Science.gov

Sample records for folding model analysis

  1. Kinetic Analysis of Protein Folding Lattice Models

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhou, Xin; Liaw, Chih Young; Koh, Chan Ghee

    Based on two-dimensional square lattice models of proteins, the relation between folding time and temperature is studied by Monte Carlo simulation. The results can be represented by a kinetic model with three states — random coil, molten globule, and native state. The folding process is composed of nonspecific collapse and final searching for the native state. At high temperature, it is easy to escape from local traps in the folding process. With decreasing temperature, because of the trapping in local traps, the final searching speed decreases. Then the folding shows chevron rollover. Through the analysis of the fitted parameters of the kinetic model, it is found that the main difference between the energy landscapes of the HP model and the Go model is that the number of local minima of the Go model is less than that of the HP model.

  2. The influence of modeling assumptions on the modal analysis of vocal fold structures

    NASA Astrophysics Data System (ADS)

    Cook, Douglas D.; Mongeau, Luc

    2005-09-01

    Finite-element modal analysis studies of several vocal fold structural models were performed in vacuo under a variety of assumptions. The sensitivity of the vocal folds to changes in geometry and tissue properties was investigated. The Ritz method and the finite-element code ADINA were used to perform linear modal analysis of two-dimensional and three-dimensional models of the human vocal folds. The results allow for comparison and evaluation of various modeling approaches. In particular, the influence of geometrical constraints was shown to introduce errors of varying magnitude depending on the degree of anisotropy of the vocal fold tissue. [Research supported by the National Institute for Deafness and Other Communication Disorders.

  3. Comprehensive, Population-Based Sensitivity Analysis of a Two-Mass Vocal Fold Model.

    PubMed

    Robertson, Daniel; Zañartu, Matías; Cook, Douglas

    2016-01-01

    Previous vocal fold modeling studies have generally focused on generating detailed data regarding a narrow subset of possible model configurations. These studies can be interpreted to be the investigation of a single subject under one or more vocal conditions. In this study, a broad population-based sensitivity analysis is employed to examine the behavior of a virtual population of subjects and to identify trends between virtual individuals as opposed to investigating a single subject or model instance. Four different sensitivity analysis techniques were used in accomplishing this task. Influential relationships between model input parameters and model outputs were identified, and an exploration of the model's parameter space was conducted. Results indicate that the behavior of the selected two-mass model is largely dominated by complex interactions, and that few input-output pairs have a consistent effect on the model. Results from the analysis can be used to increase the efficiency of optimization routines of reduced-order models used to investigate voice abnormalities. Results also demonstrate the types of challenges and difficulties to be expected when applying sensitivity analyses to more complex vocal fold models. Such challenges are discussed and recommendations are made for future studies. PMID:26845452

  4. Comprehensive, Population-Based Sensitivity Analysis of a Two-Mass Vocal Fold Model

    PubMed Central

    Robertson, Daniel; Zañartu, Matías; Cook, Douglas

    2016-01-01

    Previous vocal fold modeling studies have generally focused on generating detailed data regarding a narrow subset of possible model configurations. These studies can be interpreted to be the investigation of a single subject under one or more vocal conditions. In this study, a broad population-based sensitivity analysis is employed to examine the behavior of a virtual population of subjects and to identify trends between virtual individuals as opposed to investigating a single subject or model instance. Four different sensitivity analysis techniques were used in accomplishing this task. Influential relationships between model input parameters and model outputs were identified, and an exploration of the model’s parameter space was conducted. Results indicate that the behavior of the selected two-mass model is largely dominated by complex interactions, and that few input-output pairs have a consistent effect on the model. Results from the analysis can be used to increase the efficiency of optimization routines of reduced-order models used to investigate voice abnormalities. Results also demonstrate the types of challenges and difficulties to be expected when applying sensitivity analyses to more complex vocal fold models. Such challenges are discussed and recommendations are made for future studies. PMID:26845452

  5. Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models

    PubMed Central

    Aksel, Tural; Barrick, Doug

    2010-01-01

    The linear “Ising” model, which has been around for nearly a century, treats the behavior of linear arrays of repetitive, interacting subunits. Linear “repeat-proteins” have only been described in the last decade or so, and their folding energies have only been characterized very recently. Owing to their repetitive structures, linear repeat-proteins are particularly well suited for analysis by the nearest-neighbor Ising formalism. After briefly describing the historical origins and applications of the Ising model to biopolymers, and introducing repeat protein structure, this chapter will focus on the application of the linear Ising model to repeat proteins. When applied to homopolymers, the model can be represented and applied in a fairly simplified form. When applied to heteropolymers, where differences in energies among individual subunits (i.e. repeats) must be included, some (but not all) of this simplicity is lost. Derivations of the linear Ising model for both homopolymer and heteropolymer repeat-proteins will be presented. With the increased complexity required for analysis of heteropolymeric repeat proteins, the ability to resolve different energy terms from experimental data can be compromised. Thus, a simple matrix approach will be developed to help inform on the degree to which different thermodynamic parameters can be extracted from a particular set of unfolding curves. Finally, we will describe the application of these models to analyze repeat-protein folding equilibria, focusing on simplified repeat proteins based on “consensus” sequence information. PMID:19289204

  6. Using Strahler's analysis to reduce up to 200-fold the run time of realistic neuron models

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; Limongiello, Alessandro; Migliore, Michele

    2013-10-01

    The cellular mechanisms underlying higher brain functions/dysfunctions are extremely difficult to investigate experimentally, and detailed neuron models have proven to be a very useful tool to help these kind of investigations. However, realistic neuronal networks of sizes appropriate to study brain functions present the major problem of requiring a prohibitively high computational resources. Here, building on our previous work, we present a general reduction method based on Strahler's analysis of neuron morphologies. We show that, without any fitting or tuning procedures, it is possible to map any morphologically and biophysically accurate neuron model into an equivalent reduced version. Using this method for Purkinje cells, we demonstrate how run times can be reduced up to 200-fold, while accurately taking into account the effects of arbitrarily located and activated synaptic inputs.

  7. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data.

    PubMed

    Shin, Young Hong; Shum, C K; Braitenberg, Carla; Lee, Sang Mook; Na, Sung-Ho; Choi, Kwang Sun; Hsu, Houtse; Park, Young-Sue; Lim, Mutaek

    2015-01-01

    The determination of the crustal structure is essential in geophysics, as it gives insight into the geohistory, tectonic environment, geohazard mitigation, etc. Here we present the latest advance on three-dimensional modeling representing the Tibetan Mohorovičić discontinuity (topography and ranges) and its deformation (fold), revealed by analyzing gravity data from GOCE mission. Our study shows noticeable advances in estimated Tibetan Moho model which is superior to the results using the earlier gravity models prior to GOCE. The higher quality gravity field of GOCE is reflected in the Moho solution: we find that the Moho is deeper than 65 km, which is twice the normal continental crust beneath most of the Qinghai-Tibetan plateau, while the deepest Moho, up to 82 km, is located in western Tibet. The amplitude of the Moho fold is estimated to be ranging from -9 km to 9 km with a standard deviation of ~2 km. The improved GOCE gravity derived Moho signals reveal a clear directionality of the Moho ranges and Moho fold structure, orthogonal to deformation rates observed by GPS. This geophysical feature, clearly more evident than the ones estimated using earlier gravity models, reveals that it is the result of the large compressional tectonic process. PMID:26114224

  8. Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data

    PubMed Central

    Shin, Young Hong; Shum, C.K.; Braitenberg, Carla; Lee, Sang Mook; Na, Sung -Ho; Choi, Kwang Sun; Hsu, Houtse; Park, Young-Sue; Lim, Mutaek

    2015-01-01

    The determination of the crustal structure is essential in geophysics, as it gives insight into the geohistory, tectonic environment, geohazard mitigation, etc. Here we present the latest advance on three-dimensional modeling representing the Tibetan Mohorovičić discontinuity (topography and ranges) and its deformation (fold), revealed by analyzing gravity data from GOCE mission. Our study shows noticeable advances in estimated Tibetan Moho model which is superior to the results using the earlier gravity models prior to GOCE. The higher quality gravity field of GOCE is reflected in the Moho solution: we find that the Moho is deeper than 65 km, which is twice the normal continental crust beneath most of the Qinghai-Tibetan plateau, while the deepest Moho, up to 82 km, is located in western Tibet. The amplitude of the Moho fold is estimated to be ranging from −9 km to 9 km with a standard deviation of ~2 km. The improved GOCE gravity derived Moho signals reveal a clear directionality of the Moho ranges and Moho fold structure, orthogonal to deformation rates observed by GPS. This geophysical feature, clearly more evident than the ones estimated using earlier gravity models, reveals that it is the result of the large compressional tectonic process. PMID:26114224

  9. Modelling of lateral fold growth and fold linkage: Applications to fold-and-thrust belt tectonics

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard; Schmalholz, Stefan

    2013-04-01

    We use a finite element model to investigate the three-dimensional fold growth and interference of two initially isolated fold segments. The most critical parameter, which controls the fold linkage mode, is the phase difference between the laterally growing fold hinge lines: 1) "Linear-linkage" yields a sub-cylindrical fold with a saddle at the location where the two initial folds linked. 2) "Oblique-linkage" produces a curved fold resembling a Type II refold structure. 3) "Oblique-no-linkage" results in two curved folds with fold axes plunging in opposite directions. 4) "Linear-no-linkage" yields a fold train of two separate sub-cylindrical folds with fold axes plunging in opposite directions. The transition from linkage to no-linkage occurs when the fold separation between the initially isolated folds is slightly larger than one half of the low-amplitude fold wavelength. The model results compare well with previously published plasticine analogue models and can be directly applied to the investigation of fold growth history in fold-and-thust belts. An excellent natural example of lateral fold linkage is described from the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The fold growth in this region is not controlled by major thrust faults but the shortening of the Paleozoic to Cenozoic passive margin sediments of the Arabian plate occurred mainly by detachment folding. The sub-cylindrical anticlines with hinge-parallel lengths of more than 50 km have not developed from single sub-cylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification and lateral fold growth. Linkage points are marked by geomorphological saddle points which are structurally the lowermost points of antiforms and points of principal curvatures with opposite sign. Linkage points can significantly influence the migration of mineral-rich fluids and hydrocarbons and are therefore of great economic importance.

  10. ANALYSIS OF FLOW-STRUCTURE COUPLING IN A MECHANICAL MODEL OF THE VOCAL FOLDS AND THE SUBGLOTTAL SYSTEM

    PubMed Central

    Howe, M. S.; McGowan, R. S.

    2009-01-01

    An analysis is made of the nonlinear interactions between flow in the subglottal vocal tract and glottis, sound waves in the subglottal system and a mechanical model of the vocal folds. The mean flow through the system is produced by a nominally steady contraction of the lungs, and mechanical experiments frequently involve a ‘lung cavity’ coupled to an experimental subglottal tube of arbitrary or ill-defined effective length L, on the basis that the actual value of L has little or no influence on excitation of the vocal folds. A simple, self-exciting single mass mathematical model of the vocal folds is used to investigate the sound generated within the subglottal domain and the unsteady volume flux from the glottis for experiments where it is required to suppress feedback of sound from the supraglottal vocal tract. In experiments where the assumed absorption of sound within the sponge-like interior of the lungs is small, the influence of changes in L can be very significant: when the subglottal tube behaves as an open-ended resonator (when L is as large as half the acoustic wavelength) there is predicted to be a mild increase in volume flux magnitude and a small change in waveform. However, the strong appearance of second harmonics of the acoustic field is predicted at intermediate lengths, when L is roughly one quarter of the acoustic wavelength. In cases of large lung damping, however, only modest changes in the volume flux are predicted to occur with variations in L. PMID:20161450

  11. Elastic models of vocal fold tissues.

    PubMed

    Alipour-Haghighi, F; Titze, I R

    1991-09-01

    Elastic properties of canine vocal fold tissue (muscle and mucosa) were obtained through a series of experiments conducted in vitro and were modeled mathematically. The elastic properties play a significant role in quantitative analysis of vocal fold vibrations and theory of pitch control. Samples of vocalis muscle and mucosa were dissected and prepared from dog larynges a few minutes premortem and kept in a Krebs solution at a temperature of 37 +/- 1 degrees C and a pH of 7.4 +/- 0.05. Samples of muscle tissue and mucosa were stretched and released in a slow, sinusoidal fashion. Force and displacement of the samples were measured with a dual-servo system (ergometer). After digitization, stress-strain data for samples of muscle tissue and cover tissue were averaged. The stress-strain data were then fitted numerically by polynomial and exponential models. PMID:1939897

  12. A parametric vocal fold model based on magnetic resonance imaging.

    PubMed

    Wu, Liang; Zhang, Zhaoyan

    2016-08-01

    This paper introduces a parametric three-dimensional body-cover vocal fold model based on magnetic resonance imaging (MRI) of the human larynx. Major geometric features that are observed in the MRI images but missing in current vocal fold models are discussed, and their influence on vocal fold vibration is evaluated using eigenmode analysis. Proper boundary conditions for the model are also discussed. Based on control parameters corresponding to anatomic landmarks that can be easily measured, this model can be adapted toward a subject-specific vocal fold model for voice production research and clinical applications. PMID:27586774

  13. Mechanical Models of Fault-Related Folding

    SciTech Connect

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  14. Regional structural analysis and velocity model (Vp) of the Chittagong-Myanmar Fold and Thrust Belt, Bangladesh

    NASA Astrophysics Data System (ADS)

    Burgi, P.; Hubbard, J.; Peterson, D. E.; Akhter, S. H.

    2015-12-01

    Bangladesh sits on the seismically active Chittagong-Myanmar Fold and Thrust Belt (CMFB), a partially exposed accretionary prism associated with the India-Eurasia collision. Ground shaking due to local and regional earthquakes presents a potential hazard to Bangladesh, one of the most populated areas in the world. In order to constrain this hazard, we first investigate potential seismic sources (active faults), and second we analyze the material through which seismic energy propagates. To address potential earthquake sources, we focus on the Comilla Anticline, which is the frontal-most exposed structure of the CMFB as well as the most proximal to the capital city of Dhaka. We present several industry-acquired and depth-converted seismic reflection profiles, which exhibit an asymmetric detachment fold rising from a relatively deep décollement (5-6 km). Because there is no strong evidence for an associated emergent thrust, this actively growing fold may have low seismic potential. We place this work into a regional context by integrating previous research of CMFB structures to create a regional structural model, which reveals laterally varying wedge geometry. To address ground shaking, the second component of this work, we assess stacking velocities from our seismic reflection data in conjunction with sonic log velocities from several locations in Bangladesh. These data show varying velocity versus depth trends by region. Following similar, data-rich studies performed in the Los Angeles and adjacent basins, we use data and theory-driven fitting techniques to analyze depth-velocity trends for these different regions, and interpolate to create a laterally varying regional seismic velocity model. Velocities generally slow from east to west, consistent with the younging trend as we move from older, exhumed CMFB formations to recent and undeformed deposits.

  15. Analysis of High-Fold Gamma Data

    SciTech Connect

    Beyer, C.J.; Cromaz, M.; Radford, D.C.

    1998-08-10

    Historically, {gamma}-{gamma} and {gamma}-{gamma}-{gamma} coincidence spectra were utilized to build nuclear level schemes. With the development of large detector arrays, it has became possible to analyze higher fold coincidence data sets. This paper briefly reports on software to analyze 4-fold coincidence data sets that allows creation of 4-fold histograms (hypercubes) of at least 1024 channels per side (corresponding to a 43 gigachannel data space) that will fit onto a few gigabytes of disk space, and extraction of triple-gated spectra in a few seconds. Future detector arrays may have even higher efficiencies, and detect an many as 15 or 20 {gamma} rays simultaneously; such data will require very different algorithms for storage and analysis. Difficulties inherent in the analysis of such data are discussed, and two possible new solutions are presented, namely adaptive list-mode systems and list-list-mode storage.

  16. Observation of a tropopause fold by MARA VHF wind-profiler radar and ozonesonde at Wasa, Antarctica: comparison with ECMWF analysis and a WRF model simulation

    NASA Astrophysics Data System (ADS)

    Mihalikova, M.; Kirkwood, S.; Arnault, J.; Mikhaylova, D.

    2012-09-01

    Tropopause folds are one of the mechanisms of stratosphere-troposphere exchange, which can bring ozone rich stratospheric air to low altitudes in the extra-tropical regions. They have been widely studied at northern mid- or high latitudes, but so far almost no studies have been made at mid- or high southern latitudes. The Moveable Atmospheric Radar for Antarctica (MARA), a 54.5 MHz wind-profiler radar, has operated at the Swedish summer station Wasa, Antarctica (73° S, 13.5° W) during austral summer seasons from 2007 to 2011 and has observed on several occasions signatures similar to those caused by tropopause folds at comparable Arctic latitudes. Here a case study is presented of one of these events when an ozonesonde successfully sampled the fold. Analysis from European Center for Medium Range Weather Forecasting (ECMWF) is used to study the circumstances surrounding the event, and as boundary conditions for a mesoscale simulation using the Weather Research and Forecasting (WRF) model. The fold is well resolved by the WRF simulation, and occurs on the poleward side of the polar jet stream. However, MARA resolves fine-scale layering associated with the fold better than the WRF simulation.

  17. Predictive Computational Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    di Pierro, Miichele; Zhang, Bin; Wolynes, Peter J.; Onuchic, Jose N.

    In vivo, the human genome folds into well-determined and conserved three-dimensional structures. The mechanism driving the folding process remains unknown. We report a theoretical model (MiChroM) for chromatin derived by using the maximum entropy principle. The proposed model allows Molecular Dynamics simulations of the genome using as input the classification of loci into chromatin types and the presence of binding sites of loop forming protein CTCF. The model was trained to reproduce the Hi-C map of chromosome 10 of human lymphoblastoid cells. With no additional tuning the model was able to predict accurately the Hi-C maps of chromosomes 1-22 for the same cell line. Simulations show unknotted chromosomes, phase separation of chromatin types and a preference of chromatin of type A to sit at the periphery of the chromosomes.

  18. Stratified analysis of lectin-like chaperones in the folding disease-related metabolic syndrome rat model.

    PubMed

    Hirano, Makoto; Imagawa, Ayami; Totani, Kiichiro

    2016-09-01

    The metabolic syndrome including obesity and diabetes mellitus is known to be a major health problem worldwide. A recent study reported that obesity causes endoplasmic reticulum (ER) stress and subsequently leads to insulin resistance and type 2 diabetes. However, little is known about the alterations in the components of the calnexin/calreticulin (CNX/CRT) cycle, which promote glycoprotein folding in obese and diabetic conditions. To understand the operating status of the lectin-like chaperones related to the CNX/CRT cycle in the metabolic syndrome, we analyzed the chaperones for the activity, protein expression, and mRNA expression levels using Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rat models for obesity and diabetes, respectively. We demonstrated that misfolded proteins were gradually increased with progression of the syndrome, obesity to diabetes. The individual chaperone activities of CNX and CRT were both decreased in the ZF rat ER and, in contrast, were increased in the ZDF rat ER. The protein quantities and mRNA expressions of CNX and CRT were decreased in the ZF rats, but increased in the ZDF rats compared with those of the healthy model. Therefore, these results indicate that obesity down-regulates CNX and CRT expressions and their activities and diabetes up-regulates the expressions and activities of CNX and CRT. Our findings clearly suggest that metabolic syndrome affects the lectin-like chaperones in the CNX/CRT cycle at both the activity and expression levels. PMID:27425249

  19. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Sadqi, Mourad; de Alba, Eva; Muñoz, Victor

    2013-01-01

    The study of protein folding has been conventionally hampered by the assumption that all single-domain proteins fold by an all-or-none process (two-state folding) that makes it impossible to resolve folding mechanisms experimentally. Here we describe an experimental method for the thermodynamic analysis of protein folding at atomic resolution using nuclear magnetic resonance (NMR). The method is specifically developed for the study of small proteins that fold autonomously into basic supersecondary structure motifs, and that do so in the sub-millisecond timescale (folding archetypes). From the NMR experiments we obtain hundreds of atomic unfolding curves that are subsequently analyzed leading to the determination of the characteristic network of folding interactions. The application of this approach to a comprehensive catalog of elementary folding archetypes holds the promise of becoming the first experimental approach capable of unraveling the basic rules connecting protein structure and folding mechanism. PMID:22987355

  20. Inframammary Fold Reconstruction: A Biomechanical Analysis

    PubMed Central

    Schell, Julia; Uener, Jens; Prescher, Andreas; Scaal, Martin; Puppe, Julian; Warm, Mathias

    2016-01-01

    Background: Inframammary fold reconstruction has scarcely been evaluated in literature. No biomechanical analyses have been performed comparing different reconstructive methods. This evaluation compares the gold-standard suture reconstruction with an intrarib anchor system (Micro BioComposite SutureTak, Arthrex). Methods: Three analysis groups were compared including 8 Sawbone blocks, 22 embalmed cadaver, and 27 regular cadaver specimens (N = 57). Transient mechanical analysis was performed at 5 N/s using an Instron 5565 test frame. Results: Ultimate load favored the anchor system (compared with the gold-standard suture) by a factor of 9.8 (P < 0.0001) for the regular cadaver group and a factor of 1.7 (P < 0.038) for the embalmed cadaver group. A similar statistically significant benefit was shown for stiffness and load at 2-mm displacement. Conclusions: This analysis showed an anchor system to be the biomechanically superior fixation method in terms of ultimate load, fixation stiffness, and displacement at failure when compared with the gold-standard suture method in inframammary fold reconstruction. Because of superior stability in every aspect, an anchor system may be considered for inframammary fold reconstruction. PMID:27257564

  1. A Simple Model for Protein Folding

    NASA Astrophysics Data System (ADS)

    Henry, Eric R.; Eaton, William A.

    We describe a simple Ising-like statistical mechanical model for folding proteins based on the α-carbon contact map of the native structure. In this model residues can adopt two microscopic states corresponding to the native and non-native conformations. In order to exactly enumerate the large number of possible configurations, structure is considered to grow as continuous sequences of native residues, with no more than two sequences in each molecule. Inter-residue contacts can only form within each sequence and between residues of the two native sequences. As structure grows there is a tradeoff between the stabilizing effect of inter-residue contacts and the entropy losses from ordering residues in their native conformation and from forming a disordered loop to connect two continuous sequences. Folding kinetics are calculated from the dynamics on the free energy profile, as in Kramers' reaction rate theory. Although non-native interactions responsible for roughness in the energy landscape are not explicitly considered in the model, they are implicitly included by determining the absolute rates for motion on the free energy profile. With the exception of α-helical proteins, the kinetic progress curves exhibit single exponential time courses, consistent with two state behavior, as observed experimentally. The calculated folding rates are in remarkably good agreement with the measured values for the 25 two-state proteins investigated, with a correlation coefficient of 0.8. With its coarse-grained description of both the energy and entropy, and only three independently adjustable parameters, the model may be regarded as the simplest possible analytical model of protein folding capable of predicting experimental properties of specific proteins.

  2. Hinge-migrated fold-scarp model based on an analysis of bed geometry: A study from the Mingyaole anticline, southern foreland of Chinese Tian Shan

    NASA Astrophysics Data System (ADS)

    Li, Tao; Chen, Jie; Thompson, Jessica A.; Burbank, Douglas W.; Yang, Huili

    2015-09-01

    Fold scarps, a type of geomorphic scarp formed by folding mechanisms of hinge migration or limb rotation, serve to delineate both fault-bend characteristics and folding histories, which can, in turn, illuminate tectonic processes and seismic hazards associated with thrust systems. Because the subsurface geometry of folds is commonly difficult to determine, existing fold-scarp models, which rely on both the fold type and its causative fault geometries, remain uncertain with respect to the kinematic evolution of a given fold. In this paper, we develop a model to illustrate that, irrespective of specific fold type and subsurface geometries, fold-scarp growth in the mechanism of hinge migration can be successfully reconstructed based on analyses of bed geometry. This model reveals that the underlying bed dips and the ratio of hinge migration distance/hinge width control the fold-scarp shape and slope. During initial growth (ratio < 1), the scarp slope increases gradually with migration of the hinge. When the hinge totally exits from its original position (ratio > 1), the slope reaches a maximum, which solely depends on underlying bed dips. The scarp height, however, is independent of the hinge width and can be used to quantify folding magnitude. Application of our model to fold scarps in the Mingyaole anticline in the southern foreland of Chinese Tian Shan indicates that the modeled fold-scarp geometry can roughly match with field observations. The Mingyaole shortening rate is estimated to be ≥5.0 mm/a since ~15 ka, such that this single fold has accommodated about half of the regional convergence during the Holocene.

  3. Predicting RNA folding thermodynamics with a reduced chain representation model.

    PubMed

    Cao, Song; Chen, Shi-Jie

    2005-12-01

    Based on the virtual bond representation for the nucleotide backbone, we develop a reduced conformational model for RNA. We use the experimentally measured atomic coordinates to model the helices and use the self-avoiding walks in a diamond lattice to model the loop conformations. The atomic coordinates of the helices and the lattice representation for the loops are matched at the loop-helix junction, where steric viability is accounted for. Unlike the previous simplified lattice-based models, the present virtual bond model can account for the atomic details of realistic three-dimensional RNA structures. Based on the model, we develop a statistical mechanical theory for RNA folding energy landscapes and folding thermodynamics. Tests against experiments show that the theory can give much more improved predictions for the native structures, the thermal denaturation curves, and the equilibrium folding/unfolding pathways than the previous models. The application of the model to the P5abc region of Tetrahymena group I ribozyme reveals the misfolded intermediates as well as the native-like intermediates in the equilibrium folding process. Moreover, based on the free energy landscape analysis for each and every loop mutation, the model predicts five lethal mutations that can completely alter the free energy landscape and the folding stability of the molecule. PMID:16251382

  4. Robustness of downhill folding: guidelines for the analysis of equilibrium folding experiments on small proteins.

    PubMed

    Naganathan, Athi N; Perez-Jimenez, Raúl; Sanchez-Ruiz, Jose M; Muñoz, Victor

    2005-05-24

    Previously, we identified the protein BBL as a downhill folder. This conclusion was based on the statistical mechanical analysis of equilibrium experiments performed in two variants of BBL, one with a fluorescent label at the N-terminus, and another one labeled at both ends. A recent report has claimed that our results are an artifact of label-induced aggregation and that BBL with no fluorescent labels and a longer N-terminal tail folds in a two-state fashion. Here, we show that singly and doubly labeled BBL do not aggregate, unfold reversibly, and have the same thermodynamic properties when studied under appropriate experimental conditions (e.g., our original conditions (1)). With an elementary analysis of the available data on the nonlabeled BBL (2), we also show that this slightly more stable BBL variant is not a two-state folder. We discuss the problems that led to its previous misclassification and how they can be avoided. Finally, we investigate the equilibrium unfolding of the singly labeled BBL with both ends protected by acetylation and amidation. This variant has the same thermodynamic stability of the nonlabeled BBL and displays all the equilibrium signatures of downhill folding. From all these observations, we conclude that fluorescent labels do not perturb the thermodynamic properties of BBL, which consistently folds downhill regardless of its stability and specific protein tails. The work on BBL illustrates the shortcomings of applying conventional procedures intended to distinguish between two-state and three-state folding models to small fast-folding proteins. PMID:15895987

  5. Kinematic Analysis of Fold-Thrust-Belt Using Integrated Analogue Sandbox Modeling and 3D Palinspatic Reconstructions in Babar-Selaru Area, Banda Sea Region, Indonesia

    NASA Astrophysics Data System (ADS)

    Sapiie, Benyamin; Hadiana, Meli; Kurniawan, Ade; Daniel, Dicky; Danio, Harya; Fujimoto, Masamichi; Ohara, Michio; Alam Perdana, Lisnanda; Saputra, Afif

    2016-04-01

    Kinematic analysis of Babar-Selaru fold-thrust-belt is challenging and often difficult particularly in conducting seismic interpretation due to complex structural geometries. Resolving such as issue, in this study we proposed to use integrated seismic interpretation, analogue sandbox modeling and 3D palinspatic reconstructions. This paper is presented results of detail kinematic analysis for understanding tectonic evolution as well as mechanism of fold-thrust-belt in relation to their hydrocarbon prospect. Babar-Selaru Area is located within the collisional boundary between Australian continental margin and Banda Arc region of Indonesia. The area is characterized by complex deformation zone of fold-thrust-belt, involving Mesozoic and Tertiary sedimentary sequences of Australian continental margin. The age of deformation is ranging from 8-5 Ma. Seismic interpretations show two styles of faults developed in the area, which are thrust and normal faults system. The last deformation observed in the Babar Selaru area is controlled by south verging imbricated thin-skinned thrust fault system, with the staircase style of fault detachment. Although, both structural styles occurred in separated locations, they are formed not only in the same time but also related in time and space. Total extension is ranging from 1-3 % where average shortening is in the order of 35-38%. Sandbox modeling is an effective way to study and understand the style, pattern and geometry of the deformed sedimentary sequences in the study area. Based on comparison of five settings experiments (mainly different geological boundary condition) with more than 50 different modeling; deformation is particularly controlled by types and thickness of lithology package and detachment geometry. These two parameters were quite sensitive in generating different deformation style and pattern in Babar-Selaru fold-thrust-belt. Therefore, choosing the right combination of stratigraphy model and material setting are

  6. Fold interaction and wavelength selection in 3D models of multilayer detachment folding

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.

    2014-09-01

    Many fold-and-thrust belts are dominated by folding and exhibit a fairly regular fold-spacing. Yet, in map-view, the aspect ratio of doubly-plunging anticlines varies considerably from very elongated, and sometimes slightly curved, cylindrical folds to nearly circular, dome-like structures. In addition, the fold spacing often varies significantly around an average value. So far, it remains unclear whether these features are consistent with a folding instability. Therefore, we here study the dynamics of multilayer detachment folding, process by which shortening can be accommodated in thin-skinned fold-and-thrust belts. We start by analysing the physics of this process by using both a semi-analytical thick plate theory and numerical simulations. Results show that several different folding modes occur, about half of which are affected by gravity and have a wavelength that depends on the background deformation rate. Non-dimensional expressions are derived that predict the dominant wavelength and growth rate of each of these folding modes and mechanical phase diagrams are presented that illustrate the applicability of each of the modes. Next, we perform 3D simulations and compare the results with those of 2D models and analytical theory. Both 2D and 3D numerical simulations have wavelengths that are in good agreement with the analytical predictions. In the high-resolution 3D simulations the lateral growth of folds is studied, in particular with respect to fold segment interactions and evolution of fold width-length aspect ratio. The numerical simulations show a number of similarities with the Fars region of the Zagros fold-and-thrust belt including a large range of fold aspect ratio and a normally distributed fold wavelength around a dominant one.

  7. A Canonical Biomechanical Vocal Fold Model

    PubMed Central

    Bhattacharya, Pinaki; Siegmund, Thomas H.

