Science.gov

Sample records for food web evidence

  1. Evidence for the persistence of food web structure after amphibian extirpation in a Neotropical stream.

    PubMed

    Barnum, Thomas R; Drake, John M; Colón-Gaud, Checo; Rugenski, Amanda T; Frauendorf, Therese C; Connelly, Scott; Kilham, Susan S; Whiles, Matt R; Lips, Karen R; Pringle, Catherine M

    2015-08-01

    Species losses are predicted to simplify food web structure, and disease-driven amphibian declines in Central America offer an opportunity to test this prediction. Assessment of insect community composition, combined with gut content analyses, was used to generate periphyton-insect food webs for a Panamanian stream, both pre- and post-amphibian decline. We then used network analysis to assess the effects of amphibian declines on food web structure. Although 48% of consumer taxa, including many insect taxa, were lost between pre- and post-amphibian decline sampling dates, connectance declined by less than 3%. We then quantified the resilience of food web structure by calculating the number of expected cascading extirpations from the loss of tadpoles. This analysis showed the expected effects of species loss on connectance and linkage density to be more than 60% and 40%, respectively, than were actually observed. Instead, new trophic linkages in the post-decline food web reorganized the food web topology, changing the identity of "hub" taxa, and consequently reducing the effects of amphibian declines on many food web attributes. Resilience of food web attributes was driven by a combination of changes in consumer diets, particularly those of insect predators, as well as the appearance of generalist insect consumers, suggesting that food web structure is maintained by factors independent of the original trophic linkages. PMID:26405736

  2. Native and nonnative fish populations of the Colorado River are food limited--evidence from new food web analyses

    USGS Publications Warehouse

    Kennedy, Theodore A.; Cross, Wyatt F.; Hall, Robert O., Jr.; Baxter, Colden V.; Rosi-Marshall, Emma J.

    2013-01-01

    Fish populations in the Colorado River downstream from Glen Canyon Dam appear to be limited by the availability of high-quality invertebrate prey. Midge and blackfly production is low and nonnative rainbow trout in Glen Canyon and native fishes in Grand Canyon consume virtually all of the midge and blackfly biomass that is produced annually. In Glen Canyon, the invertebrate assemblage is dominated by nonnative New Zealand mudsnails, the food web has a simple structure, and transfers of energy from the base of the web (algae) to the top of the web (rainbow trout) are inefficient. The food webs in Grand Canyon are more complex relative to Glen Canyon, because, on average, each species in the web is involved in more interactions and feeding connections. Based on theory and on studies from other ecosystems, the structure and organization of Grand Canyon food webs should make them more stable and less susceptible to large changes following perturbations of the flow regime relative to food webs in Glen Canyon. In support of this hypothesis, Grand Canyon food webs were much less affected by a 2008 controlled flood relative to the food web in Glen Canyon.

  3. Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature

    USGS Publications Warehouse

    Croteau, M.-N.; Luoma, S.N.; Stewart, A.R.

    2005-01-01

    We conducted a study with cadmium (Cd) and copper (Cu) in the delta of San Francisco Bay, using nitrogen and carbon stable isotopes to identify trophic position and food web structure. Cadmium is progressively enriched among trophic levels in discrete epiphyte-based food webs composed of macrophyte-dwelling invertebrates (the first link being epiphytic algae) and fishes (the first link being gobies). Cadmium concentrations were biomagnified 15 times within the scope of two trophic links in both food webs. Trophic enrichment in invertebrates was twice that of fishes. No tendency toward trophic-level enrichment was observed for Cu, regardless of whether organisms were sorted by food web or treated on a taxonomic basis within discrete food webs. The greatest toxic effects of Cd are likely to occur with increasing trophic positions, where animals are ingesting Cd-rich prey (or food). In Franks Tract this occurs within discrete food chains composed of macrophyte-dwelling invertebrates or fishes inhabiting submerged aquatic vegetation. Unraveling ecosystem complexity is necessary before species most exposed and at risk can be identified. ?? 2005, by the American Society of Limnology and Oceanography, Inc.

  4. Fun With Food Webs

    ERIC Educational Resources Information Center

    Smith, Karl D.

    1977-01-01

    Explains an upper elementary game of tag that illustrates energy flow in food webs using candy bars as food sources. A follow-up field trip to a river and five language arts projects are also suggested. (CS)

  5. Community food webs

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2002-01-01

    Community food webs describe the feeding relationships, or trophic interactions, between the species of an ecological community. Both the structure and dynamics of such webs are the focus of food web research. The topological structures of empirical food webs from many ecosystems have been published on the basis of field studies and they form the foundation for theory concerning the mean number of trophic levels, the mean number of trophic connections versus number of species, and other food web measures, which show consistency across different ecosystems. The dynamics of food webs are influenced by indirect interactions, in which changes in the level of a population in one part of the food web may have indirect effects throughout the web. The mechanisms of these interactions are typically studied microcosm experiments, or sometimes in-field experiments. The use of mathematical models is also a major approach to understanding the effects of indirect interactions. Both empirical and mathematical studies have revealed important properties of food webs, such as keystone predators and trophic cascades.

  6. Terrestrial-aquatic linkage in stream food webs along a forest chronosequence: multi-isotopic evidence.

    PubMed

    Ishikawa, Naoto F; Togashi, Hiroyuki; Kato, Yoshiyazu; Yoshimura, Mayumi; Kohmatsu, Yukihiro; Yoshimizu, Chikage; Ogawa, Nanako O; Ohte, Nobuhito; Tokuchi, Naoko; Ohkouchi, Naohiko; Tayasu, Ichiro

    2016-05-01

    Long-term monitoring of ecosystem succession provides baseline data for conservation and management, as well as for understanding the dynamics of underlying biogeochemical processes. We examined the effects of deforestation and subsequent afforestation of a riparian forest of Japanese cedar (Cryptomeria japonica) on stable isotope ratios of carbon (δ¹³C) and nitrogen (δ¹⁵N) and natural abundances of radiocarbon (Δ¹⁴C) in stream biota in the Mt. Gomadan Experimental Forest and the Wakayama Forest Research Station, Kyoto University, central Japan. Macroinvertebrates, periphytic algae attached to rock surfaces (periphyton), and leaf litter of terrestrial plants were collected from six headwater streams with similar climate, topography, and bedrock geology, except for the stand ages of riparian forests (from 3 to 49 yr old in five stands and > 90 yr old in one reference stand). Light intensity and δ¹³C values of both periphyton and macroinvertebrates decreased synchronously with forest age in winter. A Bayesian mixing model indicates that periphyton contributions to the stream food webs are maximized in 23-yr-old forests. Except for grazers, most macroinvertebrates showed Δ¹⁴C values similar to those of terrestrial leaf litter, reflecting the influence of modern atmospheric CO₂ Δ¹⁴C values. On the other hand, the Δ¹⁴C values of both periphyton and grazers (i.e., aquatic primary consumers) were significantly lower than that of modern atmospheric CO₂, and were lowest in 23-yr-old forest stands. Previous studies show that root biomass of C. japonica peaks at 15-30 yr after planting. These evidences suggest that soil CO₂ released by root respiration and dispersed by groundwater weathers carbonate substrata, and that dissolved inorganic carbon (DIC) with low Δ¹⁴C is incorporated into stream periphyton and some macroinvertebrates. The ecological response in the studied streams to clear-cutting and replanting of Japanese cedar is much

  7. Properties of food webs

    SciTech Connect

    Pimm, S.L.

    1980-04-01

    On the assumption that systems of interacting species, when perturbed from equilibrium, should return to equilibrium quickly, one can predict four properties of food webs: (1) food chains should be short, (2) species feeding on more than one trophic level (omnivores) should be rare, (3) those species that do feed on more than one trophic level should do so by feeding on species in adjacent trophic levels, and (4) host-parasitoid systems are likely to be exceptions to (1)-(3) when interaction coefficients permit greater trophic complexity. By generating random, model food webs (with many features identical to webs described from a variety of marine, freshwater, and terrestrial systems), it is possible to generate expected values for the number of trophic levels and the degree of omnivory within webs. When compared with these random webs, real world webs are shown to have fewer trophic levels, less omnivory, and very few omnivores feeding on nonadjacent trophic levels. Insect webs are shown to have a greater degree of omnivory than other webs. The confirmation of all these predictions from stability analyses suggests that system stability places necessary, though not sufficient, limitations on the possible shapes of food webs.

  8. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web

    USGS Publications Warehouse

    Fellman, Jason; Hood, Eran; Raymond, Peter A.; Hudson, J.H.; Bozeman, Maura; Arimitsu, Mayumi L.

    2015-01-01

    We used natural abundance δ13C, δ15N, and Δ14C to compare trophic linkages between potential carbon sources (leaf litter, epilithic biofilm, and particulate organic matter) and consumers (aquatic macroinvertebrates and fish) in a nonglacial stream and two reaches of the heavily glaciated Herbert River. We tested the hypothesis that proglacial stream food webs are sustained by organic carbon released from glacial ecosystems. Carbon sources and consumers in the nonglacial stream had carbon isotope values that ranged from -30‰ to -25‰ for δ13C and from -14‰ to 53‰ for Δ14C reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial stream sites was highly Δ14C-depleted (-215‰ to 175‰) relative to the nonglacial stream consistent with the assimilation of ancient glacier organic carbon. IsoSource modeling showed that in upper Herbert River, macroinvertebrates (Δ14C = -171‰ to 22‰) and juvenile salmonids (Δ14C = −102‰ to 17‰) reflected a feeding history of both biofilm (~ 56%) and leaf litter (~ 40%). We estimate that in upper Herbert River on average 36% of the carbon incorporated into consumer biomass is derived from the glacier ecosystem. Thus, 14C-depleted glacial organic carbon was likely transferred to higher trophic levels through a feeding history of bacterial uptake of dissolved organic carbon and subsequent consumption of 14C-depleted biofilm by invertebrates and ultimately fish. Our findings show that the metazoan food web is sustained in part by glacial organic carbon such that future changes in glacial runoff could influence the stability and trophic structure of proglacial aquatic ecosystems.

  9. Link flexibility: evidence for environment-dependent adaptive foraging in a food web time-series.

    PubMed

    Henri, D C; Van Veen, F J F

    2016-06-01

    Temporal variability in the distribution of feeding links in a food web can be an important stabilizing factor for these complex systems. Adaptive foraging and prey choice have been hypothesized to cause this link flexibility as organisms adjust their behavior to variation in the prey community. Here, we analyze a 10-yr time series of monthly aphid-parasitoid-secondary-parasitoid networks and show that interaction strengths for polyphagous secondary parasitoids are generally biased toward the larger host species within their fundamental niche; however, in months of higher competition for hosts, size-based biases are reduced. The results corroborate a previous hypothesis stating that host selectivity of parasitoids should be correlated to the relative likelihood of egg limitation vs. time limitation. Our results evince adaptation of foraging behavior to varying conditions affects the distribution of host-parasitoid link strengths, where link-rewiring may be integral to stability in complex communities. PMID:27459769

  10. Where are the parasites in food webs?

    PubMed Central

    2012-01-01

    This review explores some of the reasons why food webs seem to contain relatively few parasite species when compared to the full diversity of free living species in the system. At present, there are few coherent food web theories to guide scientific studies on parasites, and this review posits that the methods, directions and questions in the field of food web ecology are not always congruent with parasitological inquiry. For example, topological analysis (the primary tool in food web studies) focuses on only one of six important steps in trematode life cycles, each of which requires a stable community dynamic to evolve. In addition, these transmission strategies may also utilize pathways within the food web that are not considered in traditional food web investigations. It is asserted that more effort must be focused on parasite-centric models, and a central theme is that many different approaches will be required. One promising approach is the old energetic perspective, which considers energy as the critical resource for all organisms, and the currency of all food web interactions. From the parasitological point of view, energy can be used to characterize the roles of parasites at all levels in the food web, from individuals to populations to community. The literature on parasite energetics in food webs is very sparse, but the evidence suggests that parasite species richness is low in food webs because parasites are limited by the quantity of energy available to their unique lifestyles. PMID:23092160

  11. Isotopic evidence for methane-based chemosynthesis in the Upper Floridan aquifer food web.

    PubMed

    Opsahl, Stephen P; Chanton, Jeffrey P

    2006-11-01

    Anecdotal observations of the Dougherty plain cave crayfish (Cambarus cryptodytes), the Georgia blind cave salamander (Haideotriton wallacei), and albinistic isopods (Caecidotea sp.) at great depths below the land surface and distant from river corridors suggest that obligate aquifer-dwelling (troglobitic) organisms are widely distributed throughout the limestone Upper Floridan aquifer (UFA). One mechanism by which subterranean life can proliferate in an environment void of plant productivity is through a microbial food web that includes chemosynthesis. We examined this possibility in the UFA by measuring the isotopic composition ((13)C, (14)C, and (15)N) of tissues from troglobitic macrofauna. Organisms that were captured by cave divers entering into spring conduits had delta(13)C values that suggested plant matter as a primary food resource (cave crayfish, -24.6 +/- 2.7 per thousand, n = 9). In contrast, delta(13)C values were significantly depleted in organisms retrieved from wells drilled into areas of the UFA remote from spring and sinkhole conduits (cave crayfish -34.7 +/- 9.8 per thousand, n = 10). Depleted (13)C values in crayfish were correlated with radiocarbon (Delta(14)C) depletion relative to modern values. The results suggest that methane-based microbial chemosynthetic pathways support organisms living in the remote interior of the aquifer, at least in part. PMID:16862438

  12. Early Cambrian origin of modern food webs: evidence from predator arrow worms

    PubMed Central

    Vannier, J; Steiner, M; Renvoisé, E; Hu, S.-X; Casanova, J.-P

    2006-01-01

    Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540–520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey–predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian–Cambrian transition, thus laying the foundations of present-day marine food chains. PMID:17254986

  13. Early Cambrian origin of modern food webs: evidence from predator arrow worms.

    PubMed

    Vannier, J; Steiner, M; Renvoisé, E; Hu, S-X; Casanova, J-P

    2007-03-01

    Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540-520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey-predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian-Cambrian transition, thus laying the foundations of present-day marine food chains. PMID:17254986

  14. Evidence of butyltin biomagnification along the Northern Adriatic food-web (Mediterranean Sea) elucidated by stable isotope ratios.

    PubMed

    Fortibuoni, Tomaso; Noventa, Seta; Rampazzo, Federico; Gion, Claudia; Formalewicz, Malgorzata; Berto, Daniela; Raicevich, Saša

    2013-04-01

    The biomagnification of tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), and total butyltins (ΣBT) was analyzed in the Northern Adriatic food-web (Mediterranean) considering trophodynamic interactions among species and carbon sources in the food-web. Although it is acknowledged that these contaminants bioaccumulate in marine organisms, it is still controversial whether they biomagnify along food-webs. A wide range of species was considered, from plankton feeders to top predators, whose trophic level (TL) was assessed measuring the biological enrichment of nitrogen stable isotopes (δ(15)N). Carbon isotopic signature (δ(13)C) was used to trace carbon sources in the food-web (terrestrial vs marine). At least one butyltin species was detected in the majority of samples, and TBT was the predominant contaminant. A significant positive relationship was found between TL and butyltin concentrations, implying food-web biomagnification. Coherently, the Trophic Magnification Factor resulted higher than 1, ranging between 3.88 for ΣBT and 4.62 for DBT. A negative but not significant correlation was instead found between δ(13)C and butyltin concentrations, indicating a slight decreasing gradient of contaminants concentrations in species according to the coastal influence as carbon source in their diet. However, trophodynamic mechanisms are likely more important factors in determining butyltin distribution in the Northern Adriatic food-web. PMID:23465397

  15. The Great Lakes Food Web.

    ERIC Educational Resources Information Center

    Baker, Marjane L.

    1997-01-01

    Presents a play for students in grades four to nine that incorporates the scientific names, physical characteristics, feeding habits, interactions, and interdependence of the plants and animals that make up the Great Lakes food web to facilitate the learning of this complex system. Includes a Great Lakes food web chart. (AIM)

  16. Phytoplankton fuels Delta food web

    USGS Publications Warehouse

    Jassby, Alan D.; Cloern, James E.; Muller-Solger, A. B.

    2003-01-01

    Populations of certain fishes and invertebrates in the Sacramento-San Joaquin Delta have declined in abundance in recent decades and there is evidence that food supply is partly responsible. While many sources of organic matter in the Delta could be supporting fish populations indirectly through the food web (including aquatic vegetation and decaying organic matter from agricultural drainage), a careful accounting shows that phytoplankton is the dominant food source. Phytoplankton, communities of microscopic free-floating algae, are the most important food source on a Delta-wide scale when both food quantity and quality are taken into account. These microscopic algae have declined since the late 1960s. Fertilizer and pesticide runoff do not appear to be playing a direct role in long-term phytoplankton changes; rather, species invasions, increasing water transparency and fluctuations in water transport are responsible. Although the potential toxicity of herbicides and pesticides to plank- ton in the Delta is well documented, the ecological significance remains speculative. Nutrient inputs from agricultural runoff at current levels, in combination with increasing transparency, could result in harmful al- gal blooms. 

  17. Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish

    NASA Astrophysics Data System (ADS)

    Koussoroplis, Apostolos-Manuel; Bec, Alexandre; Perga, Marie-Elodie; Koutrakis, Emmanuil; Bourdier, Gilles; Desvilettes, Christian

    2011-02-01

    The transfer of fatty acids (FAs) in the food web of a Mediterranean lagoon was studied using FA compositional patterns across several trophic levels. The structure of the food web was inferred from C and N stable isotopes values and an isotope mixing model was used in order to estimate the relative contribution of the different potential food sources to the biomass of consumers. Bidimensional plots of FA composition of food web components against their δ 15N values indicated a general trend of increasing proportions of highly unsaturated fatty acids (HUFAs) with increasing trophic levels while the proportions of saturated fatty acids (SAFAs) and 18-carbon polyunsaturated fatty acids (PUFAs) decreased. Using the relative contributions of food sources to consumers and their FA compositions, a model was built in order to estimate the PUFA composition of consumer mixed diets which was compared to consumer PUFA profiles. The latter allowed the identification of the PUFAs which were mostly enriched/retained in consumer lipids. There was a surprisingly high retention of arachidonic acid (ARA), a trend which challenges the idea of low ARA needs in marine fish and suggests the important physiological role of this essential FA for fish in estuarine environments.

  18. Isotopic evidence for anthropogenic impacts on aquatic food web dynamics and mercury cycling in a subtropical wetland ecosystem in the US.

    PubMed

    Wang, Yang; Gu, Binhe; Lee, Ming-Kuo; Jiang, Shijun; Xu, Yingfeng

    2014-07-15

    Quantifying and predicting the food web consequences of anthropogenic changes is difficult using traditional methods (based on gut content analysis) because natural food webs are variable and complex. Here, stable and radioactive carbon isotopes are used, in conjunction with nitrogen isotopes and mercury (Hg) concentration data, to document the effects of land-use change on food webs and Hg bioaccumulation in the Everglades - a subtropical wetland ecosystem in the US. Isotopic signatures of largemouth bass and sunfish in reference (relatively pristine) wetlands indicate reliance on the food supply of modern primary production within the wetland. In contrast, both fish in areas impacted by agricultural runoff had radiocarbon ages as old as 540 years B.P., and larger isotopic variability than counterparts in reference wetlands, reflecting differences in the food web between impacted and reference wetlands. Consistent with this difference, particulate and dissolved organic matter in impacted areas had old radiocarbon ages (>600 years B.P.), indicating that old carbon derived from historic peat deposits in the Everglades Agricultural Area was passed along the food chain to consumers. Significant radiocarbon deficiencies in largemouth bass and sunfish, relative to mosquitofish, in impacted areas most likely indicate a reduced dependence on small fish. Furthermore, largemouth bass and sunfish from impacted areas had much lower Hg contents than those from reference wetlands. Taken together, these data suggest a shift toward lower trophic levels and a possible reduction in mercury methylation in impacted wetlands. Our study provides clear evidence that hydrological modification and land-use change in the Everglades have changed the system from one driven primarily by in-situ productivity to one that is partially dependent on allochthonous carbon input from peat soils in the agricultural area and altered the Hg biogeochemical cycle in the wetlands. The results have

  19. Parasites in food webs: the ultimate missing links.

    PubMed

    Lafferty, Kevin D; Allesina, Stefano; Arim, Matias; Briggs, Cherie J; De Leo, Giulio; Dobson, Andrew P; Dunne, Jennifer A; Johnson, Pieter T J; Kuris, Armand M; Marcogliese, David J; Martinez, Neo D; Memmott, Jane; Marquet, Pablo A; McLaughlin, John P; Mordecai, Erin A; Pascual, Mercedes; Poulin, Robert; Thieltges, David W

    2008-06-01

    Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists. PMID:18462196

  20. Parasites in food webs: the ultimate missing links

    PubMed Central

    Lafferty, Kevin D; Allesina, Stefano; Arim, Matias; Briggs, Cherie J; De Leo, Giulio; Dobson, Andrew P; Dunne, Jennifer A; Johnson, Pieter T J; Kuris, Armand M; Marcogliese, David J; Martinez, Neo D; Memmott, Jane; Marquet, Pablo A; McLaughlin, John P; Mordecai, Erin A; Pascual, Mercedes; Poulin, Robert; Thieltges, David W

    2008-01-01

    Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists. PMID:18462196

  1. Stable-isotope analysis of a deep-sea benthic-fish assemblage: evidence of an enriched benthic food web.

    PubMed

    Boyle, M D; Ebert, D A; Cailliet, G M

    2012-04-01

    In this study, fishes and invertebrates collected from the continental slope (1000 m) of the eastern North Pacific Ocean were analysed using stable-isotope analysis (SIA). Resulting trophic positions (T(P) ) were compared to known diets and habitats from the literature. Dual isotope plots indicated that most species groups (invertebrates and fishes) sorted as expected along the carbon and nitrogen axes, with less intraspecific variability than interspecific variability. Results also indicated an isotopically distinct benthic and pelagic food web, as the benthic food web was more enriched in both nitrogen and carbon isotopes. Trophic positions from SIA supported this finding, resulting in the assignment of fishes to different trophic positions from those expected based on published dietary information. These differences can be explained largely by the habitat of the prey and the percentage of the diet that was scavenged. A mixing model estimated dietary contributions of prey similar to those of the known diet of Bathyraja trachura from stomach-content analysis (SCA). Linear regressions indicated that trophic positions calculated from SIA and SCA, when plotted against B. trachura total length for 32 individuals, exhibited similar variation and patterns. Only the T(P) from SCA yielded significant results (stomach content: P < 0·05, stable isotope: P > 0·05). PMID:22497394

  2. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs.

