foods may explain why folate status can be adequate in relatively poor populations. Other situations in which the risk of folate deficiency increases include lactation and alcoholism.

  18. Learner-centered nutrition education improves folate intake and food-related behaviors in nonpregnant, low-income women of childbearing age.

    PubMed

    Cena, Emily R; Joy, Amy Block; Heneman, Karrie; Espinosa-Hall, Gloria; Garcia, Linda; Schneider, Connie; Wooten Swanson, Patti C; Hudes, Mark; Zidenberg-Cherr, Sheri

    2008-10-01

    Recent studies suggest low-income women of childbearing age may be at risk of suboptimal folate intake. To evaluate the effect of learner-centered nutrition education on folate intake and food-related behaviors among nonpregnant, low-income women of childbearing age, compared to education unrelated to nutrition. Participants were randomly assigned by recruitment site to receive either the nutrition lesson or a control lesson about resource management. Nonpregnant, low-income (< or =185% federal poverty level) women of childbearing age (18 to 45 years, n=155) from five California counties. Changes in folate intake and other food-related behaviors. Analysis of covariance, adjusting for baseline responses and potential confounders. Adjusting for baseline, participants who received the nutrition education had greater increases in folate intake and use of the Nutrition Facts label than the control group. Change in intake of specific folate-rich foods differed by ethnicity. Participants in the Special Supplemental Nutrition Program for Women, Infants, and Children who received the nutrition education increased folate intake but had no significant changes in other food-related behaviors. Food stamp recipients who received the nutrition education had no significant changes in folate intake but did increase the frequency of eating more than one kind of vegetable each day, compared to controls. This study supports the use of learner-centered approaches to nutrition education for low-income audiences, compared to education unrelated to nutrition. Future work is needed to compare learner-centered techniques to traditional pedagogical nutrition education, and to determine whether observed changes from this study persist over the long term.

  19. The Application of a Chemical Determination of N-Homocysteinylation Levels in Developing Mouse Embryos: Implication for Folate Responsive Birth Defects

    PubMed Central

    Fathe, Kristin; Person, Maria D.; Finnell, Richard H.

    2014-01-01

    Elevated homocysteine levels have long been associated with various disease states, including cardiovascular disease and birth defects, including neural tube defects (NTDs). One hypothesis regarding the strong correlation between these various disorders and high levels of homocysteine is that a reactive form of this small molecule can attach to mammalian proteins in a phenomenon known as homocysteinylation. These posttranslational modifications may become antigenic, or may even directly disrupt certain protein function. It remains to be determined whether dietary influences that can cause globally increased levels of circulating homocysteine confer negative effects maternally, or may otherwise negatively and materially impact the metabolic balance in developing embryos. Herein we present the application of a chemical method of determination of N-homocysteinylation to a set of neural tube closure stage mouse embryos and their mothers. We explore the uses of this newly-described technique to investigate levels of maternal and embryonic N-homocysteinylation using dietary manipulations of onecarbon metabolism with two known folate responsive neural tube defect mouse models. The data presented reveals that although diet appeared to have significant effects on the maternal metabolic status, those effects did not directly correlate to the embryonic folate or N-homocysteinylation status. Our studies indicate that maternal diet and embryonic genotype most significantly affected the embryonic developmental outcome. PMID:25620692

  20. Exploring folate diversity in wild and primitive potatoes for modern crop improvement

    USDA-ARS?s Scientific Manuscript database

    Malnutrition is one of the world’s largest health concerns. Folate (a.k.a. vitamin B9) is essential in the human diet and without adequate folate intake several serious health concerns such as congenital birth defects and an increased risk of stroke and heart disease can occur. Most people’s folate ...

  1. Alcohol intake and folate antagonism via CYP2E1 and ALDH1: Effects on oral carcinogenesis

    PubMed Central

    Hwang, Phillip H.; Lian, Lisa; Zavras, Athanasios I.

    2011-01-01

    , while its upregulation can produce drastic antiproliferative effects. ALDH1 has three known response elements that regulate gene expression (NF-Y, C/EBPβ, and RARα). Our second hypothesis is that folate interacts with one of these response elements to upregulate ALDH1A1 and ALDH1L1 expression in order to decrease acetaldehyde concentrations and promote DNA stability, thereby decreasing cancer susceptibility. Conducting future metabolic and biochemical human studies in order to understand this biological mechanism will serve to support evidence from epidemiologic studies, and ultimately promote the intake of folate to at-risk populations. PMID:22100631

  2. Folate supplementation in people with sickle cell disease.

    PubMed

    Dixit, Ruchita; Nettem, Sowmya; Madan, Simerjit S; Soe, Htoo Htoo Kyaw; Abas, Adinegara Bl; Vance, Leah D; Stover, Patrick J

    2018-03-16

    Sickle cell disease (SCD) is a group of disorders that affects haemoglobin, which causes distorted sickle- or crescent-shaped red blood cells. It is characterized by anaemia, increased susceptibility to infections and episodes of pain. The disease is acquired by inheriting abnormal genes from both parents, the combination giving rise to different forms of the disease. Due to increased erythropoiesis in people with SCD, it is hypothesized that they are at an increased risk for folate deficiency. For this reason, children and adults with SCD, particularly those with sickle cell anaemia, commonly take 1 mg of folic acid orally every day on the premise that this will replace depleted folate stores and reduce the symptoms of anaemia. It is thus important to evaluate the role of folate supplementation in treating SCD. To analyse the efficacy and possible adverse effects of folate supplementation (folate occurring naturally in foods, provided as fortified foods or additional supplements such as tablets) in people with SCD. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also conducted additional searches in both electronic databases and clinical trial registries.Date of last search of the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register: 17 November 2017. Randomised, placebo-controlled trials of folate supplementation for SCD. Four review authors assessed We used the standard Cochrane-defined methodological procedures.Four review authors independently assessed the eligibility and risk of bias of the included trials and extracted and analysed the data included in the review. The quality of the evidence was assessed using GRADE. One trial, undertaken in 1983, was eligible for inclusion in the review. This was

  3. Folate supplementation in people with sickle cell disease

    PubMed Central

    Dixit, Ruchita; Nettem, Sowmya; Madan, Simerjit S; Soe, Htoo Htoo Kyaw; Abas, Adinegara BL; Vance, Leah D; Stover, Patrick J

    2017-01-01

    Background Sickle cell disease is a group of disorders that affects haemoglobin, which causes distorted sickle- or crescent-shaped red blood cells. It is characterized by anaemia, increased susceptibility to infections and episodes of pain. The disease is acquired by inheriting abnormal genes from both parents, the combination giving rise to different forms of the disease. Due to increased erythropoiesis in people with sickle cell disease, it is hypothesized that they are at an increased risk for folate deficiency. For this reason, children and adults with sickle cell disease, particularly those with sickle cell anaemia, commonly take 1 mg of folic acid orally every day on the premise that this will replace depleted folate stores and reduce the symptoms of anaemia. It is thus important to evaluate the role of folate supplementation in treating sickle cell disease. Objectives To analyse the efficacy and possible adverse effects of folate supplementation (folate occurring naturally in foods, provided as fortified foods or additional supplements such as tablets) in people with sickle cell disease. Search methods We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group’s Haemoglobinopathies Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also conducted additional searches in both electronic databases and clinical trial registries. Date of last search: 07 December 2015. Selection criteria Randomised, placebo-controlled trials of folate supplementation for sickle cell disease. Data collection and analysis Four review authors assessed the eligibility and risk of bias of the included trials and extracted and analysed the data included in the review. We used the standard Cochrane-defined methodological procedures. Main results One trial, undertaken in 1983, was eligible for inclusion in the review. This was a double

  4. Folate and vitamin B12 status in the Americas.

    PubMed

    Allen, Lindsay H

    2004-06-01

    There is growing interest in the potential for folic acid fortification in the Americas and recognition of the high prevalence of low plasma vitamin B12 concentrations reported in various studies. This review summarized available data on plasma vitamin B12 and folate concentrations in the Americas. At least 40% of individuals had deficient or marginal plasma vitamin B12 concentrations in almost all locations and across age groups. Low plasma folate concentrations were less common. It is hypothesized that vitamin B12 deficiency may result from a low intake of animal source foods, while a higher intake of refined flour may result in low plasma folate.

  5. Development of a lateral flow dipstick immunoassay for evaluation of folate levels in maize.

    PubMed

    Liang, Qiuju; Yi, Chen; Jiang, Ling; Tan, Guiyu; Zhang, Chunyi; Wang, Baomin

    2017-09-01

    Folates (vitamin B9) are essential for all organisms as cofactors for one-carbon metabolism. However, measurement of folates is technically complicated and time-consuming. In this study, we developed a dipstick immunoassay using a folate-specific monoclonal antibody (mAb), allowing rapid and low-cost detection of folates. The indicator range of the dipstick for 5-formylterahydrofolate (5-CHO-THF), 5-methyltetrahydrofolate (5-CH 3 -THF) and their polyglutamyl forms was 100-200 ng mL -1 ; moreover, no cross-reactivity was observed with tetrahydrofolate (THF) or 5,10-methenyltetrahydrofolate (5,10-CH=THF) at 500 ng mL -1 , or with the folate precursors pterin-6-COOH, p-aminobenzoate (pABA), and L-glutamate, or with the folate analogues methotrexate and 10-formyltetrahydrofolate (10-CHO-THF) at up to 1000 ng mL -1 . The dipstick immunoassay was tested in maize seeds; the results classified the seeds into those with low, moderate, and high levels of folates, and were in agreement with those of liquid chromatography-mass spectrometry. Thus, we conclude that the dipstick assay will provide a versatile tool to facilitate large-scale screening of maize rich in folates. Graphical Abstract The dipstick based immunoassay for analyzing folate level in maize.

  6. Reduced MTHFD1 activity in male mice perturbs folate- and choline-dependent one-carbon metabolism as well as transsulfuration.

    PubMed

    Field, Martha S; Shields, Kelsey S; Abarinov, Elena V; Malysheva, Olga V; Allen, Robert H; Stabler, Sally P; Ash, Jessica A; Strupp, Barbara J; Stover, Patrick J; Caudill, Marie A

    2013-01-01

    Impaired utilization of folate is caused by insufficient dietary intake and/or genetic variation and has been shown to prompt changes in related pathways, including choline and methionine metabolism. These pathways have been shown to be sensitive to variation within the Mthfd1 gene, which codes for a folate-metabolizing enzyme responsible for generating 1-carbon (1-C)-substituted folate derivatives. The Mthfd1(gt/+) mouse serves as a potential model of human Mthfd1 loss-of-function genetic variants that impair MTHFD1 function. This study investigated the effects of the Mthfd1(gt/+) genotype and folate intake on markers of choline, folate, methionine, and transsulfuration metabolism. Male Mthfd1(gt/+) and Mthfd1(+/+) mice were randomly assigned at weaning (3 wk of age) to either a control (2 mg/kg folic acid) or folate-deficient (0 mg/kg folic acid) diet for 5 wk. Mice were killed at 8 wk of age following 12 h of food deprivation; blood and liver samples were analyzed for choline, methionine, and transsulfuration biomarkers. Independent of folate intake, mice with the Mthfd1(gt/+) genotype had higher hepatic concentrations of choline (P = 0.005), betaine (P = 0.013), and dimethylglycine (P = 0.004) and lower hepatic concentrations of glycerophosphocholine (P = 0.002) relative to Mthfd1(+/+) mice. Mthfd1(gt/+) mice also had higher plasma concentrations of homocysteine (P = 0.0016) and cysteine (P < 0.001) as well as lower plasma concentrations of methionine (P = 0.0003) and cystathionine (P = 0.011). The metabolic alterations observed in Mthfd1(gt/+) mice indicate perturbed choline and folate-dependent 1-C metabolism and support the future use of Mthfd1(gt/+) mice as a tool to investigate the impact of impaired 1-C metabolism on disease outcomes.

  7. Mechanistic Target of Rapamycin Is a Novel Molecular Mechanism Linking Folate Availability and Cell Function.

    PubMed

    Silva, Elena; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2017-07-01

    Folate deficiency has been linked to a wide range of disorders, including cancer, neural tube defects, and fetal growth restriction. Folate regulates cellular function mediated by its involvement in the synthesis of nucleotides, which are needed for DNA synthesis, and its function as a methyl donor, which is critical for DNA methylation. Here we review current data showing that folate sensing by mechanistic target of rapamycin (mTOR) constitutes a novel and distinct pathway by which folate modulates cell functions such as nutrient transport, protein synthesis, and mitochondrial respiration. The mTOR signaling pathway responds to growth factors and changes in nutrient availability to control cell growth, proliferation, and metabolism. mTOR exists in 2 complexes, mTOR complex (mTORC) 1 and mTORC2, which have distinct upstream regulators and downstream targets. Folate deficiency in pregnant mice caused a marked inhibition of mTORC1 and mTORC2 signaling in multiple maternal and fetal tissues, downregulation of placental amino acid transporters, and fetal growth restriction. In addition, folate deficiency in primary human trophoblast (PHT) cells resulted in inhibition of mTORC1 and mTORC2 signaling and decreased the activity of key amino acid transporters. Folate sensing by mTOR in PHT cells is independent of the accumulation of homocysteine and requires the proton-coupled folate transporter (PCFT; solute carrier 46A1). Furthermore, mTORC1 and mTORC2 regulate trophoblast folate uptake by modulating the cell surface expression of folate receptor α and the reduced folate carrier. These findings, which provide a novel link between folate availability and cell function, growth, and proliferation, may have broad biological significance given the critical role of folate in normal cell function and the multiple diseases that have been associated with decreased or excessive folate availability. Low maternal folate concentrations are linked to restricted fetal growth, and we

  8. Near-Infrared Light Responsive Folate Targeted Gold Nanorods for Combined Photothermal-Chemotherapy of Osteosarcoma.

    PubMed

    Li Volsi, Anna; Scialabba, Cinzia; Vetri, Valeria; Cavallaro, Gennara; Licciardi, Mariano; Giammona, Gaetano

    2017-04-26

    Folate-targeted gold nanorods (GNRs) are proposed as selective theranostic agents for osteosarcoma treatment. An amphiphilic polysaccharide based graft-copolymer (INU-LA-PEG-FA) and an amino derivative of the α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide functionalized with folic acid (PHEA-EDA-FA), have been synthesized to act as coating agents for GNRs. The obtained polymer-coated GNRs were characterized in terms of size, shape, zeta potential, chemical composition, and aqueous stability. They protected the anticancer drug nutlin-3 and were able to deliver it efficiently in different physiological media. The ability of the proposed systems to selectively kill tumor cells was tested on U2OS cancer cells expressing high levels of FRs and compared with human bronchial epithelial cells (16HBE) and human dermal fibroblasts (HDFa). The property of the nanosystems of efficiently controlling drug release upon NIR laser irradiation and of acting as an excellent hyperthermia agent as well as Two Photon Luminescence imaging contrast agents was demonstrated. The proposed folate-targeted GNRs have also been tested in terms of chemoterapeutic and thermoablation efficacy on tridimensional (3-D) osteosarcoma models.

  9. Dietary folate intake levels in rural women immediately before pregnancy in Northern China.

    PubMed

    Meng, Qinqin; Zhang, Le; Liu, Jufen; Li, Zhiwen; Jin, Lei; Zhang, Yali; Wang, Linlin; Ren, Aiguo

    2015-01-01

    The study aims to assess dietary folate levels and food sources in women immediately before pregnancy in a rural area of northern China associated with a high prevalence of neural tube defects. Information was collected by face-to-face interviews with women who sought premarital healthcare and planned to become pregnant within the next 12 months from November 2009 through December 2012. Information regarding food consumption was obtained by means of 24-hr dietary recall. Folate values were assigned to foods according to the China Food Composition 2004. Factors associated with dietary folate intake were analyzed by multiple linear regression. Mean (± standard deviation) and median (interquartile range) daily folate intake levels were 114.3 ± 59.7 and 102.8 (69.3-146.8) μg/day, respectively. Over 99% of the subjects had an intake level below 320 μg/day, the estimated average requirement for nonpregnant women. Only 1% and 7% of the women consumed 75% and 50%, respectively, of the recommended daily folate intake of 400 μg for nonpregnant women. Over 80% of total folate consumption came from cereals, vegetables, and tubers, whereas fruit consumption was severely lacking. Underweight women, farmers, women enrolled during the winter, and women with access to fewer food types or daily meals were more likely to exhibit low folate intake levels. Dietary folate intake among study participants was far below the recommended intake level. Folic acid fortification of cereals is advised to raise folate intake in rural Chinese women planning to become pregnant. © 2014 Wiley Periodicals, Inc.

  10. Folate and carcinogenesis-mechanisms

    USDA-ARS?s Scientific Manuscript database

    A large and growing body of both pre-clinical and clinical studies pertaining to colorectal neoplasms constitutes the most compelling evidence for the protective effect of folate against the development of cancer, although evidence is also accruing in this regard for cancers of the breast, lung, pan...

  11. Sustained release of methotrexate through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Mohanty, Sanat

    2014-09-01

    To make chemotherapy more effective, sustained release of the drug is desirable. By controlling the release rates, constant therapeutic levels can be achieved which can avoid re-administration of drug. This helps to combat tumors more effectively with minimal side effects. The present study reports the control release of methotrexate through liquid-crystalline folate nanoparticles. These nanoparticles are composed of highly ordered folate self-assembly which encapsulate methotrexate molecules. These drug molecules can be released in a controlled manner by disrupting this assembly in the environment of monovalent cations. The ordered structure of folate nanoparticles offers low drug losses of about 4-5%, which is significant in itself. This study reports the size-control method of forming methotrexate encapsulated folate nanoparticles as well as the release of methotrexate through these nanoparticles. It has been demonstrated that methotrexate release rates can be controlled by controlling the size of the nanoparticles, cross-linking cation and cross-linking concentration. The effect of different factors like drug loading, release medium, and pH of the medium on methotrexate release rates was also studied.

  12. Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.).

    PubMed

    Ramírez Rivera, Naty G; García-Salinas, Carolina; Aragão, Francisco J L; Díaz de la Garza, Rocío Isabel

    2016-10-01

    Folate (vitamin B9) deficiency causes several health problems globally. However, folate biofortification of major staple crops is one alternative that can be used to improve vitamin intakes in populations at risk. We increased the folate levels in common bean by engineering the pteridine branch required for their biosynthesis. GTP cyclohydrolase I from Arabidopsis (AtGchI) was stably introduced into three common bean Pinto cultivars by particle bombardment. Seed-specific overexpression of AtGCHI caused significant increases of up to 150-fold in biosynthetic pteridines in the transformed lines. The pteridine boost enhanced folate levels in raw desiccated seeds by up to threefold (325 μg in a 100 g portion), which would represent 81% of the adult recommended daily allowance. Unexpectedly, the engineering also triggered a general increase in PABA levels, the other folate precursor. This was not observed in previous engineering studies and was probably caused by a feedforward mechanism that remains to be elucidated. Results from this work also show that common bean grains accumulate considerable amounts of oxidized pteridines that might represent products of folate degradation in desiccating seeds. Our study uncovers a probable different regulation of folate homoeostasis in these legume grains than that observed in other engineering works. Legumes are good sources of folates, and this work shows that they can be engineered to accumulate even greater amounts of folate that, when consumed, can improve folate status. Biofortification of common bean with folates and other micronutrients represents a promising strategy to improve the nutritional status of populations around the world. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. A hybrid stochastic model of folate-mediated one-carbon metabolism: Effect of the common C677T MTHFR variant on de novo thymidylate biosynthesis.

    PubMed

    Misselbeck, Karla; Marchetti, Luca; Field, Martha S; Scotti, Marco; Priami, Corrado; Stover, Patrick J

    2017-04-11

    Folate-mediated one-carbon metabolism (FOCM) is an interconnected network of metabolic pathways, including those required for the de novo synthesis of dTMP and purine nucleotides and for remethylation of homocysteine to methionine. Mouse models of folate-responsive neural tube defects (NTDs) indicate that impaired de novo thymidylate (dTMP) synthesis through changes in SHMT expression is causative in folate-responsive NTDs. We have created a hybrid computational model comprised of ordinary differential equations and stochastic simulation. We investigated whether the de novo dTMP synthesis pathway was sensitive to perturbations in FOCM that are known to be associated with human NTDs. This computational model shows that de novo dTMP synthesis is highly sensitive to the common MTHFR C677T polymorphism and that the effect of the polymorphism on FOCM is greater in folate deficiency. Computational simulations indicate that the MTHFR C677T polymorphism and folate deficiency interact to increase the stochastic behavior of the FOCM network, with the greatest instability observed for reactions catalyzed by serine hydroxymethyltransferase (SHMT). Furthermore, we show that de novo dTMP synthesis does not occur in the cytosol at rates sufficient for DNA replication, supporting empirical data indicating that impaired nuclear de novo dTMP synthesis results in uracil misincorporation into DNA.

  14. Endocytosis of GPI-linked membrane folate receptor-alpha

    PubMed Central

    1996-01-01

    GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36- 38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100- resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae. PMID:8567728

  15. Endocytosis of GPI-linked membrane folate receptor-alpha.

    PubMed

    Rijnboutt, S; Jansen, G; Posthuma, G; Hynes, J B; Schornagel, J H; Strous, G J

    1996-01-01

    GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36-38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100-resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae.

  16. The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins.

    PubMed

    Birn, Henrik

    2006-07-01

    Over the past 10 years, animal studies have uncovered the molecular mechanisms for the renal tubular recovery of filtered vitamin and vitamin carrier proteins. Relatively few endocytic receptors are responsible for the proximal tubule uptake of a number of different vitamins, preventing urinary losses. In addition to vitamin conservation, tubular uptake by endocytosis is important to vitamin metabolism and homeostasis. The present review focuses on the receptors involved in renal tubular recovery of folate, vitamin B12, and their carrier proteins. The multiligand receptor megalin is important for the uptake and tubular accumulation of vitamin B12. During vitamin load, the kidney accumulates large amounts of free vitamin B12, suggesting a possible storage function. In addition, vitamin B12 is metabolized in the kidney, suggesting a role in vitamin homeostasis. The folate receptor is important for the conservation of folate, mediating endocytosis of the vitamin. Interaction between the structurally closely related, soluble folate-binding protein and megalin suggests that megalin plays an additional role in the uptake of folate bound to filtered folate-binding protein. A third endocytic receptor, the intrinsic factor-B12 receptor cubilin-amnionless complex, is essential to the renal tubular uptake of albumin, a carrier of folate. In conclusion, uptake is mediated by interaction with specific endocytic receptors also involved in the renal uptake of other vitamins and vitamin carriers. Little is known about the mechanisms regulating intracellular transport and release of vitamins, and whereas tubular uptake is a constitutive process, this may be regulated, e.g., by vitamin status.

  17. Inhibition of Schistosoma mansoni ether-a-go-go related gene-encoded potassium channels leads to hypermotility and impaired egg production.

    PubMed

    Parker-Manuel, S J; Hahnel, S; Grevelding, C G

    2015-11-01

    The purpose of this work was to investigate the effect of ether-a-go-go related gene (ERG) potassium channel inhibition on Schistosoma mansoni. Use of dofetilide to block the schistosome ERGs resulted in a striking 'corkscrew' effect. The worms were unable to control their motility; they were hypermotile. The treated worms produced abnormal eggs, some of which consisted of little more than a spine. One of the S. mansoni ERGs (SmERGs), Smp_161140, was chosen for further study by RNAi. The transcript was knocked down to 50% compared to the controls. These RNAi-treated worms demonstrated seizure-like movements. In S. mansoni, as in other organisms, ERG channels seem to play a role in regulating muscle excitability. This work shows that egg production can be greatly reduced by effectively targeting muscle coordination in these important parasites. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Higher dietary folate intake reduces the breast cancer risk: a systematic review and meta-analysis

    PubMed Central

    Chen, P; Li, C; Li, X; Li, J; Chu, R; Wang, H

    2014-01-01

    Background: Many epidemiological studies have investigated the association between folate intake, circulating folate level and risk of breast cancer; however, the findings were inconsistent between the studies. Methods: We searched the PubMed and MEDLINE databases updated to January, 2014 and performed the systematic review and meta-analysis of the published epidemiological studies to assess the associations between folate intake level, circulating folate level and the overall risk of breast cancer. Results: In all, 16 eligible prospective studies with a total of 744 068 participants and 26 205 breast cancer patients and 26 case–control studies with a total of 16 826 cases and 21 820 controls that have evaluated the association between folate intake and breast cancer risk were identified. Pooled analysis of the prospective studies and case–control studies suggested a potential nonlinearity relationship for dietary folate intake and breast cancer risk. Prospective studies indicated a U-shaped relationship for the dietary folate intake and breast cancer risk. Women with daily dietary folate intake between 153 and 400 μg showed a significant reduced breast cancer risk compared with those <153 μg, but not for those >400 μg. The case–control studies also suggested a significantly negative correlation between the dietary folate intake level and the breast cancer risk. Increased dietary folate intake reduced breast cancer risk for women with higher alcohol intake level, but not for those with lower alcohol intake. No significant association between circulating folate level and breast cancer risk was found when the results of 8 identified studies with 5924 participants were pooled. Conclusions: Our studies suggested that folate may have preventive effects against breast cancer risk, especially for those with higher alcohol consumption level; however, the dose and timing are critical and more studies are warranted to further elucidate the questions

  19. Folates in Asian noodles: II. A comparison of commercial samples and the impact of cooking.

    PubMed

    Bui, Lan T T; Small, Darryl M

    2007-06-01

    The folate contents of 26 commercial noodle samples were investigated. The impact of ingredients, pH, and cooking on folate content was studied for the 3 predominant styles of noodles: white salted, yellow alkaline, and instant. Some variability was found in the proportion of folate present in the free form and the noodles generally had low total folate contents. The pH values of the samples covered a wide range, varying from 3.7 to 10.3; however, the results did not provide strong evidence for a relationship between pH and folate content for any of the noodle styles studied. Higher folate levels were typically found in yellow alkaline samples compared to white salted and instant noodles. The storage of noodles in dry or moist forms did not appear to influence total folate contents, and subsequent losses during cooking depended upon the time of exposure to elevated temperatures. The enzymatic treatment of samples was particularly important for cooked noodles, indicating that folates were bound or entrapped during this process.

  20. Self-illuminating nanoprobe for in vivo imaging of cancers over-expressing the folate receptor

    NASA Astrophysics Data System (ADS)

    Miller, Steven C.; Beviglia, Lucia; Yeung, Pete; Bhattacharyya, Sukanta; Sobek, Daniel

    2012-03-01

    New in vivo imaging reagents with increased sensitivity and penetration depth are needed to advance our understanding of metastases and accelerate the development of therapeutics. The folate receptor (FR) is a promising imaging target that is up-regulated in many human carcinomas, including cancers of the ovary, breast, pancreas, endometrium, lungs, kidneys, colon, brain, and myeloid cells. Zymera has developed a self-illuminating Bioluminescence Resonance Energy Transfer Quantum Dot (BRET-Qdot) nanoprobe conjugated with folate (BQ-Folate) for in vivo imaging of cancers overexpressing FR. BQ-Folate is a novel nanoprobe formed by co-conjugating Renilla reniformis luciferase enzyme and folate to near-infrared (NIR) emitting quantum dots. The luciferase substrate, coelenterazine, activates the BQ-Folate nanoprobe generating luminescence emission in the near-infrared (NIR) region (655 nm) for increased sensitivity and penetration depth. Because BQ-Folate requires no external light source for light emission, it has significant advantages for challenging in vivo preclinical optical imaging applications, such as the detection of early stage metastases. Zymera and OncoMed Pharmaceuticals have demonstrated that in vivo imaging with the BQ-Folate nanoprobe detected the primary tumor and early stage metastases in an orthotopic NOD/SCID mouse model of human pancreatic cancer.

  1. Synthesis and Evaluation of Folate-Conjugated Phenanthraquinones for Tumor-Targeted Oxidative Chemotherapy

    PubMed Central

    Kumar, Ajay; Chelvam, Venkatesh; Sakkarapalayam, Mahalingam; Li, Guo; Sanchez-Cruz, Pedro; Piñero, Natasha S.; Low, Philip S.; Alegria, Antonio E.

    2016-01-01

    Almost all cells are easily killed by exposure to potent oxidants. Indeed, major pathogen defense mechanisms in both animal and plant kingdoms involve production of an oxidative burst, where host defense cells show an invading pathogen with reactive oxygen species (ROS). Although cancer cells can be similarly killed by ROS, development of oxidant-producing chemotherapies has been limited by their inherent nonspecificity and potential toxicity to healthy cells. In this paper, we describe the targeting of an ROS-generating molecule selectively to tumor cells using folate as the tumor-targeting ligand. For this purpose, we exploit the ability of 9,10-phenanthraquinone (PHQ) to enhance the continuous generation of H2O2 in the presence of ascorbic acid to establish a constitutive source of ROS within the tumor mass. We report here that incubation of folate receptor-expressing KB cells in culture with folate-PHQ plus ascorbate results in the death of the cancer cells with an IC50 of ~10 nM (folate-PHQ). We also demonstrate that a cleavable spacer linking folate to PHQ is significantly inferior to a noncleavable spacer, in contrast to most other folate-targeted therapeutic agents. Unfortunately, no evidence for folate-PHQ mediated tumor regression in murine tumor models is obtained, suggesting that unanticipated impediments to generation of cytotoxic quantities of ROS in vivo are encountered. Possible mechanisms and potential solutions to these unanticipated results are offered. PMID:27066312

  2. Associations between Folate and Vitamin B12 Levels and Inflammatory Bowel Disease: A Meta-Analysis.

    PubMed

    Pan, Yun; Liu, Ya; Guo, Haizhuo; Jabir, Majid Sakhi; Liu, Xuanchen; Cui, Weiwei; Li, Dong

    2017-04-13

    Inflammatory bowel disease (IBD) patients may be at risk of vitamin B12 and folate insufficiencies, as these micronutrients are absorbed in the small intestine, which is affected by IBD. However, a consensus has not been reached on the association between IBD and serum folate and vitamin B12 concentrations. In this study, a comprehensive search of multiple databases was performed to identify studies focused on the association between IBD and serum folate and vitamin B12 concentrations. Studies that compared serum folate and vitamin B12 concentrations between IBD and control patients were selected for inclusion in the meta-analysis. The main outcome was the mean difference in serum folate and vitamin B12 concentrations between IBD and control patients. Our findings indicated that the average serum folate concentration in IBD patients was significantly lower than that in control patients, whereas the mean serum vitamin B12 concentration did not differ between IBD patients and controls. In addition, the average serum folate concentration in patients with ulcerative colitis (UC) but not Crohn's disease (CD) was significantly lower than that in controls. This meta-analysis identified a significant relationship between low serum folate concentration and IBD. Our findings suggest IBD may be linked with folate deficiency, although the results do not indicate causation. Thus, providing supplements of folate and vitamin B12 to IBD patients may improve their nutritional status and prevent other diseases.

  3. Synthesis and biological assessment of folate-accepted developer (99m)Tc-DTPA-folate-polymer.

    PubMed

    Chen, Fei; Shao, Kejing; Zhu, Bao; Jiang, Mengjun

    2016-05-15

    A novel cancer-targetable folate-poly(2-hydroxyethyl methacrylate) (PFDH) copolymer containing DTPA segment was prepared by conventional chemical synthesis and labeled with (99m)Tc subsequently. The (99m)Tc-labled PFDH could be produced easily with high radiochemical yield of 91% and radiochemical purity of 95%. The LogP octanol-water value for the (99m)Tc-labled PFDH was -2.19 and the radiotracer was stable in phosphate-buffered saline and human serum for 2h (>95% in PBS or ∼90% in human serum). To investigate (99m)Tc-labled PFDH tumor targeting, the in vitro and in vivo stability, cell uptake, in vivo biodistribution, and SPECT imaging were evaluated, respectively. These preliminary results strongly suggest that the novel folate conjugated dendrimer maybe developed to be potential for delivery of therapeutic radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Folate Intake, Mthfr Genotype, and Sex Modulate Choline Metabolism in Mice123

    PubMed Central

    Chew, Tina W.; Jiang, Xinyin; Yan, Jian; Wang, Wei; Lusa, Amanda L.; Carrier, Bradley J.; West, Allyson A.; Malysheva, Olga V.; Brenna, J. Thomas; Gregory, Jesse F.; Caudill, Marie A.

    2011-01-01

    Choline and folate are interrelated in 1-carbon metabolism, mostly because of their shared function as methyl donors for homocysteine remethylation. Folate deficiency and mutations of methylenetetrahydrofolate reductase (MTHFR) reduce the availability of a major methyl donor, 5-methyltetrahydrofolate, which in turn may lead to compensatory changes in choline metabolism. This study investigated the hypothesis that reductions in methyl group supply, either due to dietary folate deficiency or Mthfr gene deletion, would modify tissue choline metabolism in a sex-specific manner. Mthfr wild type (+/+) or heterozygous (+/−) knockout mice were randomized to a folate-deficient or control diet for 8 wk during which time deuterium-labeled choline (d9-choline) was consumed in the drinking water (~10 μmol/d). Mthfr heterozygosity did not alter brain choline metabolite concentrations, but it did enhance their labeling in males (P < 0.05) and tended to do so in females (P < 0.10), a finding consistent with greater turnover of dietary choline in brains of +/− mice. Dietary folate deficiency in females yielded 52% higher (P = 0.027) hepatic glycerophosphocholine, which suggests that phosphatidylcholine (PtdCho) degradation was enhanced. Labeling of the hepatic PtdCho in d3 form was also reduced (P < 0.001) in females, which implies that fewer of the dietary choline-derived methyl groups were used for de novo PtdCho biosynthesis under conditions of folate insufficiency. Males responded to folate restriction with a doubling (P < 0.001) of hepatic choline dehydrogenase transcripts, a finding consistent with enhanced conversion of choline to the methyl donor, betaine. Collectively, these data show that several adaptations in choline metabolism transpire as a result of mild perturbations in folate metabolism, presumably to preserve methyl group homeostasis. PMID:21697299

  5. Engineering Folate-Targeting Diselenide-containing Triblock Copolymer as a Redox-Responsive Shell-sheddable Micelle for Antitumor Therapy In Vivo.

    PubMed

    Behroozi, Farnaz; Abdkhodaie, Mohammad-Jafar; Sadeghi Abandansari, Hamid; Satarian, Leila; Molazem, Mohammad; Al-Jamal, Khuloud T; Baharvand, Hossein

    2018-06-18

    The oxidation-reduction (redox)-responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA) 2 ]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic-hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC) in an aqueous environment. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the micelles were spherical with an average diameter of 120 nm. The insoluble anticancer drug paclitaxel (PTX) was loaded into micelles, and its triggered release behavior under different redox conditions was verified. Folate-targeting micelles showed an enhanced uptake in 4T1 breast cancer cells and in vitro cytotoxicity by flow cytometry and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, respectively. Delayed tumor growth was confirmed in the subcutaneously implanted 4T1 breast cancer in mice after intraperitoneal injection. The proposed redox-responsive copolymer offers a new type of biomaterial for drug delivery into cancer cells in vivo. On-demand drug actuation is highly desired. Redox-responsive polymeric DDSs have been shown to be able to respond and release their cargo in a selective manner when encountering a significant change in the potential difference, such as that present between cancerous and healthy tissues. This study offers an added advantage to the field of redox-responsive polymers by reporting a new type of shell-sheddable micelle based on an amphiphilic triblock co

  6. Dietary folate does not significantly affect the intestinal microbiome, inflammation or tumorigenesis in azoxymethane-dextran sodium sulphate-treated mice.

    PubMed

    MacFarlane, Amanda J; Behan, Nathalie A; Matias, Fernando M G; Green, Judy; Caldwell, Don; Brooks, Stephen P J

    2013-02-28

    Inflammatory bowel disease (IBD) is a risk factor for the development of colon cancer. Environmental factors including diet and the microflora influence disease outcome. Folate and homocysteine have been associated with IBD-mediated colon cancer but their roles remain unclear. We used a model of chemically induced ulcerative colitis (dextran sodium sulphate (DSS)) with or without the colon carcinogen azoxymethane (AOM) to determine the impact of dietary folic acid (FA) on colonic microflora and the development of colon tumours. Male mice (n 15 per group) were fed a FA-deficient (0 mg/kg), control (2 mg/kg) or FA-supplemented (8 mg/kg) diet for 12 weeks. Folate status was dependent on the diet (P< 0·001) and colitis-induced treatment (P= 0·04) such that mice with colitis had lower circulating folate. FA had a minimal effect on tumour initiation, growth and progression, although FA-containing diets tended to be associated with a higher tumour prevalence in DSS-treated mice (7-20 v. 0%, P= 0·08) and the development of more tumours in the distal colon of AOM-treated mice (13-83% increase, P= 0·09). Folate deficiency was associated with hyperhomocysteinaemia (P< 0·001) but homocysteine negatively correlated with tumour number (r - 0·58, P= 0·02) and load (r - 0·57, P= 0·02). FA had no effect on the intestinal microflora. The present data indicate that FA intake has no or little effect on IBD or IBD-mediated colon cancer in this model and that hyperhomocysteinaemia is a biomarker of dietary status and malabsorption rather than a cause of IBD-mediated colon cancer.

  7. [The future of methotrexate therapy and other folate inhibitors].

    PubMed

    Fiehn, C

    2011-02-01

    Because of its good effectiveness and tolerability, methotrexate (MTX) has been the most important DMARD for the treatment of rheumatoid arthritis (RA) worldwide for many years. Thus the treatment of this disease is strongly based on the principle of folate inhibition. Recent years have brought new insights into the pharmacology and mechanisms of action of MTX. As a result, it now appears possible to further develop folate inhibitors to increase effectiveness and specificity. Polyglutamation of the drug, a metabolic step which appears to play a role both in terms of therapeutic effects and hepatic side effects, might be a possible starting point. Moreover, methods of targeted drug delivery intended to increase drug accumulation at the site of inflammation can increase the effectiveness of treatment and reduce toxicity. Albumin-coupled and liposomally-conjugated MTX, both of which inhibit inflammation in animal models more potently than MTX, are undergoing preclinical evaluation. It was recognized that activated synovial macrophages upregulate folate receptor ß (FR-ß) expression and that MTX can become active by this pathway. This finding makes it possible to develop new FR-ß-specific folate inhibitors with specificity for this pathophysiologically important cell population.

  8. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting.

    PubMed

    Zhang, Lin; Zhu, Weiwei; Yang, Chunfen; Guo, Hongxia; Yu, Aihua; Ji, Jianbo; Gao, Yan; Sun, Min; Zhai, Guangxi

    2012-01-01

    The objective of this study was to prepare, characterize, and evaluate a folate-modified self-microemulsifying drug delivery system (FSMEDDS) with the aim to improve the solubility of curcumin and its delivery to the colon, facilitating endocytosis of FSMEDDS mediated by folate receptors on colon cancer cells. Ternary phase diagrams were constructed in order to obtain the most efficient self-emulsification region, and the formulation of curcumin-loaded SMEDDS was optimized by a simplex lattice experiment design. Then, three lipophilic folate derivatives (folate-polyethylene glycol-distearoylphosphatidylethanolamine, folate-polyethylene glycol-cholesteryl hemisuccinate, and folate-polyethylene glycol-cholesterol) used as a surfactant were added to curcumin-loaded SMEDDS formulations. An in situ colon perfusion method in rats was used to optimize the formulation of FSMEDDS. Curcumin-loaded FSMEDDS was then filled into colon-targeted capsules and the in vitro release was investigated. Cytotoxicity studies and cellular uptake studies was used in this research. The optimal formulation of FSMEDDS obtained with the established in situ colon perfusion method in rats was comprised of 57.5% Cremophor(®) EL, 32.5% Transcutol(®) HP, 10% Capryol™ 90, and a small amount of folate-polyethylene glycol-cholesteryl hemisuccinate (the weight ratio of folate materials to Cremophor EL was 1:100). The in vitro release results indicated that the obtained formulation of curcumin could reach the colon efficiently and release the drug immediately. Cellular uptake studies analyzed with fluorescence microscopy and flow cytometry indicated that the FSMEDDS formulation could efficiently bind with the folate receptors on the surface of positive folate receptors cell lines. In addition, FSMEDDS showed greater cytotoxicity than SMEDDS in the above two cells. FSMEDDS-filled colon-targeted capsules are a potential carrier for colon delivery of curcumin.

  9. Dietary and blood folate status of Malaysian women of childbearing age.

    PubMed

    Khor, Geok Lin; Duraisamy, G; Loh, Su Peng; Green, Timothy

    2006-01-01

    The protective role of folic acid taken during the periconceptual period in reducing the occurrence of neural tube defects (NTD) has been well documented by epidemiological evidence, randomized controlled trials and intervention studies. Much of the evidence is derived from western populations while similar data on Asian subjects is relatively nascent. Baseline data on folate status of Malaysian women is lacking, while NTD prevalence is estimated as 10 per 10,000 births. This study was conducted with the objective of determining the dietary and blood folate status of Malaysian women of childbearing age. A total of 399 women comprising 140 Malay, 131 Chinese and 128 Indian subjects were recruited from universities and worksites in the suburbs of Kuala Lumpur. Inclusion criteria were that the subjects were not pregnant or breastfeeding, not taking folic acid supplements, not habitual drinkers or smokers. Based on a 24-hour recall, the median intake level for folate was 66 microg (15.7-207.8 microg), which amounts to 16.5% of the Malaysian Recommended Nutrient Intakes level. The median (5-95th percentiles) values for plasma and red cell folate (RBC) concentrations were 11 (4-33) nmol/L and 633 (303-1209) nmol/L respectively. Overall, nearly 15.1% showed plasma folate deficiency (< 6.8 nmol/L), with Indian subjects having the highest prevalence (21.5%). Overall prevalence of RBC folate deficiency (<363 nmol/L) was 9.3%, and an almost similar level prevailed for each ethnic group. Only 15.2% had RBC concentration exceeding 906 nmol/L, which is associated with a very low risk of NTD. The result of this study point to the need for intervention strategies to improve the blood folate status of women of childbearing age, so that they have adequate protection against the occurrence of NTD at birth.

  10. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasry, Inbal; Berman, Bluma; Glaser, Fabian

    2009-08-28

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structuresmore » of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.« less

  11. Folate content in tomato ( Lycopersicon esculentum ). influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures.

    PubMed

    Iniesta, M Dolores; Pérez-Conesa, Darío; García-Alonso, Javier; Ros, Gaspar; Periago, M Jesús

    2009-06-10

    The effects of cultivar, on-vine ripening, and year of harvest on the folate content of raw tomatoes were studied. Folate content in hot-break tomato puree (HTP) subjected to pasteurization at different temperatures and its evolution during the shelf life of tomato juice were also investigated. 5-Methyltetrahydrofolate (5-CH(3)-H(4)-folate) was the only folate compound identified in raw tomatoes and HTP, but tetrahydrofolate (H(4)-folate) was 10% of the folate detected in tomato juice. The content of folates in raw tomatoes ranged from 4.1 to 35.3 microg/100 g of fresh weight and was highly influenced by all of the factors studied. No clear trend of folate content with ripening stage was observed. The extractability of 5-CH(3)-H(4)-folate from HTP increased significantly after pasteurization at 98 degrees C for 40 s, but higher temperatures decreased its content. Tomato juice showed folate losses during storage independent of the storage temperature. Folate losses were higher when tomato juice was packed in glass bottles than in Tetra Pak.

  12. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation.

    PubMed

    Iskandar, Bermans J; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H; Jarrard, David F; Banerjee, Ruma V; Skene, J H Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D; Hogan, Kirk J

    2010-05-01

    The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.

  13. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation

    PubMed Central

    Iskandar, Bermans J.; Rizk, Elias; Meier, Brenton; Hariharan, Nithya; Bottiglieri, Teodoro; Finnell, Richard H.; Jarrard, David F.; Banerjee, Ruma V.; Skene, J.H. Pate; Nelson, Aaron; Patel, Nirav; Gherasim, Carmen; Simon, Kathleen; Cook, Thomas D.; Hogan, Kirk J.

    2010-01-01

    The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries. PMID:20424322

  14. Enhanced Optical Breakdown in KB Cells Labeled with Folate-Targeted Silver/Dendrimer Composite Nanodevices

    PubMed Central

    Tse, Christine; Zohdy, Marwa J.; Ye, Jing Yong; O'Donnell, Matthew; Lesniak, Wojciech; Balogh, Lajos

    2010-01-01

    Enhanced optical breakdown of KB cells (a human oral epidermoid cancer cell known to overexpress folate receptors) targeted with silver/dendrimer composite nanodevices (CNDs) is described. CNDs {(Ag0}25-PAMAM_E5.(NH2)42(NGly)74(NFA)2.7} were fabricated by reactive encapsulation, using a biocompatible template of dendrimer-folic acid (FA) conjugates. Preferential uptake of the folate-targeted CNDs (of various treatment concentrations and surface functionality) by KB cells was visualized with confocal microscopy and transmission electron microscopy (TEM). Intracellular laser-induced optical breakdown (LIOB) threshold and dynamics were detected and characterized by high-frequency ultrasonic monitoring of resulting transient bubble events. When irradiated with a near-infrared (NIR), femtosecond laser, the CND-targeted KB cells acted as well-confined activators of laser energy, enhancing nonlinear energy absorption, exhibiting a significant reduction in breakdown threshold, and thus selectively promoting intracellular LIOB. PMID:20883823

  15. Folate content in strawberries (Fragaria x ananassa): effects of cultivar, ripeness, year of harvest, storage, and commercial processing.

    PubMed

    Strålsjö, Lena M; Witthöft, Cornelia M; Sjöholm, Ingegerd M; Jägerstad, Margaretha I

    2003-01-01

    Folate concentrations in strawberries and folate retention during storage and commercial processing of strawberries were investigated. No previous study has focused on the effects of cultivar, ripeness, and year of harvest of strawberries with respect to the folate content. This study showed the folate concentration in strawberries to significantly depend on all of these different factors. Total folate was quantified using a modified and validated radioprotein-binding assay with external calibration (5-CH(3)-H(4)folate). Folate content in 13 different strawberry cultivars varied from 335 microg/100 g of dry matter (DM) for cv. Senga Sengana to 644 microg/100 g of DM for cv. Elsanta. Swedish harvests from 1999 and 2001 yielded higher folate concentrations than did the harvest from 2000, and the grade of ripeness affected the folate content in strawberries. This study indicated high folate retention in intact berries during storage until 3 or 9 days at 4 degrees C (71-99%) and also in most tested commercial products (79-103%). On the basis of these data fresh strawberries as well as processed strawberry products are recommended to be good folate sources. For instance, 250 g (fresh weight) of strawberries ( approximately 125 microg of folate) supplies approximately 50% of the recommended daily folate intake in various European countries (200-300 microg/day) or 30% of the U.S. recommendation (400 microg/day).

  16. Expression of Folate Pathway Genes in the Cartilage of Hoxd4 and Hoxc8 Transgenic Mice

    PubMed Central

    Kruger, Claudia; Talmadge, Catherine; Kappen, Claudia

    2014-01-01

    BACKGROUND Hox transcription factors are well known for their role in skeletal patterning in vertebrates. They regulate gene expression during the development of cartilage, the precursor to mature bone. We previously reported that overexpression of the homeobox genes Hoxc8 and Hoxd4 results in severe cartilage defects, reduced proteoglycan content, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. We have also shown that Hoxd4 transgenic mice whose diets were supplemented with folate had their skeletal development restored. Since folate is required for growth and differentiation of chondrocytes, we hypothesized that the beneficial effect of folate in Hoxd4 transgenic mice might indicate a local deficiency in folate utilization, possibly caused by deregulation of genes encoding folate transport proteins or folate metabolic enzymes. METHODS We assayed the prevalence of transcripts for 22 folate transport proteins and metabolizing enzymes, here collectively referred to as folate pathway genes. Quantitative real-time PCR was performed on cDNA samples derived from RNA isolated from primary chondrocytes of individual rib cartilages from Hoxd4 and Hoxc8 transgenic mice, respectively. RESULTS This study shows that the Hox transgenes produce overexpression of Hoxd4 and Hoxc8 in primary chondrocytes from perinatal transgenic mice. However, no differences were found in expression levels of the folate pathway genes in transgenic cells compared to littermate controls. CONCLUSIONS Our results provide evidence that folate pathway genes are only indirect targets of Hox transgene overexpression in our transgenic animals. These expression studies provide a baseline for future studies into the role of folate metabolism in chondrocyte differentiation. PMID:16586448

  17. Induction of mitophagy-mediated antitumor activity with folate-appended methyl-β-cyclodextrin.

    PubMed

    Kameyama, Kazuhisa; Motoyama, Keiichi; Tanaka, Nao; Yamashita, Yuki; Higashi, Taishi; Arima, Hidetoshi

    2017-01-01

    Mitophagy is the specific autophagic elimination system of mitochondria, which regulates cellular survival via the removal of damaged mitochondria. Recently, we revealed that folate-appended methyl-β-cyclodextrin (FA-M-β-CyD) provides selective antitumor activity in folate receptor-α (FR-α)-expressing cells by the induction of autophagy. In this study, to gain insight into the detailed mechanism of this antitumor activity, we focused on the induction of mitophagy by the treatment of FR-α-expressing tumor cells with FA-M-β-CyD. In contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered KB cells, human epithelial cells from a fatal cervical carcinoma (FR-α (+)) through FR-α-mediated endocytosis. The transmembrane potential of isolated mitochondria after treatment with FA-M-β-CyD was significantly elevated. In addition, FA-M-β-CyD lowered adenosine triphosphate (ATP) production and promoted reactive oxygen species production in KB cells (FR-α (+)). Importantly, FA-M-β-CyD enhanced light chain 3 (LC3) conversion (LC3-I to LC3-II) in KB cells (FR-α (+)) and induced PTEN-induced putative kinase 1 (PINK1) protein expression, which is involved in the induction of mitophagy. Furthermore, FA-M-β-CyD had potent antitumor activity in BALB/c nu/nu mice xenografted with KB cells (FR-α (+)) without any significant side effects. Taken together, these findings demonstrate that the autophagic cell death elicited by FA-M-β-CyD could be associated with mitophagy induced by an impaired mitochondrial function.

  18. Maternal Folate Intake during Pregnancy and Childhood Asthma in a Population-based Cohort.

    PubMed

    Parr, Christine L; Magnus, Maria C; Karlstad, Øystein; Haugen, Margaretha; Refsum, Helga; Ueland, Per M; McCann, Adrian; Nafstad, Per; Håberg, Siri E; Nystad, Wenche; London, Stephanie J

    2017-01-15

    A potential adverse effect of high folate intake during pregnancy on children's asthma development remains controversial. To prospectively investigate folate intake from both food and supplements during pregnancy and asthma at age 7 years when the diagnosis is more reliable than at preschool age. This study included eligible children born 2002-2006 from the Norwegian Mother and Child Cohort Study, a population-based pregnancy cohort, linked to the Norwegian Prescription Database. Current asthma at age 7 was defined by asthma medications dispensed at least twice in the year (1,901 cases; n = 39,846) or by maternal questionnaire report (1,624 cases; n = 28,872). Maternal folate intake was assessed with a food frequency questionnaire validated against plasma folate. We used log-binomial and multinomial regression to calculate adjusted relative risks with 95% confidence intervals. Risk of asthma was increased in the highest versus lowest quintile of total folate intake with an adjusted relative risk of 1.23 (95% confidence interval, 1.06-1.44) that was similar for maternally reported asthma. Mothers in the highest quintile had a relatively high intake of food folate (median, 308; interquartile range, 241-366 μg/d) and nearly all took at least 400 μg/d of supplemental folic acid (median, 500; interquartile range, 400-600 μg/d). In this large prospective population-based cohort with essentially complete follow-up, pregnant women taking supplemental folic acid at or above the recommended dose, combined with a diet rich in folate, reach a total folate intake level associated with a slightly increased risk of asthma in children.

  19. Improved Stable Isotope Dilution Assay for Dietary Folates Using LC-MS/MS and Its Application to Strawberries

    PubMed Central

    Striegel, Lisa; Chebib, Soraya; Netzel, Michael E.; Rychlik, Michael

    2018-01-01

    Folates play an important role in the human body and a deficiency of this vitamin can cause several diseases. Therefore, a reliable analytical method is crucial for the determination of folate vitamers in strawberries and other dietary folate sources. A stable isotope dilution LC-MS/MS method for analyzing folates in food was developed and validated. The folate vitamers Pteroylmonoglutamic acid, tetrahydrofolate, 5-methyltetrahydrofolate, and 5-formyltetrahydrofolate were quantified using 13C-labeled internal standards. Validation of the assay was accomplished by determining linearity, precision, recovery, limit of detection, and limit of quantification and revealed to be a precise, sensitive, and accurate method to determine folate vitamers. Strawberries are worldwide consumed and known to be a good dietary source of nutritive compounds. Using this method, folate concentrations in selected commercial strawberry cultivars and experimental breeding lines grown in Germany and Australia were investigated. Total folates varied from 59 to 153 μg/100 g on fresh weight basis. Furthermore, folate content after lyophilizing or freezing did not show any significant differences compared to fresh strawberries. However, significant losses of total folates in pureed strawberries could be observed after 5 days of storage with only 16% of the original concentration retained. In summary, some of the investigated strawberry cultivars/breeding lines can be considered as rich dietary sources of natural folates. PMID:29468149

  20. Improved stable isotope dilution assay for dietary folates using LC-MS/MS and its application to strawberries

    NASA Astrophysics Data System (ADS)

    Striegel, Lisa; Chebib, Soraya; Netzel, Michael E.; Rychlik, Michael

    2018-02-01

    Folates play an important role in the human body and a deficiency of this vitamin can cause several diseases. Therefore, a reliable analytical method is crucial for the determination of folate vitamers in strawberries and other dietary folate sources. A stable isotope dilution LC-MS/MS method for analyzing folates in food was developed and validated. The folate vitamers Pteroylmonoglutamic acid, tetrahydrofolate, 5-methyltetrahydrofolate and 5-formyltetrahydrofolate were quantified using 13C-labelled internal standards. Validation of the assay was accomplished by determining linearity, precision, recovery, limit of detection and limit of quantification and revealed to be a precise, sensitive and accurate method to determine folate vitamers. Strawberries are worldwide consumed and known to be a good dietary source of nutritive compounds. Using this method, folate concentrations in selected commercial strawberry cultivars and experimental breeding lines grown in Germany were investigated. Total folates varied from 59 to 153 µg/100 g on fresh weight basis. Furthermore, folate content after lyophilizing or freezing did not show any significant differences compared to fresh strawberries. However, significant losses of total folates in pureed strawberries could be observed after 5 days of storage with only 16 % of the original concentration retained. In summary, some of the investigated strawberry cultivars/breeding lines can be considered as rich dietary sources of natural folates.