    2012-01-01

    Summary The present article aimed at constructing a canonical geometry of the human vocal fold (VF) from subject-specific image slice data. A computer-aided design approach automated the model construction. A subject-specific geometry available in literature, three abstractions (which successively diminished in geometric detail) derived from it, and a widely used quasi two-dimensional VF model geometry were used to create computational models. The first three natural frequencies of the models were used to characterize their mechanical response. These frequencies were determined for a representative range of tissue biomechanical properties, accounting for underlying VF histology. Compared with the subject-specific geometry model (baseline), a higher degree of abstraction was found to always correspond to a larger deviation in model frequency (up to 50% in the relevant range of tissue biomechanical properties). The model we deemed canonical was optimally abstracted, in that it significantly simplified the VF geometry compared with the baseline geometry but can be recalibrated in a consistent manner to match the baseline response. Models providing only a marginally higher degree of abstraction were found to have significant deviation in predicted frequency response. The quasi two-dimensional model presented an extreme situation: it could not be recalibrated for its frequency response to match the subject-specific model. This deficiency was attributed to complex support conditions at anterior-posterior extremities of the VFs, accentuated by further issues introduced through the tissue biomechanical properties. In creating canonical models by leveraging advances in clinical imaging techniques, the automated design procedure makes VF modeling based on subject-specific geometry more realizable. PMID:22209063

  8. Fold assessment for comparative protein structure modeling.

    PubMed

    Melo, Francisco; Sali, Andrej

    2007-11-01

    Accurate and automated assessment of both geometrical errors and incompleteness of comparative protein structure models is necessary for an adequate use of the models. Here, we describe a composite score for discriminating between models with the correct and incorrect fold. To find an accurate composite score, we designed and applied a genetic algorithm method that searched for a most informative subset of 21 input model features as well as their optimized nonlinear transformation into the composite score. The 21 input features included various statistical potential scores, stereochemistry quality descriptors, sequence alignment scores, geometrical descriptors, and measures of protein packing. The optimized composite score was found to depend on (1) a statistical potential z-score for residue accessibilities and distances, (2) model compactness, and (3) percentage sequence identity of the alignment used to build the model. The accuracy of the composite score was compared with the accuracy of assessment by single and combined features as well as by other commonly used assessment methods. The testing set was representative of models produced by automated comparative modeling on a genomic scale. The composite score performed better than any other tested score in terms of the maximum correct classification rate (i.e., 3.3% false positives and 2.5% false negatives) as well as the sensitivity and specificity across the whole range of thresholds. The composite score was implemented in our program MODELLER-8 and was used to assess models in the MODBASE database that contains comparative models for domains in approximately 1.3 million protein sequences. PMID:17905832

  9. A Rat Excised Larynx Model of Vocal Fold Scar

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.

    2009-01-01

    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  10. Tectonic analysis of folds in the Colorado plateau of Arizona

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1975-01-01

    Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.

  11. Computational analysis of hydrogenated graphyne folding

    NASA Astrophysics Data System (ADS)

    Lenear, Christopher; Becton, Matthew; Wang, Xianqiao

    2016-02-01

    This letter employs molecular mechanics simulations to analyze the geometric changes of foreign-atom-doped graphyne. Simulation results show that higher the density of dopant and the greater area covered by the dopant correlates to a greater folding angle of the graphyne sheet. Compared to graphene, graphyne folding could prove to be more effective for various nanodevices based on its unique band gap, especially when doped, and its tunable interactions with and absorption of foreign molecules. Therefore, our findings may offer unique perspectives into the development of novel graphyne-based nanodevices and stimulate the community's research interest in graphene-related origami.

  12. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, Robert M.; Wright, David D.

    1995-01-01

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal focii coincidence and thereby to increase the radiation energy throughput characteristic of the cell.

  13. Folded-path optical analysis gas cell

    DOEpatents

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  14. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.

    PubMed

    Bailly, Lucie; Henrich, Nathalie; Pelorson, Xavier

    2010-05-01

    Occurrences of period-doubling are found in human phonation, in particular for pathological and some singing phonations such as Sardinian A Tenore Bassu vocal performance. The combined vibration of the vocal folds and the ventricular folds has been observed during the production of such low pitch bass-type sound. The present study aims to characterize the physiological correlates of this acoustical production and to provide a better understanding of the physical interaction between ventricular fold vibration and vocal fold self-sustained oscillation. The vibratory properties of the vocal folds and the ventricular folds during phonation produced by a professional singer are analyzed by means of acoustical and electroglottographic signals and by synchronized glottal images obtained by high-speed cinematography. The periodic variation in glottal cycle duration and the effect of ventricular fold closing on glottal closing time are demonstrated. Using the detected glottal and ventricular areas, the aerodynamic behavior of the laryngeal system is simulated using a simplified physical modeling previously validated in vitro using a larynx replica. An estimate of the ventricular aperture extracted from the in vivo data allows a theoretical prediction of the glottal aperture. The in vivo measurements of the glottal aperture are then compared to the simulated estimations. PMID:21117769

  15. Glottal aerodynamics in compliant, life-sized vocal fold models

    NASA Astrophysics Data System (ADS)

    McPhail, Michael; Dowell, Grant; Krane, Michael

    2013-11-01

    This talk presents high-speed PIV measurements in compliant, life-sized models of the vocal folds. A clearer understanding of the fluid-structure interaction of voiced speech, how it produces sound, and how it varies with pathology is required to improve clinical diagnosis and treatment of vocal disorders. Physical models of the vocal folds can answer questions regarding the fundamental physics of speech, as well as the ability of clinical measures to detect the presence and extent of disorder. Flow fields were recorded in the supraglottal region of the models to estimate terms in the equations of fluid motion, and their relative importance. Experiments were conducted over a range of driving pressures with flow rates, given by a ball flowmeter, and subglottal pressures, given by a micro-manometer, reported for each case. Imaging of vocal fold motion, vector fields showing glottal jet behavior, and terms estimated by control volume analysis will be presented. The use of these results for a comparison with clinical measures, and for the estimation of aeroacoustic source strengths will be discussed. Acknowledge support from NIH R01 DC005642.

  16. ON THE SINGLE-MASS MODEL OF THE VOCAL FOLDS

    PubMed Central

    Howe, M. S.; McGowan, R. S.

    2010-01-01

    SUMMARY An analysis is made of the fluid-structure interactions necessary to support self-sustained oscillations of a single-mass mechanical model of the vocal folds subject to a nominally steady subglottal overpressure. The single-mass model of Fant and Flanagan is re-examined and an analytical representation of vortex shedding during ‘voiced speech’ is proposed that promotes cooperative, periodic excitation of the folds by the glottal flow. Positive feedback that sustains glottal oscillations is shown to occur during glottal contraction, when the flow separates from the ‘trailing edge’ of the glottis producing a low pressure ‘suction’ force that tends to pull the folds together. Details are worked out for flow that can be regarded as locally two-dimensional in the glottal region. Predictions of free-streamline theory are used to model the effects of quasi-static variations in the separation point on the glottal wall. Numerical predictions are presented to illustrate the waveform of the sound radiated towards the mouth from the glottis. The theory is easily modified to include feedback on the glottal flow of standing acoustic waves, both in the vocal tract beyond the glottis and in the subglottal region. PMID:20419082

  17. Conjugate-shear folding: A model for the relationships between foliations, folds and shear zones

    NASA Astrophysics Data System (ADS)

    Aerden, Domingo G. A. M.; Sayab, Mohammad; Bouybaouene, Mohamed L.

    2010-08-01

    Microstructural mapping of whole thin sections cut from two samples of micaschist containing cm-scale folds plus garnet porphyroblasts has provided new insight in the relationships between folding, shearing and foliation development. The garnets exhibit coherent inclusion-trail patterns that place important constraints on the kinematic development of both samples, which are shown to be representative of coaxial versus non-coaxial deformation in rocks containing a pre-existing schistosity. A comparison of crenulations-cleavages geometries in both samples and a review of the geometry of natural and experimental multilayer folds leads to the conclusion that folding involves conjugate shearing at different scales. At microscopic scales, crenulation cleavages nucleate as conjugate-kink or shear instabilities and develop further as a function of the macroscopic partitioning of deformation. In fold-hinge domains, bulk-coaxial deformation results in equal development of conjugate crenulations that progressively coalescence into symmetrical crenulation patterns so that, macroscopically, parallelism is achieved between foliation, fold-axial planes and long axes of strain ellipses. Fold-limb domains represent a system of conjugate-shear zones where single sets of crenulation instabilities with synthetic shearing component preferentially develop producing oblique relationships between the aforementioned elements. Cleavage fanning is inferred as a direct consequence of this conjugate-shear origin of folds. The model implies that crenulation cleavages and S-C fabrics in shear zones form by analogous processes, in both cases involving a component of shearing along foliation planes. The development of conjugate sets of foliation planes surrounding porphyroblasts during early, relatively coaxial stages of deformation explains continued "gyrostatic" behaviour during more advanced non-coaxial stages, as indicated by consistently oriented inclusion trails in the studied samples.

  18. Modeling Protein Folding and Applying It to a Relevant Activity

    ERIC Educational Resources Information Center

    Nelson, Allan; Goetze, Jim

    2004-01-01

    The different levels of protein structure that can be easily understood by creating a model that simulates protein folding, which can then be evaluated by applying it to a relevant activity, is presented. The materials required and the procedure for constructing a protein folding model are mentioned.

  19. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael

    2016-03-01

    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  20. Item Analysis of the Paper Folding Test (Wks. 622). Technical Report No. 1988-6.

    ERIC Educational Resources Information Center

    Wothke, Werner; Zimowski, Michele F.

    Large-sample item response data for the 10-item Paper Folding worksample 622 (N=2,749) and for five new experimental paper folding items (N=2,514) are analyzed with the logistic item response model and with full-information item factor analysis. The main results of the unidimensional analysis are that: (1) item discrimination is heterogeneous, so…

  1. The folding transition state theory in simple model systems

    NASA Astrophysics Data System (ADS)

    Niewieczerzał, Szymon; Cieplak, Marek

    2008-06-01

    We present the results of an exact analysis of several model free energy landscapes of a protein to clarify the notion of the transition state and the physical meaning of the phi values determined in protein engineering experiments. We argue that a proper search strategy for the transition state in more realistic models should involve identification of a common part of various methods. Two of the models considered involve explicit conformations instead of just points on the free energy axis. These models are minimalistic as they are endowed only with five or 36 states to enumerate folding paths and to identify the transition state easily. Even though they display much of the two-state behavior, the phi values are found not to correspond to the conformation of the transition state.

  2. Lattice model for rapidly folding protein-like heteropolymers.

    PubMed Central

    Shrivastava, I; Vishveshwara, S; Cieplak, M; Maritan, A; Banavar, J R

    1995-01-01

    Protein folding is a relatively fast process considering the astronomical number of conformations in which a protein could find itself. Within the framework of a lattice model, we show that one can design rapidly folding sequences by assigning the strongest attractive couplings to the contacts present in a target native state. Our protein design can be extended to situations with both attractive and repulsive contacts. Frustration is minimized by ensuring that all the native contacts are again strongly attractive. Strikingly, this ensures the inevitability of folding and accelerates the folding process by an order of magnitude. The evolutionary implications of our findings are discussed. PMID:7568102

  3. Thermodynamics of downhill folding: multi-probe analysis of PDD, a protein that folds over a marginal free energy barrier.

    PubMed

    Naganathan, Athi N; Muñoz, Victor

    2014-07-31

    Downhill folding proteins fold in microseconds by crossing a very low or no free energy barrier (<3 RT), and exhibit a complex unfolding behavior in equilibrium. Such unfolding complexity is due to the weak thermodynamic coupling that exists between the various structural segments of these proteins, and it is manifested in unfolding curves that differ depending on the structural probe employed to monitor the process. Probe-dependent unfolding has important practical implications because it permits one to investigate the folding energy landscape in detail using multiprobe thermodynamic experiments. This type of thermodynamic behavior has been investigated in depth on the protein BBL, an example of extreme (one-state) downhill folding in which there is no free energy barrier at any condition, including the denaturation midpoint. However, an open question is, to what extent is such thermodynamic behavior observed on less extreme downhill folders? Here we perform a multiprobe spectroscopic characterization of the microsecond folder PDD, a structural and functional homologue of BBL that folds within the downhill regime, but is not an example of one-state downhill folding; rather at the denaturation midpoint PDD folds by crossing an incipient free energy barrier. Model-free analysis of the unfolding curves from four different spectroscopic probes together with differential scanning calorimetry reveals a dispersion of ∼9 K in the apparent melting temperature and also marked differences in unfolding broadness (from ∼50 to ∼130 kJ mol(-1) when analyzed with a two-state model), confirming that such properties are also observed on less extreme downhill folders. We subsequently perform a global quantitative analysis of the unfolding data of PDD using the same ME statistical mechanical model that was used before for the BBL domain. The analysis shows that this simple model captures all of the features observed on the unfolding of PDD (i.e., the intensity and temperature

  4. Simulating the folding of HP-sequences with a minimalist model in an inhomogeneous medium.

    PubMed

    Alas, S J; González-Pérez, P P

    2016-01-01

    The phenomenon of protein folding is a fundamental issue in the field of the computational molecular biology. The protein folding inside the cells is performed in a highly inhomogeneous, tortuous, and correlated environment. Therefore, it is important to include in the theoretical studies the medium where the protein folding is developed. In this work we present the combination of three models to mimic the protein folding inside of an inhomogeneous medium. The models used here are Hydrophobic-Polar (HP) in 2D square arrangement, Evolutionary Algorithms (EA), and the Dual Site Bond Model (DSBM). The DSBM model is used to simulate the environment where the HP beads are folded; in this case the medium is correlated and is fractal-like. The analysis of five benchmark HP sequences shows that the inhomogeneous space provided with a given correlation length and fractal dimension plays an important role for correct folding of these sequences, which does not occur in a homogeneous space. PMID:27020756

  5. Material parameter computation for multi-layered vocal fold models

    PubMed Central

    Schmidt, Bastian; Stingl, Michael; Leugering, Günter; Berry, David A.; Döllinger, Michael

    2011-01-01

    Today, the prevention and treatment of voice disorders is an ever-increasing health concern. Since many occupations rely on verbal communication, vocal health is necessary just to maintain one’s livelihood. Commonly applied models to study vocal fold vibrations and air flow distributions are self sustained physical models of the larynx composed of artificial silicone vocal folds. Choosing appropriate mechanical parameters for these vocal fold models while considering simplifications due to manufacturing restrictions is difficult but crucial for achieving realistic behavior. In the present work, a combination of experimental and numerical approaches to compute material parameters for synthetic vocal fold models is presented. The material parameters are derived from deformation behaviors of excised human larynges. The resulting deformations are used as reference displacements for a tracking functional to be optimized. Material optimization was applied to three-dimensional vocal fold models based on isotropic and transverse-isotropic material laws, considering both a layered model with homogeneous material properties on each layer and an inhomogeneous model. The best results exhibited a transversal-isotropic inhomogeneous (i.e., not producible) model. For the homogeneous model (three layers), the transversal-isotropic material parameters were also computed for each layer yielding deformations similar to the measured human vocal fold deformations. PMID:21476672

  6. Criteria for folding in structure-based models of proteins

    NASA Astrophysics Data System (ADS)

    Wołek, Karol; Cieplak, Marek

    2016-05-01

    In structure-based models of proteins, one often assumes that folding is accomplished when all contacts are established. This assumption may frequently lead to a conceptual problem that folding takes place in a temperature region of very low thermodynamic stability, especially when the contact map used is too sparse. We consider six different structure-based models and show that allowing for a small, but model-dependent, percentage of the native contacts not being established boosts the folding temperature substantially while affecting the time scales of folding only in a minor way. We also compare other properties of the six models. We show that the choice of the description of the backbone stiffness has a substantial effect on the values of characteristic temperatures that relate both to equilibrium and kinetic properties. Models without any backbone stiffness (like the self-organized polymer) are found to perform similar to those with the stiffness, including in the studies of stretching.

  7. Criteria for folding in structure-based models of proteins.

    PubMed

    Wołek, Karol; Cieplak, Marek

    2016-05-14

    In structure-based models of proteins, one often assumes that folding is accomplished when all contacts are established. This assumption may frequently lead to a conceptual problem that folding takes place in a temperature region of very low thermodynamic stability, especially when the contact map used is too sparse. We consider six different structure-based models and show that allowing for a small, but model-dependent, percentage of the native contacts not being established boosts the folding temperature substantially while affecting the time scales of folding only in a minor way. We also compare other properties of the six models. We show that the choice of the description of the backbone stiffness has a substantial effect on the values of characteristic temperatures that relate both to equilibrium and kinetic properties. Models without any backbone stiffness (like the self-organized polymer) are found to perform similar to those with the stiffness, including in the studies of stretching. PMID:27179507

  8. Persistent homology analysis of protein structure, flexibility and folding

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics and transport is one of most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. Based on the correlation between protein compactness, rigidity and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins. PMID:24902720

  9. Analysis and implementation of an improved recycling folded cascode amplifier

    NASA Astrophysics Data System (ADS)

    Yilei, Li; Kefeng, Han; Na, Yan; Xi, Tan; Hao, Min

    2012-02-01

    A generally improved recycling folded cascode (IRFC) is analyzed and implemented. Analysis and comparisons among the IRFC, the original recycling folded cascode (RFC) and the conventional folded cascode (FC) are made, and it is shown that with the flexible structure of IRFC, significant enhancement in transconductance, slew rate and noise can be achieved. Prototype amplifiers were fabricated in 0.13 μm technology. Measurement shows that IRFC has 3× enhancement in gain-bandwidth and slew rate over conventional FC, and the enhancement is 1.5× when compared with the RFC.

  10. Effects of confinement and crowding on folding of model proteins.

    PubMed

    Wojciechowski, M; Cieplak, Marek

    2008-12-01

    We perform molecular dynamics simulations for a simple coarse-grained model of crambin placed inside of a softly repulsive sphere of radius R. The confinement makes folding at the optimal temperature slower and affects the folding scenarios, but both effects are not dramatic. The influence of crowding on folding are studied by placing several identical proteins within the sphere, denaturing them, and then by monitoring refolding. If the interactions between the proteins are dominated by the excluded volume effects, the net folding times are essentially like for a single protein. An introduction of inter-proteinic attractive contacts hinders folding when the strength of the attraction exceeds about a half of the value of the strength of the single protein contacts. The bigger the strength of the attraction, the more likely is the occurrence of aggregation and misfolding. PMID:18832007

  11. Vibratory responses of synthetic, self-oscillating vocal fold models.

    PubMed

    Murray, Preston R; Thomson, Scott L

    2012-11-01

    The flow-induced responses of four self-oscillating synthetic vocal fold models are compared. All models were life-sized and fabricated using flexible silicone compounds with material properties comparable to those of human vocal fold tissue. Three of the models had two layers of different stiffness to represent the body-cover grouping of vocal fold tissue. Two of the two-layer models were based on the "M5" geometry [Scherer et al., J. Acoust. Soc. Am. 109, 1616-1630 (2001)], while the third was based on magnetic resonance imaging data. The fourth model included several layers, including a thin epithelial layer, an exceedingly flexible superficial lamina propria layer, a ligament layer that included an anteriorly-posteriorly oriented fiber to restrict vertical motion, and a body layer. Measurements were performed with these models in full larynx and hemilarynx configurations. Data included onset pressure, vibration frequency, glottal flow rate, maximum glottal width, and medial surface motion, the latter two of which were acquired using high-speed imaging techniques. The fourth, multi-layer model exhibited onset pressure, frequency, and medial surface motion traits that are comparable to published human vocal fold data. Importantly, the model featured an alternating convergent-divergent glottal profile and mucosal wave-like motion, characteristics which are important markers of human vocal fold vibration. PMID:23145623

  12. The role of finite displacements in vocal fold modeling.

    PubMed

    Chang, Siyuan; Tian, Fang-Bao; Luo, Haoxiang; Doyle, James F; Rousseau, Bernard

    2013-11-01

    Human vocal folds experience flow-induced vibrations during phonation. In previous computational models, the vocal fold dynamics has been treated with linear elasticity theory in which both the strain and the displacement of the tissue are assumed to be infinitesimal (referred to as model I). The effect of the nonlinear strain, or geometric nonlinearity, caused by finite displacements is yet not clear. In this work, a two-dimensional model is used to study the effect of geometric nonlinearity (referred to as model II) on the vocal fold and the airflow. The result shows that even though the deformation is under 1 mm, i.e., less than 10% of the size of the vocal fold, the geometric nonlinear effect is still significant. Specifically, model I underpredicts the gap width, the flow rate, and the impact stress on the medial surfaces as compared to model II. The study further shows that the differences are caused by the contact mechanics and, more importantly, the fluid-structure interaction that magnifies the error from the small-displacement assumption. The results suggest that using the large-displacement formulation in a computational model would be more appropriate for accurate simulations of the vocal fold dynamics. PMID:24008392

  13. Dynamically Scaled Glottal Flow Through Symmetrically Oscillating Vocal Fold Models

    NASA Astrophysics Data System (ADS)

    Halvorson, Lori; Baitinger, Andrew; Sherman, Erica; Krane, Michael; Zhang, Lucy; Wei, Timothy

    2011-11-01

    Experimental results derived from DPIV measurements in a scaled up dynamic human vocal fold model are presented. The 10x scale vocal fold model is a new design that incorporates key features of vocal fold oscillatory motion. This includes coupling of down/upstream rocking as well as the oscillatory open/close motions. Experiments were dynamically scaled to examine a range of frequencies, 100 - 200 Hz, corresponding to the male and female voice. By using water as the working fluid, very high resolution, both spatial and temporal resolution, was achieved. Time resolved movies of flow through symmetrically oscillating vocal folds will be presented. Both individual realizations as well as phase-averaged data will be shown. Key features, such as randomness and development time of the Coanda effect, vortex shedding, and volume flow rate data will be shown. In this talk, effects associated with paralysis of one vocal fold will be discussed. This talk provides the baseline fluid dynamics for the vocal fold paralysis study presented in Sherman, et al. Supported by the NIH.

  14. Velocity field measurements in oblique static divergent vocal fold models

    NASA Astrophysics Data System (ADS)

    Erath, Byron

    2005-11-01

    During normal phonation, the vocal fold cycle is characterized by the glottal opening transitioning from a convergent to a divergent passage and then closing before the cycle is repeated. Under ordinary phonatory conditions, both vocal folds, which form the glottal passage, move in phase with each other, creating a time-varying symmetric opening. However, abnormal pathological conditions, such as unilateral paralysis, and polyps, can result in geometrical asymmetries between the vocal folds throughout the phonatory cycle. This study investigates pulsatile flow fields through 7.5 times life-size vocal fold models with included divergence angles of 5 to 30 degrees, and obliquities between the vocal folds of up to 15 degrees. Flow conditions were scaled to match physiological parameters. Data were taken at the anterior posterior mid-plane using phase-averaged Particle Image Velocimetry (PIV). Viscous flow phenomena including the Coanda effect, flow separation points, and jet "flapping" were investigated. The results are compared to previously reported work of flow through symmetric divergent vocal fold models.

  15. A theoretical model of sheath fold morphology in simple shear

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Dabrowski, Marcin; Galland, Olivier; Schmid, Daniel W.

    2013-04-01

    Sheath folds are highly non-cylindrical structures often associated with shear zones. The geometry of sheath folds, especially cross-sections perpendicular to the stretching direction that display eye-patterns, have been used in the field to deduce kinematic information such as shear sense and bulk strain type. However, how sheath folds form and how they evolve with increasing strain is still a matter of debate. We investigate the formation of sheath folds around a weak inclusion acting as a slip surface in simple shear by means of an analytical model. We systematically vary the slip surface orientation and shape and evaluate the impact on the evolving eye-pattern. In addition we compare our results to existing classifications. Based on field observations it has been suggested that the shear sense of a shear zone can be determined by knowing the position of the center of an eye-pattern and the closing direction of the corresponding sheath fold. In our modeled sheath folds we can observe for a given strain that the center of the eye-structure is subject to change in height with respect to the upper edge of the outermost closed contour for different cross-sections perpendicular to the shear direction. This results in a large variability in layer thickness, questioning the usefulness of sheath folds as shear sense indicators. The location of the center of the eye structure, however, is largely invariant to the initial configurations of the slip surface as well as to strain. It has been suggested that the ratio of the aspect ratio of the innermost and outermost closed contour in eye-patterns could be linked to the bulk strain type based on filed observations. We apply this classification to our modeled sheath folds and we observe that the values of the aspect ratios of the closed contours within the eye-pattern are dependent on the strain and the cross-section location. The ratio (R') of the aspect ratios of the outermost closed contour (Ryz) and the innermost closed

  16. Assessment of optimized Markov models in protein fold classification.

    PubMed

    Lampros, Christos; Simos, Thomas; Exarchos, Themis P; Exarchos, Konstantinos P; Papaloukas, Costas; Fotiadis, Dimitrios I

    2014-08-01

    Protein fold classification is a challenging task strongly associated with the determination of proteins' structure. In this work, we tested an optimization strategy on a Markov chain and a recently introduced Hidden Markov Model (HMM) with reduced state-space topology. The proteins with unknown structure were scored against both these models. Then the derived scores were optimized following a local optimization method. The Protein Data Bank (PDB) and the annotation of the Structural Classification of Proteins (SCOP) database were used for the evaluation of the proposed methodology. The results demonstrated that the fold classification accuracy of the optimized HMM was substantially higher compared to that of the Markov chain or the reduced state-space HMM approaches. The proposed methodology achieved an accuracy of 41.4% on fold classification, while Sequence Alignment and Modeling (SAM), which was used for comparison, reached an accuracy of 38%. PMID:25152041

  17. Influence of Asymmetric Stiffness on the Structural and Aerodynamic Response of Synthetic Vocal Fold Models

    PubMed Central

    Pickup, B.A.; Thomson, S.L.

    2012-01-01

    The influence of asymmetric vocal fold stiffness on voice production was evaluated using life-sized, self-oscillating vocal fold models with an idealized geometry based on the human vocal folds. The models were fabricated using flexible, materially-linear silicone compounds with Young’s modulus values comparable to that of vocal fold tissue. The models included a two-layer design to simulate the vocal fold layered structure. The respective Young’s moduli of elasticity of the “left” and “right” vocal fold models were varied to create asymmetric conditions. High-speed videokymography was used to measure maximum vocal fold excursion, vibration frequency, and left-right phase shift, all of which were significantly influenced by asymmetry. Onset pressure, a measure of vocal effort, increased with asymmetry. Particle image velocimetry (PIV) analysis showed significantly greater skewing of the glottal jet in the direction of the stiffer vocal fold model. Potential applications to various clinical conditions are mentioned, and suggestions for future related studies are presented. PMID:19664777

  18. Detachment folds versus thrust-folds: numerical modelling and applications to the Swiss Jura Mountains and the Canadian Foothills

    NASA Astrophysics Data System (ADS)

    Humair, Florian; Bauville, Arthur; Epard, Jean-Luc; Schmalholz, Stefan

    2016-04-01

    The Jura Mountains and the Foothills of the Canadian Rockies fold-and-thrust belts are classical examples of thin-skinned belts where folds develop over weak detachment horizons. They offer the possibility to observe and measure strain in folds. In these two belts, a large spectrum of fold geometries is expressed, from symmetric box-fold or pop-up structures to asymmetric thrust-related folds. In this study, we focus on the quantification and prediction of the brittle strain distribution in folds as a function of the fold geometry. Fold geometry is considered as a continuum between two end-member structural styles: symmetric detachment folds and asymmetric foreland-vergent thrust-folds. We performed two-dimensional numerical simulations of visco-plastic detachment folding. The models are used (1) to systematically examine the influence of different initial parameters on the resulting geometry and style of folding and (2) to quantify the local strain pattern through time. The different parameters tested are the following: presence and size of initial geometrical perturbation at the detachment-sediment interface, rheology of the detachment (frictional vs. viscous), additional detachment layer within the series and overbunden thickness. Results of single detachment layer models show that the asymmetry of folds is primarily controlled by the height of the initial geometrical perturbation, regardless to the rheology of the detachment (frictional vs. viscous). Additional detachment interlayer within the series decreases the brittle strain within the stiff layers and favours more rounded anticlines geometry. The models were then adapted to the Swiss Jura and the Canadian Foothills settings. Compared to field observations and cross-sections of existing fault-related anticlines, the proposed simulations agree with the first order geometry and the development of associated localized zones of brittle deformation.

  19. Aeroelastic and Flight Dynamics Analysis of Folding Wing Systems

    NASA Astrophysics Data System (ADS)

    Wang, Ivan

    This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities---structural and geometry---were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional

  20. Measurement of flow separation in a human vocal folds model

    NASA Astrophysics Data System (ADS)

    Šidlof, Petr; Doaré, Olivier; Cadot, Olivier; Chaigne, Antoine

    2011-07-01

    The paper provides experimental data on flow separation from a model of the human vocal folds. Data were measured on a four times scaled physical model, where one vocal fold was fixed and the other oscillated due to fluid-structure interaction. The vocal folds were fabricated from silicone rubber and placed on elastic support in the wall of a transparent wind tunnel. A PIV system was used to visualize the flow fields immediately downstream of the glottis and to measure the velocity fields. From the visualizations, the position of the flow separation point was evaluated using a semiautomatic procedure and plotted for different airflow velocities. The separation point position was quantified relative to the orifice width separately for the left and right vocal folds to account for flow asymmetry. The results indicate that the flow separation point remains close to the narrowest cross-section during most of the vocal fold vibration cycle, but moves significantly further downstream shortly prior to and after glottal closure.

  1. A Rat Excised Larynx Model of Vocal Fold Scar

    PubMed Central

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Hee Choi, Seong; Bless, Diane M.

    2008-01-01

    Purpose To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic and vocal fold vibratory changes resulting from vocal fold scar. Method Twenty four 4-month-old male Sprague Dawley rats were assigned to one of four experimental groups: Chronic vocal fold scar, chronic vocal fold scar treated with 100 ng basic fibroblast growth factor (bFGF), chronic vocal fold scar treated with saline (sham treatment), and unscarred untreated control. Following tissue harvest, histological and immunohistochemical data were collected to confirm extracellular matrix alteration in the chronic scar group, and acoustic, aerodynamic and high speed digital imaging data were collected using an excised larynx setup in all groups. Phonation threshold pressure (Pth), glottal resistance (Rg), glottal efficiency (Eg), vibratory amplitude and vibratory area were employed as dependent variables. Results Chronically scarred vocal folds were characterized by elevated collagen I and III and reduced hyaluronic acid abundance. Phonation was achieved and data were collected from all control and bFGF treated larynges, however phonation was not achieved with 3 of 6 chronically scarred and 1 of 6 saline treated larynges. Compared to control, the chronic scar group was characterized by elevated Pth, reduced Eg, and intra-larynx vibratory amplitude and area asymmetry. The bFGF group was characterized by Pth below control group levels, Eg comparable to control, and vocal fold vibratory amplitude and area symmetry comparable to control. The sham group was characterized by Pth comparable to control, Eg superior to control, and vocal fold vibratory amplitude and area symmetry comparable to control. Conclusions The excised larynx model reported here demonstrated robust deterioration across phonatory indices under the scar condition and sensitivity to treatment induced change under the bFGF condition. The improvement observed under the sham condition may reflect

  2. Statistical mechanics of simple models of protein folding and design.

    PubMed Central

    Pande, V S; Grosberg, A Y; Tanaka, T

    1997-01-01

    It is now believed that the primary equilibrium aspects of simple models of protein folding are understood theoretically. However, current theories often resort to rather heavy mathematics to overcome some technical difficulties inherent in the problem or start from a phenomenological model. To this end, we take a new approach in this pedagogical review of the statistical mechanics of protein folding. The benefit of our approach is a drastic mathematical simplification of the theory, without resort to any new approximations or phenomenological prescriptions. Indeed, the results we obtain agree precisely with previous calculations. Because of this simplification, we are able to present here a thorough and self contained treatment of the problem. Topics discussed include the statistical mechanics of the random energy model (REM), tests of the validity of REM as a model for heteropolymer freezing, freezing transition of random sequences, phase diagram of designed ("minimally frustrated") sequences, and the degree to which errors in the interactions employed in simulations of either folding and design can still lead to correct folding behavior. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9414231

  3. Mechanical Modeling and Computer Simulation of Protein Folding

    ERIC Educational Resources Information Center

    Prigozhin, Maxim B.; Scott, Gregory E.; Denos, Sharlene

    2014-01-01

    In this activity, science education and modern technology are bridged to teach students at the high school and undergraduate levels about protein folding and to strengthen their model building skills. Students are guided from a textbook picture of a protein as a rigid crystal structure to a more realistic view: proteins are highly dynamic…

  4. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds.