    PubMed

    Wiley, Anne E; Ostrom, Peggy H; Welch, Andreanna J; Fleischer, Robert C; Gandhi, Hasand; Southon, John R; Stafford, Thomas W; Penniman, Jay F; Hu, Darcy; Duvall, Fern P; James, Helen F

    2013-05-28

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ(15)N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel. PMID:23671094

  3. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs

    PubMed Central

    Wiley, Anne E.; Ostrom, Peggy H.; Welch, Andreanna J.; Fleischer, Robert C.; Gandhi, Hasand; Southon, John R.; Stafford, Thomas W.; Penniman, Jay F.; Hu, Darcy; Duvall, Fern P.; James, Helen F.

    2013-01-01

    Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ15N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel. PMID:23671094

  4. Evidence for the Incorporation of Terrestrial Carbon in Arctic Coastal Food Webs in the Western Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Dunton, K.; Weingartner, T.; Carmack, E.

    2006-12-01

    The nearshore shelf of the Beaufort Sea is defined by extreme physical and biological gradients that have a distinctive influence on its productivity and trophic structure. Massive freshwater discharge from the Mackenzie River, along with numerous smaller rivers and streams elsewhere along the coast, produce an environment that is decidedly estuarine in character, especially in late spring and summer. Because of its low in situ productivity, allochthonous inputs of organic carbon, identifiable on the basis of isotopic values, are important to the functioning of this arctic estuarine system. Coastal erosion and river discharge are largely responsible for introducing high concentrations of suspended sediment from upland regions into the nearshore zone. The depletion in the 13C content of invertebrate and vertebrate consumers, which drops about 4-5 ppt eastward along the eastern Alaskan Beaufort Sea coast, may reflect the assimilation of this terrestrial organic matter into local food webs. Isotopic tracer studies of amphidromous fishes in the Simpson Island barrier island lagoon ecosystem revealed that terrestrial (peat) carbon may contribute as much as 30 to 50% of their total dietary requirements. On the eastern Alaska Beaufort Sea coast, carbon isotopic values of arctic cod collected in semi-enclosed lagoons were more depleted by 3-4 ppt compared to fish collected in the coastal Beaufort Sea. Calculations from isotopic mixing equations indicate cod from lagoons may derive 70% of their carbon from terrestrial sources. Nitrogen isotopic values of lagoon fish were also 4 ppt lower than coastal specimens, reflective of the lower del 15N values of terrestrial derived nitrogen (0-1.5 ppt compared to 5-7 ppt for phytoplankton). The possible role of terrestrially derived carbon to arctic estuarine food webs is especially important in view of the current warming trend in the arctic environment and the role of advective processes that transport carbon along the nearshore

  5. Evidence for benthic-pelagic food web coupling and carbon export from California margin bamboo coral archives

    NASA Astrophysics Data System (ADS)

    Hill, T. M.; Myrvold, C. R.; Spero, H. J.; Guilderson, T. P.

    2014-02-01

    Deep-sea bamboo corals (order Gorgonacea, family Isididae) are known to record changes in water mass chemistry over decades to centuries. These corals are composed of a two-part skeleton of calcite internodes segmented by gorgonin organic nodes. We examine the spatial variability of bamboo coral organic node 13C/12C and 15N/14N from thirteen bamboo coral specimens sampled along the California margin (37-32° N; 792 to 2136 m depth). Radiocarbon analyses of the organic nodes show the presence of the anthropogenic bomb spike, indicating the corals utilize a surface-derived food source (pre-bomb D14C values of ∼ -100‰, post-bomb values to 82‰). Carbon and nitrogen isotope data from the organic nodes (13C = -15.9‰ to -19.2‰ 15N = 13.8‰ to 19.4‰) suggest selective feeding on surface-derived organic matter or zooplankton. A strong relationship between coral 15N and habitat depth indicate a potential archive of changing carbon export, with decreased 15N values reflecting reduced microbial degradation (increased carbon flux) at shallower depths. Using four multi-centennial length coral records, we interpret long-term 15N stability in the California Current. Organic node 13C values record differences in carbon isotope fractionation dictated by nearshore vs. offshore primary production. These findings imply strong coupling between primary production, pelagic food webs, and deep-sea benthic communities.

  6. Insect symbionts in food webs

    PubMed Central

    Henry, Lee M.

    2016-01-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481779

  7. Insect symbionts in food webs.

    PubMed

    McLean, Ailsa H C; Parker, Benjamin J; Hrček, Jan; Henry, Lee M; Godfray, H Charles J

    2016-09-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481779

  8. Modeling the microbial food web.

    PubMed

    Ducklow, H W

    1994-09-01

    Models of the microbial food web have their origin in the debate over the importance of bacteria as an energetic subsidy for higher trophic levels leading to harvestable fisheries. Conceptualization of the microbial food web preceded numerical models by 10-15 years. Pomeroy's work was central to both efforts. Elements necessary for informative and comprehensive models of microbial loops in plankton communities include coupled carbon and nitrogen flows utilizing a size-based approach to structuring and parameterizing the food web. Realistic formulation of nitrogen flows requires recognition that both nitrogenous and nonnitrogenous organic matter are important substrates for bacteria. Nitrogen regeneration driven by simple mass-specific excretion constants seems to overestimate the role of bacteria in the regeneration process. Quantitative assessment of the link-sink question, in which the original loop models are grounded, requires sophisticated analysis of size-based trophic structures. The effects of recycling complicate calculation of the link between bacteria or dissolved organic matter and mesozooplankton, and indirect effects show that the link might be much stronger than simple analyses have suggested. Examples drawn from a series of oceanic mixed layer plankton models are used to illustrate some of these points. Single-size class models related to traditional P-Z-N approaches are incapable of simulating bacterial biomass cycles in some locations (e.g., Bermuda) but appear to be adequate for more strongly seasonal regimes at higher latitudes. PMID:24186459

  9. Evidence for benthic-pelagic food web coupling and carbon export from California margin bamboo coral archives

    NASA Astrophysics Data System (ADS)

    Hill, T. M.; Myrvold, C. R.; Spero, H. J.; Guilderson, T. P.

    2014-07-01

    Deep-sea bamboo corals (order Gorgonacea, family Isididae) are known to record changes in water mass chemistry over decades to centuries. These corals are composed of a two-part skeleton of calcite internodes segmented by gorgonin organic nodes. We examine the spatial variability of bamboo coral organic node 13C/12C and 15N/14N from 13 bamboo coral specimens sampled along the California margin (37-32° N, 792-2136 m depth). Radiocarbon analyses of the organic nodes show the presence of the anthropogenic bomb spike, indicating the corals utilize a surface-derived food source (pre-bomb D14C values of ∼-100‰, post-bomb values up to 82‰). Carbon and nitrogen isotope data from the organic nodes (δ13C = -15.9‰ to -19.2‰; δ15N = 13.8‰ to 19.4‰) suggest selective feeding on surface-derived organic matter or zooplankton. A strong relationship between coral δ15N and habitat depth indicates a potential archive of changing carbon export, with decreased δ15N values reflecting reduced microbial degradation (increased carbon flux) at shallower depths. Using four multi-centennial-length coral records, we interpret long-term δ15N stability in the California Current. Organic node δ15C values record differences in carbon isotope fractionation dictated by nearshore vs. offshore primary production. These findings imply strong coupling between primary production, pelagic food webs, and deep-sea benthic communities.

  10. Mycoloop: chytrids in aquatic food webs

    PubMed Central

    Kagami, Maiko; Miki, Takeshi; Takimoto, Gaku

    2014-01-01

    Parasites are ecologically significant in various ecosystems through their role in shaping food web structure, facilitating energy transfer, and controlling disease. Here in this review, we mainly focus on parasitic chytrids, the dominant parasites in aquatic ecosystems, and explain their roles in aquatic food webs, particularly as prey for zooplankton. Chytrids have a free-living zoosporic stage, during which they actively search for new hosts. Zoospores are excellent food for zooplankton in terms of size, shape, and nutritional quality. In the field, densities of chytrids can be high, ranging from 101 to 109 spores L−1. When large inedible phytoplankton species are infected by chytrids, nutrients within host cells are transferred to zooplankton via the zoospores of parasitic chytrids. This new pathway, the “mycoloop,” may play an important role in shaping aquatic ecosystems, by altering sinking fluxes or determining system stability. The grazing of zoospores by zooplankton may also suppress outbreaks of parasitic chytrids. A food web model demonstrated that the contribution of the mycoloop to zooplankton production increased with nutrient availability and was also dependent on the stability of the system. Further studies with advanced molecular tools are likely to discover greater chytrid diversity and evidence of additional mycoloops in lakes and oceans. PMID:24795703

  11. Mycoloop: chytrids in aquatic food webs.

    PubMed

    Kagami, Maiko; Miki, Takeshi; Takimoto, Gaku

    2014-01-01

    Parasites are ecologically significant in various ecosystems through their role in shaping food web structure, facilitating energy transfer, and controlling disease. Here in this review, we mainly focus on parasitic chytrids, the dominant parasites in aquatic ecosystems, and explain their roles in aquatic food webs, particularly as prey for zooplankton. Chytrids have a free-living zoosporic stage, during which they actively search for new hosts. Zoospores are excellent food for zooplankton in terms of size, shape, and nutritional quality. In the field, densities of chytrids can be high, ranging from 10(1) to 10(9) spores L(-1). When large inedible phytoplankton species are infected by chytrids, nutrients within host cells are transferred to zooplankton via the zoospores of parasitic chytrids. This new pathway, the "mycoloop," may play an important role in shaping aquatic ecosystems, by altering sinking fluxes or determining system stability. The grazing of zoospores by zooplankton may also suppress outbreaks of parasitic chytrids. A food web model demonstrated that the contribution of the mycoloop to zooplankton production increased with nutrient availability and was also dependent on the stability of the system. Further studies with advanced molecular tools are likely to discover greater chytrid diversity and evidence of additional mycoloops in lakes and oceans. PMID:24795703

  12. Climate change: A rewired food web

    NASA Astrophysics Data System (ADS)

    Blanchard, Julia L.

    2015-11-01

    Climate change is causing large fish species to move into arctic marine environments. A network analysis finds that these fishes, with their generalist diets, add links to the existing food web that may alter biodiversity and web stability.

  13. Parasites in marine food webs

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  14. Food Web Topology in High Mountain Lakes

    PubMed Central

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  15. Food Web Topology in High Mountain Lakes.

    PubMed

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  16. The inverse niche model for food webs with parasites

    USGS Publications Warehouse

    Warren, Christopher P.; Pascual, Mercedes; Lafferty, Kevin D.; Kuris, Armand M.

    2010-01-01

    Although parasites represent an important component of ecosystems, few field and theoretical studies have addressed the structure of parasites in food webs. We evaluate the structure of parasitic links in an extensive salt marsh food web, with a new model distinguishing parasitic links from non-parasitic links among free-living species. The proposed model is an extension of the niche model for food web structure, motivated by the potential role of size (and related metabolic rates) in structuring food webs. The proposed extension captures several properties observed in the data, including patterns of clustering and nestedness, better than does a random model. By relaxing specific assumptions, we demonstrate that two essential elements of the proposed model are the similarity of a parasite's hosts and the increasing degree of parasite specialization, along a one-dimensional niche axis. Thus, inverting one of the basic rules of the original model, the one determining consumers' generality appears critical. Our results support the role of size as one of the organizing principles underlying niche space and food web topology. They also strengthen the evidence for the non-random structure of parasitic links in food webs and open the door to addressing questions concerning the consequences and origins of this structure.

  17. Integrating food web diversity, structure and stability.

    PubMed

    Rooney, Neil; McCann, Kevin S

    2012-01-01

    Given the unprecedented rate of species extinctions facing the planet, understanding the causes and consequences of species diversity in ecosystems is of paramount importance. Ecologists have investigated both the influence of environmental variables on species diversity and the influence of species diversity on ecosystem function and stability. These investigations have largely been carried out without taking into account the overarching stabilizing structures of food webs that arise from evolutionary and successional processes and that are maintained through species interactions. Here, we argue that the same large-scale structures that have been purported to convey stability to food webs can also help to understand both the distribution of species diversity in nature and the relationship between species diversity and food web stability. Specifically, the allocation of species diversity to slow energy channels within food webs results in the skewed distribution of interactions strengths that has been shown to confer stability to complex food webs. We end by discussing the processes that might generate and maintain the structured, stable and diverse food webs observed in nature. PMID:21944861

  18. Food Chain to Food Web: A Natural Progression?

    ERIC Educational Resources Information Center

    Webb, Paul; Boltt, Gill

    1990-01-01

    Investigated is the ability of high school pupils and university students to answer questions based on relationships within food webs using sound ecological principles. Research methods used and the results of this study are discussed. (CW)

  19. Simple Rules Yield Complex Food Webs

    NASA Astrophysics Data System (ADS)

    Martinez, Neo

    2003-03-01

    Several of the most ambitious theories in ecology describe food webs that document the structure of strong and weak trophic links among diverse assemblages of species. Early mechanism-based theory asserted that food webs have little omnivory and several properties that are independent of species richness. This theory was overturned by empirical studies that found food webs to be much more complex, but these studies did not provide mechanistic explanations for the complexity. Here we show that a remarkably simple model fills this scientific void by successfully predicting key structural properties of the most complex and comprehensive food webs in the primary literature. These properties include the fractions of species at top, intermediate and basal trophic levels, the means and variabilities of generality, vulnerability and food-chain length, and the degrees of cannibalism, omnivory, looping and trophic similarity. More recent tests using an expanded empirical base show that our model also successfully predicts the degrees of separation, degree distributions, and sensitivities to error and attack found in large complex food webs. Using only two empirical parameters, species number and connectance, our `niche model' extends the existing `cascade model' and improves its fit by constraining species to consume a contiguous sequence of prey in a one-dimensional trophic niche. The simplicity and success of the model has allowed new advances in the combined study of the structure and nonlinear dynamics of ecological networks.

  20. Parasites in the Wadden Sea food web

    NASA Astrophysics Data System (ADS)

    Thieltges, David W.; Engelsma, Marc Y.; Wendling, Carolin C.; Wegner, K. Mathias

    2013-09-01

    While the free-living fauna of the Wadden Sea has received much interest, little is known on the distribution and effects of parasites in the Wadden Sea food web. However, recent studies on this special type of trophic interaction indicate a high diversity of parasites in the Wadden Sea and suggest a multitude of effects on the hosts. This also includes effects on specific predator-prey relationships and the general structure of the food web. Focussing on molluscs, a major group in the Wadden Sea in terms of biomass and abundance and an important link between primary producers and predators, we review existing studies and exemplify the ecological role of parasites in the Wadden Sea food web. First, we give a brief inventory of parasites occurring in the Wadden Sea, ranging from microparasites (e.g. protozoa, bacteria) to macroparasites (e.g. helminths, parasitic copepods) and discuss the effects of spatial scale on heterogeneities in infection levels. We then demonstrate how parasites can affect host population dynamics by acting as a strong mortality factor, causing mollusc mass mortalities. In addition, we will exemplify how parasites can mediate the interaction strength of predator-prey relationships and affect the topological structure of the Wadden Sea food web as a whole. Finally, we highlight some ongoing changes regarding parasitism in the Wadden Sea in the course of global change (e.g. species introduction, climate change) and identify important future research questions to entangle the role of parasites in the Wadden Sea food web.

  1. Structure and seasonal variability of fish food webs in an estuarine tropical marine protected area (Senegal): Evidence from stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Faye, Djibril; Tito de Morais, Luis; Raffray, Jean; Sadio, Oumar; Thiaw, Omar Thiom; Le Loc'h, François

    2011-05-01

    West African tropical estuaries play an important role in the growth and survival of many commercially exploited fish species and enable the sustainability of considerable artisanal fishery yields. However, their trophic functioning remains poorly understood. In the Sine Saloum estuary (Senegal), a marine protected area (MPAs) was designated in 2003 to manage fisheries resources. The present study aimed to determine the structure, trophic functioning and seasonal patterns of the fish assemblages in this MPA. Throughout the study, 28 fish species were collected, with higher values of biomass (3826 kg km -2) recorded during the wet season and lower values during the dry season (1228 kg km -2). Fish assemblages in both seasons were dominated by species with marine affinity, which accounted for 87% of the total biomass in the wet season and 70% in the dry season, with their abundance varying from 83% to 57%, respectively. Based on stable isotopic composition (δ 13C and δ 15N), species were combined into trophic groups. Primary consumers were partitioned into suspensivores (pelagic copepods, oysters and mussels), which fed mainly on particulate organic matter, and intermediate consumers, feeding on freshly deposited organic matter and benthic microalgae ( Sarotherodon melanotheron and Arca senilis). Secondary consumers were divided into three groups. The first group included mullet, which fed by grazing on benthic microalgae (benthic affinity feeders). The second group, pelagic affinity feeders, was the most heterogeneous and fed mainly on pelagic components. The last secondary consumer group termed the intermediate group, included piscivores and benthic and pelagic invertebrate feeders, which dominated the top of the food web. The food chain in October was lengthened due to the occurrence of tertiary consumers. Food webs were dominated by secondary consumers, which constituted 89% of total biomass in the dry season and 71% in the wet season. The fish food web varied

  2. Simple rules yield complex food webs.

    PubMed

    Williams, R J; Martinez, N D

    2000-03-01

    Several of the most ambitious theories in ecology describe food webs that document the structure of strong and weak trophic links that is responsible for ecological dynamics among diverse assemblages of species. Early mechanism-based theory asserted that food webs have little omnivory and several properties that are independent of species richness. This theory was overturned by empirical studies that found food webs to be much more complex, but these studies did not provide mechanistic explanations for the complexity. Here we show that a remarkably simple model fills this scientific void by successfully predicting key structural properties of the most complex and comprehensive food webs in the primary literature. These properties include the fractions of species at top, intermediate and basal trophic levels, the means and variabilities of generality, vulnerability and food-chain length, and the degrees of cannibalism, omnivory, looping and trophic similarity. Using only two empirical parameters, species number and connectance, our 'niche model' extends the existing 'cascade model and improves its fit ten-fold by constraining species to consume a contiguous sequence of prey in a one-dimensional trophic niche. PMID:10724169

  3. Simple rules yield complex food webs

    NASA Astrophysics Data System (ADS)

    Williams, Richard J.; Martinez, Neo D.

    2000-03-01

    Several of the most ambitious theories in ecology describe food webs that document the structure of strong and weak trophic links that is responsible for ecological dynamics among diverse assemblages of species. Early mechanism-based theory asserted that food webs have little omnivory and several properties that are independent of species richness. This theory was overturned by empirical studies that found food webs to be much more complex, but these studies did not provide mechanistic explanations for the complexity. Here we show that a remarkably simple model fills this scientific void by successfully predicting key structural properties of the most complex and comprehensive food webs in the primary literature. These properties include the fractions of species at top, intermediate and basal trophic levels, the means and variabilities of generality, vulnerability and food-chain length, and the degrees of cannibalism, omnivory, looping and trophic similarity. Using only two empirical parameters, species number and connectance, our `niche model' extends the existing `cascade model' and improves its fit ten-fold by constraining species to consume a contiguous sequence of prey in a one-dimensional trophic niche.