  1. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats

    PubMed Central

    Xue, Jing; Zempleni, Janos

    2013-01-01

    The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine binding protein MeCP2, and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other’s deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signaling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signaling. PMID:24007195

  2. Cancer targeting potential of folate targeted nanocarrier under comparative influence of tretinoin and dexamethasone.

    PubMed

    Dhakad, Raghvendra Singh; Tekade, Rakesh Kumar; Jain, Narendra Kumar

    2013-08-01

    The objective of this investigation was aimed to explore the cancer targeting potential of folate conjugated dendrimer (polypropylene imine, PPI) under strategic influence of folate receptor up-regulators (all trans Retinoic acid, ATRA and Dexamethasone, DEXA). The folate conjugated dendrimer nanoconjugate (FPPI) was synthesized and characterized by FTIR, and (1)H-NMR spectroscopy. The cell line studies investigations were performed on MCF-7 cells. ATRA and DEXA caused 2.17 and 1.65 folds selective up-regulation of folate receptor respectively, when compared with untreated control, after 48 h of pretreatment. ATRA caused 50.47±2.11% more up regulation of folate receptor, than DEXA treated cell. Both up regulators showed a lag phase of 12 h in up-regulating the folate receptors. After 48 h, the IC50 values of naked docetaxel (DTX) and DTX loaded dendrimer (PPI-DTX) were found to be 678.93±11.99 nM and 663.51±15.23 nM, respectively, while DTX loaded folate-anchored dendrimer (FPPI-DTX) showed a selectively lowered IC50 value of 468.56±20.86 nM. FPPI-DTX further showed a significant reduction in IC50 value in ATRA and DEXA pretreated cells, wherein IC50 values of 184.21 nM and 290.40±14.05 nM, respectively were observed. The study also concludes ATRA to be a superior receptor up-regulator as well as promoter of folate based targeting compared to DEXA.

  3. Folate and vitamin B12 status of adolescent girls in northern Nigeria.

    PubMed Central

    VanderJagt, D. J.; Spelman, K.; Ambe, J.; Datta, P.; Blackwell, W.; Crossey, M.; Glew, R. H.

    2000-01-01

    The diets of populations in many developing countries are low in folate and vitamin B12 and a deficiency of either of these vitamins results in increased risk for cardiovascular disease and neural tube defects. The rates of neural tube defects in Nigeria are among the highest reported worldwide. Since many girls marry at an early age in northern Nigeria, we therefore determined the folate and vitamin B12 status of adolescent girls between 12 and 16 years of age in Maiduguri, Nigeria. The mean serum folate concentration for subjects was 15.3 +/- 5.2 nmol/L. Whereas only four subjects (2.4%) had serum folate concentrations lower than 6.8 nmol/L, a level indicative of negative folate balance, 9% of the subjects had serum vitamin B12 concentrations at or below 134 pmol/L, the lower limit of the reference range for their age group. Serum homocysteine was measured in 56 of the 162 subjects and the mean level was 15.9 +/- 5.0 mumol/L. The majority of subjects had serum homocysteine concentrations above the upper limit of the reference range for their age group. We conclude that the adolescent girls we studied were at greater risk for vitamin B12 deficiency than folate deficiency. This conclusion is consistent with the fact that their diet included few foods that contained vitamin B12. PMID:10946529

  4. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri.

    PubMed

    Thomas, Carissa M; Saulnier, Delphine M A; Spinler, Jennifer K; Hemarajata, Peera; Gao, Chunxu; Jones, Sara E; Grimm, Ashley; Balderas, Miriam A; Burstein, Matthew D; Morra, Christina; Roeth, Daniel; Kalkum, Markus; Versalovic, James

    2016-10-01

    Bacterial-derived compounds from the intestinal microbiome modulate host mucosal immunity. Identification and mechanistic studies of these compounds provide insights into host-microbial mutualism. Specific Lactobacillus reuteri strains suppress production of the proinflammatory cytokine, tumor necrosis factor (TNF), and are protective in a mouse model of colitis. Human-derived L. reuteri strain ATCC PTA 6475 suppresses intestinal inflammation and produces 5,10-methenyltetrahydrofolic acid polyglutamates. Insertional mutagenesis identified the bifunctional dihydrofolate synthase/folylpolyglutamate synthase type 2 (folC2) gene as essential for 5,10-methenyltetrahydrofolic acid polyglutamate biosynthesis, as well as for suppression of TNF production by activated human monocytes, and for the anti-inflammatory effect of L. reuteri 6475 in a trinitrobenzene sulfonic acid-induced mouse model of acute colitis. In contrast, folC encodes the enzyme responsible for folate polyglutamylation but does not impact TNF suppression by L. reuteri. Comparative transcriptomics between wild-type and mutant L. reuteri strains revealed additional genes involved in immunomodulation, including previously identified hdc genes involved in histidine to histamine conversion. The folC2 mutant yielded diminished hdc gene cluster expression and diminished histamine production, suggesting a link between folate and histadine/histamine metabolism. The identification of genes and gene networks regulating production of bacterial-derived immunoregulatory molecules may lead to improved anti-inflammatory strategies for digestive diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Low concentrations of folate, not hyperhomocysteinemia, are associated with carotid intima-media thickness.

    PubMed

    Durga, Jane; Bots, Michiel L; Schouten, Evert G; Kok, Frans J; Verhoef, Petra

    2005-04-01

    We examined whether total homocysteine, B vitamins and the 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C-->T polymorphism are related to common carotid intima-media thickness, a marker of atherosclerosis, and carotid distension, a marker of arterial stiffness. We used cross-sectional data from 819 individuals aged 50-70 years. B-mode ultrasound of the distal common carotid arteries was performed to determine maximum carotid intima-media thickness, mean carotid intima-media thickness and distension. Carotid intima-media thickness and distension did not differ across homocysteine, serum folate, vitamin B(6) and vitamin B(12) quartiles or between MTHFR C677T genotype. Erythrocyte folate was independently associated with maximum carotid intima-media thickness (mean difference first versus third quartile, 0.03 mm, 95% CI 0.004-0.06 mm; first versus fourth quartile, 0.03 mm, 95% CI -0.002 to 0.06 mm). Further adjustment for homocysteine did not affect this association. Folate deficient subjects had greater maximum carotid intima-media thickness than those with high-normal folate concentrations (serum folate: mean difference 0.05 mm, 95% CI 0.01-0.08 mm; erythrocyte folate: mean difference 0.04 mm, 95% CI -0.03 to 0.11 mm). Low folate concentrations, independent of hyperhomocysteinemia, may promote atherogenesis. Our findings confirm the null association of homocysteine with carotid intima-media thickness observed in other population-based studies, suggesting that hyperhomocysteinemia does not perpetuate atherosclerosis or arterial stiffness.

  6. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    PubMed

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  7. Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia.

    PubMed

    Roffman, Joshua L; Brohawn, David G; Nitenson, Adam Z; Macklin, Eric A; Smoller, Jordan W; Goff, Donald C

    2013-03-01

    Low serum folate levels previously have been associated with negative symptom risk in schizophrenia, as has the hypofunctional 677C>T variant of the MTHFR gene. This study examined whether other missense polymorphisms in folate-regulating enzymes, in concert with MTHFR, influence negative symptoms in schizophrenia, and whether total risk allele load interacts with serum folate status to further stratify negative symptom risk. Medicated outpatients with schizophrenia (n = 219), all of European origin and some included in a previous report, were rated with the Positive and Negative Syndrome Scale. A subset of 82 patients also underwent nonfasting serum folate testing. Patients were genotyped for the MTHFR 677C>T (rs1801133), MTHFR 1298A>C (rs1801131), MTR 2756A>G (rs1805087), MTRR 203A>G (rs1801394), FOLH1 484T>C (rs202676), RFC 80A>G (rs1051266), and COMT 675G>A (rs4680) polymorphisms. All genotypes were entered into a linear regression model to determine significant predictors of negative symptoms, and risk scores were calculated based on total risk allele dose. Four variants, MTHFR 677T, MTR 2756A, FOLH1 484C, and COMT 675A, emerged as significant independent predictors of negative symptom severity, accounting for significantly greater variance in negative symptoms than MTHFR 677C>T alone. Total allele dose across the 4 variants predicted negative symptom severity only among patients with low folate levels. These findings indicate that multiple genetic variants within the folate metabolic pathway contribute to negative symptoms of schizophrenia. A relationship between folate level and negative symptom severity among patients with greater genetic vulnerability is biologically plausible and suggests the utility of folate supplementation in these patients.

  8. Maternal Folate Intake during Pregnancy and Childhood Asthma in a Population-based Cohort

    PubMed Central

    Magnus, Maria C.; Karlstad, Øystein; Haugen, Margaretha; Refsum, Helga; Ueland, Per M.; McCann, Adrian; Nafstad, Per; Håberg, Siri E.; Nystad, Wenche; London, Stephanie J.

    2017-01-01

    Rationale: A potential adverse effect of high folate intake during pregnancy on children’s asthma development remains controversial. Objectives: To prospectively investigate folate intake from both food and supplements during pregnancy and asthma at age 7 years when the diagnosis is more reliable than at preschool age. Methods: This study included eligible children born 2002–2006 from the Norwegian Mother and Child Cohort Study, a population-based pregnancy cohort, linked to the Norwegian Prescription Database. Current asthma at age 7 was defined by asthma medications dispensed at least twice in the year (1,901 cases; n = 39,846) or by maternal questionnaire report (1,624 cases; n = 28,872). Maternal folate intake was assessed with a food frequency questionnaire validated against plasma folate. We used log-binomial and multinomial regression to calculate adjusted relative risks with 95% confidence intervals. Measurements and Main Results: Risk of asthma was increased in the highest versus lowest quintile of total folate intake with an adjusted relative risk of 1.23 (95% confidence interval, 1.06–1.44) that was similar for maternally reported asthma. Mothers in the highest quintile had a relatively high intake of food folate (median, 308; interquartile range, 241–366 μg/d) and nearly all took at least 400 μg/d of supplemental folic acid (median, 500; interquartile range, 400–600 μg/d). Conclusions: In this large prospective population-based cohort with essentially complete follow-up, pregnant women taking supplemental folic acid at or above the recommended dose, combined with a diet rich in folate, reach a total folate intake level associated with a slightly increased risk of asthma in children. PMID:27518161

  9. The Folate-Vitamin B12 Interaction, Low Hemoglobin, and the Mortality Risk from Alzheimer's Disease.

    PubMed

    Min, Jin-Young; Min, Kyoung-Bok

    2016-03-21

    Abnormal hemoglobin levels are a risk factor for Alzheimer's disease (AD). Although the mechanism underlying these associations is elusive, inadequate micronutrients, particularly folate and vitamin B12, may increase the risk for anemia, cognitive impairment, and AD. In this study, we investigated whether the nutritional status of folate and vitamin B12 is involved in the association between low hemoglobin levels and the risk of AD mortality. Data were obtained from the 1999-2006 National Health and Nutrition Examination Survey (NHANES) and the NHANES (1999-2006) Linked Mortality File. A total of 4,688 participants aged ≥60 years with available baseline data were included in this study. We categorized three groups based on the quartiles of folate and vitamin B12 as follows: Group I (low folate and vitamin B12); Group II (high folate and low vitamin B12 or low folate and high vitamin B12); and Group III (high folate and vitamin B12). Of 4,688 participants, 49 subjects died due to AD. After adjusting for age, sex, ethnicity, education, smoking history, body mass index, the presence of diabetes or hypertension, and dietary intake of iron, significant increases in the AD mortality were observed in Quartile1 for hemoglobin (HR: 8.4, 95% CI: 1.4-50.8), and the overall risk of AD mortality was significantly reduced with increases in the quartile of hemoglobin (p for trend = 0.0200), in subjects with low levels of both folate and vitamin B12 at baseline. This association did not exist in subjects with at least one high level of folate and vitamin B12. Our finding shows the relationship between folate and vitamin B12 levels with respect to the association between hemoglobin levels and AD mortality.

  10. [Relationship and interaction between folate and expression of methyl-CpG-binding protein 2 in cervical cancerization].

    PubMed

    Li, Q L; Ding, L; Nan, J; Liu, C L; Yang, Z K; Chen, F; Liang, Y L; Wang, J T

    2016-07-01

    To explore the interaction between folate and the expression of methyl-CpG-binding protein 2(MeCP2)in cervical cancerization. Forty one patients diagnosed with cervical squamous cell carcinoma(SCC), 71 patients diagnosed with cervical intraepithelial neoplasm(CIN1, n=34; CIN2 +, n=37)and 61 women with normal cervix(NC)were recruited in this study. Microbiological assay was conducted to detect the levels of serum folate and RBC folate, Western blot assay and real-time PCR were performed to detect the expression levels of MeCP2 protein and mRNA, respectively. The data were analyzed by Kruskal-Wallis H test, χ(2) test, trend χ(2) test and Spearman correlation with SPSS statistical software(version 20.0), and the interaction were evaluated by using generalized multifactor dimensionality reduction(GMDR)model. The levels of serum folate(H=44.71, P<0.001; trend χ(2)=24.48, P<0.001)and RBC folate(H=5.28, P<0.001; trend χ(2)=3.83, P<0.05)decreased gradually along with the severity of cervical lesions. There was a positive correlation between serum folate level and RBC folate level(r=0.270, P< 0.001). The expression levels of MeCP2 protein(H=33.72, P<0.001; trend χ(2)=14.74, P<0.001)and mRNA(H=19.50, P<0.001; trend χ(2)=10.74, P<0.001)increased gradually along with the severity of cervical lesions. There were negative correlation between folate level and the expression level of MeCP2 protein(serum folate: r=-0.226, P=0.003; RBC folate: r=-0.164, P=0.004). Moreover, the results by GMDR model revealed there were interaction among serum folate deficiency, RBC folate deficiency, MeCP2 protein high expression and MeCP2 mRNA high expression in SCC and CIN2 + patients. Folate deficiency and high expression of MeCP2 gene might increase the risk of cervical cancer and its precancerous lesions through interaction among serum folate deficiency, RBC folate deficiency, MeCP2 protein high expression and mRNA high expression in the progression of cervical cancerization.

  11. The Interactions Between Kynurenine, Folate, Methionine and Pteridine Pathways in Obesity.

    PubMed

    Engin, Ayse Basak; Engin, Atilla

    2017-01-01

    Obesity activates both innate and adaptive immune responses in adipose tissue. Elevated levels of eosinophils with depression of monocyte and neutrophil indicate the deficiencies in the immune system of morbidly obese individuals. Actually, adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-gamma)-producing CD4+ T cells in adipose tissue of obese subjects. Eventually, diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in visceral adipose tissue. Activity of inducible indoleamine 2,3-dioxygenase-1 (IDO-1) plays a major role under pro-inflammatory, IFN-gamma dominated settings. One of the two rate-limiting enzymes which can metabolize tryptophan to kynurenine is IDO-1. Tumor necrosis factor-alpha (TNF-alpha) correlates with IDO-1 in adipose compartments. Actually, IDO-1-mediated tryptophan catabolism due to chronic immune activation is the cause of reduced tryptophan plasma levels and be considered as the driving force for food intake in morbidly obese patients. Thus, decrease in plasma tryptophan levels and subsequent reduction in serotonin (5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. However, after bariatric surgery, weight reduction does not lead to normalization of IDO-1 activity. Furthermore, there is a connection between arginine and tryptophan metabolic pathways in the generation of reactive nitrogen intermediates. Hence, abdominal obesity is associated with vascular endothelial dysfunction and reduced nitric oxide (NO) availability. IFN-gamma-induced activation of the inducible nitric oxide synthase (iNOS) and dissociation of endothelial adenosine monophosphate activated protein kinase (AMPK)- phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt)- endothelial NO synthase (eNOS) pathway enhances oxidative stress production secondary to high-fat diet. Thus, reduced

  12. Effects of antineoplastic drugs on Lactobacillus casei and radioisotopic assays for serum folate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmel, R.

    1978-02-01

    Microbiologic assay, usually employing Lactobacillus casei, remains the standard assay for serum folate to date. Among its disadvantages have been falsely low results in patients receiving bacteriostatic agents such as antibiotics. This study examined whether commonly used antineoplastic drugs had similar effect. Methotrexate and 5-fluorouracil depressed microbiologic serum folate levels. No effect was found for adriamycin, bleomycin, BCNU, cyclophosphamide, cytosine arabinoside, vincristine, vinblastine, mechlorethamine, mithramycin, hydroxyurea, and hydrocortisone. None of the drugs affected radioassay except methotrexate, which produced falsely high folate results. Thus, it appears that L. casei assay for folate becomes unreliable in patients receiving 5-fluorouracil and radioisotopic assaymore » becomes unreliable in those receiving methotrexate.« less

  13. Increased chromosome fragility as a consequence of blood folate levels, smoking status, and coffee consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.T.L.; Reidy, J.A.; Annest, J.L.

    1989-01-01

    Chromosome fragility in 96 h, low-folate cultures was found to be associated with smoking status, coffee consumption, and blood folate level. The higher proportion of cells with chromosome aberrations in cigarette smokers was attributable to lower red cell folate levels in smokers compared with nonsmokers. There was a positive linear relationship between the average cups of coffee consumed per day and the proportion of cells with aberrations. This association was independent of the effects of smoking and red cell folate level. These data suggest that smoking history, coffee consumption, and red cell folate level are important considerations for the designmore » and interpretation of fragile site studies in cancer cytogenetics.« less

  14. Dietary choline and folate relationships with serum hepatic inflammatory injury markers in Taiwanese adults.

    PubMed

    Cheng, Chin-Pao; Chen, Chien-Hung; Kuo, Chang-Sheng; Kuo, Hsing-Tao; Huang, Kuang-Ta; Shen, Yu-Li; Chang, Chin-Hao; Huang, Rwei Fen S

    The relationships of dietary choline and folate intake with hepatic function have yet to be established in the Taiwanese population. We investigated the associations of choline and folate intake with hepatic inflammatory injury in Taiwanese adults. Blood samples and data on dietary choline components and folate intake from 548 Taiwanese adults without pathological liver disease were collected. Dietary intake was derived using a semiquantitative food-frequency questionnaire. Serum liver injury markers of alanine transaminase, aspartate transaminase, and hepatitis viral infection were measured. Elevated serum hepatic injury markers (>40 U/L) were associated with low folate and free choline intake (p<0.05). Folate intake was the most significant dietary determinant of serum aspartate transaminase concentration (beta=-0.05, p=0.04), followed by free choline intake (beta=-0.249, p=0.055). Folate intake exceeding the median level (268 μg/d) was correlated with a reduced rate of hepatitis viral infection (p=0.032) and with normalized serum aspartate transaminase (odds ratio [OR]=0.998, 95% confidence interval [CI]=0.996-1, p=0.042) and alanine transaminase (OR=0.998, 95% CI=0.007-1, p=0.019). Total choline intake exceeding the median level (233 mg/d) was associated with normalized serum aspartate transaminase (OR=0.518, 95% CI=0.360-0.745, p=0.018). The newly established relationships of dietary intake of total choline and folate with normalized hepatic inflammatory markers can guide the development of dietary choline and folate intake recommendations for Taiwanese adults.

  15. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery.

    PubMed

    Chandrasekar, Durairaj; Sistla, Ramakrishna; Ahmad, Farhan J; Khar, Roop K; Diwan, Prakash V

    2007-07-01

    Folate receptor is overexpressed on the activated (but not quiescent) macrophages in both animal models and human patients with naturally occurring rheumatoid arthritis. The aim of this study was to prepare folate targeted poly(ethylene glycol) (PEG) conjugates of anionic dendrimer (G3.5 PAMAM) as targeted drug delivery systems to inflammation and to investigate its biodistribution pattern in arthritic rats. Folate-PEG-PAMAM conjugates, with different degrees of substitution were synthesized by a two-step reaction through a carbodiimide-mediated coupling reaction and loaded with indomethacin. Folate-PEG conjugation increased the drug loading efficiency by 10- to 20-fold and the in vitro release profile indicated controlled release of drug. The plasma pharmacokinetic parameters indicated an increased AUC, circulatory half-life and mean residence time for the folate-PEG conjugates. The tissue distribution studies revealed significantly lesser uptake by stomach for the folate-PEG conjugates, thereby limiting gastric-related side effect. The time-averaged relative drug exposure (r(e)) of the drug in paw for the folate-PEG conjugates ranged from 1.81 to 2.37. The overall drug targeting efficiency (T(e)) was highest for folate-PEG conjugate (3.44) when compared to native dendrimer (1.72). The folate-PEG-PAMAM conjugates are the ideal choice for targeted delivery of antiarthritic drugs to inflammation with reduced side-effects and higher targeting efficiency. Copyright 2007 Wiley Periodicals, Inc.

  16. Design and evaluation of dual CD44 receptor and folate receptor-targeting double-smart pH-response multifunctional nanocarrier

    NASA Astrophysics Data System (ADS)

    Chen, Daquan; Song, Xiaoyan; Wang, Kaili; Guo, Chunjing; Yu, Yueming; Fan, Huaying; Zhao, Feng

    2017-12-01

    In this article, in order to enhance the bioavailiability and tumor targeting of curcumin (Cur), the oligosaccharides of hyaluronan conjugates, folic acid-oligosaccharides of hyaluronan-acetal-menthone 1,2-glycerol ketal (FA-oHA-Ace-MGK) carried oHA as a ligand to CD44 receptor, double-pH-sensitive Ace-MGK as hydrophobic moieties, and FA as the target of folate receptor. The structure characteristics of this smart response multifunctional dual-targeting nano-sized carrier was measured by fourier-transform infrared (FT-IR) and nuclear magnetic resonance (1H-NMR). Cur, an anticancer drug, was successfully loaded in FA-oHA-Ace-MGK micelles by self-assembly. The measurement results of transmission electron microscopy (TEM) presented that the Cur-loaded micelles were spherical in shape with the average size of 166.3 ± 2.12 nm and zeta potential - 30.07 mV. Much more encapsulated Cur could be released at mildly acidic environments than at pH 7.4, from the Cur-FA-oHA-Ace-MGK micelles. Cytotoxicity assay indicated that non-Cur loaded micelles mostly had no cytotoxicity to MCF-7 cells and A549 cells, and Cur-loaded micelles had significantly lower survival rate than Cur suspension in the same concentration, which proved that the drug-loaded micelles can effectively inhibit tumor cell growth. The targeting of CD44 receptors and folate receptors was proved in vitro cellular uptake assay. These results showed the promising potential of FA-oHA-Ace-MGK as an effective nano-sized carrier for anti-tumor drug delivery.

  17. The Effect of Trimethoprim on Serum Folate Levels in Humans: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Meidahl Petersen, Kasper; Eplov, Kasper; Kjær Nielsen, Torben; Jimenez-Solem, Espen; Petersen, Morten; Broedbaek, Kasper; Daugaard Popik, Sara; Kallehave Hansen, Lina; Enghusen Poulsen, Henrik; Trærup Andersen, Jon

    2016-01-01

    Trimethoprim antagonize the actions of folate by inhibition of dihydrofolate reductase. This could diminish serum folate levels in humans and causes folate deficiency in some patients. We conducted a randomized, double-blind, placebo-controlled trial, to investigate the effect of trimethoprim on serum folate levels in healthy participants after a 7-day trial period. Thirty young, healthy males were randomly allocated to receive trimethoprim, 200 mg twice daily, and 30 were randomly allocated to placebo. Before trial initiation, participant numbers were given randomly generated treatment allocations within sealed opaque envelopes. Participants and all staff were kept blinded to treatment allocations during the trial. Serum folate was measured at baseline and at end of trial. In the 58 participants analyzed (30 in the trimethoprim group and 28 in the placebo group), 8 had folate deficiency at baseline. Within the trimethoprim group, serum folate was significantly decreased (P = 0.018) after the trial. We found a mean decrease in serum folate among trimethoprim exposed of 1.95 nmol/L, compared with a 0.21 nmol/L mean increase in the placebo group (P = 0.040). The proportion of folate-deficient participants increased significantly within the trimethoprim group (P = 0.034). No serious adverse events were observed. In conclusion, we found that a daily dose of 400 mg trimethoprim for 7 days significantly lowered serum folate levels in healthy study participants.

  18. Vitamin B12 and Folate Test

    MedlinePlus

    ... http://www.nlm.nih.gov . Accessed February 2014. Johnson, L. (Updated 2014 October). Folate. Merck Manual. Available ... intro.html through http://www.cc.nih.gov . Johnson, L. Vitamin B12. Merck Manual Second Home Edition, ...

  19. Dietary Supplement Use and Folate Status during Pregnancy in the United States1

    PubMed Central

    Branum, Amy M.; Bailey, Regan; Singer, Barbara J.

    2016-01-01

    Adequate folate and iron intake during pregnancy is critical for maternal and fetal health. No previous studies to our knowledge have reported dietary supplement use and folate status among pregnant women sampled in NHANES, a nationally representative, cross-sectional survey. We analyzed data on 1296 pregnant women who participated in NHANES from 1999 to 2006 to characterize overall supplement use, iron and folic acid use, and RBC folate status. The majority of pregnant women (77%) reported use of a supplement in the previous 30 d, most frequently a multivitamin/-mineral containing folic acid (mean 817 μg/d) and iron (48 mg/d). Approximately 55–60% of women in their first trimester reported taking a folic acid- or iron-containing supplement compared with 76–78% in their second trimester and 89% in their third trimester. RBC folate was lowest in the first trimester and differed by supplement use across all trimesters. Median RBC folate was 1628 nmol/L among users and 1041 nmol/L among nonusers. Among all pregnant women, median RBC folate increased with trimester (1256 nmol/L in the first, 1527 nmol/L in the second, and 1773 nmol/L in the third). Given the role of folic acid in the prevention of neural tube defects, it is notable that supplement use and median RBC folate was lowest in the first trimester of pregnancy, with 55% of women taking a supplement containing folic acid. Future research is needed to determine the reasons for low compliance with supplement recommendations, particularly folic acid, in early pregnancy. PMID:23365107

  20. Professor John Scott, folate and neural tube defects.

    PubMed

    Hoffbrand, A Victor

    2014-02-01

    John Scott (1940-2013) was born in Dublin where he was to spend the rest of his career, both as an undergraduate and subsequently Professor of Biochemistry and Nutrition at Trinity College. His research with the talented group of scientists and clinicians that he led has had a substantial impact on our understanding of folate metabolism, mechanisms of its catabolism and deficiency. His research established the leading theory of folate involvement with vitamin B12 in the pathogenesis of vitamin B12 neuropathy. He helped to establish the normal daily intake of folate and the increased requirements needed either in food or as a supplement before and during pregnancy to prevent neural tube defects. He also suggested a dietary supplement of vitamin B12 before and during pregnancy to reduce the risk of neural tube defects. It would be an appropriate epitaph if fortification of food with folic acid became mandatory in the UK and Ireland, as it is in over 70 other countries. © 2013 John Wiley & Sons Ltd.

  1. Quantification of endocytosis using a folate functionalized silica hollow nanoshell platform

    PubMed Central

    Sandoval, Sergio; Mendez, Natalie; Alfaro, Jesus G.; Yang, Jian; Aschemeyer, Sharraya; Liberman, Alex; Trogler, William C.; Kummel, Andrew C.

    2015-01-01

    Abstract. A quantification method to measure endocytosis was designed to assess cellular uptake and specificity of a targeting nanoparticle platform. A simple N-hydroxysuccinimide ester conjugation technique to functionalize 100-nm hollow silica nanoshell particles with fluorescent reporter fluorescein isothiocyanate and folate or polyethylene glycol (PEG) was developed. Functionalized nanoshells were characterized using scanning electron microscopy and transmission electron microscopy and the maximum amount of folate functionalized on nanoshell surfaces was quantified with UV-Vis spectroscopy. The extent of endocytosis by HeLa cervical cancer cells and human foreskin fibroblast (HFF-1) cells was investigated in vitro using fluorescence and confocal microscopy. A simple fluorescence ratio analysis was developed to quantify endocytosis versus surface adhesion. Nanoshells functionalized with folate showed enhanced endocytosis by cancer cells when compared to PEG functionalized nanoshells. Fluorescence ratio analyses showed that 95% of folate functionalized silica nanoshells which adhered to cancer cells were endocytosed, while only 27% of PEG functionalized nanoshells adhered to the cell surface and underwent endocytosis when functionalized with 200 and 900  μg, respectively. Additionally, the endocytosis of folate functionalized nanoshells proved to be cancer cell selective while sparing normal cells. The developed fluorescence ratio analysis is a simple and rapid verification/validation method to quantify cellular uptake between datasets by using an internal control for normalization. PMID:26315280

  2. Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiaville, Jennifer J.; Frelin, Océane; García-Salinas, Carolina

    Tetrahydrofolate (THF) and its one-carbon derivatives, collectively termed folates, are essential cofactors, but are inherently unstable. While it is clear that chemical oxidation can cleave folates or damage their pterin precursors, very little is known about enzymatic damage to these molecules or about whether the folate biosynthesis pathway responds adaptively to damage to its end-products. The presence of a duplication of the gene encoding the folate biosynthesis enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (FolK) in many sequenced bacterial genomes combined with a strong chromosomal clustering of the folK gene with panB, encoding the 5,10-methylene-THF-dependent enzyme ketopantoate hydroxymethyltransferase, led us to infer that PanBmore » has a side activity that cleaves 5,10-methylene-THF, yielding a pterin product that is recycled by FolK. Genetic and metabolic analyses of Escherichia coli strains showed that overexpression of PanB leads to accumulation of the likely folate cleavage product 6-hydroxymethylpterin and other pterins in cells and medium, and—unexpectedly—to a 46% increase in total folate content. In silico modeling of the folate biosynthesis pathway showed that these observations are consistent with the in vivo cleavage of 5,10-methylene-THF by a side-activity of PanB, with FolK-mediated recycling of the pterin cleavage product, and with regulation of folate biosynthesis by folates or their damage products.« less

  3. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    PubMed Central

    Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza

    2015-01-01

    Background Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. Methods FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake. PMID:25709451

  4. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs.

    PubMed

    Butt, Adeel Masood; Mohd Amin, Mohd Cairul Iqbal; Katas, Haliza

    2015-01-01

    Doxorubicin (DOX), an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407) and vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate, TPGS) are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA) for folate-mediated receptor targeting to cancer cells. FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue(®) assay. The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX-DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer activity, inhibition of multidrug resistance, and folate-mediated selective uptake.

  5. Concentration of folate in colorectal tissue biopsies predicts prevalence of adenomatous polyps

    USDA-ARS?s Scientific Manuscript database

    Background and aims: Folate has been implicated as a potential aetiological factor for colorectal cancer. Previous research has not adequately exploited concentrations of folate in normal colonic mucosal biopsies to examine the issue. Methods: Logistic regression models were used to estimate ORs ...

  6. MicroRNA changes, activation of progenitor cells and severity of liver injury in mice induced by choline and folate deficiency.

    PubMed

    Tryndyak, Volodymyr P; Marrone, April K; Latendresse, John R; Muskhelishvili, Levan; Beland, Frederick A; Pogribny, Igor P

    2016-02-01

    Dietary deficiency in methyl-group donors and cofactors induces liver injury that resembles many pathophysiological and histopathological features of human nonalcoholic fatty liver disease (NAFLD), including an altered expression of microRNAs (miRNAs). We evaluated the consequences of a choline- and folate-deficient (CFD) diet on the expression of miRNAs in the livers of male A/J and WSB/EiJ mice. The results demonstrate that NAFLD-like liver injury induced by the CFD diet in A/J and WSB/EiJ mice was associated with marked alterations in hepatic miRNAome profiles, with the magnitude of miRNA expression changes being greater in WSB/EiJ mice, the strain characterized by the greatest severity of liver injury. Specifically, WSB/EiJ mice exhibited more prominent changes in the expression of common miRNAs as compared to A/J mice and distinct miRNA alterations, including the overexpression of miR-134, miR-409-3p, miR-410 and miR-495 miRNAs that were accompanied by an activation of hepatic progenitor cells and fibrogenesis. This in vivo finding was further confirmed by in vitro experiments showing an overexpression of these miRNAs in undifferentiated progenitor hepatic HepaRG cells compared to in fully differentiated HepaRG cells. Additionally, a marked elevation of miR-134, miR-409-3p, miR-410 and miR-495 was found in plasma of WSB/EiJ mice fed the CFD diet, while none of the miRNAs was changed in plasma of A/J mice. These findings suggest that miRNAs may be crucial regulators responsible for the progression of NAFLD and may be useful as noninvasive diagnostic indicators of the severity and progression of NAFLD. Published by Elsevier Inc.

  7. Efficacy and Stability studies of microbial folate fortified fruit juices prepared using probiotic microorganism.

    PubMed

    Deep, S; Ojha, S; Kundu, S

    2017-07-31

    Folate, natural form of water soluble vitamin folic acid, is significant for humans as involved in most important metabolic reactions i.e. nucleotide synthesis and amino acid inter conversions. Thus its deficiency causes neural tube defects in newborns and cardiovascular diseases, and cancers. Humans cannot synthesize folate de novo so consumption through diet is essential. Natural food sources, supplements and fortified food products are the choices available to complete the Daily recommended intake. However microbial fortification using probiotics recently gained wide attention due to dual advantage of natural food matrix with enhanced folate content along with the probiotics benefits. Current study was focused on the microbial fortification of fruit juices and their efficacy and stability studies. Freshly filtered orange and tomato juice was prepared and inoculated with Streptococcus thermophilus NCIM 2904. Incubation was done at 40°C and samples were collected at different time interval. Folate extraction was done using human plasma and content was measured by microbiological assay using Lactobacillus casei NCIM No. 2364. Efficacy and stability studies were carried out to ensure the quality of juices to be consumed in terms of folate content, viable cell count and pH after 4 weeks of storage at low temperature. Positive results were observed as folate content was quite stable whereas viable cell count was also found to be significant till some time without adding any preservatives. The results indicated that fortified fruit juices could be used as probiotic beverages with enhanced folate content.

  8. The folate hydrolase 1561 C>T polymorphism is associated with depressive symptoms in Puerto Rican adults

    USDA-ARS?s Scientific Manuscript database

    Low plasma folate has been associated with depression. Variants of genes involved in the uptake, retention and metabolism of folate have been linked with plasma folate and homocysteine concentrations. It remains unclear whether such variants are also associated with depressive symptoms, directly or ...

  9. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  10. Folate content in faba beans (Vicia faba L.)-effects of cultivar, maturity stage, industrial processing, and bioprocessing.

    PubMed

    Hefni, Mohammed E; Shalaby, Mohamed T; Witthöft, Cornelia M

    2015-01-01

    Faba beans are an important source of folate and commonly consumed in Egypt. This study examined the effects of Egyptian industrial food processing (e.g., canning and freezing), germination, cultivar, and maturity stages on folate content, with the aim to develop a candidate functional canned faba bean food with increased folate content. The folate content in four cultivars of green faba beans ranged from 110 to 130 μg 100 g(-1) fresh weight (535-620 μg 100 g(-1) dry matter [DM]), which was four- to sixfold higher than in dried seeds. Industrial canning of dried seeds resulted in significant folate losses of ∼20% (P = 0.004), while industrial freezing had no effect. Germination of faba beans increased the folate content by >40% (P < 0.0001). A novel industrial canning process involving pregermination of dried faba beans resulted in a net folate content of 194 μg 100 g(-1) DM, which is 52% more than in conventional canned beans. The consumption of green faba beans should be recommended, providing ∼120 μg dietary folate equivalents per 100 g/portion.

  11. Folate content in fresh-cut vegetable packed products by 96-well microtiter plate microbiological assay.

    PubMed

    Fajardo, Violeta; Alonso-Aperte, Elena; Varela-Moreiras, Gregorio

    2015-02-15

    Ready-to-eat foods have nowadays become a significant portion of the diet. Accordingly, nutritional composition of these food categories should be well-known, in particular its folate content. However, there is a broad lack of folate data in food composition tables and databases. A total of 21 fresh-cut vegetable and fruit packed products were analysed for total folate (TF) content using a validated method that relies on the folate-dependent growth of chloramphenicol-resistant Lactobacillus casei subspecies rhamnosus (NCIMB 10463). Mean TF content ranged from 10.0 to 140.9μg/100g for the different matrices on a fresh weight basis. Higher TF quantity, 140.9-70.1μg/100g, was found in spinach, rocket, watercress, chard and broccoli. Significant differences were observed between available data for fresh vegetables and fruits from food composition tables or databases and the analysed results for fresh-cut packed products. Supplied data support the potential of folate-rich fresh-cut ready-to-eat vegetables to increase folate intake significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High Serum Folate Is Associated with Brain Atrophy in Older Diabetic People with Vitamin B12 Deficiency.

    PubMed

    Deng, Y; Wang, D; Wang, K; Kwok, T

    2017-01-01

    Previous studies have reported the adverse cognitive effects of high folate status in older individuals with vitamin B12 (VB12) deficiency. Thus, the aim of this study was to investigate how high serum folate and VB12 deficiency could collaboratively aggravate neuronal degeneration. In total, 146 older non-demented diabetic individuals with an average age of 75 ± 3.9 were recruited. VB12 deficiency and high folate status were based on high serum methylmalonic acid (MMA) concentrations (> 0.3 μmol/L) and the serum folate concentration being in the top tertile (> 31.4 nmol/L) respectively. Among these subjects, there were 20 with elevated MMA and high folate. The structural magnetic resonance imaging data of these subjects were analyzed by performing flexible factorial analysis with the "folate level" and "MMA level" added as main effects, and the interaction effect of folate and VB12 on brain volume was evaluated. The results showed significant gray matter atrophy of the right middle occipital gyrus and the opercular part of the inferior frontal gyrus in subjects with a simultaneous high folate status and VB12 deficiency. Together with previous observational studies on cognitive function, this study lends support to the notion that high serum folate concentrations in older people with VB12 deficiency may be associated with increased neurodegeneration.

  13. Placental dysfunction is associated with altered microRNA expression in pregnant women with low folate status

    PubMed Central

    Mackie, Fiona L.; Lean, Samantha C.; Greenwood, Susan L.; Heazell, Alexander E. P.; Forbes, Karen; Jones, Rebecca L.

    2017-01-01

    Scope Low maternal folate status during pregnancy increases the risk of delivering small for gestational age (SGA) infants, but the mechanistic link between maternal folate status, SGA, and placental dysfunction is unknown. microRNAs (miRNAs) are altered in pregnancy pathologies and by folate in other systems. We hypothesized that low maternal folate status causes placental dysfunction, mediated by altered miRNA expression. Methods and results A prospective observational study recruited pregnant adolescents and assessed third trimester folate status and placental function. miRNA array, QPCR, and bioinformatics identified placental miRNAs and target genes. Low maternal folate status is associated with higher incidence of SGA infants (28% versus 13%, p < 0.05) and placental dysfunction, including elevated trophoblast proliferation and apoptosis (p < 0.001), reduced amino acid transport (p < 0.01), and altered placental hormones (pregnancy‐associated plasma protein A, progesterone, and human placental lactogen). miR‐222‐3p, miR‐141‐3p, and miR‐34b‐5p were upregulated by low folate status (p < 0.05). Bioinformatics predicted a gene network regulating cell turnover. Quantitative PCR demonstrated that key genes in this network (zinc finger E‐box binding homeobox 2, v‐myc myelocytomatosis viral oncogene homolog (avian), and cyclin‐dependent kinase 6) were reduced (p < 0.05) in placentas with low maternal folate status. Conclusion This study supports that placental dysfunction contributes to impaired fetal growth in women with low folate status and suggests altered placental expression of folate‐sensitive miRNAs and target genes as a mechanistic link. PMID:28105727

  14. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations.

    PubMed

    Fasehee, Hamidreza; Dinarvand, Rassoul; Ghavamzadeh, Ardeshir; Esfandyari-Manesh, Mehdi; Moradian, Hanieh; Faghihi, Shahab; Ghaffari, Seyed Hamidollah

    2016-04-21

    A folate-receptor-targeted poly (lactide-co-Glycolide) (PLGA)-Polyethylene glycol (PEG) nanoparticle is developed for encapsulation and delivery of disulfiram into breast cancer cells. After a comprehensive characterization of nanoparticles, cell cytotoxicity, apoptosis induction, cellular uptake and intracellular level of reactive oxygen species are analyzed. In vivo acute and chronic toxicity of nanoparticles and their efficacy on inhibition of breast cancer tumor growth is studied. The folate-receptor-targeted nanoparticles are internalized into the cells, induce reactive oxygen species formation, induce apoptosis and inhibit cell proliferation more efficiently compared to the untargeted nanoparticles. The acute and toxicity test show the maximum dose of disulfiram equivalent of nanoparticles for intra-venous injection is 6 mg/kg while show significant decrease in the breast cancer tumor growth rate. It is believed that the developed formulation could be used as a potential vehicle for successful delivery of disulfiram, an old and inexpensive drug, into breast cancer cells and other solid tumors.

  15. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, J.T.; Ullman, B.

    1989-08-22

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 {mu}M concentration of either activated ({sup 3}H)folate or activated ({sup 3}H)methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labelingmore » of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms.« less

  16. Insights into Metabolic Mechanisms Underlying Folate-Responsive Neural Tube Defects: A Minireview

    PubMed Central

    Beaudin, Anna E.; Stover, Patrick J.

    2015-01-01

    Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the association between folic acid and NTD pathogenesis have not been identified. This review summarizes our current understanding of the mechanisms by which impairments in folate metabolism might ultimately lead to failure of neural tube closure, with an emphasis on untangling the relative contributions of nutritional deficiency and genetic risk factors to NTD pathogenesis. PMID:19180567

  17. Antitumor activity of a folate receptor-targeted immunoglobulin G-doxorubicin conjugate

    PubMed Central

    Yang, Tan; Xu, Ling; Li, Bin; Li, Weijie; Ma, Xiang; Fan, Lingling; Lee, Robert J; Xu, Chuanrui; Xiang, Guangya

    2017-01-01

    Development of antibody-drug conjugates (ADCs) is a promising therapeutic strategy for cancer therapy. In this study, folate was conjugated via a polyethyleneglycol (PEG) linker to immunoglobulin G (IgG), which was linked to doxorubicin (DOX), to form a novel ADC folate-PEG-IgG-DOX (FA-PEG-IgG-DOX). The FA-PEG-IgG-DOX showed high targeting efficiency in HeLa and KB cells and significantly improved the uptake and retention of DOX compared with IgG-DOX about 10-fold. Subsequently, FA-PEG-IgG-DOX was shown to have at least 8 times higher antitumor activity than IgG-DOX both in HeLa and KB cells and also induced more apoptosis in those cells than IgG-DOX. Moreover, FA-PEG-IgG-DOX had a 2 times longer circulating time than FA-IgG-DOX, but did not increase the DOX distribution in mouse hearts. Importantly, FA-PEG-IgG-DOX treatment significantly inhibited tumor growth in xenograft mice. Together, our results indicate that FA-PEG-IgG is an effective ADC carrier for delivery of chemotherapeutic agents and that conjugating tumor targeting ligands to antibodies is a promising strategy for producing ADC drugs. PMID:28408821

  18. Micronutrient mineral and folate content of Australian and imported dried fruit products.

    PubMed

    Bennett, Louise E; Singh, Davinder P; Clingeleffer, Peter R

    2011-01-01

    A selection of Australian and imported fresh and dried fruit products, including sultanas, Sunmuscats, Carina currants, Zante currants, apricots, and prunes, were analyzed for selected minerals (Ca, Mg, Na, S, B, Al, Fe, Mn, Cu, Zn, Mo, and Se), folate and vitamin C, and the capacity of dried fruits for dietary provision of these micronutrients evaluated. Micro-nutrients were concentrated by a factor of 3-5 in dried fruits compared with their fresh fruit counterparts and were consequently present in nutritionally significant levels, in contrast to fresh fruit. Australian dried sultanas, Carina currant, Zante currant, apricots, and prunes contained Cu, Fe, K, and Mn at levels of >20% of daily Required Dietary Intake (RDI, taken as the average for adult men and women as nominated by the Australian National Health and Medical Research Council) and Sunmuscats contained Cu, Fe, and K at >20% of RDI. All dried fruits studied contained boron in the range of 1.5 to 5.4 mg per 100 g; however, the RDI for boron has not been defined by the NHMRC at the present time. All sultanas and currants studied contained folate at levels of 10-20% of RDI per 100 g. Experimental drying methods significantly affected folate levels with higher folate content in non-ground versus ground-based drying methods. Of the micro-nutrients supplying >20% of RDI, folate represents a particular nutrient for which the mean daily intake of adult Australians is typically inadequate. This study shows that dried fruit consumption, in contrast with fresh fruit, can provide significant proportions of daily requirements of several micronutrients, particularly folate.

  19. Folate and nutrients involved in the 1-carbon cycle in the pretreatment of patients for colorectal cancer.

    PubMed

    Ferrari, Ariana; de Carvalho, Aline Martins; Steluti, Josiane; Teixeira, Juliana; Marchioni, Dirce Maria Lobo; Aguiar, Samuel

    2015-06-02

    To assess the ingestion of folate and nutrients involved in the 1-carbon cycle in non-treated patients with colorectal adenocarcinoma in a reference center for oncology in southeastern Brazil. In total, 195 new cases with colorectal adenocarcinoma completed a clinical evaluation questionnaire and a Food Frequency Questionnaire (FFQ). Blood samples from 161 patients were drawn for the assessment of serum folate. A moderate correlation was found between serum concentrations of folate, folate intake and the dietary folate equivalent (DFE) of synthetic supplements. Mulatto or black male patients with a primary educational level had a higher intake of dietary folate. Of patients obtaining folate from the diet alone or from dietary supplements, 11.00% and 0.10%, respectively, had intake below the recommended level. Of the patients using dietary supplements, 35% to 50% showed high levels of folic acid intake. There was a prevalence of inadequacy for vitamins B2, B6 and B12, ranging from 12.10% to 20.18%, while 13.76% to 22.55% of patients were likely to have adequate choline intake. The considerable percentage of patients with folate intake above the recommended levels deserves attention because of the harmful effects that this nutrient may have in the presence of established neoplastic lesions.

  20. Folate intake and the risk of oral cavity and pharyngeal cancer: a pooled analysis within the INHANCE Consortium

    PubMed Central

    Galeone, Carlotta; Edefonti, Valeria; Parpinel, Maria; Leoncini, Emanuele; Matsuo, Keitaro; Talamini, Renato; Olshan, Andrew F.; Zevallos, Jose P.; Winn, Deborah M.; Jayaprakash, Vijayvel; Moysich, Kirsten; Zhang, Zuo-Feng; Morgenstern, Hal; Levi, Fabio; Bosetti, Cristina; Kelsey, Karl; McClean, Michael; Schantz, Stimson; Yu, Guo-Pei; Boffetta, Paolo; Lee, Yuan-Chin Amy; Hashibe, Mia; La Vecchia, Carlo; Boccia, Stefania

    2014-01-01

    There are suggestions of an inverse association between folate intake and serum folate levels and the risk of oral cavity and pharyngeal cancers (OPC), but most studies are limited in sample size, with only few reporting information on the source of dietary folate. This study aims to investigate the association between folate intake and the risk of OPC within the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. We analyzed pooled individual-level data from 10 case-control studies participating in the INHANCE consortium, including 5,127 cases and 13,249 controls. Odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were estimated for the associations between total folate intake (natural, fortification and supplementation) and natural folate only, and OPC risk. We found an inverse association between total folate intake and overall OPC risk (the adjusted OR for the highest versus the lowest quintile was 0.65, 95% CI: 0.43–0.99), with a stronger association for oral cavity (OR=0.57, 95% CI: 0.43–0.75). A similar inverse association, though somewhat weaker, was observed for folate intake from natural sources only (OR=0.64, 95% CI: 0.45–0.91). The highest OPC risk was observed in heavy alcohol drinkers with low folate intake as compared to never/light drinkers with high folate (OR=4.05, 95% CI: 3.43–4.79); the attributable proportion due to interaction was 11.1%(95% CI: 1.4–20.8%). The present project of a large pool of case-control studies supports a protective effect total folate intake on OPC risk. PMID:24974959

  1. Folate and neurological function: epidemiology perspective

    USDA-ARS?s Scientific Manuscript database

    This book chapter reviews and summarizes published literature on the relationship between folate status and Alzheimer’s disease, age-related cognitive impairment, and depression. Much of this research was motivated by the hypothesis that high circulating levels of the sulfur-containing amino acid ho...

  2. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    PubMed Central

    Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2012-01-01

    The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368

  3. Prevalence of Vitamin B12 and Folate Deficiency in School Children Residing at High Altitude Regions in India.

    PubMed

    Gupta, Aakriti; Kapil, Umesh; Ramakrishnan, Lakshmy; Pandey, Ravindra Mohan; Yadav, Chander Prakash

    2017-04-01

    To assess the prevalence of vitamin B 12 and folate deficiencies among children residing at high altitude regions of Himachal Pradesh, India. A total of 215 school children in the age group of 6-18 y were included. Biochemical estimation of serum vitamin B 12 and folate levels was undertaken using chemiluminescence immunoassay method. The consumption pattern of foods high in dietary vitamin B 12 and folate was recorded using Food Frequency Questionnaire. The median levels (interquartile range) of serum vitamin B 12 and folate were 326 (259-395) pg/ml and 7.7 (6-10) ng/ml respectively. The prevalence of vitamin B 12 and folate deficiency amongst school age children was found as 7.4% and 1.5% respectively. A low prevalence of vitamin B 12 and folate deficiencies was found amongst children aged 6-18 y living at high altitude regions in India. This is possibly due to high frequency of consumption of foods rich in vitamin B 12 and folate.

  4. Folate content in faba beans (Vicia faba L.)—effects of cultivar, maturity stage, industrial processing, and bioprocessing

    PubMed Central

    Hefni, Mohammed E; Shalaby, Mohamed T; Witthöft, Cornelia M

    2015-01-01

    Faba beans are an important source of folate and commonly consumed in Egypt. This study examined the effects of Egyptian industrial food processing (e.g., canning and freezing), germination, cultivar, and maturity stages on folate content, with the aim to develop a candidate functional canned faba bean food with increased folate content. The folate content in four cultivars of green faba beans ranged from 110 to 130 μg 100 g−1 fresh weight (535–620 μg 100 g−1 dry matter [DM]), which was four- to sixfold higher than in dried seeds. Industrial canning of dried seeds resulted in significant folate losses of ∼20% (P = 0.004), while industrial freezing had no effect. Germination of faba beans increased the folate content by >40% (P < 0.0001). A novel industrial canning process involving pregermination of dried faba beans resulted in a net folate content of 194 μg 100 g−1 DM, which is 52% more than in conventional canned beans. The consumption of green faba beans should be recommended, providing ∼120 μg dietary folate equivalents per 100 g/portion. PMID:25650294

  5. Folate composition of ten types of mushrooms determined by liquid chromatography-mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    White button, crimini, shiitake, maitake, enoki, oyster, chanterelle, morel, portabella, and uv-treated portabella mushrooms were sampled from U.S. retail outlets and major producers. Folate (5-methyltetrahydrofolate [5MTHF], 10-formyl folate [10FF], 5-formyltetrahydrofolate [5FTHF]) was analyzed u...

  6. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring.

    PubMed

    Cho, Clara E; Sánchez-Hernández, Diana; Reza-López, Sandra A; Huot, Pedro S P; Kim, Young-In; Anderson, G Harvey

    2013-07-01

    Excess vitamins, especially folate, are consumed during pregnancy but later-life effects on the offspring are unknown. High multivitamin (10-fold AIN-93G, HV) gestational diets increase characteristics of metabolic syndrome in Wistar rat offspring. We hypothesized that folate, the vitamin active in DNA methylation, accounts for these effects through epigenetic modification of food intake regulatory genes. Male offspring of dams fed 10-fold folate (HFol) diet during pregnancy and weaned to recommended vitamin (RV) or HFol diets were compared with those born to RV dams and weaned to RV diet for 29 weeks. Food intake and body weight were highest in offspring of HFol dams fed the RV diet. In contrast, the HFol pup diet in offspring of HFol dams reduced food intake (7%, p = 0.02), body weight (9%, p = 0.03) and glucose response to a glucose load (21%, p = 0.02), and improved glucose response to an insulin load (20%, p = 0.009). HFol alone in either gestational or pup diet modified gene expression of feeding-related neuropeptides. Hypomethylation of the pro-opiomelanocortin (POMC) promoter occurred with the HFol pup diet. POMC-specific methylation was positively associated with glucose response to a glucose load (r = 0.7, p = 0.03). In conclusion, the obesogenic phenotype of offspring from dams fed the HFol gestational diet can be corrected by feeding them a HFol diet. Our work is novel in showing post-weaning epigenetic plasticity of the hypothalamus and that in utero programming by vitamin gestational diets can be modified by vitamin content of the pup diet.

  7. Folate deficiency in north Indian children undergoing maintenance chemotherapy for acute lymphoblastic leukemia-Implications and outcome.

    PubMed

    Roy Moulik, Nirmalya; Kumar, Archana; Agrawal, Suraksha; Mahdi, Abbas Ali

    2018-01-01

    Treatment-related toxicity and mortality are not uncommon during maintenance chemotherapy for childhood acute lymphoblastic leukemia (ALL), especially in the low- and middle-income countries (LMIC). Undernutrition and micronutrient deficiencies are commonly seen in children from LMICs undergoing treatment for ALL. The present study examines the prevalence and clinical implications of folate deficiency in north Indian children with ALL during the maintenance phase of treatment in view of prolonged antifolate treatment and high population prevalence of folate deficiency. Pre-cycle folate levels/deficiency as well as weight for age z-score and serum albumin level were determined and correlated with complications of treatment and mortality encountered during the maintenance phase of treatment. Twenty-nine of 52 children enrolled in the study had folate deficiency at some point during maintenance chemotherapy. Neutropenia (18 of 29 vs. 4 of 23; P = 0.002), thrombocytopenia (17 of 29 vs. 4 of 23; P = 0.005), febrile neutropenia (17 of 29 vs. 4 of 23; P = 0.005), and need for chemotherapy dose reduction (20 of 29 vs. 7 of 21; P = 0.01) were more common in folate-deficient children. Maintenance deaths were higher (8 of 29 vs. 1 of 23; P = 0.03) and survival lower (P = 0.02) in deficient children. In multivariate analysis, hypoalbuminemia (P = 0.02) and folate deficiency (P = 0.01) were associated with febrile neutropenia, and folate deficiency with maintenance deaths (P = 0.03). Folate deficiency was associated with treatment-related complications and adverse outcome in our patients. The risks and benefits of folate supplementation in deficient children during maintenance chemotherapy need to be explored with properly designed randomized studies in similar settings. © 2017 Wiley Periodicals, Inc.