    PubMed

    Kishimoto, Yo; Kishimoto, Ayami Ohno; Ye, Shuyun; Kendziorski, Christina; Welham, Nathan V

    2016-07-01

    Following injury, pathologically activated vocal fold fibroblasts (VFFs) can engage in disordered extracellular matrix (ECM) remodeling, leading to VF fibrosis and impaired voice function. Given the importance of scar VFFs to phenotypically appropriate in vitro modeling of VF fibrosis, we pursued detailed characterization of scar VFFs obtained from surgically injured rat VF mucosae, compared with those obtained from experimentally naïve, age-matched tissue. Scar VFFs initially exhibited a myofibroblast phenotype characterized by increased proliferation, increased Col1a1 transcription and collagen, type I synthesis, increased Acta2 transcription and α-smooth muscle actin synthesis, and enhanced contractile function. These features were most distinct at passage 1 (P1); we observed a coalescence of the scar and naïve VFF phenotypes at later passages. An empirical Bayes statistical analysis of the P1 cell transcriptome identified 421 genes that were differentially expressed by scar, compared with naïve, VFFs. These genes were primarily associated with the wound response, ECM regulation, and cell proliferation. Follow-up comparison of P1 scar VFFs and their in vivo tissue source showed substantial transcriptomic differences. Finally, P1 scar VFFs responded to treatment with hepatocyte growth factor and transforming growth factor-β3, two biologics with reported therapeutic value. Despite the practical limitations inherent to working with early passage cells, this experimental model is easily implemented in any suitably equipped laboratory and has the potential to improve the applicability of preclinical VF fibrosis research. PMID:27111284

  5. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.

    PubMed

    Jones, Cameron L; Achuthan, Ajit; Erath, Byron D

    2015-02-01

    This study demonstrates the effect of a substrate layer of adipose tissue on the modal response of the vocal folds, and hence, on the mechanics of voice production. Modal analysis is performed on the vocal fold structure with a lateral layer of adipose tissue. A finite element model is employed, and the first six mode shapes and modal frequencies are studied. The results show significant changes in modal frequencies and substantial variation in mode shapes depending on the strain rate of the adipose tissue. These findings highlight the importance of considering adipose tissue in computational vocal fold modeling. PMID:25698044

  6. Local analysis near a folded saddle-node singularity

    NASA Astrophysics Data System (ADS)

    Krupa, Martin; Wechselberger, Martin

    Folded saddle-nodes occur generically in one parameter families of singularly perturbed systems with two slow variables. We show that these folded singularities are the organizing centers for two main delay phenomena in singular perturbation problems: canards and delayed Hopf bifurcations. We combine techniques from geometric singular perturbation theory—the blow-up technique—and from delayed Hopf bifurcation theory—complex time path analysis—to analyze the flow near such folded saddle-nodes. In particular, we show the existence of canards as intersections of stable and unstable slow manifolds. To derive these canard results, we extend the singularly perturbed vector field into the complex domain and study it along elliptic paths. This enables us to extend the invariant slow manifolds beyond points where normal hyperbolicity is lost. Furthermore, we define a way-in/way-out function describing the maximal delay expected for generic solutions passing through a folded saddle-node singularity. Branch points associated with the change from a complex to a real eigenvalue structure in the variational equation along the critical (slow) manifold make our analysis significantly different from the classical delayed Hopf bifurcation analysis where these eigenvalues are complex only.

  7. Count ratio model reveals bias affecting NGS fold changes

    PubMed Central

    Erhard, Florian; Zimmer, Ralf

    2015-01-01

    Various biases affect high-throughput sequencing read counts. Contrary to the general assumption, we show that bias does not always cancel out when fold changes are computed and that bias affects more than 20% of genes that are called differentially regulated in RNA-seq experiments with drastic effects on subsequent biological interpretation. Here, we propose a novel approach to estimate fold changes. Our method is based on a probabilistic model that directly incorporates count ratios instead of read counts. It provides a theoretical foundation for pseudo-counts and can be used to estimate fold change credible intervals as well as normalization factors that outperform currently used normalization methods. We show that fold change estimates are significantly improved by our method by comparing RNA-seq derived fold changes to qPCR data from the MAQC/SEQC project as a reference and analyzing random barcoded sequencing data. Our software implementation is freely available from the project website http://www.bio.ifi.lmu.de/software/lfc. PMID:26160885

  8. Count ratio model reveals bias affecting NGS fold changes.

    PubMed

    Erhard, Florian; Zimmer, Ralf

    2015-11-16

    Various biases affect high-throughput sequencing read counts. Contrary to the general assumption, we show that bias does not always cancel out when fold changes are computed and that bias affects more than 20% of genes that are called differentially regulated in RNA-seq experiments with drastic effects on subsequent biological interpretation. Here, we propose a novel approach to estimate fold changes. Our method is based on a probabilistic model that directly incorporates count ratios instead of read counts. It provides a theoretical foundation for pseudo-counts and can be used to estimate fold change credible intervals as well as normalization factors that outperform currently used normalization methods. We show that fold change estimates are significantly improved by our method by comparing RNA-seq derived fold changes to qPCR data from the MAQC/SEQC project as a reference and analyzing random barcoded sequencing data. Our software implementation is freely available from the project website http://www.bio.ifi.lmu.de/software/lfc. PMID:26160885

  9. Kinematic modeling of folding above listric propagating thrusts

    NASA Astrophysics Data System (ADS)

    Cardozo, Nestor; Brandenburg, J. P.

    2014-03-01

    We describe a kinematic approach to simulate folds above listric propagating thrusts. The model is based on a pre-defined circular thrust geometry with a maximum central angle beyond which the thrust is planar, inclined shear above the circular thrust, and trishear in front of the thrust. Provided the trajectory of thrust propagation is established, the model can be run forward and backwards. We use this last feature to implement a global simulated annealing, inverse modeling strategy. This inverse modeling strategy is applied to synthetic folds as well as two real examples in offshore Venezuela and the Niger Delta toe-thrust system. These three examples illustrate the benefits of the algorithm, particularly in predicting the possible range of models that can fit the structures. Thrust geometry, depth to detachment level, and backlimb geometry have high impact in model parameters such as backlimb shear angle and fault slip; while forelimb geometry is critical to constrain parameters such as fault propagation to fault slip ratio and trishear angle. Steep to overturned beds in forelimb areas are often not imaged by seismic, so in the absence of additional well data, considering all possible thrust-fold geometries is critical for the modeling and whatever prediction (e.g. hydrocarbon trap integrity) is made from it.

  10. The geometry and topology of natural sheath folds: a new tool for structural analysis

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Holdsworth, R. E.

    2004-09-01

    Curvilinear sheath folds are classically depicted as displaying symmetrical geometries about two orthogonal mirror planes centred along the (X-Y) axial surface and the (X-Z) medial (culmination/depression) surface which bisects the fold nose. However, 10,000 geometric analyses of minor folds and fabrics formed during ductile thrusting in the Caledonides of northern Scotland reveals that major dome and basin sheath folds can display distinct and predictable asymmetries across both axial and medial surfaces. The strain is typically heterogeneous so that structural fabrics and younging evidence are preserved within sheath folds at varying stages of development. This allows an analysis of the evolution of such structures from 'tongue' folds to more extreme 'tubular' forms. Geometric relationships between measured orientations of fold hinges, axial planes, extension lineations and foliations are compared on fabric topology plots (FTPs), which provide an effective tool for monitoring planar and linear fabric rotations with increasing progressive non-coaxial deformation. They consistently display systematic variation from regions of lower to higher strain on passing from upper to lower fold limbs across major axial surfaces, and on crossing medial surfaces from short to long hinge-line segments. Axial and medial surfaces effectively therefore divide major sheath folds into quadrants with different amounts, senses and combinations of planar and linear fabric rotation within each domain. Such heterogeneous deformation implies that models of intense non-coaxial deformation uniformly affecting pre-existing folds may overestimate bulk displacement and shear strain. Variable fold hinge-line rotation about medial surfaces also provides an effective mechanism for the closure of major sheaths, which may otherwise project for unfeasible distances in the X direction. Bedding/cleavage intersections are developed at greater angles to the transport direction than fold hinges which they

  11. Thermodynamics of folding and association of lattice-model proteins

    NASA Astrophysics Data System (ADS)

    Cellmer, Troy; Bratko, Dusan; Prausnitz, John M.; Blanch, Harvey

    2005-05-01

    Closely related to the "protein folding problem" is the issue of protein misfolding and aggregation. Protein aggregation has been associated with the pathologies of nearly 20 human diseases and presents serious difficulties during the manufacture of pharmaceutical proteins. Computational studies of multiprotein systems have recently emerged as a powerful complement to experimental efforts aimed at understanding the mechanisms of protein aggregation. We describe the thermodynamics of systems containing two lattice-model 64-mers. A parallel tempering algorithm abates problems associated with glassy systems and the weighted histogram analysis method improves statistical quality. The presence of a second chain has a substantial effect on single-chain conformational preferences. The melting temperature is substantially reduced, and the increase in the population of unfolded states is correlated with an increase in interactions between chains. The transition from two native chains to a non-native aggregate is entropically favorable. Non-native aggregates receive ˜25% of their stabilizing energy from intraprotein contacts not found in the lowest-energy structure. Contact maps show that for non-native dimers, nearly 50% of the most probable interprotein contacts involve pairs of residues that form native contacts, suggesting that a domain-swapping mechanism is involved in self-association.

  12. Resolving pressure from DPIV measurements in a dynamically scaled-up vocal fold model

    NASA Astrophysics Data System (ADS)

    Lambert, Lori; Krane, Michael; Sherman, Erica; Wei, Timothy

    2012-11-01

    This presentation highlights application of control volume analysis to DPIV measurements in a dynamically scaled human vocal fold model. For the first time spatially and temporally resolved pressure field information can be extracted from voice experiments. The vocal fold model was built around a computer driven mechanism that replicates both the transverse vibrations as well as the streamwise rocking of human vocal folds. A range of experiments were conducted corresponding to 50 - 200 Hz life frequencies. Volumetric flow rate and maximum velocity measurements will be presented for several control surfaces in the glottal flow. The direction of the glottal jet (coandă) was noted for each instantaneous oscillation cycle. The pressure forces acting in the glottis were calculated using the streamwise and transverse linear momentum equations and control volume analysis. In addition to serving as a baseline study, data from these experiments provide the comparison for follow on studies of diseased and abnormal vocal fold vibrations. Supported by NIH.

  13. α-α folding cluster model for α-radioactivity

    NASA Astrophysics Data System (ADS)

    Soylu, A.; Bayrak, O.

    2015-04-01

    The -decay half-lives are calculated for heavy and superheavy nuclei for and from the ground state to ground state transitions within the framework of the Wentzel-Kramers-Brillouin (WKB) method and the Bohr-Sommerfeld quantization. In the calculations, the - single folding cluster potential obtained with the folded integral of the - potential with the -cluster density distributions is used in order to model the nuclear interaction between the -particle and core nucleus. While the results show very good agreement with the experimental ones in the heavy-nuclei region, especially for even-even nuclei, smaller values than the experimental ones are obtained for superheavy nuclei. As both the density of the core and the interaction term in the folding integral include the -clustering effects and, in this way, all cluster effects are taken into account in the model, the results of calculations are more physical and reasonable than the calculations done in the other models. The present method could be applied to light nuclei with different types of nuclear densities.

  14. Geometric models of folding at Loch Monar, Scotland, using computer simulation

    NASA Astrophysics Data System (ADS)

    Watkinson, A. J.; Thiessen, R. L.

    1988-06-01

    Small-scale hand specimens were collected at Loch Monar, Scotland, one of the classic areas of fold interference patterns. From the analysis of these, the geometries of the F 1 and F 2 folds were derived. By computer simulation, the complex three-dimensional form of the fold interference shapes can then be reproduced very closely. F 2 fold shapes and motion directions derived from the small-scale structures, along with those derived from field observations of F 1 lineations deformed about F 2 folds, were then applied to an extrapolated pre-F 2 shape of the Loch Monar synform. This generated a map pattern strikingly similar to that mapped by Ramsay (1958). The geometric models provide useful information for mechanical hypotheses of the folding observed at Loch Monar. The simulation reveals an interesting problem that whereas many small-scale interference patterns reflect the map pattern of the major structure, there are exposures of interference patterns that do not. These are dome and basin (type 1) patterns found in an area where a major F 2 fold hinge crosses an F 1 fold hinge zone. By examining the deformed L 1 lineation patterns found in this area, along with the computed D 2 strain orientations and the field observations of F 2 fold geometries, we suggest that those patterns formed due to local variations in the displacement directions during the F 2 folding, perhaps due to the mechanical influence of relatively competent pegmatite veins on the small-scale F 2 folds. The very high D 2 strain has then amplified the dome and basin elements to very elongate cone and cylinder forms. This creates local type 1 patterns within a regional type 2 interference pattern structure.

  15. Modelling of shape memory polymer sheets that self-fold in response to localized heating.

    PubMed

    Mailen, Russell W; Liu, Ying; Dickey, Michael D; Zikry, Mohammed; Genzer, Jan

    2015-10-21

    We report a nonlinear finite element analysis (FEA) of the thermo-mechanical shrinking and self-folding behavior of pre-strained polystyrene polymer sheets. Self-folding is useful for actuation, packaging, and remote deployment of flat surfaces that convert to 3D objects in response to a stimulus such as heat. The proposed FEA model accounts for the viscoelastic recovery of pre-strained polystyrene sheets in response to localized heating on the surface of the polymer. Herein, the heat results from the localized absorption of light by ink patterned on the surface of the sheet. This localized delivery of heat results in a temperature gradient through the thickness of the sheet, and thus a gradient of strain recovery, or shrinkage, develops causing the polymer sheet to fold. This process transforms a 2D pattern into a 3D shape through an origami-like behavior. The FEA predictions indicate that shrinking and folding are sensitive to the thermo-mechanical history of the polymer during pre-straining. The model also shows that shrinkage does not vary linearly through the thickness of the polymer during folding due to the accumulation of mass in the hinged region. Counterintuitively, the maximum shrinkage does not occur at the patterned surface. Rather, it occurs considerably below the top surface of the polymer. This investigation provides a fundamental understanding of shrinking, self-folding dynamics, and bending angles, and provides design guidelines for origami shapes and structures. PMID:26324954

  16. Folding model calculations for 6He+12C elastic scattering

    NASA Astrophysics Data System (ADS)

    Awad, A. Ibraheem

    2016-03-01

    In the framework of the double folding model, we used the α+2n and di-triton configurations for the nuclear matter density of the 6He nucleus to generate the real part of the optical potential for the system 6He+12C. As an alternative, we also use the high energy approximation to generate the optical potential for the same system. The derived potentials are employed to analyze the elastic scattering differential cross section at energies of 38.3, 41.6 and 82.3 MeV/u. For the imaginary part of the potential we adopt the squared Woods-Saxon form. The obtained results are compared with the corresponding measured data as well as with available results in the literature. The calculated total reaction cross sections are investigated and compared with the optical limit Glauber model description.

  17. Parameter Optimization for the Gaussian Model of Folded Proteins

    NASA Astrophysics Data System (ADS)

    Erman, Burak; Erkip, Albert

    2000-03-01

    Recently, we proposed an analytical model of protein folding (B. Erman, K. A. Dill, J. Chem. Phys, 112, 000, 2000) and showed that this model successfully approximates the known minimum energy configurations of two dimensional HP chains. All attractions (covalent and non-covalent) as well as repulsions were treated as if the monomer units interacted with each other through linear spring forces. Since the governing potential of the linear springs are derived from a Gaussian potential, the model is called the ''Gaussian Model''. The predicted conformations from the model for the hexamer and various 9mer sequences all lie on the square lattice, although the model does not contain information about the lattice structure. Results of predictions for chains with 20 or more monomers also agreed well with corresponding known minimum energy lattice structures. However, these predicted conformations did not lie exactly on the square lattice. In the present work, we treat the specific problem of optimizing the potentials (the strengths of the spring constants) so that the predictions are in better agreement with the known minimum energy structures.

  18. Geomechanical Modeling in Fold-and-Thrust Belts Systems

    NASA Astrophysics Data System (ADS)

    Gao, B.; Flemings, P. B.

    2015-12-01

    We present a large-strain poro-mechanical model to investigate the evolution of stress and strain in fold and thrust belt systems. We impose horizontal shortening in the model and observe that a tapered wedge develops. Inside the accretionary wedge, the horizontal effective stress increases to about 2.3 times the vertical effective stress. The maximum principle stress direction rotates gradually from the initial vertical direction to the horizontal direction as the sediment gets closer to the backstop. We use stress paths to illustrate how the stresses evolve during the thrust loading. We find the sediment stress path starts from uniaxial condition and moves towards critical state condition. We categorize the thrust belt into 3 zones according to their stress conditions from the backstop to the farfield: critical state region, transition region, and uniaxial region. We show that the sediments within the accretionary wedge are at critical state, which indicate they lost their strength to resist deformation. The sediment porosity decreases dramatically within the wedge due to high mean effective and differential stress. We built the model in finite element program Elfen. The sediments are modeled as poro-elastoplastic materials with a critical state soil model. Overall, our results provide insights of stress and porosity evolution in compressional regimes and can assist field stress and pressure predictions.

  19. Simple off-lattice model to study the folding and aggregation of peptides

    NASA Astrophysics Data System (ADS)

    Combe, Nicolas; Frenkel, Daan

    We present a numerical study of a new protein model. This off-lattice model takes into account both the hydrogen bonds and the amino-acid interactions. It reproduces the folding of a small protein (peptide): morphological analysis of the conformations at low temperature shows two well-known substructures α-helix and β-sheet depending on the chosen sequence. The folding pathway in the scope of this model is studied through a free-energy analysis. We then study the aggregation of proteins. Proteins in the aggregate are mainly bound via hydrogen bonds. Performing a free-energy analysis we show that the addition of a peptide to such an aggregate is not favourable. We qualitatively reproduce the abnormal aggregation of proteins in prion diseases.

  20. Natural and forced asymmetries in flow through a vocal fold model

    NASA Astrophysics Data System (ADS)

    Drain, Bethany; Lambert, Lori; Krane, Michael; Wei, Timothy

    2012-11-01

    Much of the complexity and richness of voice production stems from asymmetries in flow through the vocal folds. There are naturally occurring asymmetries, such as the Coanda effect (i . e . deviation of the glottal jet from the centerline as air passes through the nominally symmetric vocal folds). There are also asymmetries which arise from disease or dysfunction of the vocal folds. This study uses DPIV measurements in a dynamically scaled-up human vocal fold model to compare the flow characteristics between symmetric versus asymmetric oscillations. For this study, asymmetries were introduced by running one vocal fold out of phase with the other. Three phase lags, 0 18 and 36, were examined over a range of frequencies corresponding to the physiological frequencies of 50-200 Hz. Control volume analysis was applied and time traces of terms from the conservation of linear momentum equation were generated. This allowed analysis of how differences in the glottal jet flow manifest themselves in the fluid pressure field. In addition, further examination of the Coanda effect in the context of fluid pressure will be discussed. Supported by NIH.

  1. Generic Coarse-Grained Model for Protein Folding and Aggregation

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; Deserno, Markus

    2009-03-01

    The complexity involved in protein structure is not only due to the rich variety of amino acids, but also the inherent weak interactions, comparable to thermal energy, and important cooperative phenomena. This presents a challenge in atomistic simulations, as it is associated with high-dimensionality and ruggedness of the energy landscape as well as long equilibration times. We have recently developed a coarse-grained (CG) implicit solvent peptide model which has been designed to reproduce key consequences of the abovementioned weak interactions. Its intermediate level of resolution, four beads per amino acid, allows for accurate sampling of local conformations by designing a force field that relies on simple interactions. A realistic ratio of α-helix to β-sheet content is achieved by mimicking a nearest-neighbor dipole interaction. We tune the model in order to fold helical proteins while systematically comparing the structure with NMR data. Very good agreement is achieved for proteins that have simple tertiary structures. We further probe the effects of cooperativity between amino acids by looking at peptide aggregation, where hydrophobic peptide fragments cooperatively form large-scale β-sheet structures. The model is able to reproduce features from atomistic simulations on a qualitative basis.

  2. The Zagros folded belt (Fars, Iran): constraints from topography and critical wedge modelling

    NASA Astrophysics Data System (ADS)

    Mouthereau, F.; Lacombe, O.; Meyer, B.

    2006-04-01

    The Late Miocene tectonics of the Zagros folded belt (Fars province) has for long been related solely to folding of the cover controlled by a ductile décollement between basement and the sedimentary cover. However, geological constraints, topography analysis and seismotectonic studies reveal that basement thrusting may produce locally significant deformation in the cover. To determine how the deep-seated deformation in the basement may contribute to the overall topography we first examine the filtered large and short wavelengths of the topography. We find that the short-wavelength component of the topography (20-25 km), including the Zagros folds, is superimposed on the differential uplift at the regional scale. In other words, the regional base level of folded marker horizons remains parallel to the regional topography of interest. Modelling reveals that the salt-based wedge model, alone, is not able to reproduce the large-wavelength component of the topography of the Zagros Folded Belt. This reveals that when a thick (relatively to its overburden) layer of salt forms the basal décollement it is generally too weak and cannot support the growth of significant topography. We then test an alternative thick-skinned crustal wedge model involving the crust of the Arabian margin, which is decoupled above a viscous lower crust. This model satisfactorily reproduces the observed topography and is consistent with present-day basement thrusting, topography analyses and geological constraints. We conclude that basement-involved thickening and shortening is mechanically required to produce the shape of the Zagros Folded Belt since at least 10 Ma. Finally, the involvement of the basement provides mechanical and kinematic constraints that should be accounted for cross-sections balancing and further assessing the evolution of Zagros at crustal or lithospheric scales.

  3. Flow separation in a computational oscillating vocal fold model

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Scherer, Ronald C.

    2004-09-01

    A finite-volume computational model that solves the time-dependent glottal airflow within a forced-oscillation model of the glottis was employed to study glottal flow separation. Tracheal input velocity was independently controlled with a sinusoidally varying parabolic velocity profile. Control parameters included flow rate (Reynolds number), oscillation frequency and amplitude of the vocal folds, and the phase difference between the superior and inferior glottal margins. Results for static divergent glottal shapes suggest that velocity increase caused glottal separation to move downstream, but reduction in velocity increase and velocity decrease moved the separation upstream. At the fixed frequency, an increase of amplitude of the glottal walls moved the separation further downstream during glottal closing. Increase of Reynolds number caused the flow separation to move upstream in the glottis. The flow separation cross-sectional ratio ranged from approximately 1.1 to 1.9 (average of 1.47) for the divergent shapes. Results suggest that there may be a strong interaction of rate of change of airflow, inertia, and wall movement. Flow separation appeared to be ``delayed'' during the vibratory cycle, leading to movement of the separation point upstream of the glottal end only after a significant divergent angle was reached, and to persist upstream into the convergent phase of the cycle.

  4. Analysis of 140 gigahertz folded frame travelling wave tube

    SciTech Connect

    Guo, Guo; Wei, Yanyu; Zhang, Minghao; Yue, Lingna; Xu, Jin; Yin, Hairong; Huang, Minzhi; Gong, Yubin; Wang, Wenxiang; Travish, Gil

    2013-10-15

    A study on the low voltage, high efficiency and wide bandwidth travelling wave tube by using a novel folded frame slow-wave structure is carried out in this paper. The radio frequency characteristics of the folded frame structure, including dispersion property, interaction impedances, and reflection property are investigated and compared to the similar symmetric double V-shape meander-line structure. Then, the beam-wave interaction process of the folded frame travelling wave tube (TWT) with rectangular sheet electron beam is simulated by 3-D particle-in-cell algorithms. The results show that the output power and electron efficiency can reach 259 W and 13.5% at the center frequency of 140 GHz, respectively. Simultaneously, the instantaneous 3-dB bandwidth is 24 GHz. Compared to the symmetric double V-shaped TWT, the output power and electron efficiency of the folded frame TWT are increased.

  5. Analysis of 140 gigahertz folded frame travelling wave tube

    NASA Astrophysics Data System (ADS)

    Guo, Guo; Wei, Yanyu; Zhang, Minghao; Travish, Gil; Yue, Lingna; Xu, Jin; Yin, Hairong; Huang, Minzhi; Gong, Yubin; Wang, Wenxiang

    2013-10-01

    A study on the low voltage, high efficiency and wide bandwidth travelling wave tube by using a novel folded frame slow-wave structure is carried out in this paper. The radio frequency characteristics of the folded frame structure, including dispersion property, interaction impedances, and reflection property are investigated and compared to the similar symmetric double V-shape meander-line structure. Then, the beam-wave interaction process of the folded frame travelling wave tube (TWT) with rectangular sheet electron beam is simulated by 3-D particle-in-cell algorithms. The results show that the output power and electron efficiency can reach 259 W and 13.5% at the center frequency of 140 GHz, respectively. Simultaneously, the instantaneous 3-dB bandwidth is 24 GHz. Compared to the symmetric double V-shaped TWT, the output power and electron efficiency of the folded frame TWT are increased.

  6. Folding analysis of the most complex Stevedore's protein knot.

    PubMed

    Wang, Iren; Chen, Szu-Yu; Hsu, Shang-Te Danny

    2016-01-01

    DehI is a homodimeric haloacid dehalogenase from Pseudomonas putida that contains the most complex 61 Stevedore's protein knot within its folding topology. To examine how DehI attains such an intricate knotted topology we combined far-UV circular dichroism (CD), intrinsic fluorescence spectroscopy and small angle X-ray scattering (SAXS) to investigate its folding mechanism. Equilibrium unfolding of DehI by chemical denaturation indicated the presence of two highly populated folding intermediates, I and I'. While the two intermediates vary in secondary structure contents and tertiary packing according to CD and intrinsic fluorescence, respectively, their overall dimension and compactness are similar according to SAXS. Three single-tryptophan variants (W34, W53, and W196) were generated to probe non-cooperative unfolding events localized around the three fluorophores. Kinetic fluorescence measurements indicated that the transition from the intermediate I' to the unfolded state is rate limiting. Our multiparametric folding analyses suggest that DehI unfolds through a linear folding pathway with two distinct folding intermediates by initial hydrophobic collapse followed by nucleation condensation, and that knotting precedes the formation of secondary structures. PMID:27527519

  7. Wavelength selection and evolution in high-resolution 3D numerical models of multilayer detachment folding

    NASA Astrophysics Data System (ADS)

    Fernandez, N.; Kaus, B. J. P.

    2012-04-01

    Many fold-and-thrust belts are dominated by crustal scale folding that exhibits fairly regular fold spacing. For example, the Fars region in the Zagros Mountains shows a fold spacing with a normal distribution around a dominant wavelength of 14 Km ± 3 Km, yet having a wide variability of aspect ratios (length to wavelength ratios; Yamato et al., 2011). To which extend this is consistent with a crustal-scale folding instability or how the regional spacing of folding can be used to constrain regional rheological parameters are not fully resolved questions. To get insights into these problems we have investigated the dominant wavelength selection and evolution in a true multilayer system (Schmid and Podlachikov, 2006) with three different viscosities: lower salt layer (ηs), and overlying weak layers (ηw) and competent layers (ηc). This has been done by means of two tools: a semi-analytical solution and numerical models. The 2D semi-analytical approach was applied to derive mechanical phase diagrams that can be used to distinguish different folding modes using two viscosity ratios (R1= ηc/ ηs and R2= ηc/ ηw). To test the validity of the phase diagrams beyond the initial stages of folding for which the analytical approach is valid, we performed several 3D high-resolution forward numerical runs using a finite element code (LaMEM). Additionally, irregular bottom topography was implemented in the numerical runs in order to account for variable salt thickness distribution and consequently study its effect on the wavelength selection. A straight but gradual salt thickness variation, sudden thickness variations due to a basement step or an arc shaped salt basin among other cases could be investigated. It was observed that the bottom topography exerts an impact on the velocity field of the different folding modes and as a result, its influence can be observed on the resulting topography. However, not all the folding modes exhibit an initial wavelength that is dependent

  8. Aeroelastic-aeroacoustic measurements in a self-oscillating physical model of the human vocal folds

    NASA Astrophysics Data System (ADS)

    Krane, Michael; Cates, Zachary

    2009-11-01

    Measurements are presented characterizing the relationship between the structure of physical models of the human vocal folds and the sound produced by their vibration by airflow from the lungs. The model vocal folds are fabricated by molding two layers of silicone rubber of specified stiffness, approximating the body/cover structure. These are mounted in a model vocal tract, where the prephonatory gap adjusted using micropositioners. Measurements conducted in an anechoic chamber include radiated sound pressure, and high-speed video of the vibrating model vocal folds, using prephonatory separation, body stiffness, and subglottal pressure as input parameters.. Essential behavior of the vocal fold models is presented. Vibration fundamental frequency and radiated sound pressure level outside the model vocal tract as a function of subglottal pressure and prephonatory gap are presented for the cases of two identical vocal folds and one vocal fold with lower stiffness, approximating vocal fold paralysis.

  9. Modeling the Biomechanical Influence of Epilaryngeal Stricture on the Vocal Folds: A Low-Dimensional Model of Vocal-Ventricular Fold Coupling

    ERIC Educational Resources Information Center

    Moisik, Scott R.; Esling, John H.

    2014-01-01

    Purpose: Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling.…

  10. Folding model description of reactions with exotic nuclei

    SciTech Connect

    Ibraheem, Awad A.; Hassanain, M. A.; Mokhtar, S. R.; Zaki, M. A.; Mahmoud, Zakaria M. M.; Farid, M. El-Azab

    2012-08-15

    Microscopic folding calculations based upon the effective M3Y nucleon-nucleon interaction and the nuclearmatter densities of the interacting nuclei have been carried out to explain recently measured experimental data of the {sup 6}He+{sup 120}Sn elastic scattering cross section at four different laboratory energies near the Coulomb barrier. The extracted reaction cross sections are also considered.