  4. Food Webs in an Estuary.

    ERIC Educational Resources Information Center

    Dunne, Barbara B.

    The Maryland Marine Science Education Project has produced a series of mini-units in marine science education for the junior high/middle school classroom. This unit focuses on food chains in an estuary. Although the unit specifically treats the Chesapeake Bay, it may be adapted for use with similar estuarine systems. In addition, the unit may be…

  5. IsoWeb: A Bayesian Isotope Mixing Model for Diet Analysis of the Whole Food Web

    PubMed Central

    Kadoya, Taku; Osada, Yutaka; Takimoto, Gaku

    2012-01-01

    Quantitative description of food webs provides fundamental information for the understanding of population, community, and ecosystem dynamics. Recently, stable isotope mixing models have been widely used to quantify dietary proportions of different food resources to a focal consumer. Here we propose a novel mixing model (IsoWeb) that estimates diet proportions of all consumers in a food web based on stable isotope information. IsoWeb requires a topological description of a food web, and stable isotope signatures of all consumers and resources in the web. A merit of IsoWeb is that it takes into account variation in trophic enrichment factors among different consumer-resource links. Sensitivity analysis using realistic hypothetical food webs suggests that IsoWeb is applicable to a wide variety of food webs differing in the number of species, connectance, sample size, and data variability. Sensitivity analysis based on real topological webs showed that IsoWeb can allow for a certain level of topological uncertainty in target food webs, including erroneously assuming false links, omission of existent links and species, and trophic aggregation into trophospecies. Moreover, using an illustrative application to a real food web, we demonstrated that IsoWeb can compare the plausibility of different candidate topologies for a focal web. These results suggest that IsoWeb provides a powerful tool to analyze food-web structure from stable isotope data. We provide R and BUGS codes to aid efficient applications of IsoWeb. PMID:22848427

  6. Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures.

    PubMed

    Yen, Jian D L; Cabral, Reniel B; Cantor, Mauricio; Hatton, Ian; Kortsch, Susanne; Patrício, Joana; Yamamichi, Masato

    2016-03-01

    Trophic interactions are central to ecosystem functioning, but the link between food web structure and ecosystem functioning remains obscure. Regularities (i.e. consistent patterns) in food web structure suggest the possibility of regularities in ecosystem functioning, which might be used to relate structure to function. We introduce a novel, genetic algorithm approach to simulate food webs with maximized throughput (a proxy for ecosystem functioning) and compare the structure of these simulated food webs to real empirical food webs using common metrics of food web structure. We repeat this analysis using robustness to secondary extinctions (a proxy for ecosystem resilience) instead of throughput to determine the relative contributions of ecosystem functioning and ecosystem resilience to food web structure. Simulated food webs that maximized robustness were similar to real food webs when connectance (i.e. levels of interaction across the food web) was high, but this result did not extend to food webs with low connectance. Simulated food webs that maximized throughput or a combination of throughput and robustness were not similar to any real food webs. Simulated maximum-throughput food webs differed markedly from maximum-robustness food webs, which suggests that maximizing different ecological functions can generate distinct food web structures. Based on our results, food web structure would appear to have a stronger relationship with ecosystem resilience than with ecosystem throughput. Our genetic algorithm approach is general and is well suited to large, realistically complex food webs. Genetic algorithms can incorporate constraints on structure and can generate outputs that can be compared directly to empirical data. Our method can be used to explore a range of maximization or minimization hypotheses, providing new perspectives on the links between structure and function in ecological systems. PMID:26749320

  7. Food-Web Structure of Seagrass Communities across Different Spatial Scales and Human Impacts

    PubMed Central

    Coll, Marta; Schmidt, Allison; Romanuk, Tamara; Lotze, Heike K.

    2011-01-01

    Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis

  8. DEEPWATER AND NEARSHORE FOOD WEB CHARACTERIZATIONS IN LAKE SUPERIOR

    EPA Science Inventory

    Due to the difficulty associated with sampling deep aquatic systems, food web relationships among deepwater fauna are often poorly known. We are characterizing nearshore versus offshore habitats in the Great Lakes and investigating food web linkages among profundal, pelagic, and ...

  9. Changes in host-parasitoid food web structure with elevation.

    PubMed

    Maunsell, Sarah C; Kitching, Roger L; Burwell, Chris J; Morris, Rebecca J

    2015-03-01

    Gradients in elevation are increasingly used to investigate how species respond to changes in local climatic conditions. Whilst many studies have shown elevational patterns in species richness and turnover, little is known about how food web structure is affected by elevation. Contrasting responses of predator and prey species to elevation may lead to changes in food web structure. We investigated how the quantitative structure of a herbivore-parasitoid food web changes with elevation in an Australian subtropical rain forest. On four occasions, spread over 1 year, we hand-collected leaf miners at twelve sites, along three elevational gradients (between 493 m and 1159 m a.s.l). A total of 5030 insects, including 603 parasitoids, were reared, and summary food webs were created for each site. We also carried out a replicated manipulative experiment by translocating an abundant leaf-mining weevil Platynotocis sp., which largely escaped parasitism at high elevations (≥ 900 m a.s.l.), to lower, warmer elevations, to test if it would experience higher parasitism pressure. We found strong evidence that the environmental change that occurs with increasing elevation affects food web structure. Quantitative measures of generality, vulnerability and interaction evenness decreased significantly with increasing elevation (and decreasing temperature), whilst elevation did not have a significant effect on connectance. Mined plant composition also had a significant effect on generality and vulnerability, but not on interaction evenness. Several relatively abundant species of leaf miner appeared to escape parasitism at higher elevations, but contrary to our prediction, Platynotocis sp. did not experience greater levels of parasitism when translocated to lower elevations. Our study indicates that leaf-mining herbivores and their parasitoids respond differently to environmental conditions imposed by elevation, thus producing structural changes in their food webs. Increasing

  10. Trophic coherence determines food-web stability

    PubMed Central

    Johnson, Samuel; Domínguez-García, Virginia; Donetti, Luca; Muñoz, Miguel A.

    2014-01-01

    Why are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence—a hitherto ignored feature of food webs that current structural models fail to reproduce—is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable. We also propose a simple model that, by correctly capturing the trophic coherence of food webs, accurately reproduces their stability and other basic structural features. Most remarkably, our model shows that stability can increase with size and complexity. This suggests a key to May’s paradox, and a range of opportunities and concerns for biodiversity conservation. PMID:25468963

  11. Trophic coherence determines food-web stability.

    PubMed

    Johnson, Samuel; Domínguez-García, Virginia; Donetti, Luca; Muñoz, Miguel A

    2014-12-16

    Why are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence--a hitherto ignored feature of food webs that current structural models fail to reproduce--is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable. We also propose a simple model that, by correctly capturing the trophic coherence of food webs, accurately reproduces their stability and other basic structural features. Most remarkably, our model shows that stability can increase with size and complexity. This suggests a key to May's paradox, and a range of opportunities and concerns for biodiversity conservation. PMID:25468963

  12. Stable isotope evidence of terrestrial organic matter incorporation into coastal marine food webs: impact of Rhone River inputs on five NW Mediterranean marine flatfish species.

    NASA Astrophysics Data System (ADS)

    Darnaude, A. M.; Salen-Picard, C.; Harmelin-Vivien, M.

    2003-04-01

    The positive influence of land-based run-off on coastal fishery production is thought to be of particular importance for oligotrophic seas such as the Mediterranean. In order to estimate the impact of the Rhone River inputs of particulate organic matter (POM) on exploited demersal fish populations, stable isotope signature in nitrogen (δ15N) and carbon (δ13C) were determined for both juveniles and adults of the five main flatfish species living off the Rhone delta (Arnoglossus laterna, Buglossidium luteum, Citharus linguatula, Solea impar and Solea solea) and the main components of their food webs. The five flatfish species showed inter and intra-specific differences in isotopic signatures. The δ15N significantly increased from the smallest species to the largest ones and, in all species, from juveniles to adults (P<0.05), which indicated a global increase in trophic level with fish body size. Concerning the carbon signature, the δ13C obtained indicated an incorporation of organic material from terrestrial origin in the flesh of all the species. This incorporation was minimum for C. linguatula and reduced for all the species with the exception of S. solea for which a significantly (P<0.001) lower δ13C indicated an important use of organic matter from terrestrial origin. Mean δ13C values also differed significantly between juveniles and adults of B. luteum and S. impar (P<0.05), suggesting changes in terrestrial organic matter use with growth in these two species. To explain inter and intra-specific differences in δ13C, stable isotope data were compared with gut content analyses (prey % total contents mass, W%) performed on the same fishes. The δ13C signature of fishes was inversely related to the W% of polychaetes in their diet, and not to other prey categories. The common sole S. solea, that fed mainly on polychaetes (W% > 50% at all benthic stages of life), exhibited the most negative mean δ13C for both juveniles and adults among all the fish species

  13. Assimilation of Diazotrophic Nitrogen into Pelagic Food Webs

    PubMed Central

    Woodland, Ryan J.; Holland, Daryl P.; Beardall, John; Smith, Jonathan; Scicluna, Todd; Cook, Perran L. M.

    2013-01-01

    The fate of diazotrophic nitrogen (ND) fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that ND fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable ND (exuded from viable cyanobacterial cells) by palatable phytoplankton or microbial consortia. Alternatively, ND can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable ND (e.g., nitrate, ammonium) by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom) would be the primary pathway by which ND was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of ND by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of ND from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of ND to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-ND pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that ND can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes underlying the propagation of ND

  14. Current trends in food web theory report on a food web workshop. Environmental Sciences Division Publication No. 2224

    SciTech Connect

    DeAngelis, D.L.; Post, W.M.; Sugihara, G.

    1983-10-01

    This report summarizes the Food Web Workshop, held at Fontana Village Inn, October 25-27, 1982. The objective of the workshop was to review and assess recent progress in the understanding of ecological food webs. The workshop focused on three main areas: (1) what has been observed of food web patterns (food chain length, intervality, predator-prey ratios, etc.), (2) processes involved in food chains (energy flow and nutrient cycles), and (3) the dynamic behavior of food webs (Lyapunov stability, resilience, etc.). The introduction reviews some of the important contributions to food web theory during the past decade. The synopses of the presentations by invited speakers address many of the specific themes in current thought on food webs.

  15. Gaining insight into food webs reconstructed by the inverse method

    NASA Astrophysics Data System (ADS)

    Kones, Julius K.; Soetaert, Karline; van Oevelen, Dick; Owino, John O.; Mavuti, Kenneth

    2006-04-01

    The use of the inverse method to analyze flow patterns of organic components in ecological systems has had wide application in ecological modeling. Through this approach, an infinite number of food web flows describing the food web and satisfying biological constraints are generated, from which one (parsimonious) solution is drawn. Here we address two questions: (1) is there justification for the use of the parsimonious solution or is there a better alternative and (2) can we use the infinitely many solutions that describe the same food web to give more insight into the system? We reassess two published food webs, from the Gulf of Riga in the Baltic Sea and the Takapoto Atoll lagoon in the South Pacific. A finite number of random food web solutions is first generated using the Monte Carlo simulation technique. Using the Wilcoxon signed ranks test, we cannot find significant differences in the parsimonious solution and the average values of the finite random solutions generated. However, as the food web composed of the average flows has more attractive properties, the choice of the parsimonious solution to describe underdetermined food webs is challenged. We further demonstrate the use of the factor analysis technique to characterize flows that are closely related in the food web. Through this process sub-food webs are extracted within the plausible set of food webs, a property that can be utilized to gain insight into the sampling strategy for further constraining of the model.

  16. Food web structure of the epibenthic and infaunal invertebrates on the Catalan slope (NW Mediterranean): Evidence from δ 13C and δ 15N analysis

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Papiol, V.; Cartes, J. E.; Rumolo, P.; Brunet, C.; Sprovieri, M.

    2011-01-01

    The food-web structure of the epibenthic and infaunal invertebrates on the continental slope of the Catalan Sea (Balearic basin, NW Mediterranean) was investigated using carbon and nitrogen stable isotopes on a total of 34 species, and HPLC pigment analyses for three key species. Samples were collected close to Barcelona (NE Iberian Peninsula), between 650 and 800 m depth and between February 2007 and February 2008. Mean δ 13C values ranged from -21.0‰ (small Calocaris macandreae and Amphipholis squamata) to -14.5‰ ( Sipunculus norvegicus). Values of δ 15N ranged from 4.0‰ ( A. squamata) to 12.1‰ ( Molpadia musculus). The stable isotope ratios of benthic fauna displayed a continuum of values (e.g. δ 15N range of 8‰), confirming a wide spectrum of feeding strategies (from active suspension feeders to predators) and complex food webs. According to the available information on diets of benthic fauna, the lowest values were found for surface deposit feeders (small C. macandrae and the two ophiuroids A. squamata and Amphiura chiajei) and active suspension feeders ( Abra longicallus and Scalpellum scalpellum) feeding on different sizes of particulate organic matter (POM), among which small particles may exhibit lower δ 15N. High annual mean δ 15N values were found among sub-surface deposit feeders, exploiting refractory or frequently recycled organic matter that is enriched in δ 15N. Carnivorous polychaetes ( Nephtys spp., Oenonidae and Polynoidae) and large decapods ( Geryon longipes and Paromola cuvieri) also displayed high δ 15N values. δ 13C ranges were particularly wide among surface deposit feeders (ranging from -21.0‰ to -16.4‰), suggesting exploitation of POM of both terrigenous and oceanic origins. Correlation between δ 13C and δ 15N was generally weak, indicating multiple carbon sources, likely due to the consumption of different kinds of sinking particles (e.g. marine snow, phytodetritus, etc.), sedimented and frequently recycled POM

  17. Food Web Structure Shapes the Morphology of Teleost Fish Brains.

    PubMed

    Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric

    2016-01-01

    Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology. PMID:27216606

  18. Complementary molecular information changes our perception of food web structure

    PubMed Central

    Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas

    2014-01-01

    How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902

  19. Simulation approach to understanding the processes that structure food webs

    SciTech Connect

    Jager, H.I.; Gardner, R.H.; DeAngelis, D.L.; Post, W.M.

    1984-08-01

    A simulation model of food web dynamics, WEB, was constructed and used in Monte Carlo experiments to study the relationship between structure and function in food webs. Four main experiments were designed using WEB. The first tested the robustness of food web structures at equilibrium to variations in the functional response of predators in the food web to the densities of their prey. The second experiment clarified the roles of predation and resource limitation in the process of structuring food webs. A third experiment studied the influence of productivity on food web structure and function using simulated food webs. The final experiment was designed to study the differential successes of generalists and specialists. The main advantage gained by using a simulation approach in each of these experiments was the ability to assess the roles played by processes of predation and competition in structuring model food webs. This was accomplished by interpreting the order of extinction events that occurred in the simulations and relating these to the species configurations at equilibrium. 61 references, 23 figures.

  20. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    USGS Publications Warehouse

    Thieltges, David W.; Amundsen, Per-Arne; Hechinger, Ryan F.; Johnson, Pieter T.J.; Lafferty, Levin D.; Mouritsen, Kim N.; Preston, Daniel L.; Reise, Karsten; Zander, C. Dieter; Poulin, Robert

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free-living parasite life-cycle stages (4–30%). Parasite life-cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.

  1. Multiple sources of isotopic variation in a terrestrial arthropod community: challenges for disentangling food webs.

    PubMed

    Daugherty, Matthew P; Briggs, Cheryl J

    2007-08-01

    Documenting trophic links in a food web has traditionally required complex exclusion experiments coupled with extraordinarily labor-intensive direct observations of predator foraging. Newer techniques such as stable isotope analysis (SIA) may facilitate relatively quick and accurate assessments of consumer feeding behavior. Ratios of N and C isotopes are thought to be useful for determining species' trophic position (e.g., 1 degrees consumer, 2 degrees consumer, or omnivore) and their original carbon source (e.g., C3 or C4 plants; terrestrial or marine nutrients). Thus far, however, applications of stable isotopes to terrestrial arthropod food webs have suggested that high taxon-specific variation may undermine the effectiveness of this method. We applied stable isotope analysis to a pear orchard food web, in which biological control of a dominant pest, pear psylla (Cacopsylla pyricola), involves primarily generalist arthropod predators with a high frequency of omnivory. We found multiple sources of isotopic variation in this food web, including differences among plant tissues; time, stage, and taxon-specific differences among herbivores (despite similar feeding modes); and high taxon-specific variation among predators (with no clear evidence of omnivory). Collectively, these multiple sources of isotopic variation blur our view of the structure of this food web. Idiosyncrasies in consumer trophic shifts make ad hoc application of SIA to even moderately complex food webs intractable. SIA may not be a generally applicable "quick and dirty" method for delineating terrestrial food web structure-not without calibration of specific consumer food trophic shifts. PMID:17716468

  2. Consequences of symbiosis for food web dynamics.

    PubMed

    Kooi, B W; Kuijper, L D J; Kooijman, S A L M

    2004-09-01

    Basic Lotka-Volterra type models in which mutualism (a type of symbiosis where the two populations benefit both) is taken into account, may give unbounded solutions. We exclude such behaviour using explicit mass balances and study the consequences of symbiosis for the long-term dynamic behaviour of a three species system, two prey and one predator species in the chemostat. We compose a theoretical food web where a predator feeds on two prey species that have a symbiotic relationships. In addition to a species-specific resource, the two prey populations consume the products of the partner population as well. In turn, a common predator forages on these prey populations. The temporal change in the biomass and the nutrient densities in the reactor is described by ordinary differential equations (ODE). Since products are recycled, the dynamics of these abiotic materials must be taken into account as well, and they are described by odes in a similar way as the abiotic nutrients. We use numerical bifurcation analysis to assess the long-term dynamic behaviour for varying degrees of symbiosis. Attractors can be equilibria, limit cycles and chaotic attractors depending on the control parameters of the chemostat reactor. These control parameters that can be experimentally manipulated are the nutrient density of the inflow medium and the dilution rate. Bifurcation diagrams for the three species web with a facultative symbiotic association between the two prey populations, are similar to that of a bi-trophic food chain; nutrient enrichment leads to oscillatory behaviour. Predation combined with obligatory symbiotic prey-interactions has a stabilizing effect, that is, there is stable coexistence in a larger part of the parameter space than for a bi-trophic food chain. However, combined with a large growth rate of the predator, the food web can persist only in a relatively small region of the parameter space. Then, two zero-pair bifurcation points are the organizing centers. In

  3. Characteristics of Food Industry Web Sites and "Advergames" Targeting Children

    ERIC Educational Resources Information Center

    Culp, Jennifer; Bell, Robert A.; Cassady, Diana

    2010-01-01

    Objective: To assess the content of food industry Web sites targeting children by describing strategies used to prolong their visits and foster brand loyalty; and to document health-promoting messages on these Web sites. Design: A content analysis was conducted of Web sites advertised on 2 children's networks, Cartoon Network and Nickelodeon. A…

  4. A "Bottom-Up" Approach to Food Web Construction

    ERIC Educational Resources Information Center

    Demetriou, Dorita; Korfiatis, Konstantinos; Constantinou, Constantinos

    2009-01-01

    The ability to comprehend trophic (nutritional) relationships and food web dynamics is an essential part of environmental literacy. However, students face severe difficulties in grasping the variety of causal patterns in food webs. We propose a curriculum for comprehending trophic relations in elementary school. The curriculum allows students to…

  5. Predicting the stability of large structured food webs.

    PubMed

    Allesina, Stefano; Grilli, Jacopo; Barabás, György; Tang, Si; Aljadeff, Johnatan; Maritan, Amos

    2015-01-01

    The stability of ecological systems has been a long-standing focus of ecology. Recently, tools from random matrix theory have identified the main drivers of stability in ecological communities whose network structure is random. However, empirical food webs differ greatly from random graphs. For example, their degree distribution is broader, they contain few trophic cycles, and they are almost interval. Here we derive an approximation for the stability of food webs whose structure is generated by the cascade model, in which 'larger' species consume 'smaller' ones. We predict the stability of these food webs with great accuracy, and our approximation also works well for food webs whose structure is determined empirically or by the niche model. We find that intervality and broad degree distributions tend to stabilize food webs, and that average interaction strength has little influence on stability, compared with the effect of variance and correlation. PMID:26198207

  6. Predicting the stability of large structured food webs

    PubMed Central

    Allesina, Stefano; Grilli, Jacopo; Barabás, György; Tang, Si; Aljadeff, Johnatan; Maritan, Amos

    2015-01-01

    The stability of ecological systems has been a long-standing focus of ecology. Recently, tools from random matrix theory have identified the main drivers of stability in ecological communities whose network structure is random. However, empirical food webs differ greatly from random graphs. For example, their degree distribution is broader, they contain few trophic cycles, and they are almost interval. Here we derive an approximation for the stability of food webs whose structure is generated by the cascade model, in which ‘larger' species consume ‘smaller' ones. We predict the stability of these food webs with great accuracy, and our approximation also works well for food webs whose structure is determined empirically or by the niche model. We find that intervality and broad degree distributions tend to stabilize food webs, and that average interaction strength has little influence on stability, compared with the effect of variance and correlation. PMID:26198207

  7. A role for brain size and cognition in food webs.

    PubMed

    Edmunds, Nicholas B; Laberge, Frédéric; McCann, Kevin S

    2016-08-01

    Predators tend to be large and mobile, enabling them to forage in spatially distinct food web compartments (e.g. littoral and pelagic aquatic macrohabitats). This feature can stabilise ecosystems when predators are capable of rapid behavioural response to changing resource conditions in distinct habitat compartments. However, what provides this ability to respond behaviourally has not been quantified. We hypothesised that predators require increased cognitive abilities to occupy their position in a food web, which puts pressure to increase brain size. Consistent with food web theory, we found that fish relative brain size increased with increased ability to forage across macrohabitats and increased relative trophic positions in a lacustrine food web, indicating that larger brains may afford the cognitive capacity to exploit various habitats flexibly, thus contributing to the stability of whole food webs. PMID:27339557

  8. Food-web dynamics in a large river discontinuum

    USGS Publications Warehouse

    Cross, Wyatt F.; Baxter, Colden V.; Rosi-Marshall, Emma J.; Hall, Robert O., Jr.; Kennedy, Theodore A.; Donner, Kevin C.; Kelly, Holly A. Wellard; Seegert, Sarah E.Z.; Behn, Kathrine E.; Yard, Michael D.