  8. Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism

    PubMed Central

    Tryndyak, Volodymyr; de Conti, Aline; Kobets, Tetyana; Kutanzi, Kristy; Koturbash, Igor; Han, Tao; Fuscoe, James C.; Latendresse, John R.; Melnyk, Stepan; Shymonyak, Svitlana; Collins, Leonard; Ross, Sharon A.; Rusyn, Ivan; Beland, Frederick A.; Pogribny, Igor P.

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline- and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J ≈ C57BL/6J ≈ C3H/HeJ < 129S1/SvImJ ≈ CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor α (PPARα)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPARα-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.—Tryndyak, V., de Conti, A., Kobets, T., Kutanzi, K., Koturbash, I., Han, T., Fuscoe, J. C., Latendresse, J. R., Melnyk, S., Shymonyak, S., Collins, L., Ross, S. A., Rusyn, I., Beland, F. A., Pogribny, I. P. Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. PMID:22872676

  9. Low folate status enhances pregnancy changes in plasma betaine and dimethylglycine concentrations and the association between betaine and homocysteine.

    PubMed

    Fernàndez-Roig, Sílvia; Cavallé-Busquets, Pere; Fernandez-Ballart, Joan D; Ballesteros, Monica; Berrocal-Zaragoza, Maria Isabel; Salat-Batlle, Judith; Ueland, Per M; Murphy, Michelle M

    2013-06-01

    Folate, choline, and betaine participate in homocysteine metabolism. It is not known whether they interact during pregnancy. The objective was to investigate how folate status affects choline, betaine, and dimethylglycine during pregnancy. Fasting plasma folate, cobalamin, free choline, betaine, dimethylglycine, and total homocysteine (tHcy) were measured longitudinally at <12, 15, 24-27, and 34 gestational weeks (GW); at labor (nonfasting); and in the cord in participants (n = 522) from the Reus-Tarragona Birth Cohort (NUTrició i Creixement Intrauterí Retardat phase). Timing, dose, and duration of folic acid supplement use were recorded. Folate status was classified as below (low) or above (high) median plasma folate at baseline (27.6 nmol/L) and at 24-27 GW (11.4 nmol/L). Associations between folate or betaine with tHcy were investigated by using multiple linear regression analysis. Plasma betaine decreased by 34.8% (1.0%) throughout pregnancy, and dimethylglycine increased by 39.7% (2.7%) between 24-27 GW and labor (all P < 0.001). Compared with high folate status, low status was associated with a higher dimethylglycine/betaine ratio from 15 GW and with lower plasma betaine and higher dimethylglycine from 24 to 27 GW, for the rest of pregnancy. Regression analysis showed that by 24-27 GW, both plasma folate and betaine were inversely associated with tHcy when folate status was low and that the association between betaine and tHcy depended on folate status at 24-27 and 34 GW (interaction terms: P < 0.001 and P < 0.01). Betaine was inversely associated with tHcy at labor regardless of folate status. Low folate status enhances the reduction in betaine and the increase in dimethylglycine during pregnancy and strengthens the association between betaine and tHcy. This trial was registered at clinicaltrials.gov as NCT01778205.

  10. First-trimester serum folate levels and subsequent risk of abortion and preterm birth among Japanese women with singleton pregnancies.

    PubMed

    Yamada, Takashi; Morikawa, Mamoru; Yamada, Takahiro; Kishi, Reiko; Sengoku, Kazuo; Endo, Toshiaki; Saito, Tsuyoshi; Cho, Kazutoshi; Minakami, Hisanori

    2013-01-01

    To determine whether a low serum folate level during the first trimester predicts subsequent late abortion, preterm birth, or fetal growth restriction (FGR). A prospective cohort study involving 5,075 women whose serum folate levels were measured during the first trimester. The participants were informed of their serum folate levels. The pregnancy duration, birthweight, rate of late abortion/preterm birth, and the rate of FGR did not differ significantly among the four groups classified according to folate status. The mean serum folate levels did not differ among quartiles classified according to the gestational week at the time of delivery. Nineteen of the 20 women with folate deficiency gave birth at term to infants with a birthweight of 3.132 ± 321 g; only one infant had FGR. Low serum folate levels during the first trimester were not associated with the risk of late abortion, preterm birth, or FGR.

  11. Folate depletion changes gene expression of fatty acid metabolism, DNA synthesis, and circadian cycle in male mice.

    PubMed

    Champier, Jacques; Claustrat, Francine; Nazaret, Nicolas; Fèvre Montange, Michelle; Claustrat, Bruno

    2012-02-01

    Folate is essential for purine and thymidylate biosynthesis and in methyl transfer for DNA methylation. Folate deficiency alters the secretion of melatonin, a hormone involved in circadian rhythm entrainment, and causes hyperhomocysteinemia because of disruption of homocysteine metabolism. Adverse effects of homocysteine include the generation of free radicals, activation of proliferation or apoptosis, and alteration of gene expression. The liver is an important organ for folate metabolism, and its genome analysis has revealed numerous clock-regulated genes. The variations at the level of their expression during folate deficiency are not known. The aim of our study was to investigate the effects of folate deficiency on gene expression in the mouse liver. A control group receiving a synthetic diet and a folate-depleted group were housed for 4 weeks on a 12-hour/12-hour light/dark cycle. Three mice from each group were euthanized under dim red light at the beginning of the light cycle, and 3, at the beginning of the dark period. Gene expression was studied in a microarray analysis. Of the 53 genes showing modified daily expression in the controls, 52 showed a less marked or no difference after folate depletion. Only 1, lpin1, showed a more marked difference. Ten genes coding for proteins involved in lipid metabolism did not show a morning/evening difference in controls but did after folate depletion. This study shows that, in the mouse liver, dietary folate depletion leads to major changes in expression of several genes involved in fatty acid metabolism, DNA synthesis, and expression of circadian genes. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effect of genetic polymorphisms involved in folate metabolism on the concentration of serum folate and plasma total homocysteine (p-tHcy) in healthy subjects after short-term folic acid supplementation: a randomized, double blind, crossover study.

    PubMed

    Cabo, Rona; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam

    2015-05-01

    Data on the effect of combined genetic polymorphisms, involved in folate metabolism, on the concentration of serum folate after folic acid supplementation are scarce. Therefore, we investigated the impact of seven gene polymorphisms on the concentration of serum folate and p-tHcy in healthy subjects after short-term folic acid supplementation. In a randomized, double blind, crossover study, apparently healthy subjects were given either 0.8 mg folic acid per day (n = 46) or placebo (n = 45) for 14 days. The washout period was 14 days. Fasting blood samples were collected on day 1, 15, 30 and 45. Data on subjects on folic acid supplementation (n = 91) and on placebo (n = 45) were used for the statistical analysis. The concentration of serum folate increased higher in subjects with higher age (53.5 ± 7.0 years) than in subjects with lower age (24.3 ± 3.2 years) after folic acid supplementation (p = 0.006). The baseline concentration of serum folate in subjects with polymorphism combination, reduced folate carrier protein, RFC1-80 GA and methylenetetrahydrofolate reductase, MTHFR677 CT+TT, was lower than RFC1-80 AA and MTHFR677 CT+TT (p = 0.002). After folic acid supplementation, a higher increase in the concentration of serum folate was detected in subjects with polymorphism combination RFC1-80 GA and MTHFR677 CC than RFC1-80 GG and MTHFR CT+TT combination (p < 0.0001). The baseline concentration of plasma total homocysteine (p-tHcy) was altered by combined polymorphisms in genes associated with folate metabolism. After folic acid supplementation, in subjects with combined polymorphisms in methylenetetrahydrofolate dehydrogenase, MTHFD1-1958 and MTHFR-677 genes, the concentration of p-tHcy was changed (p = 0.002). The combination of RFC1-80 and MTHFR-677 polymorphisms had a profound affect on the concentration of serum folate in healthy subjects before and after folic acid supplementation.

  13. Change in platelet endothelial cell adhesion molecule-1 immunoreactivity in the dentate gyrus in gerbils fed a folate-deficient diet.

    PubMed

    Yoo, Ki-Yeon; Hwang, In Koo; Kim, Young Sup; Kwon, Dae Young; Won, Moo Ho

    2008-02-01

    Folate deficiency increases stroke risk. We examined whether folate deficiency affects platelet endothelial cell adhesion molecule-1 (PECAM-1), which is an immunoglobulin-associated cell adhesion molecule and mediates the final common pathway of neutrophil transendothelial migration, in blood vessels in the gerbil dentate gyrus after transient forebrain ischemia. Gerbils were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to common carotid artery occlusion for 5 min. In the control diet (CD)- and FAD-treated sham-operated groups, weak PECAM-1 immunoreactivity was detected in the blood vessels located in the dentate gyrus. PECAM-1 immunoreactivity in both groups was increased by 4 days after ischemic insult. PECAM-1 immunoreactivity in the FAD-treated group was twice as high that in the CD-treated-sham-operated group 4 days after ischemic insult. Western blot analyses showed that the change patterns in PECAM-1 protein levels in the dentate gyrus in both groups after ischemic insult were similar to changes in PECAM-1 immunohistochemistry in the ischemic dentate gyrus. Our results suggest that folate deficiency enhances PECAM-1 in the dentate gyrus induced by transient ischemia.

  14. Simulation of Food Folate Digestion and Bioavailability of an Oxidation Product of 5-Methyltetrahydrofolate

    PubMed Central

    Ringling, Christiane

    2017-01-01

    Generating bioavailability data from in vivo studies is time-consuming and expensive. In vitro simulation can help to investigate factors influencing bioavailability or facilitate quantifying the impact of such factors. For folates, an efficient deconjugation of polyglutamates to the corresponding monoglutamates is crucial for bioavailability and highly dependent on the food matrix. Therefore, the bioaccessibility of folates of different foodstuffs was examined using a simulated digestion model with respect to folate stability and the efficiency of deconjugation. For realistic simulated deconjugation, porcine brush border membrane was used during the phase of the simulated digestion in the small intestine. For a better understanding of folate behaviour during digestion, single folate monoglutamates were also investigated with this in vitro digestion model. The results for bioaccessibility were compared with data from a human bioavailability study. They support the idea that both stability and deconjugation have an influence on bioaccessibility and thus on bioavailability. Tetrahydrofolate is probably lost completely or at least to a high extent and the stability of 5-methyltetrahydrofolate depends on the food matrix. Additionally, 5-methyltetrahydrofolate can be oxidised to a pyrazino-s-triazine (MeFox), whose absorption in the human intestinal tract was shown tentatively. PMID:28862677

  15. Simulation of Food Folate Digestion and Bioavailability of an Oxidation Product of 5-Methyltetrahydrofolate.

    PubMed

    Ringling, Christiane; Rychlik, Michael

    2017-09-01

    Generating bioavailability data from in vivo studies is time-consuming and expensive. In vitro simulation can help to investigate factors influencing bioavailability or facilitate quantifying the impact of such factors. For folates, an efficient deconjugation of polyglutamates to the corresponding monoglutamates is crucial for bioavailability and highly dependent on the food matrix. Therefore, the bioaccessibility of folates of different foodstuffs was examined using a simulated digestion model with respect to folate stability and the efficiency of deconjugation. For realistic simulated deconjugation, porcine brush border membrane was used during the phase of the simulated digestion in the small intestine. For a better understanding of folate behaviour during digestion, single folate monoglutamates were also investigated with this in vitro digestion model. The results for bioaccessibility were compared with data from a human bioavailability study. They support the idea that both stability and deconjugation have an influence on bioaccessibility and thus on bioavailability. Tetrahydrofolate is probably lost completely or at least to a high extent and the stability of 5-methyltetrahydrofolate depends on the food matrix. Additionally, 5-methyltetrahydrofolate can be oxidised to a pyrazino-s-triazine (MeFox), whose absorption in the human intestinal tract was shown tentatively.

  16. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    PubMed Central

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  17. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halwachs, Sandra, E-mail: halwachs@vetmed.uni-leipzig.d; Lakoma, Cathleen; Gebhardt, Rolf

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexatemore » (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.« less

  18. Reduction in unnecessary red blood cell folate testing by restricting computerized physician order entry in the electronic health record.

    PubMed

    MacMillan, Thomas E; Gudgeon, Patrick; Yip, Paul M; Cavalcanti, Rodrigo B

    2018-05-02

    Red blood cell folate is a laboratory test with limited clinical utility. Previous attempts to reduce physician ordering of unnecessary laboratory tests, including folate, have resulted in only modest success. The objective of this study was to assess the effectiveness and impacts of restricting red blood cell folate ordering in the electronic health record. This was a retrospective observational study from January 2010 to December 2016 at a large academic healthcare network in Toronto, Canada. All inpatients and outpatients who underwent at least 1 red blood cell folate or vitamin B12 test during the study period were included. Red blood cell folate ordering was restricted to clincians in gastroenterology and hematology and was removed from other physicians' computerized order entry screen in the electronic health record in June 2013. Red blood cell folate testing decreased by 94.4% during the study, from a mean of 493.0 (SD 48.0) tests/month before intervention to 27.6 (SD 10.3) tests/month after intervention (P<.001). Restricting red blood cell folate ordering in the electronic health record resulted in a large and sustained reduction in red blood cell folate testing. Significant cost savings estimated at over a quarter-million dollars (CAD) over three years were achieved. There was no significant clinical impact of the intervention on the diagnosis of folate deficiency. Copyright © 2018. Published by Elsevier Inc.

  19. Neither folic acid supplementation nor pregnancy affects the distribution of folate forms in the red blood cells of women.

    PubMed

    Hartman, Brenda A; Fazili, Zia; Pfeiffer, Christine M; O'Connor, Deborah L

    2014-09-01

    It is not known whether folate metabolism is altered during pregnancy to support increased DNA and RNA biosynthesis. By using a state-of-the-art LC tandem mass spectrometry technique, the aim of this study was to investigate differences in RBC folate forms between pregnant and nonpregnant women and between nonpregnant women consuming different concentrations of supplemental folic acid. Forms of folate in RBCs were used to explore potential shifts in folate metabolism during early erythropoiesis. Total RBC folate and folate forms [tetrahydrofolate; 5-methyltetrahydrofolate (5-methyl-THF); 4α-hydroxy-5-methyl-tetrahydrofolate (an oxidation product of 5-methyl-THF); 5-formyl-tetrahydrofolate; and 5,10-methenyl-tetrahydrofolate] were measured in 4 groups of women (n = 26): pregnant women (PW) (30-36 wk of gestation) consuming 1 mg/d of folic acid, and nonpregnant women consuming 0 mg/d (NPW-0), 1 mg/d (NPW-1), and 5 mg/d (NPW-5) folic acid. The mean ± SD RBC folate concentration of the NPW-0 group (890 ± 530 nmol/L) was lower than the NPW-1 (1660 ± 350 nmol/L) and NPW-5 (1980 ± 570 nmol/L) groups as assessed by microbiologic assay (n = 26, P < 0.0022). No difference was found between the NPW-1 and NPW-5 groups. We detected 5-methyl-THF [limit of detection (LOD) = 0.06 nmol/L] in all groups and tetrahydrofolate (LOD = 0.2 nmol/L) in most women regardless of methylenetetrahydrofolate reductase genotype. Most women consuming folic acid supplements had detectable concentrations of 5,10-methenyl-tetrahydrofolate (LOD = 0.31 nmol/L). However, there was no difference in the relative distribution of 5-methyl-THF (83-84%), sum of non-methyl folates (0.6-3%), or individual non-methyl folate forms in RBCs across groups. We conclude that although folic acid supplementation in nonpregnant women increases RBC total folate and the concentration of individual folate forms, it does not alter the relative distribution of folate forms. Similarly, distribution of RBC folate forms did

  20. Folate intake and depressive symptoms in Japanese workers considering SES and job stress factors: J-HOPE study.

    PubMed

    Miyaki, Koichi; Song, Yixuan; Htun, Nay Chi; Tsutsumi, Akizumi; Hashimoto, Hideki; Kawakami, Norito; Takahashi, Masaya; Shimazu, Akihito; Inoue, Akiomi; Kurioka, Sumiko; Shimbo, Takuro

    2012-04-20

    Recently socioeconomic status (SES) and job stress index received more attention to affect mental health. Folate intake has been implicated to have negative association with depression. However, few studies were published for the evidence association together with the consideration of SES and job stress factors. The current study is a part of the Japanese study of Health, Occupation and Psychosocial factors related Equity (J-HOPE study) that focused on the association of social stratification and health and our objective was to clarify the association between folate intake and depressive symptoms in Japanese general workers. Subjects were 2266 workers in a Japanese nationwide company. SES and job stress factors were assessed by self-administered questionnaire. Folate intake was estimated by a validated, brief, self-administered diet history questionnaire. Depressive symptoms were measured by Kessler's K6 questionnaire. "Individuals with depressive symptoms" was defined as K6≥9 (in K6 score of 0-24 scoring system). Multiple logistic regression and linear regression model were used to evaluate the association between folate and depressive symptoms. Several SES factors (proportion of management positions, years of continuous employment, and annual household income) and folate intake were found to be significantly lower in the subjects with depressive symptom (SES factors: p < 0.001; folate intake: P = 0.001). There was an inverse, independent linear association between K6 score and folate intake after adjusting for age, sex, job stress scores (job strains, worksite supports), and SES factors (p = 0.010). The impact of folate intake on the prevalence of depressive symptom by a multiple logistic model was (ORs[95% CI]: 0.813 [0.664-0.994]; P =0.044). Our cross-sectional study suggested an inverse, independent relation of energy-adjusted folate intake with depression score and prevalence of depressive symptoms in Japanese workers, together with the consideration of SES

  1. Nutrients in folate-mediated, one-carbon metabolism and risk of rectal tumors in men and women

    PubMed Central

    Curtin, Karen; Samowitz, Wade S.; Ulrich, Cornelia M.; Wolff, Roger K.; Herrick, Jennifer S; Caan, Bette J.; Slattery, Martha L.

    2011-01-01

    In an investigation of rectal tumors characterized by CpG Island Methylator Phenotype (CIMP), KRAS2 mutation, and TP53 mutation, we examined associations with dietary and supplemental folate, riboflavin, vitamins B6 andB12, and methionine, nutrients involved in folate-mediated one-carbon metabolism. We also examined folate intake and common MTHFR polymorphisms in relation to CIMP. Data from a population-based study of 951 cases (750 with tumor markers) and 1,205 controls were evaluated using multiple logistic regression models and generalized estimating equations. Reduced risk of methylated tumors was suggested in women with upper tertiles of folate intake (≥0.42 mg/day) vs. lower tertile: OR=0.6, 95%CI 0.3–1.2. In men, a significant 3-fold increased risk of CIMP+ tumor was observed for the upper tertile of folate (≥0.75 mg/day) vs. the lower tertile (<0.44 mg/day): OR=3.2, 95%CI 1.5–6.7. These men consumed a greater proportion of folic-acid fortified foods relative to natural, primarily plant-based sources (52% vs. 48%) than women with CIMP+ tumor (22% vs. 78%). MTHFR 1298A>C influenced folate in male CIMP+ risk (P-interaction<0.01). Our findings suggest folate supplementation effects may differ between genders, perhaps due to variation in MTHFR and/or endogenous/exogenous hormones, and may be important in the initiation and progression of methylated rectal tumors in men. PMID:21462086

  2. Folate status in women of reproductive age as basis of neural tube defect risk assessment.

    PubMed

    Bailey, Lynn B; Hausman, Dorothy B

    2018-02-01

    Reliable folate status data for women of reproductive age (WRA) to assess global risk for neural tube defects (NTDs) are needed. We focus on a recent recommendation by the World Health Organization that a specific "optimal" red blood cell (RBC) folate concentration be used as the sole indicator of NTD risk within a population and discuss how to best apply this guidance to reach the goal of assessing NTD risk globally. We also emphasize the importance of using the microbiologic assay (MBA) as the most reliable assay for obtaining comparable results for RBC folate concentration across time and countries, the need for harmonization of the MBA through use of consistent key reagents and procedures within laboratories, and the requirement to apply assay-matched cutoffs for folate deficiency and insufficiency. To estimate NTD risk globally, the ideal scenario would be to have country-specific population-based surveys of RBC folate in WRA determined utilizing a harmonized MBA, as was done in recent studies in Guatemala and Belize. We conclude with guidance on next steps to best navigate the road map toward the goal of generating reliable folate status data on which to assess NTD risk in WRA in low- and middle-income countries. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  3. Excess folate during adolescence suppresses thyroid function with permanent deficits in motivation and spatial memory

    PubMed Central

    Sittig, L. J.; Herzing, L. B. K.; Xie, H.; Batra, K. K.; Shukla, P. K.; Redei, E. E.

    2012-01-01

    Cognitive and memory deficits can be caused or exacerbated by dietary folate deficiency, which has been combatted by the addition of folate to grains and dietary supplements. The recommended dose of the B9 vitamin folate is 400 μg/day for adolescents and non-pregnant adults, and consumption above the recommended daily allowance is not considered to be detrimental. However, the effects of excess folate have not been tested in adolescence when neuro and endocrine development suggest possible vulnerability to long-term cognitive effects. We administered folate-supplemented (8.0 mg folic acid/kg diet) or control lab chow (2.7 mg folic acid/kg diet) to rats ad libitum from 30 to 60 days of age, and subsequently tested their motivation and learning and memory in the Morris water maze. We found that folate-supplemented animals had deficits in motivation and spatial memory, but they showed no changes of the learning- and memory-related molecules growth-associated protein-43 or Gs-α subunit protein in the hippocampus. They had decreased levels of thyroxine (T4) and triiodothyronine (T3) in the periphery and decreased protein levels of thyroid receptor-α1 and -α2 (TRα1 and TRα2) in the hippocampus. The latter may have been due to an observed increase of cytosine–phosphate–guanosine island methylation within the putative thyroid hormone receptor-α promoter, which we have mapped for the first time in the rat. Overall, folate supplementation in adolescence led to motivational and spatial memory deficits that may have been mediated by suppressed thyroid hormone function in the periphery and hippocampus. PMID:22050771

  4. Interaction of plasma glutathione redox and folate deficiency on arsenic methylation capacity in Bangladeshi adults

    PubMed Central

    Niedzwiecki, Megan M.; Hall, Megan N.; Liu, Xinhua; Slavkovich, Vesna; Ilievski, Vesna; Levy, Diane; Alam, Shafiul; Siddique, Abu B.; Parvez, Faruque; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Inorganic arsenic (InAs) is metabolized through a series of methylation reactions catalyzed by arsenic(III)-methyltransferase (AS3MT), resulting in the generation of monomethylarsonic (MMAs) and dimethylarsinic acids (DMAs). AS3MT activity requires the presence of the methyl donor S-adenosylmethionine (SAM), a product of folate-dependent one-carbon metabolism, and a reductant. Although glutathione (GSH), the primary endogenous antioxidant, is not required for As methylation, GSH stimulates As methylation rates in vitro. However, the relationship between GSH redox and As methylation capacity in humans is unknown. We wished to test the hypothesis that a more oxidized plasma GSH redox status is associated with decreased As methylation capacity, and examine whether these associations are modified by folate nutritional status. Concentrations of plasma GSH and GSSG, plasma folate, total blood As (bAs), total urinary As (uAs), and uAs metabolites were assessed in a cross-sectional study of n = 376 Bangladeshi adults who were chronically exposed to As in drinking water. We observed that a decreased plasma GSH/GSSG ratio (reflecting a more oxidized redox state) was significantly associated with increased urinary %MMA, decreased urinary %DMA, and increased total bAs in folate-deficient individuals (plasma folate ≤ 9.0 nmol/L). Concentrations of plasma GSH and GSSG were independently associated with increased and decreased As methylation capacity, respectively. No significant associations were observed in folate-sufficient individuals, and interactions by folate status were statistically significant. Our findings suggest that GSH/GSSG redox regulation might contribute to the large interindividual variation in As methylation capacity observed in human populations. PMID:24726863

  5. The relationship between functional ovarian cysts and vitamin A, vitamin E, and folate intake.

    PubMed

    Tafazoli, Mahin; Fazeli, Elham; Nematy, Mohsen; Bahri, Narjes; Dadgar, Salmeh

    2017-02-01

    This study aimed to clarify the relationship between functional ovarian cysts and vitamin A, vitamin E, and folate intake. This case-control study evaluated 265 women of reproductive age who presented at gynaecology clinics of three hospitals in Mashhad, Iran. While women in the ovarian cyst group [n = 132] had functional ovarian cysts, control group [n = 133] consisted of women without functional ovarian cysts. The participants' vitamin A, vitamin E, and folate intake was assessed using the Food Frequency Questionnaire. Results showed that folate intake was significantly higher in the ovarian cyst group [p = .040]. No significant differences in vitamin A and vitamin E intake were observed between the two groups [p = .950 and .230, respectively]. It is concluded that women with functional ovarian cysts had significantly higher folate intake. Vitamin A and vitamin E intake had no significant effects on the incidence of these cysts.

  6. Homocysteine Lowering by Folate-Rich Diet or Pharmacological Supplementations in Subjects with Moderate Hyperhomocysteinemia

    PubMed Central

    Zappacosta, Bruno; Mastroiacovo, Pierpaolo; Persichilli, Silvia; Pounis, George; Ruggeri, Stefania; Minucci, Angelo; Carnovale, Emilia; Andria, Generoso; Ricci, Roberta; Scala, Iris; Genovese, Orazio; Turrini, Aida; Mistura, Lorenza; Giardina, Bruno; Iacoviello, Licia

    2013-01-01

    Background/Objectives: To compare the efficacy of a diet rich in natural folate and of two different folic acid supplementation protocols in subjects with “moderate” hyperhomocysteinemia, also taking into account C677T polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene. Subjects/Methods: We performed a 13 week open, randomized, double blind clinical trial on 149 free living persons with mild hyperhomocyteinemia, with daily 200 μg from a natural folate-rich diet, 200 μg [6S]5-methyltetrahydrofolate (5-MTHF), 200 μg folic acid or placebo. Participants were stratified according to their MTHFR genotype. Results: Homocysteine (Hcy) levels were reduced after folate enriched diet, 5-MTHF or folic acid supplementation respectively by 20.1% (p < 0.002), 19.4% (p < 0.001) and 21.9% (p < 0.001), as compared to baseline levels and significantly as compared to placebo (p < 0.001, p < 0.002 and p < 0.001, respectively for enriched diet, 5-MTHF and folic acid). After this enriched diet and the folic acid supplementation, Hcy in both genotype groups decreased approximately to the same level, with higher percentage decreases observed for the TT group because of their higher pre-treatment value. Similar results were not seen by genotype for 5-MTHF. A significant increase in RBC folate concentration was observed after folic acid and natural folate-rich food supplementations, as compared to placebo. Conclusions: Supplementation with natural folate-rich foods, folic acid and 5-MTHF reached a similar reduction in Hcy concentrations. PMID:23698160

  7. Effects of polymorphisms in endothelial nitric oxide synthase and folate metabolizing genes on the concentration of serum nitrate, folate, and plasma total homocysteine after folic acid supplementation: a double-blind crossover study.

    PubMed

    Cabo, Rona; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam

    2015-02-01

    A number of studies have explored the effects of dietary nitrate on human health. Nitrate in the blood can be recycled to nitric oxide, which is an essential mediator involved in many important biochemical mechanisms. Nitric oxide is also formed in the body from l-arginine by nitric oxide synthase. The aim of this study was to investigate whether genetic polymorphisms in endothelial nitric oxide synthase (eNOS) and genes involved in folate metabolism affect the concentration of serum nitrate, serum folate, and plasma total homocysteine in healthy individuals after folic acid supplementation. In a randomized double-blind, crossover study, participants were given either folic acid 800 μg/d (n = 52) or placebo (n = 51) for 2 wk. Wash-out period was 2 wk. Fasting blood samples were collected, DNA was extracted by salting-out method and the polymorphisms in eNOS synthase and folate genes were genotyped by polymerase chain reaction methods. Measurement of serum nitrate and plasma total homocysteine (p-tHcy) concentration was done by high-performance liquid chromatography. The concentration of serum nitrate did not change in individuals after folic acid supplements (trial 1); however, the concentration of serum nitrate increased in the same individuals after placebo (P = 0.01) (trial 2). The individuals with three polymorphisms in eNOS gene had increased concentration of serum folate and decreased concentration of p-tHcy after folic acid supplementation. Among the seven polymorphisms tested in folate metabolizing genes, serum nitrate concentration was significantly decreased only in DHFR del 19 gene variant. A significant difference in the concentration of serum nitrate was detected among individuals with MTHFR C > T677 polymorphisms. Polymorphisms in eNOS and folate genes affect the concentration of serum folate and p-tHcy but do not have any effect on the concentration of NO3 in healthy individuals after folic acid supplementation. Copyright © 2015 Elsevier Inc. All

  8. Hereditary dyserythropoiesis with abnormal membrane folate transport.

    PubMed

    Howe, R B; Branda, R F; Douglas, S D; Brunning, R D

    1979-11-01

    Dyserythropoiesis, which morphologically and serologically resembles congenital dyserythropoietic anemia type III but is not accompanied by anemia, is described in a young man. In addition to striking gigantism and multinuclearity of erythroid precursors, electron microscopy revealed widening of nuclear pores, nuclear clefts, and cytoplasmic inclusions. Membrane transport of 5-methyltetrahydrofolate by the patient's red cells was markedly reduced; total uptake, uptake velocity, and maximal velocity of uptake were all significantly less than in controls. In contrast, red cell uptake of pteroylglutamic acid was normal. Bone marrow cells in culture also showed decreased 5-methyltetrahydrofolate uptake, as well as very low thymidine incorporation. Because folate uptake by mitogen-stimulated lymphocytes was normal, the defect apparently does not involve all cell lines. These results suggest that a specific membrane defect, affecting the carrier system for reduced folate compounds, is present in this patient's erythrocytes, and perhaps, their bone marrow precursors.

  9. Maternal folic acid supplementation and dietary folate intake and congenital heart defects

    PubMed Central

    Mao, Baohong; Qiu, Jie; Zhao, Nan; Shao, Yawen; Dai, Wei; He, Xiaochun; Cui, Hongmei; Lin, Xiaojuan; Lv, Ling; Tang, Zhongfeng; Xu, Sijuan; Huang, Huang; Zhou, Min; Xu, Xiaoying; Qiu, Weitao

    2017-01-01

    Background It has been reported that folic acid supplementation before and/or during pregnancy could reduce the risk of congenital heart defects (CHDs). However, the results from limited epidemiologic studies have been inconclusive. We investigated the associations between maternal folic acid supplementation, dietary folate intake, and the risk of CHDs. Methods A birth cohort study was conducted in 2010–2012 at the Gansu Provincial Maternity & Child Care Hospital in Lanzhou, China. After exclusion of stillbirths and multiple births, a total of 94 births were identified with congenital heart defects, and 9,993 births without any birth defects. Unconditional logistic regression was used to estimate the associations. Results Compared to non-users, folic acid supplement users before pregnancy had a reduced risk of overall CHDs (OR: 0.42, 95% CI: 0.21–0.86, Ptrend = 0.025) after adjusted for potential confounders. A protective effect was observed for certain subtypes of CHDs (OR: 0.37, 95% CI: 0.16–0.85 for malformation of great arteries; 0.26, 0.10–0.68 for malformation of cardiac septa; 0.34, 0.13–0.93 for Atrial septal defect). A similar protective effect was also seen for multiple CHDs (OR: 0.49, 95% CI: 0.26–0.93, Ptrend = 0.004). Compared with the middle quartiles of dietary folate intake, lower dietary folate intake (<149.88 μg/day) during pregnancy were associated with increased risk of overall CHDs (OR: 1.63, 95% CI: 1.01–2.62) and patent ductus arteriosus (OR: 1.85, 95% CI: 1.03–3.32). Women who were non-user folic acid supplement and lower dietary folate intake have almost 2-fold increased CHDs risk in their offspring. Conclusions Our study suggested that folic acid supplementation before pregnancy was associated with a reduced risk of CHDs, lower dietary folate intake during pregnancy was associated with increased risk. The observed associations varied by CHD subtypes. A synergistic effect of dietary folate intake and folic acid

  10. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    PubMed Central

    Müller, Cristina; Reber, Josefine; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice. PMID:24633429

  11. New Tween-80 microbiological assay of serum folate levels in humans and animals.

    PubMed

    Zhou, Zhenghua; Yang, Yuan; Li, Ming; Kou, Chong; Xiao, Ping; Jiang, Yan; Hong, Junrong; Huang, Chengyu

    2012-01-01

    The objective of this study was to develop a new Tween-80 microbiological assay (Tween-80 MBA) to determine human or animal serum folate levels and to verify its reliability. The effects of the Lactobacillius casei subspecies rhamnosus (L. casei, ATCC No. 7469) inoculum concentration, incubation time, and Tween-80 on L. casei growth were studied, and the serum folate levels were investigated. Serum samples were collected from patients with esophageal cancer (EC) and healthy control subjects in Yanting, healthy adult subjects in Chengdu, Sichuan, and in male Sprague-Dawley rats. Optimal conditions for the new MBA were as follows: 1.28 x 10(7) CFU/mL working inoculum, vitamin folic acid assay broth with 0.24% (w/w) Tween-80, and anaerobic incubation with L. casei at 37 degrees C for 22 h. Under the optimal conditions, the working curve was in simple linear rather than logarithmic equation; the linear working curve of the folic acid standard working solution concentration versus the turbidity (adsorption value) of medium with L. casei ranged from 0.05 to 1.00 microg/L; the linear correlation coefficient was 0.9989 (SD 0.0007); the recovery rate of folate was 105.4-112.7%; and the minimum concentration for detecting folate was 0.03 microg/L. The RSD within-day and between-day precisions were 5.6 and 3.3%, respectively. The serum folate level of 100 EC patients was 6.4 (SEM 0.4) microg/L which was significantly lower than that of healthy control subjects [8.0 (SEM 0.6) microg/L, n = 100, P=0.020]. The new Tween-80 MBA is considered to be a reliable method for measuring serum folate level.

  12. Comparison of standardised dietary folate intake across ten countries participating in the European Prospective Investigation into Cancer and Nutrition.

    PubMed

    Park, Jin Young; Nicolas, Genevieve; Freisling, Heinz; Biessy, Carine; Scalbert, Augustin; Romieu, Isabelle; Chajès, Véronique; Chuang, Shu-Chun; Ericson, Ulrika; Wallström, Peter; Ros, Martine M; Peeters, Petra H M; Mattiello, Amalia; Palli, Domenico; María Huerta, José; Amiano, Pilar; Halkjær, Jytte; Dahm, Christina C; Trichopoulou, Antonia; Orfanos, Philippos; Teucher, Birgit; Feller, Silke; Skeie, Guri; Engeset, Dagrun; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Françoise; Crowe, Francesca; Khaw, Kay-Tee; Vineis, Paolo; Slimani, Nadia

    2012-08-01

    Folate plays an important role in the synthesis and methylation of DNA as a cofactor in one-carbon metabolism. Inadequate folate intake has been linked to adverse health events. However, comparable information on dietary folate intake across European countries has never been reported. The objective of the present study was to describe the dietary folate intake and its food sources in ten countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. A cross-sectional analysis was conducted in 36 034 participants (aged 35-74 years) who completed a single 24 h dietary recall using a computerised interview software program, EPIC-Soft® (International Agency for Research on Cancer, Lyon). Dietary folate intake was estimated using the standardised EPIC Nutrient DataBase, adjusted for age, energy intake, weight and height and weighted by season and day of recall. Adjusted mean dietary folate intake in most centres ranged from 250 to 350 μg/d in men and 200 to 300 μg/d in women. Folate intake tended to be lower among current smokers and heavier alcohol drinkers and to increase with educational level, especially in women. Supplement users (any types) were likely to report higher dietary folate intake in most centres. Vegetables, cereals and fruits, nuts and seeds were the main contributors to folate intake. Nonetheless, the type and pattern of consumption of these main food items varied across the centres. These first comparisons of standardised dietary folate intakes across different European populations show moderate regional differences (except the UK health conscious group), and variation by sex, educational level, smoking and alcohol-drinking status, and supplement use.

  13. Total folate and folic acid intakes from foods and dietary supplements of US children aged 1–13 y1234

    PubMed Central

    Bailey, Regan L; McDowell, Margaret A; Dodd, Kevin W; Gahche, Jaime J; Dwyer, Johanna T; Picciano, Mary Frances

    2010-01-01

    Background: Total folate intake includes naturally occurring food folate and folic acid from fortified foods and dietary supplements. Recent reports have focused on total folate intakes of persons aged ≥14 y. Information on total folate intakes of young children, however, is limited. Objective: The objective was to compute total folate and total folic acid intakes of US children aged 1–13 y by using a statistical method that adjusts for within-person variability and to compare these intakes with the Dietary Reference Intake guidelines for adequacy and excess. Design: Data from the 2003–2006 National Health and Nutrition Examination Survey, a nationally representative cross-sectional survey, were analyzed. Total folate intakes were derived by combining intakes of food folate (naturally occurring and folic acid from fortified foods) on the basis of 24-h dietary recall results and folic acid intakes from dietary supplements on the basis of a 30-d questionnaire. Results: More than 95% of US children consumed at least the Estimated Average Requirement (EAR) for folate from foods alone. More than one-third (35%) of US children aged 1–13 y used dietary supplements, and 28% used dietary supplements containing folic acid. Supplement users had significantly higher total folate and folic acid intakes than did nonusers. More than half (53%) of dietary supplement users exceeded the Tolerable Upper Intake Level (UL) for total folic acid (fortified food + supplements) as compared with 5% of nonusers. Conclusions: Total folate intakes of most US children aged 1–13 y meet the EAR. Children who used dietary supplements had significantly higher total folate intakes and exceeded the UL by >50%. PMID:20534747

  14. Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.

    PubMed

    Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao

    2015-07-01

    A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.

  15. MYCN amplification confers enhanced folate dependence and methotrexate sensitivity in neuroblastoma

    PubMed Central

    Lau, Diana T.; Flemming, Claudia L.; Gherardi, Samuele; Perini, Giovanni; Oberthuer, André; Fischer, Matthias; Juraeva, Dilafruz; Brors, Benedikt; Xue, Chengyuan; Norris, Murray D.; Marshall, Glenn M.; Haber, Michelle

    2015-01-01

    MYCN amplification occurs in 20% of neuroblastomas and is strongly related to poor clinical outcome. We have identified folate-mediated one-carbon metabolism as highly upregulated in neuroblastoma tumors with MYCN amplification and have validated this finding experimentally by showing that MYCN amplified neuroblastoma cell lines have a higher requirement for folate and are significantly more sensitive to the antifolate methotrexate than cell lines without MYCN amplification. We have demonstrated that methotrexate uptake in neuroblastoma cells is mediated principally by the reduced folate carrier (RFC; SLC19A1), that SLC19A1 and MYCN expression are highly correlated in both patient tumors and cell lines, and that SLC19A1 is a direct transcriptional target of N-Myc. Finally, we assessed the relationship between SLC19A1 expression and patient survival in two independent primary tumor cohorts and found that SLC19A1 expression was associated with increased risk of relapse or death, and that SLC19A1 expression retained prognostic significance independent of age, disease stage and MYCN amplification. This study adds upregulation of folate-mediated one-carbon metabolism to the known consequences of MYCN amplification, and suggests that this pathway might be targeted in poor outcome tumors with MYCN amplification and high SLC19A1 expression. PMID:25860940

  16. Dietary and other lifestyle correlates of serum folate concentrations in a healthy adult population in Crete, Greece: a cross-sectional study

    PubMed Central

    Hatzis, Christos M; Bertsias, George K; Linardakis, Manolis; Scott, John M; Kafatos, Anthony G

    2006-01-01

    Background Folate has emerged as a key nutrient for optimising health. Impaired folate status has been identified as a risk factor for cardiovascular disease, various types of cancers, and neurocognitive disorders. The study aimed at examining the distribution and determinants of serum folate concentrations in a healthy adult population in Crete, Greece. Methods A cross-sectional sample of 486 healthy adults (250 men, 236 women) aged 39 ± 14 years, personnel of the Medical School and the University Hospital of Crete in Greece, was examined. Serum folate and vitamin B12 concentrations were measured by microbiological assay, and total homocysteine was determined fluorometrically and by high-pressure liquid chromatography. Lifestyle questionnaires were completed, and nutrient intakes and food consumption were assessed by 24-h dietary recalls. Multivariate analyses were performed using SPSS v10.1. Results The geometric mean (95% confidence interval) concentrations of serum folate were 15.6 μmol/l (14.6–16.8) in men and 19.2 μmol/l (17.9–20.7) in women (p < 0.001). Inadequate folate levels (≤7 nmol/l) were present in 6.8% of men and 2.1% of women (p < 0.001). Approximately 76% of men and 87% of women did not meet the reference dietary intake for folate (400 μg/day). Serum folate was inversely related to total homocysteine levels (p < 0.001). Increased tobacco and coffee consumption were associated with lower folate concentrations (p < 0.05 for both) but these associations disappeared after controlling for nutrient intakes. In multivariate analysis, intakes of MUFA, fibre, calcium, magnesium, folate, and vitamins A, E, C, B1, and B6 were positively associated with serum folate. Consumption of potatoes, legumes, fruits, and vegetables were favourably related to the serum folate status. Conclusion Serum folate concentrations were associated with various demographic, lifestyle and dietary factors in healthy Cretan adults. Large-scale epidemiological studies should

  17. Folate, vitamin B12 and human health

    USDA-ARS?s Scientific Manuscript database

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared func...

  18. Ligand binding induces a sharp decrease in hydrophobicity of folate binding protein assessed by 1-anilinonaphthalene-8-sulphonate which suppresses self-association of the hydrophobic apo-protein.

    PubMed

    Holm, Jan; Lawaetz, Anders J; Hansen, Steen I

    2012-08-17

    High affinity folate binding protein (FBP) regulates as a soluble protein and as a cellular receptor intracellular trafficking of folic acid, a vitamin of great importance to cell growth and division. We addressed two issues of potential importance to the biological function of FBP, a possible decrease of the surface hydrophobicity associated with the ligand-induced conformation change of FBP, and protein-inter-protein interactions involved in self-association of hydrophobic apo-FBP. The extrinsic fluorescent apolar dye 1-anilinonaphthalene-8-sulphonate (ANS) exhibited enhanced fluorescence intensity and a blueshift of emission maximum from 510-520 nm to 460-470 nm upon addition of apo-FBP indicating binding to a strongly hydrophobic environment. Neither enhancement of fluorescence nor blueshift of ANS emission maximum occurred when folate-ligated holo-FBP replaced apo-FBP. The drastic decrease in surface hydrophobicity of holo-FBP could have bearings on the biological function of FBP since changes in surface hydrophobicity have critical effects on the biological function of receptors and transport proteins. ANS interacts with exposed hydrophobic surfaces on proteins and may thereby block and prevent aggregation of proteins (chaperone-like effect). Hence, hydrophobic interactions seemed to participate in the concentration-dependent self-association of apo-FBP which was suppressed by high ANS concentrations in light scatter measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Biofortification of folates in white wheat bread by selection of yeast strain and process.

    PubMed

    Hjortmo, Sofia; Patring, Johan; Jastrebova, Jelena; Andlid, Thomas

    2008-09-30

    We here demonstrate that folate content in yeast fermented food can be dramatically increased by using a proper (i) yeast strain and (ii) cultivation procedure for the selected strain prior to food fermentation. Folate levels were 3 to 5-fold higher in white wheat bread leavened with a Saccharomyces cerevisiae strain CBS7764, cultured in defined medium and harvested in the respiro-fermentative phase of growth prior to dough preparation (135-139 microg/100 dry matter), compared to white wheat bread leavened with commercial Baker's yeast (27-43 microg/100 g). The commercial Baker's yeast strain had been industrially produced, using a fed-batch process, thereafter compressed and stored in the refrigerator until bakings were initiated. This strategy is an attractive alternative to fortification of bread with synthetically produced folic acid. By using a high folate producing strain cultured a suitable way folate levels obtained were in accordance with folic acid content in fortified cereal products.

  20. The Folate Pathway and Nonsyndromic Cleft Lip and Palate

    PubMed Central

    Blanton, Susan H.; Henry, Robin R.; Yuan, Quiping; Mulliken, John B.; Stal, Samuel; Finnell, Richard H.; Hecht, Jacqueline T.

    2013-01-01

    Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth malformation caused by genetic, environmental and gene-environment interactions. Periconceptional supplementation with folic acid, a key component in DNA synthesis and cell division, has reduced the birth prevalence of neural tube defects (NTDs) and may similarly reduce the birth prevalence of other complex birth defects including NSCLP. Past studies investigating the role of two common methylenetetrahydrofolate reductase (MTHFR) SNP polymorphisms, C677T (rs1801133) and A1298C (rs1801131), in NSCLP have produced conflicting results. Most studies of folate pathway genes have been limited in scope, as few genes/SNPs have been interrogated. In this study, we asked whether variations in a more comprehensive group of folate pathway genes were associated with NSCLP and, if so, were there detectable interactions between these genes and environmental exposures. In addition, we evaluated the data for a sex effect. Fourteen folate metabolism related genes were interrogated using eighty-nine SNPs in multiplex and simplex non-Hispanic White (NHW) (317) and Hispanic (128) NSCLP families. Evidence for a risk association between NSCLP and SNPs in nitrous oxide 3 (NOS3) and thymidylate synthetase (TYMS) was detected in the NHW group, whereas associations with methionine synthase (MTR), betaine-homocysteine methyltransferase (BHMT2), MTHFS and SLC19A1 were detected in the Hispanic group. Evidence for over-transmission of haplotypes and gene interactions in the methionine arm was detected. These results suggest that perturbations of the genes in the folate pathway may contribute to NSCLP. There was evidence for an interaction between several SNPs and maternal smoking, and for one SNP with sex of the offspring. These results provide support for other studies that suggest that high maternal homocysteine levels may contribute to NSCLP and should be further investigated. PMID:21254359

  1. Excess folate during adolescence suppresses thyroid function with permanent deficits in motivation and spatial memory.

    PubMed

    Sittig, L J; Herzing, L B K; Xie, H; Batra, K K; Shukla, P K; Redei, E E

    2012-03-01

    Cognitive and memory deficits can be caused or exacerbated by dietary folate deficiency, which has been combatted by the addition of folate to grains and dietary supplements. The recommended dose of the B9 vitamin folate is 400 µg/day for adolescents and non-pregnant adults, and consumption above the recommended daily allowance is not considered to be detrimental. However, the effects of excess folate have not been tested in adolescence when neuro and endocrine development suggest possible vulnerability to long-term cognitive effects. We administered folate-supplemented (8.0 mg folic acid/kg diet) or control lab chow (2.7 mg folic acid/kg diet) to rats ad libitum from 30 to 60 days of age, and subsequently tested their motivation and learning and memory in the Morris water maze. We found that folate-supplemented animals had deficits in motivation and spatial memory, but they showed no changes of the learning- and memory-related molecules growth-associated protein-43 or Gs-α subunit protein in the hippocampus. They had decreased levels of thyroxine (T4) and triiodothyronine (T3) in the periphery and decreased protein levels of thyroid receptor-α1 and -α2 (TRα1 and TRα2) in the hippocampus. The latter may have been due to an observed increase of cytosine-phosphate-guanosine island methylation within the putative thyroid hormone receptor-α promoter, which we have mapped for the first time in the rat. Overall, folate supplementation in adolescence led to motivational and spatial memory deficits that may have been mediated by suppressed thyroid hormone function in the periphery and hippocampus. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  2. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    USDA-ARS?s Scientific Manuscript database

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  3. Neonatal hydrocephalus is a result of a block in folate handling and metabolism involving 10-formyltetrahydrofolate dehydrogenase.

    PubMed

    Naz, Naila; Jimenez, Alicia Requena; Sanjuan-Vilaplana, Anna; Gurney, Megan; Miyan, Jaleel

    2016-08-01

    Folate is vital in a range of biological processes and folate deficiency is associated with neurodevelopmental disorders such as neural tube defects and hydrocephalus (HC). 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is a key regulator for folate availability and metabolic interconversion for the supply of 1-carbon groups. In previous studies, we found a deficiency of FDH in CSF associated with the developmental deficit in congenital and neonatal HC. In this study, we therefore aimed to investigate the role of FDH in folate transport and metabolism during the brain development of the congenital hydrocephalic Texas (H-Tx) rat and normal (Sprague-Dawley) rats. We show that at embryonic (E) stage E18 and E20, FDH-positive cells and/or vesicles derived from the cortex can bind methyl-folate similarly to folate receptor alpha, the main folate transporter. Hydrocephalic rats expressed diminished nuclear FDH in both liver and brain at all postnatal (P) ages tested (P5, P15, and P20) together with a parallel increase in hepatic nuclear methyl-folate at P5 and cerebral methylfolate at P15 and P20. A similar relationship was found between FDH and 5-methyl cytosine, the main marker for DNA methylation. The data indicated that FDH binds and transports methylfolate in the brain and that decreased liver and brain nuclear expression of FDH is linked with decreased DNA methylation which could be a key factor in the developmental deficits associated with congenital and neonatal HC. Folate deficiency is associated with neurodevelopmental disorders such as neural tube defects and hydrocephalus. 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is a key regulator for folate availability and metabolic interconversion. We show that FDH binds and transports methylfolate in the brain. Moreover, we found that a deficiency of FDH in the nucleus of brain and liver is linked with decreased DNA methylation which could be a key factor in the developmental deficits associated with congenital and

  4. Baseline investigations of folate status in Aboriginal and non-Aboriginal West Australians prior to the introduction of mandatory fortification.

    PubMed

    Maxwell, Susannah J; Brameld, Kate J; Bower, Caroline; D'Antoine, Heather; Hickling, Siobhan; Marley, Julia; O'Leary, Peter

    2013-02-01

    In September 2009, Australia implemented mandatory folic acid fortification of wheat flour for bread-making to reduce the incidence of neural tube defects. Our study aimed to establish baseline folate status data in Aboriginal and non-Aboriginal Western Australians. Patients who presented at a health service or collection centre for blood tests were invited to participate. One hundred and ninety-one Aboriginals and 159 non-Aboriginals were recruited between April 2008 and September 2009. Participants completed a five-minute questionnaire and had blood taken for red blood cell (RBC) folate and serum vitamin B12. Data were analysed using SPSS (version 17.0.2, SPSS Inc., Chicago, IL, USA). Ten per cent (95% confidence intervals (CI): 5, 19) of the Aboriginal women participants and 26% (95% CI: 16, 40) of men had RBC folate concentrations below 250 ng/mL, the cut-off associated with folate deficiency. None of the non-Aboriginal women (95% CI: 0, 4) and 4% of the non-Aboriginal men (95% CI: 2, 12) had RBC folate concentrations below 250 ng/mL. All participants were vitamin B12 replete. None of the 96 Aboriginal and 8% of non-Aboriginal women aged 16-44 reported consumption of supplements with a daily intake of >400 μg folic acid during the previous week. This study established a baseline of RBC folate, folate consumption and supplement use in Aboriginal and non-Aboriginal groups. We identified 10% of Aboriginal women and none of non-Aboriginal women participants with low folate concentrations. The higher prevalence of folate deficiency in Aboriginal participants suggests they are more likely to benefit from a universal program of folate fortification. © 2012 The Authors ANZJOG © 2012 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  5. Folate and epigenetic mechanisms in neural tube development and defects.

    PubMed

    Meethal, Sivan Vadakkadath; Hogan, Kirk J; Mayanil, Chandra S; Iskandar, Bermans J

    2013-09-01

    Multiple genetic and epigenetic factors involved in central nervous system (CNS) development influence the incidence of neural tube defects (NTDs). The beneficial effect of periconceptional folic acid on NTD prevention denotes a vital role for the single-carbon biochemical pathway in NTD genesis. Indeed, NTDs are associated with polymorphisms in a diversity of genes that encode folate pathway enzymes. Recent evidence suggests that CNS development and function, and consequently NTDs, are also associated with epigenetic mechanisms, many of which participate in the folate cycle and its input and output pathways. We provide an overview with select examples drawn from the authors' research.

  6. Vitamin B12 and folate during pregnancy and offspring motor, mental and social development at 2 years of age.

    PubMed

    Bhate, V K; Joshi, S M; Ladkat, R S; Deshmukh, U S; Lubree, H G; Katre, P A; Bhat, D S; Rush, E C; Yajnik, C S

    2012-04-01

    Insufficiency of vitamin B12 (B12) and folate during pregnancy can result in low concentrations in the fetus and have adverse effects on brain development. We investigated the relationship between maternal B12 and folate nutrition during pregnancy and offspring motor, mental and social development at two years of age (2 y). Mothers (n = 123) and their offspring (62 girls, 61 boys) from rural and middle-class urban communities in and around Pune city were followed through pregnancy up to 2 y. Maternal B12 and folate concentrations were measured at 28 and 34 weeks of gestation. At 2 y, the Developmental Assessment Scale for Indian Infants was used to determine motor and mental developmental quotients and the Vineland Social Maturity Scale for the social developmental quotient. Overall, 62% of the mothers had low B12 levels (<150 pmol/l) and one mother was folate deficient during pregnancy. Maternal B12 at 28 and 34 weeks of gestation was associated with offspring B12 at 2 y (r = 0.29, r = 0.32, P < 0.001), but folate was not associated with offspring folate. At 2 y, motor development was associated with maternal folate at 28 and 34 weeks of gestation. Mental and social development quotients were associated positively with head circumference and negatively with birth weight. In addition, pregnancy B12 and folate were positively associated with mental and social development quotients. Maternal B12 and folate during intrauterine life may favorably influence brain development and function. Pregnancy provides a window of opportunity to enhance fetal psychomotor (motor and mental) development.

  7. Folate distribution in barley (Hordeum vulgare L.), common wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum durum Desf.) pearled fractions.

    PubMed

    Giordano, Debora; Reyneri, Amedeo; Blandino, Massimo

    2016-03-30

    Wholegrain cereals are an important source of folates. In this study, total folate was analysed in pearled fractions of barley and wheat cultivars employing AOAC Official Method 2004.05. In particular, the distribution of folate in the kernels was evaluated in three barley cultivars (two hulled types and a hulless one as well as two- and six-row types) and in a common and a durum wheat cultivar. A noticeable variation in the folate content was observed between the barley [653-1033 ng g(-1) dry matter (DM)] and wheat cultivars (1024-1119 ng g(-1) DM). The highest folate content was detected in the hulless barley cultivar (1033 ng g(-1) DM). A significant reduction in total folate, from 63% to 86%, was observed in all cultivars from the outermost to the innermost pearled fractions. Results proved that folates are mainly present in the germ and in the outer layers of the kernel. This is the first study reporting the folate distribution in kernels of both common and durum wheat and in a hulless barley cultivar. Results suggest that the pearling process could be useful for the selection of intermediate fractions that could be used in order to develop folate-enhanced ingredients and products. © 2015 Society of Chemical Industry.