  11. A framework for describing topological frustration in models of protein folding.

    PubMed

    Norcross, Todd S; Yeates, Todd O

    2006-09-22

    In a natively folded protein of moderate or larger size, the protein backbone may weave through itself in complex ways, raising questions about what sequence of events might have to occur in order for the protein to reach its native configuration from the unfolded state. A mathematical framework is presented here for describing the notion of a topological folding barrier, which occurs when a protein chain must pass through a hole or opening, formed by other regions of the protein structure. Different folding pathways encounter different numbers of such barriers and therefore different degrees of frustration. A dynamic programming algorithm finds the optimal theoretical folding path and minimal degree of frustration for a protein based on its natively folded configuration. Calculations over a database of protein structures provide insights into questions such as whether the path of minimal frustration might tend to favor folding from one or from many sites of folding nucleation, or whether proteins favor folding around the N terminus, thereby providing support for the hypothesis that proteins fold co-translationally. The computational methods are applied to a multi-disulfide bonded protein, with computational findings that are consistent with the experimentally observed folding pathway. Attention is drawn to certain complex protein folds for which the computational method suggests there may be a preferred site of nucleation or where folding is likely to proceed through a relatively well-defined pathway or intermediate. The computational analyses lead to testable models for protein folding. PMID:16930616

  12. Complex RNA Folding Kinetics Revealed by Single-Molecule FRET and Hidden Markov Models

    PubMed Central

    2014-01-01

    We have developed a hidden Markov model and optimization procedure for photon-based single-molecule FRET data, which takes into account the trace-dependent background intensities. This analysis technique reveals an unprecedented amount of detail in the folding kinetics of the Diels–Alderase ribozyme. We find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were consistently and independently identified in two FRET constructs and at three Mg2+ concentrations. Structures generally tend to become more compact upon addition of Mg2+. Some compact structures are observed to significantly depend on Mg2+ concentration, suggesting a tertiary fold stabilized by Mg2+ ions. One compact structure was observed to be Mg2+-independent, consistent with stabilization by tertiary Watson–Crick base pairing found in the folded Diels–Alderase structure. A hierarchy of time scales was discovered, including dynamics of 10 ms or faster, likely due to tertiary structure fluctuations, and slow dynamics on the seconds time scale, presumably associated with significant changes in secondary structure. The folding pathways proceed through a series of intermediate secondary structures. There exist both compact pathways and more complex ones, which display tertiary unfolding, then secondary refolding, and, subsequently, again tertiary refolding. PMID:24568646

  13. Modeling folding related multi-scale deformation of sedimentary rock using ALSM and fracture characterization at Raplee Ridge, UT

    NASA Astrophysics Data System (ADS)

    Mynatt, I.; Hilley, G. E.; Pollard, D. D.

    2006-12-01

    Understanding and predicting the characteristics of folding induced fracturing is an important and intriguing structural problem. Folded sequences of sedimentary rock at depth are common traps for hydrocarbons and water and fractures can strongly effect (both positively and negatively) this trapping capability. For these reasons fold-fracture relationships are well studied, but due to the complex interactions between the remote tectonic stress, rheologic properties, underlying fault geometry and slip, and pre-existing fractures, fracture characteristics can vary greatly from fold to fold. Additionally, examination of the relationships between fundamental characteristics such as fold geometry and fracture density are difficult even in thoroughly studied producing fields as measurements of fold shape are hampered by the low resolution of seismic surveying and measurements of fractures are limited to sparse well-bore locations. Due to the complexity of the system, the limitations of available data and small number of detailed case studies, prediction of fracture characteristics, e.g. the distribution of fracture density, are often difficult to make for a particular fold. We suggest a combination of mechanical and numerical modeling and analysis combined with detailed field mapping can lead to important insights into fold-fracture relationships. We develop methods to quantify both fold geometry and fracture characteristics, and summarize their relationships for an exhumed analogue reservoir case study. The field area is Raplee Monocline, a Laramide aged, N-S oriented, ~14-km long fold exposed in the Monument Upwarp of south-eastern Utah and part of the larger Colorado Plateau geologic province. The investigation involves three distinct parts: 1) Field based characterization and mapping of the fractures on and near the fold; 2) Development of accurate models of the fold geometry using high resolution data including ~3.5x107 x, y, z topographic points collected using

  14. The topomer-sampling model of protein folding

    PubMed Central

    Debe, Derek A.; Carlson, Matt J.; Goddard, William A.

    1999-01-01

    Clearly, a protein cannot sample all of its conformations (e.g., ≈3100 ≈ 1048 for a 100 residue protein) on an in vivo folding timescale (<1 s). To investigate how the conformational dynamics of a protein can accommodate subsecond folding time scales, we introduce the concept of the native topomer, which is the set of all structures similar to the native structure (obtainable from the native structure through local backbone coordinate transformations that do not disrupt the covalent bonding of the peptide backbone). We have developed a computational procedure for estimating the number of distinct topomers required to span all conformations (compact and semicompact) for a polypeptide of a given length. For 100 residues, we find ≈3 × 107 distinct topomers. Based on the distance calculated between different topomers, we estimate that a 100-residue polypeptide diffusively samples one topomer every ≈3 ns. Hence, a 100-residue protein can find its native topomer by random sampling in just ≈100 ms. These results suggest that subsecond folding of modest-sized, single-domain proteins can be accomplished by a two-stage process of (i) topomer diffusion: random, diffusive sampling of the 3 × 107 distinct topomers to find the native topomer (≈0.1 s), followed by (ii) intratopomer ordering: nonrandom, local conformational rearrangements within the native topomer to settle into the precise native state. PMID:10077555

  15. INVITED PAPER: On the single-mass model of the vocal folds

    NASA Astrophysics Data System (ADS)

    Howe, M. S.; McGowan, R. S.

    2010-02-01

    An analysis is made of the fluid-structure interactions necessary to support self-sustained oscillations of a single-mass mechanical model of the vocal folds subject to a nominally steady subglottal overpressure. The single-mass model of Fant and Flanagan is re-examined and an analytical representation of vortex shedding during 'voiced speech' is proposed that promotes cooperative, periodic excitation of the folds by the glottal flow. Positive feedback that sustains glottal oscillations is shown to occur during glottal contraction, when the flow separates from the 'trailing edge' of the glottis producing a low-pressure 'suction' force that tends to pull the folds together. Details are worked out for flow that can be regarded as locally two-dimensional in the glottal region. Predictions of free-streamline theory are used to model the effects of quasi-static variations in the separation point on the glottal wall. Numerical predictions are presented to illustrate the waveform of the sound radiated towards the mouth from the glottis. The theory is easily modified to include feedback on the glottal flow of standing acoustic waves, both in the vocal tract beyond the glottis and in the subglottal region.

  16. Constraints on bed scale fracture chronology with a FEM mechanical model of folding: The case of Split Mountain (Utah, USA)

    NASA Astrophysics Data System (ADS)

    Sassi, W.; Guiton, M. L. E.; Leroy, Y. M.; Daniel, J.-M.; Callot, J.-P.

    2012-11-01

    A technique is presented for improving the structural analysis of natural fractures development in large scale fold structures. A 3D restoration of a fold provides the external displacement loading conditions to solve, by the finite element method, the forward mechanical problem of an idealized rock material with a stress-strain relationship based on the activation of pervasive fracture sets. In this elasto-plasticity constitutive law, any activated fracture set contributes to the total plastic strain by either an opening or a sliding mode of rock failure. Inherited versus syn-folding fracture sets development can be studied using this mechanical model. The workflow of this methodology was applied to the Weber sandstone formation deformed by forced folding at Split Mountain Anticline, Utah for which the different fracture sets were created and developed successively during the Sevier and the syn-folding Laramide orogenic phases. The field observations at the top stratigraphic surface of the Weber sandstone lead to classify the fracture sets into a pre-fold WNW-ESE fracture set, and a NE-SW fracture set post-dating the former. The development and relative chronology of the fracture sets are discussed based on the geomechanical modeling results. Starting with a 3D restoration of the Split Mountain Anticline, three fold-fracture development models were generated, alternately assuming that the WNW-ESE fracture set is either present or absent prior to folding process. Depending on the initial fracture configuration, the calculated fracture patterns are markedly different, showing that assuming a WNW-ESE joint set to predate the fold best correlates with field observations. This study is a first step addressing the complex problem of identification of fold-related fracturing events using an elementary concept of rock mechanics. When tight to complementary field observations, including petrography, diagenesis and burial history, the approach can be used to better

  17. Information from folds: A review

    NASA Astrophysics Data System (ADS)

    Hudleston, Peter J.; Treagus, Susan H.

    2010-12-01

    Folds are spectacular geological structures that are seen in layered rock on many different scales. To mark 30 years of the Journal of Structural Geology, we review the information that can be gained from studies of folds in theory, experiment and nature. We first review theoretical considerations and modeling, from classical approaches to current developments. The subject is dominated by single-layer fold theory, with the assumption of perfect layer-parallel shortening, but we also review multilayer fold theory and modeling, and folding of layers that are oblique to principal stresses and strains. This work demonstrates that viscosity ratio, degree of non-linearity of the flow law, anisotropy, and the thickness and spacing distribution of layers of different competence are all important in determining the nature and strength of the folding instability. Theory and modeling provide the basis for obtaining rheological information from natural folds, through analysis of wavelength/thickness ratios of single layer folds, and fold shapes. They also provide a basis for estimating the bulk strain from folded layers. Information about folding mechanisms can be obtained by analysis of cleavage and fabric patterns in folded rocks, and the history of deformation can be revealed by understanding how asymmetry can develop in folds, by how folds develop in shear zones, and how folds develop in more complex three-dimensional deformations.

  18. Histomorphometric analysis of collagen and elastic fibres in the cranial and caudal fold of the porcine glottis.

    PubMed

    Lang, A; Koch, R; Rohn, K; Gasse, H

    2015-06-01

    The porcine glottis differs from the human glottis in its cranial and caudal vocal folds (CraF, CauF). The fibre apparatus of these folds was studied histomorphometrically in adult minipigs. For object definition and quantification, the colour-selection tools of the Adobe-Photoshop program were used. Another key feature was the subdivision of the cross-sections of the folds into proportional subunits. This allowed a statistical analysis irrespective of differences in thickness of the folds. Both folds had a distinct, dense subepithelial layer equivalent to the basement membrane zone in humans. The subsequent, loose layer was interpreted - in principle - as being equivalent to Reinke's space of the human vocal fold. The next two layers were not clearly separated. Due to this, the concept of a true vocal ligament did not appear applicable to neither CauF nor CraF. Instead, the body-cover model was emphasized by our findings. The missing vocalis muscle in the CraF is substituted by large collagen fibre bundles in a proportional depth corresponding to the position of the muscle of the CauF. The distribution of elastic fibres made the CraF rather than the CauF more similar to the human vocal fold. We suggest that these data are useful for those wishing to use the porcine glottis as a model for studying oscillatory properties during phonation. PMID:24995486

  19. Irregular vocal fold dynamics incited by asymmetric fluid loading in a model of recurrent laryngeal nerve paralysis

    NASA Astrophysics Data System (ADS)

    Sommer, David; Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.

    2011-11-01

    Voiced speech is produced by dynamic fluid-structure interactions in the larynx. Traditionally, reduced order models of speech have relied upon simplified inviscid flow solvers to prescribe the fluid loadings that drive vocal fold motion, neglecting viscous flow effects that occur naturally in voiced speech. Viscous phenomena, such as skewing of the intraglottal jet, have the most pronounced effect on voiced speech in cases of vocal fold paralysis where one vocal fold loses some, or all, muscular control. The impact of asymmetric intraglottal flow in pathological speech is captured in a reduced order two-mass model of speech by coupling a boundary-layer estimation of the asymmetric pressures with asymmetric tissue parameters that are representative of recurrent laryngeal nerve paralysis. Nonlinear analysis identifies the emergence of irregular and chaotic vocal fold dynamics at values representative of pathological speech conditions.

  20. Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami

    NASA Astrophysics Data System (ADS)

    Nojima, Taketoshi

    This paper describes folding methods of thin flat sheets as well as cylindrical shells by modelling folding patterns through Japanese traditional Origami technique. New folding patterns have been devised in thin flat squared or circular membrane by modifying so called Miura-Ori in Japan (one node with 4 folding lines). Some folding patterns in cylindrical shells have newly been developed including spiral configurations. Devised foldable cylindrical shells were made by using polymer sheets, and it has been assured that they can be folded quite well. The devised models will make it possible to construct foldable/deployable space structures as well as to manufacture foldable industrial products and living goods, e. g., bottles for soft drinks.

  1. Contact prediction in protein modeling: Scoring, folding and refinement of coarse-grained models

    PubMed Central

    Latek, Dorota; Kolinski, Andrzej

    2008-01-01

    Background Several different methods for contact prediction succeeded within the Sixth Critical Assessment of Techniques for Protein Structure Prediction (CASP6). The most relevant were non-local contact predictions for targets from the most difficult categories: fold recognition-analogy and new fold. Such contacts could provide valuable structural information in case a template structure cannot be found in the PDB. Results We described comprehensive tests of the effectiveness of contact data in various aspects of de novo modeling with CABS, an algorithm which was used successfully in CASP6 by the Kolinski-Bujnicki group. We used the predicted contacts in a simple scoring function for the post-simulation ranking of protein models and as a soft bias in the folding simulations and in the fold-refinement procedure. The latter approach turned out to be the most successful. The CABS force field used in the Replica Exchange Monte Carlo simulations cooperated with the true contacts and discriminated the false ones, which resulted in an improvement of the majority of Kolinski-Bujnicki's protein models. In the modeling we tested different sets of predicted contact data submitted to the CASP6 server. According to our results, the best performing were the contacts with the accuracy balanced with the coverage, obtained either from the best two predictors only or by a consensus from as many predictors as possible. Conclusion Our tests have shown that theoretically predicted contacts can be very beneficial for protein structure prediction. Depending on the protein modeling method, a contact data set applied should be prepared with differently balanced coverage and accuracy of predicted contacts. Namely, high coverage of contact data is important for the model ranking and high accuracy for the folding simulations. PMID:18694501

  2. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model

    SciTech Connect

    Agarwala, R.; Batzoglou, S.; Dancik, V.

    1997-06-01

    We consider the problem of determining the three-dimensional folding of a protein given its one-dimensional amino acid sequence. We use the HP model for protein folding proposed by Dill, which models protein as a chain of amino acid residues that are either hydrophobic or polar, and hydrophobic interactions are the dominant initial driving force for the protein folding. Hart and Istrail gave approximation algorithms for folding proteins on the cubic lattice under HP model. In this paper, we examine the choice of a lattice by considering its algorithmic and geometric implications and argue that triangular lattice is a more reasonable choice. We present a set of folding rules for a triangular lattice and analyze the approximation ratio which they achieve. In addition, we introduce a generalization of the HP model to account for residues having different levels of hydrophobicity. After describing the biological foundation for this generalization, we show that in the new model we are able to achieve similar constant factor approximation guarantees on the triangular lattice as were achieved in the standard HP model. While the structures derived from our folding rules are probably still far from biological reality, we hope that having a set of folding rules with different properties will yield more interesting folds when combined.

  3. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model

    PubMed Central

    Zhang, Zhaoyan

    2014-01-01

    Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284

  4. Theoretical Modeling and Experimental High-Speed Imaging of Elongated Vocal Folds

    PubMed Central

    Zhang, Yu; Regner, Michael F.; Jiang, Jack J.

    2014-01-01

    In this paper, the role of vocal fold elongation in governing glottal movement dynamics was theoretically and experimentally investigated. A theoretical model was first proposed to incorporate vocal fold elongation into the two-mass model. This model predicted the direct and nondirect components of the glottal time series as a function of vocal fold elongation. Furthermore, high-speed digital imaging was applied in excised larynx experiments to visualize vocal fold vibrations with variable vocal fold elongation from –10% to 50% and subglottal pressures of 18- and 24-cm H2O. Comparison between theoretical model simulations and experimental observations showed good agreement. A relative maximum was seen in the nondirect component of glottal area, suggesting that an optimal elongation could maximize the vocal fold vibratory power. However, sufficiently large vocal fold elongations caused the nondirect component to approach zero and the direct component to approach a constant. These results showed that vocal fold elongation plays an important role in governing the dynamics of glottal area movement and validated the applicability of the proposed theoretical model and high-speed imaging to investigate laryngeal activity. PMID:21118763

  5. Theoretical modeling and experimental high-speed imaging of elongated vocal folds.

    PubMed

    Zhang, Yu; Regner, Michael F; Jiang, Jack J

    2011-10-01

    In this paper, the role of vocal fold elongation in governing glottal movement dynamics was theoretically and experimentally investigated. A theoretical model was first proposed to incorporate vocal fold elongation into the two-mass model. This model predicted the direct and nondirect components of the glottal time series as a function of vocal fold elongation. Furthermore, high-speed digital imaging was applied in excised larynx experiments to visualize vocal fold vibrations with variable vocal fold elongation from -10% to 50% and subglottal pressures of 18- and 24-cm H(2)O. Comparison between theoretical model simulations and experimental observations showed good agreement. A relative maximum was seen in the nondirect component of glottal area, suggesting that an optimal elongation could maximize the vocal fold vibratory power. However, sufficiently large vocal fold elongations caused the nondirect component to approach zero and the direct component to approach a constant. These results showed that vocal fold elongation plays an important role in governing the dynamics of glottal area movement and validated the applicability of the proposed theoretical model and high-speed imaging to investigate laryngeal activity. PMID:21118763

  6. LAF: Theoretical Model of Large Amplitude Folding of a Single Viscous Layer

    NASA Astrophysics Data System (ADS)

    Adamuszek, M.; Schmid, D. W.; Dabrowski, M.

    2012-04-01

    We present a theoretical model for Large Amplitude Folding (LAF) during buckling of a single, viscous layer. The model accurately predicts the evolution of geometrical fold parameters (amplitude, wavelength, and thickness) and is not restricted to any viscosity ratio or type of perturbation. The model employs two corrections to the formula of the initial growth rate of folds that is calculated using the thick-plate solution of Fletcher (Tectonophysics, 1977). The growth rate is modified by incorporating 1) the evolution of wavelength to thickness ratio, after Fletcher (American Journal of Science, 1974) and 2) the reduction of the growth rate, originally introduced by Schmalholz and Podladchikov (EPSL, 2000). The former correction is a consequence of the layer shortening and thickening. The latter modification is the result of using an effective rate of layer shortening as the driving force for fold growth, rather than the applied background shortening rate. The effective rate of the layer shortening is approximated by the rate of fold arclength shortening. In the model, we use an analytical expression derived based on the evolution of sinusoidal waveforms. These two modifications to the growth rate were already separately employed in previous studies. Through comparison with numerical models, we show that the simultaneous application of both corrections in LAF provides a better prediction of the evolution of the fold geometry parameters up to large amplitudes, compared to the models with only one correction. Our studies of the fold evolution from initial single and multiple (random noise, step and bell-shape function) waveforms show a remarkable fit between LAF and the numerical results. In the multiple waveform models, we predict a coupling between the components. In LAF, folds developed from initial random perturbations exhibit irregular but periodic shapes, characteristic for folds observed in nature. We also show that the evolution of folds from localized

  7. Comments on single-mass models of vocal fold vibration

    PubMed Central

    McGowan, Richard S.; Howe, Michael S.

    2010-01-01

    Proposed mechanisms for single-mass oscillation in the vocal tract are examined critically. There are two areas that distinguish single-mass models: in the sophistication of the air flow modeling near the oscillator and whether or not oscillation depends on acoustic feedback. Two recent models that do not depend on acoustic feedback are examined in detail. One model that depends on changing flow separation points is extended with approximate calculations. PMID:21117717

  8. Model for coupled insertion and folding of membrane-spanning proteins

    NASA Astrophysics Data System (ADS)

    Hausrath, Andrew C.

    2014-08-01

    Current understanding of the forces directing the folding of integral membrane proteins is very limited compared to the detailed picture available for water-soluble proteins. While mechanistic studies of the folding process in vitro have been conducted for only a small number of membrane proteins, the available evidence indicates that their folding process is thermodynamically driven like that of soluble proteins. In vivo, however, the majority of integral membrane proteins are installed in membranes by dedicated machinery, suggesting that the cellular systems may act to facilitate and regulate the spontaneous physical process of folding. Both the in vitro folding process and the in vivo pathway must navigate an energy landscape dominated by the energetically favorable burial of hydrophobic segments in the membrane interior and the opposition to folding due to the need for passage of polar segments across the membrane. This manuscript describes a simple, exactly solvable model which incorporates these essential features of membrane protein folding. The model is used to compare the folding time under conditions which depict both the in vitro and in vivo pathways. It is proposed that the cellular complexes responsible for insertion of membrane proteins act by lowering the energy barrier for passage of polar regions through the membrane, thereby allowing the chain to more rapidly achieve the folded state.

  9. Recovery of Vibratory Function After Vocal Fold Microflap in a Rabbit Model

    PubMed Central

    Kojima, Tsuyoshi; Mitchell, Joshua R.; Garrett, C. Gaelyn; Rousseau, Bernard

    2015-01-01

    Objectives/Hypothesis The purpose of this study was to evaluate the return of vibratory function and restoration of vibration amplitude and symmetry after vocal fold microflap surgery. Study Design Prospective in vivo animal model. Methods Microflap surgery was performed on 30 New Zealand white breeder rabbits. The left vocal fold received a 3-mm epithelial incision and mucosal elevation, while the contralateral vocal fold was left intact to serve as an internal control. Quantitative analysis of amplitude ratio and lateral phase difference were measured using high-speed laryngeal imaging at a frame rate of 10,000 frames per second from animals undergoing evoked phonation on postoperative days 0, 1, 3, 5, and 7. Results Quantitative measures revealed a significantly reduced amplitude ratio and lateral phase difference on day 0 after microflap. These impairments of vibratory function on day 0 were associated with separation of the vocal fold’s bodycover layer. Amplitude ratio increased significantly by day 3 after microflap, with further increases in vibration amplitude on days 5 and 7. While the amplitude ratio improved significantly on day 3, lateral phase difference decreased significantly on day 3, and returned to normal on days 5 and 7. Conclusions High-speed laryngeal imaging was used to investigate the natural time course of postmicroflap recovery of vibratory function. Results revealed the restoration of vibration amplitude and lateral phase difference by days 3 to 7 after microflap. The time period of improved vibratory function observed in this study coincides with the end of the well-documented inflammatory phase of vocal fold wound repair. PMID:23901003

  10. Simple geometric model to describe self-folding of polymer sheets.

    PubMed

    Liu, Ying; Mailen, Russell; Zhu, Yong; Dickey, Michael D; Genzer, Jan

    2014-04-01

    Self-folding is the autonomous folding of two-dimensional shapes into three-dimensional forms in response to an external stimulus. This paper focuses on light-induced self-folding of prestrained polymer sheets patterned with black ink. The ink absorbs the light and the resulting heat induces the polymer beneath the ink to relax faster than the rest of the sheet. A simple geometric model captures both the folding angle and folding kinetics associated with this localized shrinkage. The model assumes that (1) the polymer in contact with the ink shrinks at a rate determined by the temporal temperature profile of the hinge surface; (2) the bottom of the sheet, which is cooler, does not shrink considerably; and (3) a linear gradient of strain relaxation exists across the film between these two extremes. Although there are more complex approaches for modeling folding, the appeal of this model is its simplicity and ease of use. Measurements of the macroscopic, thermally driven shrinkage behavior of the sheets help predict the kinetics of folding by determining how fast the top of the hinge shrinks as a function of temperature and time. These measurements also provide information about the temperature required to induce folding and offer indirect measurement of the glass transition temperature of the polymer that comprises the sheet. PMID:24827268

  11. Simple geometric model to describe self-folding of polymer sheets

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Mailen, Russell; Zhu, Yong; Dickey, Michael D.; Genzer, Jan

    2014-04-01

    Self-folding is the autonomous folding of two-dimensional shapes into three-dimensional forms in response to an external stimulus. This paper focuses on light-induced self-folding of prestrained polymer sheets patterned with black ink. The ink absorbs the light and the resulting heat induces the polymer beneath the ink to relax faster than the rest of the sheet. A simple geometric model captures both the folding angle and folding kinetics associated with this localized shrinkage. The model assumes that (1) the polymer in contact with the ink shrinks at a rate determined by the temporal temperature profile of the hinge surface; (2) the bottom of the sheet, which is cooler, does not shrink considerably; and (3) a linear gradient of strain relaxation exists across the film between these two extremes. Although there are more complex approaches for modeling folding, the appeal of this model is its simplicity and ease of use. Measurements of the macroscopic, thermally driven shrinkage behavior of the sheets help predict the kinetics of folding by determining how fast the top of the hinge shrinks as a function of temperature and time. These measurements also provide information about the temperature required to induce folding and offer indirect measurement of the glass transition temperature of the polymer that comprises the sheet.

  12. Simulating replica exchange simulations of protein folding with a kinetic network model

    PubMed Central

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M.

    2007-01-01

    Replica exchange (RE) is a generalized ensemble simulation method for accelerating the exploration of free-energy landscapes, which define many challenging problems in computational biophysics, including protein folding and binding. Although temperature RE (T-RE) is a parallel simulation technique whose implementation is relatively straightforward, kinetics and the approach to equilibrium in the T-RE ensemble are very complicated; there is much to learn about how to best employ T-RE to protein folding and binding problems. We have constructed a kinetic network model for RE studies of protein folding and used this reduced model to carry out “simulations of simulations” to analyze how the underlying temperature dependence of the conformational kinetics and the basic parameters of RE (e.g., the number of replicas, the RE rate, and the temperature spacing) all interact to affect the number of folding transitions observed. When protein folding follows anti-Arrhenius kinetics, we observe a speed limit for the number of folding transitions observed at the low temperature of interest, which depends on the maximum of the harmonic mean of the folding and unfolding transition rates at high temperature. The results shown here for the network RE model suggest ways to improve atomic-level RE simulations such as the use of “training” simulations to explore some aspects of the temperature dependence for folding of the atomic-level models before performing RE studies. PMID:17878309

  13. A New Heuristic Algorithm for Protein Folding in the HP Model.

    PubMed

    Traykov, Metodi; Angelov, Slav; Yanev, Nicola

    2016-08-01

    This article presents an efficient heuristic for protein folding. The protein folding problem is to predict the compact three-dimensional structure of a protein based on its amino acid sequence. The focus is on an original integer programming model derived from a platform used for Contact Map Overlap problem. PMID:27153764

  14. Mathematics, Thermodynamics, and Modeling to Address Ten Common Misconceptions about Protein Structure, Folding, and Stability

    ERIC Educational Resources Information Center

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative…

  15. Analysis of Carbon Nanotubes and Graphene Nanoribbons with Folded Racket Shapes

    NASA Astrophysics Data System (ADS)

    Borum, Andy; Plaut, Raymond; Dillard, David

    2011-10-01

    When carbon nanotubes and graphene nanoribbons become long, they may self-fold and form tennis racket-like shapes. This phenomenon is analyzed in two ways by treating a nanotube or nanoribbon as an elastica. First, an approach from adhesion science is used, in which the two sides of the racket handle are assumed to be straight and bonded together with constant or no separation. New analytical results are obtained involving the shape, bending energy, and adhesion energy of the self-folded structures. These relations show that the dimensions of the racket loop are proportional to the square root of the flexural rigidity. The second analysis uses the Lennard-Jones potential to model the van der Waals forces between the two sides of the racket. A nanoribbon is considered, and the interatomic forces are integrated along the length and across the width of the nanoribbon. The resulting integro-differential equations are solved using the finite difference method. The racket handle is found to be in compression and the separation between the two sides of the racket handle decreases in the direction of the racket loop. The results for the Lennard-Jones model approximately satisfy the relationship between the dimensions and the flexural rigidity found using the adhesion model.

  16. Influence of numerical model decisions on the flow-induced vibration of a computational vocal fold model

    PubMed Central

    Shurtz, Timothy E.; Thomson, Scott L.

    2012-01-01

    Computational vocal fold models are often used to study the physics of voice production. In this paper the sensitivity of predicted vocal fold flow-induced vibration and resulting airflow patterns to several modeling selections is explored. The location of contact lines used to prevent mesh collapse and assumptions of symmetry were found to influence airflow patterns. However, these variables had relatively little effect on the vibratory response of the vocal fold model itself. Model motion was very sensitive to Poisson’s ratio. The importance of these parameter sensitivities in the context of vocal fold modeling is discussed. PMID:23794762

  17. Influence of numerical model decisions on the flow-induced vibration of a computational vocal fold model.

    PubMed

    Shurtz, Timothy E; Thomson, Scott L

    2013-06-01

    Computational vocal fold models are often used to study the physics of voice production. In this paper the sensitivity of predicted vocal fold flow-induced vibration and resulting airflow patterns to several modeling selections is explored. The location of contact lines used to prevent mesh collapse and assumptions of symmetry were found to influence airflow patterns. However, these variables had relatively little effect on the vibratory response of the vocal fold model itself. Model motion was very sensitive to Poisson's ratio. The importance of these parameter sensitivities in the context of vocal fold modeling is discussed. PMID:23794762

  18. Glottal jet measurements in synthetic, MRI-based human vocal fold models

    NASA Astrophysics Data System (ADS)

    Thomson, Scott; Pickup, Brian; Gollnick, Paul

    2007-11-01

    Human vocal fold vibration generates a time-varying elliptically-shaped glottal jet that produces sound in speech. Improved understanding of glottal jet dynamics can yield insight into voice production mechanisms and improve the diagnosis and treatment of voice disorders. Experiments using recently developed life-sized synthetic models of the vocal folds are presented. The fabrication process of converting MRI images to synthetic models is described. The process allows for varying the Young's modulus of the models, allowing for asymmetric conditions to be created by casting opposing vocal folds using materials of different stiffness. The models are shown to oscillate at frequencies, pressures, and flow rates typical of human speech. Phase-locked particle image velocimetry (PIV) results are presented which characterize the glottal jet, including jet direction, vortical structures, and turbulence levels. Results are shown for symmetric and asymmetric vocal fold models. The degree of material asymmetry required to cause significant asymmetry in the glottal jet is reported.

  19. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    PubMed Central

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  20. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy.

    PubMed

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  1. Folding style controlled by intermediate decollement thickness change in the Lurestan region (NW of the Zagros fold-and-thrust belt), using analogue models

    NASA Astrophysics Data System (ADS)

    Farzipour Saein, Ali

    2016-07-01

    The basal and intermediate decollements play an important role in structural style of fold-and-thrust belts. The decollement units, or different mechanical stratigraphy within the rock units, are not uniform throughout the ZFTB and show a strong spatial variation. The Lurestan region with varied thickness of the intermediate decollement in its northern and southern parts is one of the most important parts of the Zagros fold-and-thrust belt, regarding its hydrocarbon exploration-extraction projects. Thickness variation of the intermediate decollement in different parts of the Lurestan region allows us to address its role on folding style. Based on scaled analogue modeling, this study outlines the impact of thickness and facies variation of sedimentary rocks in the northern and southern parts of this region on folding style. Two models simulated the mechanical stratigraphy and its consequent different folding styles of the northern and southern parts of the region. In the models, only thickness of the intermediate decollement (thick and thin) for the northern and southern parts of the Lurestan region was varied. Detached minor folds above the intermediate decollement were created in response to the presence of the thicker intermediate decollement, northern part of the study area, which consequently deformed complexly and disharmonically folded, in contrast to polyharmonic folding style in the section, compared to polyharmonic folding style in the southern part, where thin intermediate decollement exists. The model results documented that thickness variation of intermediate decollement levels could explain complex and different folding styles in natural examples which must be taken into account for hydrocarbon exploration throughout these areas.

  2. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase.

    PubMed

    Jia, Yan; Liu, Hui; Bao, Wei; Weng, Meizhi; Chen, Wei; Cai, Yongjun; Zheng, Zhongliang; Zou, Guolin

    2010-12-01

    Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model. PMID:21074529

  3. Acoustically-coupled flow-induced vibration of a computational vocal fold model

    PubMed Central

    Daily, David Jesse; Thomson, Scott L.