    2013-01-01

    Nearly all ecosystems have been altered by human activities, and most communities are now composed of interacting species that have not co-evolved. These changes may modify species interactions, energy and material flows, and food-web stability. Although structural changes to ecosystems have been widely reported, few studies have linked such changes to dynamic food-web attributes and patterns of energy flow. Moreover, there have been few tests of food-web stability theory in highly disturbed and intensely managed freshwater ecosystems. Such synthetic approaches are needed for predicting the future trajectory of ecosystems, including how they may respond to natural or anthropogenic perturbations. We constructed flow food webs at six locations along a 386-km segment of the Colorado River in Grand Canyon (Arizona, USA) for three years. We characterized food-web structure and production, trophic basis of production, energy efficiencies, and interaction-strength distributions across a spatial gradient of perturbation (i.e., distance from Glen Canyon Dam), as well as before and after an experimental flood. We found strong longitudinal patterns in food-web characteristics that strongly correlated with the spatial position of large tributaries. Above tributaries, food webs were dominated by nonnative New Zealand mudsnails (62% of production) and nonnative rainbow trout (100% of fish production). The simple structure of these food webs led to few dominant energy pathways (diatoms to few invertebrate taxa to rainbow trout), large energy inefficiencies (i.e., Below large tributaries, invertebrate production declined ∼18-fold, while fish production remained similar to upstream sites and comprised predominately native taxa (80–100% of production). Sites below large tributaries had increasingly reticulate and detritus-based food webs with a higher prevalence of omnivory, as well as interaction strength distributions more typical of theoretically stable food webs (i

  9. Food marketing on popular children's web sites: a content analysis.

    PubMed

    Alvy, Lisa M; Calvert, Sandra L

    2008-04-01

    In 2006 the Institute of Medicine (IOM) concluded that food marketing was a contributor to childhood obesity in the United States. One recommendation of the IOM committee was for research on newer marketing venues, such as Internet Web sites. The purpose of this cross-sectional study was to answer the IOM's call by examining food marketing on popular children's Web sites. Ten Web sites were selected based on market research conducted by KidSay, which identified favorite sites of children aged 8 to 11 years during February 2005. Using a standardized coding form, these sites were examined page by page for the existence, type, and features of food marketing. Web sites were compared using chi2 analyses. Although food marketing was not pervasive on the majority of the sites, seven of the 10 Web sites contained food marketing. The products marketed were primarily candy, cereal, quick serve restaurants, and snacks. Candystand.com, a food product site, contained a significantly greater amount of food marketing than the other popular children's Web sites. Because the foods marketed to children are not consistent with a healthful diet, nutrition professionals should consider joining advocacy groups to pressure industry to reduce online food marketing directed at youth. PMID:18375231

  10. Adaptations in a hierarchical food web of southeastern Lake Michigan

    USGS Publications Warehouse

    Krause, Ann E.; Frank, Ken A.; Jones, Michael L.; Nalepa, Thomas F.; Barbiero, Richard P.; Madenjian, Charles P.; Agy, Megan; Evans, Marlene S.; Taylor, William W.; Mason, Doran M.; Leonard, Nancy J.

    2009-01-01

    Two issues in ecological network theory are: (1) how to construct an ecological network model and (2) how do entire networks (as opposed to individual species) adapt to changing conditions? We present a novel method for constructing an ecological network model for the food web of southeastern Lake Michigan (USA) and we identify changes in key system properties that are large relative to their uncertainty as this ecological network adapts from one time point to a second time point in response to multiple perturbations. To construct our food web for southeastern Lake Michigan, we followed the list of seven recommendations outlined in Cohen et al. [Cohen, J.E., et al., 1993. Improving food webs. Ecology 74, 252–258] for improving food webs. We explored two inter-related extensions of hierarchical system theory with our food web; the first one was that subsystems react to perturbations independently in the short-term and the second one was that a system's properties change at a slower rate than its subsystems’ properties. We used Shannon's equations to provide quantitative versions of the basic food web properties: number of prey, number of predators, number of feeding links, and connectance (or density). We then compared these properties between the two time-periods by developing distributions of each property for each time period that took uncertainty about the property into account. We compared these distributions, and concluded that non-overlapping distributions indicated changes in these properties that were large relative to their uncertainty. Two subsystems were identified within our food web system structure (p < 0.001). One subsystem had more non-overlapping distributions in food web properties between Time 1 and Time 2 than the other subsystem. The overall system had all overlapping distributions in food web properties between Time 1 and Time 2. These results supported both extensions of hierarchical systems theory. Interestingly, the subsystem with more

  11. Application of information theory methods to food web reconstruction

    USGS Publications Warehouse

    Moniz, L.J.; Cooch, E.G.; Ellner, S.P.; Nichols, J.D.; Nichols, J.M.

    2007-01-01

    In this paper we use information theory techniques on time series of abundances to determine the topology of a food web. At the outset, the food web participants (two consumers, two resources) are known; in addition we know that each consumer prefers one of the resources over the other. However, we do not know which consumer prefers which resource, and if this preference is absolute (i.e., whether or not the consumer will consume the non-preferred resource). Although the consumers and resources are identified at the beginning of the experiment, we also provide evidence that the consumers are not resources for each other, and the resources do not consume each other. We do show that there is significant mutual information between resources; the model is seasonally forced and some shared information between resources is expected. Similarly, because the model is seasonally forced, we expect shared information between consumers as they respond to the forcing of the resources. The model that we consider does include noise, and in an effort to demonstrate that these methods may be of some use in other than model data, we show the efficacy of our methods with decreasing time series size; in this particular case we obtain reasonably clear results with a time series length of 400 points. This approaches ecological time series lengths from real systems.

  12. Differential incorporation of natural spawners vs. artificially planted salmon carcasses in a stream food web: Evidence from delta 15N of juvenile coho salmon

    EPA Science Inventory

    Placement of salmon carcasses is a common restoration technique in Oregon and Washington streams, with the goal of improving food resources and productivity of juvenile salmon. To explore the effectiveness of this restoration technique, we measured the δ15N of juvenile coho salmo...

  13. Isotopic Diversity Indices: How Sensitive to Food Web Structure?

    PubMed Central

    Brind'Amour, Anik; Dubois, Stanislas F.

    2013-01-01

    Recently revisited, the concept of niche ecology has lead to the formalisation of functional and trophic niches using stable isotope ratios. Isotopic diversity indices (IDI) derived from a set of measures assessing the dispersion/distribution of points in the δ-space were recently suggested and increasingly used in the literature. However, three main critics emerge from the use of these IDI: 1) they fail to account for the isotopic sources overlap, 2) some indices are highly sensitive to the number of species and/or the presence of rare species, and 3) the lack of standardization prevents any spatial and temporal comparisons. Using simulations we investigated the ability of six commonly used IDI to discriminate among different trophic food web structures, with a focus on the first two critics. We tested the sensitivity of the IDI to five food web structures along a gradient of sources overlap, varying from two distinct food chains with differentiated sources to two superimposed food chains sharing two sources. For each of the food web structure we varied the number of species (from 10 to 100 species) and the type of species feeding behaviour (i.e. random or selective feeding). Values of IDI were generally larger in food webs with distinct basal sources and tended to decrease as the superimposition of the food chains increased. This was more pronounced when species displayed food preferences in comparison to food webs where species fed randomly on any prey. The number of species composing the food web also had strong effects on the metrics, including those that were supposedly less sensitive to small sample size. In all cases, computing IDI on food webs with low numbers of species always increases the uncertainty of the metrics. A threshold of ∼20 species was detected above which several metrics can be safely used. PMID:24391910

  14. Isotopic diversity indices: how sensitive to food web structure?

    PubMed

    Brind'Amour, Anik; Dubois, Stanislas F

    2013-01-01

    Recently revisited, the concept of niche ecology has lead to the formalisation of functional and trophic niches using stable isotope ratios. Isotopic diversity indices (IDI) derived from a set of measures assessing the dispersion/distribution of points in the δ-space were recently suggested and increasingly used in the literature. However, three main critics emerge from the use of these IDI: 1) they fail to account for the isotopic sources overlap, 2) some indices are highly sensitive to the number of species and/or the presence of rare species, and 3) the lack of standardization prevents any spatial and temporal comparisons. Using simulations we investigated the ability of six commonly used IDI to discriminate among different trophic food web structures, with a focus on the first two critics. We tested the sensitivity of the IDI to five food web structures along a gradient of sources overlap, varying from two distinct food chains with differentiated sources to two superimposed food chains sharing two sources. For each of the food web structure we varied the number of species (from 10 to 100 species) and the type of species feeding behaviour (i.e. random or selective feeding). Values of IDI were generally larger in food webs with distinct basal sources and tended to decrease as the superimposition of the food chains increased. This was more pronounced when species displayed food preferences in comparison to food webs where species fed randomly on any prey. The number of species composing the food web also had strong effects on the metrics, including those that were supposedly less sensitive to small sample size. In all cases, computing IDI on food webs with low numbers of species always increases the uncertainty of the metrics. A threshold of ~20 species was detected above which several metrics can be safely used. PMID:24391910

  15. Compilation and network analyses of cambrian food webs.

    PubMed

    Dunne, Jennifer A; Williams, Richard J; Martinez, Neo D; Wood, Rachel A; Erwin, Douglas H

    2008-04-29

    A rich body of empirically grounded theory has developed about food webs--the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple "niche model," which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body

  16. Tracking contaminant flux from aquatic to terrestrial food webs

    EPA Science Inventory

    Aquatic insects provide a critical energy subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated aquatic resource utilization and contaminant exposure among riparian invertivores (spiders and herpt...

  17. Using food-web theory to conserve ecosystems.

    PubMed

    McDonald-Madden, E; Sabbadin, R; Game, E T; Baxter, P W J; Chadès, I; Possingham, H P

    2016-01-01

    Food-web theory can be a powerful guide to the management of complex ecosystems. However, we show that indices of species importance common in food-web and network theory can be a poor guide to ecosystem management, resulting in significantly more extinctions than necessary. We use Bayesian Networks and Constrained Combinatorial Optimization to find optimal management strategies for a wide range of real and hypothetical food webs. This Artificial Intelligence approach provides the ability to test the performance of any index for prioritizing species management in a network. While no single network theory index provides an appropriate guide to management for all food webs, a modified version of the Google PageRank algorithm reliably minimizes the chance and severity of negative outcomes. Our analysis shows that by prioritizing ecosystem management based on the network-wide impact of species protection rather than species loss, we can substantially improve conservation outcomes. PMID:26776253

  18. Using food-web theory to conserve ecosystems

    PubMed Central

    McDonald-Madden, E.; Sabbadin, R.; Game, E. T.; Baxter, P. W. J.; Chadès, I.; Possingham, H. P.

    2016-01-01

    Food-web theory can be a powerful guide to the management of complex ecosystems. However, we show that indices of species importance common in food-web and network theory can be a poor guide to ecosystem management, resulting in significantly more extinctions than necessary. We use Bayesian Networks and Constrained Combinatorial Optimization to find optimal management strategies for a wide range of real and hypothetical food webs. This Artificial Intelligence approach provides the ability to test the performance of any index for prioritizing species management in a network. While no single network theory index provides an appropriate guide to management for all food webs, a modified version of the Google PageRank algorithm reliably minimizes the chance and severity of negative outcomes. Our analysis shows that by prioritizing ecosystem management based on the network-wide impact of species protection rather than species loss, we can substantially improve conservation outcomes. PMID:26776253

  19. Exposing the structure of an Arctic food web

    PubMed Central

    Wirta, Helena K; Vesterinen, Eero J; Hambäck, Peter A; Weingartner, Elisabeth; Rasmussen, Claus; Reneerkens, Jeroen; Schmidt, Niels M; Gilg, Olivier; Roslin, Tomas

    2015-01-01

    How food webs are structured has major implications for their stability and dynamics. While poorly studied to date, arctic food webs are commonly assumed to be simple in structure, with few links per species. If this is the case, then different parts of the web may be weakly connected to each other, with populations and species united by only a low number of links. We provide the first highly resolved description of trophic link structure for a large part of a high-arctic food web. For this purpose, we apply a combination of recent techniques to describing the links between three predator guilds (insectivorous birds, spiders, and lepidopteran parasitoids) and their two dominant prey orders (Diptera and Lepidoptera). The resultant web shows a dense link structure and no compartmentalization or modularity across the three predator guilds. Thus, both individual predators and predator guilds tap heavily into the prey community of each other, offering versatile scope for indirect interactions across different parts of the web. The current description of a first but single arctic web may serve as a benchmark toward which to gauge future webs resolved by similar techniques. Targeting an unusual breadth of predator guilds, and relying on techniques with a high resolution, it suggests that species in this web are closely connected. Thus, our findings call for similar explorations of link structure across multiple guilds in both arctic and other webs. From an applied perspective, our description of an arctic web suggests new avenues for understanding how arctic food webs are built and function and of how they respond to current climate change. It suggests that to comprehend the community-level consequences of rapid arctic warming, we should turn from analyses of populations, population pairs, and isolated predator–prey interactions to considering the full set of interacting species. PMID:26380710

  20. Exposing the structure of an Arctic food web.

    PubMed

    Wirta, Helena K; Vesterinen, Eero J; Hambäck, Peter A; Weingartner, Elisabeth; Rasmussen, Claus; Reneerkens, Jeroen; Schmidt, Niels M; Gilg, Olivier; Roslin, Tomas

    2015-09-01

    How food webs are structured has major implications for their stability and dynamics. While poorly studied to date, arctic food webs are commonly assumed to be simple in structure, with few links per species. If this is the case, then different parts of the web may be weakly connected to each other, with populations and species united by only a low number of links. We provide the first highly resolved description of trophic link structure for a large part of a high-arctic food web. For this purpose, we apply a combination of recent techniques to describing the links between three predator guilds (insectivorous birds, spiders, and lepidopteran parasitoids) and their two dominant prey orders (Diptera and Lepidoptera). The resultant web shows a dense link structure and no compartmentalization or modularity across the three predator guilds. Thus, both individual predators and predator guilds tap heavily into the prey community of each other, offering versatile scope for indirect interactions across different parts of the web. The current description of a first but single arctic web may serve as a benchmark toward which to gauge future webs resolved by similar techniques. Targeting an unusual breadth of predator guilds, and relying on techniques with a high resolution, it suggests that species in this web are closely connected. Thus, our findings call for similar explorations of link structure across multiple guilds in both arctic and other webs. From an applied perspective, our description of an arctic web suggests new avenues for understanding how arctic food webs are built and function and of how they respond to current climate change. It suggests that to comprehend the community-level consequences of rapid arctic warming, we should turn from analyses of populations, population pairs, and isolated predator-prey interactions to considering the full set of interacting species. PMID:26380710

  1. Barcoding a Quantified Food Web: Crypsis, Concepts, Ecology and Hypotheses

    PubMed Central

    Smith, M. Alex; Eveleigh, Eldon S.; McCann, Kevin S.; Merilo, Mark T.; McCarthy, Peter C.; Van Rooyen, Kathleen I.

    2011-01-01

    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana – SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD) – the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the “bird feeder effect”) and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future

  2. The role of microorganisms in a planktonic food web of a floodplain lake.

    PubMed

    Segovia, Bianca Trevizan; Pereira, Danielle Goeldner; Bini, Luis Mauricio; de Meira, Bianca Ramos; Nishida, Verônica Sayuri; Lansac-Tôha, Fabio Amodêo; Velho, Luiz Felipe Machado

    2015-02-01

    Food webs include complex ecological interactions that define the flow of matter and energy, and are fundamental in understanding the functioning of an ecosystem. Temporal variations in the densities of communities belonging to the planktonic food web (i.e., microbial: bacteria, flagellate, and ciliate; and grazing: zooplankton and phytoplankton) were investigated, aiming to clarify the interactions between these organisms and the dynamics of the planktonic food web in a floodplain lake. We hypothesized that hydrological pulse determines the path of matter and energy flow through the planktonic food web of this floodplain lake. Data were collected monthly from March 2007 to February 2008 at three different sites in Guaraná Lake (Mato Grosso do Sul State, Brazil). The path analysis provided evidence that the dynamics of the planktonic food web was strongly influenced by the hydrological pulse. The high-water period favored interactions among the organisms of the microbial loop, rather than their relationships with zooplankton and phytoplankton. Therefore, in this period, the strong interaction among the organisms of the grazing food chain suggests that the microbial loop functions as a sink of matter and energy. In turn, in the low-water period, higher primary productivity appeared to favor different interactions between the components of the grazing food chain and microorganisms, which would function as a link to the higher trophic levels. PMID:25213653

  3. Compilation and Network Analyses of Cambrian Food Webs

    PubMed Central

    Dunne, Jennifer A; Williams, Richard J; Martinez, Neo D; Wood, Rachel A; Erwin, Douglas H

    2008-01-01

    A rich body of empirically grounded theory has developed about food webs—the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple “niche model,” which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species

  4. Phylogeny versus body size as determinants of food web structure

    PubMed Central

    Naisbit, Russell E.; Rohr, Rudolf P.; Rossberg, Axel G.; Kehrli, Patrik; Bersier, Louis-Félix

    2012-01-01

    Food webs are the complex networks of trophic interactions that stoke the metabolic fires of life. To understand what structures these interactions in natural communities, ecologists have developed simple models to capture their main architectural features. However, apparently realistic food webs can be generated by models invoking either predator–prey body-size hierarchies or evolutionary constraints as structuring mechanisms. As a result, this approach has not conclusively revealed which factors are the most important. Here we cut to the heart of this debate by directly comparing the influence of phylogeny and body size on food web architecture. Using data from 13 food webs compiled by direct observation, we confirm the importance of both factors. Nevertheless, phylogeny dominates in most networks. Moreover, path analysis reveals that the size-independent direct effect of phylogeny on trophic structure typically outweighs the indirect effect that could be captured by considering body size alone. Furthermore, the phylogenetic signal is asymmetric: closely related species overlap in their set of consumers far more than in their set of resources. This is at odds with several food web models, which take only the view-point of consumers when assigning interactions. The echo of evolutionary history clearly resonates through current food webs, with implications for our theoretical models and conservation priorities. PMID:22628467

  5. Genetic variation, predator–prey interactions and food web structure

    PubMed Central

    Moya-Laraño, Jordi

    2011-01-01

    Food webs are networks of species that feed on each other. The role that within-population phenotypic and genetic variation plays in food web structure is largely unknown. Here, I show via simulation how variation in two key traits, growth rates and phenology, by influencing the variability of body sizes present through time, can potentially affect several structural parameters in the direction of enhancing food web persistence: increased connectance, decreased interaction strengths, increased variation among interaction strengths and increased degree of omnivory. I discuss other relevant traits whose variation could affect the structure of food webs, such as morphological and additional life-history traits, as well as animal personalities. Furthermore, trait variation could also contribute to the stability of food web modules through metacommunity dynamics. I propose future research to help establish a link between within-population variation and food web structure. If appropriately established, such a link could have important consequences for biological conservation, as it would imply that preserving (functional) genetic variation within populations could ensure the preservation of entire communities. PMID:21444316

  6. Food Web Assembly Rules for Generalized Lotka-Volterra Equations

    PubMed Central

    Haerter, Jan O.; Mitarai, Namiko; Sneppen, Kim

    2016-01-01

    In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species. PMID:26828363

  7. Inducible defenses in food webs: Chapter 3.4

    USGS Publications Warehouse

    Vos, Matthijs; Kooi, Bob W.; DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    This chapter reviews the predicted effects of induced defenses on trophic structure and two aspects of stability, “local” stability and persistence, as well as presenting novel results on a third, resilience. Food webs are structures of populations in a given location organized according to their predator–prey interactions. Interaction strengths and, therefore, prey defenses are generally recognized as important ecological factors affecting food webs. Despite this, surprisingly, little light has been shed on the food web-level consequences of inducible defenses. Inducible defenses occur in many taxa in both terrestrial and aquatic food webs. They include refuge use, reduced activity, adaptive life history changes, the production of toxins, synomones and extrafloral nectar, and the formation of colonies, helmets, thorns, or spines. In the chapter, theoretical results for the effects of inducible defenses on trophic structure and the three aspects of stability are reviewed. This is done, in part, using bifurcation analysis—a type of analysis that is applied to nonlinear dynamic systems described by a set of ordinary differential or difference equations. The work presented in the chapter suggests that heterogeneity, as caused by induced defenses in prey species, has major effects on the functioning of food webs. Inducible defenses occur in many species in both aquatic and terrestrial systems, and theoretical work indicates they have major effects on important food web properties such as trophic structure, local stability, persistence, and resilience.