  8. Large –scale wheat flour folic acid fortification program increases plasma folate levels among women of reproductive age in urban Tanzania

    PubMed Central

    Abioye, Ajibola I.; Ulenga, Nzovu; Msham, Salum; Kaishozi, George; Gunaratna, Nilupa S; Mwiru, Ramadhani; Smith, Erin; Dhillon, Christina Nyhus; Spiegelman, Donna; Fawzi, Wafaie

    2017-01-01

    There is widespread vitamin and mineral deficiency problem in Tanzania with known deficiencies of at least vitamin A, iron, folate and zinc, resulting in lasting negative consequences especially on maternal health, cognitive development and thus the nation’s economic potential. Folate deficiency is associated with significant adverse health effects among women of reproductive age, including a higher risk of neural tube defects. Several countries, including Tanzania, have implemented mandatory fortification of wheat and maize flour but evidence on the effectiveness of these programs in developing countries remains limited. We evaluated the effectiveness of Tanzania’s food fortification program by examining folate levels for women of reproductive age, 18–49 years. A prospective cohort study with 600 non-pregnant women enrolled concurrent with the initiation of food fortification and followed up for 1 year thereafter. Blood samples, dietary intake and fortified foods consumption data were collected at baseline, and at 6 and 12 months. Plasma folate levels were determined using a competitive assay with folate binding protein. Using univariate and multivariate linear regression, we compared the change in plasma folate levels at six and twelve months of the program from baseline. We also assessed the relative risk of folate deficiency during follow-up using log-binomial regression. The mean (±SE) pre–fortification plasma folate level for the women was 5.44-ng/ml (±2.30) at baseline. These levels improved significantly at six months [difference: 4.57ng/ml (±2.89)] and 12 months [difference: 4.27ng/ml (±4.18)]. Based on plasma folate cut-off level of 4 ng/ml, the prevalence of folate deficiency was 26.9% at baseline, and 5% at twelve months. One ng/ml increase in plasma folate from baseline was associated with a 25% decreased risk of folate deficiency at 12 months [(RR = 0.75; 95% CI = 0.67–0.85, P<0.001]. In a setting where folate deficiency is high, food

  9. A comparison of caveolae and caveolin-1 to folate receptor α in retina and retinal pigment epithelium

    PubMed Central

    Bridges, Christy C.; El-Sherbeny, Amira; Roon, Penny; Ola, M. Shamsul; Kekuda, Ramesh; Ganapathy, Vadivel; Cameron, Richard S.; Cameron, Patricia L.

    2015-01-01

    Summary Caveolae are flask-shaped membrane invaginations present in most mammalian cells. They are distinguished by the presence of a striated coat composed of the protein, caveolin. Caveolae have been implicated in numerous cellular processes, including potocytosis in which caveolae are hypothesized to co-localize with folate receptor α and participate in folate uptake. Our laboratory has recently localized folate receptor α to the basolateral surface of the retinal pigment epithelium (RPE). It is present also in many other cells of the retina. In the present study, we asked whether caveolae were present in the RPE, and if so, whether their pattern of distribution was similar to folate receptor α. We also examined the distribution pattern of caveolin-1, which can be a marker of caveolae. Extensive electron microscopical analysis revealed caveolae associated with endothelial cells. However, none were detected in intact or cultured RPE. Laser scanning confocal microscopical analysis of intact RPE localized caveolin-1 to the apical and basal surfaces, a distribution unlike folate receptor α. Western analysis confirmed the presence of caveolin-1 in cultured RPE cells and laser scanning confocal microscopy localized the protein to the basal plasma membrane of the RPE, a distribution like that of folate receptor α. This distribution was confirmed by electron microscopic immunolocalization. The lack of caveolae in the RPE suggests that these structures may not be essential for folate internalization in the RPE. PMID:11508338

  10. Role of folate status and methylenetetrahydrofolate reductase genotype on the toxicity and outcome of induction chemotherapy in children with acute lymphoblastic leukemia.

    PubMed

    Roy Moulik, Nirmalya; Kumar, Archana; Agrawal, Suraksha; Awasthi, Shally; Mahdi, Abbas Ali; Kumar, Ashutosh

    2015-05-01

    The effect of serum folate levels and methylenetetrahydrofolate reductase (MTHFR) genotype on complications and outcome of induction chemotherapy in 150 children with acute lymphoblastic leukemia (ALL) was studied. Folate deficiency in 26% at baseline was more common in children with MTHFR 677 mutations. Folate deficient children had a higher incidence of neutropenia (p = 0.03), thrombocytopenia (p = 0.02) and febrile neutropenia (p = 0.01) and higher transfusion requirement during induction compared to folate sufficient children. Sepsis related induction deaths were more frequent in folate deficient children (p = 0.02) during induction. Children with 677 and 1298 mutations had a higher incidence of cytopenias (p = 0.01) and mucositis (p = 0.007), the risks of which increased with concomitant folate deficiency. A significant fall in folate levels was observed post-induction (p = 0.02), most markedly in mutant 677 genotypes. Multivariate analysis revealed associations of baseline folate deficiency with low counts at day 14 (p = 0.001) and MTHFR 1298 mutations with mucositis (p = 0.02).

  11. Blood folate concentrations among women of childbearing age by race/ethnicity and acculturation, NHANES 2001-2010.

    PubMed

    Marchetta, Claire M; Hamner, Heather C

    2016-01-01

    Hispanic women have higher rates of neural tube defects and report lower total folic acid intakes than non-Hispanic white (NHW) women. Total folic acid intake, which is associated with neural tube defect risk reduction, has been found to vary by acculturation factors (i.e. language preference, country of origin, or time spent in the United States) among Hispanic women. It is unknown whether this same association is present for blood folate status. The objective of this research was to assess the differences in serum and red blood cell (RBC) folate concentrations between NHW women and Mexican American (MA) women and among MA women by acculturation factors. Cross-sectional data from the 2001-2010 National Health and Nutrition Examination Survey (NHANES) were used to investigate how blood folate concentrations differ among NHW or MA women of childbearing age. The impact of folic acid supplement use on blood folate concentrations was also examined. MA women with lower acculturation factors had lower serum and RBC folate concentrations compared with NHW women and to their more acculturated MA counterparts. Consuming a folic acid supplement can minimize these disparities, but MA women, especially lower acculturated MA women, were less likely to report using supplements. Public health efforts to increase blood folate concentrations among MA women should consider acculturation factors when identifying appropriate interventions. © 2014 John Wiley & Sons Ltd.

  12. Interaction of nitrate and folate on the risk of breast cancer among postmenopausal women

    PubMed Central

    Inoue-Choi, Maki; Ward, Mary H.; Cerhan, James R.; Weyer, Peter J.; Anderson, Kristin E.; Robien, Kim

    2012-01-01

    Ingested nitrate can be endogenously reduced to nitrite, which may form N-nitroso compounds, known potent carcinogens. However, some studies have reported no or inverse associations between dietary nitrate intake and cancer risk. These associations may be confounded by a protective effect of folate, which plays a vital role in DNA repair. We evaluated the interaction of dietary and water nitrate intake with total folate intake on breast cancer risk in the Iowa Women’s Health Study. Dietary intake was assessed at study baseline. Nitrate intake from public water was assessed using a historical database on Iowa municipal water supplies. After baseline exclusions, 34,388 postmenopausal women and 2,875 incident breast cancers were included. Overall, neither dietary nor water nitrate was associated with breast cancer risk. Among those with folate intake ≥400 μg/d, breast cancer risk was significantly increased in public water users with the highest nitrate quintile (HR=1.40, 95%CI=1.05–1.87) and private well users (HR=1.38, 95%CI=1.05–1.82) compared to public water users with the lowest nitrate quintile; in contrast, there was no association among those with lower folate intake. Our findings do not support a previous report of increased risk of breast cancer among individuals with high dietary nitrate but low folate intake. PMID:22642949

  13. Interaction of nitrate and folate on the risk of breast cancer among postmenopausal women.

    PubMed

    Inoue-Choi, Maki; Ward, Mary H; Cerhan, James R; Weyer, Peter J; Anderson, Kristin E; Robien, Kim

    2012-01-01

    Ingested nitrate can be endogenously reduced to nitrite, which may form N-nitroso compounds, known potent carcinogens. However, some studies have reported no or inverse associations between dietary nitrate intake and cancer risk. These associations may be confounded by a protective effect of folate, which plays a vital role in DNA repair. We evaluated the interaction of dietary and water nitrate intake with total folate intake on breast cancer risk in the Iowa Women's Health Study. Dietary intake was assessed at study baseline. Nitrate intake from public water was assessed using a historical database on Iowa municipal water supplies. After baseline exclusions, 34,388 postmenopausal women and 2,875 incident breast cancers were included. Overall, neither dietary nor water nitrate was associated with breast cancer risk. Among those with folate intake ≥400 μg/day, breast cancer risk was significantly increased in public water users with the highest nitrate quintile (HR = 1.40, 95% CI = 1.05-1.87) and private well users (HR = 1.38, 95% CI = 1.05-1.82) compared to public water users with the lowest nitrate quintile; in contrast, there was no association among those with lower folate intake. Our findings do not support a previous report of increased risk of breast cancer among individuals with high dietary nitrate but low folate intake.

  14. Brief Report: Are Autistic-Behaviors in Children Related to Prenatal Vitamin Use and Maternal Whole Blood Folate Concentrations?

    ERIC Educational Resources Information Center

    Braun, Joseph M.; Froehlich, Tanya; Kalkbrenner, Amy; Pfeiffer, Christine M.; Fazili, Zia; Yolton, Kimberly; Lanphear, Bruce P.

    2014-01-01

    Prenatal multivitamin/folic acid supplement use may reduce the risk of autism spectrum disorders. We investigated whether 2nd trimester prenatal vitamin use and maternal whole blood folate (WBF) concentrations were associated with Social Responsiveness Scale (SRS) scores at 4-5 years of age in a prospective cohort of 209 mother-child pairs. After…

  15. 78 FR 117 - Certain Reduced Folate Nutraceutical Products and L- Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-857] Certain Reduced Folate Nutraceutical Products and L- Methylfolate Raw Ingredients Used Therein: Notice of Commission Determination Not To Review an... States of certain folate nutraceutical products and l-methylfolate raw ingredients used therein that...

  16. 77 FR 57115 - Certain Reduced Folate; Nutraceutical Products and L-Methylfolate Raw Ingredients Used Therein...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... and L-Methylfolate Raw Ingredients Used Therein; Notice of Receipt of Complaint; Solicitation of... entitled Certain Reduced Folate Nutraceutical Products and L-methylfolate Raw Ingredients Used Therein, DN... importation of certain reduced folate nutraceutical products and L- methylfolate raw ingredients used therein...

  17. Relationships of maternal folate and vitamin B12 status during pregnancy with perinatal depression: The GUSTO study.

    PubMed

    Chong, Mary F F; Wong, Jocelyn X Y; Colega, Marjorelee; Chen, Ling-Wei; van Dam, Rob M; Tan, Chuen Seng; Lim, Ai Lin; Cai, Shirong; Broekman, Birit F P; Lee, Yung Seng; Saw, Seang Mei; Kwek, Kenneth; Godfrey, Keith M; Chong, Yap Seng; Gluckman, Peter; Meaney, Michael J; Chen, Helen

    2014-08-01

    Studies in the general population have proposed links between nutrition and depression, but less is known about the perinatal period. Depletion of nutrient reserves throughout pregnancy and delayed postpartum repletion could increase the risk of perinatal depression. We examined the relationships of plasma folate and vitamin B12 concentrations during pregnancy with perinatal depression. At 26th-28th weeks of gestation, plasma folate and vitamin B12 were measured in women from the GUSTO mother-offspring cohort study in Singapore. Depressive symptoms were measured with the Edinburgh Postnatal Depression Scale (EPDS) during the same period and at 3-month postpartum. EPDS scores of ≥15 during pregnancy or ≥13 at postpartum were indicative of probable depression. Of 709 women, 7.2% (n = 51) were identified with probable antenatal depression and 10.4% (n = 74) with probable postnatal depression. Plasma folate concentrations were significantly lower in those with probable antenatal depression than those without (mean ± SD; 27.3 ± 13.8 vs 40.4 ± 36.5 nmol/L; p = 0.011). No difference in folate concentrations was observed in those with and without probable postnatal depression. In adjusted regression models, the likelihood of probable antenatal depression decreases by 0.69 for every unit variation (increase) in folate (OR = 0.69 per SD increase in folate; 95% CI: 0.52, 0.94). Plasma vitamin B12 concentrations were not associated with perinatal depression. Lower plasma folate status during pregnancy was associated with antenatal depression, but not with postnatal depression. Replication in other studies is needed to determine the direction of causality between low folate and antenatal depression. NCT01174875. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and thymidylate synthase, dietary folate intake, and the risk of leukemia in adults.

    PubMed

    Liu, Ping; Zhang, Min; Xie, Xing; Jin, Jie; Holman, C D'Arcy J

    2016-03-01

    The 5,10-methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) are critical enzymes in folate metabolism. Previous studies have reported conflicting results on the associations between MTHFR/TS polymorphisms and adult leukemia risk, which may due to the lack of information on folate intake. We investigated the risks of adult leukemia with genetic polymorphisms of folate metabolic enzymes (MTHFR C677T, A1298C, and TS) and evaluated if the associations varied by dietary folate intake from a multicenter case-control study conducted in Chinese. This study comprised 442 incident adult leukemia cases and 442 outpatient controls, individually matched to cases by gender, birth quinquennium, and study site. Genotypes were determined by a polymerase chain reaction (PCR) or PCR-based restriction fragment length polymorphism assay. Dietary folate intake was assessed by face-to-face interviews using a validated food-frequency questionnaire. The MTHFR 677TT genotype conferred a significant higher risk of leukemia in males than in females and exhibited an increased risk of acute myeloid leukemia (AML) but a decreased risk of acute lymphoblastic leukemia (ALL). The MTHFR 1298AC genotype appeared to decrease the risks of leukemia in both genders, in AML and ALL. Stratified analysis by dietary folate intake showed the increased risks of leukemia with the MTHFR 677TT and TS 2R3R/2R2R genotypes were only significant in individuals with low folate intake. A significant interaction between TS polymorphism and dietary folate intake was observed (P = 0.03). This study suggests that dietary folate intake and gender may modify the associations between MTHFR/TS polymorphisms and adult leukemia risk.

  19. Conjugating folate on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles using click chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xiaofang, E-mail: xfshen@jiangnan.edu.cn; Ge, Zhaoqiang; Pang, Yuehong

    2015-02-15

    Gold-coated magnetic core@shell nanoparticles, which exhibit magneto-optical properties, not only enhance the chemical stability of core and biocompatibility of surface, but also provide a combination of multimodal imaging and therapeutics. The conjugation of these tiny nanoparticles with specific biomolecules allows researchers to target the desired location. In this paper, superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles were synthesized and functionalized with the azide group on the surface by formation of self-assembled monolayers. Folate (FA) molecules, non-immunogenic target ligands for cancer cells, are conjugated with alkyne and then immobilized on the azide-terminated Fe{sub 3}O{sub 4}@Au nanoparticles through copper(I)-catalyzed azide-alkyne cycloaddition (click reaction). Myelogenousmore » leukemia K562 cells were used as a folate receptor (FR) model, which can be targeted and extracted by magnetic field after interaction with the Fe{sub 3}O{sub 4}@Au–FA nanoparticles. - Graphical abstract: Self-assembled azide-terminated group on superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles followed by click reaction with alkyne-functionalized folate, allowing the nanoparticles target folate receptor of cancer cells. - Highlights: • Azidoundecanethiol was coated on the superparamagnetic Fe{sub 3}O{sub 4}@Au nanoparticles by forming self-assembled monolayers. • Alkyne-terminated folate was synthesized from a reaction between the amine and the carboxylic acid. • Conjugation of Fe{sub 3}O{sub 4}@Au nanoparticles with folate was made by copper-catalyzed azide-alkyne cycloaddition click chemistry.« less

  20. Periconceptional iron and folate status is inadequate among married, nulliparous women in rural Bangladesh.

    PubMed

    Khambalia, Amina; O'Connor, Deborah L; Zlotkin, Stanley

    2009-06-01

    Recent evidence suggests that poor fetal growth is associated with preconception anemia and first trimester iron deficiency. Periconceptional iron and folate supplementation may improve the effectiveness of iron supplementation programs during pregnancy by treating preexisting anemia, building iron stores, and reducing risk of neural tube defects. Our objective in this study was to describe the iron and folate status of married, nulliparous women in rural Bangladesh from March to May 2007. Of 272 women, 37% were anemic (hemoglobin <120 g/L), 13% were folate deficient (plasma folate 4.4 mg/L), 11% were iron deficient and anemic, and 81% were estimated to have <500 mg of iron stores. Risk of anemia was 4 times greater among nonstudents than students (95% CI: 1.23, 14.69), twice as likely among women with a previous miscarriage compared with those who had never been pregnant (95% CI: 1.04, 5.47), and 6 times greater among iron-deficient compared to iron-replete women (95% CI: 2.76, 11.81). Adolescents (folate status. As they enter pregnancy, more than one-third will be anemic, >80% will have inadequate iron stores, and more than one-tenth will be folate deficient. Further research is needed on risk factors of poor nutritional status before the start of a woman's childbearing years.

  1. Folate supplementation differently affects uracil content in DNA in the mouse colon and liver

    USDA-ARS?s Scientific Manuscript database

    High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C5...

  2. The effect of folate supplements on 6-mercaptopurine remission maintenance therapy in childhood leukaemia.

    PubMed Central

    Lennard, L.; Lilleyman, J. S.; Maddocks, J. L.

    1986-01-01

    The effect of folic acid supplements on 6-mercaptopurine remission maintenance therapy in lymphoblastic leukaemia (ALL) was investigated in a retrospective longitudinal study of 10 children. Red cell concentrations of 6-thioguanine nucleotide, a cytotoxic metabolite of 6-mercaptopurine, were measured and the peripheral neutrophil count was used as an index of myelosuppression. During the control period of the study there were significant correlations between 6-mercaptopurine dose and 6-thioguanine nucleotide concentration (rs = 0.59, P less than 0.0005) and between 6-thioguanine nucleotide concentration and the peripheral neutrophil count at 14 days (rs = 0.58, P less than 0.0005). These relationships were absent when the same children were subsequently taking folate supplements. Also when taking folate supplements the children tolerated significantly more 6-mercaptopurine (P less than 0.005) for a significantly longer time (P less than 0.005) before neutropenia developed. There was no significant difference in red cell 6-thioguanine nucleotide concentration in the absence and presence of folate supplements. These findings suggest that folate supplements may interfere with remission maintenance therapy in ALL. PMID:3456241

  3. Cognitive Impairment in Folate-Deficient Rats Corresponds to Depleted Brain Phosphatidylcholine and Is Prevented by Dietary Methionine without Lowering Plasma Homocysteine12

    PubMed Central

    Troen, Aron M.; Chao, Wei-Hsun; Crivello, Natalia A.; D'Anci, Kristen E.; Shukitt-Hale, Barbara; Smith, Don E.; Selhub, Jacob; Rosenberg, Irwin H.

    2008-01-01

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely thought to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate deficiency in cognitive dysfunction, we fed rats folate-deficient diets (0 mg FA/kg diet) with or without supplemental L-methionine for 10 wk, followed by cognitive testing and tissue collection for hematological and biochemical analysis. Folate deficiency with normal methionine impaired spatial memory and learning; however, this impairment was prevented when the folate-deficient diet was supplemented with methionine. Under conditions of folate deficiency, brain membrane content of the methylated phospholipid phosphatidylcholine was significantly depleted, which was reversed with supplemental methionine. In contrast, neither elevated plasma homocysteine nor brain S-adenosylmethionine and S-adenosylhomocysteine concentrations predicted cognitive impairment and its prevention by methionine. The correspondence of cognitive outcomes to changes in brain membrane phosphatidylcholine content suggests that altered phosphatidylcholine and possibly choline metabolism might contribute to the manifestation of folate deficiency-related cognitive dysfunction. PMID:19022979

  4. 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors

    PubMed Central

    Wang, Lei; Wallace, Adrianne; Raghavan, Sudhir; Deis, Siobhan M.; Wilson, Mike R.; Yang, Si; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Orr, Steven; George, Christina; O’Connor, Carrie; Hou, Zhanjun; Mitchell-Ryan, Shermaine; Dann, Charles E.; Matherly, Larry H.; Gangjee, Aleem

    2016-01-01

    2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]-pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or β (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and β over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting. PMID:26317331

  5. The effect of folate status on the uptake of physiologically relevant compounds by Caco-2 cells.

    PubMed

    Tavares, Sandra; Sousa, Joana; Gonçalves, Pedro; Araújo, João R; Martel, Fátima

    2010-08-25

    The aim of this work was to investigate the effect of folate status on the uptake of several physiologically relevant substances by Caco-2 cells. For this, Caco-2 cells cultured in high-folate conditions (HF) and low-folate conditions (LF) were compared. Growth rates of HF and LF Caco-2 cells were similar. However, proliferation rate of LF cells was greater than that of HF cells during the first 2days of culture and slightly smaller thereafter, viability of LF cells was greater than that of HF cells, and apoptosis index was similar in both cell cultures. We verified that in LF cells, comparatively to HF cells: (1) uptake of [3H]folic acid is upregulated, via an increase in the Vmax of uptake; (2) uptake of [3H]deoxy-glucose, [3H]O-methyl-glucose and [3H]1-methyl-4-phenylpyridinium (MPP+) is downregulated, via a decrease in the Vmax of uptake; additionally, a reduction in Km was observed for [3H]O-methyl-glucose; (3) uptake of [3H]5-hydroxytryptamine and [14C]butyrate is not changed; and (4) the steady-state mRNA levels of the folic acid transporters RFC (reduced folate carrier), PCFT (proton-coupled folate transporter) and FRalpha (folate receptor alpha), of the organic cation transporter OCT1 (organic cation transporter type 1), of the glucose transporter GLUT2 (facilitative glucose transporter type 2) and of the butyrate transporter MCT1 (monocarboxylate transporter type 1) were decreased. In conclusion, folate deficiency produces substrate-specific changes in the uptake of bioactive compounds by Caco-2 cells. Moreover, these changes are associated with alterations in the mRNA levels of specific transporters for these compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Serum Folate Shows an Inverse Association with Blood Pressure in a Cohort of Chinese Women of Childbearing Age: A Cross-Sectional Study

    PubMed Central

    Shen, Minxue; Tan, Hongzhuan; Zhou, Shujin; Retnakaran, Ravi; Smith, Graeme N.; Davidge, Sandra T.; Trasler, Jacquetta; Walker, Mark C.; Wen, Shi Wu

    2016-01-01

    Background It has been reported that higher folate intake from food and supplementation is associated with decreased blood pressure (BP). The association between serum folate concentration and BP has been examined in few studies. We aim to examine the association between serum folate and BP levels in a cohort of young Chinese women. Methods We used the baseline data from a pre-conception cohort of women of childbearing age in Liuyang, China, for this study. Demographic data were collected by structured interview. Serum folate concentration was measured by immunoassay, and homocysteine, blood glucose, triglyceride and total cholesterol were measured through standardized clinical procedures. Multiple linear regression and principal component regression model were applied in the analysis. Results A total of 1,532 healthy normotensive non-pregnant women were included in the final analysis. The mean concentration of serum folate was 7.5 ± 5.4 nmol/L and 55% of the women presented with folate deficiency (< 6.8 nmol/L). Multiple linear regression and principal component regression showed that serum folate levels were inversely associated with systolic and diastolic BP, after adjusting for demographic, anthropometric, and biochemical factors. Conclusions Serum folate is inversely associated with BP in non-pregnant women of childbearing age with high prevalence of folate deficiency. PMID:27182603

  7. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging.

    PubMed

    Liu, Jianxin; Shang, Tingting; Wang, Fengjuan; Cao, Yang; Hao, Lan; Ren, JianLi; Ran, Haitao; Wang, Zhigang; Li, Pan; Du, Zhiyu

    2017-01-01

    The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1'-dioctadecyl-3,3,3',3' -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors.

  8. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging

    PubMed Central

    Liu, Jianxin; Shang, Tingting; Wang, Fengjuan; Cao, Yang; Hao, Lan; Ren, JianLi; Ran, Haitao; Wang, Zhigang; Li, Pan; Du, Zhiyu

    2017-01-01

    The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1′-dioctadecyl-3,3,3′,3′ -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors. PMID:28184161

  9. Deleterious Effects of Chronic Folate Deficiency in the Ts65Dn Mouse Model of Down Syndrome

    PubMed Central

    Helm, Susan; Blayney, Morgan; Whited, Taylor; Noroozi, Mahjabin; Lin, Sen; Kern, Semira; Green, David; Salehi, Ahmad

    2017-01-01

    Folate is an important B vitamin naturally found in the human diet and plays a critical role in methylation of nucleic acids. Indeed, abnormalities in this major epigenetic mechanism play a pivotal role in the pathogenesis of cognitive deficit and intellectual disability in humans. The most common cause of cognitive dysfunction in children is Down syndrome (DS). Since folate deficiency is very common among the pediatric population, we questioned whether chronic folate deficiency (CFD) exacerbates cognitive dysfunction in a mouse model of DS. To test this, adult Ts65Dn mice and their disomic littermates were chronically fed a diet free of folic acid while preventing endogenous production of folate in the digestive tract for a period of 8 weeks. Our results show that the Ts65Dn mouse model of DS was significantly more vulnerable to CFD in terms of plasma homocysteine and N5-methyltetrahydrofolate (5-MTHF) levels. Importantly, these changes were linked to degenerative alterations in hippocampal dendritic morphology and impaired nest building behavior in Ts65Dn mice. Based on our results, a rigorous examination of folate intake and its metabolism in individuals with DS is warranted. PMID:28649192

  10. Tea consumption is not associated with reduced plasma folate concentration among Chinese pregnant women.

    PubMed

    Liu, Jufen; Jin, Lei; Zhang, Yali; Zhang, Le; Li, Zhiwen; Wang, Linlin; Ye, Rongwei; Ren, Aiguo

    2015-09-01

    The aim of this study was to evaluate the relationship between tea consumption and plasma folate concentration in populations with high and low prevalence of neural tube defects (NTDs) in China. Cross-sectional survey was conducted in three cities/counties in China, in which 1724 pregnant women during early second trimester were recruited and interviewed about tea consumption and folic acid use in 2011 to 2012. A total of 5-ml nonfasting blood sample was collected and plasma folate concentration was determined by microbiological assay. Approximately 16.2% of the women reported that they had ever drank tea during and before the current pregnancy, women with higher educational level, and those who resided in urban were more likely to drink tea. Most of them prefer green tea (55.2%); 13.6% of women drank tea ">6 times/week," and 29.0% of them drank "less than once a week." The median of plasma folate concentration was 48.7 nmol/L in women who drank tea while it is 45.2 nmol/L in women who did not drink tea, with no statistical difference. The results showed there was no association between tea drinking and plasma folate concentration in Chinese pregnant women stratified by folic acid supplementation and other selected characteristics. Low level of tea drinking is not associated with decreased plasma folate concentration in the Chinese populations with high and low prevalence of NTDs. © 2015 Wiley Periodicals, Inc.

  11. Plasma folate levels and associated factors in women planning to become pregnant in a population with high prevalence of neural tube defects.

    PubMed

    Ma, Rui; Wang, Linlin; Jin, Lei; Li, Zhiwen; Ren, Aiguo

    2017-07-17

    Optimal blood folate levels of women before pregnancy are critical to the prevention of neural tube defects (NTDs). However, few studies have focused on blood folate levels of women planning to become pregnant. The aims of this study were to assess plasma folate levels in women who planned to become pregnant in a population with high prevalence of NTDs, to identify factors associated with plasma folate levels, and to evaluate the risk of NTDs at the population level. A total of 2065 women were enrolled at the time of premarital health check-up in two rural counties in northern China from November 2009 to December 2012. Fasting venous blood samples were collected and plasma folate concentrations were measured by microbiological method. The overall median of plasma folate was 10.5 nmol/L. 50% of the women had a plasma folate level below 10.5 nmol/L, a cutoff for megaloblastic anemia, and 88% below 18 nmol/L, a proposed optimal plasma folate level for the prevention of NTDs. Folic acid supplementation was the only factor to be associated with plasma folate concentrations, but only 1.9% of the women reported having taken folic acid supplements. A population risk of 29.3 NTD cases per 10,000 births was predicted. Women who planned to become pregnant had very low plasma folate in the population. Folic acid supplementation was the only factor to be associated with a high plasma folate concentration. High NTD risk would remain if women would get pregnant without having taken folic acid supplements. Birth Defects Research 109:1039-1047, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. The targeted behavior of folate-decorated N-succinyl-N'-octyl chitosan evaluated by NIR system in mouse model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyan; Deng, Dawei; Chen, Haiyan; Qian, Zhiyu; Gu, Yueqing

    2010-11-01

    The development of more selective delivery systems for cancer diagnosis and chemotherapy is one of the most important goals of current anticancer research. The purpose of this study is to construct and evaluate the folate-decorated, self-assembled nanoparticles as candidates to deliver near infrared fluorescent dyes into tumors and to investigate the mechanisms underlying the tumor targeting with folate-decorated, self-assembled nanoparticles. Folate-decorated N-succinyl-N'-octyl chitosan (folate-SOC) were synthesized. The chemical modification chitosan could self-assemble into stable micelles in aqueous medium. Micelle size determined by size analysis was around 140 nm in a phosphate-buffered saline (PBS, PH 7.4). Folate-SOC could maintain their structure for up to 15 days in PBS. Near infrared dye ICG-Der-01 as a mode drug was loaded in the micelles, and the entrapment efficiency (EE) and drug loading (DL) were investigated. The targeted behavior of folate-SOC was evaluated by near-infrared fluorescence imaging in vivo on different groups of denuded mice, with A549 or Bel-7402 tumors. The optical imaging results indicated that folated-decorated SOC showed an excellent tumor specificity in Bel-7402 tumor-bearing mice, and weak tumor specificity in A549 tumor bearing mice. We believe that this work can provide insight for the engineering of nanoparticles and be extended to cancer therapy and diagnosis so as to deliver multiple therapeutic agents and imaging probes at high local concentrations.

  13. Effect of folate deficiency on promoter methylation and gene expression of Esr1, Cav1, and Elavl1, and its influence on spermatogenesis.

    PubMed

    Yuan, Hong-Fang; Zhao, Kai; Zang, Yu; Liu, Chun-Yan; Hu, Zhi-Yong; Wei, Jia-Jing; Zhou, Ting; Li, Ying; Zhang, Hui-Ping

    2017-04-11

    This study aims to investigate the effect of folate deficiency on the male reproductive function and the underlying mechanism. A total of 269 screened participants from 421 recruitments were enrolled in this study. An animal model of folate deficiency was constructed. Folate concentration was measured in the ejaculate, and its association with semen parameters was then determined. The expression and promoter methylation status of ESR1, CAV1, and ELAVL1 were also evaluated. Results showed that seminal plasma folate level was significantly lower among subjects with azoospermia than those with normozoospermia. Low folate level was significantly correlated with low sperm concentration in men with normozoospermia. Folate deficiency significantly reduced the expression of ESR1, CAV1, and ELAVL1, which are critical to spermatogenesis. However, low folate levels did not increase the methylation levels of the promoter regions of ESR1, CAV1, and ELAVL1 in human sperm DNA. Thus, folate deficiency impairs spermatogenesis may partly due to inhibiting the expression of these genes. Thus future research should determine the significance of sufficient folate status in male fertilization and subsequent pregnancy outcomes.

  14. Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease

    PubMed Central

    Cario, Holger; Smith, Desirée E.C.; Blom, Henk; Blau, Nenad; Bode, Harald; Holzmann, Karlheinz; Pannicke, Ulrich; Hopfner, Karl-Peter; Rump, Eva-Maria; Ayric, Zuleya; Kohne, Elisabeth; Debatin, Klaus-Michael; Smulders, Yvo; Schwarz, Klaus

    2011-01-01

    The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. PMID:21310277

  15. Exposure to solar ultraviolet radiation is associated with a decreased folate status in women of childbearing age.

    PubMed

    Borradale, D; Isenring, E; Hacker, E; Kimlin, M G

    2014-02-05

    In vitro studies indicate that folate in collected human blood is vulnerable to degradation after exposure to ultraviolet (UV) radiation. This has raised concerns about folate depletion in individuals with high sun exposure. Here, we investigate the association between personal solar UV radiation exposure and serum folate concentration, using a three-week prospective study that was undertaken in females aged 18-47years in Brisbane, Australia (153 E, 27 S). Following two weeks of supplementation with 500μg of folic acid daily, the change in serum folate status was assessed over a 7-day period of measured personal sun exposure. Compared to participants with personal UV exposures of <200 Joules per day, participants with personal UV exposures of 200-599 and >600 Joules per day had significantly higher depletion of serum folate (p=0.015). Multivariable analysis revealed personal UV exposure as the strongest predictor accounting for 20% of the overall change in serum folate (Standardised B=-0.49; t=-3.75; p=<0.01). These data show that increasing solar UV radiation exposures reduces the effectiveness of folic acid supplementation. The consequences of this association may be most pronounced for vulnerable individuals, such as women who are pregnant or of childbearing age with high sun exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Polymorphisms in folate-metabolizing enzymes and response to 5-fluorouracil among patients with stage II or III rectal cancer (INT-0144; SWOG 9304).

    PubMed

    Ulrich, Cornelia M; Rankin, Cathryn; Toriola, Adetunji T; Makar, Karen W; Altug-Teber, Özge; Benedetti, Jacqueline K; Holmes, Rebecca S; Smalley, Stephen R; Blanke, Charles D; Lenz, Heinz-Josef

    2014-11-01

    Recurrence and toxicity occur commonly among patients with rectal cancer who are treated with 5-fluorouracil (5-FU). The authors hypothesized that genetic variation in folate-metabolizing genes could play a role in interindividual variability. The objective of the current study was to evaluate the associations between genetic variants in folate-metabolizing genes and clinical outcomes among patients with rectal cancer treated with 5-FU. The authors investigated 8 functionally significant polymorphisms in 6 genes (methylenetetrahydrofolate reductase [MTHFR] [C677T, A1298C], SLC19A1 [G80A], SHMT1 [C1420T], dihydrofolate reductase [DHFR] [Del19bp], TS 1494del,and TSER) involved in folate metabolism in 745 patients with TNM stage II or III rectal cancer enrolled in a phase 3 adjuvant clinical trial of 3 regimens of 5-FU and radiotherapy (INT-0144 and SWOG 9304). There were no statistically significant associations noted between polymorphisms in any of the genes and overall survival, disease-free survival (DFS), and toxicity in the overall analyses. Nevertheless, there was a trend toward worse DFS among patients with the variant allele of MTHFR C677T compared with wild-type, particularly in treatment arm 2, in which patients with the MTHFR C677T TT genotype had worse overall survival (hazards ratio, 1.76; 95% confidence interval, 1.06-2.93 [P = .03]) and DFS (hazards ratio, 1.84; 95% confidence interval, 1.12-3.03 [P = .02]) compared with those with homozygous wild-type. In addition, there was a trend toward reduced hematological toxicity among patients with variants of SLC19A1 G80A in treatment arm 1 (P for trend, .06) and reduced esophagitis/stomatitis noted among patients with variants of TSER in treatment arm 3 (P for trend, .06). Genetic variability in folate-metabolizing enzymes was found to be associated only to a limited degree with clinical outcomes among patients with rectal cancer treated with 5-FU. © 2014 American Cancer Society.

  17. Serum levels of folate and cobalamin in women with recurrent spontaneous abortion.

    PubMed

    Sütterlin, M; Bussen, S; Ruppert, D; Steck, T

    1997-10-01

    We evaluated the folate and cobalamin status in 29 non-pregnant women with a history of recurrent spontaneous abortion (three or more consecutive) of unknown aetiology in comparison to 29 healthy nulligravidae of similar reproductive age (controls). Serum concentrations of folate and cobalamin showed no significant differences between the two groups. No correlation between age and vitamin concentrations was found. In the study group there was a significant negative correlation of the number of previous abortions and the concentration of serum folate. Patients with at least four previous miscarriages had significantly lower serum values of folic acid than women with three abortions, but not than controls. The underlying cause of this finding remains unclear. In conclusion, the serum concentrations of folic acid and vitamin B12 are not significantly altered in women with unexplained recurrent spontaneous abortions, and an association between a deficiency of these vitamins and an increased risk of pregnancy loss appears to be questionable in the majority of gestations.

  18. Serum homocysteine, folate, vitamin B12 and total antioxidant status in vegetarian children.

    PubMed

    Ambroszkiewicz, J; Klemarczyk, W; Chełchowska, M; Gajewska, J; Laskowska-Klita, T

    2006-01-01

    The results of several studies point to the positive role of vegetarian diets in reducing the risk of diabetes, some cancers and cardiovascular diseases. However, exclusion of animal products in vegetarian diets may affect the cobalamin status and cause an elevation of the plasma homocysteine level. The aim of this study was to assess the effect of vegetarian diets on serum concentrations of homocysteine, folate, vitamin B12 and total antioxidant status (TAS) in children. The study included 32 vegetarians (including 5 vegans), age 2-10 years. Dietary constituents were analyzed using a local nutritional programme. Serum homocysteine, folate and vitamin B12 were determined with fluorescence and chemiluminescence immunoassays. The concentration of TAS was measured by a colorimetric method. Average daily energy intake and the percentage of energy from protein, fat and carbohydrates in the diets of the studied children were just above or similar to the recommended amounts. It could be shown that vegetarian diets contain high concentrations of folate. In vegan diets it even exceeds the recommended dietary allowance. Mean daily intake of vitamin B12 in the studied diets was adequate but in vegans was below the recommended range. The serum concentrations of homocysteine, folate, vitamin B12 and TAS in vegetarian children remained within the physiological range. The presented data indicate that vegetarian children, contrary to adults, have enough vitamin B12 in their diet (excluding vegans) and normal serum concentrations of homocysteine, folate and vitamin B12. Therefore, in order to prevent deficiencies in the future, close monitoring of vegetarian children (especially on a vegan diet) is important to make sure that they receive adequate quantities of nutrients needed for healthy growth.

  19. Total folate and folic acid intake from foods and dietary supplements in the United States: 2003–2006123

    PubMed Central

    Dodd, Kevin W; Gahche, Jaime J; Dwyer, Johanna T; McDowell, Margaret A; Yetley, Elizabeth A; Sempos, Christopher A; Burt, Vicki L; Radimer, Kathy L; Picciano, Mary Frances

    2010-01-01

    Background: The term total folate intake is used to represent folate that occurs naturally in food as well as folic acid from fortified foods and dietary supplements. Folic acid has been referred to as a double-edged sword because of its beneficial role in the prevention of neural tube defects and yet possible deleterious effects on certain cancers and cognitive function. Previous monitoring efforts did not include folic acid from dietary supplements and are therefore not complete. Objective: Our objective was to combine data on dietary folate (as measured by two 24-h recalls) and folic acid from dietary supplements (collected with a 30-d frequency questionnaire) with the use of the bias-corrected best power method to adjust for within-person variability. Design: The National Health and Nutrition Examination Survey (NHANES) is a nationally representative, cross-sectional survey. Linear contrasts were constructed to determine differences in dietary and total folate intake for age and racial-ethnic groups by sex; prevalence of inadequate and excessive intakes is presented. Results: In 2003–2006, 53% of the US population used dietary supplements; 34.5% used dietary supplements that contained folic acid. Total folate intake (in dietary folate equivalents) was higher for men (813 ± 14) than for women (724 ± 16) and higher for non-Hispanic whites (827 ± 19) than for Mexican Americans (615 ± 11) and non-Hispanic blacks (597 ± 12); 29% of non-Hispanic black women had inadequate intakes. Total folate and folic acid intakes are highest for those aged ≥50 y, and 5% exceed the Tolerable Upper Intake Level. Conclusions: Improved total folate intake is warranted in targeted subgroups, which include women of childbearing age and non-Hispanic black women, whereas other population groups are at risk of excessive intake. PMID:19923379

  20. The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, Verne; Fry, Rebecca C.; Niculescu, Mihai D.

    Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never beenmore » thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses

  1. Confocal Raman microspectroscopic study of folate receptor-targeted delivery of 6-mercaptopurine-embedded gold nanoparticles in a single cell.

    PubMed

    Park, Jin; Jeon, Won Il; Lee, So Yeong; Ock, Kwang-Su; Seo, Ji Hye; Park, Jinho; Ganbold, Erdene-Ochir; Cho, Keunchang; Song, Nam Woong; Joo, Sang-Woo

    2012-05-01

    We investigate the cellular uptake behaviors and efficacy of folate-coated gold nanoparticles (AuNPs) for the targeted drug delivery system in human cancer cells. Folate-conjugated AuNPs embedded with a purine analogue cancer drug of 6-mercaptopurine (6MP) were assembled via a 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) coupling reaction between the amino group of 4-aminobenzenethiol (ABT) and the carboxyl group of folic acid. The assembly of folate and 6MP on AuNPs has been examined by absorption spectroscopy, transmission electron microscopy (TEM), and confocal Raman spectroscopy. The internalization of the conjugated AuNPs inside the folate receptor-positive HeLa and KB cells was checked by TEM and dark-field microscopy (DFM) combined with label-free confocal spectroscopy over the depth variable z at a micrometer resolution. DFM live cell imaging of folate-conjugated AuNPs in HeLa cells indicated that the targeted AuNPs appeared to attach on the cell surfaces and enter into the cell with an hour. The cell viability was also compared to estimate the efficacy of folate-conjugated AuNP delivery systems. Folate receptor-targeted AuNP systems appeared to decrease cancer cell viability both in vitro and in vivo more than did the use of the 6MP-coated AuNPs drug without any targeting systems. Copyright © 2012 Wiley Periodicals, Inc.

  2. Plasma folate, methylenetetrahydrofolate reductase (MTHFR), and colorectal cancer risk in three large nested case-control studies

    USDA-ARS?s Scientific Manuscript database

    Few prospective studies have examined the associations between blood levels of folate, in conjunction with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, and colorectal cancer. We evaluated the associations between plasma folate, MTHFR C677T, and A1298C, and colorectal cancer in three la...

  3. Folate and Breast Cancer: Role of Intake, Blood Levels, and Metabolic Gene Polymorphisms

    DTIC Science & Technology

    2005-07-01

    folate, and metabolic gene polymorphisms in relation to breast cancer risk: Months 1-19. b. Prepare blood samples for relevant assays: Months 1-19... gene polymorphism assays among the 184 cases and matched controls. The folate assays are on-going at this time. DNA assays will commence in the... methotrexate . Ann Oncol 13: 1915–1918, 2002 13. Toffoli G, Veronesi A, Boiocchi M, Crivellari D: MTHFR gene polymorphism and severe toxicity during

  4. Neither Folic Acid Supplementation nor Pregnancy Affects the Distribution of Folate Forms in the Red Blood Cells of Women1–3

    PubMed Central

    Hartman, Brenda A.; Fazili, Zia; Pfeiffer, Christine M.; O’Connor, Deborah L.

    2016-01-01

    It is not known whether folate metabolism is altered during pregnancy to support increased DNA and RNA biosynthesis. By using a state-of-the-art LC tandem mass spectrometry technique, the aim of this study was to investigate differences in RBC folate forms between pregnant and nonpregnant women and between nonpregnant women consuming different concentrations of supplemental folic acid. Forms of folate in RBCs were used to explore potential shifts in folate metabolism during early erythropoiesis. Total RBC folate and folate forms [tetrahydrofolate; 5-methyltetrahydrofolate (5-methyl-THF); 4α-hydroxy-5-methyl-tetrahydrofolate (an oxidation product of 5-methyl-THF); 5-formyl-tetrahydrofolate; and 5,10-methenyl-tetrahydrofolate] were measured in 4 groups of women (n = 26): pregnant women (PW) (30–36 wk of gestation) consuming 1 mg/d of folic acid, and nonpregnant women consuming 0 mg/d (NPW-0), 1 mg/d (NPW-1), and 5 mg/d (NPW-5) folic acid. The mean ± SD RBC folate concentration of the NPW-0 group (890 ± 530 nmol/L) was lower than the NPW-1 (1660 ± 350 nmol/L) and NPW-5 (1980 ± 570 nmol/L) groups as assessed by microbiologic assay (n = 26, P < 0.0022). No difference was found between the NPW-1 and NPW-5 groups. We detected 5-methyl-THF [limit of detection (LOD) = 0.06 nmol/L] in all groups and tetrahydrofolate (LOD = 0.2 nmol/L) in most women regardless of methylenetetrahydrofolate reductase genotype. Most women consuming folic acid supplements had detectable concentrations of 5,10-methenyl-tetrahydrofolate (LOD = 0.31 nmol/L). However, there was no difference in the relative distribution of 5-methyl-THF (83–84%), sum of non-methyl folates (0.6–3%), or individual non-methyl folate forms in RBCs across groups. We conclude that although folic acid supplementation in nonpregnant women increases RBC total folate and the concentration of individual folate forms, it does not alter the relative distribution of folate forms. Similarly, distribution of RBC folate

  5. Pilot Study on Folate Bioavailability from a Camembert Cheese Reveals Contradictory Findings to Recent Results from a Human Short-term Study.

    PubMed

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2016-01-01

    Different dietary sources of folate have differing bioavailabilities, which may affect their nutritional "value." In order to examine if these differences also occur within the same food products, a short-term human pilot study was undertaken as a follow-up study to a previously published human trial to evaluate the relative native folate bioavailabilities from low-fat Camembert cheese compared to pteroylmonoglutamic acid as the reference dose. Two healthy human subjects received the test foods in a randomized cross-over design separated by a 14-day equilibrium phase. Folate body pools were saturated with a pteroylmonoglutamic acid supplement before the first testing and between the testings. Folates in test foods and blood plasma were analyzed by stable isotope dilution assays. The biokinetic parameters C max, t max, and area under the curve (AUC) were determined in plasma within the interval of 0-12 h. When comparing the ratio estimates of AUC and C max for the different Camembert cheeses, a higher bioavailability was found for the low-fat Camembert assessed in the present study (≥64%) compared to a different brand in our previous investigation (8.8%). It is suggested that these differences may arise from the different folate distribution in the soft dough and firm rind as well as differing individual folate vitamer proportions. The results clearly underline the importance of the food matrix, even within the same type of food product, in terms of folate bioavailability. Moreover, our findings add to the increasing number of studies questioning the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents. However, more research is needed to better understand the interactions between individual folate vitamers and other food components and the potential impact on folate bioavailability and metabolism.

  6. Pilot Study on Folate Bioavailability from a Camembert Cheese Reveals Contradictory Findings to Recent Results from a Human Short-term Study

    PubMed Central

    Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael

    2016-01-01

    Different dietary sources of folate have differing bioavailabilities, which may affect their nutritional “value.” In order to examine if these differences also occur within the same food products, a short-term human pilot study was undertaken as a follow-up study to a previously published human trial to evaluate the relative native folate bioavailabilities from low-fat Camembert cheese compared to pteroylmonoglutamic acid as the reference dose. Two healthy human subjects received the test foods in a randomized cross-over design separated by a 14-day equilibrium phase. Folate body pools were saturated with a pteroylmonoglutamic acid supplement before the first testing and between the testings. Folates in test foods and blood plasma were analyzed by stable isotope dilution assays. The biokinetic parameters Cmax, tmax, and area under the curve (AUC) were determined in plasma within the interval of 0–12 h. When comparing the ratio estimates of AUC and Cmax for the different Camembert cheeses, a higher bioavailability was found for the low-fat Camembert assessed in the present study (≥64%) compared to a different brand in our previous investigation (8.8%). It is suggested that these differences may arise from the different folate distribution in the soft dough and firm rind as well as differing individual folate vitamer proportions. The results clearly underline the importance of the food matrix, even within the same type of food product, in terms of folate bioavailability. Moreover, our findings add to the increasing number of studies questioning the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents. However, more research is needed to better understand the interactions between individual folate vitamers and other food components and the potential impact on folate bioavailability and metabolism. PMID:27092303

  7. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    USDA-ARS?s Scientific Manuscript database

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  8. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease.

    PubMed

    Cario, Holger; Smith, Desirée E C; Blom, Henk; Blau, Nenad; Bode, Harald; Holzmann, Karlheinz; Pannicke, Ulrich; Hopfner, Karl-Peter; Rump, Eva-Maria; Ayric, Zuleya; Kohne, Elisabeth; Debatin, Klaus-Michael; Smulders, Yvo; Schwarz, Klaus

    2011-02-11

    The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Ex-ante evaluation of biotechnology innovations: the case of folate biofortified rice in China.

    PubMed

    De Steur, Hans; Blancquaert, Dieter; Gellynck, Xavier; Lambert, Willy; Van Der Straeten, Dominique

    2012-12-01

    In order to valorize novel biotechnology innovations, there is a need to evaluate ex-ante their market potential. A case in point is biofortification, i.e. the enhancement of the micronutrient content of staple crops through conventional or genetic breeding techniques. In a recent article in Nature Biotechnology, for example, De Steur et al. (2010) demonstrated the large potential consumer health benefits of folate biofortified rice as a means to reduce folate deficiency and Neural-Tube Defects. By focusing on a Chinese high-risk region of Neural-Tube Defects, the current study defines the potential cost-effectiveness of this genetically modified crop where the need to improve folate intake levels is highest. Building on the Disability-Adjusted Life Years (DALY) approach, both the potential health impacts and costs of its implementation are measured and benchmarked against similar innovations. The results show that this transgenic crop could be a highly cost-effective product innovation (US$ 120.34 - US$ 40.1 per DALY saved) to alleviate the large health burden of folate deficiency and reduce the prevalence of neural-tube birth defects. When compared with other biofortified crops and target regions, folate biofortified rice in China has a relatively high health impact and moderate cost-effectiveness. This research further supports the need for, and importance of ex-ante evaluation studies in order to adequately market and, thus, valorize biotechnology innovations. Although the cost-effectiveness analysis enables to illustrate the market potential of innovative agricultural biotechnology research, further research is required to address policy issues on transgenic biofortification, such as biosafety regulatory requirements.

  10. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis

    PubMed Central

    Bodnar, James; Mortazavi, Bobak; Laurent, Timothy; Deason, Jeff; Thephavongsa, Khanhkeo; Zhong, Jianmin

    2015-01-01

    Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host’s fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis. PMID:26650541

  11. Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes.

    PubMed

    Lucock, Mark; Yates, Zoë; Martin, Charlotte; Choi, Jeong-Hwa; Boyd, Lyndell; Tang, Sa; Naumovski, Nenad; Furst, John; Roach, Paul; Jablonski, Nina; Chaplin, George; Veysey, Martin

    2014-01-01

    Vitamin D and folate are highly UV sensitive, and critical for maintaining health throughout the lifecycle. This study examines whether solar irradiance during the first trimester of pregnancy influences vitamin D receptor (VDR) and nuclear folate gene variant occurrence, and whether affected genes influence late-life biochemical/clinical phenotypes. 228 subjects were examined for periconceptional exposure to solar irradiance, variation in vitamin D/folate genes (polymerase chain reaction (PCR)), dietary intake (food frequency questionnaire (FFQ)) and important adult biochemical/clinical phenotypes. Periconceptional solar irradiance was associated with VDR-BsmI (P = 0.0008(wk7)), TaqI (P = 0.0014(wk7)) and EcoRV (P = 0.0030(wk6)) variant occurrence between post-conceptional weeks 6-8, a period when ossification begins. Similar effects were detected for other VDR gene polymorphisms. Periconceptional solar irradiance was also associated with 19 bp del-DHFR (P = 0.0025(wk6)), and to a lesser extent C1420T-SHMT (P = 0.0249(wk6)), a folate-critical time during embryogenesis. These same genes were associated with several late-life phenotypes: VDR-BsmI, TaqI and ApaI determined the relationship between dietary vitamin D and both insulin (P < 0.0001/BB, 0.0007/tt and 0.0173/AA, respectively) and systolic blood pressure (P = 0.0290/Bb, 0.0299/Tt and 0.0412/AA, respectively), making them important early and late in the lifecycle. While these and other phenotype associations were found for the VDR variants, folate polymorphism associations in later-life were limited to C1420T-SHMT (P = 0.0037 and 0.0297 for fasting blood glucose and HbA1c levels, respectively). We additionally report nutrient-gene relationships with body mass index, thiol/folate metabolome, cognition, depression and hypertension. Furthermore, photoperiod at conception influenced occurrence of VDR-Tru9I and 2R3R-TS genotypes (P = 0.0120 and 0.0360, respectively). Findings identify environmental and nutritional

  12. Vitamin D, folate, and potential early lifecycle environmental origin of significant adult phenotypes

    PubMed Central

    Lucock, Mark; Yates, Zoë; Martin, Charlotte; Choi, Jeong-Hwa; Boyd, Lyndell; Tang, Sa; Naumovski, Nenad; Furst, John; Roach, Paul; Jablonski, Nina; Chaplin, George; Veysey, Martin

    2014-01-01

    Background and objectives: Vitamin D and folate are highly UV sensitive, and critical for maintaining health throughout the lifecycle. This study examines whether solar irradiance during the first trimester of pregnancy influences vitamin D receptor (VDR) and nuclear folate gene variant occurrence, and whether affected genes influence late-life biochemical/clinical phenotypes. Methodology: 228 subjects were examined for periconceptional exposure to solar irradiance, variation in vitamin D/folate genes (polymerase chain reaction (PCR)), dietary intake (food frequency questionnaire (FFQ)) and important adult biochemical/clinical phenotypes. Results: Periconceptional solar irradiance was associated with VDR-BsmI (P = 0.0008wk7), TaqI (P = 0.0014wk7) and EcoRV (P = 0.0030wk6) variant occurrence between post-conceptional weeks 6–8, a period when ossification begins. Similar effects were detected for other VDR gene polymorphisms. Periconceptional solar irradiance was also associated with 19 bp del-DHFR (P = 0.0025wk6), and to a lesser extent C1420T-SHMT (P = 0.0249wk6), a folate-critical time during embryogenesis. These same genes were associated with several late-life phenotypes: VDR-BsmI, TaqI and ApaI determined the relationship between dietary vitamin D and both insulin (P < 0.0001/BB, 0.0007/tt and 0.0173/AA, respectively) and systolic blood pressure (P = 0.0290/Bb, 0.0299/Tt and 0.0412/AA, respectively), making them important early and late in the lifecycle. While these and other phenotype associations were found for the VDR variants, folate polymorphism associations in later-life were limited to C1420T-SHMT (P = 0.0037 and 0.0297 for fasting blood glucose and HbA1c levels, respectively). We additionally report nutrient–gene relationships with body mass index, thiol/folate metabolome, cognition, depression and hypertension. Furthermore, photoperiod at conception influenced occurrence of VDR-Tru9I and 2R3R-TS genotypes (P = 0.0120 and 0.0360, respectively

  13. Deficient maternal zinc intake-but not folate-is associated with lower fetal heart rate variability.

    PubMed

    Spann, Marisa N; Smerling, Jennifer; Gustafsson, Hanna; Foss, Sophie; Altemus, Margaret; Monk, Catherine

    2015-03-01

    Few studies of maternal prenatal diet and child development examine micronutrient status in relation to fetal assessment. Twenty-four-hour dietary recall of zinc and folate and 20min of fetal heart rate were collected from 3rd trimester pregnant adolescents. Deficient zinc was associated with less fetal heart rate variability. Deficient folate had no associations with HRV. Neither deficient zinc nor deficient folate was related to fetal heart rate. These findings, from naturalistic observation, are consistent with emerging data on prenatal zinc supplementation using a randomized control design. Taken together, the findings suggest that maternal prenatal zinc intake is an important and novel factor for understanding child ANS development. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. Folate, vitamin B₁₂ and total homocysteine levels in Arab adolescent subjects: reference ranges and potential determinants.