    2012-01-01

    The flow-induced vibration of synthetic vocal fold models has been previously observed to be acoustically-coupled with upstream flow supply tubes. This phenomenon was investigated using a finite element model that included flow–structure–acoustic interactions. The length of the upstream duct was varied to explore the coupling between model vibration and subglottal acoustics. Incompressible and slightly compressible flow models were tested. The slightly compressible model exhibited acoustic coupling between fluid and solid domains in a manner consistent with experimental observations, whereas the incompressible model did not, showing the slightly compressible approach to be suitable for simulating acoustically-coupled vocal fold model flow-induced vibration. PMID:23585700

  4. Acoustically-coupled flow-induced vibration of a computational vocal fold model.

    PubMed

    Daily, David Jesse; Thomson, Scott L

    2013-01-15

    The flow-induced vibration of synthetic vocal fold models has been previously observed to be acoustically-coupled with upstream flow supply tubes. This phenomenon was investigated using a finite element model that included flow-structure-acoustic interactions. The length of the upstream duct was varied to explore the coupling between model vibration and subglottal acoustics. Incompressible and slightly compressible flow models were tested. The slightly compressible model exhibited acoustic coupling between fluid and solid domains in a manner consistent with experimental observations, whereas the incompressible model did not, showing the slightly compressible approach to be suitable for simulating acoustically-coupled vocal fold model flow-induced vibration. PMID:23585700

  5. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyan; Neubauer, Juergen; Berry, David A.

    2009-04-01

    The flow-induced vibrations of a single-layer vocal fold model were investigated as a function of vocal fold stiffness, and subglottal and supraglottal acoustic loading. Previously, it was reported that the single-layer vocal fold model failed to vibrate when short, clinically relevant tracheal tubes were used. Moreover, it was reported that the model had a propensity to be acoustically driven, and aerodynamically driven vibration was observed only when a vertical restraint was applied superiorly to the vocal folds. However, in this study involving a wider range of source/tract conditions, the previous conclusions were shown to apply only for the special case of a stiff vocal fold model, for which self-oscillation occurred only when the vocal fold vibration synchronized to either a subglottal or supraglottal resonance. For a more general case, when vocal fold stiffness was decreased, the model did exhibit self-oscillation at short tracheal tubes, and no vertical restraint was needed to induce aerodynamically driven phonation. Nevertheless, the vocal fold vibration transitioned from aerodynamically driven to acoustically driven vibration when one of the subglottal resonance frequencies approximated one of the natural frequencies of the vocal folds. In this region, strong superior-inferior vibrations were observed, the phonation threshold pressure was significantly reduced, and the phonation onset frequency was heavily influenced by the dominant acoustic resonance. For acoustically driven phonation, a compliant subglottal system always lowered phonation threshold. However, an inertive vocal tract could either increase or decrease phonation threshold pressure, depending on the phonation frequency.

  6. Influence of vocal fold stiffness and acoustic loading on flow-induced vibration of a single-layer vocal fold model.

    PubMed

    Zhang, Zhaoyan; Neubauer, Juergen; Berry, David A

    2009-04-24

    The flow-induced vibrations of a single-layer vocal fold model were investigated as a function of vocal fold stiffness, and subglottal and supraglottal acoustic loading. Previously, it was reported that the single-layer vocal fold model failed to vibrate when short, clinically-relevant tracheal tubes were used. Moreover, it was reported that the model had a propensity to be acoustically driven, and aerodynamically driven vibration was observed only when a vertical restraint was applied superiorly to the vocal folds. However, in this study involving a wider range of source/tract conditions, the previous conclusions were shown to apply only for the special case of a stiff vocal fold model, for which self-oscillation occurred only when the vocal fold vibration synchronized to either a subglottal or supraglottal resonance. For a more general case, when vocal fold stiffness was decreased, the model did exhibit self-oscillation at short tracheal tubes, and no vertical restraint was needed to induce aerodynamically driven phonation. Nevertheless, the vocal fold vibration transitioned from aerodynamically-driven to acoustically-driven vibration when one of the subglottal resonance frequencies approximated one of the natural frequencies of the vocal folds. In this region, strong superior-inferior vibrations were observed, the phonation threshold pressure was significantly reduced, and the phonation onset frequency was heavily influenced by the dominant acoustic resonance. For acoustically-driven phonation, a compliant subglottal system always lowered phonation threshold. However, an inertive vocal tract could either increase or decrease phonation threshold pressure, depending on the phonation frequency. PMID:20161071

  7. Non-stationary Bayesian estimation of parameters from a body cover model of the vocal folds.

    PubMed

    Hadwin, Paul J; Galindo, Gabriel E; Daun, Kyle J; Zañartu, Matías; Erath, Byron D; Cataldo, Edson; Peterson, Sean D

    2016-05-01

    The evolution of reduced-order vocal fold models into clinically useful tools for subject-specific diagnosis and treatment hinges upon successfully and accurately representing an individual patient in the modeling framework. This, in turn, requires inference of model parameters from clinical measurements in order to tune a model to the given individual. Bayesian analysis is a powerful tool for estimating model parameter probabilities based upon a set of observed data. In this work, a Bayesian particle filter sampling technique capable of estimating time-varying model parameters, as occur in complex vocal gestures, is introduced. The technique is compared with time-invariant Bayesian estimation and least squares methods for determining both stationary and non-stationary parameters. The current technique accurately estimates the time-varying unknown model parameter and maintains tight credibility bounds. The credibility bounds are particularly relevant from a clinical perspective, as they provide insight into the confidence a clinician should have in the model predictions. PMID:27250162

  8. Large-scale Folding: Implications For Effective Lithospheric Rheology And Thin Sheet Models.

    NASA Astrophysics Data System (ADS)

    Schmalholz, S. M.; Podladchikov, Yu. Yu.; Burg, J.-P.

    We show that folding of a non-Newtonian layer resting on a homogeneous Newto- nian matrix with finite thickness under influence of gravity can occur by three modes: (i) matrix-controlled folding, dependent on the effective viscosity contrast between layer and matrix, (ii) gravity-controlled folding, dependent on the Argand number (the ratio of the stress caused by gravity to the stress caused by shortening) and (iii) detachment folding, dependent on the ratio of matrix thickness to layer thickness. We construct a phase diagram that defines the transitions between each of the three fold- ing modes. Our priority is transparency of the analytical derivations (e.g. thin-plate versus thick-plate approximations), which permits complete classification of the fold- ing modes involving a minimum number of dimensionless parameters. Accuracy and sensitivity of the analytical results to model assumptions are investigated. In particu- lar, depth-dependence of matrix rheology is only important for folding over a narrow range of material parameters. In contrast, strong depth-dependence of the folding layer viscosity limits applicability of ductile rheology and leads to a viscoelastic transition for layers on the crustal and lithospheric scales. This transition allows estimating the critical elastic thickness of the oceanic lithosphere, which determines if the oceanic lithosphere deforms effectively ductile or elastic. Considering applicability conditions of thin viscous sheet models for large-scale lithospheric deformation, derived in terms of the Argand number, our results show that the uplift rates caused by folding (which are neglected by the thin sheet models) are of the same order than the uplift rates caused by layer thickening. This result further indicates that large-scale folding and not crustal thickening was the dominant deformation mode during the evolution of the Himalayan syntaxes. Our theory is applied to estimate the effective thickness of the folded Central Asian

  9. Transtensional folding

    NASA Astrophysics Data System (ADS)

    Fossen, Haakon; Teyssier, Christian; Whitney, Donna L.

    2014-05-01

    For now three decades transpression has dominated the concepts that underlie oblique tectonics, but in more recent years transtension has garnered much interest as a simple model that can be applied to shallow and deep crustal tectonics. One fundamental aspect that distinguishes transtension from transpression is that material lines in transtension rotate toward the direction of oblique divergence. Another point that may be less intuitive when thinking of transtension is that while transtensional strain involves shortening in the vertical direction, one of the horizontal axes is also a shortening axis, whatever the angle of divergence. It is the combination of these two shortening axes that leads to constrictional finite strain in transtension. The existence of a horizontal shortening strain axis implies that transtension offers the potential for folds of horizontal layers to form and then rotate toward the direction of oblique divergence. An investigation of transtensional folding using 3D strain modeling reveals that folding is more likely for simple shear dominated transtension (large wrench component). Transtensional folds can only accumulate a fixed amount of horizontal shortening and tightness that are prescribed by the angle of oblique divergence, regardless of finite strain. Transtensional folds are characterized by hinge-parallel stretching that exceeds that expected from pure wrenching. In addition, the magnitude of hinge-parallel stretching always exceeds hinge-perpendicular shortening, causing constrictional fabrics and hinge-parallel boudinage to develop. Because the dominant vertical strain axis is shortening, transtensional fold growth is generally suppressed, but when folds do develop their limbs enter the field of shortening, resulting in possible fold interference patterns akin to cascading folds. Application of these transtensional folding principles to regions of oblique rifting (i.e. Gulf of California) or exhumation of deep crust (i.e. Western

  10. Protein folding dynamics: the diffusion-collision model and experimental data.

    PubMed Central

    Karplus, M.; Weaver, D. L.

    1994-01-01

    The diffusion-collision model of protein folding is assessed. A description is given of the qualitative aspects and quantitative results of the diffusion-collision model and their relation to available experimental data. We consider alternative mechanisms for folding and point out their relationship to the diffusion-collision model. We show that the diffusion-collision model is supported by a growing body of experimental and theoretical evidence, and we outline future directions for developing the model and its applications. PMID:8003983

  11. Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling

    PubMed Central

    Weiβ, S.; Thomson, S.L.; Lerch, R.; Döllinger, M.; Sutor, A.

    2012-01-01

    The etiology and treatment of voice disorders are still not completely understood. Since the vibratory characteristics of vocal folds are strongly influenced by both anatomy and mechanical material properties, measurement methods to analyze the material behavior of vocal fold tissue are required. Due to the limited life time of real tissue in the laboratory, synthetic models are often used to study vocal fold vibrations. In this paper we focus on two topics related to synthetic and real vocal fold materials. First, because certain tissues within the human vocal folds are transversely isotropic, a fabrication process for introducing this characteristic in commonly-used vocal fold modeling materials is presented. Second, the pipette aspiration technique is applied to the characterization of these materials. By measuring the displacement profiles of stretched specimens that exhibit varying degrees of transverse isotropy, it is shown that local anisotropy can be quantified using a parameter describing the deviation from an axisymmetric profile. The potential for this technique to characterize homogeneous, anisotropic materials, including soft biological tissues such as those found in the human vocal folds, is supplemented by a computational study. PMID:23127628

  12. Analysis of curved folds and fault/fold terminations in the southern Upper Magdalena Valley of Colombia

    NASA Astrophysics Data System (ADS)

    Jiménez, Giovanny; Rico, John; Bayona, German; Montes, Camilo; Rosero, Alexis; Sierra, Daniel

    2012-11-01

    We use surface and subsurface fold and fault geometries to document curved geometry of folds, along-strike termination of faults/folds and the change of dip of regional faults in four structural areas in the southern part of the Upper Magdalena Valley Basin. In La Cañada area, strike-slip deformation is dominant and cuts former compressional structures; faults and folds of this area end northward abruptly near Rio Paez. To the north of Paez River is the La Hocha area that includes the Tesalia Syncline and La Hocha Anticline, two curved folds that plunge at the same latitude. The southern domain of La Hocha Anticline is asymmetric and bounded by faults in both flanks, whereas the symmetry of the northern domain is related to subsurface fault bending. Paleomagnetic components uncovered in Jurassic rocks suggest a clockwise rotation of 15.2 ± 11.4 in the southern domain, and 31.7 ± 14.4 in the northern domain. The Iquira Area, North of La Hocha, the internal structure is controlled by east-verging faults that end abruptly to the north of this area. The northernmost area is the Upar area that includes fault systems with opposite vergence; west-verging faults at the east of this area decapitate east-verging faults and folds. Paleomagnetic data, geologic mapping and regional structural cross-sections suggest that: (1) pre-existing basement structure controls the curved geometry of La Hocha Anticline; (2) along-strike changes in structural style between adjacent areas and along-strike termination of faults and folds are related to the location of northwest-striking transverse structures in the subsurface; and (3) at least two deformation phases are documented: an Eocene-Oligocene phase associated with the growth of folds along detachment levels within Mesozoic rocks; and a late Miocene phase associated with transpressive faulting along the Chusma and San Jacinto faults. The latter event drove clockwise rotation of the La Hocha Anticline.

  13. Examination of Flow in a Scaled-Up Vocal Fold Model for Diseased Conditions

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Zhang, Lucy; Xinshi, Wang; Timothy, Wei; Krane, Michael

    2010-11-01

    An experiment to provide DPIV measurements in a scaled up dynamic human vocal fold model is presented. The 10x scale vocal fold model is a new design that incorporates both the rocking as well as the oscillatory open/close motions characteristic of vocal fold motions. The experiment is run in a free-stream water tunnel where the oscillation frequencies and flow speeds are dynamically matched to physiologic conditions for both male and female phonation. The effects associated with vocal fold paralysis will be discussed. Flow measurements showing fluid kinematics including jet velocity and orientation, and vortex shedding as a function of time through an oscillation cycle will be presented. In addition, key data relevant to phonation, such as volumetric flow rate and glottal behavior will be presented.

  14. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures

    SciTech Connect

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Onuchic, José N.; Schug, Alexander

    2015-12-28

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.

  15. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Schug, Alexander; Onuchic, José N.

    2015-12-01

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein's functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.

  16. Investigating the three-dimensional flow separation induced by a model vocal fold polyp.

    PubMed

    Stewart, Kelley C; Erath, Byron D; Plesniak, Michael W

    2014-01-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. Our laboratory has reported particle image velocimetry (PIV) measurements, within an investigation of a model polyp located on the medial surface of an in vitro driven vocal fold model, which show that such a geometric abnormality considerably disrupts the glottal jet behavior. This flow field adjustment is a likely reason for the severe degradation of the vocal quality in patients with polyps. A more complete understanding of the formation and propagation of vortical structures from a geometric protuberance, such as a vocal fold polyp, and the resulting influence on the aerodynamic loadings that drive the vocal fold dynamics, is necessary for advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp, using an oil-film visualization technique. Unsteady, three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. PMID:24513707

  17. Investigating the Three-dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    PubMed Central

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2014-01-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. Our laboratory has reported particle image velocimetry (PIV) measurements, within an investigation of a model polyp located on the medial surface of an in vitro driven vocal fold model, which show that such a geometric abnormality considerably disrupts the glottal jet behavior. This flow field adjustment is a likely reason for the severe degradation of the vocal quality in patients with polyps. A more complete understanding of the formation and propagation of vortical structures from a geometric protuberance, such as a vocal fold polyp, and the resulting influence on the aerodynamic loadings that drive the vocal fold dynamics, is necessary for advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp, using an oil-film visualization technique. Unsteady, three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. PMID:24513707

  18. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures.

    PubMed

    Lammert, Heiko; Noel, Jeffrey K; Haglund, Ellinor; Schug, Alexander; Onuchic, José N

    2015-12-28

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein's functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism. PMID:26723626

  19. Experimental and Numerical Analysis of Composite Folded Sandwich Core Structures Under Compression

    NASA Astrophysics Data System (ADS)

    Heimbs, S.; Middendorf, P.; Kilchert, S.; Johnson, A. F.; Maier, M.

    2007-11-01

    The characterisation of the mechanical behaviour of folded core structures for advanced sandwich composites under flatwise compression load using a virtual testing approach is presented. In this context dynamic compression test simulations with the explicit solvers PAM-CRASH and LS-DYNA are compared to experimental data of two different folded core structures made of aramid paper and carbon fibre-reinforced plastic (CFRP). The focus of the investigations is the constitutive modelling of the cell wall material, the consideration of imperfections and the representation of cell wall buckling, folding or crushing phenomena. The consistency of the numerical results shows that this can be a promising and efficient approach for the determination of the effective mechanical properties and a cell geometry optimisation of folded core structures.

  20. Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran.

    NASA Astrophysics Data System (ADS)

    Collignon, Marine; Yamato, Philippe; Castelltort, Sébastien; Kaus, Boris

    2016-04-01

    Mountain building and landscape evolution are controlled by the interactions between river dynamics and tectonic forces. Such interactions have been largely studied but a quantitative evaluation of tectonic/geomorphic feedbacks remains required for understanding sediments routing within orogens and fold-and-thrust belts. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one or several folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. We show with examples from the Zagros Fold Belt (ZFB) that drainage patterns can be linked to the incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm.yr-1 and -10 < R < 10. Intermediate drainage network are obtained for uplift rates up to 2 mm.yr-1 and incision ratios of 20. Parallel drainage networks and formation of sedimentary basins occur for large values of incision ratio (R >20) and uplift rates between 1 and 2 mm.yr-1. These results have implications for predicting the distribution of sediment depocenters in fold-and-thrust belts, which can be of direct economic interest for hydrocarbon exploration.

  1. Feasibility and acute healing of vocal fold microflap incisions in a rabbit model

    PubMed Central

    Suehiro, Atsushi; Bock, Jonathan M.; Hall, Joseph E.; Garrett, C. Gaelyn; Rousseau, Bernard

    2012-01-01

    Objectives The purpose of this study was to: 1) investigate the feasibility of performing mucosal elevation of a vocal fold microflap in a rabbit model, and 2) measure the acute healing of rabbit microflap incisions compared to control vocal folds. Study Design Prospective animal study Methods Ten New Zealand white rabbits were used in this study. All rabbits received a 3mm incision through the epithelium of one vocal fold using a sickle knife and mucosal elevation through this incision using a microlaryngeal fine angled spatula. The contralateral vocal fold was left intact to serve as an internal control. Student t tests were used to investigate differences in epithelial thickness, immunohistochemical staining of CD 45, and inflammatory and pro-fibrotic gene expression between vocal folds undergoing microflap and control. Results Exposure of the rabbit larynx was achieved, allowing for the identification of a surgical plane and the creation of a microflap and elevation of the vocal fold mucosa. Hematoxylin-eosin staining revealed no significant differences in epithelial thickness, immunohistochemistry for CD 45 showed no significant differences in CD 45 positive cells, and quantitative PCR revealed no significant differences in IL-1β, TGFβ-1, or COX-2 gene expression between vocal folds undergoing microflap and control. Conclusions We demonstrate the feasibility of vocal fold microflap surgery in a rabbit model. With the advantage of greater access to primers and antibodies for molecular biological studies, the application of the microflap technique in a small animal model such as rabbit has broad implications for future experimental investigations in laryngology. Level of Evidence Animal Research. PMID:22253007

  2. Potential application of FoldX force field based protein modeling in zinc finger nucleases design.

    PubMed

    He, ZuYong; Mei, Gui; Zhao, ChunPeng; Chen, YaoSheng

    2011-05-01

    Engineered sequence-specific zinc finger nucleases (ZFNs) make the highly efficient modification of eukaryotic genomes possible. However, most current strategies for developing zinc finger nucleases with customized sequence specificities require the construction of numerous tandem arrays of zinc finger proteins (ZFPs), and subsequent largescale in vitro validation of their DNA binding affinities and specificities via bacterial selection. The labor and expertise required in this complex process limits the broad adoption of ZFN technology. An effective computational assisted design strategy will lower the complexity of the production of a pair of functional ZFNs. Here we used the FoldX force field to build 3D models of 420 ZFP-DNA complexes based on zinc finger arrays developed by the Zinc Finger Consortium using OPEN (oligomerized pool engineering). Using nonlinear and linear regression analysis, we found that the calculated protein-DNA binding energy in a modeled ZFP-DNA complex strongly correlates to the failure rate of the zinc finger array to show significant ZFN activity in human cells. In our models, less than 5% of the three-finger arrays with calculated protein-DNA binding energies lower than -13.132 kcal mol(-1) fail to form active ZFNs in human cells. By contrast, for arrays with calculated protein-DNA binding energies higher than -5 kcal mol(-1), as many as 40% lacked ZFN activity in human cells. Therefore, we suggest that the FoldX force field can be useful in reducing the failure rate and increasing efficiency in the design of ZFNs. PMID:21455692

  3. Lattice and off-lattice side chain models of protein folding: Linear time structure prediction better than 86% of optimal

    SciTech Connect

    Hart, W.E.; Istrail, S.

    1996-08-09

    This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.

  4. Experimental study of the aeroacoustic-aeroelastic behavior of model vocal folds

    NASA Astrophysics Data System (ADS)

    Campo, Elizabeth; Camarena, Ernesto; Krane, Michael

    2010-11-01

    The effect of vocal fold body stiffness and bilateral asymmetry was studied using a life-size physical model of the human airway using interchangeable silicone rubber models of the human vocal folds. The two layer vocal fold models are comprised of an inner body layer and an outside cover layer. The following measures were used to assess the effect of body stiffness and asymmetry: radiated sound power, phonation threshold pressure and aeroacoustic source strengths. Results obtained from the human airway model compared favorably with behavior observed in human subjects. Furthermore, the results reveal that the asymmetric cases required a higher subglottal pressure to initiate phonation and radiated less intense sound, in comparison to the symmetrical configuration.

  5. Structure-approximating inverse protein folding problem in the 2D HP model.

    PubMed

    Gupta, Arvind; Manuch, Ján; Stacho, Ladislav

    2005-12-01

    The inverse protein folding problem is that of designing an amino acid sequence which has a particular native protein fold. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions. In this paper, we show that in the 2D HP model of Dill it is possible to solve this problem for a broad class of structures. These structures can be used to closely approximate any given structure. One of the most important properties of a good protein (in drug design) is its stability--the aptitude not to fold simultaneously into other structures. We show that for a number of basic structures, our sequences have a unique fold. PMID:16379538

  6. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  7. Strobokymographic and videostroboscopic analysis of vocal fold motion in unilateral superior laryngeal nerve paralysis.

    PubMed

    Mendelsohn, Abie H; Sung, Myung-Whun; Berke, Gerald S; Chhetri, Dinesh K

    2007-02-01

    The clinical diagnosis of superior laryngeal nerve paralysis (SLNp) is infrequently made, because of the heterogeneity of clinical presentations and laryngoscopic findings. Laryngeal electromyography (LEMG) can provide the definitive diagnosis of this abnormality. With increasing use of LEMG in clinical practice, this condition is now more frequently appreciated by otolaryngologists. A characteristic, but infrequently reported, videostroboscopic vocal fold motion termed Gegenschlagen ("dashing-against-each-other") has previously been described to occur in unilateral SLNp. We encountered such motion in a clinical case, which we subsequently verified as unilateral SLNp by means of LEMG. This characteristic glottic motion was then verified in an in vivo canine model of phonation after unilateral SLNp. Videostrobokymography was performed to generate kymograms that illustrated this vocal fold motion clearly. Kymograms of both human and canine subjects with SLNp demonstrated an undulating motion of the horizontally shifting glottic space as the medial edges of the vocal folds chased each other 90 degrees out of phase. As one vocal fold mucosal edge was opening, the other was closing, and this repeated motion appeared as vocal folds chasing or dashing against each other. Although not uniformly seen in all cases, this vocal fold motion appears to be unique to SLNp. PMID:17388230

  8. Insights into the damage zones in fault-bend folds from geomechanical models and field data

    NASA Astrophysics Data System (ADS)

    Ju, Wei; Hou, Guiting; Zhang, Bo

    2014-01-01

    Understanding the rock mass deformation and stress states, the fracture development and distribution are critical to a range of endeavors including oil and gas exploration and development, and geothermal reservoir characterization and management. Geomechanical modeling can be used to simulate the forming processes of faults and folds, and predict the onset of failure and the type and abundance of deformation features along with the orientations and magnitudes of stresses. This approach enables the development of forward models that incorporate realistic mechanical stratigraphy (e.g., the bed thickness, bedding planes and competence contrasts), include faults and bedding-slip surfaces as frictional sliding interfaces, reproduce the geometry of the fold structures, and allow tracking strain and stress through the whole deformation process. In this present study, we combine field observations and finite element models to calibrate the development and distribution of fractures in the fault-bend folds, and discuss the mechanical controls (e.g., the slip displacement, ramp cutoff angle, frictional coefficient of interlayers and faults) that are able to influence the development and distribution of fractures during fault-bend folding. A linear relationship between the slip displacement and the fracture damage zone, the ramp cutoff angle and the fracture damage zone, and the frictional coefficient of interlayers and faults and the fracture damage zone was established respectively based on the geomechanical modeling results. These mechanical controls mentioned above altogether contribute to influence and control the development and distribution of fractures in the fault-bend folds.

  9. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  10. A Turing Reaction-Diffusion Model for Human Cortical Folding Patterns and Cortical Pattern Malformations

    NASA Astrophysics Data System (ADS)

    Hurdal, Monica K.; Striegel, Deborah A.

    2011-11-01

    Modeling and understanding cortical folding pattern formation is important for quantifying cortical development. We present a biomathematical model for cortical folding pattern formation in the human brain and apply this model to study diseases involving cortical pattern malformations associated with neural migration disorders. Polymicrogyria is a cortical malformation disease resulting in an excessive number of small gyri. Our mathematical model uses a Turing reaction-diffusion system to model cortical folding. The lateral ventricle (LV) and ventricular zone (VZ) of the brain are critical components in the formation of cortical patterning. In early cortical development the shape of the LV can be modeled with a prolate spheroid and the VZ with a prolate spheroid surface. We use our model to study how global cortex characteristics, such as size and shape of the LV, affect cortical pattern formation. We demonstrate increasing domain scale can increase the number of gyri and sulci formed. Changes in LV shape can account for sulcus directionality. By incorporating LV size and shape, our model is able to elucidate which parameters can lead to excessive cortical folding.

  11. Synthetic, Multi-Layer, Self-Oscillating Vocal Fold Model Fabrication

    PubMed Central

    Murray, Preston R.; Thomson, Scott L.

    2011-01-01

    Sound for the human voice is produced via flow-induced vocal fold vibration. The vocal folds consist of several layers of tissue, each with differing material properties 1. Normal voice production relies on healthy tissue and vocal folds, and occurs as a result of complex coupling between aerodynamic, structural dynamic, and acoustic physical phenomena. Voice disorders affect up to 7.5 million annually in the United States alone 2 and often result in significant financial, social, and other quality-of-life difficulties. Understanding the physics of voice production has the potential to significantly benefit voice care, including clinical prevention, diagnosis, and treatment of voice disorders. Existing methods for studying voice production include in vivo experimentation using human and animal subjects, in vitro experimentation using excised larynges and synthetic models, and computational modeling. Owing to hazardous and difficult instrument access, in vivo experiments are severely limited in scope. Excised larynx experiments have the benefit of anatomical and some physiological realism, but parametric studies involving geometric and material property variables are limited. Further, they are typically only able to be vibrated for relatively short periods of time (typically on the order of minutes). Overcoming some of the limitations of excised larynx experiments, synthetic vocal fold models are emerging as a complementary tool for studying voice production. Synthetic models can be fabricated with systematic changes to geometry and material properties, allowing for the study of healthy and unhealthy human phonatory aerodynamics, structural dynamics, and acoustics. For example, they have been used to study left-right vocal fold asymmetry 3,4, clinical instrument development 5, laryngeal aerodynamics 6-9, vocal fold contact pressure 10, and subglottal acoustics 11 (a more comprehensive list can be found in Kniesburges et al. 12) Existing synthetic vocal fold models

  12. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.

    PubMed

    Murray, Preston R; Thomson, Scott L

    2011-01-01

    Sound for the human voice is produced via flow-induced vocal fold vibration. The vocal folds consist of several layers of tissue, each with differing material properties. Normal voice production relies on healthy tissue and vocal folds, and occurs as a result of complex coupling between aerodynamic, structural dynamic, and acoustic physical phenomena. Voice disorders affect up to 7.5 million annually in the United States alone and often result in significant financial, social, and other quality-of-life difficulties. Understanding the physics of voice production has the potential to significantly benefit voice care, including clinical prevention, diagnosis, and treatment of voice disorders. Existing methods for studying voice production include in vivo experimentation using human and animal subjects, in vitro experimentation using excised larynges and synthetic models, and computational modeling. Owing to hazardous and difficult instrument access, in vivo experiments are severely limited in scope. Excised larynx experiments have the benefit of anatomical and some physiological realism, but parametric studies involving geometric and material property variables are limited. Further, they are typically only able to be vibrated for relatively short periods of time (typically on the order of minutes). Overcoming some of the limitations of excised larynx experiments, synthetic vocal fold models are emerging as a complementary tool for studying voice production. Synthetic models can be fabricated with systematic changes to geometry and material properties, allowing for the study of healthy and unhealthy human phonatory aerodynamics, structural dynamics, and acoustics. For example, they have been used to study left-right vocal fold asymmetry, clinical instrument development, laryngeal aerodynamics, vocal fold contact pressure, and subglottal acoustics (a more comprehensive list can be found in Kniesburges et al.) Existing synthetic vocal fold models, however, have either

  13. Characterization of the vocal fold vertical stiffness in a canine model

    PubMed Central

    Oren, Liran; Dembinski, Doug; Gutmark, Ephraim; Khosla, Sid

    2014-01-01

    Objectives/Hypothesis Characterizing the vertical stiffness gradient that exists between the superior and inferior aspects of the medial surface of the vocal fold. Characterization of this stiffness gradient could elucidate the mechanism behind the divergent glottal shape observed during closing. Study Design Basic science. Methods Indentation testing of the folds was done in a canine model. Stress-strain curves are generated using a customized load-cell and the differential Young's modulus is calculated as a function of strain. Results Results from 11 larynges show that stress increases as a function of strain more rapidly in the inferior aspect of the fold. The calculations for local Young's modulus show that at high strain values a stiffness gradient is formed between the superior and inferior aspects of the fold. Conclusions For small strain values, which are observed at low subglottal pressures, the stiffness of the tissue is similar in both the superior and inferior aspects of the vocal fold. Consequently, the lateral force that is applied by the glottal flow at both aspects results in almost identical displacements, yielding no divergence angle. Conversely, at higher strain values, which are measured in high subglottal pressure, the inferior aspect of the vocal fold is much stiffer than the superior edge; thus any lateral force that is applied at both aspects will result in a much greater displacement of the superior edge, yielding a large divergence angle. The increased stiffness observed at the inferior edge could be due to the proximity of the conus elasticus. PMID:24495431

  14. Analog Models of Crustal-Scale Folding with Special Reference to the Archean

    NASA Astrophysics Data System (ADS)

    Peschler, A. P.; Benn, K.; Roest, W. R.

    2004-05-01

    We use analog experiments to investigate folding of continental crust subjected to different geothermal gradients and displacement rates. The experiments are designed with an eye to crustal-scale folding of Archean greenstone belts, however, the results may also be pertinent for crustal folding of younger terranes. Localized thermal anomalies are used to investigate effects of major additions of heat to the crust, such as might occur above a plume or in response to magmatic underplating. The scaled models are composed of five layers. The model upper crust is composed of silica sand overlying a thin base of silicone gum. Two paraffin waxes of different densities and with different melting temperatures are used for the middle and lower crust. The viscosities of paraffin waxes are modified by addition of heat from a source below the models, which leads to lower viscosities and eventually to melting. The upper mantle is modeled by a thick layer of the same silicone gum used for the lowermost upper crust. In our experiments, folding is the main response to shortening of the analog crust. The middle and lower crust analogs behave essentially as one ductile layer and respond to the shortening by buckling. Folding is accompanied by thickening of the paraffin wax layers in the intrados of folds and thinning in the extrados. In the upper crust analog, the first-order folding imposed by the middle and lower crustal layers is accompanied, in some experiments, by higher-order folding, by the formation of grabens above anticlines, and by reverse shear zones located near inflection lines on limbs of synclines. For the coolest thermal gradients, one anticline-syncline pair is formed. For warmer gradients, multiple folds develop that have shorter wavelengths and smaller amplitudes. Based on our models, we interpret that the increase of crustal temperatures may result in a decrease in wavelength and a decrease of the amplitude of the crustal folds. Changing the displacement rates

  15. Designability and cooperative folding in a four-letter hydrophobic-polar model of proteins

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Guang; Tang, Lei-Han

    2006-11-01

    The two-letter hydrophobic-polar (HP) model of Lau and Dill [Macromolecules 22, 3986 (1989)] has been widely used in theoretical studies of protein folding due to its conceptual and computational simplicity. Despite its success in elucidating various aspects of the sequence-structure relationship, thermodynamic behavior of the model is not in agreement with a sharp two-state folding transition of many single-domain proteins. To gain a better understanding of this discrepancy, we consider an extension of the HP model by including an “antiferromagnetic” (AF) interaction in the contact potential that favors amino acid residues with complementary attributes. With an enlarged four-letter alphabet, the density of states on the low energy side can be significantly decreased. Computational studies of the four-letter HP model are performed on 36-mer sequences on a square lattice. It is found that the designability of folded structures in the extended model exhibits strong correlation with that of the two-letter HP model, while the AF interaction alone selects a very different class of structures that resembles the Greek key motif for beta sheets. A procedure is introduced to select sequences which have the largest energy gap to the native state. Based on density of states and specific heat calculations in the full configuration space, we show that the optimized sequence is able to fold nearly as cooperatively as a corresponding Gō model.