  8. Food Web Assembly Rules for Generalized Lotka-Volterra Equations.

    PubMed

    Haerter, Jan O; Mitarai, Namiko; Sneppen, Kim

    2016-02-01

    In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species. PMID:26828363

  9. Soil Food Web Changes during Spontaneous Succession at Post Mining Sites: A Possible Ecosystem Engineering Effect on Food Web Organization?

    PubMed Central

    Frouz, Jan; Thébault, Elisa; Pižl, Václav; Adl, Sina; Cajthaml, Tomáš; Baldrián, Petr; Háněl, Ladislav; Starý, Josef; Tajovský, Karel; Materna, Jan; Nováková, Alena; de Ruiter, Peter C.

    2013-01-01

    Parameters characterizing the structure of the decomposer food web, biomass of the soil microflora (bacteria and fungi) and soil micro-, meso- and macrofauna were studied at 14 non-reclaimed 1– 41-year-old post-mining sites near the town of Sokolov (Czech Republic). These observations on the decomposer food webs were compared with knowledge of vegetation and soil microstructure development from previous studies. The amount of carbon entering the food web increased with succession age in a similar way as the total amount of C in food web biomass and the number of functional groups in the food web. Connectance did not show any significant changes with succession age, however. In early stages of the succession, the bacterial channel dominated the food web. Later on, in shrub-dominated stands, the fungal channel took over. Even later, in the forest stage, the bacterial channel prevailed again. The best predictor of fungal bacterial ratio is thickness of fermentation layer. We argue that these changes correspond with changes in topsoil microstructure driven by a combination of plant organic matter input and engineering effects of earthworms. In early stages, soil is alkaline, and a discontinuous litter layer on the soil surface promotes bacterial biomass growth, so the bacterial food web channel can dominate. Litter accumulation on the soil surface supports the development of the fungal channel. In older stages, earthworms arrive, mix litter into the mineral soil and form an organo-mineral topsoil, which is beneficial for bacteria and enhances the bacterial food web channel. PMID:24260281

  10. Stable Isotope Tracers of Process in Great Lakes Food Webs

    EPA Science Inventory

    Stable isotope analyses of biota are now commonly used to discern trophic pathways between consumers and their foods. However, those same isotope data also hold information about processes that influence the physicochemical setting of food webs as well as biological processes ope...

  11. The use of stable isotopes for food web analysis.

    PubMed

    Wada, E; Mizutani, H; Minagawa, M

    1991-01-01

    General aspects in isotope biogeochemistry was summarized with emphasis on delta 15N and delta 13C contents in plants and animals in natural ecosystems. In the estuary, the variation of isotope ratios were principally governed by the mixing of land-derived organic matter, marine phytoplankton, and seagrasses. A clear cut linear relationship between animal delta 15N and its trophic level was obtained in the Antarctic food chain system. Several current efforts to use the stable isotopes for food web analysis were demonstrated for some terrestrial and marine systems as well as human food web. PMID:1910519

  12. Environmental controls on food web regimes: A fluvial perspective

    NASA Astrophysics Data System (ADS)

    Power, Mary E.

    2006-02-01

    Because food web regimes control the biomass of primary producers (e.g., plants or algae), intermediate consumers (e.g., invertebrates), and large top predators (tuna, killer whales), they are of societal as well as academic interest. Some controls over food web regimes may be internal, but many are mediated by conditions or fluxes over large spatial scales. To understand locally observed changes in food webs, we must learn more about how environmental gradients and boundaries affect the fluxes of energy, materials, or organisms through landscapes or seascapes that influence local species interactions. Marine biologists and oceanographers have overcome formidable challenges of fieldwork on the high seas to make remarkable progress towards this goal. In river drainage networks, we have opportunities to address similar questions at smaller spatial scales, in ecosystems with clear physical structure and organization. Despite these advantages, we still have much to learn about linkages between fluxes from watershed landscapes and local food webs in river networks. Longitudinal (downstream) gradients in productivity, disturbance regimes, and habitat structure exert strong effects on the organisms and energy sources of river food webs, but their effects on species interactions are just beginning to be explored. In fluid ecosystems with less obvious physical structure, like the open ocean, discerning features that control the movement of organisms and affect food web dynamics is even more challenging. In both habitats, new sensing, tracing and mapping technologies have revealed how landscape or seascape features (e.g., watershed divides, ocean fronts or circulation cells) channel, contain or concentrate organisms, energy and materials. Field experiments and direct in situ observations of basic natural history, however, remain as vital as ever in interpreting the responses of biota to these features. We need field data that quantify the many spatial and temporal scales of

  13. Eelgrass (Zostera marina) Food Web Structure in Different Environmental Settings

    PubMed Central

    Thormar, Jonas; Hasler-Sheetal, Harald; Baden, Susanne; Boström, Christoffer; Clausen, Kevin Kuhlmann; Krause-Jensen, Dorte; Olesen, Birgit; Rasmussen, Jonas Ribergaard; Svensson, Carl Johan; Holmer, Marianne

    2016-01-01

    This study compares the structure of eelgrass (Zostera marina L.) meadows and associated food webs in two eelgrass habitats in Denmark, differing in exposure, connection to the open sea, nutrient enrichment and water transparency. Meadow structure strongly reflected the environmental conditions in each habitat. The eutrophicated, protected site had higher biomass of filamentous algae, lower eelgrass biomass and shoot density, longer and narrower leaves, and higher above to below ground biomass ratio compared to the less nutrient-enriched and more exposed site. The faunal community composition and food web structure also differed markedly between sites with the eutrophicated, enclosed site having higher biomass of consumers and less complex food web. These relationships resulted in a column shaped biomass distribution of the consumers at the eutrophicated site whereas the less nutrient-rich site showed a pyramidal biomass distribution of consumers coupled with a more diverse consumer community. The differences in meadow and food web structure of the two seagrass habitats, suggest how physical setting may shape ecosystem response and resilience to anthropogenic pressure. We encourage larger, replicated studies to further disentangle the effects of different environmental variables on seagrass food web structure. PMID:26752412

  14. Eelgrass (Zostera marina) Food Web Structure in Different Environmental Settings.

    PubMed

    Thormar, Jonas; Hasler-Sheetal, Harald; Baden, Susanne; Boström, Christoffer; Clausen, Kevin Kuhlmann; Krause-Jensen, Dorte; Olesen, Birgit; Rasmussen, Jonas Ribergaard; Svensson, Carl Johan; Holmer, Marianne

    2016-01-01

    This study compares the structure of eelgrass (Zostera marina L.) meadows and associated food webs in two eelgrass habitats in Denmark, differing in exposure, connection to the open sea, nutrient enrichment and water transparency. Meadow structure strongly reflected the environmental conditions in each habitat. The eutrophicated, protected site had higher biomass of filamentous algae, lower eelgrass biomass and shoot density, longer and narrower leaves, and higher above to below ground biomass ratio compared to the less nutrient-enriched and more exposed site. The faunal community composition and food web structure also differed markedly between sites with the eutrophicated, enclosed site having higher biomass of consumers and less complex food web. These relationships resulted in a column shaped biomass distribution of the consumers at the eutrophicated site whereas the less nutrient-rich site showed a pyramidal biomass distribution of consumers coupled with a more diverse consumer community. The differences in meadow and food web structure of the two seagrass habitats, suggest how physical setting may shape ecosystem response and resilience to anthropogenic pressure. We encourage larger, replicated studies to further disentangle the effects of different environmental variables on seagrass food web structure. PMID:26752412

  15. Key Features of Intertidal Food Webs That Support Migratory Shorebirds

    PubMed Central

    Saint-Béat, Blanche; Dupuy, Christine; Bocher, Pierrick; Chalumeau, Julien; De Crignis, Margot; Fontaine, Camille; Guizien, Katell; Lavaud, Johann; Lefebvre, Sébastien; Montanié, Hélène; Mouget, Jean-Luc; Orvain, Francis; Pascal, Pierre-Yves; Quaintenne, Gwenaël; Radenac, Gilles; Richard, Pierre; Robin, Frédéric; Vézina, Alain F.; Niquil, Nathalie

    2013-01-01

    The migratory shorebirds of the East Atlantic flyway land in huge numbers during a migratory stopover or wintering on the French Atlantic coast. The Brouage bare mudflat (Marennes-Oléron Bay, NE Atlantic) is one of the major stopover sites in France. The particular structure and function of a food web affects the efficiency of carbon transfer. The structure and functioning of the Brouage food web is crucial for the conservation of species landing within this area because it provides sufficient food, which allows shorebirds to reach the north of Europe where they nest. The aim of this study was to describe and understand which food web characteristics support nutritional needs of birds. Two food-web models were constructed, based on in situ measurements that were made in February 2008 (the presence of birds) and July 2008 (absence of birds). To complete the models, allometric relationships and additional data from the literature were used. The missing flow values of the food web models were estimated by Monte Carlo Markov Chain – Linear Inverse Modelling. The flow solutions obtained were used to calculate the ecological network analysis indices, which estimate the emergent properties of the functioning of a food-web. The total activities of the Brouage ecosystem in February and July are significantly different. The specialisation of the trophic links within the ecosystem does not appear to differ between the two models. In spite of a large export of carbon from the primary producer and detritus in winter, the higher recycling leads to a similar retention of carbon for the two seasons. It can be concluded that in February, the higher activity of the ecosystem coupled with a higher cycling and a mean internal organization, ensure the sufficient feeding of the migratory shorebirds. PMID:24204666

  16. Functional group diversity increases with modularity in complex food webs

    PubMed Central

    Montoya, D.; Yallop, M.L.; Memmott, J.

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web. PMID:26059871

  17. Food web dynamics in a seasonally varying wetland

    USGS Publications Warehouse

    DeAngelis, D.L.; Trexler, J.C.; Donalson, D.D.

    2008-01-01

    A spatially explicit model is developed to simulate the small fish community and its underlying food web, in the freshwater marshes of the Everglades. The community is simplified to a few small fish species feeding on periphyton and invertebrates. Other compartments are detritus, crayfish, and a piscivorous fish species. This unit food web model is applied to each of the 10,000 spatial cells on a 100 x 100 pixel landscape. Seasonal variation in water level is assumed and rules are assigned for fish movement in response to rising and falling water levels, which can cause many spatial cells to alternate between flooded and dry conditions. It is shown that temporal variations of water level on a spatially heterogeneous landscape can maintain at least three competing fish species. In addition, these environmental factors can strongly affect the temporal variation of the food web caused by top-down control from the piscivorous fish.

  18. Extinction risk and structure of a food web model

    NASA Astrophysics Data System (ADS)

    Pękalski, Andrzej; Szwabiński, Janusz; Bena, Ioana; Droz, Michel

    2008-03-01

    We investigate in detail the model of a trophic web proposed by Amaral and Meyer [Phys. Rev. Lett. 82, 652 (1999)]. We focus on small-size systems that are relevant for real biological food webs and for which the fluctuations play an important role. We show, using Monte Carlo simulations, that such webs can be nonviable, leading to extinction of all species in small and/or weakly coupled systems. Estimations of the extinction times and survival chances are also given. We show that before the extinction the fraction of highly connected species (“omnivores”) is increasing. Viable food webs exhibit a pyramidal structure, where the density of occupied niches is higher at lower trophic levels, and moreover the occupations of adjacent levels are closely correlated. We also demonstrate that the distribution of the lengths of food chains has an exponential character and changes weakly with the parameters of the model. On the contrary, the distribution of avalanche sizes of the extinct species depends strongly on the connectedness of the web. For rather loosely connected systems, we recover the power-law type of behavior with the same exponent as found in earlier studies, while for densely connected webs the distribution is not of a power-law type.

  19. Infectious disease agents mediate interaction in food webs and ecosystems

    PubMed Central

    Selakovic, Sanja; de Ruiter, Peter C.; Heesterbeek, Hans

    2014-01-01

    Infectious agents are part of food webs and ecosystems via the relationship with their host species that, in turn, interact with both hosts and non-hosts. Through these interactions, infectious agents influence food webs in terms of structure, functioning and stability. The present literature shows a broad range of impacts of infectious agents on food webs, and by cataloguing that range, we worked towards defining the various mechanisms and their specific effects. To explore the impact, a direct approach is to study changes in food-web properties with infectious agents as separate species in the web, acting as additional nodes, with links to their host species. An indirect approach concentrates not on adding new nodes and links, but on the ways that infectious agents affect the existing links across host and non-host nodes, by influencing the ‘quality’ of consumer–resource interaction as it depends on the epidemiological state host involved. Both approaches are natural from an ecological point of view, but the indirect approach may connect more straightforwardly to commonly used tools in infectious disease dynamics. PMID:24403336

  20. Role of detritus in a spatial food web model with diffusion

    NASA Astrophysics Data System (ADS)

    Pekalski, Andrzej; Szwabiński, Janusz

    2014-05-01

    One of the central themes in modern ecology is the enduring debate on whether there is a relationship between the complexity of a biological community and its stability. In this paper, we focus on the role of detritus and spatial dispersion on the stability of ecosystems. Using Monte Carlo simulations we analyze two three-level models of food webs: a grazing one with the basal species (i.e., primary producers) having unlimited food resources and a detrital one in which the basal species uses detritus as a food resource. While the vast majority of theoretical studies neglects detritus, from our results it follows that the detrital food web is more stable than its grazing counterpart, because the interactions mediated by detritus damp out fluctuations in species' densities. Since the detritus model is the more complex one in terms of interaction patterns, our results provide evidence for the advocates of the complexity as one of the factors enhancing stability of ecosystems.

  1. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure.

    PubMed

    Rezende, Enrico L; Albert, Eva M; Fortuna, Miguel A; Bascompte, Jordi

    2009-08-01

    A long-standing question in community ecology is whether food webs are organized in compartments, where species within the same compartment interact frequently among themselves, but show fewer interactions with species from other compartments. Finding evidence for this community organization is important since compartmentalization may strongly affect food web robustness to perturbation. However, few studies have found unequivocal evidence of compartments, and none has quantified the suite of mechanisms generating such a structure. Here, we combine computational tools from the physics of complex networks with phylogenetic statistical methods to show that a large marine food web is organized in compartments, and that body size, phylogeny, and spatial structure are jointly associated with such a compartmentalized structure. Sharks account for the majority of predatory interactions within their compartments. Phylogenetically closely related shark species tend to occupy different compartments and have divergent trophic levels, suggesting that competition may play an important role structuring some of these compartments. Current overfishing of sharks has the potential to change the structural properties, which might eventually affect the stability of the food web. PMID:19490028

  2. Food caching in orb-web spiders (Araneae: Araneoidea)

    NASA Astrophysics Data System (ADS)

    Champion de Crespigny, Fleur E.; Herberstein, Marie E.; Elgar, Mark A.

    2001-01-01

    Caching or storing surplus prey may reduce the risk of starvation during periods of food deprivation. While this behaviour occurs in a variety of birds and mammals, it is infrequent among invertebrates. However, golden orb-web spiders, Nephila edulis, incorporate a prey cache in their relatively permanent web, which they feed on during periods of food shortage. Heavier spiders significantly reduced weight loss if they were able to access a cache, but lost weight if the cache was removed. The presence or absence of stored prey had no effect on the weight loss of lighter spiders. Furthermore, N. edulis always attacked new prey, irrespective of the number of unprocessed prey in the web. In contrast, females of Argiope keyserlingi, who build a new web every day and do not cache prey, attacked fewer new prey items if some had already been caught. Thus, a necessary pre-adaptation to the evolution of prey caching in orb-web spiders may be a durable or permanent web, such as that constructed by Nephila.

  3. Ecohydrological Modeling of Food Webs in Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, O. I.; Wilson, B. N.; Gulliver, J. S.

    2007-12-01

    Dynamic biological processes in streams and rivers are essential aspects of ecohydrology. Numerical modeling of river food webs provides a useful vehicle for gaining insights into the scaling, self-organization and critical responses of these biological processes. Existing modeling literature is mostly limited to food webs with two or three trophic levels applied to marine or lake ecosystems. However, river ecosystems are distinctively different. They have a characteristic shorter residence time. Natural drivers (e.g., watershed and channel hydrology and geomorphology) as well as direct anthropogenic activities in rivers (e.g., building dams and reservoirs) play a vital role in shaping river food webs. Of particular interests are the benthic and non-benthic zones that have different physical, chemical and biological compositions. The authors developed food web models to capture the long- term dynamics of the total as well as that of the benthic and non-benthic zones in an interactive manner by emphasizing hydrologic drivers along with other environmental and geomorphologic constraints. These models are applied to several floodplain streams and rivers in Minnesota.

  4. Using a Simulation To Teach Food Web Dynamics.

    ERIC Educational Resources Information Center

    Rueter, John G.; Perrin, Nancy A.

    1999-01-01

    Reports on research that tested the effect of using a computer simulation to teach the concept of a food web to nonbiology majors in a large introductory course. Concludes that the use of the simulation resulted in significantly better performance on an open-ended essay question for those students who used the software, particularly for average…

  5. BENTHOS AS THE BASIS FOR ARCTIC FOOD WEBS

    EPA Science Inventory

    Plankton have traditionally been viewed as the basis for limnetic food webs, with zooplankton acting as a gateway for energy passing between phytoplanktonic primary producers and fish. Often, benthic production is considered to be important primarily in shallow systems or as a su...

  6. Unravelling the Food Web: Dietary Analysis in Modern Ecology.

    ERIC Educational Resources Information Center

    Calver, M. C.; Porter, B. D.

    1986-01-01

    Presents information that gives a methodological background to the concept of food webs. Stresses the importance of calibrated techniques in ecological research and explains direct methods for studying animal diets. Exercises for gathering first-hand data on bird diets and analyzing secondary data on mammal diets are suggested. (ML)

  7. Food Webs and Environmental Disturbance: What's the Connection?

    ERIC Educational Resources Information Center

    Ford, Bob; Smith, Bruce M.

    1994-01-01

    Two professors assert that it is not enough to simply tell students that all living organisms are mutually dependent. Describes an activity that allows students to become members of a food web and results in a greater understanding of and appreciation for the interdependencies of living things. Ideas for extension are provided. (ZWH)

  8. The trophodynamics of PCBs in the Lake Ontario food web

    SciTech Connect

    Metcalfe, T.L.; Metcalfe, C.D.

    1995-12-31

    Samples of water, sediment, invertebrates, fish, and herring gull eggs were collected in north-central Lake Ontario and were analyzed to determine the concentrations of PCBs, including non-ortho substituted PCB congeners, in the benthic and pelagic components of the Lake Ontario food web. There was biomagnification of PCBs in the food web from benthic and planktonic invertebrates through to lake trout and gulls. However, all of the fish species had about the same lipid-normalized concentrations of PCBs. The relative proportions of the PCB congeners changed as they passed through the food web. An index of metabolism for each PCB congener was calculated by comparing the concentrations of PCB congeners in various predator/prey groupings within the food web. These data indicate that invertebrates, fish and gulls have different capabilities in metabolizing and eliminating specific PCB congeners. While tri and tetrachlorinated congeners with no chlorine substitution at meta-para carbons on the biphenyl ring were readily metabolized by all taxa, only gulls appeared to be capable of metabolizing the PCBs with no chlorine substitution at ortho-meta positions. The trophodynamics of nonortho substituted (coplanar) PCBs did not differ from other PCB congeners of similar chlorine number, which indicates that non-ortho congeners are not any more persistent in biota than other PCBs.