    PubMed

    Akanji, A O; Thalib, L; Al-Isa, A N

    2012-10-01

    Elevated circulating fasting total homocysteine (tHcy) concentration is associated with an increased risk of occlusive vascular disease in adults. Important determinants of tHcy levels are folate, vitamin B(12) and vitamin B(6). This study aimed to investigate age, gender, and body mass as determinants of folate, vitamin B(12) and tHcy levels in Arab older children and adolescents and to propose population, gender and age-specific reference ranges for these biomarkers. 774 (316 boys, 458 girls) healthy 10-19 yr olds attending secondary schools in Kuwait were assessed for anthropometry and fasting blood levels of Hcy, folate and vitamin B(12). The mean (95% CI) serum levels of tHcy, folate and vitamin B(12) were respectively 6.57 μmol/L (6.42-6.73), 16.0 ng/ml (15.6-16.3) and 354.3 pg/ml (343.0-365.7). Boys had significantly higher tHcy and folate concentrations than the girls, although vitamin B(12) levels were greater in the latter. Folate and vitamin B(12) levels decreased significantly with age, while correspondingly, tHcy levels increased, with mean values (μmol/L) for boys (6.71; 8.25) and girls (5.36; 6.67) aged 10-14 yr and 14-19 yr respectively. Bivariate and multivariate analyses with adjustment for confounders such as age, gender, need for dietary control and socio-demographic variables indicated that the independent determinants of levels of tHcy were age, gender and body mass. There is an age-related increase in tHcy in adolescents reflecting decreased levels of folate and vitamin B(12), with the suggestion that age-related reference ranges for these biomarkers be used. These observations may have implications for prevention of future atherogenic disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Khoshgard, Karim; Hashemi, Bijan; Arbabi, Azim; Javad Rasaee, Mohammad; Soleimani, Masoud

    2014-05-01

    Due to the high atomic number of gold nanoparticles (GNPs), they are known as new radiosensitizer agents for enhancing the efficiency of superficial radiotherapy techniques by increasing the dose absorbed in tumor cells wherein they can be accumulated selectively. The aim of this study was to compare the effect of various common low energy levels of orthovoltage x-rays and megavoltage γ-rays (Co-60) on enhancing the therapeutic efficiency of HeLa cancer cells in the presence of conjugated folate and non-conjugated (pegylated) GNPs. To achieve this, GNPs with an average diameter of 52 nm were synthesized and conjugated to folic acid molecules. Pegylated GNPs with an average diameter of 47 nm were also synthesized and used as non-conjugated folate GNPs. Cytotoxicity assay of the synthesized folate-conjugated and pegylated GNPs was performed using different levels of nanoparticle concentration incubated with HeLa cells for 24 h. The radiosensitizing effect of both the conjugated and pegylated GNPs on the cells at a concentration of 50 µM was compared using MTT as well as clonogenic assays after exposing them to 2 Gy ionizing radiation produced by an orthovoltage x-ray machine at four different kVps and γ-rays of a Co-60 unit. Significant differences were noted among various irradiated groups with and without the folate conjugation, with an average dose enhancement factor (DEF) of 1.64 ± 0.05 and 1.35 ± 0.05 for the folate-conjugated and pegylated GNPs, respectively. The maximum DEF was obtained with the 180 kVp x-ray beam for both of the GNPs. Folate-conjugated GNPs can significantly enhance the cell killing potential of orthovoltage x-ray energies (especially at 180 kVp) in folate receptor-expressing cancer cells, such as HeLa, in superficial radiotherapy techniques.

  16. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques.

    PubMed

    Khoshgard, Karim; Hashemi, Bijan; Arbabi, Azim; Rasaee, Mohammad Javad; Soleimani, Masoud

    2014-05-07

    Due to the high atomic number of gold nanoparticles (GNPs), they are known as new radiosensitizer agents for enhancing the efficiency of superficial radiotherapy techniques by increasing the dose absorbed in tumor cells wherein they can be accumulated selectively. The aim of this study was to compare the effect of various common low energy levels of orthovoltage x-rays and megavoltage γ-rays (Co-60) on enhancing the therapeutic efficiency of HeLa cancer cells in the presence of conjugated folate and non-conjugated (pegylated) GNPs. To achieve this, GNPs with an average diameter of 52 nm were synthesized and conjugated to folic acid molecules. Pegylated GNPs with an average diameter of 47 nm were also synthesized and used as non-conjugated folate GNPs. Cytotoxicity assay of the synthesized folate-conjugated and pegylated GNPs was performed using different levels of nanoparticle concentration incubated with HeLa cells for 24 h. The radiosensitizing effect of both the conjugated and pegylated GNPs on the cells at a concentration of 50 µM was compared using MTT as well as clonogenic assays after exposing them to 2 Gy ionizing radiation produced by an orthovoltage x-ray machine at four different kVps and γ-rays of a Co-60 unit. Significant differences were noted among various irradiated groups with and without the folate conjugation, with an average dose enhancement factor (DEF) of 1.64 ± 0.05 and 1.35 ± 0.05 for the folate-conjugated and pegylated GNPs, respectively. The maximum DEF was obtained with the 180 kVp x-ray beam for both of the GNPs. Folate-conjugated GNPs can significantly enhance the cell killing potential of orthovoltage x-ray energies (especially at 180 kVp) in folate receptor-expressing cancer cells, such as HeLa, in superficial radiotherapy techniques.

  17. Do high blood folate concentrations exacerbate metabolic abnormalities in people with low vitamin B-12 status?123

    PubMed Central

    Mills, James L; Carter, Tonia C; Scott, John M; Troendle, James F; Gibney, Eileen R; Shane, Barry; Kirke, Peadar N; Ueland, Per M; Brody, Lawrence C; Molloy, Anne M

    2011-01-01

    Background: In elderly individuals with low serum vitamin B-12, those who have high serum folate have been reported to have greater abnormalities in the following biomarkers for vitamin B-12 deficiency: low hemoglobin and elevated total homocysteine (tHcy) and methylmalonic acid (MMA). This suggests that folate exacerbates vitamin B-12–related metabolic abnormalities. Objective: We determined whether high serum folate in individuals with low serum vitamin B-12 increases the deleterious effects of low vitamin B-12 on biomarkers of vitamin B-12 cellular function. Design: In this cross-sectional study, 2507 university students provided data on medical history and exposure to folic acid and vitamin B-12 supplements. Blood was collected to measure serum and red blood cell folate (RCF), hemoglobin, plasma tHcy, and MMA, holotranscobalamin, and ferritin in serum. Results: In subjects with low vitamin B-12 concentrations (<148 pmol/L), those who had high folate concentrations (>30 nmol/L; group 1) did not show greater abnormalities in vitamin B-12 cellular function in any area than did those with lower folate concentrations (≤30 nmol/L; group 2). Group 1 had significantly higher holotranscobalamin and RCF, significantly lower tHcy, and nonsignificantly lower (P = 0.057) MMA concentrations than did group 2. The groups did not differ significantly in hemoglobin or ferritin. Compared with group 2, group 1 had significantly higher mean intakes of folic acid and vitamin B-12 from supplements and fortified food. Conclusions: In this young adult population, high folate concentrations did not exacerbate the biochemical abnormalities related to vitamin B-12 deficiency. These results provide reassurance that folic acid in fortified foods and supplements does not interfere with vitamin B-12 metabolism at the cellular level in a healthy population. PMID:21653798

  18. A folate-rich diet is as effective as folic acid from supplements in decreasing plasma homocysteine concentrations

    PubMed Central

    2005-01-01

    Background & Aims: At least 500 μg of folic acid are required daily to treat hyperhomocysteinemia. To reach this amount by dietary changes alone may be difficult because food has a low folic acid content and bioavailability. No studies have compared the effects of similar amounts of additional folate derived from a combination of folate-rich and fortified foods or folic acid from supplements on plasma total homocysteine (tHcy) concentrations, which was the aim of this study. Methods: Twenty male patients with hyperhomocysteinemia and coronary artery disease were included in a randomized, crossover intervention trial. Patients were treated daily with a combination of foods containing approximately 500 μg of folate or with one 500 μg capsule of synthetic folic acid over two five-week periods separated by a five-week wash-out period. Results: Plasma folate increased markedly (p<0.001) and plasma tHcy decreased (p<0.001) with both therapies. Folate-rich foods decreased tHcy by 8.6% (95% CI: –15.9 to –1.2) and synthetic folic acid capsules by 8% (95% CI: –13.3 to –2.7). Conclusions: This study shows, for the first time in the literature, that a folate-rich diet is as effective as folic acid capsules in decreasing plasma tHcy concentrations and adds further support to the recommendation of those diets to prevent cardiovascular disease. PMID:15968341

  19. Enhanced Antiproliferative Effect of Carboplatin in Cervical Cancer Cells Utilizing Folate-Grafted Polymeric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ji, Jing; Zuo, Ping; Wang, Yue-Ling

    2015-11-01

    Carboplatin (CRB) possesses superior anticancer effect in cervical cancer cells with lower incidence of side effects compared to that of cisplatin. However, CRB suffers from severe side effects due to undesirable tissue distributions which contribute to the low therapeutic efficacy. Here, we report a unique folic acid-conjugated chitosan-coated poly( d- l-lactideco-glycolide) (PLGA) nanoparticles (FPCC) prepared for the selective delivery of carboplatin to the cervical cancer cells. The particles were nanosized and spherical shaped with size less than <200 nm. The presence of protective chitosan layer controlled the overall release rate of CRB from chitosan-coated PLGA nanoparticles (PCC) and FPCC. FPCC displayed a higher cellular uptake capacity in HeLa cells than compared to non-targeted nanoparticles. Selective uptake of FPCC was due to an interaction of folic acid (FA) with the folate receptors alpha (FRs-α) which is overexpressed on the HeLa and promoted active targeting. These results indicated that FPCC had a specific affinity for the cancerous, HeLa cells owing to ligand-receptor (FA-FR-α) recognition. Consistently, FPCC showed superior cytotoxic effect than any other formulations. The IC50 (concentration of the drug required to kill 50 % of the cells) value of FPCC was 0.65 μg/ml while it was 1.08, 1.56, and 2.35 μg/ml for PCC, PLGA NP, and free CRB, respectively. Consistent with the cytotoxicity assay, FPCC induced higher fraction of early as well as late apoptosis cells. Especially, FPCC induced nearly 45 % of early apoptosis cells and more than 35 % in late apoptosis. Therefore, we propose that folate-conjugated nanoparticles might have potential applications in cervical cancer therapy.

  20. Folate Insufficiency Due to Celiac Disease in a 49-Year-Old Woman of Southeast Asian-Indian Ethnicity

    PubMed Central

    Datta Mitra, Ananya; Gupta, Asha; Jialal, Ishwarlal

    2016-01-01

    The clinical presentation of celiac disease has evolved from chronic diarrhea and malnutrition to mild nutrient insufficiencies. Recently diagnosed adults with celiac disease should be assessed for micronutrient deficiencies because early institution of a gluten-free diet (GFD) prevents morbidity and reduces the incidence of gastrointestinal malignant neoplasms and osteoporosis. In this report, we present the case of a 49-year-old woman of Southeast Asian–Indian descent living in the United States who had folate insufficiency, as manifested by low serum and red blood cell (RBC) folate levels. Further investigation, including serologic testing and intestinal biopsy, confirmed a diagnosis of celiac disease and other nutrient deficiencies. Managing the condition of this patient with folate supplements and implementation of a recommended GFD reversed the folate insufficiency. In conclusion, when serum and/or RBC levels are low in a person of Southeast Asian-Indian descent living in a country with folate fortification of the grain supply, such as the United States, the medical team needs to look for an organic cause, as in our patient, to diagnose and manage celiac disease early and, hopefully, forestall complications. PMID:27406144

  1. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes.

    PubMed

    Lambrot, R; Xu, C; Saint-Phar, S; Chountalos, G; Cohen, T; Paquet, M; Suderman, M; Hallett, M; Kimmins, S

    2013-01-01

    Epidemiological studies suggest that a father's diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health.

  2. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes

    PubMed Central

    Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S.

    2013-01-01

    Epidemiological studies suggest that a father’s diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health. PMID:24326934

  3. Subcellular localization and distribution of the reduced folate carrier in normal rat tissues.

    PubMed

    Hinken, M; Halwachs, S; Kneuer, C; Honscha, W

    2011-01-27

    The reduced folate carrier (Rfc1; Slc19a1) mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) play an essential role in physiological folate homeostasis and MTX cancer chemotherapy. As no systematic reports are as yet available correlating Rfc1 gene expression and protein levels in all tissues crucial for folate and antifolate uptake, storage or elimination, we investigated gene and protein expression of rat Rfc1 (rRfc1) in selected tissues. This included the generation of a specific anti-rRfc1 antibody. Rabbits were immunised with isolated rRfc1 peptides producing specific anti-rRfc1 antiserum targeted to the intracellular C-terminus of the carrier. Using RT-PCR analysis, high rRfc1 transcript levels were detected in colon, kidney, brain, thymus, and spleen. Moderate rRfc1 gene expression was observed in small intestine, liver, bone marrow, lung, and testes whereas transcript levels were negligible in heart, skeletal muscle or leukocytes. Immunohistochemical analyses revealed strong carrier expression in the apical membrane of tunica mucosa epithelial cells of small intestine and colon, in the brush-border membrane of choroid plexus epithelial cells or in endothelial cells of small vessels in brain and heart. Additionally, high rRfc1 protein levels were localized in the basolateral membrane of renal tubular epithelial cells, in the plasma membrane of periportal hepatocytes, and sertoli cells of the testes. Taken together, our results demonstrated that rRfc1 is expressed almost ubiquitously but to very different levels. The predominant tissue distribution supports the essential role of Rfc1 in physiological folate homeostasis. Moreover, our results may contribute to understand antifolate pharmacokinetics and selected organ toxicity associated with MTX chemotherapy.

  4. Genotoxicity testing of peptides: Folate deprivation as a marker of exaggerated pharmacology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guérard, Melanie, E-mail: melanie.guerard@roche.com; Zeller, Andreas; Festag, Matthias

    2014-09-15

    The incidence of micronucleated-cells is considered to be a marker of a genotoxic event and can be caused by direct- or indirect-DNA reactive mechanisms. In particular, small increases in the incidence of micronuclei, which are not associated with toxicity in the target tissue or any structurally altering properties of the compound, trigger the suspicion that an indirect mechanism could be at play. In a bone marrow micronucleus test of a synthetic peptide (a dual agonist of the GLP-1 and GIP receptors) that had been integrated into a regulatory 13-week repeat-dose toxicity study in the rat, small increases in the incidencemore » of micronuclei had been observed, together with pronounced reductions in food intake and body weight gain. Because it is well established that folate plays a crucial role in maintaining genomic integrity and pronounced reductions in food intake and body weight gain were observed, folate levels were determined from plasma samples initially collected for toxicokinetic analytics. A dose-dependent decrease in plasma folate levels was evident after 4 weeks of treatment at the mid and high dose levels, persisted until the end of the treatment duration of 13-weeks and returned to baseline levels during the recovery period of 4 weeks. Based on these properties, and the fact that the compound tested (peptide) per se is not expected to reach the nucleus and cause DNA damage, the rationale is supported that the elevated incidence of micronucleated polychromatic erythrocytes is directly linked to the exaggerated pharmacology of the compound resulting in a decreased folate level. - Highlights: • A synthetic peptide has been evaluated for potential genotoxicity • Small increases in an integrated (13-weeks) micronucleus test were observed • Further, animals had a pronounced reductions in food intake and body weight gain • A dose-dependent decrease in plasma folate levels was evident from week 4 onwards • Elevated micronuclei-incidence due to

  5. Structural Perturbations in the Ala → Val Polymorphism of Methylenetetrahydrofolate Reductase: How Binding of Folates May Protect against Inactivation†‡

    PubMed Central

    Pejchal, Robert; Campbell, Elizabeth; Guenther, Brian D.; Lennon, Brett W.; Matthews, Rowena G.; Ludwig, Martha L.

    2006-01-01

    . Conformation changes induced by folate binding may also suppress dissociation of FAD. PMID:16605249

  6. Identification of three novel loci of ALDH2 Gene for Serum Folate levels in a Male Chinese Population by Genome-Wide Association Study.

    PubMed

    Deng, Caiwang; Tang, Shaomei; Huang, Xiaoliang; Gao, Jiamin; Tian, Jiarong; Zhou, Xianguo; Xie, Yuanliang; Liao, Ming; Mo, Zengnan; Wang, Qiuyan

    2018-06-25

    Serum folate is important in clinical researches and DNA synthesis and methylation. Some loci and genes that are associated with folate levels had been detected by genome-wide association studies (GWAS), such as rs1801133 in MTHFR and rs1979277 in SHMT1. Nevertheless, only a small part of variants has been clearly identified for serum folate. Hence, we conducted a GWAS to discover new inherited susceptibility and gene-environment interactions on serum folate concentration. In a healthy Chinese population of 1999 men, genotyping was performed using Illumina HumanOmni1-Quad BeadChip. Serum folate levels were measured by enzyme-linked immunosorbent assay (ELISA), pathway enrichment analysis and statistical analysis were performed by Database for Annotation, Visualization and Integrated Discovery (DAVID) and Statistic Package for Social Science (SPSS). We validated that rs1801133 in MTHFR was significantly involved in serum folate (P = 4.21 × 10 -19 ). Surprisingly, we discovered three novel loci rs3782886, rs671, and rs4646776 of ALDH2 gene were suggestively significantly associated with folate serum folate levels in the male population studied (P = 2.17 × 10 -7 , P = 3.60 × 10 -7 , P = 3.99 × 10 -7 , respectively) after adjusting for population stratification, BMI and age. Men with the AA genotype had significantly higher serum folate levels compared with men with the GG/AG genotype. But we found ALDH2 gene mutation no relation to part of environmental factors on serum folate levels. In a male Chinese population, genome-wide association study discovered that three novel SNPs rs3782886, rs671 and rs4646776 of ALDH2 gene were suggestively significantly associated with serum folate levels. Copyright © 2018. Published by Elsevier B.V.

  7. The Epigenetic Effects of a High Prenatal Folate Intake in Male Mouse Fetuses Exposed In Utero to Arsenic

    PubMed Central

    Tsang, Verne; Fry, Rebecca C.; Niculescu, Mihai D.; Rager, Julia E.; Saunders, Jesse; Paul, David S.; Zeisel, Steven H.; Waalkes, Michael P.; Stýblo, Miroslav; Drobná, Zuzana

    2012-01-01

    Inorganic arsenic (iAs) is a complete transplacental carcinogen in mice. Previous studies have demonstrated that in utero exposure to iAs promotes cancer in adult mouse offspring, possibly acting through epigenetic mechanisms. Humans and rodents enzymatically convert iAs to its methylated metabolites. This reaction requires S-adenosylmethionine (SAM) as methyl group donor. SAM is also required for DNA methylation. Supplementation with folate, a major dietary source of methyl groups for SAM synthesis, has been shown to modify iAs metabolism and the adverse effects of iAs exposure. However, effects of gestational folate supplementation on iAs metabolism and fetal DNA methylation have never been thoroughly examined. In the present study, pregnant CD1 mice were fed control (i.e. normal folate, or 2.2 mg/kg) or high folate diet (11 mg/kg) from gestational day (GD) 5 to 18 and drank water with 0 or 85 ppm of As (as arsenite) from GD8 to 18. The exposure to iAs significantly decreased body weight of GD18 fetuses and increased both SAM and S-adenosylhomocysteine (SAH) concentrations in fetal livers. High folate intake lowered the burden of total arsenic in maternal livers but did not prevent the effects of iAs exposure on fetal weight or hepatic SAM and SAH concentrations. In fact, combined folate-iAs exposure caused further significant body weight reduction. Notably, iAs exposure alone had little effect on DNA methylation in fetal livers. In contrast, the combined folate-iAs exposure changed the CpG island methylation in 2,931 genes, including genes known to be imprinted. Most of these genes were associated with neurodevelopment, cancer, cell cycle, and signaling networks. The canonical Wnt-signaling pathway, which regulates fetal development, was among the most affected biological pathways. Taken together, our results suggest that a combined in utero exposure to iAs and a high folate intake may adversely influence DNA methylation profiles and weight of fetuses

  8. In vivo therapeutic efficacy of TNFα silencing by folate-PEG-chitosan-DEAE/siRNA nanoparticles in arthritic mice

    PubMed Central

    Shi, Qin; Rondon-Cavanzo, Elsa-Patricia; Dalla Picola, Isadora Pfeifer; Tiera, Marcio José; Zhang, Xiaoling; Dai, Kerong; Benabdoune, Houda Abir; Benderdour, Mohamed; Fernandes, Julio Cesar

    2018-01-01

    Background Tumor necrosis factor-alpha (TNFα), a pro-inflammatory cytokine, has been shown to play a role in the pathophysiology of rheumatoid arthritis. Silencing TNFα expression with small interfering RNA (siRNA) is a promising approach to treatment of the condition. Methods Towards this end, our team has developed a modified chitosan (CH) nanocarrier, deploying folic acid, diethylethylamine (DEAE) and polyethylene glycol (PEG) (folate-PEG-CH-DEAE15). The gene carrier protects siRNA against nuclease destruction, its ligands facilitate siRNA uptake via cell surface receptors, and it provides improved solubility at neutral pH with transport of its load into target cells. In the present study, nanoparticles were prepared with siRNA-TNFα, DEAE, and folic acid-CH derivative. Nanoparticle size and zeta potential were verified by dynamic light scattering. Their TNFα-knockdown effects were tested in a murine collagen antibody-induced arthritis model. TNFα expression was examined along with measurements of various cartilage and bone turnover markers by performing histology and microcomputed tomography analysis. Results We demonstrated that folate-PEG-CH-DEAE15/siRNA nanoparticles did not alter cell viability, and significantly decreased inflammation, as demonstrated by improved clinical scores and lower TNFα protein concentrations in target tissues. This siRNA nanocarrier also decreased articular cartilage destruction and bone loss. Conclusion The results indicate that folate-PEG-CH-DEAE15 nanoparticles are a safe and effective platform for nonviral gene delivery of siRNA, and their potential clinical applications warrant further investigation. PMID:29391796

  9. Preconception folate and vitamin B(6) status and clinical spontaneous abortion in Chinese women.

    PubMed

    Ronnenberg, Alayne G; Goldman, Marlene B; Chen, Dafang; Aitken, Iain W; Willett, Walter C; Selhub, Jacob; Xu, Xiping

    2002-07-01

    To assess the association between preconception homocysteine and B vitamin status and risk of clinical spontaneous abortion in women from Anqing, China. All women were aged 21-34 years, had never smoked, and were primigravid. Patients (n = 49) were women with a clinically recognized pregnancy who experienced a fetal death before 100 days' gestation. Controls (n = 409) were women who maintained a pregnancy that ended in a live birth. Homocysteine, folate, and vitamins B(6) and B(12) concentrations were measured in plasma obtained before conception. Mean vitamin B(6) concentration was lower in patients than in controls (34.0 versus 37.9 nmol/L, P =.04). In addition, the risk of spontaneous abortion tended to increase with decreasing plasma vitamin B(6) and folate concentration (P for trend =.06 and.07, respectively), although the significance of these trends was further reduced in logistic models that included age, body mass index, and both vitamins. The risk of spontaneous abortion was four-fold higher among women with suboptimal plasma concentrations of both folate and vitamin B(6) (folate less than or equal to 8.4 nmol/L and vitamin B(6) less than or equal to 49 nmol/L) than in those with higher plasma concentrations of both vitamins (odds ratio 4.1, 95% confidence interval 1.2, 14.4). Homocysteine and vitamin B(12) status were not associated with spontaneous abortion risk. Suboptimal preconception folate and vitamin B(6) status, especially when they occur together, may increase the risk of clinical spontaneous abortion. Additional prospective studies are needed to confirm these findings and to determine whether antenatal B vitamin supplementation reduces spontaneous abortion risk.

  10. Dietary folate deficiency in pseudopregnant mice has no effect on homeobox A10 promoter methylation or expression.

    PubMed

    Long, Chunlan; He, Junlin; Liu, Xueqing; Chen, Xuemei; Gao, Rufei; Wang, Yingxiong; Ding, Yubin

    2012-12-01

    During the reproductive cycle, a number of genes controlling endometrial changes are regulated by DNA methylation, a common epigenetic modification. Because dietary folate affects DNA methylation, we determined whether a folate-deficient diet (FDD) alters DNA methylation in endometria of pseudopregnant mice, focusing on the homeobox A10 (Hoxa10) promoter. Mice were given an FDD or control diet for 40 to 45 days and examined on day 5 of pseudopregnancy. Compared to control mice, FDD mice had lower folate levels in liver and serum (P = .004). However, the FDD did not significantly affect DNA methylation within the cytosine-guanine dinucleotide (CpG)-rich Hoxa10 promoter, even when specific CpG sites were examined (P > .05). In endometrial tissue sections, the localization of anti-Hoxa10 staining was unchanged in FDD mice. Therefore, folate deficiency did not significantly affect promoter methylation or expression of Hoxa10.

  11. Quantification of isotope-labelled and unlabelled folates in plasma, ileostomy and food samples.

    PubMed

    Büttner, Barbara E; Öhrvik, Veronica E; Witthöft, Cornelia M; Rychlik, Michael

    2011-01-01

    New stable isotope dilution assays were developed for the simultaneous quantitation of [(13)C(5)]-labelled and unlabelled 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid, folic acid along with unlabelled tetrahydrofolic acid and 10-formylfolic acid in clinical samples deriving from human bioavailability studies, i.e. plasma, ileostomy samples, and food. The methods were based on clean-up by strong anion exchange followed by LC-MS/MS detection. Deuterated analogues of the folates were applied as the internal standards in the stable isotope dilution assays. Assay sensitivity was sufficient to detect all relevant folates in the respective samples as their limits of detection were below 0.62 nmol/L in plasma and below 0.73 μg/100 g in food or ileostomy samples. Quantification of the [(13)C(5)]-label in clinical samples offers the possibility to differentiate between folate from endogenous body pools and the administered dose when executing bioavailability trials.

  12. Abnormal folate metabolism as a risk factor for first-trimester spontaneous abortion.

    PubMed

    Hoffman, Michael L; Scoccia, Bert; Kurczynski, Thaddeus W; Shulman, Lee P; Gao, Weihua

    2008-03-01

    To assess the potential role of folic acid in early pregnancy loss by measuring homocysteine (hcy) levels in healthy, pregnant women who present with a current first-trimester miscarriage. This was a cross-sectional analysis comprising 13 patients aged 18-31 years old who had a scheduled dilatation and curettage for a first-trimester miscarriage. The controls were 15 patients of similar maternal age presenting for a first-trimester prenatal care visit. Following completion of a 21-item, structured questionnaire, patients were excluded from the study if they had any known risk factors for a first-trimester miscarriage. The remaining patients provided blood samples for measurement of homocysteine and red blood cell folate. Cases and controls were compared using a standard 2-sample t test. In order to detect a clinically relevant 2.3 micromol/L difference in homocysteine levels, 11 cases and 8 controls were needed. The mean hcy level in cases (5.8 umolmol/L) vs. controls (5.7 micromol/L) was not significantly different (p = 0.83), and all individual values fell within the normal range expected in pregnant women. Red blood cell folate levels (cases=586 ng/mL, controls=611 ng/mL) were also not significantly different (p = 0.72), and no cases of folate deficiency were detected. Maternal age (cases=26, controls=25) and gestational age (cases = 8.8 weeks, controls = 8.4 weeks) were similar between the 2 groups. In this community-based pilot study, abnormal folate metabolism was not an apparent risk factor for spontaneous first-trimester pregnancy loss.

  13. Plasma choline and betaine correlate with serum folate, plasma S-adenosyl-methionine and S-adenosyl-homocysteine in healthy volunteers.

    PubMed

    Imbard, Apolline; Smulders, Yvo M; Barto, Rob; Smith, Desiree E C; Kok, Robert M; Jakobs, Cornelis; Blom, Henk J

    2013-03-01

    Choline is essential for mammalian cell function. It plays a critical role in cell membrane integrity, neurotransmission, cell signaling and lipid metabolism. Moreover, choline is involved in methylation in two ways: a) its synthesis requires methyl groups donated by S-adenosyl-methionine (AdoMet); and b) choline oxidation product betaine methylates homocysteine (Hcy) to methionine (Met) and produces dimethylglycine. This later donates one carbon units to tetrahydrofolate (THF). To evaluate the correlations of choline and betaine with folate, AdoMet, S-anenosyl-homocysteine (AdoHcy), total homocysteine (tHcy), and DNA methylation, choline, betaine and dimethylglycine were measured by LC-MS/MS in plasma of 109 healthy volunteers, in whom folate, AdoMet, AdoHcy, tHcy, and DNA methylation have previously been reported. Using a bivariate model, choline and betaine showed strong positive correlations with folate (r = 0.346 and r = 0.226), AdoHcy (r = 0.468 and r = 0.296), and correlated negatively with AdoMet/AdoHcy ratio (r = – 0.246 and r = – 0.379). Only choline was positively correlated with AdoMet (r = 0.453). Using a multivariate linear regression model, choline correlated strongly with folate ( β = 17.416), AdoMet ( β = 61.272), and AdoHcy ( β = 9.215). Betaine correlated positively with folate ( β = 0.133) and negatively with tHcy ( β = – 0.194) ratio. Choline is an integral part of folate and methylation pathways. Our data highlight the importance of integrating choline in studies concerning addressing pathological conditions related to folate, homocysteine and methylation metabolism.

  14. Betaine is as effective as folate at re-synthesizing methionine for protein synthesis during moderate methionine deficiency in piglets.

    PubMed

    McBreairty, Laura E; Robinson, Jason L; Harding, Scott V; Randell, Edward W; Brunton, Janet A; Bertolo, Robert F

    2016-12-01

    Both folate and betaine (synthesized from choline) are nutrients used to methylate homocysteine to reform the amino acid methionine following donation of its methyl group; however, it is unclear whether both remethylation pathways are of equal importance during the neonatal period when remethylation rates are high. Methionine is an indispensable amino acid that is in high demand in neonates not only for protein synthesis, but is also particularly important for transmethylation reactions, such as creatine and phosphatidylcholine synthesis. The objective of this study was to determine whether supplementation with folate, betaine, or a combination of both can equally re-synthesize methionine for protein synthesis when dietary methionine is limiting. Piglets were fed a low methionine diet devoid of folate, choline, and betaine, and on day 6, piglets were supplemented with either folate, betaine, or folate + betaine (n = 6 per treatment) until day 10. [1- 13 C]-phenylalanine oxidation was measured as an indicator of methionine availability for protein synthesis both before and after 2 days of supplementation. Prior to supplementation, piglets had lower concentrations of plasma folate, betaine, and choline compared to baseline with no change in homocysteine. Post-supplementation, phenylalanine oxidation levels were 20-46 % lower with any methyl donor supplementation (P = 0.006) with no difference among different supplementation groups. Furthermore, both methyl donors led to similarly lower concentrations of homocysteine following supplementation (P < 0.05). These data demonstrate an equal capacity for betaine and folate to remethylate methionine for protein synthesis, as indicated by lower phenylalanine oxidation.

  15. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets.

    PubMed

    Bermingham, Emma N; Bassett, Shalome A; Young, Wayne; Roy, Nicole C; McNabb, Warren C; Cooney, Janine M; Brewster, Di T; Laing, William A; Barnett, Matthew P G

    2013-03-05

    Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health.

  16. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets

    PubMed Central

    2013-01-01

    Background Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Methods Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Results Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Conclusions Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health. PMID:23497688

  17. Has enhanced folate status during pregnancy altered natural selection and possibly Autism prevalence? A closer look at a possible link.

    PubMed

    Rogers, Eugene J

    2008-09-01

    The inverse association between maternal folate status and incidence of infants born with neural tube defects (NTD's) was recognized over twenty years ago and led the US health agencies in the early 1990s to recommend that women of childbearing age consume 400 microg of folic acid each day. The FDA followed by mandating that certain foods be fortified with folic acid and this has resulted in a significant enhancement of maternal folate status to levels that are often difficult to otherwise achieve naturally. At least one study indicates that this has decreased the incidence of NTD's. However, this same time period directly coincides with what many feel is the apparent beginning and continuous increase in the prevalence of Autism and related Autism Spectrum Disorders (ASD's) in the US. Are these similar time frames of changes in maternal folate status and possible Autism prevalence a random event or has improved maternal (and fetal) folate status during pregnancy played a role? It is not only plausible but highly likely. A particular polymorphic form to a key enzyme required to activate folate for methylation in neurodevelopment, 5-methylenetetrahydrofolate reductase (MTHFR), demonstrates reduced activity under low or normal folate levels but normal activity under conditions of higher folate nutritional status. A consequence of the presence of the polymorphic form of this enzyme during normal or reduced folate status are higher plasma homocysteine levels than noncarriers and the combination of these factors have been shown in several studies to result in an increase rate of miscarriage via thrombotic events. However, the incidence of hyperhomocysteinemia in the presence of the polymorphism is reduced under the common condition of enhanced folate status and thereby masks the latent adverse effects of the presence of this enzyme form during pregnancy. Of great importance is that this polymorphism, although common in the normal population, is found in significantly

  18. Multimodal molecular 3D imaging for the tumoral volumetric distribution assessment of folate-based biosensors.

    PubMed

    Ramírez-Nava, Gerardo J; Santos-Cuevas, Clara L; Chairez, Isaac; Aranda-Lara, Liliana

    2017-12-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate-based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence, and radioisotopic imaging) through the development of a tridimensional image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (MARS), was used to acquire bidimensional images, which were processed to obtain the tridimensional reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered back projection and inverse Radon transformation were used as main image-processing techniques. The algorithm developed in Matlab was able to calculate the volumetric profiles of 99m Tc-Folate-Bombesin (radioisotopic image), 177 Lu-Folate-Bombesin (Cerenkov image), and FolateRSense™ 680 (fluorescence image) in tumors and kidneys of mice, and no significant differences were detected in the volumetric quantifications among measurement techniques. The imaging tridimensional reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is a remarkable advantage in comparison to similar reconstruction methods.

  19. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryndyak, Volodymyr P.; Latendresse, John R.; Montgomery, Beverly

    MicroRNAs (miRNAs) are a class of small, conserved, tissue-specific regulatory non-coding RNAs that modulate a variety of biological processes and play a fundamental role in the pathogenesis of major human diseases, including nonalcoholic fatty liver disease (NAFLD). However, the association between inter-individual differences in susceptibility to NAFLD and altered miRNA expression is largely unknown. In view of this, the goals of the present study were (i) to determine whether or not individual differences in the extent of NAFLD-induced liver injury are associated with altered miRNA expression, and (ii) assess if circulating blood miRNAs may be used as potential biomarkers formore » the noninvasive evaluation of the severity of NAFLD. A panel of seven genetically diverse strains of inbred male mice (A/J, C57BL/6J, C3H/HeJ, 129S/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were fed a choline- and folate-deficient (CFD) diet for 12 weeks. This diet induced liver injury in all mouse strains; however, the extent of NAFLD-associated pathomorphological changes in the livers was strain-specific, with A/J, C57BL/6J, and C3H/HeJ mice being the least sensitive and WSB/EiJ mice being the most sensitive. The morphological changes in the livers were accompanied by differences in the levels of hepatic and plasma miRNAs. The levels of circulating miR-34a, miR-122, miR-181a, miR-192, and miR-200b miRNAs were significantly correlated with a severity of NAFLD-specific liver pathomorphological features, with the strongest correlation occurring with miR-34a. These observations suggest that the plasma levels of miRNAs may be used as biomarkers for noninvasive monitoring the extent of NAFLD-associated liver injury and susceptibility to NAFLD. -- Highlights: ► Choline- and folate-deficiency induces a strain-specific fatty liver injury in mice. ► The extent of liver pathology was accompanied by the changes in microRNA expression. ► The levels of circulating microRNAs mirror the

  20. Serum folate, vitamin B-12 and cognitive function in middle and older age: The HAPIEE study.

    PubMed

    Horvat, Pia; Gardiner, Julian; Kubinova, Ruzena; Pajak, Andrzej; Tamosiunas, Abdonas; Schöttker, Ben; Pikhart, Hynek; Peasey, Anne; Jansen, Eugene; Bobak, Martin

    2016-04-01

    Nutrient status of B vitamins, particularly folate and vitamin B-12, may be related to cognitive ageing but epidemiological evidence remains inconclusive. The aim of this study was to estimate the association of serum folate and vitamin B-12 concentrations with cognitive function in middle-aged and older adults from three Central and Eastern European populations. Men and women aged 45-69 at baseline participating in the Health, Alcohol and Psychosocial factors in Eastern Europe (HAPIEE) study were recruited in Krakow (Poland), Kaunas (Lithuania) and six urban centres in the Czech Republic. Tests of immediate and delayed recall, verbal fluency and letter search were administered at baseline and repeated in 2006-2008. Serum concentrations of biomarkers at baseline were measured in a sub-sample of participants. Associations of vitamin quartiles with baseline (n=4166) and follow-up (n=2739) cognitive domain-specific z-scores were estimated using multiple linear regression. After adjusting for confounders, folate was positively associated with letter search and vitamin B-12 with word recall in cross-sectional analyses. In prospective analyses, participants in the highest quartile of folate had higher verbal fluency (p<0.01) and immediate recall (p<0.05) scores compared to those in the bottom quartile. In addition, participants in the highest quartile of vitamin B-12 had significantly higher verbal fluency scores (β=0.12; 95% CI=0.02, 0.21). Folate and vitamin B-12 were positively associated with performance in some but not all cognitive domains in older Central and Eastern Europeans. These findings do not lend unequivocal support to potential importance of folate and vitamin B-12 status for cognitive function in older age. Long-term longitudinal studies and randomised trials are required before drawing conclusions on the role of these vitamins in cognitive decline. Copyright © 2016. Published by Elsevier Inc.

  1. Biomarkers of folate and vitamin B12 and breast cancer risk: report from the EPIC cohort.

    PubMed

    Matejcic, M; de Batlle, J; Ricci, C; Biessy, C; Perrier, F; Huybrechts, I; Weiderpass, E; Boutron-Ruault, M C; Cadeau, C; His, M; Cox, D G; Boeing, H; Fortner, R T; Kaaks, R; Lagiou, P; Trichopoulou, A; Benetou, V; Tumino, R; Panico, S; Sieri, S; Palli, D; Ricceri, F; Bueno-de-Mesquita, H B As; Skeie, G; Amiano, P; Sánchez, M J; Chirlaque, M D; Barricarte, A; Quirós, J R; Buckland, G; van Gils, C H; Peeters, P H; Key, T J; Riboli, E; Gylling, B; Zeleniuch-Jacquotte, A; Gunter, M J; Romieu, I; Chajès, V

    2017-03-15

    Epidemiological studies have reported inconsistent findings for the association between B vitamins and breast cancer (BC) risk. We investigated the relationship between biomarkers of folate and vitamin B12 and the risk of BC in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Plasma concentrations of folate and vitamin B12 were determined in 2,491 BC cases individually matched to 2,521 controls among women who provided baseline blood samples. Multivariable logistic regression models were used to estimate odds ratios by quartiles of either plasma B vitamin. Subgroup analyses by menopausal status, hormone receptor status of breast tumors (estrogen receptor [ER], progesterone receptor [PR] and human epidermal growth factor receptor 2 [HER2]), alcohol intake and MTHFR polymorphisms (677C > T and 1298A > C) were also performed. Plasma levels of folate and vitamin B12 were not significantly associated with the overall risk of BC or by hormone receptor status. A marginally positive association was found between vitamin B12 status and BC risk in women consuming above the median level of alcohol (OR Q4-Q1  = 1.26; 95% CI 1.00-1.58; P trend  = 0.05). Vitamin B12 status was also positively associated with BC risk in women with plasma folate levels below the median value (OR Q4-Q1  = 1.29; 95% CI 1.02-1.62; P trend  = 0.03). Overall, folate and vitamin B12 status was not clearly associated with BC risk in this prospective cohort study. However, potential interactions between vitamin B12 and alcohol or folate on the risk of BC deserve further investigation. © 2016 UICC.

  2. Gene variants in the folate-mediated one-carbon metabolism (FOCM) pathway as risk factors for conotruncal heart defects.

    PubMed

    Zhu, Huiping; Yang, Wei; Lu, Wei; Etheredge, Analee J; Lammer, Edward J; Finnell, Richard H; Carmichael, Suzan L; Shaw, Gary M

    2012-05-01

    We evaluated 35 variants among four folate-mediated one-carbon metabolism pathway genes, MTHFD1, SHMT1, MTHFR, and DHFR as risk factors for conotruncal heart defects. Cases with a diagnosis of single gene disorders or chromosomal aneusomies were excluded. Controls were randomly selected from area hospitals in proportion to their contribution to the total population of live-born infants. Odds ratios (OR) and the 95% confidence intervals (CI) were computed for each genotype (homozygous variant or heterozygote, vs. homozygous wildtype) and for increase of each less common allele (log-additive model). Interactions between each variant and three folate intake variables (maternal multivitamin use, maternal dietary folate intake, and combined maternal folate intake) were also evaluated under the log-additive model. In general, we did not identify notable associations. The A allele of MTHFD1 rs11627387 was associated with a 1.7-fold increase in conotruncal defects risk in both Hispanic mothers (OR = 1.7, 95% CI = 1.1-2.5) and Hispanic infants (OR = 1.7, 95% CI = 1.2-2.3). The T allele of MTHFR rs1801133 was associated with a 2.8-fold increase of risk among Hispanic women whose dietary folate intake was ≤ 25th centile. The C allele of MTHFR rs1801131 was associated with a two-fold increase of risk (OR = 2.0, 95% CI = 1.0-3.9) only among those whose dietary folate intake was >25th centile. Our study suggested that MTHFD1 rs11627387 may be associated with risk of conotruncal defects through both maternal and offspring genotype effect among the Hispanics. Maternal functional variants in MTHFR gene may interact with dietary folate intake and modify the conotruncal defects risk in the offspring. Copyright © 2012 Wiley Periodicals, Inc.

  3. Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk

    PubMed Central

    Kelemen, Linda E.; Terry, Kathryn L.; Goodman, Marc T.; Webb, Penelope M.; Bandera, Elisa V.; McGuire, Valerie; Rossing, Mary Anne; Wang, Qinggang; Dicks, Ed; Tyrer, Jonathan P.; Song, Honglin; Kupryjanczyk, Jolanta; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Timorek, Agnieszka; Menon, Usha; Gentry-Maharaj, Aleksandra; Gayther, Simon A.; Ramus, Susan J.; Narod, Steven A.; Risch, Harvey A.; McLaughlin, John R.; Siddiqui, Nadeem; Glasspool, Rosalind; Paul, James; Carty, Karen; Gronwald, Jacek; Lubiński, Jan; Jakubowska, Anna; Cybulski, Cezary; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; van Altena, Anne M.; Aben, Katja K. H.; Olson, Sara H.; Orlow, Irene; Cramer, Daniel W.; Levine, Douglas A.; Bisogna, Maria; Giles, Graham G.; Southey, Melissa C.; Bruinsma, Fiona; Kjær, Susanne Krüger; Høgdall, Estrid; Jensen, Allan; Høgdall, Claus K.; Lundvall, Lene; Engelholm, Svend-Aage; Heitz, Florian; du Bois, Andreas; Harter, Philipp; Schwaab, Ira; Butzow, Ralf; Nevanlinna, Heli; Pelttari, Liisa M.; Leminen, Arto; Thompson, Pamela J.; Lurie, Galina; Wilkens, Lynne R.; Lambrechts, Diether; Van Nieuwenhuysen, Els; Lambrechts, Sandrina; Vergote, Ignace; Beesley, Jonathan; Fasching, Peter A.; Beckmann, Matthias W.; Hein, Alexander; Ekici, Arif B.; Doherty, Jennifer A.; Wu, Anna H.; Pearce, Celeste L.; Pike, Malcolm C.; Stram, Daniel; Chang-Claude, Jenny; Rudolph, Anja; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo B.; Bogdanova, Natalia; Antonenkova, Natalia; Odunsi, Kunle; Edwards, Robert P.; Kelley, Joseph L.; Modugno, Francesmary; Ness, Roberta B.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Fridley, Brooke L.; Vierkant, Robert A.; Cunningham, Julie M.; Wu, Xifeng; Lu, Karen; Liang, Dong; Hildebrandt, Michelle A.T.; Weber, Rachel Palmieri; Iversen, Edwin S.; Tworoger, Shelley S.; Poole, Elizabeth M.; Salvesen, Helga B.; Krakstad, Camilla; Bjorge, Line; Tangen, Ingvild L.; Pejovic, Tanja; Bean, Yukie; Kellar, Melissa; Wentzensen, Nicolas; Brinton, Louise A.; Lissowska, Jolanta; Garcia-Closas, Montserrat; Campbell, Ian G.; Eccles, Diana; Whittemore, Alice S.; Sieh, Weiva; Rothstein, Joseph H.; Anton-Culver, Hoda; Ziogas, Argyrios; Phelan, Catherine M.; Moysich, Kirsten B.; Goode, Ellen L.; Schildkraut, Joellen M.; Berchuck, Andrew; Pharoah, Paul D.P.; Sellers, Thomas A.; Brooks-Wilson, Angela; Cook, Linda S.; Le, Nhu D.

    2014-01-01

    Scope We re-evaluated previously reported associations between variants in pathways of one-carbon (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake. Methods and Results Odds ratios (OR) for 446 genetic variants were estimated among 13,410 OC cases and 22,635 controls and among 2,281 cases and 3,444 controls with folate information. Following multiple testing correction, the most significant main effect associations were for DPYD variants rs11587873 (OR=0.92, P=6x10−5) and rs828054 (OR=1.06, P=1x10−4). Thirteen variants in the pyrimidine metabolism genes, DPYD, DPYS, PPAT and TYMS, also interacted significantly with folate in a multi-variant analysis (corrected P=9.9x10−6) but collectively explained only 0.2% of OC risk. Although no other associations were significant after multiple testing correction, variants in SHMT1 in one-carbon transfer, previously reported with OC, suggested lower risk at higher folate (Pinteraction=0.03-0.006). Conclusions Variation in pyrimidine metabolism genes, particularly DPYD, which was previously reported to be associated with OC, may influence risk; however, stratification by folate intake is unlikely to modify disease risk appreciably in these women. SHMT1 SNP-byfolate interactions are plausible but require further validation. Polymorphisms in selected genes in purine metabolism were not associated with OC. PMID:25066213

  4. Suppression of homocysteine levels by vitamin B12 and folates: age and gender dependency in the Jackson Heart Study.

    PubMed

    Henry, Olivia R; Benghuzzi, Hamed; Taylor, Herman A; Tucci, Michelle; Butler, Kenneth; Jones, Lynne

    2012-08-01

    To examine factors potentially contributing to premature cardiovascular disease mortality in African Americans (40% versus 20% all other populations), plasma homocysteine, serum vitamin B12 and folate levels were examined for African American participants in the Jackson Heart Study. Of 5192 African American Jackson Heart Study participants (21-94 years), 5064 (mean age, 55 ± 13 years; 63% female) had homocysteine levels measured via fasting blood samples, with further assessments of participants' vitamin B12 (n = 1790) and folate (n = 1788) levels. Regression analyses were used to examine age, gender, vitamin B12 and folate with homocysteine levels. Homocysteine levels, a purported surrogate risk factor for cardiovascular disease, increased with age, were inversely proportional to folate and vitamin B12 levels (P < 0.001) and were higher for men of all ages. The results show that, as with other populations, age, gender, vitamin B12 and folate may predict homocysteine levels for African Americans. Diet may be an important predictive factor as well, given the relationships that were observed between plasma homocysteine and serum B vitamin levels.

  5. Folate status and colorectal cancer risk: a 2016 update

    USDA-ARS?s Scientific Manuscript database

    The consensus of epidemiologic evidence indicates that an abundant intake of foodstuffs rich in folate conveys protection against the development of colorectal cancer, and perhaps some other common cancers as well. Pre-clinical models substantiate that the relationship is a genuinely causal one. Pre...

  6. Sulfamethazine Suppresses Epigenetic Silencing in Arabidopsis by Impairing Folate Synthesis[W

    PubMed Central

    Zhang, Huiming; Deng, Xiangyang; Miki, Daisuke; Cutler, Sean; La, Honggui; Hou, Yueh-Ju; Oh, JeeEun; Zhu, Jian-Kang

    2012-01-01

    DNA methylation is a critical, dynamically regulated epigenetic mark. Small chemicals can be valuable tools in probing cellular processes, but the set of chemicals with broad effects on epigenetic regulation is very limited. Using the Arabidopsis thaliana repressor of silencing1 mutant, in which transgenes are transcriptionally silenced, we performed chemical genetic screens and found sulfamethazine (SMZ) as a chemical suppressor of epigenetic silencing. SMZ treatment released the silencing of transgenes as well as endogenous transposons and other repetitive elements. Plants treated with SMZ exhibit substantially reduced levels of DNA methylation and histone H3 Lys-9 dimethylation, but heterochromatic siRNA levels were not affected. SMZ is a structural analog and competitive antagonist to p-aminobenzoic acid (PABA), which is a precursor of folates. SMZ decreased the plant folate pool size and caused methyl deficiency, as demonstrated by reductions in S-adenosylmethionine levels and in global DNA methylation. Exogenous application of PABA or compounds downstream in the folate biosynthesis pathway restored transcriptional silencing in SMZ-treated plants. Together, our results revealed a novel type of chemical suppressor of epigenetic silencing, which may serve as a valuable tool for studying the roles and mechanisms of epigenetic regulation and underscores an important linkage between primary metabolism and epigenetic gene regulation. PMID:22447685

  7. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study.

    PubMed

    Monteiro, Liziane O F; Fernandes, Renata S; Oda, Caroline M R; Lopes, Sávia C; Townsend, Danyelle M; Cardoso, Valbert N; Oliveira, Mônica C; Leite, Elaine A; Rubello, Domenico; de Barros, André L B

    2018-01-01

    A range of antitumor agents for cancer treatment is available; however, they show low specificity, which often limit their use. Recently, we have reported the preparation of folate-coated long-circulating and pH-sensitive liposomes (SpHL-folate-PTX) loaded with paclitaxel (PTX), an effective drug for the treatment of solid tumors, including breast cancer. The purpose of this study was to prepare and characterize SpHL-PTX and SpHL-folate-PTX radiolabeled with technetium-99m ( 99m Tc). Biodistribution studies and scintigraphic images were performed after intravenous administration of 99m Tc-PTX, 99m Tc-SpHL-PTX and 99m Tc-SpHL-folate-PTX into healthy and tumor-bearing mice. High radiochemical purity (>98%) and in vitro stability (>90%) were achieved for both liposome formulations. The pharmacokinetic properties of 99m Tc-SpHL-DTPA-PTX and 99m Tc-SpHL-folate-DTPA-PTX decreased in a monophasic manner showing half-life of 400.1 and 541.8min, respectively. Scintigraphic images and biodistribution studies showed a significant uptake in liver, spleen and kidneys, demonstrating these routes as way for excretion. At 8h post-injection, the liposomal tumor uptake was higher than 99m Tc-PTX. Interesting, 4h after administration, the liposome folate coated showed higher tumor-to-muscle ratio than 99m Tc-SpHL-DTPA-PTX and 99m Tc-PTX. In conclusion, the liposomal systems, showed high tumor uptake by scintigraphic images, especially the 99m Tc-SpHL-folate-DTPA-PTX that showed a sustained and higher tumor-to-muscle ratio than non-functionalized liposome, which indicate its feasibility as a PTX delivery system to folate positive tumors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Factors associated with compliance of prenatal iron folate supplementation among women in Mecha district, Western Amhara: a cross-sectional study

    PubMed Central

    Taye, Bekele; Abeje, Gedefaw; Mekonen, Alemetsehaye

    2015-01-01

    Introduction Iron and folate supplementation can effectively control and prevent anaemia in pregnancy. In Ethiopia, all pregnant women are prescribed iron folate during their ANC visit. However, limited adherence is thought to be a major reason for the low effectiveness of iron supplementation programs. Therefore this study was done to investigate factors associated with compliance of prenatal iron folate supplementation among women who gave birth in the last 12 months before the survey in Mecha district. Methods Community based cross sectional study design was employed in Mecha district from June 25 - July 15/2013. A sample of 634 women who gave birth 12 months before the survey was included in the study. Study participants were selected by systematic random sampling technique after allocating the total sample to each kebele proportionally. Data were collected using a pre-tested structured Amharic questionnaire. Collected data were edited, coded and entered to Epi info version 3.1 and exported to‘ SPSS version 16. Bivariate and multivariable analysis was computed. Results A total of 628 women who gave birth twelve months before the survey were enrolled. In this study only 20.4% of participants were compliant with iron foliate supplementation. In multivariable analysis, age of the mother, educational status of the mother, knowledge of anaemia and iron folate tablets, and history of anaemia during pregnancy were significantly associated with compliance to iron folate supplementation (P < .05). Belief that too many tablets would harm the baby and fear of side effects were the major reasons given for noncompliance. Conclusion Compliance to iron folate supplementation is very low in the study area. Increasing female education and increasing knowledge of women about anaemia and iron folate tablets are recommended to increase compliance to iron folate supplementation. PMID:26090001

  9. Factors associated with compliance of prenatal iron folate supplementation among women in Mecha district, Western Amhara: a cross-sectional study.