  16. A Simple Lattice Model That Captures Protein Folding, Aggregation and Amyloid Formation

    PubMed Central

    Abeln, Sanne; Vendruscolo, Michele; Dobson, Christopher M.; Frenkel, Daan

    2014-01-01

    The ability of many proteins to convert from their functional soluble state to amyloid fibrils can be attributed to inter-molecular beta strand formation. Such amyloid formation is associated with neurodegenerative disorders like Alzheimer's and Parkinson's. Molecular modelling can play a key role in providing insight into the factors that make proteins prone to fibril formation. However, fully atomistic models are computationally too expensive to capture the length and time scales associated with fibril formation. As the ability to form fibrils is the rule rather than the exception, much insight can be gained from the study of coarse-grained models that capture the key generic features associated with amyloid formation. Here we present a simple lattice model that can capture both protein folding and beta strand formation. Unlike standard lattice models, this model explicitly incorporates the formation of hydrogen bonds and the directionality of side chains. The simplicity of our model makes it computationally feasible to investigate the interplay between folding, amorphous aggregation and fibril formation, and maintains the capability of classic lattice models to simulate protein folding with high specificity. In our model, the folded proteins contain structures that resemble naturally occurring beta-sheets, with alternating polar and hydrophobic amino acids. Moreover, fibrils with intermolecular cross-beta strand conformations can be formed spontaneously out of multiple short hydrophobic peptide sequences. Both the formation of hydrogen bonds in folded structures and in fibrils is strongly dependent on the amino acid sequence, indicating that hydrogen-bonding interactions alone are not strong enough to initiate the formation of beta sheets. This result agrees with experimental observations that beta sheet and amyloid formation is strongly sequence dependent, with hydrophobic sequences being more prone to form such structures. Our model should open the way to a

  17. A simple model for calculating the kinetics of protein folding from three-dimensional structures.

    PubMed

    Muñoz, V; Eaton, W A

    1999-09-28

    An elementary statistical mechanical model was used to calculate the folding rates for 22 proteins from their known three-dimensional structures. In this model, residues come into contact only after all of the intervening chain is in the native conformation. An additional simplifying assumption is that native structure grows from localized regions that then fuse to form the complete native molecule. The free energy function for this model contains just two contributions-conformational entropy of the backbone and the energy of the inter-residue contacts. The matrix of inter-residue interactions is obtained from the atomic coordinates of the three-dimensional structure. For the 18 proteins that exhibit two-state equilibrium and kinetic behavior, profiles of the free energy versus the number of native peptide bonds show two deep minima, corresponding to the native and denatured states. For four proteins known to exhibit intermediates in folding, the free energy profiles show additional deep minima. The calculated rates of folding the two-state proteins, obtained by solving a diffusion equation for motion on the free energy profiles, reproduce the experimentally determined values surprisingly well. The success of these calculations suggests that folding speed is largely determined by the distribution and strength of contacts in the native structure. We also calculated the effect of mutations on the folding kinetics of chymotrypsin inhibitor 2, the most intensively studied two-state protein, with some success. PMID:10500173

  18. An investigation of jet trajectory in flow through scaled vocal fold models with asymmetric glottal passages

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2006-11-01

    Pulsatile two-dimensional flow through asymmetric static divergent models of the human vocal folds is investigated. Included glottal divergence angles are varied between 10° and 30°, with asymmetry angles between the vocal fold pairs ranging from 5° to 15°. The model glottal configurations represent asymmetries that arise during a phonatory cycle due to voice disorders. The flow is scaled to physiological values of Reynolds, Strouhal, and Euler numbers. Data are acquired in the anterior posterior mid-plane of the vocal fold models using phase-averaged Particle Image Velocimetry (PIV) acquired at ten discrete locations in a phonatory cycle. Glottal jet stability arising from the vocal fold asymmetries is investigated and compared to previously reported work for symmetric vocal fold passages. Jet stability is enhanced with an increase in the included divergence angle, and the glottal asymmetry. Concurrently, the bi-modal jet trajectory and flow unsteadiness diminishes. Consistent with previous findings, the flow attachment due to the Coanda effect occurs when the acceleration of the forcing function is zero.

  19. Mathematics, thermodynamics, and modeling to address ten common misconceptions about protein structure, folding, and stability.

    PubMed

    Robic, Srebrenka

    2010-01-01

    To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability. PMID:20810950

  20. Principles of protein folding--a perspective from simple exact models.

    PubMed Central

    Dill, K. A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.; Chan, H. S.

    1995-01-01

    General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse. PMID:7613459

  1. Fold-preserving electronic cleansing using a reconstruction model integrating material fractions and structural responses.

    PubMed

    Lee, Hyunna; Kim, Bohyoung; Lee, Jeongjin; Kim, Se Hyung; Shin, Yeong-Gil; Kim, Tae-Gong

    2013-06-01

    In this paper, we propose an electronic cleansing method using a novel reconstruction model for removing tagged materials (TMs) in computed tomography (CT) images. To address the partial volume (PV) and pseudoenhancement (PEH) effects concurrently, material fractions and structural responses are integrated into a single reconstruction model. In our approach, colonic components including air, TM, an interface layer between air and TM, and an interface layer between soft-tissue (ST) and TM (IL ST/TM ) are first segmented. For each voxel in IL ST/TM, the material fractions of ST and TM are derived using a two-material transition model, and the structural response to identify the folds submerged in the TM is calculated by the rut-enhancement function based on the eigenvalue signatures of the Hessian matrix. Then, the CT density value of each voxel in IL ST/TM is reconstructed based on both the material fractions and structural responses. The material fractions remove the aliasing artifacts caused by a PV effect in IL ST/TM effectively while the structural responses avoid the erroneous cleansing of the submerged folds caused by the PEH effect. Experimental results using ten clinical datasets demonstrated that the proposed method showed higher cleansing quality and better preservation of submerged folds than the previous method, which was validated by the higher mean density values and fold preservation rates for manually segmented fold regions. PMID:23335656

  2. The Fold Analysis Challenge: A virtual globe-based educational resource

    NASA Astrophysics Data System (ADS)

    De Paor, Declan G.; Dordevic, Mladen M.; Karabinos, Paul; Tewksbury, Barbara J.; Whitmeyer, Steven J.

    2016-04-01

    We present an undergraduate structural geology laboratory exercise using the Google Earth virtual globe with COLLADA models, optionally including an interactive stereographic projection and JavaScript controls. The learning resource challenges students to identify bedding traces and estimate bedding orientation at several locations on a fold, to fit the fold axis and axial plane to stereographic projection data, and to fit a doubly-plunging fold model to the large-scale structure. The chosen fold is the Sheep Mountain Anticline, a Laramide uplift in the Big Horn Basin of Wyoming. We take an education research-based approach, guiding students through three levels of difficulty. The exercise aims to counter common student misconceptions and stumbling blocks regarding penetrative structures. It can be used in preparation for an in-person field trip, for post-trip reinforcement, or as a virtual field experience in an online-only course. Our KML scripts can be easily transferred to other fold structures around the globe.

  3. Statistical mechanics of a correlated energy landscape model for protein folding funnels

    NASA Astrophysics Data System (ADS)

    Plotkin, Steven S.; Wang, Jin; Wolynes, Peter G.

    1997-02-01

    In heteropolymers, energetic correlations exist due to polymeric constraints and the locality of interactions. Pair correlations in conjunction with the a priori specification of the existence of a particularly low energy state provide a method of introducing the aspect of minimal frustration to the energy landscapes of random heteropolymers. The resulting funneled landscape exhibits both a phase transition from a molten globule to a folded state, and the heteropolymeric glass transition in the globular state. We model the folding transition in the self-averaging regime, which together with a simple theory of collapse allows us to depict folding as a double-well free energy surface in terms of suitable reaction coordinates. Observed trends in barrier positions and heights with protein sequence length and thermodynamic conditions are discussed within the context of the model. We also discuss the new physics which arises from the introduction of explicitly cooperative many-body interactions, as might arise from sidechain packing and nonadditive hydrophobic forces.

  4. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    PubMed Central

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2014-01-01

    Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874

  5. Simplified protein models can rival all atom simulations in predicting folding pathways and structure

    PubMed Central

    Adhikari, Aashish N.; Freed, Karl F.; Sosnick, Tobin R.

    2014-01-01

    We demonstrate the ability of simultaneously determining a protein’s folding pathway and structure using a properly formulated model without prior knowledge of the native structure. Our model employs a natural coordinate system for describing proteins and a search strategy inspired by the observation that real proteins fold in a sequential fashion by incrementally stabilizing native-like substructures or "foldons". Comparable folding pathways and structures are obtained for the twelve proteins recently studied using atomistic molecular dynamics simulations [K. Lindorff-Larsen, S. Piana, R.O. Dror, D. E. Shaw, Science 334, 517 (2011)], with our calculations running several orders of magnitude faster. We find that native-like propensities in the unfolded state do not necessarily determine the order of structure formation, a departure from a major conclusion of the MD study. Instead, our results support a more expansive view wherein intrinsic local structural propensities may be enhanced or overridden in the folding process by environmental context. The success of our search strategy validates it as an expedient mechanism for folding both in silico and in vivo. PMID:23889448

  6. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  7. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model

    NASA Astrophysics Data System (ADS)

    Smith, Simeon L.; Thomson, Scott L.

    2013-04-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed.

  8. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model.

    PubMed

    Smith, Simeon L; Thomson, Scott L

    2013-04-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully-coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed. PMID:23503699

  9. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model

    PubMed Central

    Smith, Simeon L.; Thomson, Scott L.

    2012-01-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully-coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed. PMID:23503699

  10. Accurate Estimation of Protein Folding and Unfolding Times: Beyond Markov State Models.

    PubMed

    Suárez, Ernesto; Adelman, Joshua L; Zuckerman, Daniel M

    2016-08-01

    Because standard molecular dynamics (MD) simulations are unable to access time scales of interest in complex biomolecular systems, it is common to "stitch together" information from multiple shorter trajectories using approximate Markov state model (MSM) analysis. However, MSMs may require significant tuning and can yield biased results. Here, by analyzing some of the longest protein MD data sets available (>100 μs per protein), we show that estimators constructed based on exact non-Markovian (NM) principles can yield significantly improved mean first-passage times (MFPTs) for protein folding and unfolding. In some cases, MSM bias of more than an order of magnitude can be corrected when identical trajectory data are reanalyzed by non-Markovian approaches. The NM analysis includes "history" information, higher order time correlations compared to MSMs, that is available in every MD trajectory. The NM strategy is insensitive to fine details of the states used and works well when a fine time-discretization (i.e., small "lag time") is used. PMID:27340835

  11. Protein folding in hydrophobic-polar lattice model: a flexible ant-colony optimization approach.

    PubMed

    Hu, Xiao-Min; Zhang, Jun; Xiao, Jing; Li, Yun

    2008-01-01

    This paper proposes a flexible ant colony (FAC) algorithm for solving protein folding problems based on the hydrophobic-polar square lattice model. Collaborations of novel pheromone and heuristic strategies in the proposed algorithm make it more effective in predicting structures of proteins compared with other state-of-the-art algorithms. PMID:18537736

  12. Elastic instabilities in a layered cerebral cortex: A revised axonal tension model for cortex folding

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.

    Despite decades of research, there is still no consensus regarding the mechanism(s) driving cerebral cortex folding. Two different mechanisms--axonal tension based on efficient wiring of the neurons and differential growth-induced buckling--are the prevailing hypotheses, though quantitative comparison with data raises issues with both of them. I will present a model for the elasticity of the cerebral cortex as a layered material with bending energy along the layers and elastic energy between them. The cortex is also subjected to axons pulling from the underlying white matter. Above a critical threshold force, a 'flat' cortex configuration becomes unstable and periodic undulations emerge, i.e. a buckling instability occurs, to presumably initiate folds in the cortex. This model builds on the original axonal tension model for cortex folding based on the efficient wiring of neurons but with no buckling mechanism and allows one to understand why small mice brains exhibit no folds, while larger human brains do. Finally, an estimate of the bending rigidity constant for the cortex can be made based on the critical wavelength to quantitatively test this revised axonal tensional model. This work was done in collaboration with Oksana Manyuhina and David Mayett.

  13. A max-margin model for efficient simultaneous alignment and folding of RNA sequences

    PubMed Central

    Do, Chuong B.; Foo, Chuan-Sheng; Batzoglou, Serafim

    2008-01-01

    Motivation: The need for accurate and efficient tools for computational RNA structure analysis has become increasingly apparent over the last several years: RNA folding algorithms underlie numerous applications in bioinformatics, ranging from microarray probe selection to de novo non-coding RNA gene prediction. In this work, we present RAF (RNA Alignment and Folding), an efficient algorithm for simultaneous alignment and consensus folding of unaligned RNA sequences. Algorithmically, RAF exploits sparsity in the set of likely pairing and alignment candidates for each nucleotide (as identified by the CONTRAfold or CONTRAlign programs) to achieve an effectively quadratic running time for simultaneous pairwise alignment and folding. RAF's fast sparse dynamic programming, in turn, serves as the inference engine within a discriminative machine learning algorithm for parameter estimation. Results: In cross-validated benchmark tests, RAF achieves accuracies equaling or surpassing the current best approaches for RNA multiple sequence secondary structure prediction. However, RAF requires nearly an order of magnitude less time than other simultaneous folding and alignment methods, thus making it especially appropriate for high-throughput studies. Availability: Source code for RAF is available at:http://contra.stanford.edu/contrafold/ Contact: chuongdo@cs.stanford.edu PMID:18586747

  14. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.

    PubMed

    Lucero, Jorge C; Van Hirtum, Annemie; Ruty, Nicolas; Cisonni, Julien; Pelorson, Xavier

    2009-02-01

    This paper analyzes the capability of a mucosal wave model of the vocal fold to predict values of phonation threshold lung pressure. Equations derived from the model are fitted to pressure data collected from a mechanical replica of the vocal folds. The results show that a recent extension of the model to include an arbitrary delay of the mucosal wave in its travel along the glottal channel provides a better approximation to the data than the original version of the model, which assumed a small delay. They also show that modeling the vocal tract as a simple inertive load, as has been proposed in recent analytical studies of phonation, fails to capture the effect of the vocal tract on the phonation threshold pressure with reasonable accuracy. PMID:19206840

  15. Three-dimensional flow patterns in a scaled, physical vocal fold model with a unilateral polyp

    NASA Astrophysics Data System (ADS)

    Seawright, Angela; Erath, Byron; Plesniak, Michael

    2009-11-01

    Trauma to the vocal folds often causes the formation of polyps; affecting the efficiency of speech and making voice rough and breathy. The change in flow characteristics due to a unilateral polyp positioned on the medial surface of a 7.5 times life-size physical vocal fold model was investigated. Previously reported phase-averaged intraglottal particle image velocimetry (PIV) investigations in a coronal plane indicated significant variations in the flow behavior on different anterior offset planes relative to the polyp. Flow three-dimensionality was investigated by resolving the temporal evolution of the flow with laser Doppler velocimetry (LDV). Data were acquired superior to the glottal exit. Physiological values of Reynolds, Strouhal, and Euler numbers were matched. Results were compared to velocity fields generated by healthy vocal fold motion. The glottal jet trajectory, flow separation points, and the velocity distribution along the vocal fold walls were influenced. Thus, a polyp significantly disturbs and modifies the airflow through the vocal folds, which has implications on both the fluid-structure energy exchange and the sound production.

  16. Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Meie; Zhou, Jinxiong

    2013-11-01

    Combination of soft active hydrogels with hard passive polymers gives rise to all-polymer composites. The hydrogel is sensitive to external stimuli while the passive polymer is inert. Utilizing the different behaviors of two materials subject to environmental variation, for example temperature, results in self-folding soft machines. We report our efforts to model the programmable deformation of self-folding structures with temperature-sensitive hydrogels. The self-folding structures are realized either by constructing a bilayer structure or by incorporating hydrogels as hinges. The methodology and the results may aid the design, control and fabrication of 3D complex structures from 2D simple configurations through self-assembly.

  17. Geomechanical modeling of stress and strain evolution during contractional fault-related folding

    NASA Astrophysics Data System (ADS)

    Smart, Kevin J.; Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.

    2012-11-01

    Understanding stress states and rock mass deformation deep underground is critical to a range of endeavors including oil and gas exploration and production, geothermal reservoir characterization and management, and subsurface disposal of CO2. Geomechanical modeling can predict the onset of failure and the type and abundance of deformation features along with the orientations and magnitudes of stresses. This approach enables development of forward models that incorporate realistic mechanical stratigraphy (e.g., including competence contrasts, bed thicknesses, and bedding planes), include faults and bedding-slip surfaces as frictional sliding interfaces, reproduce the overall geometry of the fold structures of interest, and allow tracking of stress and strain through the deformation history. Use of inelastic constitutive relationships (e.g., elastic-plastic behavior) allows permanent strains to develop in response to the applied loads. This ability to capture permanent deformation is superior to linear elastic models, which are often used for numerical convenience, but are incapable of modeling permanent deformation or predicting permanent deformation processes such as faulting, fracturing, and pore collapse. Finite element modeling results compared with field examples of a natural contractional fault-related fold show that well-designed geomechanical modeling can match overall fold geometries and be applied to stress, fracture, and subseismic fault prediction in geologic structures. Geomechanical modeling of this type allows stress and strain histories to be obtained throughout the model domain.

  18. Overturned folds in ice sheets: Insights from a kinematic model of traveling sticky patches and comparisons with observations

    NASA Astrophysics Data System (ADS)

    Wolovick, Michael J.; Creyts, Timothy T.

    2016-05-01

    Overturned folds are observed in regions of the Greenland ice sheet where driving stress is highly variable. Three mechanisms have been proposed to explain these folds: freezing subglacial water, traveling basal slippery patches, and englacial rheological contrasts. Here we explore how traveling basal sticky patches can produce overturned folds. Transitions from low to high stress cause a tradeoff in ice flow between basal slip and internal deformation that deflects ice stratigraphy vertically. If these transitions move, the slip-deformation tradeoff can produce large folds. Those folds record the integrated effects of time-varying basal slip. To understand how dynamic changes in basal slip influence ice sheet stratigraphy, we develop a kinematic model of ice flow in a moving reference frame that follows a single traveling sticky patch. The ice flow field forms a vortex when viewed in the moving reference frame, and this vortex traps ice above the traveling patch and produces overturned folds. Sticky patches that travel downstream faster produce larger overturned folds. We use the model as an interpretive tool to infer properties of basal slip from three example folds. Our model suggests that the sticky patches underneath these folds propagated downstream at rates between one half and the full ice velocity. The regional flow regime for the smaller two folds requires substantial internal deformation whereas the regime for the largest fold requires substantially more basal slip. The distribution and character of stratigraphic folds reflect the evolution and propagation of individual sticky patches and their effects on ice sheet flow.

  19. Influence of Embedded Fibers and an Epithelium Layer on the Glottal Closure Pattern in a Physical Vocal Fold Model

    ERIC Educational Resources Information Center

    Xuan, Yue; Zhang, Zhaoyan

    2014-01-01

    Purpose: The purpose of this study was to explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method: Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and…

  20. Generic framework for mining cellular automata models on protein-folding simulations.

    PubMed

    Diaz, N; Tischer, I

    2016-01-01

    Cellular automata model identification is an important way of building simplified simulation models. In this study, we describe a generic architectural framework to ease the development process of new metaheuristic-based algorithms for cellular automata model identification in protein-folding trajectories. Our framework was developed by a methodology based on design patterns that allow an improved experience for new algorithms development. The usefulness of the proposed framework is demonstrated by the implementation of four algorithms, able to obtain extremely precise cellular automata models of the protein-folding process with a protein contact map representation. Dynamic rules obtained by the proposed approach are discussed, and future use for the new tool is outlined. PMID:27323045

  1. Complexity of chromatin folding is captured by the strings and binders switch model.

    PubMed

    Barbieri, Mariano; Chotalia, Mita; Fraser, James; Lavitas, Liron-Mark; Dostie, Josée; Pombo, Ana; Nicodemi, Mario

    2012-10-01

    Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the "strings and binders switch" model to explain the origin and variety of chromatin behaviors that coexist and dynamically change within living cells. This simple polymer model recapitulates the scaling properties of chromatin folding reported experimentally in different cellular systems, the fractal state of chromatin, the processes of domain formation, and looping out. Additionally, the strings and binders switch model reproduces the recently proposed "fractal-globule" model, but only as one of many possible transient conformations. PMID:22988072

  2. Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model.

    PubMed

    Qian, J; Luscombe, N M; Gerstein, M

    2001-11-01

    Global surveys of genomes measure the usage of essential molecular parts, defined here as protein families, superfamilies or folds, in different organisms. Based on surveys of the first 20 completely sequenced genomes, we observe that the occurrence of these parts follows a power-law distribution. That is, the number of distinct parts (F) with a given genomic occurrence (V) decays as F=aV(-b), with a few parts occurring many times and most occurring infrequently. For a given organism, the distributions of families, superfamilies and folds are nearly identical, and this is reflected in the size of the decay exponent b. Moreover, the exponent varies between different organisms, with those of smaller genomes displaying a steeper decay (i.e. larger b). Clearly, the power law indicates a preference to duplicate genes that encode for molecular parts which are already common. Here, we present a minimal, but biologically meaningful model that accurately describes the observed power law. Although the model performs equally well for all three protein classes, we focus on the occurrence of folds in preference to families and superfamilies. This is because folds are comparatively insensitive to the effects of point mutations that can cause a family member to diverge beyond detectable similarity. In the model, genomes evolve through two basic operations: (i) duplication of existing genes; (ii) net flow of new genes. The flow term is closely related to the exponent b and can accommodate considerable gene loss; however, we demonstrate that the observed data is reproduced best with a net inflow, i.e. with more gene gain than loss. Moreover, we show that prokaryotes have much higher rates of gene acquisition than eukaryotes, probably reflecting lateral transfer. A further natural outcome from our model is an estimation of the fold composition of the initial genome, which potentially relates to the common ancestor for modern organisms. Supplementary material pertaining to this work

  3. Influence of acoustic loading on an effective single mass model of the vocal folds.

    PubMed

    Zañartu, Matías; Mongeau, Luc; Wodicka, George R

    2007-02-01

    Three-way interactions between sound waves in the subglottal and supraglottal tracts, the vibrations of the vocal folds, and laryngeal flow were investigated. Sound wave propagation was modeled using a wave reflection analog method. An effective single-degree-of-freedom model was designed to model vocal-fold vibrations. The effects of orifice geometry changes on the flow were considered by enforcing a time-varying discharge coefficient within a Bernoulli flow model. The resulting single-degree-of-freedom model allowed for energy transfer from flow to structural vibrations, an essential feature usually incorporated through the use of higher order models. The relative importance of acoustic loading and the time-varying flow resistance for fluid-structure energy transfer was established for various configurations. The results showed that acoustic loading contributed more significantly to the net energy transfer than the time-varying flow resistance, especially for less inertive supraglottal loads. The contribution of supraglottal loading was found to be more significant than that of subglottal loading. Subglottal loading was found to reduce the net energy transfer to the vocal-fold oscillation during phonation, balancing the effects of the supraglottal load. PMID:17348533

  4. Viroporins, Examples of the Two-Stage Membrane Protein Folding Model.

    PubMed

    Martinez-Gil, Luis; Mingarro, Ismael

    2015-07-01

    Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly. PMID:26131957

  5. Viroporins, Examples of the Two-Stage Membrane Protein Folding Model

    PubMed Central

    Martinez-Gil, Luis; Mingarro, Ismael

    2015-01-01

    Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly. PMID:26131957

  6. TOPICAL REVIEW: Simple models of protein folding and of non-conventional drug design

    NASA Astrophysics Data System (ADS)

    Broglia, R. A.; Tiana, G.; Provasi, D.

    2004-02-01

    While all the information required for the folding of a protein is contained in its amino acid sequence, one has not yet learned how to extract this information in order to predict the three-dimensional, biologically active, native conformation of a protein whose sequence is known. Using insights obtained from simple model simulations of the folding of proteins, in particular the fact that this phenomenon is essentially controlled by conserved (native) contacts among (few) strongly interacting ('hot'), as a rule hydrophobic, amino acids, which also stabilize local elementary structures (LES, hidden, incipient secondary structures such as agr-helices and bgr-sheets) formed early in the folding process and leading to the postcritical folding nucleus (i.e. the minimum set of native contacts which brings the system beyond the highest free-energy barrier found in the whole folding process) it is possible to work out a successful strategy for reading the native structure of designed proteins from a knowledge of only their amino acid sequence and of the contact energies among the amino acids. Because LES have undergone millions of years of evolution to selectively dock to their complementary structures, small peptides made out of the same amino acids as the LES are expected to selectively attach to the newly expressed (unfolded) protein and inhibit its folding, or to the native (fluctuating) native conformation and denature it. These peptides, or their mimetic molecules, can thus be used as effective non-conventional drugs to those already existing (and directed at neutralizing the active site of enzymes), displaying the advantage of not suffering from the increase in resistance.

  7. The earliest events in protein folding: Helix dynamics in proteins and model peptides

    SciTech Connect

    Dyer, R.B.; Williams, S.; Woodruff, W.H.

    1996-12-31

    The earliest events in protein folding are critically important in determining the folding pathway, but have proved difficult to study by conventional approaches. We have developed new rapid initiation methods and structure-specific probes to interrogate the earliest events of protein folding. Our focus is the pathways. Folding or unfolding reactions are initiated on a fast timescale (10 ns) using a laser induced temperature jump (15 C) and probed with time-resolved infrared spectroscopy. We obtained the kinetics of the helix-coil transition for a model 21-residue peptide. The observed rate constant k{sub obs} = k{sub f} + k{sub u} for reversible kinetics; from the observed rate (6 x 10{sup 6} s{sup -1}) and the equilibrium constant favoring folding of 7.5 at 27 C, we calculate a folding lifetime of 180 ns and an unfolding lifetime of 1.4 {mu}s. The {open_quotes}molten globule{close_quotes} form of apomyoglobin (horse, pH*3, 0.15M NaCl) shows similar kinetics for helix that is unconstrained by tertiary structure (helix with an unusually low Amide I frequency, near 1633 cm{sup -1}). In {open_quotes}native{close_quotes} apomyoglobin (horse, pH*5.3, 10 mM NaCl) two very different rates (45 ns and 70 {mu}s) are observed and we infer that a third occurs on a timescales inaccessible to our experiment (> 1 ms). We suggest that the slower processes are due to helix formation that is rate-limited by the formation of tertiary structure.

  8. Note: Network random walk model of two-state protein folding: Test of the theory

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Murphy, Ronan D.; Buchete, Nicolae-Viorel

    2013-01-01

    We study two-state protein folding in the framework of a toy model of protein dynamics. This model has an important advantage: it allows for an analytical solution for the sum of folding and unfolding rate constants [A. M. Berezhkovskii, F. Tofoleanu, and N.-V. Buchete, J. Chem. Theory Comput. 7, 2370 (2011), 10.1021/ct200281d] and hence for the reactive flux at equilibrium. We use the model to test the Kramers-type formula for the reactive flux, which was derived assuming that the protein dynamics is described by a Markov random walk on a network of complex connectivity [A. Berezhkovskii, G. Hummer, and A. Szabo, J. Chem. Phys. 130, 205102 (2009), 10.1063/1.3139063]. It is shown that the Kramers-type formula leads to the same result for the reactive flux as the sum of the rate constants.

  9. Studying vocal fold vibrations in Parkinson's disease with a nonlinear model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack; Rahn, Douglas A.

    2005-09-01

    A nonlinear model is applied to study pathologic vocal vibratory characteristics and voice treatments of Parkinson's disease. We find that a number of pathologic vocal characteristics commonly observed in Parkinson's disease, including reduced vibratory intensity, incomplete vocal closure, increased phonation threshold pressure, glottal tremor, subharmonics, and chaotic vocal fold vibrations, can be studied with this nonlinear model. We also find that two kinds of clinical voice treatments for Parkinson's disease, including respiratory effort treatment and Lee Silverman voice treatment can be studied with this computer model. Results suggest that respiratory effort treatment, in which subglottal pressure is increased, might aid in enhancing vibratory intensity, improving glottal closure, and avoiding vibratory irregularity. However, the Lee Silverman voice treatment, in which both subglottal pressure and vocal fold adduction are increased, might be better than respiratory effort treatment. Increasing vocal fold thickness would be further helpful to improve these pathologic characteristics. The model studies show consistencies with clinical observations. Computer models may be of value in understanding the dynamic mechanism of disordered voices and studying voice treatment effects in Parkinson's disease.

  10. Superimposed folding and thrusting by two phases of mutually orthogonal or oblique shortening in analogue models

    NASA Astrophysics Data System (ADS)

    Deng, Hongling; Koyi, Hemin A.; Nilfouroushan, Faramarz

    2016-02-01

    Orogens may suffer more than one phase shortening resulting in superposition of structures of different generations. Superimposition of orthogonal or oblique shortening is studied using sandbox and centrifuge modelling. Results of sand models show that in orthogonal superimposition, the two resulting structural trends are approximately orthogonal to each other. In oblique superimposition, structures trend obliquely to each other in the relatively thin areas of the model (foreland), and mutually orthogonal in areas where the model is thickened during the first phase of shortening (i.e. the hinterland). Thrusts formed during the first shortening phase may be reactivated during the later shortening phase. Spacing of the later phase structures is not as wide as expected, considering they across the pre-existing thickened wedge. Superposition of structures results in formation of type 1 fold interference pattern. Bedding is curved outwards both in the dome and basin structures. Folded layers are dipping and plunging outwards in a dome, while they are dipping and plunging inwards in a basin. In the areas between two adjacent domes or basins (i.e. where an anticline is superimposed by a syncline or a syncline is superimposed by an anticline), bedding is curved inwards, and the anticlines plunge inwards and the synclines outwards. The latter feature could be helpful to determine the age relationship for type 2 fold interference pattern. In tectonic regions where multiple phases of shortening have occurred, the orogenic-scale dome-and-basin and arrowhead-shaped interference patterns are commonly formed, as in the models. However, in some areas, the fold interference pattern might be modified by a later phase of thrusting. Similar to models results, superimposition of two and/or even more deformation phases may not be recorded by structures all over the tectonic area.