  9. Methylmercury biomagnification in an Arctic pelagic food web.

    PubMed

    Ruus, Anders; Øverjordet, Ida B; Braaten, Hans Fredrik V; Evenset, Anita; Christensen, Guttorm; Heimstad, Eldbjørg S; Gabrielsen, Geir W; Borgå, Katrine

    2015-11-01

    Mercury (Hg) is a toxic element that enters the biosphere from natural and anthropogenic sources, and emitted gaseous Hg enters the Arctic from lower latitudes by long-range transport. In aquatic systems, anoxic conditions favor the bacterial transformation of inorganic Hg to methylmercury (MeHg), which has a greater potential for bioaccumulation than inorganic Hg and is the most toxic form of Hg. The main objective of the present study was to quantify the biomagnification of MeHg in a marine pelagic food web, comprising species of zooplankton, fish, and seabirds, from the Kongsfjorden system (Svalbard, Norway), by use of trophic magnification factors. As expected, tissue concentrations of MeHg increased with increasing trophic level in the food web, though at greater rates than observed in several earlier studies, especially at lower latitudes. There was strong correlation between MeHg and total Hg concentrations through the food web as a whole. The concentration of MeHg in kittiwake decreased from May to October, contributing to seasonal differences in trophic magnification factors. The ecology and physiology of the species comprising the food web in question may have a large influence on the magnitude of the biomagnification. A significant linear relationship was also observed between concentrations of selenium and total Hg in birds but not in zooplankton, suggesting the importance of selenium in Hg detoxification for individuals with high Hg concentrations. PMID:26274519

  10. MODEL OF CARBON CYCLING IN THE PLANKTONIC FOOD WEB

    EPA Science Inventory

    A mathematical model of carbon fluxes through the heterotrophic microbial food web is developed from a synthesis of laboratory and field research. he basis of the model is the segregation of organic carbon into lability classes that are defined by bioassay experiments. acteria, p...

  11. MODEL OF CARBON CYCLING IN PLANKTONIC FOOD WEBS

    EPA Science Inventory

    A mathematical model of carbon fluxes through the heterotrophic microbial food web is developed from a synthesis of laboratory and field research,The basis of the model is the segregation of organic carbon into lability classes that are defined by bioassay experiments. acteria, p...

  12. Dynamics in a three species food-web system

    NASA Astrophysics Data System (ADS)

    Gupta, K.; Gakkhar, S.

    2016-04-01

    In this paper, the dynamics of a three species food-web system is discussed. The food-web comprises of one predator and two logistically growing competing species. The predator species is taking food from one of the competitors with Holling type II functional response. Another competitor is the amensal species for the predator of first species. The system is shown to be positive and bounded. The stability of various axial points, boundary points and interior point has been investigated. The persistence of the system has been studied. Numerical simulation has been performed to show the occurrence of Hopf bifurcation and stable limit cycle about the interior point. The presence of second competitor and its interaction with predator gives more complex dynamics than the simple prey-predator system. The existence of transcritical bifurcation has been established about two axial points. The existence of periodic attractor having period-2 solution has been shown, when amensal coefficient is chosen as bifurcation parameter.

  13. DEVELOPMENT OF A STREAM FOOD WEB MODEL CONSTRAINED BY STABLE ISOTOPE DATA

    EPA Science Inventory

    Traditional stream food web studies provide static models of trophic structures. These models provide information about interspecific relationships, but not about material flows through food webs. Traditional ecosystem models developed from budgets or tracers provide quantitative...

  14. URBANIZATION ALTERS FATTY ACID CONCENTRATIONS OF STREAM FOOD WEBS IN THE NARRAGANSETT BAY WATERSHED

    EPA Science Inventory

    Urbanization and associated human activities negatively affect stream algal and invertebrate assemblages, likely altering food webs. Our goal was to determine if urbanization affects food web essential fatty acids (EFAs) and if EFAs could be useful ecological indicators in monito...

  15. Designing an Illustrated Food Web to Teach Ecological Concepts: Challenges and Solutions.

    ERIC Educational Resources Information Center

    Godkin, Celia M.

    1999-01-01

    Argues that food webs are an efficient method through which to communicate the core idea of ecology--that all living things are interconnected. Assesses the challenges and solutions to using illustrated food webs. (Author/CCM)

  16. The Impact of 850,000 Years of Climate Changes on the Structure and Dynamics of Mammal Food Webs

    PubMed Central

    Nenzén, Hedvig K.; Montoya, Daniel; Varela, Sara

    2014-01-01

    Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities. PMID:25207754

  17. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction

    PubMed Central

    Dunne, Jennifer A.; Labandeira, Conrad C.; Williams, Richard J.

    2014-01-01

    Generalities of food web structure have been identified for extant ecosystems. However, the trophic organization of ancient ecosystems is unresolved, as prior studies of fossil webs have been limited by low-resolution, high-uncertainty data. We compiled highly resolved, well-documented feeding interaction data for 700 taxa from the 48 million-year-old latest early Eocene Messel Shale, which contains a species assemblage that developed after an interval of protracted environmental and biotal change during and following the end-Cretaceous extinction. We compared the network structure of Messel lake and forest food webs to extant webs using analyses that account for scale dependence of structure with diversity and complexity. The Messel lake web, with 94 taxa, displays unambiguous similarities in structure to extant webs. While the Messel forest web, with 630 taxa, displays differences compared to extant webs, they appear to result from high diversity and resolution of insect–plant interactions, rather than substantive differences in structure. The evidence presented here suggests that modern trophic organization developed along with the modern Messel biota during an 18 Myr interval of dramatic post-extinction change. Our study also has methodological implications, as the Messel forest web analysis highlights limitations of current food web data and models. PMID:24648225

  18. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction.

    PubMed

    Dunne, Jennifer A; Labandeira, Conrad C; Williams, Richard J

    2014-05-01

    Generalities of food web structure have been identified for extant ecosystems. However, the trophic organization of ancient ecosystems is unresolved, as prior studies of fossil webs have been limited by low-resolution, high-uncertainty data. We compiled highly resolved, well-documented feeding interaction data for 700 taxa from the 48 million-year-old latest early Eocene Messel Shale, which contains a species assemblage that developed after an interval of protracted environmental and biotal change during and following the end-Cretaceous extinction. We compared the network structure of Messel lake and forest food webs to extant webs using analyses that account for scale dependence of structure with diversity and complexity. The Messel lake web, with 94 taxa, displays unambiguous similarities in structure to extant webs. While the Messel forest web, with 630 taxa, displays differences compared to extant webs, they appear to result from high diversity and resolution of insect-plant interactions, rather than substantive differences in structure. The evidence presented here suggests that modern trophic organization developed along with the modern Messel biota during an 18 Myr interval of dramatic post-extinction change. Our study also has methodological implications, as the Messel forest web analysis highlights limitations of current food web data and models. PMID:24648225

  19. Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change

    SciTech Connect

    Power, M.E.; Dietrich, W.E.; Finlay, J.C.

    1996-11-01

    Responses of rivers and river ecosystems to dams are complex and varied, as they depend on local sediment supplies, geomorphic constraints, climate, dam structure and operation, and key attributes of the biota. Therefore, {open_quotes}one-size-fits-all{close_quotes} prescriptions cannot substitute for local knowledge in developing prescriptions for dam structure and operation to protect local biodiversity. One general principle is self-evident: that biodiversity is best protected in rivers where physical regimes are the most natural. A sufficiently natural regime of flow variation is particularly crucial for river biota and food webs. We review our research and that of others to illustrate the ecological importance of alternating periods of low an high flow, of periodic bed scour, and of floodplain inundation and dewatering. These fluctuations regulate both the life cycles of river biota and species interactions in the food webs that sustain them. Even if the focus of biodiversity conservation efforts is on a target species rather than whole ecosystems, a food web perspective is necessary, because populations of any species depend critically on how their resources, prey, and potential predators also respond to environmental change. In regulated rivers, managers must determine how the frequency, magnitude, and timing of hydrologic events interact to constrain or support species and food webs. Simple ecological modeling, tailored to local systems, may provide a framework and some insight into explaining ecosystem response to dams and should give direction to mitigation efforts. 78 refs.

  20. Food web heterogeneity and succession in created saltmarshes

    USGS Publications Warehouse

    Nordstrom, M C; Demopoulos, Amanda; Whitcraft, CR; Rismondo, A.; McMillan, P.; Gonzales, J P; Levin, L A

    2015-01-01

    1. Ecological restoration must achieve functional as well as structural recovery. Functional metrics for reestablishment of trophic interactions can be used to complement traditional monitoring of structural attributes. In addition, topographic effects on food web structure provide added information within a restoration context; often, created sites may require spatial heterogeneity to effectively match structure and function of natural habitats. 2. We addressed both of these issues in our study of successional development of benthic food web structure, with focus on bottom–up driven changes in macroinvertebrate consumer assemblages in the salt marshes of the Venice Lagoon, Italy. We combined quantified estimates of the changing community composition with stable isotope data (13C:12C and 15N:14N) to compare the general trophic structure between created (2–14 years) marshes and reference sites and along topographic elevation gradients within salt marshes. 3. Macrofaunal invertebrate consumers exhibited local, habitat-specific trophic patterns. Stable isotope-based trophic structure changed with increasing marsh age, in particular with regards to mid-elevation (Salicornia) habitats. In young marshes, the mid-elevation consumer signatures resembled those of unvegetated ponds. The mid elevation of older and natural marshes had a more distinct Salicornia-zone food web, occasionally resembling that of the highest (Sarcocornia-dominated) elevation. In summary, this indicates that primary producers and availability of vascular plant detritus structure consumer trophic interactions and the flow of carbon. 4. Functionally different consumers, subsurface-feeding detritivores (Oligochaeta) and surface grazers (Hydrobia sp.), showed distinct but converging trajectories of isotopic change over time, indicating that successional development may be asymmetric between ‘brown’ (detrital) guilds and ‘green’ (grazing) guilds in the food web. 5. Synthesis and applications

  1. Benchmarking Successional Progress in a Quantitative Food Web

    PubMed Central

    Boit, Alice; Gaedke, Ursula

    2014-01-01

    Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e.g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning and are comparable across ecosystems. As a model system for secondary succession, seasonal plankton succession during the growing season is readily observable and largely driven autogenically. We used a long-term dataset from large, deep Lake Constance comprising biomasses, auto- and heterotrophic production, food quality, functional diversity, and mass-balanced food webs of the energy and nutrient flows between functional guilds of plankton and partly fish. Extracting population- and system-level indices from this dataset, we tested current hypotheses about the directionality of successional progress which are rooted in ecosystem theory, the metabolic theory of ecology, quantitative food web theory, thermodynamics, and information theory. Our results indicate that successional progress in Lake Constance is quantifiable, passing through predictable stages. Mean body mass, functional diversity, predator-prey weight ratios, trophic positions, system residence times of carbon and nutrients, and the complexity of the energy flow patterns increased during succession. In contrast, both the mass-specific metabolic activity and the system export decreased, while the succession rate exhibited a bimodal pattern. The weighted connectance introduced here represents a suitable index for assessing the evenness and interconnectedness of energy flows during succession. Diverging from earlier predictions, ascendency and eco-exergy did not increase during succession. Linking aspects of functional diversity to metabolic theory and food web complexity, we reconcile previously disjoint bodies of

  2. Benchmarking successional progress in a quantitative food web.

    PubMed

    Boit, Alice; Gaedke, Ursula

    2014-01-01

    Central to ecology and ecosystem management, succession theory aims to mechanistically explain and predict the assembly and development of ecological communities. Yet processes at lower hierarchical levels, e.g. at the species and functional group level, are rarely mechanistically linked to the under-investigated system-level processes which drive changes in ecosystem properties and functioning and are comparable across ecosystems. As a model system for secondary succession, seasonal plankton succession during the growing season is readily observable and largely driven autogenically. We used a long-term dataset from large, deep Lake Constance comprising biomasses, auto- and heterotrophic production, food quality, functional diversity, and mass-balanced food webs of the energy and nutrient flows between functional guilds of plankton and partly fish. Extracting population- and system-level indices from this dataset, we tested current hypotheses about the directionality of successional progress which are rooted in ecosystem theory, the metabolic theory of ecology, quantitative food web theory, thermodynamics, and information theory. Our results indicate that successional progress in Lake Constance is quantifiable, passing through predictable stages. Mean body mass, functional diversity, predator-prey weight ratios, trophic positions, system residence times of carbon and nutrients, and the complexity of the energy flow patterns increased during succession. In contrast, both the mass-specific metabolic activity and the system export decreased, while the succession rate exhibited a bimodal pattern. The weighted connectance introduced here represents a suitable index for assessing the evenness and interconnectedness of energy flows during succession. Diverging from earlier predictions, ascendency and eco-exergy did not increase during succession. Linking aspects of functional diversity to metabolic theory and food web complexity, we reconcile previously disjoint bodies of

  3. The assembly, collapse and restoration of food webs

    USGS Publications Warehouse

    Dobson, Andy; Allesina, Stefano; Lafferty, Kevin; Pascual, Mercedes

    2009-01-01

    Darwin chose the metaphor of a 'tangled bank' to conclude the 'Origin of species'. Two centuries after Darwin's birth, we are still untangling the complex ecological networks he has pondered. In particular, studies of food webs provide important insights into how natural ecosystems function (Pascual & Dunne 2005). Although the nonlinear interactions between many species creates challenges of scale, resolution of data and significant computational constraints, the last 10 years have seen significant advances built on the earlier classic studies of Cohen, May, Pimm, Polis, Lawton and Yodzis (May 1974; Cohen 1978; Pimm 1982; Briand & Cohen 1984, 1987; Yodzis 1989; Cohen et al. 1990; Pimm et al. 1991; Yodzis & Innes 1992; Yodzis 1998). These gains stem from advances in computing power and the collation of more comprehensive data from a broader array of empirical food webs.

  4. Simulating food web dynamics along a gradient: quantifying human influence.

    PubMed

    Jordán, Ferenc; Gjata, Nerta; Mei, Shu; Yule, Catherine M

    2012-01-01

    Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco

  5. Mercury biomagnification in the food web of a neotropical stream.

    PubMed

    Kwon, Sae Yun; McIntyre, Peter B; Flecker, Alexander S; Campbell, Linda M

    2012-02-15

    Anthropogenic and natural mercury (Hg) contamination have been a major concern in South America since the early 1900s, but it remains unclear whether Hg levels pose a hazard to human health in regions that lack point sources. We studied Hg biomagnification patterns in the food web of Río Las Marías, an Andean piedmont stream in northern Venezuela, which supports a major subsistence fishery. Mercury concentrations and trophic positions in the food web (based on stable isotopes of nitrogen and carbon) were characterized for 24 fish species representing seven trophic guilds (piscivore, generalized carnivore, omnivore, invertivore, algivore, terrestrial herbivore, detritivore). Mercury showed significant biomagnification through the food web, but vertical trophic position explained little of the variation. Muscle Hg concentrations also increased with body mass across the food web. Trophic guild assignments offered a useful alternative to explicit analysis of vertical trophic position; piscivores showed the highest Hg concentrations and terrestrial herbivores had the lowest. There were no consistent seasonal differences in Hg concentrations within the 5 species sampled during both the wet and dry seasons, suggesting that bioavailability is unaffected by strong seasonal variation in rainfall. From a human health perspective, many medium- to large-bodied species that are commonly eaten had Hg concentrations that exceeded International Marketing Limit (IML) (0.5 μg/g) and World Health Organization (WHO) guidelines (0.2 μg/g) for consumption. We conclude that Hg concentrations may pose a health concern for local subsistence fishermen and their families. Our results suggest a need to perform risk assessment and better understand contaminant levels in subsistence and commercial fisheries even in areas that lack known Hg point sources. PMID:22257508

  6. Does cadmium pollution change trophic interactions in rockpool food webs?

    SciTech Connect

    Koivisto, S.; Arner, M.; Kautsky, N.

    1997-06-01

    The authors studied the regulation of phytoplankton and zooplankton biomass in rockpool food webs under chronic cadmium pollution. Experimental food webs with two and three trophic levels were composed of phytoplankton, small-bodied zooplankton (Chydorus sphaericus, Cyclops sp., and rotifers), Daphnia magna, and Notonecta sp., a zooplanktivorous predator. Every food web received a control and cadmium treatment allowing a separate study of cadmium and predation effects. After a 3-week stabilization period, cadmium and Notonecta were added and changes in primary productivity, chlorophyll, zooplankton species composition, and biomass were followed during 8 weeks. The results showed that phytoplankton and Daphnia were consumer regulated in both control and cadmium treatments, although resource availability ultimately determined the biomass at each trophic level. Daphnia was the only zooplankton species that reduced phytoplankton and also the only species that was eliminated by Notonecta predation. Notonecta had an indirect positive impact on phytoplankton biomass that increased after the extinction of Daphnia. Cadmium significantly reduced phytoplankton and Daphnia but did not change the trophic interactions between them, i.e., Daphnia and chlorophyll were significantly negatively correlated both in the control and cadmium treatments. Cadmium did not affect the relationship between Daphnia and Notonecta.

  7. Rescaling the trophic structure of marine food webs

    PubMed Central

    Hussey, Nigel E; MacNeil, M Aaron; McMeans, Bailey C; Olin, Jill A; Dudley, Sheldon FJ; Cliff, Geremy; Wintner, Sabine P; Fennessy, Sean T; Fisk, Aaron T

    2014-01-01

    Measures of trophic position (TP) are critical for understanding food web interactions and human-mediated ecosystem disturbance. Nitrogen stable isotopes (δ15N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ15N between predator and prey, Δ15N = 3.4‰), resulting in an additive framework that omits known Δ15N variation. Through meta-analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ15N and δ15N values of prey consumed. The resulting scaled Δ15N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole-ecosystem models, indicating perceived food webs have been truncated and species-interactions over simplified. The scaled Δ15N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem-based management. PMID:24308860

  8. Scaling behaviors of weighted food webs as energy transportation networks.

    PubMed

    Zhang, Jiang; Guo, Liangpeng

    2010-06-01

    Food webs can be regarded as energy transporting networks in which the weight of each edge denotes the energy flux between two species. By investigating 21 empirical weighted food webs as energy flow networks, we found several ubiquitous scaling behaviors. Two random variables A(i) and C(i) defined for each vertex i, representing the total flux (also called vertex intensity) and total indirect effect or energy store of i, were found to follow power law distributions with the exponents alpha approximately 1.32 and beta approximately 1.33, respectively. Another scaling behavior is the power law relationship, C(i) approximately A(i)(eta), where eta approximately 1.02. This is known as the allometric scaling power law relationship because A(i) can be treated as metabolism and C(i) as the body mass of the sub-network rooted from the vertex i, according to the algorithm presented in this paper. Finally, a simple relationship among these power law exponents, eta=(alpha-1)/(beta-1), was mathematically derived and tested by the empirical food webs. PMID:20303987

  9. Tracking the autochthonous carbon transfer in stream biofilm food webs.

    PubMed

    Risse-Buhl, Ute; Trefzger, Nicolai; Seifert, Anne-Gret; Schönborn, Wilfried; Gleixner, Gerd; Küsel, Kirsten

    2012-01-01

    Food webs in the rhithral zone rely mainly on allochthonous carbon from the riparian vegetation. However, autochthonous carbon might be more important in open canopy streams. In streams, most of the microbial activity occurs in biofilms, associated with the streambed. We followed the autochthonous carbon transfer toward bacteria and grazing protozoa within a stream biofilm food web. Biofilms that developed in a second-order stream (Thuringia, Germany) were incubated in flow channels under climate-controlled conditions. Six-week-old biofilms received either ¹³C- or ¹²C-labeled CO₂, and uptake into phospholipid fatty acids was followed. The dissolved inorganic carbon of the flow channel water became immediately labeled. In biofilms grown under 8-h light/16-h dark conditions, more than 50% of the labeled carbon was incorporated in biofilm algae, mainly filamentous cyanobacteria, pennate diatoms, and nonfilamentous green algae. A mean of 29% of the labeled carbon reached protozoan grazer. The testate amoeba Pseudodifflugia horrida was highly abundant in biofilms and seemed to be the most important grazer on biofilm bacteria and algae. Hence, stream biofilms dominated by cyanobacteria and algae seem to play an important role in the uptake of CO₂ and transfer of autochthonous carbon through the microbial food web. PMID:22067054

  10. Rescaling the trophic structure of marine food webs.

    PubMed

    Hussey, Nigel E; Macneil, M Aaron; McMeans, Bailey C; Olin, Jill A; Dudley, Sheldon F J; Cliff, Geremy; Wintner, Sabine P; Fennessy, Sean T; Fisk, Aaron T

    2014-02-01

    Measures of trophic position (TP) are critical for understanding food web interactions and human-mediated ecosystem disturbance. Nitrogen stable isotopes (δ(15) N) provide a powerful tool to estimate TP but are limited by a pragmatic assumption that isotope discrimination is constant (change in δ(15) N between predator and prey, Δ(15) N = 3.4‰), resulting in an additive framework that omits known Δ(15) N variation. Through meta-analysis, we determine narrowing discrimination from an empirical linear relationship between experimental Δ(15) N and δ(15) N values of prey consumed. The resulting scaled Δ(15) N framework estimated reliable TPs of zooplanktivores to tertiary piscivores congruent with known feeding relationships that radically alters the conventional structure of marine food webs. Apex predator TP estimates were markedly higher than currently assumed by whole-ecosystem models, indicating perceived food webs have been truncated and species-interactions over simplified. The scaled Δ(15) N framework will greatly improve the accuracy of trophic estimates widely used in ecosystem-based management. PMID:24308860