    PubMed

    Taye, Bekele; Abeje, Gedefaw; Mekonen, Alemetsehaye

    2015-01-01

    Iron and folate supplementation can effectively control and prevent anaemia in pregnancy. In Ethiopia, all pregnant women are prescribed iron folate during their ANC visit. However, limited adherence is thought to be a major reason for the low effectiveness of iron supplementation programs. Therefore this study was done to investigate factors associated with compliance of prenatal iron folate supplementation among women who gave birth in the last 12 months before the survey in Mecha district. Community based cross sectional study design was employed in Mecha district from June 25 - July 15/2013. A sample of 634 women who gave birth 12 months before the survey was included in the study. Study participants were selected by systematic random sampling technique after allocating the total sample to each kebele proportionally. Data were collected using a pre-tested structured Amharic questionnaire. Collected data were edited, coded and entered to Epi info version 3.1 and exported to' SPSS version 16. Bivariate and multivariable analysis was computed. A total of 628 women who gave birth twelve months before the survey were enrolled. In this study only 20.4% of participants were compliant with iron foliate supplementation. In multivariable analysis, age of the mother, educational status of the mother, knowledge of anaemia and iron folate tablets, and history of anaemia during pregnancy were significantly associated with compliance to iron folate supplementation (P<.05). Belief that too many tablets would harm the baby and fear of side effects were the major reasons given for noncompliance. Compliance to iron folate supplementation is very low in the study area. Increasing female education and increasing knowledge of women about anaemia and iron folate tablets are recommended to increase compliance to iron folate supplementation.

  10. Choline and vitamin B12 deficiencies are interrelated in folate-replete long-term total parenteral nutrition patients.

    PubMed

    Compher, Charlene W; Kinosian, Bruce P; Stoner, Nancy E; Lentine, Deborah C; Buzby, Gordon P

    2002-01-01

    Choline has recently been recognized as an essential nutrient, in part based on deficiency data in long-term home total parenteral nutrition (TPN) patients. Choline, a methyl donor in the metabolism of homocysteine, is intricately related to folate status, but little is known about choline and vitamin B12 status. Long-term TPN patients are also subject to vitamin B12 deficiency. The objective of the study was to evaluate any interaction between choline, vitamin B12, and folate in patients with severe malabsorption syndromes, requiring long-term TPN. Plasma free choline, serum and red blood cell (RBC) folate, serum vitamin B12 methylmalonic acid, B6, and plasma total homocysteine concentrations were assayed by standard methods. Low choline was defined as values that fall 1 to < or =3 and marked low choline concentration as >3 SD below the control mean. Both low choline concentrations (52% were marked low, 33% low, 14% normal) and elevated methylmalonic acid concentrations (47%) were prevalent. Choline concentration was significantly lower and RBC folate higher in patients with elevated methylmalonic acid. Total homocysteine elevations were rare (3 of 21) and mild. These data suggest a strong interaction between vitamin B12 and choline deficiencies and folate status in this population, which may be due in part to variations in vitamin and choline delivery by TPN. Folate adequacy may increase B12 use for homocysteine metabolism, thus limiting B12 availability for methylmaIonic acid metabolism. Choline use may also increase, and choline deficiency may worsen if choline substitutes when the vitamin B12 side of the homocysteine metabolic pathway cannot be used.

  11. Longitudinal change in plasma total homocysteine during pregnancy and postpartum in Brazilian women and its relation with folate status and other factors.

    PubMed

    Glorimar, R; Pereira, S E A; Trugo, N M F

    2004-03-01

    Fasting plasma total homocysteine (tHcy) concentration was determined in a cohort of pregnant Brazilian women (n = 46) supplemented with folic acid from the second trimester of pregnancy. Blood samples were obtained in the first and third trimesters from all women, and 30-40 days postpartum from seventeen women. Plasma tHcy decreased during pregnancy from 10.3 to 8.7 micromol/L, and was 11.6 micromol/L in the postpartum. Plasma and erythrocyte folate increased, consistent with use of the folate supplement, but decreased slightly in the postpartum, whereas the opposite occurred for plasma vitamin B12. tHcy was inversely correlated with plasma and erythrocyte folate in the third trimester (r = -0.585 and -0.460, respectively). This relationship occurred despite the fact that all women had attained what could be considered adequate levels of folate indices. Furthermore, the change (third trimester minus first trimester levels) of tHcy was inversely correlated (p < 0.01) with the changes in plasma (r = -0.573) and erythrocyte folate (r = -0.525). tHcy had no correlation in any of the periods tested with plasma vitamin B12, plasma albumin, hematocrit, hemoglobin, iron indices, dietary intakes of folate, vitamins B12 and B6, and levels of folate supplement.

  12. Role of folate-homocysteine pathway gene polymorphisms and nutritional cofactors in Down syndrome: A triad study.

    PubMed

    Sukla, K K; Jaiswal, S K; Rai, A K; Mishra, O P; Gupta, V; Kumar, A; Raman, R

    2015-08-01

    Do gene-gene and gene-environment interactions in folate-homocysteine (Hcy) pathway have a predisposing role for Down syndrome (DS)? The study provides evidence that in addition to advanced age, maternal genotype, micronutrient deficiency and elevated Hcy levels, individually and in combination, are risk factors for Down syndrome. Polymorphisms in certain folate-Hcy-pathway genes (especially the T allele of MTHFR C677T), elevated Hcy and poor folate levels in mothers during pregnancy have been shown to be risk factors for Down syndrome in certain Asian populations (including the eastern region of India), while the same SNPs are not a risk factor in European populations. This conflicting situation alludes to differential gene-environment (nutrition) interactions in different populations which needs to be explored. Between 2008 and 2012, 151 Down syndrome triads and 200 age-matched controls (Control mothers n = 186) were included in the study. Seven polymorphisms in six genes of folate-Hcy metabolic pathway, along with Hcy, cysteine (Cys), vitamin B12 (vit-B12) and folate levels, were analysed and compared among the case and control groups. Genotyping was performed by the PCR-RFLP technique. Levels of homocysteine and cysteine were measured by HPLC while vitamin B12 and folate were estimated by chemiluminescence. We demonstrate that polymorphisms in the folate-Hcy pathway genes in mothers collectively constitute a genotypic risk for DS which is effectively modified by interactions among genes and by the environment affecting folate, Hcy and vitamin B12 levels. The study also supports the idea that these maternal risk factors provide an adaptive advantage during pregnancy supporting live birth of the DS child. Our inability to obtain genotype and nutritional assessments of unaffected siblings of the DS children was an important limitation of the study. Also, its confinement to a specific geographic region (the eastern part) of India, and relatively small sample size

  13. Macrophage uptake and accumulation of folates are polarization-dependent in vitro and in vivo and are regulated by activin A.

    PubMed

    Samaniego, Rafael; Palacios, Blanca Soler; Domiguez-Soto, Ángeles; Vidal, Carlos; Salas, Azucena; Matsuyama, Takami; Sánchez-Torres, Carmen; de la Torre, Inmaculada; Miranda-Carús, Maria Eugenia; Sánchez-Mateos, Paloma; Puig-Kröger, Amaya

    2014-05-01

    Vitamin B9, commonly known as folate, is an essential cofactor for one-carbon metabolism that enters cells through three major specialized transporter molecules (RFC, FR, and PCFT), which differ in expression pattern, affinity for substrate, and ligand-binding pH dependency. We now report that the expression of the folate transporters differs between macrophage subtypes and explains the higher accumulation of 5-MTHF-the major folate form found in serum-in M2 macrophages in vitro and in vivo. M1 macrophages display a higher expression of RFC, whereas FRβ and PCFT are preferentially expressed by anti-inflammatory and homeostatic M2 macrophages. These differences are also seen in macrophages from normal tissues involved in folate transit (placenta, liver, colon) and inflamed tissues (ulcerative colitis, RA), as M2-like macrophages from normal tissues express FRβ and PCFT, whereas TNF-α-expressing M1 macrophages from inflamed tissues are RFC+. Besides, we provide evidences that activin A is a critical factor controlling the set of folate transporters in macrophages, as it down-regulates FRβ, up-regulates RFC expression, and modulates 5-MTHF uptake. All of these experiments support the notion that folate handling is dependent on the stage of macrophage polarization. © 2014 Society for Leukocyte Biology.

  14. Genotoxicity testing of peptides: folate deprivation as a marker of exaggerated pharmacology.

    PubMed

    Guérard, Melanie; Zeller, Andreas; Festag, Matthias; Schubert, Christine; Singer, Thomas; Müller, Lutz

    2014-09-15

    The incidence of micronucleated-cells is considered to be a marker of a genotoxic event and can be caused by direct- or indirect-DNA reactive mechanisms. In particular, small increases in the incidence of micronuclei, which are not associated with toxicity in the target tissue or any structurally altering properties of the compound, trigger the suspicion that an indirect mechanism could be at play. In a bone marrow micronucleus test of a synthetic peptide (a dual agonist of the GLP-1 and GIP receptors) that had been integrated into a regulatory 13-week repeat-dose toxicity study in the rat, small increases in the incidence of micronuclei had been observed, together with pronounced reductions in food intake and body weight gain. Because it is well established that folate plays a crucial role in maintaining genomic integrity and pronounced reductions in food intake and body weight gain were observed, folate levels were determined from plasma samples initially collected for toxicokinetic analytics. A dose-dependent decrease in plasma folate levels was evident after 4 weeks of treatment at the mid and high dose levels, persisted until the end of the treatment duration of 13-weeks and returned to baseline levels during the recovery period of 4 weeks. Based on these properties, and the fact that the compound tested (peptide) per se is not expected to reach the nucleus and cause DNA damage, the rationale is supported that the elevated incidence of micronucleated polychromatic erythrocytes is directly linked to the exaggerated pharmacology of the compound resulting in a decreased folate level. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Vitamin B12 and folate levels in healthy Swiss senior citizens: a prospective study evaluating reference intervals and decision limits.

    PubMed

    Risch, Martin; Meier, Dominik W; Sakem, Benjamin; Medina Escobar, Pedro; Risch, Corina; Nydegger, Urs; Risch, Lorenz

    2015-07-11

    The vitamin B12 and folate status in nonanaemic healthy older persons needs attention the more so as decrease in levels may be anticipated from reduced haematinic provision and/or impaired intestinal uptake. A total of 1143 subjectively healthy Swiss midlands participants (637 females and 506 males), ≥60 years of age were included in this study. Levels of vitamin B12, holotranscobalamin (holoTC), methylmalonic acid (MMA), homocysteine (Hcy), serum folate, red blood cell (RBC) folate were measured. Further, Fedosov's wellness score was determined. Associations of age, gender, and cystatin C/creatinine-based estimated kidney function, with the investigated parameters were assessed. Reference intervals were calculated. Further, ROC analysis was done to assess accuracy of the individual parameters in recognizing a deficient vitamin B12 status. Finally, decision limits for sensitive, specific and optimal recognition of vitamin B12 status with individual parameters were derived. Three age groups: 60-69, 70-79 and ≥ 80 had median B12 (pmol/L) levels of 237, 228 and 231 respectively (p = 0.22), holoTC (pmol/L) of 52, 546 and 52 (p = 0.60) but Hcy (μmol/L) 12, 15 and 16 (p < 0.001), MMA (nmol/L) 207, 221 and 244 (p < 0.001). Hcy and MMA (both p < 0.001), but not holoTC (p = 0.12) and vitamin B12 (p = 0.44) were found to be affected by kidney function. In a linear regression model Fedosov's wellness score was independently associated with kidney function (p < 0.001) but not with age. Total serum folate and red blood cell (RBC) folate drift apart with increasing age: whereas the former decreases (p = 0.01) RBC folate remains in the same bandwidth across all age groups (p = 0.12) A common reference interval combining age and gender strata can be obtained for vitamin B12 and holoTC, whereas a more differentiated approach seems warranted for serum folate and RBC folate. Whereas the vitamin B12 and holoTC levels remain steady

  16. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.

    PubMed

    Zhang, Hui-zhu; Li, Xue-min; Gao, Fu-ping; Liu, Ling-rong; Zhou, Zhi-min; Zhang, Qi-qing

    2010-01-01

    The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (¹H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.

  17. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study.

    PubMed

    Snowdon, D A; Tully, C L; Smith, C D; Riley, K P; Markesbery, W R

    2000-04-01

    Previous studies suggested that low concentrations of folate in the blood are related to poor cognitive function, dementia, and Alzheimer disease-related neurodegeneration of the brain. Our aim was to determine whether serum folate is inversely associated with the severity of atrophy of the neocortex. Nutrients, lipoproteins, and nutritional markers were measured in the blood of 30 participants in the Nun Study from one convent who later died when they were 78-101 y old (mean: 91 y). At autopsy, several neuropathologic indicators of Alzheimer disease were determined, including the degree of atrophy of 3 lobes of the neocortex (frontal, temporal, and parietal) and the number of neocortical Alzheimer disease lesions (ie, senile plaques and neurofibrillary tangles) as assessed by a neuropathologist. The correlation between serum folate and the severity of atrophy of the neocortex was -0.40 (P = 0.03). Among a subset of 15 participants with significant numbers of Alzheimer disease lesions in the neocortex, the correlation between folate and atrophy was -0.80 (P = 0.0006). Atrophy may be specific to low folate because none of the 18 other nutrients, lipoproteins, or nutritional markers measured in the blood had significant negative correlations with atrophy. Among elderly Catholic sisters who lived in one convent, ate from the same kitchen, and were highly comparable for a wide range of environmental and lifestyle factors, low serum folate was strongly associated with atrophy of the cerebral cortex. Definitive evidence for this relation and its temporal sequence awaits the findings of other studies.

  18. Enhanced anticancer efficacy and tumor targeting through folate-PEG modified nanoliposome loaded with 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Le, Van Minh; Tran Nho, Trung Duc; Trieu Ly, Hai; Vo, Thanh Sang; Dung Nguyen, Hoang; Thu Huong Phung, Thi; Zou, Aihua; Liu, Jianwen

    2017-03-01

    Cancer targeted therapies have attracted considerable attention over the past year. Recently, 5-fluouracil (5-FU), which has high toxicity to normal cells and short half-life associated with rapid metabolism, is one of the most commonly used therapies in the treatment of cancer. In this study the folic acid-conjugated pegylated nanoliposomes were synthesized and then loaded into them with 5-FU to improve the anti-tumor efficacy. The average size of liposomes (LPs) was about 52.7 nm which was identified by TEM. In the liposome uptake studies, the level uptake of folate-conjugated liposomes has increased compared to non-conjugated LPs according to LPs concentration, incubation time and presence of concentration of free folic acid (FA). The MTT assay and apoptotic test were carried out in HCT116 and MCF-7 cells for 24 or 48 h. The results revealed that the folate-PEG modified 5-Fu loaded nanoliposomes had strong cytotoxicity to cancer cell compared to pure 5-FU or PEG modified 5-FU loaded liposomes in a concentration- and time-dependent manner, and mainly enhanced the cancer cell death through folate-mediated endocytosis. Hence, the folate-PEG modified nanoliposome is a potential targeted drug-delivery system for the treatment of FR-positive cancers.

  19. Folate receptor-specific, redox-responsive mesoporous silica nanoparticles for the simultaneous delivery of cisplatin and gemcitabine to treat cancer

    NASA Astrophysics Data System (ADS)

    Fink, Eric Douglas

    Nanoparticles are an innovative platform for cancer treatment that reduces systemic toxicity and allows for active targeting of tumor sites to enhance the therapeutic efficacy. Mesoporous silica nanoparticles (MSNs) have emerged as an attractive drug delivery system due to their high surface area, vast functionalization potential, and biocompatibility. The main goal of this project is to develop a target-specific stimuli-responsive MSN based drug delivery system for the simultaneous delivery of cisplatin and gemcitabine. Both drugs were chemically attached to the MSNs via stimuli-responsive linkers that respond to the high reducing environment and low pH characteristic of cancer cells. The MSN materials fabricated in this work were successfully synthesized and characterized with a wide variety of spectroscopic and microscopic techniques. The loading of cisplatin and gemcitabine and their release profile under high reducing conditions were determined using atomic absorption (AA) and UV-vis spectroscopy, respectively. In vitro toxicity studies were performed on human cervical cancer (HeLa) cells in the presence of different ratios of cisplatin/gemcitabine drugs to determine the best ratio to kill HeLa cells. Based on this data, MSN materials carrying individual drugs and the corresponding combinatorial nanoparticles were fabricated and their in vitro cytotoxicity evaluated in HeLa and pancreatic cancer cells (AsPC1 and BxPC-3). The next step in this project was to further modify with folic acid to enhance its targeting ability toward cancer cells overexpressing folate receptors.

  20. Alcohol Consumption and Breast Cancer Risk in Younger Women According to Family History of Breast Cancer and Folate Intake.

    PubMed

    Kim, Hyun Ja; Jung, Seungyoun; Eliassen, A Heather; Chen, Wendy Y; Willett, Walter C; Cho, Eunyoung

    2017-09-01

    To evaluate the association between alcohol consumption and breast cancer risk in younger women, overall and by family history of breast cancer and folate intake, we prospectively followed 93,835 US women aged 27-44 years in Nurses' Health Study II who had alcohol consumption data in 1991. Alcohol consumption and folate intake were measured by food frequency questionnaire every 4 years. We documented 2,866 incident cases of invasive breast cancer between 1991 and 2011. Alcohol consumption was not associated with breast cancer risk overall (for intake of ≥10 g/day vs. nondrinking, multivariate hazard ratio = 1.07, 95% confidence interval: 0.94, 1.22). When the association was stratified by family history and folate intake, a positive association between alcohol consumption and breast cancer was found among women with a family history and folate intake less than 400 μg/day (multivariate hazard ratio = 1.82, 95% confidence interval: 1.06, 3.12; P-trend = 0.08). Alcohol consumption was not associated with breast cancer in other categories of family history and folate intake (P-interaction = 0.55). In conclusion, in this population of younger women, higher alcohol consumption was associated with increased risk of breast cancer among those with both a family history of breast cancer and lower folate intake. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Suppression of Homocysteine Levels by Vitamin B12 and Folates: Age and Gender Dependency in the Jackson Heart Study

    PubMed Central

    Henry, Olivia R.; Benghuzzi, Hamed; Taylor, Herman A.; Tucci, Michelle; Butler, Kenneth; Jones, Lynne

    2011-01-01

    Objectives To examine factors potentially contributing to premature cardiovascular disease mortality in African Americans (40% versus 20% all other populations), plasma homocysteine, serum vitamin B12 and folate levels were examined for African American participants in the Jackson Heart Study. Methods Of 5,192 African American Jackson Heart Study participants (21–94 years), 5,064 (mean age, 55±13 years; 63% female) had homocysteine levels measured via fasting blood samples, with further assessments of participants’ vitamin B12 (n=1,790) and folate (n=1,788) levels. We used regression analyses to examine age, gender, vitamin B12, and folate with homocysteine levels. Results Homocysteine levels, a purported surrogate risk factor for cardiovascular disease, increased with age, were inversely proportional to folate and vitamin B12 levels (p<0.001), and higher for men of all ages. Conclusions Our results show that, as with other populations, age, gender, vitamin B12, and folate may predict homocysteine levels for African Americans. Diet may be an important predictive factor as well, given the relationships we observed between plasma homocysteine and serum B vitamin levels. PMID:22173042

  2. The nutritional status of iron, folate, and vitamin B-12 of Buddhist vegetarians.

    PubMed

    Lee, Yujin; Krawinkel, Michael

    2011-01-01

    Nutritional status of iron, folate, and vitamin B-12 in vegetarians were assessed and compared with those of non- vegetarians in Korea. The vegetarian subjects were 54 Buddhist nuns who ate no animal source food except for dairy products. The non-vegetarians were divided into two groups: 31 Catholic nuns and 31 female college students. Three-day dietary records were completed, and the blood samples were collected for analyzing a complete blood count, and serum levels of ferritin, folate, and vitamin B-12. There was no difference in hemoglobin among the diet groups. The serum ferritin and hematocrit levels of vegetarians did not differ from that of non- vegetarian students with a high intake of animal source food but low intake of vitamin C, and the levels were lower than that of non-vegetarian Catholic nuns with a modest consumption of animal source food and a high intake of vitamin C. The serum vitamin B-12 levels of all subjects except one vegetarian and the serum folate levels of all subjects except one non-vegetarian student fell within a normal range. In vegetarians, there was a positive correlation between the vitamin C intake and serum ferritin levels as well as between the laver intake and serum vitamin B-12 levels. In order to achieve an optimal iron status, both an adequate amount of iron intake and its bioavailability should be considered. Sufficient intake of vegetables and fruits was reflected in adequate serum folate status. Korean laver can be a good source of vitamin B-12 for vegetarians.

  3. Anaemia, folate and vitamin B12 deficiency among pregnant women in an area of unstable malaria transmission in eastern Sudan.

    PubMed

    Abdelrahim, Ishraga I; Adam, Gamal K; Mohmmed, Ahmed A; Salih, Magdi M; Ali, Naji I; Elbashier, Mustafa I; Adam, Ishag

    2009-05-01

    A cross-sectional study was carried out between October 2007 and January 2008 to investigate the prevalence and types of anaemia among pregnant women of eastern Sudan. Socio-demographic and obstetrical data were collected using a questionnaire. Haemoglobin (Hb), serum ferritin, serum folate and vitamin B(12) were assessed using standard laboratory methods. Two hundred and seventy-nine pregnant Sudanese women were recruited. Anaemia (Hb <11 gdl) and iron deficiency (ferritin <15 microg/l) were prevalent in 80.3 and 14.3% of the study sample, respectively. Of the total sample, 11.1% had iron-deficiency anaemia. Serum folate (<6.6 ng/ml) and vitamin B(12) (<150 pg/ml) deficiency was reported in 57.7 and 1%, respectively, and none of the women had both folate and vitamin B(12) deficiencies. Univariate and multivariate analyses showed that ferritin, serum folate and vitamin B(12) levels were not significantly associated with anaemia. Thus, there was a high prevalence of anaemia and folate deficiency. Measures to control these should be considered.

  4. Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer.

    PubMed

    Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Nagaoka, Yutaka; Suzuki, Masashi; Fukuda, Takahiro; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair

    2013-03-12

    A multifunctional biocompatible nanovector based on magnetic nanoparticle and carboxymethyl cellulose (CMC) was developed. The nanoparticles have been characterized using TEM, SEM, DLS, FT-IR spectra, VSM, and TGA studies. We found that the synthesized carboxymethyl cellulose magnetic nanoparticles (CMC MNPs) were spherical in shape with an average size of 150 nm having low aggregation and superparamagnetic properties. We found that the folate-tagged CMC MNPs were delivered to cancer cells by a folate-receptor-mediated endocytosis mechanism. 5-FU was encapsulated as a model drug for delivering cytotoxicity, and we could demonstrate the sustained release of 5-FU. It was also observed that the FITC-labeled CMC MNPs could effectively enter cells, and the fate of nanoparticles was tracked with Lysotracker. The CMC MNPs could induce significant cell death when an alternating magnetic field was applied. These results indicate that the multifunctional CMC MNPs possess a high drug loading efficiency and high biocompatibility and with low cell cytotoxicity and can be considered to be promising candidates for CMC-based targeted drug delivery, cellular imaging, and magnetic hyperthermia (MHT).

  5. The association between MTHFR 677C>T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia.

    PubMed

    Hanks, Joanna; Ayed, Iyeman; Kukreja, Neil; Rogers, Chris; Harris, Jessica; Gheorghiu, Alina; Liu, Chee Ling; Emery, Peter; Pufulete, Maria

    2013-12-01

    Decreased genomic and increased gene-specific DNA methylation predispose to colorectal cancer. Dietary folate intake and the methylenetetrahydrofolate reductase polymorphism (MTHFR 677C>T) may influence risk by modifying DNA methylation. We investigated the associations between MTHFR 677C>T genotype, folate status, and DNA methylation in the colon. We conducted a cross-sectional study of 336 men and women (age 19-92 y) in the United Kingdom without colorectal neoplasia. We obtained blood samples for measurement of serum and red blood cell folate, plasma homocysteine, and MTHFR 677C>T genotype and colonic tissue biopsies for measurement of colonic tissue folate and DNA methylation (genomic- and gene-specific, estrogen receptor 1, ESR1; myoblast determination protein 1, MYOD1; insulin-like growth factor II, IGF2; tumor suppressor candidate 33, N33; adenomatous polyposis coli, APC; mut-L homolog 1, MLH1; and O(6)-methylguanine-DNA methyltransferase, MGMT) by liquid chromatography/electrospray ionization mass spectrometry and pyrosequencing, respectively. Of the 336 subjects recruited, 185 (55%) carried the CC, 119 (35%) the CT, and 32 (10%) the TT alleles. No significant differences in systemic markers of folate status and colonic tissue folate between genotypes were found. The MTHFR TT genotype was not associated with genomic or gene-specific DNA methylation. Biomarkers of folate status were not associated with genomic DNA methylation. Relations between biomarkers of folate status and gene-specific methylation were inconsistent. However, low serum folate was associated with high MGMT methylation (P = 0.001). MTHFR 677C>T genotype and folate status were generally not associated with DNA methylation in the colon of a folate-replete population without neoplasia.

  6. Prevalence of iron, folate, and vitamin B12 deficiencies in 20 to 49 years old women: Ensanut 2012.

    PubMed

    Shamah-Levy, Teresa; Villalpando, Salvador; Mejía-Rodríguez, Fabiola; Cuevas-Nasu, Lucía; Gaona-Pineda, Elsa Berenice; Rangel-Baltazar, Eduardo; Zambrano-Mujica, Norma

    2015-01-01

    To describe the prevalence of iron, folate, and B12 deficiencies in Mexican women of reproductive age from the National Health and Nutrition Survey (Ensanut) 2012. Data came from a national probabilistic survey, representative from rural and urban areas, and different age groups. Blood samples were obtained from 4 263, 20 to 49 years old women for serum ferritin, vitamin B12 and serum folate concentrations. The prevalence of deficiencies, was assessed using adjusted logistic regression models. The deficiency of folate was 1.9% (95%CI 1.3-2.8), B12 deficiency was 8.5% (95%CI 6.7-10.1) and iron deficiency was 29.4% (95%CI 26.5-32.2). No differences were found when compared with 2006, 24.8% (95%CI 22.3-27.2). The vitamin B12 deficiency is still a problem for women of reproductive age and their offspring in Mexico, while folate deficiency disappeared as a problem. Iron deficiency needs prevention and fortification strategies.

  7. Study of wheat breakfast rolls fortified with folic acid. The effect on folate status in women during a 3-month intervention.

    PubMed

    Johansson, Madelene; Witthöft, Cornelia M; Bruce, Ake; Jägerstad, Margaretha

    2002-12-01

    Folate has come into focus due to its protective role against child birth defects such as neural tube defects (NTD). Swedish authorities recommend all fertile women to increase their folate intake to 400 microg/day by eating folate-rich foods. Because not all women follow these recommendations, there is a discussion today about whether Sweden should introduce folic acid fortification in wheat flour and sifted rye flour. This decision needs knowledge about the bioavailability of folic acid from fortified foods. To investigate effects of two folic acid fortification levels on folate status in healthy female volunteers and to study the folic acid stability during the baking procedure and storage of the fortified breakfast rolls. Twenty-nine healthy women were recruited. Folic acid-fortified wheat breakfast rolls were baked with the purpose to contain 200 microg folic acid/roll (roll L) and 400 microg folic acid/roll (roll H). Fourteen women were given one roll/day of roll L (group L) and 15 one roll/day of roll H (group H) during 12 weeks of intervention. Fasting venous blood samples were collected on days 0, 30, 60 and 90. Serum homocysteine concentrations were determined using an immunoassay. Serum and erythrocyte folate concentrations were analysed using a protein-binding assay with fluorescent quantification. The folic acid concentration in the breakfast rolls was analysed by HPLC on days 0, 30, 60 and 90. Total folate concentration was measured with microbiological assay on day 45. Group L Group L had initially an average erythrocyte folate concentration of 577 +/- 93 nmol/L. After 90 days of intervention, an increase of 20 % (p < 0.05) was observed. At day 0, mean serum folate concentrations were 16.9 +/- 4.3 nmol/L. The mean serum folate concentrations increased by 30 % (p < 0.001) after 90 days. At day 0, mean serum homocysteine concentrations were 9.1 +/- 2.0 micromol/L, which decreased by 20 % (p < 0.01) after 30 days. Group H Group H had an initial

  8. Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women.

    PubMed

    Dalmeijer, G W; Olthof, M R; Verhoef, P; Bots, M L; van der Schouw, Y T

    2008-03-01

    To investigate the association between dietary intakes of folate, betaine and choline and the risk of cardiovascular disease (CVD). Prospective cohort study. A total of 16 165 women aged 49-70 years without prior CVD. SUBJECTS were breast cancer screening participants in the PROSPECT-EPIC cohort, which is 1 of the 2 Dutch contributions to the European Prospective Investigation into Cancer and Nutrition (EPIC). Each participant completed a validated food frequency questionnaire. Folate intake was calculated with the Dutch National Food Database. Betaine and choline intakes were calculated with the USDA database containing choline and betaine contents of common US foods. Data on coronary heart disease (CHD) events and cerebrovascular accident (CVA) events morbidity data were obtained from the Dutch Centre for Health Care Information. During a median follow-up period of 97 months, 717 women were diagnosed with CVD. After adjustment, neither folate, nor betaine, nor choline intakes were associated with CVD (hazard ratios for highest versus lowest quartile were 1.23 (95% confidence interval 0.75; 2.01), 0.90 (0.69; 1.17), 1.04 (0.71; 1.53), respectively). In a subsample of the population, high folate and choline intakes were statistically significantly associated with lower homocysteine levels. High betaine intake was associated with slightly lower high-density lipoprotein (HDL)-cholesterol concentrations. Regular dietary intakes of folate, betaine and choline were not associated with CVD risk in post-menopausal Dutch women. However, the effect of doses of betaine and choline beyond regular dietary intake--for example, via supplementation or fortification--remains unknown.

  9. Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development.

    PubMed

    Molloy, Anne M; Kirke, Peadar N; Brody, Lawrence C; Scott, John M; Mills, James L

    2008-06-01

    The importance of folate in reproduction can be appreciated by considering that the existence of the vitamin was first suspected from efforts to explain a potentially fatal megaloblastic anemia in young pregnant women in India. Today, low maternal folate status during pregnancy and lactation remains a significant cause of maternal morbidity in some communities. The folate status of the neonate tends to be protected at the expense of maternal stores; nevertheless, there is mounting evidence that inadequate maternal folate status during pregnancy may lead to low infant birthweight, thereby conferring risk of developmental and long-term adverse health outcomes. Moreover, folate-related anemia during childhood and adolescence might predispose children to further infections and disease. The role of folic acid in prevention of neural tube defects (NTD) is now established, and several studies suggest that this protection may extend to some other birth defects. In terms of maternal health, clinical vitamin B12 deficiency may be a cause of infertility or recurrent spontaneous abortion. Starting pregnancy with an inadequate vitamin B12 status may increase risk of birth defects such as NTD, and may contribute to preterm delivery, although this needs further evaluation. Furthermore, inadequate vitamin B12 status in the mother may lead to frank deficiency in the infant if sufficient fetal stores of vitamin B12 are not laid down during pregnancy or are not available in breastmilk. However, the implications of starting pregnancy and lactation with low vitamin B12 status have not been sufficiently researched.

  10. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release.

    PubMed

    Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William

    2015-11-01

    Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. © 2015 International Society for Neurochemistry.

  11. Association of homocysteine, vitamin B12, and folate with bone mineral density in postmenopausal women: a meta-analysis.

    PubMed

    Zhang, Hongxiu; Tao, Xincheng; Wu, Jie

    2014-05-01

    The relationship of homocysteine (Hcy), folate, and vitamin B12 with bone mineral density (BMD) has been investigated in postmenopausal women. However, the relationship is still controversial. To evaluate the association of Hcy, folate, vitamin B12 and BMD in postmenopausal women with a meta-analysis. We searched for all published articles indexed in Medline (1950-2012), Embase (1974-2012), and China National Knowledge Infrastructure (1994-2012). Any case-control or cohort study relating to Hcy, vitamin B12, folate, and BMD was included, and the data were extracted independently by two reviewers. Criteria for inclusion were the assessment of Hcy, vitamin B12, folate, and BMD in postmenopausal women as outcomes. We performed this meta-analysis with Review Manager 5.1 software. Odds ratios and 95 % confidence intervals (CI) were used to evaluate the results. Six eligible studies were selected for meta-analysis. Our analysis suggested that vitamin B12 and Hcy levels were significantly higher in postmenopausal osteoporosis (PMOP) group than that in controls (P = 0.007, <0.05; 95 % CI 3.06-19.38 and P = 0.0003, <0.05; 95 % CI 0.75-2.52, respectively). Folate level was lower in PMOP group than that in controls, but this difference was not statistically significant (P = 0.09, 95 % CI -3.33 to 0.25). Hcy and vitamin B12, but not folate, were related to BMD in PMOP. Extra vitamin B12 may not play a protective role for osteoporosis in postmenopausal women. Future studies are needed to confirm them, especially the relationship between increased vitamin B12 and BMD.

  12. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue.

    PubMed

    Gawde, Kaustubh A; Kesharwani, Prashant; Sau, Samaresh; Sarkar, Fazlul H; Padhye, Subhash; Kashaw, Sushil K; Iyer, Arun K

    2017-06-15

    Albumin-bound paclitaxel colloidal nanoparticle (Abraxane®) is an FDA approved anticancer formulation available in the market. It is a suspension which is currently used therapeutically for treating cancers of the breast, lung, and pancreas among others. CDF is a novel new and potent synthetic curcumin analogue that is widely used for breast and ovarian cancer. The aim of this study was to use biocompatible albumin as well as folate decorated albumin to formulate colloidal nanoparticles encapsulating curcumin difluorinated (CDF). CDF has demonstrated a 16-fold improvement in stability and remarkable anticancer potency compared to its natural derivative, curcumin. CDF showed marked inhibition of cancer cell growth through down-regulation of multiple miRNAs, up-regulation of phosphatase and tensin homolog (PTEN), and attenuation of histone methyl transferase EZH2. However, CDF is highly hydrophobic and photodegradable with sparing aqueous solubility. In this study, we have formulated albumin nanoparticle using a modified desolvation method, which yielded high CDF loading in a nanoformulation. The physicochemical properties of CDF loaded albumin and folate-decorated albumin nanosuspensions were assessed for particle size, morphology, zeta potential, drug encapsulation efficiency/loading, solubility and drug release. Importantly, the folate ligand decorated albumin nanoparticles were formulated in principle to passively and actively target folate-overexpressing-cancers. In this study, the synthesis and optimization of BSA and folate decorated BSA conjugated CDF nanoparticles are assessed in detail that will be useful for its future clinical translation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  14. Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases.

    PubMed

    Bertacine Dias, Marcio V; Santos, Jademilson C; Libreros-Zúñiga, Gerardo A; Ribeiro, João A; Chavez-Pacheco, Sair M

    2018-04-01

    Folate pathway is a key target for the development of new drugs against infectious diseases since the discovery of sulfa drugs and trimethoprim. The knowledge about this pathway has increased in the last years and the catalytic mechanism and structures of all enzymes of the pathway are fairly understood. In addition, differences among enzymes from prokaryotes and eukaryotes could be used for the design of specific inhibitors. In this review, we show a panorama of progress that has been achieved within the folate pathway obtained in the last years. We explored the structure and mechanism of enzymes, several genetic features, strategies, and approaches used in the design of new inhibitors that have been used as targets in pathogen chemotherapy.

  15. Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation.

    PubMed

    Twigt, John M; Hammiche, Fatima; Sinclair, Kevin D; Beckers, Nicole G; Visser, Jenny A; Lindemans, Jan; de Jong, Frank H; Laven, Joop S E; Steegers-Theunissen, Régine P

    2011-02-01

    Folate is a methyl donor. Availability of folate affects DNA methylation profiles and thereby gene expression profiles. We investigated the effects of low-dose folic acid use (0.4 mg/d) on the ovarian response to mild and conventional ovarian stimulation in women. In a randomized trial among subfertile women, 24 and 26 subjects received conventional and mild ovarian stimulation, respectively. Blood samples were taken during the early follicular phase of the cycle prior to treatment and on the day of human chorionic gonadotropin administration for determination of serum total homocysteine, anti-Müllerian hormone (AMH), estradiol, and folate. Folic acid use was validated by questionnaire and serum folate levels. Preovulatory follicles were visualized, counted, and diameters recorded using transvaginal ultrasound. The relation between folic acid use and ovarian response was assessed using linear regression analysis. Folic acid use modified the ovarian response to ovarian stimulation treatment. The estradiol response was higher in nonfolic acid users receiving conventional treatment [β(interaction) = 0.52 (0.07-0.97); P = 0.03], and this effect was independent of serum AMH levels and the preovulatory follicle count. In the conventional treatment, the mean follicle number was also greater in nonusers compared with the users group (14.1 vs. 8.9, P = 0.03). Low-dose folic acid use attenuates follicular and endocrine responses to conventional stimulation, independent of AMH and follicle count. The nature of this observation suggests that the effect of folic acid is most prominent during early follicle development, affecting immature follicles. Deleterious effects of folate deficiency, like DNA hypomethylation and oxidative stress, can help to explain our observations.

  16. Impact of folate supplementation on the efficacy of sulfadoxine/pyrimethamine in preventing malaria in pregnancy: the potential of 5-methyl-tetrahydrofolate.

    PubMed

    Nzila, Alexis; Okombo, John; Molloy, Anne M

    2014-02-01

    Malaria remains the leading cause of mortality and morbidity in children under the age of 5 years and pregnant women. To counterbalance the malaria burden in pregnancy, an intermittent preventive treatment strategy has been developed. This is based on the use of the antifolate sulfadoxine/pyrimethamine, taken at specified intervals during pregnancy, and reports show that this approach reduces the malaria burden in pregnancy. Pregnancy is also associated with the risk of neural tube defects (NTDs), especially in women with low folate status, and folic acid supplementation is recommended in pregnancy to lower the risk of NTDs. Thus, in malaria-endemic areas, pregnant women have to take both antifolate medication to prevent malaria and folic acid to lower the risk of NTDs. However, the concomitant use of folate and antifolate is associated with a decrease in antifolate efficacy, exposing pregnant women to malaria. Thus, there is genuine concern that this strategy may not be appropriate. We have reviewed work carried out on malaria folate metabolism and antifolate efficacy in the context of folate supplementation. This review shows that: (i) the folate supplementation effect on antifolate efficacy is dose-dependent, and folic acid doses required to protect pregnant women from NTDs will not decrease antifolate activity; and (ii) 5-methyl-tetrahydrofolate, the predominant form of folate in the blood circulation, could be administered (even at high dose) concomitantly with antifolate without affecting antifolate efficacy. Thus, strategies exist to protect pregnant women from malaria while maintaining adequate folate levels in the body to reduce the occurrence of NTDs.

  17. Glutamate carboxypeptidase II and folate deficiencies result in reciprocal protection against cognitive and social deficits in mice: implications for neurodevelopmental disorders.

    PubMed

    Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine; Kolodny, Nancy H; Shane, Barry; Berger-Sweeney, Joanne E; Coyle, Joseph T

    2012-06-01

    Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect. Copyright © 2011 Wiley Periodicals, Inc.

  18. Genetic Architecture of Vitamin B12 and Folate Levels Uncovered Applying Deeply Sequenced Large Datasets

    PubMed Central

    Thorleifsson, Gudmar; Ahluwalia, Tarunveer S.; Steinthorsdottir, Valgerdur; Bjarnason, Helgi; Gudbjartsson, Daniel F.; Magnusson, Olafur T.; Sparsø, Thomas; Albrechtsen, Anders; Kong, Augustine; Masson, Gisli; Tian, Geng; Cao, Hongzhi; Nie, Chao; Kristiansen, Karsten; Husemoen, Lise Lotte; Thuesen, Betina; Li, Yingrui; Nielsen, Rasmus; Linneberg, Allan; Olafsson, Isleifur; Eyjolfsson, Gudmundur I.; Jørgensen, Torben; Wang, Jun; Hansen, Torben; Thorsteinsdottir, Unnur; Stefánsson, Kari; Pedersen, Oluf

    2013-01-01

    Genome-wide association studies have mainly relied on common HapMap sequence variations. Recently, sequencing approaches have allowed analysis of low frequency and rare variants in conjunction with common variants, thereby improving the search for functional variants and thus the understanding of the underlying biology of human traits and diseases. Here, we used a large Icelandic whole genome sequence dataset combined with Danish exome sequence data to gain insight into the genetic architecture of serum levels of vitamin B12 (B12) and folate. Up to 22.9 million sequence variants were analyzed in combined samples of 45,576 and 37,341 individuals with serum B12 and folate measurements, respectively. We found six novel loci associating with serum B12 (CD320, TCN2, ABCD4, MMAA, MMACHC) or folate levels (FOLR3) and confirmed seven loci for these traits (TCN1, FUT6, FUT2, CUBN, CLYBL, MUT, MTHFR). Conditional analyses established that four loci contain additional independent signals. Interestingly, 13 of the 18 identified variants were coding and 11 of the 13 target genes have known functions related to B12 and folate pathways. Contrary to epidemiological studies we did not find consistent association of the variants with cardiovascular diseases, cancers or Alzheimer's disease although some variants demonstrated pleiotropic effects. Although to some degree impeded by low statistical power for some of these conditions, these data suggest that sequence variants that contribute to the population diversity in serum B12 or folate levels do not modify the risk of developing these conditions. Yet, the study demonstrates the value of combining whole genome and exome sequencing approaches to ascertain the genetic and molecular architectures underlying quantitative trait associations. PMID:23754956

  19. An overview of folate status in a population-based study from São Paulo, Brazil and the potential impact of 10 years of national folic acid fortification policy.

    PubMed

    Steluti, J; Selhub, J; Paul, L; Reginaldo, C; Fisberg, R M; Marchioni, D M L

    2017-10-01

    Food fortification is an important strategy in public health policy for controlling micronutrient malnutrition and a major contributing factor in the eradication of micronutrients' deficiencies. Approximately 50 countries worldwide have adopted food fortification with folic acid (FA). FA fortification of wheat and maize flours has been mandatory in Brazil since 2004. To assess the effect of 10 years of FA food fortification policy on folate status of residents of São Palo, Brazil using a population-based survey. Data were from 750 individuals aged ⩾12 years who participated in a cross-sectional population-based survey in São Paulo city, Brazil. Fasting blood samples were collected, and folate was assayed by affinity-high performance liquid chromatografy method with electrochemical detection. The participants provided information about food intake based on two 24 h dietary recall. Only 1.76% of population had folate deficiency (<6.8 nmol/l). The mean folate concentration was 29.5 (95% confidence interval: 27.3-31.7) nmol/l for all sex-age groups. The mean folate intake for the population was 375.8 (s.e.m.=6.4) μg/day of dietary folate equivalents (DFEs). When comparing folate intake in DFE from food folate and FA from fortified foods, FA contributed 50% or more of the DFE in almost all sex-age groups. The major contributors of folate intake are processed foods made from wheat flour fortified with FA, especially among subjects younger than 20 years old. The deficiency of folate is very low, and food fortification contributed to folate intake and had a notable influence on rankings of food contributors of folate.

  20. Folate-Chitosan Nanoparticles Loaded with Ursolic Acid Confer Anti-Breast Cancer Activities in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Pi, Jiang; Yang, Fen; Jiang, Jinhuan; Wang, Xiaoping; Bai, Haihua; Shao, Mingtao; Huang, Lei; Zhu, Haiyan; Yang, Peihui; Li, Lihua; Li, Ting; Cai, Jiye; Chen, Zheng W.

    2016-07-01

    Ursolic acid (UA) has proved to have broad-spectrum anti-tumor effects, but its poor water solubility and incompetent targeting property largely limit its clinical application and efficiency. Here, we synthesized a nanoparticle-based drug carrier composed of chitosan, UA and folate (FA-CS-UA-NPs) and demonstrated that FA-CS-UA-NPs could effectively diminish off-target effects and increase local drug concentrations of UA. Using MCF-7 cells as in vitro model for anti-cancer mechanistic studies, we found that FA-CS-UA-NPs could be easily internalized by cancer cells through a folate receptor-mediated endocytic pathway. FA-CS-UA-NPs entered into lysosome, destructed the permeability of lysosomal membrane, and then got released from lysosomes. Subsequently, FA-CS-UA-NPs localized into mitochondria but not nuclei. The prolonged retention of FA-CS-UA-NPs in mitochondria induced overproduction of ROS and destruction of mitochondrial membrane potential, and resulted in the irreversible apoptosis in cancer cells. In vivo experiments showed that FA-CS-UA-NPs could significantly reduce breast cancer burden in MCF-7 xenograft mouse model. These results suggested that FA-CS-UA-NPs could further be explored as an anti-cancer drug candidate and that our approach might provide a platform to develop novel anti-cancer drug delivery system.

  1. Finding the genetic mechanisms of folate deficiency and neural tube defects-Leaving no stone unturned.

    PubMed

    Au, Kit Sing; Findley, Tina O; Northrup, Hope

    2017-11-01

    Neural tube defects (NTDs) occur secondary to failed closure of the neural tube between the third and fourth weeks of gestation. The worldwide incidence ranges from 0.3 to 200 per 10,000 births with the United States of American NTD incidence at around 3-6.3 per 10,000 dependent on race and socioeconomic background. Human NTD incidence has fallen by 35-50% in North America due to mandatory folic acid fortification of enriched cereal grain products since 1998. The US Food and Drug Administration has approved the folic acid fortification of corn masa flour with the goal to further reduce the incidence of NTDs, especially among individuals who are Hispanic. However, the genetic mechanisms determining who will benefit most from folate enrichment of the diet remains unclear despite volumes of literature published on studies of association of genes with functions related to folate metabolism and risk of human NTDs. The advances in omics technologies provides hypothesis-free tools to interrogate every single gene within the genome of NTD affected individuals to discover pathogenic variants and methylation targets throughout the affected genome. By identifying genes with expression regulated by presence of folate through transcriptome profiling studies, the genetic mechanisms leading to human NTDs due to folate deficiency may begin to be more efficiently revealed. © 2017 Wiley Periodicals, Inc.

  2. Are plasma homocysteine concentrations in Brazilian adolescents influenced by the intake of the main food sources of natural folate?

    PubMed

    Bigio, Roberta Schein; Verly, Eliseu; de Castro, Michelle Alessandra; Cesar, Chester Luis Galvão; Fisberg, Regina Mara; Marchioni, Dirce Maria Lobo

    2013-01-01

    Folate, a B vitamin, has been associated with a reduced concentration of plasma homocysteine (phcy), a marker of cardiovascular disease. The contribution of fruits and vegetables (FV) and other natural folate-rich foods to folate intake and folate status in Brazilian adolescents has hardly been determined. To investigate the intake of FV and beans and its association with the concentration of phcy in adolescents. This was a cross-sectional population-based study with a complex sample survey, with 198 adolescents who completed two 24-hour dietary recalls, a food frequency questionnaire, and a fasting blood draw. Usual dietary intake estimates were derived applying the Multiple Source Method. Three different generalized linear models with a gamma distribution were developed for each sex to evaluate the relationship between phcy and tertiles of FV intake as well as to evaluate the relationship between phcy and tertiles of FV and bean intake. No association was found between phcy concentration and FV intake or between phcy and FV and beans. Serum folate and female sex were inversely related to phcy. Phcy was not related to FV or FV and beans; this may be attributable to a low intake of these food groups. Copyright © 2013 S. Karger AG, Basel.

  3. Association between folate levels and CpG island hypermethylation in normal colorectal mucosa

    PubMed Central

    Wallace, Kristin; Grau, Maria V.; Levine, Joan A.; Shen, Lanlan; Hamdan, Randala; Chen, Xinli; Gui, Jiang; Haile, Robert W.; Barry, Elizabeth L.; Ahnen, Dennis; McKeown-Eyssen, Gail; Baron, John A.; Issa, Jean Pierre J.

    2010-01-01

    Background Gene-specific promoter methylation of several genes occurs in aging normal tissues and may predispose to tumorigenesis. In the present study, we investigate the association among blood folate levels, and dietary and lifestyle factors with CpG island methylation in normal colorectal mucosa. Methods Subjects were enrolled in a multi-center chemoprevention trial of aspirin or folic acid for the prevention of large bowel adenomas. We collected 1000 biopsies from 389 patients, 501 samples from the right colon and 499 from the rectum at the follow-up colonoscopy. We measured DNA methylation of estrogen receptor alpha (ERα) and secreted frizzled related protein-1 (SFRP1) using bisulfite pyrosequencing. We used Generalized Estimating Equations regression analysis to examine the association between methylation and selected variables. Results For both ERα and SFRP1, percent methylation was significantly higher in the rectum compared to the right colon (p = 0.001). For each 10 years of age, we observed a 1.7 % increase in methylation level for ERα and a 2.9 % increase for SFRP1 (P < 0.0001). African Americans had a significantly lower level of ERα and SFRP1 methylation compared to Caucasians and Hispanics. Higher RBC folate levels were associated with higher levels of both ERα (p=0.03) and SFRP1 methylation (p=0.01). Conclusions Our results suggest that CpG island methylation in normal colorectal mucosa is related to advancing age, race, rectal location, and RBC folate levels. These data have important implications regarding the safety of supplementary folate administration in healthy adults given the hypothesis that methylation in normal mucosa may predispose to colorectal neoplasia. PMID:21149331

  4. Dietary intake of vegetables, folate, and antioxidants and the risk of Barrett's esophagus

    PubMed Central

    Jiao, Li; Kramer, Jennifer R.; Rugge, Massimo; Parente, Paola; Verstovsek, Gordana; Alsarraj, Abeer; El-Serag, Hashem B.

    2013-01-01

    Purpose Diet is a potentially modifiable risk factor for Barrett's esophagus (BE). We investigated the associations between intakes of fruits and vegetables and risk of BE. Methods We identified study subjects from 1,859 participants who underwent the endoscopy in a single VA Medical Center in the U.S between 2008 and 2011. Dietary intake in the previous year was elicited using a self-administered Block food frequency questionnaire (FFQ). Logistic regression model was used to estimate odds ratio (OR) and its 95% confidence interval (CI) for BE. Results A total of 151 cases with definite BE and 777 controls completed the FFQ. When highest tertile of intake was compared with the lowest, the OR (95% CI) was 0.46 (0.26-0.81) for dark green vegetables, 0.52 (0.30- 0.90) for legumes, 0.50 (0.28-0.90) for total fiber, 0.45 (0.25-0.81) for isoflavones, 0.52 (0.30- 0.67) for total folate, and 0.45 (0.26-0.79) for lutein, adjusting for multiple confounding factors including use of aspirin or proton pump inhibitor, gastro-esophageal reflux symptoms, and physical activity. The association for dark green vegetables was attenuated after adjustment for lutein, total fiber, and total folate (OR = 0.82; 95% CI, 0.30-2.22). Conclusion Higher intake of dark green vegetables was associated with a decreased risk of BE in a veteran population. Such an inverse association may be partially mediated by lutein, fiber and folate. The novel findings on the association between intake of lutein, total folate, or isoflavones and risk of BE need further confirmation. PMID:23420329

  5. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status

    PubMed Central

    Friso, Simonetta; Choi, Sang-Woon; Girelli, Domenico; Mason, Joel B.; Dolnikowski, Gregory G.; Bagley, Pamela J.; Olivieri, Oliviero; Jacques, Paul F.; Rosenberg, Irwin H.; Corrocher, Roberto; Selhub, Jacob

    2002-01-01

    DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status. PMID:11929966

  6. Supplementation with fruit and okara soybean by-products and amaranth flour increases the folate production by starter and probiotic cultures.

    PubMed

    Albuquerque, Marcela Albuquerque Cavalcanti de; Bedani, Raquel; Vieira, Antônio Diogo Silva; LeBlanc, Jean Guy; Saad, Susana Marta Isay

    2016-11-07

    The ability of two starter cultures (Streptococcus (S.) thermophilus ST-M6 and St. thermophilus TA-40) and eleven probiotic cultures (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. fermentum PCC, Lb. reuteri RC-14, Lb. paracasei subsp. paracasei, Lb. casei 431, Lb. paracasei subsp. paracasei F19, Lb. rhamnosus GR-1, and Lb. rhamnosus LGG, Bifidobacterium (B.) animalis subsp. lactis BB-12, B. longum subsp. longum BB-46, and B. longum subsp. infantis BB-02) to produce folate in a modified MRS broth (mMRS) supplemented with different fruit (passion fruit, acerola, orange, and mango) and okara soybean by-products and amaranth flour was investigated. Initially, the folate content of each vegetable substrate was determined: passion fruit by-product showed the lowest folate content (8±2ng/mL) and okara the highest (457±22ng/mL). When the orange by-product and amaranth flour were added to mMRS, all strains were able to increase folate production after 24h of fermentation. B. longum subsp infantis BB-02 produced the highest concentrations (1223±116ng/mL) in amaranth flour. Okara was the substrate that had the lowest impact on the folate production by all strains evaluated. Lb. acidophilus LA-5 (297±36ng/mL) and B. animalis subsp. lactis BB-12 (237±23ng/mL) were also able to produce folate after growth in mMRS containing acerola and orange by-products, respectively. The results of this study demonstrate that folate production is not only strain-dependent but also influenced by the addition of different substrates in the growth media. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of Smoking and Folate Levels on the Efficacy of Folic Acid Therapy in Prevention of Stroke in Hypertensive Men.

    PubMed

    Zhou, Ziyi; Li, Jianping; Yu, Yaren; Li, Youbao; Zhang, Yan; Liu, Lishun; Song, Yun; Zhao, Min; Wang, Yu; Tang, Genfu; He, Mingli; Xu, Xiping; Cai, Yefeng; Dong, Qiang; Yin, Delu; Huang, Xiao; Cheng, Xiaoshu; Wang, Binyan; Hou, Fan Fan; Wang, Xiaobin; Qin, Xianhui; Huo, Yong

    2018-01-01

    We aimed to examine whether the efficacy of folic acid therapy in the primary prevention of stroke is jointly affected by smoking status and baseline folate levels in a male population in a post hoc analysis of the CSPPT (China Stroke Primary Prevention Trial). Eligible participants of the CSPPT were randomly assigned to a double-blind daily treatment of a combined enalapril 10-mg and folic acid 0.8-mg tablet or an enalapril 10-mg tablet alone. In total, 8384 male participants of the CSPPT were included in the current analyses. The primary outcome was first stroke. The median treatment duration was 4.5 years. In the enalapril-alone group, the first stroke risk varied by baseline folate levels and smoking status (never versus ever). Specifically, there was an inverse association between folate levels and first stroke in never smokers ( P for linear trend=0.043). However, no such association was found in ever smokers. A test for interaction between baseline folate levels and smoking status on first stroke was significant ( P =0.045). In the total sample, folic acid therapy significantly reduced the risk of first stroke in never smokers with folate deficiency (hazard risk, 0.36; 95% confidence interval, 0.16-0.83) and in ever smokers with normal folate levels (hazard risk, 0.69; 95% confidence interval, 0.48-0.99). Baseline folate levels and smoking status can interactively affect the risk of first stroke. Our data suggest that compared with never smokers, ever smokers may require a higher dosage of folic acid to achieve a greater beneficial effect on stroke. Our findings need to be confirmed by future randomized trials. URL: https://www.clinicaltrials.gov. Unique identifier: NCT00794885. © 2017 American Heart Association, Inc.