  11. Quantifying spatiotemporal properties of vocal fold dynamics based on a multiscale analysis of phonovibrograms.

    PubMed

    Unger, Jakob; Hecker, Dietmar J; Kunduk, Melda; Schuster, Maria; Schick, Bernhard; Lohscheller, Joerg

    2014-09-01

    In order to objectively assess the laryngeal vibratory behavior, endoscopic high-speed cameras capture several thousand frames per second of the vocal folds during phonation. However, judging all inherent clinically relevant features is a challenging task and requires well-founded expert knowledge. In this study, an automated wavelet-based analysis of laryngeal high-speed videos based on phonovibrograms is presented. The phonovibrogram is an image representation of the spatiotemporal pattern of vocal fold vibration and constitutes the basis for a computer-based analysis of laryngeal dynamics. The features extracted from the wavelet transform are shown to be closely related to a basic set of video-based measurements categorized by the European Laryngological Society for a subjective assessment of pathologic voices. The wavelet-based analysis further offers information about irregularity and lateral asymmetry and asynchrony. It is demonstrated in healthy and pathologic subjects as well as for a surgical group that was examined before and after the removal of a vocal fold polyp. The features were found to not only classify glottal closure characteristics but also quantify the impact of pathologies on the vibratory behavior. The interpretability and the discriminative power of the proposed feature set show promising relevance for a computer-assisted diagnosis and classification of voice disorders. PMID:24771562

  12. Multimodality pH imaging in a mouse dorsal skin fold window chamber model

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Schafer, Rachel; Pagel, Mark M.; Robey, Ian F.; Gmitro, Arthur F.

    2013-03-01

    Upregulate levels of expression and activity of membrane H+ ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.

  13. A Synthetic Self-Oscillating Vocal Fold Model Platform for Studying Augmentation Injection

    PubMed Central

    Murray, Preston R.; Thomson, Scott L.; Smith, Marshall E.

    2013-01-01

    Objective Design and evaluate a platform for studying the mechanical effects of augmentation injections using synthetic self-oscillating vocal fold models. Study Design Basic science. Methods Life-sized, synthetic, multi-layer, self-oscillating vocal fold models were created that simulated bowing via volumetric reduction of the body layer relative to that of a normal, unbowed model. Material properties of the layers were unchanged. Models with varying degrees of bowing were created and paired with normal models. Following initial acquisition of data (onset pressure, vibration frequency, flow rate, and high-speed image sequences), bowed models were injected with silicone that had material properties similar to those used in augmentation procedures. Three different silicone injection quantities were tested: sufficient to close the glottal gap, insufficient to close the glottal gap, and excess silicone to create convex bowing of the bowed model. The above-mentioned metrics were again taken and compared. Pre- and post-injection high-speed image sequences were acquired using a hemilarynx setup, from which medial surface dynamics were quantified. Results The models vibrated with mucosal wave-like motion and at onset pressures and frequencies typical of human phonation. The models successfully exhibited various degrees of bowing which were then mitigated by injecting filler material. The models showed general pre- to post-injection decreases in onset pressure, flow rate, and open quotient, and a corresponding increase in vibration frequency. Conclusion The model may be useful in further explorations of the mechanical consequences of augmentation injections. PMID:24476985

  14. Study of extracellular matrix in vocal fold biomechanics using a two-phase model

    PubMed Central

    Li, Nicole Y. K.; Avazmohammadi, Reza; Thibeault, Susan L.; Mongrain, Rosaire; Mongeau, Luc

    2014-01-01

    The extracellular matrix (ECM) of the vocal fold tissue consists primarily of fibrous and interstitial proteins. The purpose of this study was to investigate the effects of selective enzymatic digestion of two ECM proteins, namely elastin and versican, on the elasticity of rabbit vocal fold tissue. Quasi-static, sinusoidal, uniaxial tensile tests were performed. The data were analyzed within the framework of a model of the ECM as a two-phase composite material consisting of collagen fibrils as the reinforcing fibers and noncollagenous ECM proteins as the matrix. To validate the two-phase model, the regression parameters for the fibers’ volume fraction and shear modulus in a different animal model were compared with corresponding published data. The proposed model was then used to analyze rabbit vocal fold tissues. The mean value and the standard deviation of the fiber volume fraction were found to be 8.49 ±3.75% for the control samples (n =4), 0.59 ±1.13 % after elastin removal (n =4), and 8.22 ±1.06% after versican removal (n =4). The results suggest that elastin removal may lead to a reduction in tissue stiffness, through counteracting the reinforcement of collagen fibrils. PMID:24792897

  15. Study of extracellular matrix in vocal fold biomechanics using a two-phase model.

    PubMed

    Miri, Amir K; Li, Nicole Y K; Avazmohammadi, Reza; Thibeault, Susan L; Mongrain, Rosaire; Mongeau, Luc

    2015-01-01

    The extracellular matrix (ECM) of the vocal fold tissue consists primarily of fibrous and interstitial proteins. The purpose of this study was to investigate the effects of selective enzymatic digestion of two ECM proteins, namely elastin and versican, on the elasticity of rabbit vocal fold tissue. Quasi-static, sinusoidal, uniaxial tensile tests were performed. The data were analyzed within the framework of a model of the ECM as a two-phase composite material consisting of collagen fibrils as the reinforcing fibers and noncollagenous ECM proteins as the matrix. To validate the two-phase model, the regression parameters for the fibers' volume fraction and shear modulus in a different animal model were compared with corresponding published data. The proposed model was then used to analyze rabbit vocal fold tissues. The mean value and the standard deviation of the fiber volume fraction were found to be 8.49 ± 3.75 % for the control samples (n = 4), 0.59 ± 1.13 % after elastin removal (n = 4), and 8.22 ± 1.06 % after versican removal (n = 4). The results suggest that elastin removal may lead to a reduction in tissue stiffness, through counteracting the reinforcement of collagen fibrils. PMID:24792897

  16. Prediction of RNA Pseudoknots Using Heuristic Modeling with Mapping and Sequential Folding

    PubMed Central

    Dawson, Wayne K.; Fujiwara, Kazuya; Kawai, Gota

    2007-01-01

    Predicting RNA secondary structure is often the first step to determining the structure of RNA. Prediction approaches have historically avoided searching for pseudoknots because of the extreme combinatorial and time complexity of the problem. Yet neglecting pseudoknots limits the utility of such approaches. Here, an algorithm utilizing structure mapping and thermodynamics is introduced for RNA pseudoknot prediction that finds the minimum free energy and identifies information about the flexibility of the RNA. The heuristic approach takes advantage of the 5′ to 3′ folding direction of many biological RNA molecules and is consistent with the hierarchical folding hypothesis and the contact order model. Mapping methods are used to build and analyze the folded structure for pseudoknots and to add important 3D structural considerations. The program can predict some well known pseudoknot structures correctly. The results of this study suggest that many functional RNA sequences are optimized for proper folding. They also suggest directions we can proceed in the future to achieve even better results. PMID:17878940

  17. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis

    PubMed Central

    Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.

    2015-01-01

    OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires

  18. Protein folding simulations of the hydrophobic-hydrophilic model by combining tabu search with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Jiang, Tianzi; Cui, Qinghua; Shi, Guihua; Ma, Songde

    2003-08-01

    In this paper, a novel hybrid algorithm combining genetic algorithms and tabu search is presented. In the proposed hybrid algorithm, the idea of tabu search is applied to the crossover operator. We demonstrate that the hybrid algorithm can be applied successfully to the protein folding problem based on a hydrophobic-hydrophilic lattice model. The results show that in all cases the hybrid algorithm works better than a genetic algorithm alone. A comparison with other methods is also made.

  19. Differences between the deformed-potential and folding-model descriptions of inelastic nuclear scattering

    SciTech Connect

    Hnizdo, V. )

    1994-08-01

    The differences between the deformed-potential and folding-model descriptions of inelastic nuclear scattering, attention to which has been called recently by Beene, Horen, and Satchler [Phys. Rev. C 48, 3128 (1993)], were pointed out already some time ago by contrasting the rules of equal deformation lengths and equal normalized multipole moments for the optical potential and the underlying nucleon distribution of the excited nucleus.

  20. A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma.

    PubMed

    Kwag, Hye Rin; Serbo, Janna V; Korangath, Preethi; Sukumar, Saraswati; Romer, Lewis H; Gracias, David H

    2016-04-01

    A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma. PMID:26831041

  1. β-hairpin-forming peptides; models of early stages of protein folding

    PubMed Central

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2010-01-01

    Formation of β-hairpins is considered the initial step of folding of many proteins and, consequently, peptides constituting the β-hairpin sequence of proteins (the β-hairpin-forming peptides) are considered as models of early stages of protein folding. In this article, we discuss the results of experimental studies (circular-dichroism, infrared and nuclear magnetic resonance spectroscopy, and differential scanning calorimetry) of the structure of β-hairpin-forming peptides excised from the B1 domain of protein G, which are known to fold on their own. We demonstrate that local interactions at the turn sequence and hydrophobic interactions between nonpolar residues are the dominant structure-determining factors, while there is no convincing evidence that stable backbone hydrogen bonds are formed in these peptides in aqueous solution. Consequently, the most plausible mechanism for folding of the β-hairpin sequence appears to be the broken-zipper mechanism consisting of the following three steps: (i) bending the chain at the turn sequence owing to favorable local interactions, (ii) formation of loose hydrophobic contacts between nonpolar residues, which occur close to the contacts in the native structure of the protein but not exactly in the same position and, finally, (iii) formation of backbone hydrogen bonds and locking the hydrophobic contacts in the native positions as a hydrophobic core develops, sufficient to dehydrate the backbone peptide groups. This mechanism provides sufficient uniqueness (contacts form between residues that become close together because the chain is bent at the turn position) and robustness (contacts need not occur at once in the native positions) for folding a β-hairpin sequence. PMID:20494507

  2. Entropy-Driven Folding of an RNA Helical Junction: An Isothermal Titration Calorimetric Analysis of the Hammerhead Ribozyme†

    PubMed Central

    Mikulecky, Peter J.; Takach, Jennifer C.; Feig, Andrew L.

    2008-01-01

    Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs. PMID:15134461

  3. Entropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme.

    PubMed

    Mikulecky, Peter J; Takach, Jennifer C; Feig, Andrew L

    2004-05-18

    Helical junctions are extremely common motifs in naturally occurring RNAs, but little is known about the thermodynamics that drive their folding. Studies of junction folding face several challenges: non-two-state folding behavior, superposition of secondary and tertiary structural energetics, and drastically opposing enthalpic and entropic contributions to folding. Here we describe a thermodynamic dissection of the folding of the hammerhead ribozyme, a three-way RNA helical junction, by using isothermal titration calorimetry of bimolecular RNA constructs. By using this method, we show that tertiary folding of the hammerhead core occurs with a highly unfavorable enthalpy change, and is therefore entropically driven. Furthermore, the enthalpies and heat capacities of core folding are the same whether supported by monovalent or divalent ions. These properties appear to be general to the core sequence of bimolecular hammerhead constructs. We present a model for the ion-induced folding of the hammerhead core that is similar to those advanced for the folding of much larger RNAs, involving ion-induced collapse to a structured, non-native state accompanied by rearrangement of core residues to produce the native fold. In agreement with previous enzymological and structural studies, our thermodynamic data suggest that the hammerhead structure is stabilized in vitro predominantly by diffusely bound ions. Our approach addresses several significant challenges that accompany the study of junction folding, and should prove useful in defining the thermodynamic determinants of stability in these important RNA motifs. PMID:15134461

  4. Towards 4D modeling of transpressional fold-and-thrust belts

    NASA Astrophysics Data System (ADS)

    Ruh, J. B.; Gerya, T.; Burg, J.

    2012-12-01

    Latest developments in computer power and computational solutions open new ways to envision complex natural systems. Advances in high-resolution 3D geodynamic modeling, in particular, allow investigating complex tectonic processes like the evolution of non-cylindrical fold-and-thrust belts. We demonstrate that implementing the 4 dimensions (space and time) provides and constrains new answers to long lasting discussions. Numerically simulating fold-and-thrust belts needs accurate treatment of brittle/plastic rheology with high resolution to produce spontaneously localizing narrow high strain rate shear bands. Thrusts and flats occur where stresses overcome the material yield stress. Therefore, a numerical approach must allow very high strain rates within the décollement and the "thrusts" while respecting the rigidity of the modelled wedge sediments. Effective viscosity variations across narrow shear bands often range six orders of magnitude. This poses a strong challenge for numerically solving the Stokes and continuity equations. For this purpose, we developed a three-dimensional, high-resolution, fully staggered grid, finite difference, marker in cell model with a visco-brittle/plastic rheology and an efficient OpenMP-parallelized multigrid solver. As a case study, we chose the Zagros Simply Folded Belt in Iran. There, the recent shortening direction is oblique to the Main Zagros Thrust, which represents the suture between the Arabian and Central Iranian continental plates. This obliquity impels lateral backstop variations that can only be introduced in a three dimensional setup. Furthermore, along-strike structural variations are observed between the the Fars domain, in the SE, towards the Izeh domain, in the NW. Results shows how a low-viscosity décollement becoming frictional towards the Dezful embayment influences the exposed fold patterns (Figure 1). They also emphasize the importance of an oblique backstop geometry to produce en-échelon arranged folds

  5. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model

    PubMed Central

    Drechsel, James S.; Thomson, Scott L.

    2008-01-01

    A synthetic two-layer, self-oscillating, life-size vocal fold model was used to study the influence of the vocal tract and false folds on the glottal jet. The model vibrated at frequencies, pressures, flow rates, and amplitudes consistent with human phonation, although some differences in behavior between the model and the human vocal folds are noted. High-speed images of model motion and flow visualization were acquired. Phase-locked ensemble-averaged glottal jet velocity measurements using particle image velocimetry (PIV) were acquired with and without an idealized vocal tract, with and without false folds. PIV data were obtained with varying degrees of lateral asymmetric model positioning. Glottal jet velocity magnitudes were consistent with those measured using excised larynges. A starting vortex was observed in all test cases. The false folds interfered with the starting vortex, and in some cases vortex shedding from the false folds was observed. In asymmetric cases without false folds, the glottal jet tended to skew toward the nearest wall; with the false folds, the opposite trend was observed. rms velocity calculations showed the jet shear layer and laminar core. The rms velocities were higher in the vocal tract cases compared to the open jet and false fold cases. PMID:18537394

  6. Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models.

    PubMed

    Pickup, Brian A; Thomson, Scott L

    2010-09-01

    Recent vocal fold vibration studies have used models defined using idealized geometry. Although these models exhibit important similarities with human vocal fold vibration, some aspects of their motion are less than realistic. In this report it is demonstrated that more realistic motion may be obtained when using geometry derived from magnetic resonance imaging (MRI) data. The dynamic response of both idealized and MRI-based synthetic vocal fold models are presented. MRI-based model improvements include evidence of mucosal wave-like motion and less vertical movement. Limitations of the MRI-based model are discussed and suggestions for further synthetic model development are offered. PMID:20815428

  7. A three-dimensional model of vocal fold abductionÕadduction

    PubMed Central

    Hunter, Eric J.; Titze, Ingo R.; Alipour, Fariborz

    2006-01-01

    A three-dimensional biomechanical model of tissue deformation was developed to simulate dynamic vocal fold abduction and adduction. The model was made of 1721 nearly incompressible finite elements. The cricoarytenoid joint was modeled as a rocking–sliding motion, similar to two concentric cylinders. The vocal ligament and the thyroarytenoid muscle’s fiber characteristics were implemented as a fiber–gel composite made of an isotropic ground substance imbedded with fibers. These fibers had contractile and/or passive nonlinear stress–strain characteristics. The verification of the model was made by comparing the range and speed of motion to published vocal fold kinematic data. The model simulated abduction to a maximum glottal angle of about 31°. Using the posterior-cricoarytenoid muscle, the model produced an angular abduction speed of 405° per second. The system mechanics seemed to favor abduction over adduction in both peak speed and response time, even when all intrinsic muscle properties were kept identical. The model also verified the notion that the vocalis and muscularis portions of the thyroarytenoid muscle play significantly different roles in posturing, with the muscularis portion having the larger effect on arytenoid movement. Other insights into the mechanisms of abduction/adduction were given. PMID:15101653

  8. A three-dimensional statistical mechanical model of folding double-stranded chain molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbing; Chen, Shi-Jie

    2001-05-01

    Based on a graphical representation of intrachain contacts, we have developed a new three-dimensional model for the statistical mechanics of double-stranded chain molecules. The theory has been tested and validated for the cubic lattice chain conformations. The statistical mechanical model can be applied to the equilibrium folding thermodynamics of a large class of chain molecules, including protein β-hairpin conformations and RNA secondary structures. The application of a previously developed two-dimensional model to RNA secondary structure folding thermodynamics generally overestimates the breadth of the melting curves [S-J. Chen and K. A. Dill, Proc. Natl. Acad. Sci. U.S.A. 97, 646 (2000)], suggesting an underestimation for the sharpness of the conformational transitions. In this work, we show that the new three-dimensional model gives much sharper melting curves than the two-dimensional model. We believe that the new three-dimensional model may give much improved predictions for the thermodynamic properties of RNA conformational changes than the previous two-dimensional model.

  9. 3D Fault modeling of the active Chittagong-Myanmar fold belt, Bangladesh

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Hubbard, J.; Akhter, S. H.; Shamim, N.

    2013-12-01

    The Chittagong-Myanmar fold belt (CMFB), located in eastern Bangladesh, eastern India and western Myanmar, accommodates east-west shortening at the India-Burma plate boundary. Oblique subduction of the Indian Plate beneath the Burma Plate since the Eocene has led to the development of a large accretionary prism complex, creating a series of north-south trending folds. A continuous sediment record from ~55 Ma to the present has been deposited in the Bengal Basin by the Ganges-Brahmaputra-Meghna rivers, providing an opportunity to learn about the history of tectonic deformation and activity in this fold-and-thrust belt. Surface mapping indicates that the fold-and-thrust belt is characterized by extensive N-S-trending anticlines and synclines in a belt ~150-200 km wide. Seismic reflection profiles from the Chittagong and Chittagong Hill Tracts, Bangladesh, indicate that the anticlines mapped at the surface narrow with depth and extend to ~3.0 seconds TWTT (two-way travel time), or ~6.0 km. The folds of Chittagong and Chittagong Hill Tracts are characterized by doubly plunging box-shaped en-echelon anticlines separated by wide synclines. The seismic data suggest that some of these anticlines are cored by thrust fault ramps that extend to a large-scale décollement that dips gently to the east. Other anticlines may be the result of detachment folding from the same décollement. The décollement likely deepens to the east and intersects with the northerly-trending, oblique-slip Kaladan fault. The CMFB region is bounded to the north by the north-dipping Dauki fault and the Shillong Plateau. The tectonic transition from a wide band of E-W shortening in the south to a narrow zone of N-S shortening along the Dauki fault is poorly understood. We integrate surface and subsurface datasets, including topography, geological maps, seismicity, and industry seismic reflection profiles, into a 3D modeling environment and construct initial 3D surfaces of the major faults in this

  10. Folding of small knotted proteins: Insights from a mean field coarse-grained model

    SciTech Connect

    Najafi, Saeed; Potestio, Raffaello

    2015-12-28

    A small but relevant number of proteins whose native structure is known features nontrivial topology, i.e., they are knotted. Understanding the process of folding from a swollen unknotted state to the biologically relevant native conformation is, for these proteins, particularly difficult, due to their rate-limiting topological entanglement. To shed some light into this conundrum, we introduced a structure-based coarse-grained model of the protein, where the information about the folded conformation is encoded in bonded angular interactions only, which do not favor the formation of native contacts. A stochastic search scheme in parameter space is employed to identify a set of interactions that maximizes the probability to attain the knotted state. The optimal knotting pathways of the two smallest knotted proteins, obtained through this approach, are consistent with the results derived by means of coarse-grained as well as full atomistic simulations.

  11. Thermodynamic linkage analysis of pH-induced folding and unfolding transitions of i-motifs.

    PubMed

    Kim, Byul G; Chalikian, Tigran V

    2016-09-01

    We describe the pH-induced folding/unfolding transitions of i-motifs by a linkage thermodynamics-based formalism in terms of three pKa's of cytosines, namely, an apparent pKa in the unfolded conformation, pKau, and two apparent pKa's in the folded state, pKaf1 and pKaf2. For the 5'-TTACCCACCCTACCCACCCTCA-3' sequence from the human c-MYC oncogene promoter region, the values of pKau, pKaf1, and pKaf2 are 4.8, 6.0, and 3.6, respectively. With these pKa's, we calculate the differential number of protons bound to the folded and unfolded states as a function of pH. Analysis along these lines offers an alternative interpretation to the experimentally observed shift in the pH-induced unfolded-to-i-motif transitions to neutral pH in the presence of cosolvents and crowders. PMID:27322499

  12. Altered vocal fold kinematics in synthetic self-oscillating models that employ adipose tissue as a lateral boundary condition.

    NASA Astrophysics Data System (ADS)

    Saidi, Hiba; Erath, Byron D.

    2015-11-01

    The vocal folds play a major role in human communication by initiating voiced sound production. During voiced speech, the vocal folds are set into sustained vibrations. Synthetic self-oscillating vocal fold models are regularly employed to gain insight into flow-structure interactions governing the phonation process. Commonly, a fixed boundary condition is applied to the lateral, anterior, and posterior sides of the synthetic vocal fold models. However, physiological observations reveal the presence of adipose tissue on the lateral surface between the thyroid cartilage and the vocal folds. The goal of this study is to investigate the influence of including this substrate layer of adipose tissue on the dynamics of phonation. For a more realistic representation of the human vocal folds, synthetic multi-layer vocal fold models have been fabricated and tested while including a soft lateral layer representative of adipose tissue. Phonation parameters have been collected and are compared to those of the standard vocal fold models. Results show that vocal fold kinematics are affected by adding the adipose tissue layer as a new boundary condition.

  13. Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-02-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  14. An ISO-surface folding analysis method applied to premature neonatal brain development

    NASA Astrophysics Data System (ADS)

    Rodriguez-Carranza, Claudia E.; Rousseau, Francois; Iordanova, Bistra; Glenn, Orit; Vigneron, Daniel; Barkovich, James; Studholme, Colin

    2006-03-01

    In this paper we describe the application of folding measures to tracking in vivo cortical brain development in premature neonatal brain anatomy. The outer gray matter and the gray-white matter interface surfaces were extracted from semi-interactively segmented high-resolution T1 MRI data. Nine curvature- and geometric descriptor-based folding measures were applied to six premature infants, aged 28-37 weeks, using a direct voxelwise iso-surface representation. We have shown that using such an approach it is feasible to extract meaningful surfaces of adequate quality from typical clinically acquired neonatal MRI data. We have shown that most of the folding measures, including a new proposed measure, are sensitive to changes in age and therefore applicable in developing a model that tracks development in premature infants. For the first time gyrification measures have been computed on the gray-white matter interface and on cases whose age is representative of a period of intense brain development.

  15. Slow histidine H/D exchange protocol for thermodynamic analysis of protein folding and stability using mass spectrometry.

    PubMed

    Tran, Duc T; Banerjee, Sambuddha; Alayash, Abdu I; Crumbliss, Alvin L; Fitzgerald, Michael C

    2012-02-01

    Described here is a mass spectrometry-based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the chemical denaturant dependence of the slow H/D exchange reaction of the imidazole C(2) proton in histidine side chains. The protocol is developed using several model protein systems including: ribonuclease (Rnase) A, myoglobin, bovine carbonic anhydrase (BCA) II, hemoglobin (Hb), and the hemoglobin-haptoglobin (Hb-Hp) protein complex. Folding free energies consistent with those previously determined by other more conventional techniques were obtained for the two-state folding proteins, Rnase A and myoglobin. The protocol successfully detected a previously observed partially unfolded intermediate stabilized in the BCA II folding/unfolding reaction, and it could be used to generate a K(d) value of 0.24 nM for the Hb-Hp complex. The compatibility of the protocol with conventional mass spectrometry-based proteomic sample preparation and analysis methods was also demonstrated in an experiment in which the protocol was used to detect the binding of zinc to superoxide dismutase in the yeast cell lysate sample. The yeast cell sample analyses also helped define the scope of the technique, which requires the presence of globally protected histidine residues in a protein's three-dimensional structure for successful application. PMID:22185579

  16. Control of syntectonic erosion and sedimentation on kinematic evolution of a multidecollement fold and thrust zone: Analogue modeling of folding in the southern subandean of Bolivia

    NASA Astrophysics Data System (ADS)

    Darnault, Romain; Callot, Jean-Paul; Ballard, Jean-François; Fraisse, Guillaume; Mengus, Jean-Marie; Ringenbach, Jean-Claude

    2016-08-01

    Several analogue modeling studies have been conducted during the past fifteen years with the aim to discuss the effects of sedimentation and erosion on Foreland Fold and Thrust Belt, among which a few have analyzed these processes at kilometric scale (Malavieille et al., 1993; Nalpas et al., 1999; Barrier et al., 2002; Pichot and Nalpas, 2009). The influence of syn-deformation sedimentation and erosion on the structural evolution of FFTB has been clearly demonstrated. Here, we propose to go further in this approach by the study of a more complex system with a double decollement level. The natural study case is the Bolivian sub-Andean thrust and fold belt, which present all the required criteria, such as the double decollement level. A set of analogue models performed under a CT-scan have been used to test the influence of several parameters on a fold and thrust belt system, among which: (i) the spatial variation of the sediment input, (ii) the spatial variation of the erosion rate, (iii) the relative distribution of sedimentation between foreland and hinterland. These experiments led to the following observations: 1. The upper decollement level acts as a decoupling level in case of increased sedimentation rate: it results in the verticalization of the shallower part (above the upper decollement level), while the deeper parts are not impacted. 2. Similarly, the increase of the erosion rate involves the uplift of the deeper part (below the upper decollement level), whereas the shallower parts are not impacted. 3. A high sedimentation rate in the foreland involves a fault and fold vergence reversal, followed by a back-thrusting of the shallower part. 4. A high sedimentation rate in the hinterland favours thrust development toward the foreland in the shallower parts.

  17. Fold and fabric relationships in temporally and spatially evolving slump systems: A multi-cell flow model

    NASA Astrophysics Data System (ADS)

    Alsop, G. Ian; Marco, Shmuel

    2014-06-01

    Folds generated in ductile metamorphic terranes and within unlithified sediments affected by slumping are geometrically identical to one another, and distinguishing the origin of such folds in ancient lithified rocks is therefore challenging. Foliation is observed to lie broadly parallel to the axial planes of tectonic folds, whilst it is frequently regarded as absent in slump folds. The presence of foliation is therefore often considered as a reliable criterion for distinguishing tectonic folds from those created during slumping. To test this assertion, we have examined a series of well exposed slump folds within the late Pleistocene Lisan Formation of the Dead Sea Basin. These slumps contain a number of different foliation types, including an axial-planar grain-shape fabric and a crenulation cleavage formed via microfolding of bedding laminae. Folds also contain a spaced disjunctive foliation characterised by extensional displacements across shear fractures. This spaced foliation fans around recumbent fold hinges, with kinematics reversing across the axial plane indicating a flexural shear fold mechanism. Overall, the spaced foliation is penecontemporaneous with each individual slump where it occurs, although in detail it is pre, syn or post the local folds. The identification of foliations within undoubted slump folds indicates that the presence or absence of foliation is not in itself a robust criterion to distinguish tectonic from soft-sediment folds. Extensional shear fractures displaying a range of temporal relationships with slump folds suggests that traditional single-cell flow models, where extension is focussed at the head and contraction in the lower toe of the slump, are a gross simplification. We therefore propose a new multi-cell flow model involving coeval second-order flow cells that interact with neighbouring cells during translation of the slump.

  18. High fold computer disk storage DATABASE for fast extended analysis of γ-rays events

    NASA Astrophysics Data System (ADS)

    Stézowski, O.; Finck, Ch.; Prévost, D.

    1999-03-01

    Recently spectacular technical developments have been achieved to increase the resolving power of large γ-ray spectrometers. With these new eyes, physicists are able to study the intricate nature of atomic nuclei. Concurrently more and more complex multidimensional analyses are needed to investigate very weak phenomena. In this article, we first present a software (DATABASE) allowing high fold coincidences γ-rays events to be stored on hard disk. Then, a non-conventional method of analysis, anti-gating procedure, is described. Two physical examples are given to explain how it can be used and Monte Carlo simulations have been performed to test the validity of this method.

  19. Protein Folding Simulation of Mutant Go Models of the Wild-Type Trp-cage Protein

    NASA Astrophysics Data System (ADS)

    Linhananta, Apichart; Liu, Junmin

    2008-03-01

    For the past three decades, Go models of protein folding have played important roles in the understanding of how proteins fold from random conformations to their unique native structures. Unfortunately Go models reliance on known NMR or x-ray structures to construct Go interaction potentials severely limit their predictive powers. In this work, we introduce a novel method for constructing Go interaction potentials of mutant proteins based on Go interaction potentials of wild type proteins. As a template we employ the all-atom Go model of the 20-residue Trp-cage protein (A. Linhananta, J. Boer and I. MacKay, J. Chem. Phys., 2005, 122, 114901) as the wild type Go model. Trp-cage mutants are constructed by replacing a Trp-cage residue with a different residue. In particular the Pro-12 residue of the Trp-cage is substituted by Trp-12 to produce the Trp2-cage mutant, whose native structure is not yet known. Monte Carlo simulations, using CHARMM force fields, are performed to determine the ground-state structure mutant. The resulting mutant structures are used to construct the Go interaction potential of the Trp2-cage mutant Go model.

  20. Structural Disorder of Folded Proteins: Isotope-Edited 2D IR Spectroscopy and Markov State Modeling

    PubMed Central

    Baiz, Carlos R.; Tokmakoff, Andrei

    2015-01-01

    The conformational heterogeneity of the N-terminal domain of the ribosomal protein L9 (NTL91-39) in its folded state is investigated using isotope-edited two-dimensional infrared spectroscopy. Backbone carbonyls are isotope-labeled (13C=18O) at five selected positions (V3, V9, V9G13, G16, and G24) to provide a set of localized spectroscopic probes of the structure and solvent exposure at these positions. Structural interpretation of the amide I line shapes is enabled by spectral simulations carried out on structures extracted from a recent Markov state model. The V3 label spectrum indicates that the β-sheet contacts between strands I and II are well folded with minimal disorder. The V9 and V9G13 label spectra, which directly probe the hydrogen-bond contacts across the β-turn, show significant disorder, indicating that molecular dynamics simulations tend to overstabilize ideally folded β-turn structures in NTL91-39. In addition, G24-label spectra provide evidence for a partially disordered α-helix backbone that participates in hydrogen bonding with the surrounding water. PMID:25863066

  1. Simulation based estimation of dynamic mechanical properties for viscoelastic materials used for vocal fold models

    NASA Astrophysics Data System (ADS)

    Rupitsch, Stefan J.; Ilg, Jürgen; Sutor, Alexander; Lerch, Reinhard; Döllinger, Michael

    2011-08-01

    In order to obtain a deeper understanding of the human phonation process and the mechanisms generating sound, realistic setups are built up containing artificial vocal folds. Usually, these vocal folds consist of viscoelastic materials (e.g., polyurethane mixtures). Reliable simulation based studies on the setups require the mechanical properties of the utilized viscoelastic materials. The aim of this work is the identification of mechanical material parameters (Young's modulus, Poisson's ratio, and loss factor) for those materials. Therefore, we suggest a low-cost measurement setup, the so-called vibration transmission analyzer (VTA) enabling to analyze the transfer behavior of viscoelastic materials for propagating mechanical waves. With the aid of a mathematical Inverse Method, the material parameters are adjusted in a convenient way so that the simulation results coincide with the measurement results for the transfer behavior. Contrary to other works, we determine frequency dependent functions for the mechanical properties characterizing the viscoelastic material in the frequency range of human speech (100-250 Hz). The results for three different materials clearly show that the Poisson's ratio is close to 0.5 and that the Young's modulus increases with higher frequencies. For a frequency of 400 Hz, the Young's modulus of the investigated viscoelastic materials is approximately 80% higher than for the static case (0 Hz). We verify the identified mechanical properties with experiments on fabricated vocal fold models. Thereby, only small deviations between measurements and simulations occur.