  11. Food web structure in oil sands reclaimed wetlands.

    PubMed

    Kovalenko, K E; Ciborowski, J J H; Daly, C; Dixon, D G; Farwell, A J; Foote, A L; Frederick, K R; Costa, J M Gardner; Kennedy, K; Liber, K; Roy, M C; Slama, C A; Smits, J E G

    2013-07-01

    Boreal wetlands play an important role in global carbon balance. However, their ecosystem function is threatened by direct anthropogenic disturbance and climate change. Oil sands surface mining in the boreal regions of Western Canada denudes tracts of land of organic materials, leaves large areas in need of reclamation, and generates considerable quantities of extraction process-affected materials. Knowledge and validation of reclamation techniques that lead to self-sustaining wetlands has lagged behind development of protocols for reclaiming terrestrial systems. It is important to know whether wetlands reclaimed with oil sands process materials can be restored to levels equivalent to their original ecosystem function. We approached this question by assessing carbon flows and food web structure in naturally formed and oil sands-affected wetlands constructed in 1970-2004 in the postmining landscape. We evaluated whether a prescribed reclamation strategy, involving organic matter amendment, accelerated reclaimed wetland development, leading to wetlands that were more similar to their natural marsh counterparts than wetlands that were not supplemented with organic matter. We measured compartment standing stocks for bacterioplankton, microbial biofilm, macrophytes, detritus, and zoobenthos; concentrations of dissolved organic carbon and residual naphthenic acids; and microbial production, gas fluxes, and aquatic-terrestrial exports (i.e., aquatic insect emergence). The total biomass of several biotic compartments differed significantly between oil sands and reference wetlands. Submerged macrophyte biomass, macroinvertebrate trophic diversity, and predator biomass and richness were lower in oil sands-affected wetlands than in reference wetlands. There was insufficient evidence to conclude that wetland age and wetland amendment with peat-mineral mix mitigate effects of oil sands waste materials on the fully aquatic biota. Although high variability was observed within

  12. Methane Carbon Supports Aquatic Food Webs to the Fish Level

    PubMed Central

    Sanseverino, Angela M.; Bastviken, David; Sundh, Ingvar; Pickova, Jana; Enrich-Prast, Alex

    2012-01-01

    Large amounts of the greenhouse gas methane (CH4) are produced by anaerobic mineralization of organic matter in lakes. In spite of extensive freshwater CH4 emissions, most of the CH4 is typically oxidized by methane oxidizing bacteria (MOB) before it can reach the lake surface and be emitted to the atmosphere. In turn, it has been shown that the CH4-derived biomass of MOB can provide the energy and carbon for zooplankton and macroinvertebrates. In this study, we demonstrate the presence of specific fatty acids synthesized by MOB in fish tissues having low carbon stable isotope ratios. Fish species, zooplankton, macroinvertebrates and the water hyacinth Eichhornia crassipes were collected from a shallow lake in Brazil and analyzed for fatty acids (FA) and carbon stable isotope ratios (δ13C). The fatty acids 16∶1ω8c, 16∶1ω8t, 16∶1ω6c, 16∶1ω5t, 18∶1ω8c and 18∶1ω8t were used as signature for MOB. The δ13C ratios varied from −27.7‰ to −42.0‰ and the contribution of MOB FA ranged from 0.05% to 0.84% of total FA. Organisms with higher total content of MOB FAs presented lower δ13C values (i.e. they were more depleted in 13C), while organisms with lower content of MOB signature FAs showed higher δ13C values. An UPGMA cluster analysis was carried out to distinguish grouping of organisms in relation to their MOB FA contents. This combination of stable isotope and fatty acid tracers provides new evidence that assimilation of methane-derived carbon can be an important carbon source for the whole aquatic food web, up to the fish level. PMID:22880091

  13. Effects of spatial scale of sampling on food web structure

    PubMed Central

    Wood, Spencer A; Russell, Roly; Hanson, Dieta; Williams, Richard J; Dunne, Jennifer A

    2015-01-01

    This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling. PMID:26380704

  14. The food web of a tropical rain forest

    SciTech Connect

    Reagan, D.P.; Waide, R.B.

    1996-12-31

    This book summarizes the natural history and trophic dynamics of a relatively simple tropical rain forest community. The community consists of the plants and animals inhabiting a 40 ha area of forest around the El Verde Field Station in the Luquillo Experimental Forest of Puerto Rico. The understanding is based on three decades (1963 to 1993) of investigations conducted or coordinated by the biologists in the Terrestrial Ecology Division of the University of Puerto Rico (formerly the Center for Energy and Environment Research) and by many visiting scientists who have worked at El Verde. The authors construct a comprehensive food web documenting the relationships among species in this community as a means of organizing the information that`s been collected. Lay-people, students, academics, resource managers, professional scientists, and others interested in the natural history of tropical forests should find points of interest in this book. In addition, ecologists specializing in the study of trophic dynamics are provided with a detailed food web from a biome underrepresented in the available data base and with the interpretations of the importance of this web.

  15. Food-web stability signals critical transitions in temperate shallow lakes.

    PubMed

    Kuiper, Jan J; van Altena, Cassandra; de Ruiter, Peter C; van Gerven, Luuk P A; Janse, Jan H; Mooij, Wolf M

    2015-01-01

    A principal aim of ecologists is to identify critical levels of environmental change beyond which ecosystems undergo radical shifts in their functioning. Both food-web theory and alternative stable states theory provide fundamental clues to mechanisms conferring stability to natural systems. Yet, it is unclear how the concept of food-web stability is associated with the resilience of ecosystems susceptible to regime change. Here, we use a combination of food web and ecosystem modelling to show that impending catastrophic shifts in shallow lakes are preceded by a destabilizing reorganization of interaction strengths in the aquatic food web. Analysis of the intricate web of trophic interactions reveals that only few key interactions, involving zooplankton, diatoms and detritus, dictate the deterioration of food-web stability. Our study exposes a tight link between food-web dynamics and the dynamics of the whole ecosystem, implying that trophic organization may serve as an empirical indicator of ecosystem resilience. PMID:26173798

  16. Food-web stability signals critical transitions in temperate shallow lakes

    PubMed Central

    Kuiper, Jan J.; van Altena, Cassandra; de Ruiter, Peter C.; van Gerven, Luuk P. A.; Janse, Jan H.; Mooij, Wolf M.

    2015-01-01

    A principal aim of ecologists is to identify critical levels of environmental change beyond which ecosystems undergo radical shifts in their functioning. Both food-web theory and alternative stable states theory provide fundamental clues to mechanisms conferring stability to natural systems. Yet, it is unclear how the concept of food-web stability is associated with the resilience of ecosystems susceptible to regime change. Here, we use a combination of food web and ecosystem modelling to show that impending catastrophic shifts in shallow lakes are preceded by a destabilizing reorganization of interaction strengths in the aquatic food web. Analysis of the intricate web of trophic interactions reveals that only few key interactions, involving zooplankton, diatoms and detritus, dictate the deterioration of food-web stability. Our study exposes a tight link between food-web dynamics and the dynamics of the whole ecosystem, implying that trophic organization may serve as an empirical indicator of ecosystem resilience. PMID:26173798

  17. Bioaccumulation of toxaphene congeners in the lake superior food web

    USGS Publications Warehouse

    Muir, D.C.G.; Whittle, D.M.; De Vault, D. S.; Bronte, C.R.; Karlsson, H.; Backus, S.; Teixeira, C.

    2004-01-01

    The bioaccumulation and biotransformation of toxaphene was examined in the food webs of Lake Superior and Siskiwit Lake (Isle Royale) using congener specific analysis as well as stable isotope ratios of carbon and nitrogen to characterize food webs. Toxaphene concentrations (calculated using technical toxaphene) in lake trout (Salvelinus namaycush) from the western basin of Lake Superior (N = 95) averaged (±SD) 889 ± 896 ng/g wet wt and 60 ± 34 ng/g wet wt in Siskiwit Lake. Major congeners in lake trout were B8-789 (P38), B8-2226 (P44), B9-1679 (P50), and B9-1025 (P62). Toxaphene concentrations were found to vary seasonally, especially in lower food web organisms in Lake Superior and to a lesser extent in Siskiwit Lake. Toxaphene concentrations declined significantly in lake herring (Coregonus artedii), rainbow smelt (Omerus mordax), and slimy sculpin (Cottus cognatus) as well as in zooplankton (> 102 &mn;m) and Mysis (Mysis relicta) between May and October. The seasonal variation may reflect seasonal shifts in the species abundance within the zooplankton community. Trophic magnification factors (TMF) derived from regressions of toxaphene congener concentrations versus δ15N were > 1 for most octa- and nonachlorobornanes in Lake Superior except B8-1413 (P26) and B9-715. Log bioaccumulation factors (BAFs) for toxaphene congeners in lake trout (ng/g lipid/ng/L dissolved) ranged from 4.54 to 9.7 and were significantly correlated with log octanol-water partition coefficients. TMFs observed for total toxaphene and congener B9-1679 in Lake Superior were similar to those in Arctic lakes, as well as to previous studies in the Great Lakes, which suggests that the bioaccumulation behavior of toxaphene is similar in pelagic food webs of large, cold water systems. However, toxaphene concentrations were lower in lake trout from Siskiwit Lake and lakes in northwestern Ontario than in Lake Superior possibly because of shorter food chains and greater reliance on zooplankton or

  18. All wet or dried up? Real differences between aquatic and terrestrial food webs

    PubMed Central

    Shurin, Jonathan B; Gruner, Daniel S; Hillebrand, Helmut

    2005-01-01

    Ecologists have greatly advanced our understanding of the processes that regulate trophic structure and dynamics in ecosystems. However, the causes of systematic variation among ecosystems remain controversial and poorly elucidated. Contrasts between aquatic and terrestrial ecosystems in particular have inspired much speculation, but only recent empirical quantification. Here, we review evidence for systematic differences in energy flow and biomass partitioning between producers and herbivores, detritus and decomposers, and higher trophic levels. The magnitudes of different trophic pathways vary considerably, with less herbivory, more decomposers and more detrital accumulation on land. Aquatic–terrestrial differences are consistent across the global range of primary productivity, indicating that structural contrasts between the two systems are preserved despite large variation in energy input. We argue that variable selective forces drive differences in plant allocation patterns in aquatic and terrestrial environments that propagate upward to shape food webs. The small size and lack of structural tissues in phytoplankton mean that aquatic primary producers achieve faster growth rates and are more nutritious to heterotrophs than their terrestrial counterparts. Plankton food webs are also strongly size-structured, while size and trophic position are less strongly correlated in most terrestrial (and many benthic) habitats. The available data indicate that contrasts between aquatic and terrestrial food webs are driven primarily by the growth rate, size and nutritional quality of autotrophs. Differences in food-web architecture (food chain length, the prevalence of omnivory, specialization or anti-predator defences) may arise as a consequence of systematic variation in the character of the producer community. PMID:16519227

  19. All wet or dried up? Real differences between aquatic and terrestrial food webs.

    PubMed

    Shurin, Jonathan B; Gruner, Daniel S; Hillebrand, Helmut

    2006-01-01

    Ecologists have greatly advanced our understanding of the processes that regulate trophic structure and dynamics in ecosystems. However, the causes of systematic variation among ecosystems remain controversial and poorly elucidated. Contrasts between aquatic and terrestrial ecosystems in particular have inspired much speculation, but only recent empirical quantification. Here, we review evidence for systematic differences in energy flow and biomass partitioning between producers and herbivores, detritus and decomposers, and higher trophic levels. The magnitudes of different trophic pathways vary considerably, with less herbivory, more decomposers and more detrital accumulation on land. Aquatic-terrestrial differences are consistent across the global range of primary productivity, indicating that structural contrasts between the two systems are preserved despite large variation in energy input. We argue that variable selective forces drive differences in plant allocation patterns in aquatic and terrestrial environments that propagate upward to shape food webs. The small size and lack of structural tissues in phytoplankton mean that aquatic primary producers achieve faster growth rates and are more nutritious to heterotrophs than their terrestrial counterparts. Plankton food webs are also strongly size-structured, while size and trophic position are less strongly correlated in most terrestrial (and many benthic) habitats. The available data indicate that contrasts between aquatic and terrestrial food webs are driven primarily by the growth rate, size and nutritional quality of autotrophs. Differences in food-web architecture (food chain length, the prevalence of omnivory, specialization or anti-predator defences) may arise as a consequence of systematic variation in the character of the producer community. PMID:16519227

  20. Food-web based unified model of macro- and microevolution

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashish; Stauffer, Dietrich

    2003-10-01

    We incorporate the generic hierarchical architecture of foodwebs into a “unified” model that describes both micro- and macroevolutions within a single theoretical framework. This model describes the microevolution in detail by accounting for the birth, ageing, and natural death of individual organisms as well as prey-predator interactions on a hierarchical dynamic food web. It also provides a natural description of random mutations and speciation (origination) of species as well as their extinctions. The distribution of lifetimes of species follows an approximate power law only over a limited regime.

  1. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consumers to higher trophic levels. The reduction or potential elimination of food chain organism... aquatic organisms in the food web. 230.31 Section 230.31 Protection of Environment ENVIRONMENTAL... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic...

  2. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consumers to higher trophic levels. The reduction or potential elimination of food chain organism... aquatic organisms in the food web. 230.31 Section 230.31 Protection of Environment ENVIRONMENTAL... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic...

  3. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consumers to higher trophic levels. The reduction or potential elimination of food chain organism... aquatic organisms in the food web. 230.31 Section 230.31 Protection of Environment ENVIRONMENTAL... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic...

  4. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consumers to higher trophic levels. The reduction or potential elimination of food chain organism... aquatic organisms in the food web. 230.31 Section 230.31 Protection of Environment ENVIRONMENTAL... § 230.31 Fish, crustaceans, mollusks, and other aquatic organisms in the food web. (a) Aquatic...

  5. Land use alters the resistance and resilience of soil food webs to drought

    USGS Publications Warehouse

    de Vries, Franciska T.; Liiri, Mira E.; Bjørnlund, Lisa; Bowker, Matthew A.; Christensen, Søren; Setälä, Heikki; Bardgett, Richard D.

    2012-01-01

    Soils deliver several ecosystem services including carbon sequestration and nutrient cycling, which are of central importance to climate mitigation and sustainable food production. Soil biota play an important role in carbon and nitrogen cycling, and, although the effects of land use on soil food webs are well documented the consequences for their resistance and resilience to climate change are not known. We compared the resistance and resilience to drought--which is predicted to increase under climate change of soil food webs of two common land-use systems: intensively managed wheat with a bacterial-based soil food web and extensively managed grassland with a fungal-based soil food web. We found that the fungal-based food web, and the processes of C and N loss it governs, of grassland soil was more resistant, although not resilient, and better able to adapt to drought than the bacterial-based food web of wheat soil. Structural equation modelling revealed that fungal-based soil food webs and greater microbial evenness mitigated C and N loss. Our findings show that land use strongly affects the resistance and resilience of soil food webs to climate change, and that extensively managed grassland promotes more resistant, and adaptable, fungal-based soil food webs.

  6. Food-web complexity, meta-community complexity and community stability.

    PubMed

    Mougi, A; Kondoh, M

    2016-01-01

    What allows interacting, diverse species to coexist in nature has been a central question in ecology, ever since the theoretical prediction that a complex community should be inherently unstable. Although the role of spatiality in species coexistence has been recognized, its application to more complex systems has been less explored. Here, using a meta-community model of food web, we show that meta-community complexity, measured by the number of local food webs and their connectedness, elicits a self-regulating, negative-feedback mechanism and thus stabilizes food-web dynamics. Moreover, the presence of meta-community complexity can give rise to a positive food-web complexity-stability effect. Spatiality may play a more important role in stabilizing dynamics of complex, real food webs than expected from ecological theory based on the models of simpler food webs. PMID:27071716

  7. Food-web complexity, meta-community complexity and community stability

    PubMed Central

    Mougi, A.; Kondoh, M.

    2016-01-01

    What allows interacting, diverse species to coexist in nature has been a central question in ecology, ever since the theoretical prediction that a complex community should be inherently unstable. Although the role of spatiality in species coexistence has been recognized, its application to more complex systems has been less explored. Here, using a meta-community model of food web, we show that meta-community complexity, measured by the number of local food webs and their connectedness, elicits a self-regulating, negative-feedback mechanism and thus stabilizes food-web dynamics. Moreover, the presence of meta-community complexity can give rise to a positive food-web complexity-stability effect. Spatiality may play a more important role in stabilizing dynamics of complex, real food webs than expected from ecological theory based on the models of simpler food webs. PMID:27071716

  8. Land Use Affects Carbon Sources to the Pelagic Food Web in a Small Boreal Lake.

    PubMed

    Rinta, Päivi; van Hardenbroek, Maarten; Jones, Roger I; Kankaala, Paula; Rey, Fabian; Szidat, Sönke; Wooller, Matthew J; Heiri, Oliver

    2016-01-01

    Small humic forest lakes often have high contributions of methane-derived carbon in their food webs but little is known about the temporal stability of this carbon pathway and how it responds to environmental changes on longer time scales. We reconstructed past variations in the contribution of methanogenic carbon in the pelagic food web of a small boreal lake in Finland by analyzing the stable carbon isotopic composition (δ13C values) of chitinous fossils of planktivorous invertebrates in sediments from the lake. The δ13C values of zooplankton remains show several marked shifts (approx. 10 ‰), consistent with changes in the proportional contribution of carbon from methane-oxidizing bacteria in zooplankton diets. The results indicate that the lake only recently (1950s) obtained its present state with a high contribution of methanogenic carbon to the pelagic food web. A comparison with historical and palaeobotanical evidence indicates that this most recent shift coincided with agricultural land-use changes and forestation of the lake catchment and implies that earlier shifts may also have been related to changes in forest and land use. Our study demonstrates the sensitivity of the carbon cycle in small forest lakes to external forcing and that the effects of past changes in local land use on lacustrine carbon cycling have to be taken into account when defining environmental and ecological reference conditions in boreal headwater lakes. PMID:27487044

  9. Land Use Affects Carbon Sources to the Pelagic Food Web in a Small Boreal Lake

    PubMed Central

    Rinta, Päivi; van Hardenbroek, Maarten; Jones, Roger I.; Kankaala, Paula; Rey, Fabian; Szidat, Sönke; Wooller, Matthew J.; Heiri, Oliver

    2016-01-01

    Small humic forest lakes often have high contributions of methane-derived carbon in their food webs but little is known about the temporal stability of this carbon pathway and how it responds to environmental changes on longer time scales. We reconstructed past variations in the contribution of methanogenic carbon in the pelagic food web of a small boreal lake in Finland by analyzing the stable carbon isotopic composition (δ13C values) of chitinous fossils of planktivorous invertebrates in sediments from the lake. The δ13C values of zooplankton remains show several marked shifts (approx. 10 ‰), consistent with changes in the proportional contribution of carbon from methane-oxidizing bacteria in zooplankton diets. The results indicate that the lake only recently (1950s) obtained its present state with a high contribution of methanogenic carbon to the pelagic food web. A comparison with historical and palaeobotanical evidence indicates that this most recent shift coincided with agricultural land-use changes and forestation of the lake catchment and implies that earlier shifts may also have been related to changes in forest and land use. Our study demonstrates the sensitivity of the carbon cycle in small forest lakes to external forcing and that the effects of past changes in local land use on lacustrine carbon cycling have to be taken into account when defining environmental and ecological reference conditions in boreal headwater lakes. PMID:27487044

  10. Guano-Derived Nutrient Subsidies Drive Food Web Structure in Coastal Ponds.

    PubMed

    Vizzini, Salvatrice; Signa, Geraldina; Mazzola, Antonio

    2016-01-01

    A stable isotope study was carried out seasonally in three coastal ponds (Marinello system, Italy) affected by different gull guano input to investigate the effect of nutrient subsidies on food web structure and dynamics. A marked 15N enrichment occurred in the pond receiving the highest guano input, indicating that gull-derived fertilization (guanotrophication) had a strong localised effect and flowed across trophic levels. The main food web response to guanotrophication was an overall erosion of the benthic pathway in favour of the planktonic. Subsidized primary consumers, mostly deposit feeders, switched their diet according to organic matter source availability. Secondary consumers and, in particular, fish from the guanotrophic pond, acted as couplers of planktonic and benthic pathways and showed an omnivorous trophic behaviour. Food web structure showed substantial variability among ponds and a marked seasonality in the subsidized one: an overall simplification was evident only in summer when guano input maximises its trophic effects, while higher trophic diversity and complexity resulted when guano input was low to moderate. PMID:26953794

  11. Guano-Derived Nutrient Subsidies Drive Food Web Structure in Coastal Ponds

    PubMed Central

    Vizzini, Salvatrice; Signa, Geraldina; Mazzola, Antonio

    2016-01-01

    A stable isotope study was carried out seasonally in three coastal ponds (Marinello system, Italy) affected by different gull guano input to investigate the effect of nutrient subsidies on food web structure and dynamics. A marked 15N enrichment occurred in the pond receiving the highest guano input, indicating that gull-derived fertilization (guanotrophication) had a strong localised effect and flowed across trophic levels. The main food web response to guanotrophication was an overall erosion of the benthic pathway in favour of the planktonic. Subsidized primary consumers, mostly deposit feeders, switched their diet according to organic matter source availability. Secondary consumers and, in particular, fish from the guanotrophic pond, acted as couplers of planktonic and benthic pathways and showed an omnivorous trophic behaviour. Food web structure showed substantial variability among ponds and a marked seasonality in the subsidized one: an overall simplification was evident only in summer when guano input maximises its trophic effects, while higher trophic diversity and complexity resulted when guano input was low to moderate. PMID:26953794

  12. Invasions and Extinctions Reshape Coastal Marine Food Webs

    PubMed Central

    Byrnes, Jarrett E.; Reynolds, Pamela L.; Stachowicz, John J.