  8. Metabolism of the Folate Precursor p-Aminobenzoate in Plants

    PubMed Central

    Eudes, Aymerick; Bozzo, Gale G.; Waller, Jeffrey C.; Naponelli, Valeria; Lim, Eng-Kiat; Bowles, Dianna J.; Gregory, Jesse F.; Hanson, Andrew D.

    2008-01-01

    Plants produce p-aminobenzoate (pABA) in chloroplasts and use it for folate synthesis in mitochondria. In plant tissues, however, pABA is known to occur predominantly as its glucose ester (pABA-Glc), and the role of this metabolite in folate synthesis has not been defined. In this study, the UDP-glucose:pABA acyl-glucosyltransferase (pAGT) activity in Arabidopsis extracts was found to reside principally (95%) in one isoform with an apparent Km for pABA of 0.12 mm. Screening of recombinant Arabidopsis UDP-glycosyltransferases identified only three that recognized pABA. One of these (UGT75B1) exhibited a far higher kcat/Km value than the others and a far lower apparent Km for pABA (0.12 mm), suggesting its identity with the principal enzyme in vivo. Supporting this possibility, ablation of UGT75B1 reduced extractable pAGT activity by 95%, in vivo [14C]pABA glucosylation by 77%, and the endogenous pABA-Glc/pABA ratio by 9-fold. The Keq for the pABA esterification reaction was found to be 3 × 10-3. Taken with literature data on the cytosolic location of pAGT activity and on cytosolic UDP-glucose/UDP ratios, this Keq value allowed estimation that only 4% of cytosolic pABA is esterified. That pABA-Glc predominates in planta therefore implies that it is sequestered away from the cytosol and, consistent with this possibility, vacuoles isolated from [14C]pABA-fed pea leaves were estimated to contain≥88% of the [14C]pABA-Glc formed. In total, these data and the fact that isolated mitochondria did not take up [3H]pABA-Glc, suggest that the glucose ester represents a storage form of pABA that does not contribute directly to folate synthesis. PMID:18385129

  9. Homocysteinemia in mice with genetic betaine homocysteine S-methyltransferase deficiency is independent of dietary folate intake.

    PubMed

    Teng, Ya-Wen; Cerdena, Ignacio; Zeisel, Steven H

    2012-11-01

    Elevated homocysteine (Hcy) concentrations are associated with increased risk of several chronic diseases. Hcy can be removed by methylating it to form methionine via either the betaine homocysteine S-methyltransferase (BHMT) or the methionine synthase (MS) pathway. BHMT uses betaine as the methyl donor, whereas MS uses 5-methyltetrahydrofolate. We previously found that mice with the gene encoding Bhmt deleted (Bhmt(-/-)) had altered Hcy metabolites in tissues. This study aimed to determine whether folate supplementation of Bhmt(-/-) mice reverses, and folate deficiency exacerbates, these metabolic changes. Bhmt(-/-) mice and their littermates (Bhmt(+/+) mice) were fed a folate-deficient (FD; 0 mg/kg diet), a folate control (FC; 2 mg/kg diet), or a folate-supplemented (FS; 20 mg/kg diet) diet for 4 wk. Bhmt(-/-) mice had higher plasma Hcy and hepatic S-adenosylhomocysteine (AdoHcy) concentrations and had lower hepatic S-adenosylmethionine (AdoMet) concentrations compared with Bhmt(+/+) mice for all diets. Although the FD diet increased plasma Hcy (P < 0.05) and hepatic AdoHcy (P < 0.001) concentrations in Bhmt(+/+) mice compared with FC and FS mice, the FD diet had no effect on the metabolites measured in Bhmt(-/-) mice. The FS diet did not ameliorate elevated plasma Hcy and elevated hepatic AdoHcy concentrations but did increase hepatic AdoMet concentrations in Bhmt(-/-) mice (P < 0.001) compared with FD and FC mice. We conclude that the BHMT pathway is a major route for the elimination of Hcy in mice and that the MS pathway has little excess capacity to methylate the Hcy that accumulates when the BHMT pathway is blocked.

  10. Passion fruit by-product and fructooligosaccharides stimulate the growth and folate production by starter and probiotic cultures in fermented soymilk.

    PubMed

    Albuquerque, Marcela Albuquerque Cavalcanti; Bedani, Raquel; LeBlanc, Jean Guy; Saad, Susana Marta Isay

    2017-11-16

    Two starter cultures (Streptococcus (St.) thermophilus ST-M6 and TA-40) and five probiotic strains (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. rhamnosus LGG, Lb. fermentum PCC, and Lb. reuteri RC-14) were used to ferment different soymilk formulations supplemented with passion fruit by-product and/or fructo-oligosaccharides (FOS) with the aim of increasing folate concentrations. Growth and folate production of individual strains were evaluated and the results used to select co-cultures. Both St. thermophilus ST-M6 and TH-4 were the best folate producers and were able to increase the folate content of all soymilk formulations when used alone or in co-culture with lactobacilli strains, especially in the presence of both passion fruit by-product and FOS. Thus, passion fruit by-product and FOS could be used as dietary ingredients to stimulate the folate production by selected bacterial strains during the fermentation of soymilk. It was also shown that vitamin production by microorganisms is strain-dependent and may also be influenced by nutritional and environmental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Folate targeted polymeric 'green' nanotherapy for cancer

    NASA Astrophysics Data System (ADS)

    Narayanan, Sreeja; Binulal, N. S.; Mony, Ullas; Manzoor, Koyakutty; Nair, Shantikumar; Menon, Deepthy

    2010-07-01

    The concept of 'green' chemotherapy by employing targeted nanoparticle mediated delivery to enhance the efficacy of phytomedicines is reported. Poly (lactide-co-glycolide) (PLGA) nanoparticles encapsulating a well known nutraceutical namely, grape seed extract (GSE)—'NanoGSE'—was prepared by a nanoprecipitation technique. The drug-loaded nanoparticles of size ~ 100 nm exhibited high colloidal stability at physiological pH. Molecular receptor targeting of this nanophytomedicine against folate receptor over-expressing cancers was demonstrated in vitro by conjugation with a potential cancer targeting ligand, folic acid (FA). Fluorescence microscopy and flow cytometry data showed highly specific cellular uptake of FA conjugated NanoGSE on folate receptor positive cancer cells. Studies were also conducted to investigate the efficiency of targeted (FA conjugated) versus non-targeted (non-FA conjugated) nanoformulations in causing cancer cell death. The IC50 values were lowered by a factor of ~ 3 for FA-NanoGSE compared to the free drug, indicating substantially enhanced bioavailability to the tumor cells, sparing the normal ones. Receptor targeting of FA-NanoGSE resulted in a significant increase in apoptotic index, which was also quantified by flow cytometry and fluorescence microscopy. This in vitro study provides a basis for the use of nanoparticle mediated delivery of anticancer nutraceuticals to enhance bioavailability and effectively target cancer by a 'green' approach.

  12. A study of folate absorption and metabolism in man utilizing carbon-14—labeled polyglutamates synthesized by the solid phase method

    PubMed Central

    Butterworth, C. E.; Baugh, C. M.; Krumdieck, Carlos

    1969-01-01

    The absorption and metabolism of synthetic polyglutamates of folic acid have been compared with free pteroylglutamic acid in four subjects having chronic lymphatic leukemia and one with Hodgkin's granuloma. Pteroylpolyglutamates containing either three or seven glutamate residues were prepared by the solid-phase method permitting placement of carbon-14 labels in either the pteridine ring or in a selected glutamate unit of the gamma peptide chain. Complete dissociation was observed between biological folate activity and radioactivity of plasma after ingestion of pteroyltriglutamate labeled in the middle glutamate. This indicates cleavage to the monoglutamate form at the time of absorption from the intestine or very soon thereafter. A large portion of radioactivity liberated from the middle glutamate is recoverable as carbon dioxide in the exhaled air. Fecal losses of folate tended to be greater with increasing length of the poly-γ-glutamyl chain. Higher blood levels and greater urinary losses of folate tended to occur after ingestion of mono- and triglutamates than with the heptaglutamate. Calculations based on radioactivity determinations in feces plus urinary folate losses, judged by either radioactivity or microbiological assays, indicated net retention of 37-67% of the dose irrespective of chain length ingested and major avenue of loss. During the peak of absorption the folate circulating in plasma was active for both Streptococcus fecalis and Lactobacillus casei and carried specific radioactivity which was virtually identical with that of the administered dose. This suggests that neither methylation, conjugation, nor displacement of nonradioactive folate occurred to any significant extent during the 1st 2 hr. The specific radioactivity of 24-hr urine specimens as measured with L. casei corresponded closely with that of the administered dose. Evidence exists that methylation of the radioactive folate may occur, but significant displacement of nonradioactive

  13. High folate levels are not associated with increased malaria risk but with reduced anaemia rates in the context of high-dosed folate supplements and intermittent preventive treatment against malaria in pregnancy with sulphadoxine-pyrimethamine in Benin.

    PubMed

    Moya-Alvarez, Violeta; Ouédraogo, Smaila; Accrombessi, Manfred; Cot, Michel

    2018-04-23

    To investigate whether high-dosed folate supplements might diminish the efficacy of malaria intermittent preventive treatment in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) in a cohort of pregnant women in Benin, where malaria is holoendemic. We followed 318 women during the entire pregnancy and analysed haematological and Plasmodium falciparum indicators in the context of an intermittent preventive treatment trial in Benin. During the follow-up, women received two-dose IPTp (1500/75 mg of SP per dose) at the maternity clinic and 600 mg of albendazole, 200 mg ferrous sulphate and 5 mg folic acid per day for home treatment. High folate levels were not associated with increased malaria risk (adjusted OR (aOR) = 0.51 (95% CI: 0.17; 1.56, P-value = 0.24)), nor with increased P. falciparum density (beta coefficient = -0.26 (95% CI: -0.53; 0.02), P-value = 0.07) in a randomised trial of IPTp in Benin. On the contrary, higher iron levels were statistically associated with increased odds of a positive blood smear (aOR = 1.7 95% CI (1.2; 2.3), P-value < 0.001) and P. falciparum parasite density (beta coefficient = 0.2 95% CI (0.1; 0.3), P-value < 0.001). High folate levels were statistically associated with decreased odds of anaemia (aOR = -0.30 95% CI (0.10; 0.88), P-value = 0.03). High folate levels are not associated with increased malarial risk in a prospective longitudinal cohort in the context of both iron and high-dosed folate supplements and IPTp. They are associated with reduced risk of anaemia, which is particularly important because iron, also given to treat anaemia, might be associated with increased malaria risk. © 2018 John Wiley & Sons Ltd.

  14. Heterozygous carriers of classical homocystinuria tend to have higher fasting serum homocysteine concentrations than non-carriers in the presence of folate deficiency.

    PubMed

    Lu, Yung-Hsiu; Cheng, Li-Mei; Huang, Yu-Hsiu; Lo, Ming-Yu; Wu, Tina Jui-Ting; Lin, Hsiang-Yu; Hsu, Ting-Rong; Niu, Dau-Ming

    2015-12-01

    Many studies have reported that serum total homocysteine (tHcy) levels in cystathionine-beta-synthase (CBS) carriers are usually normal and only elevated after a methionine load. However, the amount of methionine required for a loading test is non-physiological and is never reached with regular feeding. Therefore, CBS carriers do not seem to be at an increased risk of cardiovascular diseases. However, the risk of cardiovascular diseases of CBS carriers with folate deficiency has not been studied. We recently found an extraordinarily high carrier rate (1/7.78) of a novel CBS mutation (p.D47E, c.T141A) in an Austronesian Taiwanese Tao tribe who live in a geographic area with folate deficiency. We evaluated if the CBS carriers tend to have higher fasting serum tHcy concentrations than non-carriers in presence of folate deficiency. The serum tHcy and folate levels before and after folate replacement were measured in 48 adult Tao carriers, 40 age-matched Tao non-carriers and 40 age-matched Han Taiwanese controls. The serum tHcy level of the Tao CBS carriers (17.9 ± 3.8 μmol/l) was significantly higher than in Tao non-carriers (15.7 ± 3.5 μmol/l; p < 0.008) and Taiwanese controls (11.8 ± 2.9 μmol/l; p < 0.001). Furthermore, a high prevalence of folate deficiency in the Tao compared with the Taiwanese controls (4.9 ± 1.8 ng/ml vs. 10.6 ± 5.5 ng/ml; p < 0.001) was also noted. Of note, the difference in tHcy levels between the carriers and non-carriers was eliminated by folate supplementation. (carriers:13.65 ± 2.13 μmol/l; non-carriers:12.39 ± 3.25 μmol/l, p = 0.321). CBS carriers tend to have a higher tHcy level in the presence of folate deficiency than non-carriers. Although many reports have indicated that CBS carriers are not associated with cardiovascular disease, the risk for CBS carriers with folate deficiency has not been well studied. Owing to a significantly elevated level of fasting tHcy without methionine loading, it is important to evaluate the

  15. UV-associated decline in systemic folate: implications for human nutrigenetics, health, and evolutionary processes.

    PubMed

    Lucock, Mark; Beckett, Emma; Martin, Charlotte; Jones, Patrice; Furst, John; Yates, Zoe; Jablonski, Nina G; Chaplin, George; Veysey, Martin

    2017-03-01

    The purpose of this study was to examine whether UV exposure alters folate status according to C677T-MTHFR genotype, and to consider the relevance of this to human health and the evolutionary model of skin pigmentation. Total Ozone Mapping Spectrometer (TOMS) satellite data were used to examine surface UV-irradiance, as a marker of UV exposure, in a large (n = 649) Australian cross-sectional study population. PCR/RFLP analysis was used to genotype C677T-MTHFR. Overall, cumulative UV-irradiance (42 and 120 days pre-clinic) was significantly negatively related to red cell folate (RCF) levels. When the cohort was stratified by MTHFR-C677T genotype, the relationship between UV-irradiance (42 days pre-clinic) and RCF remained significant only in the cohorts containing carriers of the T allele. Statistically significant z-score statistics and interaction terms from genotype and UV-irradiance (p-interaction) demonstrated that genotype did modify the effect of UV-irradiance on RCF, with the largest effect of UV being demonstrated in the 677TT-MTHFR subjects. Data provide strong evidence that surface UV-irradiance reduces long-term systemic folate levels, and that this is influenced by the C677T-MTHFR gene variant. We speculate this effect may be due to 677TT-MTHFR individuals containing more 5,10CH 2 -H 4 PteGlu, and that this folate form may be particularly UV labile. Since UV-irradiance lowers RCF in an MTHFR genotype-specific way, there are likely implications for human health and the evolution of skin pigmentation. © 2016 Wiley Periodicals, Inc.

  16. The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach.

    PubMed

    Binder, Alexandra M; Michels, Karin B

    2013-12-04

    Investigation of the biological mechanism by which folate acts to affect fetal development can inform appraisal of expected benefits and risk management. This research is ethically imperative given the ubiquity of folic acid fortified products in the US. Considering that folate is an essential component in the one-carbon metabolism pathway that provides methyl groups for DNA methylation, epigenetic modifications provide a putative molecular mechanism mediating the effect of folic acid supplementation on neonatal and pediatric outcomes. In this study we use a Mendelian Randomization Unnecessary approach to assess the effect of red blood cell (RBC) folate on genome-wide DNA methylation in cord blood. Site-specific CpG methylation within the proximal promoter regions of approximately 14,500 genes was analyzed using the Illumina Infinium Human Methylation27 Bead Chip for 50 infants from the Epigenetic Birth Cohort at Brigham and Women's Hospital in Boston. Using methylenetetrahydrofolate reductase genotype as the instrument, the Mendelian Randomization approach identified 7 CpG loci with a significant (mostly positive) association between RBC folate and methylation level. Among the genes in closest proximity to this significant subset of CpG loci, several enriched biologic processes were involved in nucleic acid transport and metabolic processing. Compared to the standard ordinary least squares regression method, our estimates were demonstrated to be more robust to unmeasured confounding. To the authors' knowledge, this is the largest genome-wide analysis of the effects of folate on methylation pattern, and the first to employ Mendelian Randomization to assess the effects of an exposure on epigenetic modifications. These results can help guide future analyses of the causal effects of periconceptional folate levels on candidate pathways.

  17. Validation of a semiquantitative food frequency questionnaire to assess folate status. Results discriminate a high-risk group of women residing on the Mexico-US border.

    PubMed

    Bacardí-Gascón, Montserrat; Ley y de Góngora, Silvia; Castro-Vázquez, Brenda Yuniba; Jiménez-Cruz, Arturo

    2003-01-01

    The purpose of the study was to estimate dietary intake of folate in two groups of women from different economic backgrounds and to evaluate validity of the 5-day-weighed food registry (5-d-WFR) and Food Frequency Questionnaire (FFQ) using biological markers. A cross-sectional study was conducted in two samples of urban Mexican women: one represented the middle socioeconomic status (middle SES) and the other, low socioeconomic status (low SES). Middle SES included 34 women recruited from 1998 to 1999. Participants were between the ages of 18 and 32 years and were employed in the banking industry (middle SES) in the US-Mexican border city of Tijuana, Baja California. Low SES included 70 women between the ages of 18 and 35 years recruited during the year 2000. These women were receiving care at a primary health care center in Ensenada, Baja California Norte State, Mexico (low SES). Pearson correlations were calculated between folate intake among 5-day diet registry, FFQ, and biochemical indices. FFQ reproducibility was performed by Spearman correlation of each food item daily and of weekly intake. Average folate intake in middle SES from 5-d-WFR was 210 microg +/- 171. Fifty four percent of participants had intakes <200 microg/daily. Average folate intake from FFQ was 223 +/- 78 microg/day. Pearson correlation between log transformed and within individually adjusted 5-d-WFR folate intakes and serum folate was 0.40 (p=0.02). Mexican women of reproductive age living in the US-Mexican border State of Baja California are at very high risk of NTDs as a result of low folate intake and low serum folate and RBC folate concentrations.

  18. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Ao, Lijiao; Wang, Bi; Liu, Peng; Huang, Liang; Yue, Caixia; Gao, Duyang; Wu, Chunlei; Su, Wu

    2014-08-01

    This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content, considerable drug loading and sustained in vitro drug release. These clustered SPIONs exhibited high r2 relaxivity (243.65 mM-1 s-1) and further served as efficient probes for MR imaging. Notably, the transport efficiency of these micelles could be significantly improved under an external magnetic field, owing to their quick magnetic response. As a result, the as-proposed micelle shows great potential in multimodal theranostics, including active targeting, MRI diagnosis and drug delivery.This paper devotes a novel micellar structure for cancer theranostics by incorporating magnetic and therapeutic functionalities into a natural sourced targeting polymer vehicle. Heparin-folic acid micelles taking advantage of both excellent loading capability and cancer targeting ability have been employed to simultaneously incorporate superparamagnetic iron oxide nanoparticles (SPIONs) and doxorubicin through an ultrasonication-assisted microemulsion method. In this system, folic acids not only take the responsibility of micelle construction, but also facilitate cellular uptake due to their specific reorganization by MCF-7 cells over-expressing folate receptors. The obtained micelles exhibit good colloidal stability, a high magnetic content

  19. Influence of 5,10-methylenetetrahydrofolate reductase polymorphism on whole-blood folate concentrations measured by LC-MS/MS, microbiologic assay, and bio-rad radioassay.

    PubMed

    Fazili, Zia; Pfeiffer, Christine M; Zhang, Mindy; Jain, Ram B; Koontz, Deborah

    2008-01-01

    The 5,10-methylenetetrahydrofolate reductase (NADPH) (MTHFR) C677T polymorphism may affect whole-blood folate pattern measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and total folate measured by LC-MS/MS, microbiologic assay, and Bio-Rad radioassay (BR). We analyzed 171 whole blood hemolysates from 2 blood banks for folate pattern and total folate concentrations using these 3 methods and determined MTHFR genotype. The median (range) total folate concentration by LC-MS/MS was higher in the US set [378 (228-820) nmol/L; n = 96] than in the European set [250 (122-582) nmol/L; n = 75]. The whole-blood folate pattern [median (range)] was similar for individuals with C/C (n = 73) and C/T (n = 66) genotype: 88% (71%-91%) and 86% (50%-91%), respectively, for 5-methyltetrahydrofolic acid (5CH(3)THF) vs 12% (9%-29%) and 14% (9%-51%) for forms other than 5-methyltetrahydrofolic acid (non-5CH(3)THF). Individuals with T/T (n = 32) genotype had 58% (22%-87%) 5CH(3)THF vs 42% (13%-78%) non-5CH(3)THF. Compared with microbiologic assay results, LC-MS/MS (r = 0.94) and BR (r = 0.87) results were significantly lower (-10% and -45%, respectively); however, these differences were concentration dependent and also genotype dependent for the BR assay (-48% for C/C+C/T and -31% for T/T). The microbiologic assay completely recovered [mean (SD)] folates added to a whole blood hemolysate, except for tetrahydrofolic acid (THF) [46.4% (8.1%)]. The BR assay under-recovered 5CH(3)THF [51% (4.1%)] and 5-formyltetrahydrofolic acid [18% (0.1%)], and over-recovered THF [152% (19%)]. MTHFR C677T polymorphism influences the folate pattern in whole blood. The agreement between total folate by LC-MS/MS and microbiologic assay, independent of the MTHFR genotype, allows the use of one regression equation. Because BR results are genotype dependent, different regression equations should be used.

  20. Predictors of folate status among pregnant Japanese women: the Hokkaido Study on Environment and Children's Health, 2002-2012.

    PubMed

    Yila, Thamar A; Araki, Atsuko; Sasaki, Seiko; Miyashita, Chihiro; Itoh, Kumiko; Ikeno, Tamiko; Yoshioka, Eiji; Kobayashi, Sumitaka; Goudarzi, Houman; Baba, Toshiaki; Braimoh, Titilola; Minakami, Hisanori; Endo, Toshiaki; Sengoku, Kazuo; Kishi, Reiko

    2016-06-01

    The International Clearinghouse for Birth Defects, Surveillance and Research reports a rise in the prevalence rate of spina bifida in Japan. We determined first-trimester folate status of Hokkaido women and identified potential predictors. Participants were 15 266 pregnant women of the Hokkaido Study on Environment and Children's Health Cohort. Data were extracted from self-reported questionnaires and biochemical assay results. Demographic determinants of low folate status were younger maternal age (adjusted OR (AOR) 1·48; 95 % CI 1·32, 1·66), lower educational level (AOR 1·27; 95 % CI 1·17, 1·39) and lower annual income (AOR 1·11; 95 % CI 1·01, 1·22). Plasma cotinine concentrations of 1·19-65·21 nmol/l increased the risk of low folate status (AOR 1·20; 95 % CI 1·10, 1·31) and concentrations >65·21 nmol/l further increased the risk (AOR 1·91; 95 % CI 1·70, 2·14). The most favourable predictor was use of folic acid (FA) supplements (AOR 0·19; 95 % CI 0·17, 0·22). Certain socio-demographic factors influence folate status among pregnant Japanese women. Modifiable negative and positive predictors were active and passive tobacco smoking and use of FA supplements. Avoiding both active and passive tobacco smoking and using FA supplements could improve the folate status of Japanese women.

  1. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice.

    PubMed

    Oyewumi, Moses O; Yokel, Robert A; Jay, Michael; Coakley, Tricia; Mumper, Russell J

    2004-03-24

    The purpose of these studies was to compare the cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium (Gd) nanoparticles. Gd is a potential agent for neutron capture therapy (NCT) of tumors. Gd nanoparticles were engineered from oil-in-water microemulsion templates. To obtain folate-coated nanoparticles, a folate ligand [folic acid chemically linked to distearoylphosphatidylethanolamine (DSPE) via a PEG spacer MW 3350] was included in nanoparticle preparations. Similarly, control nanoparticles were coated with DSPE-PEG-MW 3350 (PEG-coated). Nanoparticles were characterized based on size, size distribution, morphology, biocompatibility and tumor cell uptake. In vivo studies were carried out in KB (human nasopharyngeal carcinoma) tumor-bearing athymic mice. Biodistribution and tumor retention studies were carried out at pre-determined time intervals after injection of nanoparticles (10 mg/kg). Gd nanoparticles did not aggregate platelets or activate neutrophils. The retention of nanoparticles in the blood 8, 16 and 24 h post-injection was 60%, 13% and 11% of the injected dose (ID), respectively. A maximum Gd tumor localization of 33+/-7 microg Gd/g was achieved. Both folate-coated and PEG-coated nanoparticles had comparable tumor accumulation. However, the cell uptake and tumor retention of folate-coated nanoparticles was significantly enhanced over PEG-coated nanoparticles. Thus, the benefits of folate ligand coating were to facilitate tumor cell internalization and retention of Gd-nanoparticles in the tumor tissue. The engineered nanoparticles may have potential in tumor-targeted delivery of Gd thereby enhancing the therapeutic success of NCT.

  2. Polymeric micelle for tumor pH and folate-mediated targeting.

    PubMed

    Lee, Eun Seong; Na, Kun; Bae, You Han

    2003-08-28

    Novel pH-sensitive polymeric mixed micelles composed of poly(L-histidine) (polyHis; M(w) 5000)/PEG (M(n) 2000) and poly(L-lactic acid) (PLLA) (M(n) 3000)/PEG (M(n) 2000) block copolymers with or without folate conjugation were prepared by diafiltration. The micelles were investigated for pH-dependent drug release, folate receptor-mediated internalization and cytotoxicity using MCF-7 cells in vitro. The polyHis/PEG micelles showed accelerated adriamycin release as the pH decreased from 8.0. When the cumulative release for 24 h was plotted as a function of pH, the gradual transition in release rate appeared in a pH range from 8.0 to 6.8. In order to tailor the triggering pH of the polymeric micelles to the more acidic extracellular pH of tumors, while improving the micelle stability at pH 7.4, the PLLA/PEG block copolymer was blended with polyHis/PEG to form mixed micelles. Blending shifted the triggering pH to a lower value. Depending on the amount of PLLA/PEG, the mixed micelles were destabilized in the pH range of 7.2-6.6 (triggering pH for adriamycin release). When the mixed micelles were conjugated with folic acid, the in vitro results demonstrated that the micelles were more effective in tumor cell kill due to accelerated drug release and folate receptor-mediated tumor uptake. In addition, after internalization polyHis was found to be effective for cytosolic ADR delivery by virtue of fusogenic activity. This approach is expected to be useful for treatment of solid tumors in vivo.

  3. Effect of Enterococcus faecium SF68 on serum cobalamin and folate concentrations in healthy dogs.

    PubMed

    Lucena, R; Olmedilla, A B; Blanco, B; Novales, M; Ginel, P J

    2018-04-17

    To study the effect of a 14-day administration of the probiotic Enterococcus faecium SF68 on serum concentrations of cobalamin and folate in healthy dogs. Thirty-six healthy dogs were randomly allocated between probiotic and control groups. Enterococcus faecium SF68 was administered to the probiotic group for 14 days whereas the control group did not receive any product. A blood sample was taken from all dogs when starting the administration (day 1), when the administration ended (day 14) and 14 days later (day 28). Serum cobalamin and folate concentrations and the canine inflammatory bowel disease activity index scores were determined at each time point. There was a progressive reduction of mean serum cobalamin in the probiotic group during the 28-day study, with significantly lower concentration at day 28 compared to baseline and day 14 concentrations. Moderate hypocobalaminaemia was observed in eight dogs at day 28. Probiotic administration was associated with a non-significant increase in mean serum folate concentration at day 14, and a significant decrease at day 28 compared with day 1. The canine inflammatory bowel disease activity index score remained unaltered during the study. Short-term Enterococcus faecium SF68 administration caused a significant reduction of mean cobalamin concentration and moderate hypocobolaminaemia in eight of 18 dogs. Monitoring serum folate appears unnecessary because the probiotic caused a non-significant increase that returned to baseline values after administration was discontinued. © 2018 British Small Animal Veterinary Association.

  4. Blood folate is associated with asymptomatic or partially symptomatic Alzheimer's disease in the Nun study.

    PubMed

    Wang, Huifen; Odegaard, Andrew; Thyagarajan, Bharat; Hayes, Jennifer; Cruz, Karen Santa; Derosiers, Mark F; Tyas, Suzanne L; Gross, Myron D

    2012-01-01

    Asymptomatic and partially symptomatic Alzheimer's disease (APSYMAD) are a series of cognitive states wherein subjects have substantial Alzheimer's disease (AD) pathology (classification B or C by the Consortium to Establish a Registry for AD criteria), but have normal or only partially impaired cognitive function; all of these subjects are non-demented. These cognitive states may arise from the prevention or delay of clinical symptom expression by exposure to certain nutritional factors. This study examined blood levels of folate and antioxidants (i.e., carotenoids) in relation to APSYMAD, nested in the Nun study, a longitudinal study of aging and AD. Sixty elderly female subjects, who had AD on the basis of neuropathology exams, were included. Following adjustment for APOE4 status, education level, and age at blood draw, subjects with the highest blood folate levels had a higher likelihood of being in the APSYMAD group as compared to the demented (AD) group (odds ratio = 1.09, 95% CI = 1.00-1.18. p < 0.06). This association was not significantly influenced by additional adjustment for blood concentrations of carotenoids. Restriction of the population to subjects with near normal cognition on the cognitive state score (score = 1-3) indicated an elevated association with blood folate (odds ratio = 1.12, 95% CI = 1.01-1.25, p < 0.04). Blood carotenoids were not associated with APSYMAD. Thus, folate status may influence the expression of clinical symptoms of AD disease and aid in the delay or prevention of dementia.

  5. Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans.

    PubMed

    Kohlmeier, Martin; da Costa, Kerry-Ann; Fischer, Leslie M; Zeisel, Steven H

    2005-11-01

    Choline is a required nutrient, and some humans deplete quickly when fed a low-choline diet, whereas others do not. Endogenous choline synthesis can spare some of the dietary requirement and requires one-carbon groups derived from folate metabolism. We examined whether major genetic variants of folate metabolism modify susceptibility of humans to choline deficiency. Fifty-four adult men and women were fed diets containing adequate choline and folate, followed by a diet containing almost no choline, with or without added folate, until they were clinically judged to be choline-deficient, or for up to 42 days. Criteria for clinical choline deficiency were a more than five times increase in serum creatine kinase activity or a >28% increase of liver fat after consuming the low-choline diet that resolved when choline was returned to the diet. Choline deficiency was observed in more than half of the participants, usually within less than a month. Individuals who were carriers of the very common 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele were more likely than noncarriers to develop signs of choline deficiency (odds ratio, 7.0; 95% confidence interval, 2.0-25; P < 0.01) on the low-choline diet unless they were also treated with a folic acid supplement. The effects of the C677T and A1298C polymorphisms of the 5,10-methylene tetrahydrofolate reductase gene and the A80C polymorphism of the reduced folate carrier 1 gene were not statistically significant. The most remarkable finding was the strong association in premenopausal women of the 5,10-methylenetetrahydrofolate dehydrogenase-1958A gene allele polymorphism with 15 times increased susceptibility to developing organ dysfunction on a low-choline diet.

  6. Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems.

    PubMed

    Saha, Tanusree; Chatterjee, Mahasweta; Verma, Deepak; Ray, Anirban; Sinha, Swagata; Rajamma, Usha; Mukhopadhyay, Kanchan

    2018-06-08

    An etiologically complex disorder, Attention Deficit Hyperactivity Disorder (ADHD), is often associated with various levels of cognitive deficit. Folate/vitamin B 9 is crucial for numerous biochemical pathways including neural stem cell proliferation and differentiation, regulation of gene expression, neurotransmitter synthesis, myelin synthesis and repair, etc. and a scarcity has often been linked to cognitive deficit. Our pilot study in the field revealed significant association of few genetic variants with ADHD. Mild hyperhomocysteinemia and vitamin B 12 deficiency was also noticed in the probands. In the present study additional genetic variants, folate and vitamin B 6 , which may affect folate-homocysteine metabolic pathway, were investigated in 866 individuals including nuclear families with ADHD probands (N=221) and ethnically matched controls (N=286) to find out whether ADHD associated traits are affected by these factors. Population based analysis revealed significant over representation of MTRR rs1801394 "G" allele and "GG" genotype in all as well as male probands. Stratified analysis showed significantly higher frequency of RFC1 rs1051266 and BHMT rs3733890 "AG" genotypes in full term and prematurely delivered ADHD probands respectively. Probands with rs1801394 "GG" genotype and BHMT rs3733890 "G" allele showed association with hyperhomocysteinemia. MTHFR rs1801131, MTR rs1805087 and BHMT rs3733890 also showed association with ADHD index. While rs1051266, rs1801131, and rs1805087 showed association with behavioral problems, rs3733890 was associated with ODD score. Conduct problem exhibited association with RFC1 rs1051266, MTHFR rs1801133 and MTRR rs1801394. Gene-gene interaction analysis revealed positive synergistic interactions between rs1051266, rs1801131 and rs1801394 in the probands as compared to the controls. It can be inferred from the data obtained that folate system genetic variants and mild hyperhomocysteimenia may affect ADHD associated

  7. Folate, vitamin B6, vitamin B12 and methionine intakes and risk for nasopharyngeal carcinoma in Chinese adults: a matched case-control study.

    PubMed

    Zeng, Fang-fang; Liu, Yuan-ting; Lin, Xiao-ling; Fan, Yu-Ying; Zhang, Xing-lan; Xu, Chun-hua; Chen, Yu-ming

    2016-01-14

    Many studies have suggested that folate-related one-carbon metabolism-related nutrients may play a role in certain cancer risks, but few studies have assessed their associations with the risk for nasopharyngeal carcinoma (NPC). In this study, we investigated the association between four folate-related one-carbon metabolism-related nutrients (folate, vitamin B6, vitamin B12 and methionine) and NPC risk in Chinese adults. A total of 600 patients newly diagnosed (within 3 months) with NPC were individually matched with 600 hospital-based controls by age, sex and household type (urban v. rural). Folate, vitamin B6, vitamin B12 and methionine intakes were measured using a validated seventy-eight-item FFQ. A higher dietary folate or vitamin B6 intake was associated with a lower NPC risk after adjusting for potential confounders. The adjusted OR of NPC for quartiles 2-4 (v. 1) were 0·66 (95% CI 0·48, 0·91), 0·52 (95% CI 0·37, 0·74) and 0·34 (95% CI 0·23, 0·50) (P(trend)<0·001) for folate and 0·72 (95% CI 0·52, 1·00), 0·55 (95% CI 0·39, 0·78) and 0·44 (95% CI 0·30, 0·63) (P(trend)<0·001) for vitamin B6. No significant association with NPC risk was observed for dietary vitamin B12 or methionine intake. The risk for NPC with dietary folate intake was more evident in the participants who were not exposed to toxic substances than in those who were exposed (P(interaction)=0·014). This study suggests that dietary folate and vitamin B6 may be protective for NPC in a high-risk population.

  8. Differences in folate-protein interactions result in differing inhibition of native rat liver and recombinant glycine N-methyltransferase by 5-methyltetrahydrofolate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luka, Zigmund; Pakhomova, Svetlana; Loukachevitch, Lioudmila V

    2012-06-27

    Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinantmore » protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.« less

  9. Cobalamin and folate status predicts mental development scores in North Indian children 12-18 mo of age.

    PubMed

    Strand, Tor A; Taneja, Sunita; Ueland, Per M; Refsum, Helga; Bahl, Rajiv; Schneede, Joern; Sommerfelt, Halvor; Bhandari, Nita

    2013-02-01

    Micronutrient deficiencies can affect cognitive function. Many young children in low- and middle-income countries have inadequate cobalamin (vitamin B-12) status. The objective was to measure the association of plasma concentrations of folate, cobalamin, total homocysteine, and methylmalonic acid with cognitive performance at 2 occasions, 4 mo apart, in North Indian children aged 12-18 mo. Bayley Scales of Infant Development II were used to assess cognition. In multiple regression models adjusted for several potential confounders, we measured the association between biomarkers for folate and cobalamin status and psychomotor or mental development scores on the day of blood sampling and 4 mo thereafter. Each 2-fold increment in plasma cobalamin concentration was associated with a significant increment in the mental development index score of 1.3 (95% CI: 0.2, 2.4; P = 0.021). Furthermore, each 2-fold increment in homocysteine or methylmalonic acid concentration was associated with a decrement in mental development index score of 2.0 (95% CI: 0.5, 3.4; P = 0.007) or 1.1 (95% CI: 0.3, 1.8; P = 0.004) points, respectively. Plasma folate concentration was significantly and independently associated with mental development index scores only when children with poor cobalamin status were excluded, ie, in those who had cobalamin concentrations below the 25th percentile. None of these markers was associated with psychomotor scores in the multiple regression models. Cobalamin and folate status showed a statistically significant association with cognitive performance. Given the high prevalence of deficiencies in these nutrients, folate and cobalamin supplementation trials are required to measure any beneficial effect on cognition.

  10. Dietary choline reverses some, but not all, effects of folate deficiency on neurogenesis and apoptosis in fetal mouse brain.

    PubMed

    Craciunescu, Corneliu N; Johnson, Amy R; Zeisel, Steven H

    2010-06-01

    In mice, maternal dietary folate, a cofactor in 1-carbon metabolism, modulates neurogenesis and apoptosis in the fetal brain. Similarly, maternal dietary choline, an important methyl-donor, also influences these processes. Choline and folate are metabolically interrelated, and we determined whether choline supplementation could reverse the effects of folate deficiency on brain development. Timed-pregnant mice were fed control (CT), folate-deficient (FD), or folate-deficient, choline-supplemented (FDCS) AIN-76 diets from d 11 to 17 (E11-17) of pregnancy, and on E17, fetal brains were collected for analysis. Compared with the CT group, the FD group had fewer neural progenitor cells undergoing mitosis in the ventricular zones of the developing mouse brain septum (47%; P < 0.01), hippocampus (29%; P < 0.01), striatum (34%; P < 0.01), and anterior and mid-posterior neocortex (33% in both areas; P < 0.01). In addition, compared with CT, the FD diet almost doubled the rate of apoptosis in the fetal septum and hippocampus (P < 0.01). In the FDCS group, the mitosis rates generally were intermediate between those of the CT and FD groups; mitosis rates in the septum and striatum were significantly greater compared with the FD group and were significantly lower than in the CT group only in the septum and neocortex. In the FDCS group, the hippocampal apoptosis rate was significantly lower than in the FD group (P < 0.01) and was the same as in the CT group. In the septum, the apotosis rate in the FDCS group was intermediate between the CT and FD groups' rates. These results suggest that neural progenitor cells in fetal forebrain are sensitive to maternal dietary folate during late gestation and that choline supplementation can modify some, but not all, of these effects.

  11. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study

    PubMed Central

    Deshpande, S. S.; Jackson, A. A.; Refsum, H.; Rao, S.; Fisher, D. J.; Bhat, D. S.; Naik, S. S.; Coyaji, K. J.; Joglekar, C. V.; Joshi, N.; Lubree, H. G.; Deshpande, V. U.; Rege, S. S.; Fall, C. H. D.

    2007-01-01

    Aims/hypothesis Raised maternal plasma total homocysteine (tHcy) concentrations predict small size at birth, which is a risk factor for type 2 diabetes mellitus. We studied the association between maternal vitamin B12, folate and tHcy status during pregnancy, and offspring adiposity and insulin resistance at 6 years. Methods In the Pune Maternal Nutrition Study we studied 700 consecutive eligible pregnant women in six villages. We measured maternal nutritional intake and circulating concentrations of folate, vitamin B12, tHcy and methylmalonic acid (MMA) at 18 and 28 weeks of gestation. These were correlated with offspring anthropometry, body composition (dual-energy X-ray absorptiometry scan) and insulin resistance (homeostatic model assessment of insulin resistance [HOMA-R]) at 6 years. Results Two-thirds of mothers had low vitamin B12 (<150 pmol/l), 90% had high MMA (>0.26 μmol/l) and 30% had raised tHcy concentrations (>10 μmol/l); only one had a low erythrocyte folate concentration. Although short and thin (BMI), the 6-year-old children were relatively adipose compared with the UK standards (skinfold thicknesses). Higher maternal erythrocyte folate concentrations at 28 weeks predicted higher offspring adiposity and higher HOMA-R (both p < 0.01). Low maternal vitamin B12 (18 weeks; p = 0.03) predicted higher HOMA-R in the children. The offspring of mothers with a combination of high folate and low vitamin B12 concentrations were the most insulin resistant. Conclusions/interpretation Low maternal vitamin B12 and high folate status may contribute to the epidemic of adiposity and type 2 diabetes in India. Electronic supplementary material The online version of this article (doi:10.1007/s00125-007-0793-y) contains supplementary material, which is available to authorised users. PMID:17851649

  12. Serum and erythrocyte folate status of New Zealand women of childbearing age following a countrywide voluntary programme by the baking industry to fortify bread with folic acid.

    PubMed

    Bradbury, Kathryn E; Williams, Sheila M; Mann, Jim I; Oey, Indrawati; Aitchison, Cindy; Parnell, Winsome; Fleming, Liz; Brown, Rachel C; Skeaff, C Murray

    2016-11-01

    To estimate the folate status of New Zealand women of childbearing age following the introduction, in 2010, of a new voluntary folic acid fortification of bread programme. The 2011 Folate and Women's Health Survey was a cross-sectional survey of women aged 18-44 years carried out in 2011. The survey used a stratified random sampling technique with the Electoral Roll as the sampling frame. Women were asked about consumption of folic-acid-fortified breads and breakfast cereals in a telephone interview. During a clinic visit, blood was collected for serum and erythrocyte folate measurement by microbiological assay. A North Island (Wellington) and South Island (Dunedin) city centre in New Zealand. Two hundred and eighty-eight women, of whom 278 completed a clinic visit. Geometric mean serum and erythrocyte folate concentrations were 30 nmol/l and 996 nmol/l, respectively. Folate status was 30-40 % higher compared with women of childbearing age sampled as part of a national survey in 2008/09, prior to the introduction of the voluntary folic acid bread fortification programme. In the 2011 Folate and Women's Health Survey, reported consumption of fortified bread and fortified breakfast cereal in the past week was associated with 25 % (P=0·01) and 15 % (P=0·04) higher serum folate concentrations, respectively. Serum and erythrocyte folate concentrations have increased in New Zealand women of childbearing age since the number of folic-acid-fortified breads was increased voluntarily in 2010. Consumption of fortified breads and breakfast cereals was associated with a higher folate status.

  13. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells.

    PubMed

    Yen, Hui-Ju; Young, Yen-An; Tsai, Tsung-Neng; Cheng, Kuang-Ming; Chen, Xin-An; Chen, Ying-Chuan; Chen, Cheng-Cheung; Young, Jenn-Jong; Hong, Po-da

    2018-03-01

    In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    PubMed

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  15. MATERNAL FOLATE DEFICIENCY AMPLIFIES THE CELLULAR AND TERATOLOGIC EFFECTS OF TOMUDEX

    EPA Science Inventory

    Lau, C., J.E. Andrews, B.E. Grey*, R.G. Hanson*, J.R. Thibodeaux* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, US EPA, ORD, Research Triangle Park, North Carolina. Maternal folate deficiency amplifies the cellular and teratologic effects of Tomudex.
    Maternal fo...

  16. Low folate and selenium in the mouse maternal diet alters liver gene expression patterns in the offspring after weaning.

    PubMed

    Barnett, Matthew P G; Bermingham, Emma N; Young, Wayne; Bassett, Shalome A; Hesketh, John E; Maciel-Dominguez, Anabel; McNabb, Warren C; Roy, Nicole C

    2015-05-08

    During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring.

  17. Association between folate intake from different food sources in Norway and homocysteine status in a dietary intervention among young male adults.

    PubMed

    Stea, Tonje Holte; Uglem, Solveig; Wandel, Margareta; Mansoor, Mohammad Azam; Frølich, Wenche

    2009-09-01

    The aim of the present investigation was to study the effect of a dietary intervention which combined nutrition information with increased availability of vegetables, fruits and wholegrain bread. The effect of the intervention was determined by changes in the intake of vegetables, fruits, wholegrain bread and estimated nutrients. Furthermore, the study investigated whether changes in relative contribution from different food sources of folate were related to changes in the concentration of plasma total homocysteine (p-tHcy). The 5-month intervention study included 376 male recruits from the Norwegian National Guard, Vaernes (intervention group) and 105 male recruits from the Norwegian National Guard, Heggelia (control group). The study resulted in an increase in the total consumption of vegetables, fruits, berries and juice (P < 0.001) and of wholegrain bread (P < 0.001). The participants in the intervention group showed a higher increase in the intake of dietary fibre (P < 0.001) and folate (P < 0.001) compared with the control group. The relative contribution of folate intake from fruits, vegetables and wholegrain bread was higher in the intervention group compared with the control group (P < 0.001 for all). The increased intake of folate from wholegrain bread was inversely associated with a reduced concentration of p-tHcy (P = 0.017). In summary, the dietary intervention resulted in an increased intake of vegetables, fruits and wholegrain bread and a subsequent increase in folate intake from these food components. Reduction in the concentration of p-tHcy was significantly related to an increased folate intake due to an increased consumption of wholegrain bread.

  18. Vitamin B12 and folate deficiency in chronic heart failure.

    PubMed

    van der Wal, Haye H; Comin-Colet, Josep; Klip, Ijsbrand T; Enjuanes, Cristina; Grote Beverborg, Niels; Voors, Adriaan A; Banasiak, Waldemar; van Veldhuisen, Dirk J; Bruguera, Jordi; Ponikowski, Piotr; Jankowska, Ewa A; van der Meer, Peter

    2015-02-01

    To determine the prevalence, clinical correlates and the effects on outcome of vitamin B12 and folic acid levels in patients with chronic heart failure (HF). We studied an international pooled cohort comprising 610 patients with chronic HF. The main outcome measure was all-cause mortality. Mean age of the patients was 68±12 years and median serum N-terminal prohormone brain natriuretic peptide level was 1801 pg/mL (IQR 705-4335). Thirteen per cent of the patients had an LVEF >45%. Vitamin B12 deficiency (serum level <200 pg/mL), folate deficiency (serum level <4.0 ng/mL) and iron deficiency (serum ferritin level <100 µg/L, or 100-299 µg/L with a transferrin saturation <20%) were present in 5%, 4% and 58% of the patients, respectively. No significant correlation between mean corpuscular volume and vitamin B12, folic acid or ferritin levels was observed. Lower folate levels were associated with an impaired health-related quality of life (p=0.029). During a median follow-up of 2.10 years (1.31-3.60 years), 254 subjects died. In multivariable proportional hazard models, vitamin B12 and folic acid levels were not associated with prognosis. Vitamin B12 and folate deficiency are relatively rare in patients with chronic HF. Since no significant association was observed between mean corpuscular volume and neither vitamin B12 nor folic acid levels, this cellular index should be used with caution in the differential diagnosis of anaemia in patients with chronic HF. In contrast to iron deficiency, vitamin B12 and folic acid levels were not related to prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Socioeconomic status is significantly associated with the dietary intakes of folate and depression scales in Japanese workers (J-HOPE Study).

    PubMed

    Miyaki, Koichi; Song, Yixuan; Taneichi, Setsuko; Tsutsumi, Akizumi; Hashimoto, Hideki; Kawakami, Norito; Takahashi, Masaya; Shimazu, Akihito; Inoue, Akiomi; Kurioka, Sumiko; Shimbo, Takuro

    2013-02-18

    The association of socioeconomic status (SES) with nutrient intake attracts public attention worldwide. In the current study, we examined the associations of SES with dietary intake of folate and health outcomes in general Japanese workers. This Japanese occupational cohort consisted off 2266 workers. SES was assessed by a self-administered questionnaire. Intakes of all nutrients were assessed with a validated, brief and self-administered diet history questionnaire (BDHQ). The degree of depressive symptoms was measured by the validated Japanese version of the K6 scale. Multiple linear regression and stratified analysis were used to evaluate the associations of intake with the confounding factors. Path analysis was conducted to describe the impacts of intake on health outcomes. Education levels and household incomes were significantly associated with intake of folate and depression scales (p < 0.05). After adjusting for age, sex and total energy intake, years of education significantly affect the folate intake (β = 0.117, p < 0.001). The structural equation model (SEM) shows that the indirect effect of folate intake is statistically significant and strong (p < 0.05, 56% of direct effect) in the pathway of education level to depression scale. Our study shows both education and income are significantly associated with depression scales in Japanese workers, and the effort to increase the folate intake may alleviate the harms of social disparities on mental health.

  20. Pre- and postfortification intake of folate and risk of colorectal cancer in a large prospective cohort study in the United States123

    PubMed Central

    Gibson, Todd M; Weinstein, Stephanie J; Pfeiffer, Ruth M; Hollenbeck, Albert R; Subar, Amy F; Schatzkin, Arthur; Mayne, Susan T; Stolzenberg-Solomon, Rachael

    2011-01-01

    Background: A higher folate intake is associated with a decreased colorectal cancer risk in observational studies, but recent evidence suggests that excessive folate supplementation may increase colorectal cancer risk in some individuals. Therefore, mandatory folic acid fortification of grain products in the United States may have unintended negative consequences. Objective: We examined the association between folate intake and colorectal cancer risk, including 8.5 y of postfortification follow-up. Design: We examined the association between folate intake and colorectal cancer in the NIH-AARP Diet and Health Study—a US cohort study of 525,488 individuals aged 50–71 y initiated in 1995–1996. Dietary, supplemental, and total folate intakes were calculated for the pre- and postfortification periods (before and after 1 July 1997) based on a baseline food-frequency questionnaire. HRs and 95% CIs were calculated by using multivariable Cox proportional hazards regression models. Results: During follow-up through 31 December 2006 (mean follow-up: 9.1 y), 7212 incident colorectal cancer cases were identified. In the postfortification analysis (6484 cases), a higher total folate intake was associated with a decreased colorectal cancer risk (HR for ≥900 compared with <200 μg/d: 0.70; 95% CI: 0.58, 0.84). The highest intakes specifically from supplements (HR: 0.82; 95% CI: 0.72, 0.92) or from diet (HR: 0.81; 95% CI: 0.67, 0.97) were also protective. The pattern of associations was similar for the prefortification period, and no significant differences between time periods were observed. Conclusions: In this large prospective cohort study that included 8.5 y of postfortification follow-up, folate intake was associated with a decreased colorectal cancer risk. Given that the adenoma-carcinoma sequence may take ≥10 y, additional follow-up time is needed to fully examine the effect of folic acid fortification. PMID:21813806

  1. Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia.

    PubMed

    Moretti, Rita; Caruso, Paola; Dal Ben, Matteo; Conti, Corrado; Gazzin, Silvia; Tiribelli, Claudio

    2017-01-01

    Dementia is a worldwide health problem which affects millions of patients; Alzheimer's disease (AD) and subcortical vascular dementia (sVAD) are the two most frequent forms of its presentation. As no definite therapeutic options have been discovered, different risk factors for cognitive impairment have been searched for potential therapies. This report focuses on the possible evidence that vitamin D deficiency and hyper-homocysteinemia can be considered as two important factors for the development or the progression of neurodegenerative or vascular pathologies. To this end, we assessed: the difference in vascular risk factors and vitamin D-OH25 levels among groups of sVAD, AD, and healthy age-matched controls; the association of folate, B12, homocysteine, and vitamin D with sVAD/AD and whether a deficiency of vitamin D and an increment in homocysteine levels may be related to neurodegenerative or vessel damages. The commonly-considered vascular risk factors were collected in 543 patients and compared with those obtained from a healthy old volunteer population. ANOVA group comparison showed that vitamin D deficiency was present in demented cases, as well as low levels of folate and high levels of homocysteine, more pronounced in sVAD cases. The statistical models we employed, with regression models built, and adjustments for biochemical, demographic and neuropsychiatric scores, confirmed the association between the three measures (folate decrease, hyperhomocysteinemia and vitamin D decrease) and dementia, more pronounced in sVAD than in AD.

  2. Transcobalamin 776C→G polymorphism is associated with peripheral neuropathy in elderly individuals with high folate intake.

    PubMed

    Sawaengsri, Hathairat; Bergethon, Peter R; Qiu, Wei Qiao; Scott, Tammy M; Jacques, Paul F; Selhub, Jacob; Paul, Ligi

    2016-12-01

    The 776C→G polymorphism of the vitamin B-12 transport protein transcobalamin gene (TCN2) (rs1801198; Pro259Arg) is associated with a lower holotranscobalamin concentration in plasma. This effect may reduce the availability of vitamin B-12 to tissues even when vitamin B-12 intake is adequate. Clinical outcomes associated with vitamin B-12 insufficiency could potentially be worsened by high folate intake. We determined the association of the TCN2 776C→G polymorphism and folate intake with peripheral neuropathy in elders with normal plasma concentrations of vitamin B-12. Participants in this cross-sectional study (n = 171) were from a cohort of community-based, home-bound elderly individuals aged ≥60 y who underwent an evaluation by physicians including an assessment for peripheral neuropathy. Participants were administered food-frequency and general health status questionnaires, anthropometric measurements were taken, and a fasting blood sample from each subject was collected. Odds of neuropathy were 3-fold higher for GG genotypes than for CC genotypes (OR: 3.33; 95% CI: 1.15, 9.64). When folate intake was >2 times the Recommended Dietary Allowance (800 μg), GG genotypes had 6.9-fold higher odds of neuropathy than CC genotypes (OR: 6.9; 95% CI: 1.31, 36.36). There was no difference between the genotypes in the odds of peripheral neuropathy when folate intake was ≤800 μg (OR: 1.5; 95% CI: 0.18, 12.33). The TCN2 776C→G polymorphism is associated with increased odds of peripheral neuropathy in the elderly, even with a normal vitamin B-12 status, especially if their folate intake is >2 times the Recommended Dietary Allowance. © 2016 American Society for Nutrition.