  2. Modeling and experimental verification of a fan-folded vibration energy harvester for leadless pacemakers

    NASA Astrophysics Data System (ADS)

    Ansari, M. H.; Karami, M. Amin

    2016-03-01

    This paper studies energy harvesting from heartbeat vibrations for powering leadless pacemakers. Unlike traditional pacemakers, leadless pacemakers are implanted inside the heart and the pacemaker is in direct contact with the myocardium. A leadless pacemaker is in the shape of a cylinder. Thus, in order to utilize the available 3-dimensional space for the energy harvester, we choose a fan-folded 3D energy harvester. The proposed device consists of several piezoelectric beams stacked on top of each other. The volume of the energy harvester is 1 cm3 and its dimensions are 2 cm × 0.5 cm × 1 cm. Although high natural frequency is generally a major concern with micro-scale energy harvesters, by utilizing the fan-folded geometry and adding tip mass and link mass to the configuration, we reduced the natural frequency to the desired range. This fan-folded design makes it possible to generate more than 10 μ W of power per cubic centimeter. The proposed device is compatible with Magnetic Resonance Imaging. Although the proposed device is a linear energy harvester, it is relatively insensitive to the heart rate. The natural frequencies and the mode shapes of the device are calculated analytically. The accuracy of the analytical model is verified by experimental investigations. We use a closed loop shaker system to precisely replicate heartbeat vibrations in vitro.

  3. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry.

    PubMed

    Karchin, Rachel; Cline, Melissa; Mandel-Gutfreund, Yael; Karplus, Kevin

    2003-06-01

    An important problem in computational biology is predicting the structure of the large number of putative proteins discovered by genome sequencing projects. Fold-recognition methods attempt to solve the problem by relating the target proteins to known structures, searching for template proteins homologous to the target. Remote homologs that may have significant structural similarity are often not detectable by sequence similarities alone. To address this, we incorporated predicted local structure, a generalization of secondary structure, into two-track profile hidden Markov models (HMMs). We did not rely on a simple helix-strand-coil definition of secondary structure, but experimented with a variety of local structure descriptions, following a principled protocol to establish which descriptions are most useful for improving fold recognition and alignment quality. On a test set of 1298 nonhomologous proteins, HMMs incorporating a 3-letter STRIDE alphabet improved fold recognition accuracy by 15% over amino-acid-only HMMs and 23% over PSI-BLAST, measured by ROC-65 numbers. We compared two-track HMMs to amino-acid-only HMMs on a difficult alignment test set of 200 protein pairs (structurally similar with 3-24% sequence identity). HMMs with a 6-letter STRIDE secondary track improved alignment quality by 62%, relative to DALI structural alignments, while HMMs with an STR track (an expanded DSSP alphabet that subdivides strands into six states) improved by 40% relative to CE. PMID:12784210

  4. Biochemical Basis of Vocal Fold Mobilization After Microflap Surgery in a Rabbit Model

    PubMed Central

    Mitchell, Joshua R.; Kojima, Tsuyoshi; Wu, Hongmei; Garrett, C. Gaelyn; Rousseau, Bernard

    2015-01-01

    Objectives/Hypothesis To investigate phonation-related extracellular matrix (ECM) changes in the vocal fold lamina propria after microflap surgery using an in vivo rabbit phonation model. Study Design Prospective animal study. Methods Twenty-four New Zealand White rabbits were used in this study. Quantitative polymerase chain reaction and immunohistochemistry were used to investigate alterations in vocal fold ECM proinflammatory and profibrotic gene, and protein expression from a control group of animals receiving a microflap without phonation and a separate group of animals receiving experimentally induced phonation on postmicroflap days 0, 3, and 7. Results IHC demonstrated the highest concentration of CD45 in vocal folds on postoperative day 0. Staining for CD45 was absent by postoperative day 7, with no differences in CD45 staining between groups. Fibronectin gene expression increased significantly on postoperative day 3 in the control and experimentally induced phonation groups, with maximal staining of fibronectin around the microflap incision on postoperative day 7. No alterations in cyclooxygenase-2, interleukin-1β, and transforming growth factor-β1 gene expression were observed between groups. Conclusions Results of the present study revealed an acute inflammatory response in the vocal fold at the time of microflap (day 0) and up to 3 days post-microflap. By post-operative day 3, staining of CD45 positive cells decreased, with essentially no evidence of inflammation by post-operative day 7. With the end of the acute inflammatory response occurring around day 3, these data may provide support for mobilizing tissue after inflammation has subsided and the process of active tissue remodeling has ensued (days 3–7). PMID:23775575

  5. Thermodynamic analysis of protein folding and stability using a tryptophan modification protocol.

    PubMed

    Xu, Yingrong; Strickland, Erin C; Fitzgerald, Michael C

    2014-07-15

    Described here is the development of a mass spectrometry-based covalent labeling protocol that utilizes the reaction of dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide (HNSB) with tryptophan (Trp) residues to measure protein folding free energies (ΔG(f) values). In the protocol, the chemical denaturant dependence of the rate at which globally protected Trp residues in a protein react with HNSB is evaluated using either a matrix assisted laser desorption ionization time-of-flight analysis of the intact protein or a quantitative, bottom-up proteomics analysis using isobaric mass tags. In the proof-of-principle studies performed here, the protocol yielded accurate ΔG(f) values for the two-state folding proteins, lysozyme and cytochrome c. The protocol also yielded an accurate measure of the dissociation constant (K(d) value) for the binding of N,N',N″-triacetylchitotriose to lysozyme, and it successfully detected the binding of brinzolamide to BCA II, a non-two-state folding protein. The HNSB protocol can be used in combination with SPROX (stability of proteins from rates of oxidation), a previously reported technique that exploits the hydrogen peroxide oxidation of methionine (Met) residues in proteins to make ΔG(f) value measurements. Incorporating the HNSB protocol into SPROX increased the peptide and protein coverage in proteome-wide SPROX experiments by 50% and 25%, respectively. As part of this work, the precision of proteome-wide ΔG(f) value measurements using the combined HNSB and SPROX protocol is also evaluated. PMID:24896224

  6. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain

    PubMed Central

    Bayly, PV; Okamoto, RJ; Xu, G.; Shi, Y; Taber, LA

    2013-01-01

    In humans and many other mammals, the cortex (the outer layer of the brain) folds during development. The mechanics of folding are not well understood; leading explanations are either incomplete or at odds with physical measurements. We propose a mathematical model in which (i) folding is driven by tangential expansion of the cortex and (ii) deeper layers grow in response to the resulting stress. In this model the wavelength of cortical folds depends predictably on the rate of cortical growth relative to the rate of stress-induced growth. We show analytically and in simulations that faster cortical expansion leads to shorter gyral wavelengths; slower cortical expansion leads to long wavelengths or even smooth (lissencephalic) surfaces. No inner or outer (skull) constraint is needed to produce folding, but initial shape and mechanical heterogeneity influence the final shape. The proposed model predicts patterns of stress in the tissue that are consistent with experimental observations. PMID:23357794

  7. Quantifying the similarities within fold space.

    PubMed

    Harrison, Andrew; Pearl, Frances; Mott, Richard; Thornton, Janet; Orengo, Christine

    2002-11-01

    We have used GRATH, a graph-based structure comparison algorithm, to map the similarities between the different folds observed in the CATH domain structure database. Statistical analysis of the distributions of the fold similarities has allowed us to assess the significance for any similarity. Therefore we have examined whether it is best to represent folds as discrete entities or whether, in fact, a more accurate model would be a continuum wherein folds overlap via common motifs. To do this we have introduced a new statistical measure of fold similarity, termed gregariousness. For a particular fold, gregariousness measures how many other folds have a significant structural overlap with that fold, typically comprising 40% or more of the larger structure. Gregarious folds often contain commonly occurring super-secondary structural motifs, such as beta-meanders, greek keys, alpha-beta plait motifs or alpha-hairpins, which are matching similar motifs in other folds. Apart from one example, all the most gregarious folds matching 20% or more of the other folds in the database, are alpha-beta proteins. They also occur in highly populated architectural regions of fold space, adopting sandwich-like arrangements containing two or more layers of alpha-helices and beta-strands.Domains that exhibit a low gregariousness, are those that have very distinctive folds, with few common motifs or motifs that are packed in unusual arrangements. Most of the superhelices exhibit low gregariousness despite containing some commonly occurring super-secondary structural motifs. In these folds, these common motifs are combined in an unusual way and represent a small proportion of the fold (<10%). Our results suggest that fold space may be considered as continuous for some architectural arrangements (e.g. alpha-beta sandwiches), in that super-secondary motifs can be used to link neighbouring fold groups. However, in other regions of fold space much more discrete topologies are observed with

  8. Nanopore analysis of the effect of metal ions on the folding of peptides and proteins.

    PubMed

    Lee, Jeremy S

    2014-03-01

    In this minireview, the nanopore analysis of peptides and proteins in the presence of divalent metal ions will be surveyed. In all cases the binding of the metal ions causes the peptide or protein to adopt a more compact conformation which can no longer enter the α-hemolysin pore. In the absence of Zn(II) the 30-amino acid Zn-finger peptide can readily translocate the pore; but upon addition of Zn(II) the peptide folds and only bumping events are observed. Similarly, the octapeptide repeat from the N-terminus of the prion protein binds Cu(II), which prevents it from translocating. The full-length prion protein also undergoes conformational changes upon binding Cu(II), which results in an increase in the proportion of bumping events. Myelin basic protein of 170 residues is intrinsically disordered and, perhaps surprisingly, for a basic protein of this size, can translocate against the electric field based on the observation that the event time increases with increasing voltage. It, too, folds into a more compact conformation upon binding Cu(II) and Zn(II), which prevents translocation. Finally even proteins such as maltose binding protein which does not contain a formal binding site for metal ions undergoes conformational changes in the presence of the metal chelator, EDTA. Thus, contamination of proteins with trace metal ions should be considered when studying proteins and peptides by nanopore analysis. PMID:24370255

  9. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.

    PubMed

    Tao, Chao; Zhang, Yu; Hottinger, Daniel G; Jiang, Jack J

    2007-10-01

    A model constructed from Navier-Stokes equations and a two-mass vocal fold description is proposed in this study. The composite model not only has the capability to describe the aerodynamics in a vibratory glottis but also can be used to study the vocal fold vibration under the driving of the complex airflow in the glottis. Numerical simulations show that this model can predict self-oscillations of the coupled glottal aerodynamics and vocal fold system. The Coanda effect could occur in the vibratory glottis even though the vocal folds have left-right symmetric prephonatory shape and tissue properties. The Coanda effect causes the asymmetric flow in the glottis and the difference in the driving force on the left and right vocal folds. The different pressures applied to the left and right vocal folds induce their displacement asymmetry. By using various lung pressures (0.6-2.0 kPa) to drive the composite model, it was found that the asymmetry of the vocal fold displacement is increased from 1.87% to 11.2%. These simulation results provide numerical evidence for the presence of asymmetric flow in the vibratory glottis; moreover, they indicate that glottal aerodynamics is an important factor in inducing the asymmetric vibration of the vocal folds. PMID:17902863

  10. Simple Continuous and Discrete Models for Simulating Replica Exchange Simulations of Protein Folding

    PubMed Central

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M.

    2010-01-01

    The efficiency of temperature replica exchange (RE) simulations hinge on their ability to enhance conformational sampling at physiological temperatures by taking advantage of more rapid conformational interconversions at higher temperatures. While temperature RE is a parallel simulation technique that is relatively straightforward to implement, kinetics in the RE ensemble is complicated and there is much to learn about how best to employ RE simulations in computational biophysics. Protein folding rates often slow down above a certain temperature due to entropic bottlenecks. This “anti-Arrhenius” behavior represents a challenge for RE. However, it is far from straightforward to systematically explore the impact of this on RE by brute force molecular simulations, since RE simulations of protein folding are very difficult to converge. To understand some of the basic mechanisms that determine the efficiency of RE it is useful to study simplified low dimensionality systems that share some of the key characteristics of molecular systems. Results are presented concerning the efficiency of temperature RE on a continuous two-dimensional potential that contains an entropic bottleneck. Optimal efficiency was obtained when the temperatures of the replicas did not exceed the temperature at which the harmonic mean of the folding and unfolding rates is maximized. This confirms a result we previously obtained using a discrete network model of RE. Comparison of the efficiencies obtained using the continuous and discrete models makes it possible to identify non-Markovian effects which slow down equilibration of the RE ensemble on the more complex continuous potential. In particular, the rate of temperature diffusion and also the efficiency of RE is limited by the timescale of conformational rearrangements within free energy basins. PMID:18251533

  11. Cluster folding model for /sup 12/C(/sup 6/Li,/sup 6/Li) scattering at 156 Mev

    SciTech Connect

    Majka, Z.; Gils, H.J.; Rebel, H.

    1982-06-01

    A double-folding cluster model generated from d-..cap alpha.. and ..cap alpha..-..cap alpha.. interactions and internal cluster wave functions of the projectile and the target nuclei is proposed to describe the differential cross sections for /sup 6/Li elastic scattering from /sup 12/C at 156 MeV. Results of these calculations are compared with standard double-folding models and the phenomenological optical model predictions.

  12. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the HP model

    SciTech Connect

    Agarwala, R.; Batzoglou, S.; Dancik, V.

    1997-12-01

    A long standing problem in molecular biology is to determine the three-dimensional structure of a protein, given its amino acid sequence. A variety of simplifying models have been proposed abstracting only the {open_quotes}essential physical properties{close_quotes} of real proteins. In these models, the three dimensional space is often represented by a lattice. Residues which are adjacent in the primary sequence (i.e. covalently linked) must be placed at adjacent points in the lattice. A conformation of a protein is simply a self-avoiding walk along the lattice. The protein folding problem STRING-FOLD is that of finding a conformation of the protein sequence on the lattice such that the overall energy is minimized, for some reasonable definition of energy. This formulation leaves open the choices of a lattice and an energy function. Once these choices are made, one may then address the algorithmic complexity of optimizing the energy function for the lattice. For a variety of such simple models, this minimization problem is in fact NP-hard. In this paper, we consider the Hydrophobic-Polar (HP) Model introduced by Dill. The HP model abstracts the problem by grouping the 20 amino acids into two classes: hydrophobic (or non-polar) residues and hydrophilic (or polar) residues. For concreteness, we will take our input to be a string from (H,P){sup +}, where P represents polar residues, and H represents hydrophobic residues. Dill et.al. survey the literature analyzing this model. 8 refs., 2 figs., 1 tab.

  13. Assessing groundwater availability in a folded carbonate aquifer through the development of a numerical model

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Romano, Emanuele; Guyennon, Nicolas; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2015-04-01

    The study of aquifer systems from a quantitative point of view is fundamental for adopting water management plans aiming at preserving water resources and reducing environmental risks related to groundwater level and discharge changes. This is also what the European Union Water Framework Directive (WFD, 2000/60/EC) states, holding the development of numerical models as a key aspect for groundwater management. The objective of this research is to i) define a methodology for modeling a complex hydrogeological structure in a structurally folded carbonate area and ii) estimate the concurrent effects of exploitation and climate changes on groundwater availability through the implementation of a 3D groundwater flow model. This study concerns the Monte Coscerno karst aquifer located in the Apennine chain in Central Italy in the Nera River Valley.This aquifer, is planned to be exploited in the near future for water supply. Negative trends of precipitation in Central Italy have been reported in relation to global climate changes, which are expected to affect the availability of recharge to carbonate aquifers throughout the region . A great concern is the combined impact of climate change and groundwater exploitation, hence scenarios are needed taking into account the effect of possible temperature and precipitation trends on recharge rates. Following a previous experience with model conceptualization and long-term simulation of groundwater flow, an integrated three-dimensional groundwater model has been developed for the Monte Coscerno aquifer. In a previous paper (Preziosi et al 2014) the spatial distribution of recharge to this aquifer was estimated through the Thornthwaite Mather model at a daily time step using as inputs past precipitation and temperature values (1951-2013) as well as soil and landscape properties. In this paper the numerical model development is described. On the basis of well logs from private consulting companies and literature cross sections the

  14. Core-Shell Model of Folding-Unfolding Transitions (UFT) in Proteins

    NASA Astrophysics Data System (ADS)

    Aroutiounian, Svetlana

    2008-03-01

    There are ˜10^N conformations for a protein of length N to sort out randomly in search of lowest free energy state. Can protein folding be simple and fast? Core-shell model introduces principles, proposes mechanisms and scores residues of fast, reversible UFT in protein. According to it, during UFT the realm of intra-residual interactions leads the residue motion. The scaffold of hydrophilic residues forms external shell of unstructured, tube-like protein in unfolded state, just as the hydrophobic residues form internal scaffold -- core, of the protein in folded state. As UFT proceeds, residue slides into lowest-score position permitted by its structure. Model accounts for experimentally observed features of UFT. It is based on three principles: 1) During UFT protein is virtual - its features or structure are inferred only statistically and with limited precision; 2) Mechanism of UFT memory is not longitudinal, but transverse; 3) Native design overrides specific features of residues - the alphabet of amino acids assumes an intrinsic score-function. Per-residue mechanism of UFT is proposed and score-function is described. Difference graphs of transitional score-function and average genome-wide abundance index show that our score-function is the order parameter of UFT in protein and by virtue of being it, reveals transitional key residues. It echoes the multiple-tier and funnel concepts of FEL perspective. Monte Carlo simulations of UFT in myoglobin illustrate the idea.

  15. Mola Topography Supports Drape-Folding Models for Polygonal Terrain of Utopia Planitia, Mars

    NASA Technical Reports Server (NTRS)

    McGill, George E.; Buczkowski, D. L.

    2002-01-01

    One of the most important questions we ask about Mars is whether or not there have ever been large bodies of standing water on the surface. The polygonal terrains of Utopia and Acidalia Planitiae are located in the lowest parts of the northern lowlands, the most logical places for water to pond and sediments to accumulate. Showing that polygonal terrain is sedimentary in origin would represent strong evidence in favor of a northern ocean. A number of hypotheses for the origin of the giant martian polygons have been proposed, from the cooling of lava to frost wedging to the desiccation of wet sediments, but Pechman showed that none of these familiar processes could be scaled up to martian dimensions. Two models for polygon origin attempt to explain the scale of the martian polygons by postulating drape folding of a cover material, either sedimentary or volcanic, over an uneven, buried surface. The drape folding would produce bending stresses in the surface layers that increase the probability of Fracturing over drape anticlines and suppress the probability of fracturing over drape synclines. However, both models require an additional source of extensional strain to produce the total strain needed to produce the observed troughs.

  16. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme.

    PubMed

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C K

    2010-11-01

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site. PMID:21045284

  17. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    SciTech Connect

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C.K.

    2012-04-30

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

  18. Activity, stability and folding analysis of the chitinase from Entamoeba histolytica.

    PubMed

    Muñoz, Patricia L A; Minchaca, Alexis Z; Mares, Rosa E; Ramos, Marco A

    2016-02-01

    Human amebiasis, caused by the parasitic protozoan Entamoeba histolytica, remains as a significant public health issue in developing countries. The life cycle of the parasite compromises two main stages, trophozoite and cyst, linked by two major events: encystation and excystation. Interestingly, the cyst stage has a chitin wall that helps the parasite to withstand harsh environmental conditions. Since the amebic chitinase, EhCHT1, has been recognized as a key player in both encystation and excystation, it is plausible to consider that specific inhibition could arrest the life cycle of the parasite and, thus, stop the infection. However, to selectively target EhCHT1 it is important to recognize its unique biochemical features to have the ability to control its cellular function. Hence, to gain further insights into the structure-function relationship, we conducted an experimental approach to examine the effects of pH, temperature, and denaturant concentration on the enzymatic activity and protein stability. Additionally, dependence on in vivo oxidative folding was further studied using a bacterial model. Our results attest the potential of EhCHT1 as a target for the design and development of new or improved anti-amebic therapeutics. Likewise, the potential of the oxidoreductase EhPDI, involved in oxidative folding of amebic proteins, was also confirmed. PMID:26526675

  19. Strain and vorticity analysis using small-scale faults and associated drag folds

    NASA Astrophysics Data System (ADS)

    Gomez-Rivas, Enrique; Bons, Paul D.; Griera, Albert; Carreras, Jordi; Druguet, Elena; Evans, Lynn

    2007-12-01

    Small-scale faults with associated drag folds in brittle-ductile rocks can retain detailed information on the kinematics and amount of deformation the host rock experienced. Measured fault orientation ( α), drag angle ( β) and the ratio of the thickness of deflected layers at the fault ( L) and further away ( T) can be compared with α, β and L/ T values that are calculated with a simple analytical model. Using graphs or a numerical best-fit routine, one can then determine the kinematic vorticity number and initial fault orientation that best fits the data. The proposed method was successfully tested on both analogue experiments and numerical simulations with BASIL. Using this method, a kinematic vorticity number of one (dextral simple shear) and a minimum finite strain of 2.5-3.8 was obtained for a population of antithetic faults with associated drag folds in a case study area at Mas Rabassers de Dalt on Cap de Creus in the Variscan of the easternmost Pyrenees, Spain.

  20. Prognostic physiology: modeling patient severity in Intensive Care Units using radial domain folding.

    PubMed

    Joshi, Rohit; Szolovits, Peter

    2012-01-01

    Real-time scalable predictive algorithms that can mine big health data as the care is happening can become the new "medical tests" in critical care. This work describes a new unsupervised learning approach, radial domain folding, to scale and summarize the enormous amount of data collected and to visualize the degradations or improvements in multiple organ systems in real time. Our proposed system is based on learning multi-layer lower dimensional abstractions from routinely generated patient data in modern Intensive Care Units (ICUs), and is dramatically different from most of the current work being done in ICU data mining that rely on building supervised predictive models using commonly measured clinical observations. We demonstrate that our system discovers abstract patient states that summarize a patient's physiology. Further, we show that a logistic regression model trained exclusively on our learned layer outperforms a customized SAPS II score on the mortality prediction task. PMID:23304406

  1. Cooperativity, Local-Nonlocal Coupling, and Nonnative Interactions: Principles of Protein Folding from Coarse-Grained Models

    NASA Astrophysics Data System (ADS)

    Chan, Hue Sun; Zhang, Zhuqing; Wallin, Stefan; Liu, Zhirong

    2011-05-01

    Coarse-grained, self-contained polymer models are powerful tools in the study of protein folding. They are also essential to assess predictions from less rigorous theoretical approaches that lack an explicit-chain representation. Here we review advances in coarse-grained modeling of cooperative protein folding, noting in particular that the Levinthal paradox was raised in response to the experimental discovery of two-state-like folding in the late 1960s, rather than to the problem of conformational search per se. Comparisons between theory and experiment indicate a prominent role of desolvation barriers in cooperative folding, which likely emerges generally from a coupling between local conformational preferences and nonlocal packing interactions. Many of these principles have been elucidated by native-centric models, wherein nonnative interactions may be treated perturbatively. We discuss these developments as well as recent applications of coarse-grained chain modeling to knotted proteins and to intrinsically disordered proteins.

  2. Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models.

    PubMed

    Chan, Hue Sun; Zhang, Zhuqing; Wallin, Stefan; Liu, Zhirong

    2011-01-01

    Coarse-grained, self-contained polymer models are powerful tools in the study of protein folding. They are also essential to assess predictions from less rigorous theoretical approaches that lack an explicit-chain representation. Here we review advances in coarse-grained modeling of cooperative protein folding, noting in particular that the Levinthal paradox was raised in response to the experimental discovery of two-state-like folding in the late 1960s, rather than to the problem of conformational search per se. Comparisons between theory and experiment indicate a prominent role of desolvation barriers in cooperative folding, which likely emerges generally from a coupling between local conformational preferences and nonlocal packing interactions. Many of these principles have been elucidated by native-centric models, wherein nonnative interactions may be treated perturbatively. We discuss these developments as well as recent applications of coarse-grained chain modeling to knotted proteins and to intrinsically disordered proteins. PMID:21453060

  3. Wavelet Analysis on Symbolic Sequences and Two-Fold de Bruijn Sequences

    NASA Astrophysics Data System (ADS)

    Osipov, V. Al.

    2016-05-01

    The concept of symbolic sequences play important role in study of complex systems. In the work we are interested in ultrametric structure of the set of cyclic sequences naturally arising in theory of dynamical systems. Aimed at construction of analytic and numerical methods for investigation of clusters we introduce operator language on the space of symbolic sequences and propose an approach based on wavelet analysis for study of the cluster hierarchy. The analytic power of the approach is demonstrated by derivation of a formula for counting of two-fold de Bruijn sequences, the extension of the notion of de Bruijn sequences. Possible advantages of the developed description is also discussed in context of applied problem of construction of efficient DNA sequence assembly algorithms.

  4. Wavelet Analysis on Symbolic Sequences and Two-Fold de Bruijn Sequences

    NASA Astrophysics Data System (ADS)

    Osipov, V. Al.

    2016-07-01

    The concept of symbolic sequences play important role in study of complex systems. In the work we are interested in ultrametric structure of the set of cyclic sequences naturally arising in theory of dynamical systems. Aimed at construction of analytic and numerical methods for investigation of clusters we introduce operator language on the space of symbolic sequences and propose an approach based on wavelet analysis for study of the cluster hierarchy. The analytic power of the approach is demonstrated by derivation of a formula for counting of two-fold de Bruijn sequences, the extension of the notion of de Bruijn sequences. Possible advantages of the developed description is also discussed in context of applied problem of construction of efficient DNA sequence assembly algorithms.

  5. Protein folds and protein folding

    PubMed Central

    Schaeffer, R. Dustin; Daggett, Valerie

    2011-01-01

    The classification of protein folds is necessarily based on the structural elements that distinguish domains. Classification of protein domains consists of two problems: the partition of structures into domains and the classification of domains into sets of similar structures (or folds). Although similar topologies may arise by convergent evolution, the similarity of their respective folding pathways is unknown. The discovery and the characterization of the majority of protein folds will be followed by a similar enumeration of available protein folding pathways. Consequently, understanding the intricacies of structural domains is necessary to understanding their collective folding pathways. We review the current state of the art in the field of protein domain classification and discuss methods for the systematic and comprehensive study of protein folding across protein fold space via atomistic molecular dynamics simulation. Finally, we discuss our large-scale Dynameomics project, which includes simulations of representatives of all autonomous protein folds. PMID:21051320

  6. Nonlinear vocal fold dynamics resulting from asymmetric fluid loading on a two-mass model of speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Zañartu, Matías; Peterson, Sean D.; Plesniak, Michael W.

    2011-09-01

    Nonlinear vocal fold dynamics arising from asymmetric flow formations within the glottis are investigated using a two-mass model of speech with asymmetric vocal fold tensioning, representative of unilateral vocal fold paralysis. A refined theoretical boundary-layer flow solver is implemented to compute the intraglottal pressures, providing a more realistic description of the flow than the standard one-dimensional, inviscid Bernoulli flow solution. Vocal fold dynamics are investigated for subglottal pressures of 0.6 < ps < 1.5 kPa and tension asymmetries of 0.5 < Q < 0.8. As tension asymmetries become pronounced the asymmetric flow incites nonlinear behavior in the vocal fold dynamics at subglottal pressures that are associated with normal speech, behavior that is not captured with standard Bernoulli flow solvers. Regions of bifurcation, coexistence of solutions, and chaos are identified.

  7. Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing.

    PubMed

    Adachi, Seiji; Yu, Jason

    2005-05-01

    Voiced sounds were simulated with a computer model of the vocal fold composed of a single mass vibrating both parallel and perpendicular to the airflow. Similarities with the two-mass model are found in the amplitudes of the glottal area and the glottal volume flow velocity, the variation in the volume flow waveform with the vocal tract shape, and the dependence of the oscillation amplitude upon the average opening area of the glottis, among other similar features. A few dissimilarities are also found in the more symmetric glottal and volume flow waveforms in the rising and falling phases. The major improvement of the present model over the two-mass model is that it yields a smooth transition between oscillations with an inductive load and a capacitive load of the vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both below and above the first formant frequency of the vocal tract. By taking advantage of the wider continuous frequency range, the two-dimensional model can successfully be applied to the sound synthesis of a high-pitched soprano singing, where the fundamental frequency sometimes exceeds the first formant frequency. PMID:15957788

  8. Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing

    NASA Astrophysics Data System (ADS)

    Adachi, Seiji; Yu, Jason

    2005-05-01

    Voiced sounds were simulated with a computer model of the vocal fold composed of a single mass vibrating both parallel and perpendicular to the airflow. Similarities with the two-mass model are found in the amplitudes of the glottal area and the glottal volume flow velocity, the variation in the volume flow waveform with the vocal tract shape, and the dependence of the oscillation amplitude upon the average opening area of the glottis, among other similar features. A few dissimilarities are also found in the more symmetric glottal and volume flow waveforms in the rising and falling phases. The major improvement of the present model over the two-mass model is that it yields a smooth transition between oscillations with an inductive load and a capacitive load of the vocal tract with no sudden jumps in the vibration frequency. Self-excitation is possible both below and above the first formant frequency of the vocal tract. By taking advantage of the wider continuous frequency range, the two-dimensional model can successfully be applied to the sound synthesis of a high-pitched soprano singing, where the fundamental frequency sometimes exceeds the first formant frequency. .

  9. Modulating DNA configuration by interfacial traction: an elastic rod model to characterize DNA folding and unfolding.

    PubMed

    Huang, Zaixing

    2011-01-01

    As a continuum model of DNA, a thin elastic rod subjected to interfacial interactions is used to investigate the equilibrium configuration of DNA in intracellular solution. The interfacial traction between the rod and the solution environment is derived in detail. Kirchhoff's theory of elastic rods is used to analyze the equilibrium configuration of a DNA segment under the action of the interfacial traction. The influences of the interfacial energy factor and bending stiffness on the toroidal spool formation of the DNA segment are discussed. The results show that the equilibrium configuration of DNA is mainly determined by competition between the interfacial energy and elastic strain energy of the DNA itself, and the interfacial traction is one of the forces that drives DNA folding and unfolding. PMID:22210963

  10. Global relativistic folding optical potential and the relativistic Green's function model

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Vignote, J. R.; Álvarez-Rodríguez, R.; Meucci, A.; Giusti, C.; Udías, J. M.

    2016-07-01

    Optical potentials provide critical input for calculations on a wide variety of nuclear reactions, in particular, for neutrino-nucleus reactions, which are of great interest in the light of the new neutrino oscillation experiments. We present the global relativistic folding optical potential (GRFOP) fits to elastic proton scattering data from 12C nucleus at energies between 20 and 1040 MeV. We estimate observables, such as the differential cross section, the analyzing power, and the spin rotation parameter, in elastic proton scattering within the relativistic impulse approximation. The new GRFOP potential is employed within the relativistic Green's function model for inclusive quasielastic electron scattering and for (anti)neutrino-nucleus scattering at MiniBooNE kinematics.