  3. Red Blood Cell Folate Insufficiency among Nonpregnant Women of Childbearing Age in Guatemala 2009 to 2010: Prevalence and Predicted Neural Tube Defects Risk

    PubMed Central

    Rosenthal, Jorge; Reeve, Mary-Elizabeth; Ramirez, Nicte; Crider, Krista S.; Sniezek, Joe; Vellozzi, Claudia; Devine, Owen; Lopez-Pazos, Eunice

    2016-01-01

    Background The World Health Organization recently released recommendations stating that red blood cell (RBC) folate concentrations should be above 400 ng/L (906 nmol/L) for optimal prevention of folate-sensitive neural tube defects (NTDs). The objective of this study was to determine the distribution of folate insufficiency (FI) (<906 nmol/L) and potential risk of NTDs based on RBC folate concentrations among nonpregnant women of child-bearing age in Guatemala. Methods A national and regional multistage cluster probability survey was completed during 2009 to 2010 among Guatemalan women of child-bearing age 15 to 49 years of age. Demographic and health information and blood samples for RBC folate analyses were collected from 1473 women. Prevalence rate ratios of FI and predicted NTD prevalence were estimated based on RBC folate concentrations comparing subpopulations of interest. Results National FI prevalence was 47.2% [95% confidence interval, 43.3–51.1] and showed wide variation by region (18–81%). In all regions, FI prevalence was higher among indigenous (27–89%) than among nonindigenous populations (16–44%). National NTD risk based on RBC folate concentrations was estimated to be 14 per 10,000 live births (95% uncertainty interval, 11.1–18.6) and showed wide regional variation (from 11 NTDS in the Metropolitan region to 26 NTDs per 10,000 live births in the Norte region). Conclusion FI remains a common problem in populations with limited access to fortified products, specifically rural, low income, and indigenous populations. However, among subpopulations that are most likely to have fortified food, the prevalence of FI is similar to countries with well-established fortification programs. PMID:27010602

  4. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    Folate and folic acid are forms of the B vitamin that are involved in the synthesis, repair and functioning of DNA and are required for the production and maintenance of cells. Low levels of folate have been associated with several forms of cancer, including colon cancer. Aberran...

  5. An alkaline follicular fluid fraction induces capacitation and limited release of oviduct epithelium-bound stallion sperm.

    PubMed

    Leemans, Bart; Gadella, Bart M; Stout, Tom A E; Nelis, Hilde; Hoogewijs, Maarten; Van Soom, Ann

    2015-09-01

    Induction of hyperactivated motility is considered essential for triggering the release of oviduct-bound mammalian spermatozoa in preparation for fertilization. In this study, oviduct-bound stallion spermatozoa were exposed for 2 h to: i) pre-ovulatory and ii) post-ovulatory oviductal fluid; iii) 100% and iv) 10% follicular fluid (FF); v) cumulus cells, vi) mature equine oocytes, vii) capacitating and viii) non-capacitating medium. None of these triggered sperm release or hyperactivated motility. Interestingly, native FF was detrimental to sperm viability, an effect that was negated by heat inactivation, charcoal treatment and 30 kDa filtration alone or in combination. Moreover, sperm suspensions exposed to treated FF at pH 7.9 but not pH 7.4 showed Ca(2+)-dependent hypermotility. Fluo-4 AM staining of sperm showed elevated cytoplasmic Ca(2+) in hyperactivated stallion spermatozoa exposed to treated FF at pH 7.9 compared to a modest response in defined capacitating conditions at pH 7.9 and no response in treated FF at pH 7.4. Moreover, 1 h incubation in alkaline, treated FF induced protein tyrosine phosphorylation in 20% of spermatozoa. None of the conditions tested induced widespread release of sperm pre-bound to oviduct epithelium. However, the hyperactivating conditions did induce release of 70-120 spermatozoa per oviduct explant, of which 48% showed protein tyrosine phosphorylation and all were acrosome-intact, but capable of acrosomal exocytosis in response to calcium ionophore. We conclude that, in the presence of elevated pH and extracellular Ca(2+), a heat-resistant, hydrophilic, <30 kDa component of FF can trigger protein tyrosine phosphorylation, elevated cytoplasmic Ca(2+) and hyperactivated motility in stallion sperm, but infrequent release of sperm pre-bound to oviduct epithelium. © 2015 Society for Reproduction and Fertility.

  6. Strain-dependent dysregulation of one-carbon metabolism in male mice is associated with choline- and folate-deficient diet-induced liver injury.

    PubMed

    Pogribny, Igor P; Kutanzi, Kristy; Melnyk, Stepan; de Conti, Aline; Tryndyak, Volodymyr; Montgomery, Beverly; Pogribna, Marta; Muskhelishvili, Levan; Latendresse, John R; James, S Jill; Beland, Frederick A; Rusyn, Ivan

    2013-06-01

    Dysregulation of one-carbon metabolism-related metabolic processes is a major contributor to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). It is well established that genetic and gender-specific variations in one-carbon metabolism contribute to the vulnerability to NAFLD in humans. To examine the role of one-carbon metabolism dysregulation in the pathogenesis and individual susceptibility to NAFLD, we used a "population-based" mouse model where male mice from 7 inbred were fed a choline- and folate-deficient (CFD) diet for 12 wk. Strain-dependent down-regulation of several key one-carbon metabolism genes, including methionine adenosyltransferase 1α (Mat1a), cystathionine-β-synthase (Cbs), methylenetetrahydrofolate reductase (Mthfr), adenosyl-homocysteinase (Ahcy), and methylenetetrahydrofolate dehydrogenase 1 (Mthfd1), was observed. These changes were strongly associated with interstrain variability in liver injury (steatosis, necrosis, inflammation, and activation of fibrogenesis) and hyperhomocysteinemia. Mechanistically, the decreased expression of Mat1a, Ahcy, and Mthfd1 was linked to a reduced level and promoter binding of transcription factor CCAAT/enhancer binding protein β (CEBPβ), which directly regulates their transcription. The strain specificity of diet-induced dysregulation of one-carbon metabolism suggests that interstrain variation in the regulation of one-carbon metabolism may contribute to the differential vulnerability to NFLD and that correcting the imbalance may be considered as preventive and treatment strategies for NAFLD.

  7. Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy.

    PubMed

    Kim, Jisu; Tung, Ching-Hsuan; Choi, Yongdoo

    2014-09-21

    A smart dual-targeted theranostic agent becomes highly fluorescent and phototoxic only when its linker is cleaved by tumor-associated lysosomal enzyme cathepsin B after internalization into folate receptor-positive cancer cells.

  8. Folate, vitamin B6 and vitamin B12 in adolescence: serum concentrations, prevalence of inadequate intakes and sources in food.

    PubMed

    Steluti, Josiane; Martini, Lígia A; Peters, Barbara S E; Marchioni, Dirce M L

    2011-01-01

    To investigate serum concentrations and the prevalence of inadequate folate intake and also vitamin B6 and vitamin B12 intakes and to identify those foods that make a major contribution to intake levels of these nutrients. This was a cross-sectional, observational study of adolescents of both sexes aged 16 to 19 years from the town of Indaiatuba, SP, Brazil. Data collection was by non-consecutive 3-day dietary record. The samples' habitual diet was estimated by removing intraindividual variability, and the prevalence rates of inadequate intakes were calculated using the estimated average requirement as cutoff points. Biochemical assays for folate, vitamin B6 and vitamin B12 were conducted in accordance with the methods accepted in the literature. The study sample comprised 99 adolescents, the majority of whom were female (58.6%), with a mean age of 17.6 [standard deviation, (SD) 0.9]. Mean serum concentrations for folate, vitamin B6 and vitamin B12 were 9.2 (SD 3.4) ng/mL, 18.7 (SD 5.1) nmol/L and 397.5 (SD 188.4) pg/mL, respectively; and the prevalence rates of inadequate intake for these vitamins were 15.2, 10.2 and < 1%, respectively. The foods that made a major contribution to vitamin intakes were French bread, pasta and beans for folate; white rice, chicken and beef for vitamin B6; and lean beef, whole milk and fatty beef for vitamin B12. The prevalence rates of inadequate folate, vitamin B6 and vitamin B12 intakes were low, which is possibly the result of improved access to and availability of foods that are dietary sources of these vitamins. Beans, which are a part of the traditional Brazilian diet, remain one of the primary food items that contribute to folate intake, even after mandatory fortification with folic acid in Brazil.

  9. Folate and One-Carbon Metabolism Gene Polymorphisms and Their Associations With Oral Facial Clefts

    PubMed Central

    Boyles, Abee L.; Wilcox, Allen J.; Taylor, Jack A.; Meyer, Klaus; Fredriksen, Åse; Ueland, Per Magne; Drevon, Christian A.; Vollset, Stein Emil; Lie, Rolv Terje

    2008-01-01

    Folate metabolism plays a critical role in embryonic development. Prenatal folate supplementation reduces the risk of neural tube defects and probably oral facial clefts. Previous studies of related metabolic genes have associated polymorphisms in cystathionine-beta-synthase (CBS) and 5,10-methylenetetrahydrofolate reductase (MTHFR) with cleft risk. We explored associations between genes related to one-carbon metabolism and clefts in a Norwegian population-based study that included 362 families with cleft lip with or without cleft palate (CL/P) and 191 families with cleft palate only (CPO). We previously showed a 39% reduction in risk of CL/P with folic acid supplementation in this population. In the present study we genotyped 12 polymorphisms in nine genes related to one-carbon metabolism and looked for associations of clefting risk with fetal polymorphisms, maternal polymorphisms, as well as parent-of-origin effects, using combined likelihood-ratio tests (LRT). We also stratified by maternal periconceptional intake of folic acid (>400 μg) to explore gene-exposure interactions. We found a reduced risk of CL/P with mothers who carried the CBS C699T variant (rs234706); relative risk was 0.94 with one copy of the T allele (95% CI 0.63-1.4) and 0.50 (95% CI 0.26-0.96) with two copies (P = 0.008). We found no evidence of interaction of this variant with folate status. We saw no evidence of risk from the MTHFR C677T variant (rs1801133) either overall or after stratifying by maternal folate intake. No associations were found between any of the polymorphisms and CPO. Genetic variations in the nine metabolic genes examined here do not confer a substantial degree of risk for clefts. Published 2008 Wiley-Liss, Inc.† PMID:18203168

  10. Vitamin A, folate, and choline as a possible preventive intervention to fetal alcohol syndrome.

    PubMed

    Ballard, Mark S; Sun, Muxin; Ko, Jenny

    2012-04-01

    It is recognized that alcohol consumption during pregnancy is associated with fetal alcohol syndrome (FAS). Alcohol can trigger a pattern of neurodegeneration in rat brains similar to other known gamma-aminobutyric acid (GABA) specific agonists. However this does not seem to explain FAS entirely, as impoverished care-giving environments have been shown to increase the risk of FAS. Individuals living under the poverty level are at risk for micronutrient deficiencies due to insufficient intake. In particular, three nutrients commonly found to be deficient are folate, choline and vitamin A. There is evidence to suggest that ethanol alone may not explain the entire spectrum of anomalies seen in individuals with FAS. It is hypothesized that FAS may be caused more by the nutritional deficiencies that are exacerbated by alcohol than by direct alcoholic neurotoxicity. It is known that ethanol inhibits folate, choline, and vitamin A/retinoic acid metabolism at multiple steps. Additionally, mice exposed to ethanol demonstrated epigenetic changes, or variations in the methylation of DNA to control gene expression. Folate is important in the production of methyl groups, which are subsequently used to create and methylate DNA. Choline (which is metabolized to acetylcholine) is important in neurotransmission and neurodevelopment. It is also involved in an alternative pathway in the production of methyl groups. In fact a study by Thomas et al. in 2009 found that nutritional supplementation with choline in rats exposed to ethanol in utero almost completely mitigated the degenerative effects of ethanol on development and behaviour. Lastly, vitamin A and retinoic acid metabolism is associated with the regulation of one sixth of the entire proteome. Thus supplementation of folate, choline and vitamin A to mothers may mitigate the effects of the alcohol and reduce the severity or prevalence of FAS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. DNA damage response in monozygotic twins discordant for smoking habits.

    PubMed

    Marcon, Francesca; Carotti, Daniela; Andreoli, Cristina; Siniscalchi, Ester; Leopardi, Paola; Caiola, Stefania; Biffoni, Mauro; Zijno, Andrea; Medda, Emanuela; Nisticò, Lorenza; Rossi, Sabrina; Crebelli, Riccardo

    2013-03-01

    Previous studies in twins indicate that non-shared environment, beyond genetic factors, contributes substantially to individual variation in mutagen sensitivity; however, the role of specific causative factors (e.g. tobacco smoke, diet) was not elucidated. In this investigation, a population of 22 couples of monozygotic twins with discordant smoking habits was selected with the aim of evaluating the influence of tobacco smoke on individual response to DNA damage. The study design virtually eliminated the contribution of genetic heterogeneity to the intra-pair variation in DNA damage response, and thus any difference in the end-points investigated could directly be attributed to the non-shared environment experienced by co-twins, which included as main factor cigarette smoke exposure. Peripheral lymphocytes of study subjects were challenged ex vivo with γ-rays, and the induction, processing, fixation of DNA damage evaluated through multiple approaches. Folate status of study subjects was considered significant covariate since it is affected by smoking habits and can influence radiosensitivity. Similar responses were elicited by γ-rays in co-twins for all the end-points analysed, despite their discordant smoking habits. Folate status did not modify DNA damage response, even though a combined effect of smoking habits, low-plasma folic acid level, and ionising radiation was observed on apoptosis. A possible modulation of DNA damage response by duration and intensity of tobacco smoke exposure was suggested by Comet assay and micronucleus data, but the effect was quantitatively limited. Overall, the results obtained indicate that differences in smoking habits do not contribute to a large extent to inter-individual variability in the response to radiation-induced DNA damage observed in healthy human populations.

  12. A validated ultra-high-performance liquid chromatography-tandem mass spectrometry method for the selective analysis of free and total folate in plasma and red blood cells.

    PubMed

    Kiekens, Filip; Van Daele, Jeroen; Blancquaert, Dieter; Van Der Straeten, Dominique; Lambert, Willy E; Stove, Christophe P

    2015-06-12

    A stable isotope dilution LC-MS/MS method is the method of choice for the selective quantitative determination of several folate species in clinical samples. By implementing an integrated approach to determine both the plasma and red blood cell (RBC) folate status, the use of consumables and time remains limited. Starting from a single 300μl whole blood sample, the folate status in plasma and RBCs can be determined after separating plasma and RBCs and sequential washing of the latter with isotonic buffer, followed by reproducible lysis using an ammonium-based buffer. Acidification combines both liberation of protein bound folates and protein precipitation. Sample cleanup is performed using a 96-well reversed-phase solid-phase extraction procedure, similar for both plasma and RBC samples. Analyses are performed by UHPLC-MS/MS. Method validation was successfully performed based on EMA-guidelines and encompassed selectivity, carry-over, linearity, accuracy, precision, recovery, matrix effect and stability. Plasma and RBC folates could be quantified in the range of 1-150nmol/l and 5-1500nmol/l, respectively. This method allows for the determination of 6 folate monoglutamates in both plasma and RBCs. It can be used to determine short and long term folate status in both normal and severely deficient subjects in a single analytical sequence. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Influence of thermal processing on hydrolysis and stability of folate poly-gamma-glutamates in broccoli (Brassica oleracea var. italica), carrot (Daucus carota) and tomato (Lycopersicon esculentum).

    PubMed

    Munyaka, Ann Wambui; Verlinde, Philippe; Mukisa, Ivan Muzira; Oey, Indrawati; Van Loey, Ann; Hendrickx, Marc

    2010-04-14

    The folate poly-gamma-glutamate profile, their concentrations, and hydrolysis by endogenous gamma-glutamyl hydrolase (GGH) were evaluated in broccoli, carrot and tomato. Further studies on the effect of time and temperature on folate poly-gamma-glutamate hydrolysis and stability were carried out in broccoli since this vegetable showed the highest long-chain and total folate poly-gamma-glutamate concentration. The evolution of l-ascorbic acid, total phenols and Trolox equivalent antioxidant capacity (TEAC) values was evaluated in parallel. Upon thermal inactivation of GGH prior to crushing, it was observed that broccoli, carrot and tomato contained poly-gamma-glutamates with one to seven glutamate residues but differed in the predominant poly-gamma-glutamates. Crushing of raw broccoli, carrot and tomato resulted in significant poly-gamma-glutamate profile changes in broccoli and carrot (indicating GGH-catalyzed hydrolysis) but not in tomato. In this study, the actual crushing of raw broccoli matrix had a greater effect on folate poly-gamma-glutamate hydrolysis than incubation conditions (0-30 min at 25-55 degrees C). During treatments at 25-140 degrees C, folate retention was higher at 80 and 100 degrees C than at the other temperatures. A similar trend in thermal stability was observed for folates, vitamin C, total phenols and TEAC value, an indication that conditions that result in endogenous antioxidants degradation might also result in folate degradation.

  14. Metabolism and gene polymorphisms of the folate pathway in Brazilian women with history of recurrent abortion.

    PubMed

    Boas, Wendell Vilas; Gonçalves, Rozana Oliveira; Costa, Olívia Lúcia Nunes; Goncalves, Marilda Souza

    2015-02-01

    To investigate the association between polymorphisms in genes that encode enzymes involved in folate- and vitamin B12-dependent homocysteine metabolism and recurrent spontaneous abortion (RSA). We investigated the C677T and A1298C polymorphisms of the methylenetetrahydrofalate reductase gene (MTHFR), the A2756G polymorphism of the methionine synthase gene (MS) and the 844ins68 insertion of the cystathionine beta synthetase gene (CBS). The PCR technique followed by RFLP was used to assess the polymorphisms; the serum levels of homocysteine, vitamin B12 and folate were investigated by chemiluminescence. The EPI Info Software version 6.04 was used for statistical analysis. Parametric variables were compared by Student's t-test and nonparametric variables by the Wilcoxon rank sum test. The frequencies of gene polymorphisms in 89 women with a history of idiopathic recurrent miscarriage and 150 controls were 19.1 and 19.6% for the C677T, insertion, 20.8 and 26% for the A1298C insertion, 14.2 and 21.9% for the A2756G insertion, and 16.4 and 18% for the 844ins68 insertion, respectively. There were no significant differences between case and control groups in any of the gene polymorphisms investigated. However, the frequency of the 844ins68 insertion in the CBS gene was higher among women with a history of loss during the third trimester of pregnancy (p=0.003). Serum homocysteine, vitamin B12 and folate levels id not differ between the polymorphisms studied in the case and control groups. However, linear regression analysis showed a dependence of serum folate levels on the maintenance of tHcy levels. The investigated gene polymorphisms and serum homocysteine, vitamin B12 and folate levels were not associated with idiopathic recurrent miscarriage in the present study. Further investigations are needed in order to confirm the role of the CBS 844ins68 insertion in recurrent miscarriage.

  15. Bioequivalence evaluation of a folate-supplemented oral contraceptive containing ethinylestradiol/drospirenone/levomefolate calcium versus ethinylestradiol/drospirenone and levomefolate calcium alone.

    PubMed

    Wiesinger, Herbert; Eydeler, Urte; Richard, Frank; Trummer, Dietmar; Blode, Hartmut; Rohde, Beate; Diefenbach, Konstanze

    2012-10-01

    Neural tube defects (NTDs) are congenital malformations that occur during early embryonic development. Suboptimal maternal folate status is a well-known risk factor for the occurrence of NTDs, and periconceptional folic acid supplementation has been shown to reduce the risk of NTDs. Folate-supplemented oral contraceptives (OCs) offer a means of improving folate status in women of childbearing potential by increasing their likelihood of having raised folate levels at the time of conception. This study aimed to demonstrate bioequivalence of ethinylestradiol (EE), drospirenone and L-5-methyl-tetrahydrofolate (L-5-methyl-THF; active moiety of levomefolate calcium) when taken as a new folate-supplemented OC containing EE/drospirenone/levomefolate calcium, with the respective OC containing EE/drospirenone and a tablet containing levomefolate calcium only. This was a randomized, open-label, three-period crossover study carried out at a single centre in Germany. The study included 45 healthy women (age range 18-38 years). The women were randomly assigned to single doses of (i) EE 0.03 mg/drospirenone 3 mg/levomefolate calcium 0.451 mg (SAFYRAL®), (ii) EE 0.03 mg/drospirenone 3 mg (Yasmin®), and (iii) levomefolate calcium 0.451 mg, administered using a crossover design, with one or more menstrual cycle washout between doses. The primary variables were maximum concentrations (C(max)) and area under the concentration versus time curve (AUC) values for EE, drospirenone and L-5-methyl-THF. The bioavailability of EE and drospirenone was similar after administration of EE/drospirenone/levomefolate calcium and EE/drospirenone. The geometric mean ratios (GMRs) and its 90% confidence intervals (CIs) for AUC values and C(max) were within the pre-specified range (80.00-125.00%) for bioequivalence for EE and drospirenone in both formulations. The bioavailability of L-5-methyl-THF was similar after administration of EE/drospirenone/levomefolate calcium and levomefolate

  16. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate.

    PubMed

    Kim, Sun Hwa; Jeong, Ji Hoon; Chun, Ki Woo; Park, Tae Gwan

    2005-09-13

    Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.

  17. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis

    PubMed Central

    Ganz, Ariel B.; Shields, Kelsey; Fomin, Vlad G.; Lopez, Yusnier S.; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C.; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V.; Swersky, Camille C.; Stover, Julie A.; Vitiello, Gerardo A.; Malysheva, Olga V.; Mudrak, Erika; Caudill, Marie A.

    2016-01-01

    Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d9, with d9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.—Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J

  18. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.

    PubMed

    Ganz, Ariel B; Shields, Kelsey; Fomin, Vlad G; Lopez, Yusnier S; Mohan, Sanjay; Lovesky, Jessica; Chuang, Jasmine C; Ganti, Anita; Carrier, Bradley; Yan, Jian; Taeswuan, Siraphat; Cohen, Vanessa V; Swersky, Camille C; Stover, Julie A; Vitiello, Gerardo A; Malysheva, Olga V; Mudrak, Erika; Caudill, Marie A

    2016-10-01

    Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d 9 , with d 9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J

  19. Maternally Contributed Folate Receptor 1 Is Expressed in Ovarian Follicles and Contributes to Preimplantation Development

    PubMed Central

    Strandgaard, Trine; Foder, Solveig; Heuck, Anders; Ernst, Erik; Nielsen, Morten S.; Lykke-Hartmann, Karin

    2017-01-01

    Folates have been shown to play a crucial role for proper development of the embryo as folate deficiency has been associated with reduced developmental capacity such as increased risk of fetal neural tube defects and spontanous abortion. Transcripts encoding the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptor FOLR1 are expressed in oocytes and preimplantation embryos, respectively. In this study, we observed maternally contributed FOLR1 protein during mouse and human ovarian follicle development, and 2-cell mouse embryos. In mice, FOLR1 was highly enriched in oocytes from primary, secondary and tertiary follicles, and in the surrounding granulosa cells. Interestingly, during human follicle development, we noted a high and specific presence of FOLR1 in oocytes from primary and intermediate follicles, but not in the granulosa cells. The distribution of FOLR1 in follicles was noted as membrane-enriched but also seen in the cytoplasm in oocytes and granulosa cells. In 2-cell embryos, FOLR1-eGFP fusion protein was detected as cytoplasmic and membrane-associated dense structures, resembling the distribution pattern observed in ovarian follicle development. Knock-down of Folr1 mRNA function was accomplished by microinjection of short interference (si)RNA targeting Folr1, into mouse pronuclear zygotes. This revealed a reduced capacity of Folr1 siRNA-treated embryos to develop to blastocyst compared to the siRNA-scrambled control group, indicating that maternally contributed protein and zygotic transcripts sustain embryonic development combined. In summary, maternally contributed FOLR1 protein appears to maintain ovarian functions, and contribute to preimplantation development combined with embryonically synthesized FOLR1. PMID:29034232

  20. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.

    PubMed

    Fehrenbach, Elvira; Schneider, Marion E

    2006-01-01

    Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

  1. Red Blood Cell Folate Insufficiency among nonpregnant Women of Childbearing age in Guatemala 2009 to 2010: Prevalence and predicted Neural Tube Defects risk.

    PubMed

    Rosenthal, Jorge; Reeve, Mary-Elizabeth; Ramirez, Nicte; Crider, Krista S; Sniezek, Joe; Vellozzi, Claudia; Devine, Owen; Lopez-Pazos, Eunice

    2016-07-01

    The World Health Organization recently released recommendations stating that red blood cell (RBC) folate concentrations should be above 400 ng/L (906 nmol/L) for optimal prevention of folate-sensitive neural tube defects (NTDs). The objective of this study was to determine the distribution of folate insufficiency (FI) (<906 nmol/L) and potential risk of NTDs based on RBC folate concentrations among nonpregnant women of child-bearing age in Guatemala. A national and regional multistage cluster probability survey was completed during 2009 to 2010 among Guatemalan women of child-bearing age 15 to 49 years of age. Demographic and health information and blood samples for RBC folate analyses were collected from 1473 women. Prevalence rate ratios of FI and predicted NTD prevalence were estimated based on RBC folate concentrations comparing subpopulations of interest. National FI prevalence was 47.2% [95% confidence interval, 43.3-51.1] and showed wide variation by region (18-81%). In all regions, FI prevalence was higher among indigenous (27-89%) than among nonindigenous populations (16-44%). National NTD risk based on RBC folate concentrations was estimated to be 14 per 10,000 live births (95% uncertainty interval, 11.1-18.6) and showed wide regional variation (from 11 NTDS in the Metropolitan region to 26 NTDs per 10,000 live births in the Norte region). FI remains a common problem in populations with limited access to fortified products, specifically rural, low income, and indigenous populations. However, among subpopulations that are most likely to have fortified food, the prevalence of FI is similar to countries with well-established fortification programs. Birth Defects Research (Part A) 106:587-595, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.

    PubMed

    Naushad, Shaik Mohammad; Ramaiah, M Janaki; Pavithrakumari, Manickam; Jayapriya, Jaganathan; Hussain, Tajamul; Alrokayan, Salman A; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadharao; Kutala, Vijay Kumar

    2016-04-15

    In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demographic variables to investigate how micronutrients modulate susceptibility to breast cancer. The developed ANN model explained 94.2% variability in breast cancer prediction. Fixed effect models of folate (400 μg/day) and B12 (6 μg/day) showed 33.3% and 11.3% risk reduction, respectively. Multifactor dimensionality reduction analysis showed the following interactions in responders to folate: RFC1 G80A × MTHFR C677T (primary), COMT H108L × CYP1A1 m2 (secondary), MTR A2756G (tertiary). The interactions among responders to B12 were RFC1G80A × cSHMT C1420T and CYP1A1 m2 × CYP1A1 m4. ANN simulations revealed that increased folate might restore ER and PR expression and reduce the promoter CpG island methylation of extra cellular superoxide dismutase and BRCA1. Dietary intake of folate appears to confer protection against breast cancer through its modulating effects on ER and PR expression and methylation of EC-SOD and BRCA1. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Preparation, co-assembling and interfacial crosslinking of photocurable and folate-conjugated amphiphilic block copolymers for controlled and targeted drug delivery: smart armored nanocarriers.

    PubMed

    Khoee, Sepideh; Kavand, Alireza

    2014-02-12

    Novel pH-sensitive, biodegradable and biocompatible copolymers based on polycaprolactone-poly(ethylene glycol) (PCL/PEG) were synthesized and further modified with folic acid and/or acryloyl chloride. The mixed polymeric micelles were formed by self-assembling of folated-copolymer and non-folated-copolymer with different compositions via nanoprecipitation method. The solubilization of quercetin as anti-cancer drug by the mixed micelle with the optimized composition (folated/non-folated 20/80) was more efficient than those made of each one alone. Nanogels with different crosslinking density were produced in the presence of ethylene glycol dimethacrylate (EGDMA) as the crosslinker via a photochemical method. Interfacial crosslinking of acrylated groups were utilized to produce a core-shell spherical nanoparticle to evaluate their in-vitro drug release and degradation rate. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Palm tocotrienol-rich fraction inhibits methionine-induced cystathionine β-synthase in rat liver.

    PubMed

    Kamisah, Yusof; Norsidah, Ku-Zaifah; Azizi, Ayob; Faizah, Othman; Nonan, Mohd Rizal; Asmadi, Ahmad Yusof

    2015-12-01

    Oxidative stress plays an important role in cardiovascular diseases. The study investigated the effects of dietary palm tocotrienol-rich fraction on homocysteine metabolism in rats fed a high-methionine diet. Forty-two male Wistar rats were randomly assigned to six groups. Five groups were fed with high-methionine diet (1%) for 10 weeks. Groups 2 to 5 were also given dietary folate (8 mg/kg) and three doses of palm tocotrienol-rich fraction (30, 60 and 150 mg/kg) from week 6 to week 10. The last group was only given basal rat chow. High-methionine diet increased plasma homocysteine after 10 weeks, which was prevented by the supplementations of folate and high-dose palm tocotrienol-rich fraction. Hepatic S-adenosyl methionine (SAM) content was unaffected in all groups but S-adenosyl homocysteine (SAH) content was reduced in the folate group. Folate supplementation increased the SAM/SAH ratio, while in the palm tocotrienol-rich fraction groups, the ratio was lower compared with the folate. Augmented activity of hepatic cystathionine β-synthase and lipid peroxidation content by high-methionine diet was inhibited by palm tocotrienol-rich fraction supplementations (moderate and high doses), but not by folate. The supplemented groups had lower hepatic lipid peroxidation than the high-methionine diet. In conclusion, palm tocotrienol-rich fraction reduced high-methionine-induced hyperhomocysteinaemia possibly by reducing hepatic oxidative stress in high-methionine-fed rats. It may also exert a direct inhibitory effect on hepatic cystathionine β-synthase.

  5. Response of MiRNA-22-3p and MiRNA-149-5p to Folate Deficiency and the Differential Regulation of MTHFR Expression in Normal and Cancerous Human Hepatocytes

    PubMed Central

    Li, Chao; Ni, Juan; Liu, Yao-Xian; Wang, Han; Liang, Zi-Qing; Wang, Xu

    2017-01-01

    Background/Aims Folic acid (FA) is a core micronutrient involved in DNA synthesis/methylation, and the metabolism of FA is responsible for genomic stability. MicroRNAs may affect gene expression during folate metabolism when cellular homeostasis is changed. This study aimed to reveal the relationship between FA deficiency and the expression of miR-22-p/miR-149-5p and the targeted regulation of miR-22-3p/miR-149-5p on the key folate metabolic gene Methylenetetrahydrofolate reductase (MTHFR). Methods Normal (HL-7702 cells) and cancerous (QGY-7703 cells) human hepatocytes were intervened in modified RPMI 1640 with FA deficiency for 21 days. The interaction between MTHFR and the tested miRNAs was verified by Dual-Luciferase Reporter Assays. The changes in the expression of miR-22-3p/miR-149-5p in response to FA deficiency were detected by Poly (A) Tailing RT-qPCR, and the expression of MTHFR at both the transcriptional and translational levels was determined by RT-qPCR and Western blotting, respectively. Result MiR-22-3p/miR-149-5p directly targeted the 3’UTR sequence of the MTHFR gene. FA deficiency led to an upregulation of miR-22-3p/miR-149-5p expression in QGY-7703/HL-7702 cells, while the transcription of MTHFR was decreased in QGY-7703 cells but elevated in HL-7702 cells. Western blotting showed that FA deficiency resulted in a decline of the MTHFR protein in QGY-7703 cells, whereas in HL-7702 cells, the MTHFR protein level remained constant. Conclusion The results suggested that miR-22-3p/miR-149-5p exert different post-transcriptional effects on MTHFR under conditions of FA deficiency in normal and cancerous human hepatocytes. The results also implied that miR-22-3p/miR-149-5p might exert anticancer effects in cases of long-term FA deficiency. PMID:28045918

  6. The Surgically Induced Stress Response

    PubMed Central

    Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N.

    2013-01-01

    The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Although the stress response to acute trauma evolved to improve chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246

  7. Effects of Fatty Liver Induced by Excess Orotic Acid on B-Group Vitamin Concentrations of Liver, Blood, and Urine in Rats.

    PubMed

    Shibata, Katsumi; Morita, Nobuya; Kawamura, Tomoyo; Tsuji, Ai; Fukuwatari, Tsutomu

    2015-01-01

    Fatty liver is caused when rats are given orotic acid of the pyrimidine base in large quantities. The lack of B-group vitamins suppresses the biosynthesis of fatty acids. We investigated how orotic acid-induced fatty liver affects the concentrations of liver, blood, and urine B-group vitamins in rats. The vitamin B6 and B12 concentrations of liver, blood, and urine were not affected by orotic acid-induced fatty liver. Vitamin B2 was measured only in the urine, but was unchanged. The liver, blood, and urine concentrations of niacin and its metabolites fell dramatically. Niacin and its metabolites in the liver, blood, and urine were affected as expected. Although the concentrations of vitamin B1, pantothenic acid, folate, and biotin in liver and blood were decreased by orotic acid-induced fatty liver, these urinary excretion amounts showed a specific pattern toward increase. Generally, as for the typical urinary excretion of B-group vitamins, these are excreted when the body is saturated. However, the ability to sustain vitamin B1, pantothenic acid, folate, and biotin decreased in fatty liver, which is hypothesized as a specific phenomenon. This metabolic response might occur to prevent an abnormally increased biosynthesis of fatty acids by orotic acid.

  8. Endocrine disruptors in the workplace, hair spray, folate supplementation, and risk of hypospadias: case-control study.

    PubMed

    Ormond, Gillian; Nieuwenhuijsen, Mark J; Nelson, Paul; Toledano, Mireille B; Iszatt, Nina; Geneletti, Sara; Elliott, Paul

    2009-02-01

    Hypospadias is one of the most common urogenital congenital anomalies affecting baby boys. Prevalence estimates in Europe range from 4 to 24 per 10,000 births, depending on definition, with higher rates reported from the United States. Relatively little is known about potential risk factors, but a role for endocrine-disrupting chemicals (EDCs) has been proposed. Our goal was to elucidate the risk of hypospadias associated with occupational exposure of the mother to endocrine-disruptor chemicals, use of folate supplementation during pregnancy, and vegetarianism. We designed a case-control study of 471 hypospadias cases referred to surgeons and 490 randomly selected birth controls, born 1 January 1997-30 September 1998 in southeast England. Telephone interviews of mothers elicited information on folate supplementation during pregnancy and vegetarianism. We used a job exposure matrix to classify occupational exposure. In multiple logistic regression analysis, there were increased risks for self-reported occupational exposure to hair spray [exposed vs. nonexposed, odds ratio (OR) = 2.39; 95% confidence interval (CI), 1.40-4.17] and phthalate exposure obtained by a job exposure matrix (OR = 3.12; 95% CI, 1.04-11.46). There was a significantly reduced risk of hypospadias associated with of folate use during the first 3 months of pregnancy (OR = 0.64; 95% CI, 0.44-0.93). Vegetarianism was not associated with hypospadias risk. Excess risks of hypospadias associated with occupational exposures to phthalates and hair spray suggest that antiandrogenic EDCs may play a role in hypospadias. Folate supplementation in early pregnancy may be protective.

  9. Primary care requests for anaemia chemistry tests in Spain: potential iron, transferrin and folate over-requesting.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Carlos

    2017-09-01

    To study the regional variability of requests for anaemia chemistry tests in primary care in Spain and the associated economic costs of potential over-requesting. Requests for anaemia tests were examined in a cross-sectional study. Clinical laboratories from different autonomous communities (AACCs) were invited to report on primary care anaemia chemistry tests requested during 2014. Demand for iron, ferritin, vitamin B12 and folate tests per 1000 inhabitants and the ratios of the folate/vitamin B12 and transferrin/ferritin requests were compared between AACCs. We also calculated reagent costs and the number of iron, transferrin and folate tests and the economic saving if every AACC had obtained the results achieved by the AACC with best practice. 110 laboratories participated (59.8% of the Spanish population). More than 12 million tests were requested, resulting in reagent costs exceeding €16.5 million. The serum iron test was the most often requested, and the ferritin test was the most costly (over €7 million). Close to €4.5 million could potentially have been saved if iron, transferrin and folate had been appropriately requested (€6 million when extrapolated to the whole Spanish population). The demand for and expenditure on anaemia chemistry tests in primary care in Spain is high, with significant regional differences between different AACCs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Targeting of herbal bioactives through folate receptors: a novel concept to enhance intracellular drug delivery in cancer therapy.

    PubMed

    Gupta, Anshita; Kaur, Chanchal Deep; Saraf, Shailendra; Saraf, Swarnlata

    2017-06-01

    Targeted drug delivery through folate receptor (FR) has emerged as a most biocompatible, target oriented, and non-immunogenic cargoes for the delivery of anticancer drugs. FRs are highly overexpressed in many tumor cells (like ovarian, lung, breast, kidney, brain, endometrial, and colon cancer), and targeting them through conjugates bearing specific ligand with encapsulated nanodrug moiety is undoubtedly, a promising approach toward tumor targeting. Folate, being an endogenous ligand, can be exploited well to affect various cellular events occurring during the progress of tumor, in a more natural and definite way. Thus, the aim of the review lies in summarizing the advancements taken place in the drug delivery system of different therapeutics through FRs and to refine its role as an endogenous ligand, in targeting of synthetic as well as natural bioactives. The review also provides an update on the patents received on the folate-based drug delivery system.

  11. Efficacy of DL-alpha-lipoic acid on methanol induced free radical changes, protein oxidative damages and hsp70 expression in folate deficient rat nervous tissue.

    PubMed

    Rajamani, Rathinam; Muthuvel, Arumugam; Manikandan, Sundaramahalingam; Srikumar, Ramasundaram; Sheeladevi, Rathinasamy

    2007-05-01

    DL-alpha-Lipoic acid (LPA) was reported to be effective in reducing free radicals generated by oxidative stress. The protective of effect of LPA on methanol (MeOH) induced free radical changes and oxidative damages in discrete regions of rat brain have been reported in this study. Folate deficient rat (FDD) model was used. The five animal groups (saline control, FDD control, FDD+MeOH, FDD+LPA+MeOH, LPA control) were used. The FDD+MeOH and FDD+LPA+MeOH animals were injected intraperitoneally with methanol (3gm/kg). After 24h, the level of free radical scavengers such as, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione was estimated in six discrete regions of brain, retina and optic nerve. Level of protein thiol, protein carbonyl and lipid peroxidation was also estimated. Expression of heat shock protein 70 mRNA (hsp70) was studied in the cerebellum and hippocampus by reverse transcriptase PCR. All the samples showed elevation in the level of free radical scavenging enzymes and reduced level of glutathione in the FDD+MeOH group in relation to the other groups. hsp70 expression was more in FDD+MeOH group when compared to FDD+LPA+MeOH group. In conclusion, MeOH exposure leads to increased free radical generation and protein oxidative damages in the rat nervous tissue. Treatment with LPA prevents oxidative damage induced by MeOH exposure.

  12. A novel gene delivery composite system based on biodegradable folate-poly (ester amine) polymer and thermosensitive hydrogel for sustained gene release

    PubMed Central

    Yang, Yi; Zhao, Hang; Jia, YanPeng; Guo, QingFa; Qu, Ying; Su, Jing; Lu, XiaoLing; Zhao, YongXiang; Qian, ZhiYong

    2016-01-01

    Local anti-oncogene delivery providing high local concentration of gene, increasing antitumor effect and decreasing systemic side effects is currently attracting interest in cancer therapy. In this paper, a novel local sustained anti-oncogene delivery system, PECE thermoresponsive hydrogel containing folate-poly (ester amine) (FA-PEA) polymer/DNA (tumor suppressor) complexes, is demonstrated. First, a tumor-targeted biodegradable folate-poly (ester amine) (FA-PEA) polymer based on low-molecular-weight polyethyleneimine (PEI) was synthesized and characterized, and the application for targeted gene delivery was investigated. The polymer had slight cytotoxicity and high transfection efficiency in vitro compared with PEI 25k, which indicated that FA-PEA was a potential vector for targeted gene delivery. Meanwhile, we successfully prepared a thermoresponsive PECE hydrogel composite containing FA-PEA/DNA complexes which could contain the genes and slowly release the genes into cells. We concluded the folate-poly (ester amine) (FA-PEA) polymer would be useful for targeted gene delivery, and the novel gene delivery composite based on biodegradable folate-poly (ester amine) polymer and thermosensitive PECE hydrogel showed potential for sustained gene release. PMID:26883682

  13. TAS2R38 bitter taste genetics, dietary vitamin C, and both natural and synthetic dietary folic acid predict folate status, a key micronutrient in the pathoaetiology of adenomatous polyps.

    PubMed

    Lucock, Mark; Ng, Xiaowei; Boyd, Lyndell; Skinner, Virginia; Wai, Ron; Tang, Sa; Naylor, Charlotte; Yates, Zoë; Choi, Jeong-Hwa; Roach, Paul; Veysey, Martin

    2011-08-01

    Taste perception may influence dietary preferences and nutrient intakes contributing to diet-related disease susceptibility. This study examined bitter taste genetics and whether variation in the TAS2R38 gene at three polymorphic loci (A49P, V262A and I296V) could alter dietary and systemic folate levels and dietary vitamin C intake, and whether a nutrigenetic circuit existed that might link bitter taste, folate/antioxidant status and risk for a colonic adenomatous polyp. TAS2R38 diplotype predicted bitter taste (PROP) phenotype (p value <0.00001) and red cell folate status (p=0.0179) consistent with the diplotype that has the broadest range of bitter perception (AVI/PAV) also possessing the highest average red cell folate value. However, TAS2R38 diplotype did not predict dietary intake of methylfolic acid, pteroylmonoglutamic acid or total folic acid. Neither did it predict dietary intake of vitamin C. Despite this, intake of dietary folate predicts red cell folate with analysis pointing to a key nutrient-nutrient interaction between vitamin C intake and systemic folate status. Analysis of 38 patients with an adenomatous polyp and 164 controls showed that individually, dietary nutrient intake, nutrient status and taste diplotype did not influence polyp risk. However, red cell folate status (in individuals below the population median value) did interact with bitter taste diplotype (AVI/PAV) to predict polyp risk (p=0.0145). Furthermore, synthetic folic acid (below median intake) was statistically associated with adenoma occurrence (p=0.0215); individuals with adenomatous polyps had a 1.77× higher intake than controls. Additionally, stepwise regression taking account of all dietary nutrients showed a tight relationship between methylfolic acid (but not pteroylmonoglutamic acid) intake and red cell folate level in those with a low folate status and occurrence of an adenomatous polyp (p=0.0039). These findings point to a role for folate in the pathoaetiology of

  14. Abdominal aortic aneurysm and the association with serum levels of Homocysteine, vitamins B6, B12 and Folate

    PubMed Central

    Lindqvist, Markus; Hellström, Anders; Henriksson, Anders E

    2012-01-01

    Previous investigations have shown hyperhomocysteinemi in patients with abdominal aortic aneurysm (AAA). In the present study we evaluated the circulating level of homocysteine (Hcy) in relation to renal function, vitamins B6, B12 and folate status in AAA patients with special regard to aneurysm size, and rupture. Hcy, Creatinine, B6, B12 and folate were measured in 119 patients with AAA and 36 controls without aneurysm matched by age, gender and smoking habit. As expected there was a weak correlation between Hcy and vitamins B6, B12 or folate. We found similar levels of Hcy, B6 and folic acid in patients with nonruptured AAA compared to the control group matched by age, gender and smoking habit. There was no correlation between maximum diameter of the nonruptured AAA (n=78) and Hcy, B6 or folate. However, the present study shows a significant inverse correlation between maximum diameter of the nonruptured AAA (n=78) and B12 (r = -0.304, p=0.007) with significant higher levels in small AAA compared to large AAA. In conclusion, Hcy does not seem to be a useful biomarker in AAA disease. The unexpected finding of B12 levels correlating to aneurysm diameter warrants urgent further investigation of B12 supplement to prevent progression of small AAA. PMID:23173106

  15. Abdominal aortic aneurysm and the association with serum levels of Homocysteine, vitamins B6, B12 and Folate.

    PubMed

    Lindqvist, Markus; Hellström, Anders; Henriksson, Anders E

    2012-01-01

    Previous investigations have shown hyperhomocysteinemi in patients with abdominal aortic aneurysm (AAA). In the present study we evaluated the circulating level of homocysteine (Hcy) in relation to renal function, vitamins B6, B12 and folate status in AAA patients with special regard to aneurysm size, and rupture. Hcy, Creatinine, B6, B12 and folate were measured in 119 patients with AAA and 36 controls without aneurysm matched by age, gender and smoking habit. As expected there was a weak correlation between Hcy and vitamins B6, B12 or folate. We found similar levels of Hcy, B6 and folic acid in patients with nonruptured AAA compared to the control group matched by age, gender and smoking habit. There was no correlation between maximum diameter of the nonruptured AAA (n=78) and Hcy, B6 or folate. However, the present study shows a significant inverse correlation between maximum diameter of the nonruptured AAA (n=78) and B12 (r = -0.304, p=0.007) with significant higher levels in small AAA compared to large AAA. In conclusion, Hcy does not seem to be a useful biomarker in AAA disease. The unexpected finding of B12 levels correlating to aneurysm diameter warrants urgent further investigation of B12 supplement to prevent progression of small AAA.

  16. Plasma folate levels in early to mid pregnancy after a nation-wide folic acid supplementation program in areas with high and low prevalence of neural tube defects in China.

    PubMed

    Liu, Jufen; Gao, Lili; Zhang, Yali; Jin, Lei; Li, Zhiwen; Zhang, Le; Meng, Qinqin; Ye, Rongwei; Wang, Linlin; Ren, Aiguo

    2015-06-01

    Folic acid supplementation is recommended for all women of child-bearing age to prevent neural tube defects (NTDs). A nation-wide folic acid supplementation program was implemented in rural areas of China since 2009; however, changes in plasma folate levels in pregnant women were unknown. A cross-sectional survey was conducted in 2011 to 2012, with 1736 pregnant women enrolled, and results were compared with a previous survey in 2002 to 2004. A microbiological method was used to determine plasma folate levels. Preprogram and postprogram median plasma folate concentrations were compared while stratified by prevalence of NTDs and residence. In the high NTD prevalence population, plasma folate concentration increased to 33.4 (18.7, 58.4) nmol/L in the postprogram sample, which is 2.9 times of the preprogram. In the low NTD prevalence population, plasma folate increased to 67.9 (44.5, 101.9) nmol/L, which is 1.9 times of the preprogram. Gaps remained in plasma folate levels with respect to prevalence of NTDs and residence. Folic acid supplementation has a strong impact on plasma folate concentrations. Earlier supplementation (before the last menstrual period), increased supplementation frequency and more total days of supplementation were associated with a higher plasma folate concentration as demonstrated in both the high- and low-prevalence populations. Plasma folate levels among pregnant Chinese women increased dramatically after the nation-wide folic acid supplementation program in both rural and urban areas, and in populations of high and low NTD prevalence. The nation-wide program should have a component to ensure that supplementation begins before pregnancy. © 2015 Wiley Periodicals, Inc.

  17. Folate, vitamin B12, and vitamin B6 status of a group of high socioeconomic status women in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort.

    PubMed

    Fayyaz, Faiqa; Wang, Flora; Jacobs, René L; O'Connor, Deborah L; Bell, Rhonda C; Field, Catherine J

    2014-12-01

    Folic acid supplementation and food fortification policies have improved folate status in North American women of child bearing age. Recent studies have reported the possible inadequacy of vitamin B12 and B6 in the etiology of neural tube defects in folate-fortified populations. The aims of this study were to describe folate status and its relationship to supplementation and to assess vitamin B12 and B6 status in a cohort of pregnant women. Supplement intake data were collected in each trimester from the first cohort (n = 599) of the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Red blood cell folate (RBCF) and plasma folate, holotranscobalamin, and pyridoxal 5-phosphate were measured. Overt folate deficiency was rare (3%) but 24% of women in their first trimester had suboptimal RBCF concentration (<906 nmol·L(-1)). The proportion of the cohort in this category declined substantially in second (9%) and third (7%) trimesters. High RBCF (>1360 nmol·L(-1)) was observed in approximately half of the women during each pregnancy trimester. Vitamin B12 and B6 deficiencies were rare (<1% of the cohort). Women consuming folic acid supplements above the upper level had significantly higher RBCF and plasma folate concentrations. In conclusion, the prevalence of vitamin B12 and B6 deficiency was very low. A quarter of the women had suboptimal folate status in the first trimester of pregnancy and over half the women had abnormally high RBCF, suggesting that supplementation during pregnancy is not appropriate in a cohort of women considered to be healthy and a low risk for nutritional deficiencies.

  18. Paternal intake of folate and vitamins B6 and B12 before conception and risk of childhood acute lymphoblastic leukemia.

    PubMed

    Bailey, Helen D; Miller, Margaret; Greenop, Kathryn R; Bower, Carol; Attia, John; Marshall, Glenn M; Armstrong, Bruce K; Milne, Elizabeth

    2014-12-01

    We investigated whether paternal dietary intake of folate before conception is associated with the risk of childhood acute lymphoblastic leukemia (ALL) in a nationwide case-control study. Data on dietary folate intake during the 6 months before the child's conception were collected from 285 case fathers and 595 control fathers using a dietary questionnaire. Nutrient intake was quantified using a customized computer software package based on Australian food composition databases. Data on folate intake were analyzed using unconditional logistic regression, adjusting for study-matching variables, total energy, and potentially confounding variables. In a subset of 229 cases and 420 controls, data on vitamin B6 and vitamin B12 intake were also analyzed. No consistent associations were seen with paternal dietary intake of folate or vitamin B6. Higher levels of paternal dietary vitamin B12 were appeared to be associated with an increased risk of childhood ALL, with those in the highest tertile of consumption having an OR of 1.51 (0.97, 2.36). The use of supplements containing folate and vitamins B6 or B12 was rare. We did not find any biologically plausible evidence that paternal nutrition in the period leading up to conception was associated with childhood ALL. Our finding for vitamin B12 may be a chance finding, given the number of analyses performed, or be attributable to participation bias because parents with a tertiary education had the lowest level of B12 intake and tertiary education was more common among control than case parents.

  19. Total folate and unmetabolized folic acid in the breast milk of a cross-section of Canadian women.

    PubMed

    Page, Rachael; Robichaud, André; Arbuckle, Tye E; Fraser, William D; MacFarlane, Amanda J

    2017-05-01

    Background: Folate requirements increase during pregnancy and lactation. It is recommended that women who could become pregnant, are pregnant, or are lactating consume a folic acid (FA)-containing supplement. Objectives: We sought to determine breast-milk total folate and unmetabolized folic acid (UMFA) contents and their relation with FA-supplement use and doses in a cohort of Canadian mothers who were enrolled in the MIREC (Maternal-Infant Research on Environmental Chemicals) study. Design: Breast-milk tetrahydrofolate (THF), 5-methyl-THF, 5-formyl-THF, 5,10-methenyl-THF, and UMFA were measured with the use of liquid chromatography-tandem mass spectrometry ( n = 561). Total daily supplemental FA intake was based on self-reported FA-supplement use. Results: UMFA was detectable in the milk of 96.1% of the women. Total daily FA intake from supplements was associated with breast folate concentration and species. Breast-milk total folate was 18% higher ( P < 0.001) in supplement users ( n = 401) than in nonusers ( n = 160), a difference driven by women consuming >400 μg FA/d ( P ≤ 0.004). 5-Methyl-THF was 19% lower ( P < 0.001) and UMFA was 126% higher ( P < 0.001) in supplement users than in nonusers. Women who consumed >400 μg FA/d had proportionally lower 5-methyl-THF and higher UMFA than did women who consumed ≤400 μg FA/d. Conclusions: FA-supplement use was associated with modestly higher breast-milk total folate. Detectable breast-milk UMFA was nearly ubiquitous, including in women who did not consume an FA supplement. Breast-milk UMFA was proportionally higher than 5-methyl-THF in women who consumed >400 μg FA/d, thereby suggesting that higher doses exceed the physiologic capacity to metabolize FA and result in the preferential uptake of FA in breast milk. Therefore, FA-supplement doses >400 μg may not be warranted, especially in populations for whom FA fortification is mandatory. © 2017 American Society for Nutrition.

  20. Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women's Health Initiative Observational Study.

    PubMed

    Cheng, Ting-Yuan David; Makar, Karen W; Neuhouser, Marian L; Miller, Joshua W; Song, Xiaoling; Brown, Elissa C; Beresford, Shirley A A; Zheng, Yingye; Poole, Elizabeth M; Galbraith, Rachel L; Duggan, David J; Habermann, Nina; Bailey, Lynn B; Maneval, David R; Caudill, Marie A; Toriola, Adetunji T; Green, Ralph; Ulrich, Cornelia M

    2015-10-15

    Investigations of folate-mediated one-carbon metabolism (FOCM) genes and gene-nutrient interactions with respect to colorectal cancer (CRC) risk are limited to candidate polymorphisms and dietary folate. This study comprehensively investigated associations between genetic variants in FOCM and CRC risk and whether the FOCM nutrient status modified these associations. Two hundred eighty-eight candidate and tagging single-nucleotide polymorphisms (SNPs) in 30 FOCM genes were genotyped for 821 incident CRC case-control matched pairs in the Women's Health Initiative Observational Study cohort. FOCM biomarkers (red blood cell [RBC] folate, plasma folate, pyridoxal-5'-phosphate [PLP], vitamin B12, and homocysteine) and self-reported alcohol consumption were measured at the baseline. Conditional logistic regression was implemented; effect modification was examined on the basis of known enzyme-nutrient relations. Statistically significant associations were observed between CRC risk and functionally defined candidate SNPs of methylenetetrahydrofolate dehydrogenase 1 (MTHFD1; K134R), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR; P450R), and PR domain containing 2 with ZNF domain (PRDM2; S450N) and a literature candidate SNP of thymidylate synthase (TYMS; g.676789A>T; nominal P < .05). In addition, suggestive associations were noted for tagging SNPs in cystathionine-β-synthase (CBS), dihydrofolate reductase (DHFR), DNA (cytosine-5-)-methyltransferase 3β (DNMT3B), methionine adenosyltransferase I α (MAT1A), MTHFD1, and MTRR (nominal P < .05; adjusted P, not significant). Significant interactions between nutrient biomarkers and candidate polymorphisms were observed for 1) plasma/RBC folate and folate hydrolase 1 (FOLH1), paraoxonase 1 (PON1), transcobalamin II (TCN2), DNMT1, and DNMT3B; 2) plasma PLP and TYMS TS3; 3) plasma B12 and betaine-homocysteine S-methyltransferase 2 (BHMT2); and 4) homocysteine and methylenetetrahydrofolate reductase