    2007-01-01

    The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions (∼70%) occur at high trophic levels (top predators and other carnivores), while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores). These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes. PMID:17356703

  13. Biomagnification of polychlorinated biphenyls through a riverine food web

    SciTech Connect

    Zaranko, D.T.; Kaushik, N.K.; Griffiths, R.W.

    1997-07-01

    From 1989 to 1993, biota collected from Pottersburg Creek, London, ON, Canada were analyzed for total polychlorinated biphenyls (PCBs) and lipids. Data were analyzed by analysis of covariance (ANCOVA) with lipid as the covariate, to investigate station, time, and trophic effects on PCB accumulation in aquatic organisms. All three variables were highly significant. PCB concentrations in biota decreased along the length of the creek away from the point source. PCB concentrations in biota collected in July 1993 were not significantly different from concentrations in biota collected in July 1990, suggesting that sources into the creek have not been alleviated. The relationship between PCBs and lipid for biota from Pottersburg Creek suggests that organisms accumulate PCBs relative to their position in the food web. Fish and leeches occupying the top of the food web accumulated more PCBs than organisms occupying a lower trophic position (crayfish and oligochaetes/chironomids), indicating that biomagnification through trophic transfer (i.e., the uptake of a chemical through ingestion) is the primary mechanism governing contaminant levels in biota and not bioconcentration (i.e, the uptake of a chemical from water).

  14. Dynamics of the Lake Michigan food web, 1970-2000

    USGS Publications Warehouse

    Madenjian, Charles P.; Fahnenstiel, Gary L.; Johengen, Thomas H.; Nalepa, Thomas F.; Vanderploeg, Henry A.; Fleischer, Guy W.; Schneeberger, Philip J.; Benjamin, Darren M.; Smith, Emily B.; Bence, James R.; Rutherford, Edward S.; Lavis, Dennis S.; Robertson, Dale M.; Jude, David J.; Ebener, Mark P.

    2002-01-01

    Herein, we document changes in the Lake Michigan food web between 1970 and 2000 and identify the factors responsible for these changes. Control of sea lamprey (Petromyzon marinus) and alewife (Alosa pseudoharengus) populations in Lake Michigan, beginning in the 1950s and 1960s, had profound effects on the food web. Recoveries of lake whitefish (Coregonus clupeaformis) and burbot (Lota lota) populations, as well as the buildup of salmonine populations, were attributable, at least in part, to sea lamprey control. Based on our analyses, predation by salmonines was primarily responsible for the reduction in alewife abundance during the 1970s and early 1980s. In turn, the decrease in alewife abundance likely contributed to recoveries of deepwater sculpin (Myoxocephalus thompsoni), yellow perch (Perca flavescens), and burbot populations during the 1970s and 1980s. Decrease in the abundance of all three dominant benthic macroinvertebrate groups, including Diporeia, oligochaetes, and sphaeriids, during the 1980s in nearshore waters (50 m deep) of Lake Michigan, was attributable to a decrease in primary production linked to a decline in phosphorus loadings. Continued decrease in Diporeia abundance during the 1990s was associated with the zebra mussel (Dreissena polymorpha) invasion, but specific mechanisms for zebra mussels affecting Diporeia abundance remain unidentified.

  15. Model of carbon cycling in planktonic food webs

    SciTech Connect

    Connolly, J.P.; Coffin, R.B.

    1995-10-01

    A mathematical model of carbon fluxes through the heterotrophic microbial food web is developed from a synthesis of laboratory and field research. The basis of the model is the segregation of organic carbon into lability classes that are defined by bioassay experiments. Bacteria, phytoplankton, three trophic levels of zooplankton, and dissolved organic carbon (DOC) and particulate organic carbon (POC) are modeled. The descriptions of bacterial growth and utilization of the various classes of substrate were treated as universal constants in the application of the model to three distinct ecosystems, ranging from oligotrophic to highly eutrophic. The successful application of the model to these diverse ecosystems supports the basic validity of the description of the microbial food web and the dynamics of carbon flux. The model indicates that the dynamics of bacteria and protozoan zooplankton production govern the rates of oxidation of carbon entering the water column. Explicit consideration of these groups would improve the capability of eutrophication models to predict dissolved oxygen dynamics, particularly when projecting responses to loading changes.

  16. Invasions and extinctions reshape coastal marine food webs.

    PubMed

    Byrnes, Jarrett E; Reynolds, Pamela L; Stachowicz, John J

    2007-01-01

    The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions ( approximately 70%) occur at high trophic levels (top predators and other carnivores), while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores). These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes. PMID:17356703

  17. Biodiversity and ecosystem functioning in evolving food webs.

    PubMed

    Allhoff, K T; Drossel, B

    2016-05-19

    We use computer simulations in order to study the interplay between biodiversity and ecosystem functioning (BEF) during both the formation and the ongoing evolution of large food webs. A species in our model is characterized by its own body mass, its preferred prey body mass and the width of its potential prey body mass spectrum. On an ecological time scale, population dynamics determines which species are viable and which ones go extinct. On an evolutionary time scale, new species emerge as modifications of existing ones. The network structure thus emerges and evolves in a self-organized manner. We analyse the relation between functional diversity and five community level measures of ecosystem functioning. These are the metabolic loss of the predator community, the total biomasses of the basal and the predator community, and the consumption rates on the basal community and within the predator community. Clear BEF relations are observed during the initial build-up of the networks, or when parameters are varied, causing bottom-up or top-down effects. However, ecosystem functioning measures fluctuate only very little during long-term evolution under constant environmental conditions, despite changes in functional diversity. This result supports the hypothesis that trophic cascades are weaker in more complex food webs. PMID:27114582

  18. Moving up the information food chain: Deploying softbots on the World Wide Web

    SciTech Connect

    Etzioni, O.

    1996-12-31

    I view the World Wide Web as an information food chain. The maze of pages and hyperlinks that comprise the Web are at the very bottom of the chain. The WebCrawlers and Alta Vistas of the world are information herbivores; they graze on Web pages and regurgitate them as searchable indices. Today, most Web users feed near the bottom of the information food chain, but the time is ripe to move up. Since 1991, we have been building information carnivores, which intelligently hunt and feast on herbivores in Unix, on the Internet, and on the Web.

  19. The paradox of pelagic food webs in the northern Bering Sea—I. Seabird food habits

    NASA Astrophysics Data System (ADS)

    Springer, Alan M.; Murphy, Edward C.; Roseneau, David G.; McRoy, C. Peter; Cooper, Brian A.

    1987-08-01

    Two distinct environmental settings in the Bering Strait region of the northern Bering Sea lead to characteristic pathways of energy flow through primarily pelagic food webs to avian consumers. In Norton Sound, a large, shallow embayment on the northeastern coast, the physical environment is dominated by the discharge of the Yukon River and by a large seasonal temperature signal. Seabirds breeding at Bluff, the largest colony in Norton Sound, number in the order of 5 × 10 4 and require 1.2 × 10 6 g C d -1. Two piscivorous species constitute the bulk of all seabirds there and are supported by a pelagic food web typical of the coastal zone of the Bering and Chukchi seas. This food web also is present around St. Lawrence Island, on the northwestern shelf, and is important to at least one species of seabird there. In addition, and generally more important, St. Lawrence Island is in a biologically rich environment resulting from the northward flow of water that originates along the continental shelf break of the Bering Sea. This flow apparently accounts for the unexpected presence of oceanic zooplankton and a diversity of forage fishes on the shallow northern shelf that support an abundant and taxonomically rich avifauna. In comparison to Norton Sound, breeding seabirds on St. Lawrence Island number in the order of 2 × 10 6, with planktivores consuming about 8 × 10 6 g C d -1 and piscivores consuming about 16 × 10 6 g C d -1.

  20. Spatial scales of carbon flow in a river food web

    USGS Publications Warehouse

    Finlay, J.C.; Khandwala, S.; Power, M.E.

    2002-01-01

    Spatial extents of food webs that support stream and river consumers are largely unknown, but such information is essential for basic understanding and management of lotic ecosystems. We used predictable variation in algal ??13C with water velocity, and measurements of consumer ??13C and ??15N to examine carbon flow and trophic structure in food webs of the South Fork Eel River in Northern California. Analyses of ??13C showed that the most abundant macroinvertebrate groups (collector-gatherers and scrapers) relied on algae from local sources within their riffle or shallow pool habitats. In contrast, filter-feeding invertebrates in riffles relied in part on algal production derived from upstream shallow pools. Riffle invertebrate predators also relied in part on consumers of pool-derived algal carbon. One abundant taxon drifting from shallow pools and riffles (baetid mayflies) relied on algal production derived from the habitats from which they dispersed. The trophic linkage from pool algae to riffle invertebrate predators was thus mediated through either predation on pool herbivores dispersing into riffles, or on filter feeders. Algal production in shallow pool habitats dominated the resource base of vertebrate predators in all habitats at the end of the summer. We could not distinguish between the trophic roles of riffle algae and terrestrial detritus, but both carbon sources appeared to play minor roles for vertebrate consumers. In shallow pools, small vertebrates, including three-spined stickleback (Gasterosteus aculeatus), roach (Hesperoleucas symmetricus), and rough-skinned newts (Taricha granulosa), relied on invertebrate prey derived from local pool habitats. During the most productive summer period, growth of all size classes of steelhead and resident rainbow trout (Oncorhynchus mykiss) in all habitats (shallow pools, riffles, and deep unproductive pools) was largely derived from algal production in shallow pools. Preliminary data suggest that the strong

  1. Food and Beverage Brands that Market to Children and Adolescents on the Internet: A Content Analysis of Branded Web Sites

    ERIC Educational Resources Information Center

    Henry, Anna E.; Story, Mary

    2009-01-01

    Objective: To identify food and beverage brand Web sites featuring designated children's areas, assess marketing techniques present on those industry Web sites, and determine nutritional quality of branded food items marketed to children. Design: Systematic content analysis of food and beverage brand Web sites and nutrient analysis of food and…

  2. Stability and Resilience as Organizing Constructs for Aquatic Food Webs

    NASA Astrophysics Data System (ADS)

    Laws, E. A.

    2003-12-01

    The idea that physical, chemical, and biological systems tend to persist in stable configurations underlies much theoretical understanding of systems behavior. Systems analysis indicates that locally (as opposed to globally) stable configurations of systems may persist indefinitely. The existence of such locally stable configurations may to some extent explain the phenomenon of regime shifts and the irreversibility of some anthropogenic impacts on ecosystems. In a stochastic environment merely being stable is not good enough. Resilience becomes important. Given a multitude of stable system configurations, a stochastic environment will tend to select for those configurations that are most resilient. The greater the variance associated with environmental noise, the greater the selection pressure. Application of the concept of maximum resilience to pelagic and mesopelagic food webs leads to predictions about system behavior that are in remarkable agreement with observations. The predictions underscore the role of temperature as a regulator of community behavior.

  3. Weighting and indirect effects identify keystone species in food webs.

    PubMed

    Zhao, Lei; Zhang, Huayong; O'Gorman, Eoin J; Tian, Wang; Ma, Athen; Moore, John C; Borrett, Stuart R; Woodward, Guy

    2016-09-01

    Species extinctions are accelerating globally, yet the mechanisms that maintain local biodiversity remain poorly understood. The extinction of species that feed on or are fed on by many others (i.e. 'hubs') has traditionally been thought to cause the greatest threat of further biodiversity loss. Very little attention has been paid to the strength of those feeding links (i.e. link weight) and the prevalence of indirect interactions. Here, we used a dynamical model based on empirical energy budget data to assess changes in ecosystem stability after simulating the loss of species according to various extinction scenarios. Link weight and/or indirect effects had stronger effects on food-web stability than the simple removal of 'hubs', demonstrating that both quantitative fluxes and species dissipating their effects across many links should be of great concern in biodiversity conservation, and the potential for 'hubs' to act as keystone species may have been exaggerated to date. PMID:27346328

  4. Biological vs. physical mixing effects on benthic food web dynamics.

    PubMed

    Braeckman, Ulrike; Provoost, Pieter; Moens, Tom; Soetaert, Karline; Middelburg, Jack J; Vincx, Magda; Vanaverbeke, Jan

    2011-01-01

    Biological particle mixing (bioturbation) and solute transfer (bio-irrigation) contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria) and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering) or rather deprives them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-irrigator) and Abra alba (bioturbator) compared to abiotic physical mixing events on survival and food uptake of nematodes after a simulated phytoplankton bloom. The (13)C labelled diatom Skeletonema costatum was added to 4 treatments: (1) microcosms containing the bioturbator, (2) microcosms containing the bio-irrigator, (3) control microcosms and (4) microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Δδ(13)C) of the added diatoms was highest in the physical mixing treatment, where macrobenthos was absent and the diatom (13)C was homogenised. Overall, nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (µg C m(-2)), which included TO(13)C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since the freshly added diatoms represented only a limited food source

  5. Shifts in the trophic base of intermittent stream food webs

    USGS Publications Warehouse

    Dekar, Matthew P.; Magoulick, Daniel D.; Huxel, G.R.

    2009-01-01

    Understanding spatial and temporal variation in the trophic base of stream food webs is critical for predicting population and community stability, and ecosystem function. We used stable isotope ratios (13C/12C, and 15N/14N) to characterize the trophic base of two streams in the Ozark Mountains of northwest Arkansas, U.S.A. We predicted that autochthonous resources would be more important during the spring and summer and allochthonous resources would be more important in the winter due to increased detritus inputs from the riparian zone during autumn leaf drop. We predicted that stream communities would demonstrate increased reliance on autochthonous resources at sites with larger watersheds and greater canopy openness. The study was conducted at three low-order sites in the Mulberry River Drainage (watershed area range: 81-232 km2) seasonally in 2006 and 2007. We used circular statistics to examine community-wide shifts in isotope space among fish and invertebrate consumers in relation to basal resources, including detritus and periphyton. Mixing models were used to quantify the relative contribution of autochthonous and allochthonous energy sources to individual invertebrate consumers. Significant isotopic shifts occurred but results varied by season and site indicating substantial variation in the trophic base of stream food webs. In terms of temporal variation, consumers shifted toward periphyton in the summer during periods of low discharge, but results varied during the interval between summer and winter. Our results did not demonstrate increased reliance on periphyton with increasing watershed area or canopy openness, and detritus was important at all the sites. In our study, riffle-pool geomorphology likely disrupted the expected spatial pattern and stream drying likely impacted the availability and distribution of basal resources.

  6. Bioaccumulation of organochlorines in the Arctic marine food web

    SciTech Connect

    Hargrave, B.; Phillips, G.; Vass, W.; Harding, G.; Welch, H.

    1995-12-31

    Five classes of organochlorine (OC) compounds (hexachlorocyclohexane (HCB and HCHs), cyclodienes, isomers of DDT and its metabolites and congeners of polychlorinated biphenyls (PCBs) and toxaphene (CHBs)) have been detected in under-ice epontic particulate matter and tissue samples of marine biota from lower trophic levels of the Arctic Ocean at sites in Barrow Strait within the Canadian archipelago (75{degree}N), coastal (79{degree}N) and central Arctic basin (85{degree}N) locations. HCBs, PCBs, isomers of DDT and DDE, chlordane, dieldrin, alpha-endosulphan, HCB and {alpha}-HCH were present in quantifiable amounts in all samples. {beta}- and {gamma}-HCH and the cyclodienes aldrin, endrin, heptachlor, heptachlor epoxide, methoxychlor and mirex were detected but could not be quantified. All OCs measured in biota were also present in the Arctic atmosphere, particulate and dissolved fractions of snow, ice melt water and seawater, Small bodied marine organisms such as zooplankton and amphipods which are short-lived have a lower lipid content for storage of OCs than larger animals such as fish and mammals. Biomagnification factors calculated from presumed predator-prey links in the marine food web varied over two orders of magnitude for different OCs. Ratios for epontic particulates and plankton (< 10) were generally lower than values for trophic links between amphipods and published values for arctic marine fish and mammals (10--100). PCBs, DDT and chlordanes are biomagnified in the Arctic marine food web to a far greater degree than more abundant OC compounds such as HCHs and HCB that have a higher water solubility.

  7. Exploring Fish Diversity as a Determinant of Ecosystem Properties in Aquatic Food Webs

    ERIC Educational Resources Information Center

    Carey, Michael P.

    2009-01-01

    Dramatic biodiversity changes occurring globally from species loss and invasion have altered native food webs and ecosystem processes. My research objectives are to understand the consequences of fish diversity to freshwater systems by (1) examining the food web consequences of multiple top predators, (2) determining how biodiversity influences…

  8. Can You Build It? Using Manipulatives to Assess Student Understanding of Food-Web Concepts

    ERIC Educational Resources Information Center

    Grumbine, Richard

    2012-01-01

    This article outlines an exercise that assesses student knowledge of food-web and energy-flow concepts. Students work in teams and use manipulatives to build food-web models based on criteria assigned by the instructor. The models are then peer reviewed according to guidelines supplied by the instructor.

  9. Developing a broader scientific foundation for river restoration: Columbia River food webs.

    PubMed

    Naiman, Robert J; Alldredge, J Richard; Beauchamp, David A; Bisson, Peter A; Congleton, James; Henny, Charles J; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Merrill, Erik N; Pearcy, William G; Rieman, Bruce E; Ruggerone, Gregory T; Scarnecchia, Dennis; Smouse, Peter E; Wood, Chris C

    2012-12-26

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure--without explicitly considering food webs--has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management. PMID:23197837

  10. IMPORTANCE OF TEMPERATURE IN MODELLING PCB BIOACCUMULATION IN THE LAKE MICHIGAN FOOD WEB

    EPA Science Inventory

    In most food web models, the exposure temperature of a food web is typically defined using a single spatial compartment. This essentially assumes that the predator and prey are exposed to the same temperature. However, in a large water body such as Lake Michigan, due to the spati...

  11. Benthic versus Planktonic Foundations of Three Lake Superior Coastal Food Webs

    EPA Science Inventory

    The structure of aquatic food webs can provide information on system function, trophic dynamics and, potentially, responses to anthropogenic stressors. Stable isotope analyses in a Lake Superior coastal wetland (Allouez Bay, WI, USA) revealed that the food web was based upon carb...

  12. Comparison of the structure of lower and upper estuary food webs for Yaquina Bay (OR)

    EPA Science Inventory

    Food web models can be used to estimate effects of water quality, habitat distribution or species loss on productivity, carbon flow and ecosystem service production in Pacific NW estuaries. Here we present a comparison of floral and faunal data used to parameterize food web mode...

  13. High-resolution food webs based on nitrogen isotopic composition of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food webs are known to have myriad trophic links between resource and consumer species. However, since the difficulties associated with characterizing the trophic position of organisms—particularly omnivores and higher-order consumers—have remained a major problem in food web ecology, our knowledge ...

  14. Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the northwater polynya marine food web.

    PubMed

    Fisk, A T; Hobson, K A; Norstrom, R J

    2001-02-15

    Persistent organic pollutants (POPs) and stable isotopes of nitrogen (delta 15N) were measured in zooplankton (6 species), a benthic invertebrate (Anonyx nugax), Arctic cod (Boreogadus saida), seabirds (6 species), and ringed seals (Phoca hispida) collected in 1998 in the Northwater Polynya to examine effects of biological and chemical factors on trophic transfer of POPs in an Arctic marine food web. Strong positive relationships were found between recalcitrant POP concentrations (lipid corrected) and trophic level based on stable isotopes of nitrogen, providing clear evidence of POP biomagnification in Arctic marine food webs. Food web magnification factors (FWMFs), derived from the slope of the POP--trophic level relationship, provided an overall magnification factor for the food web but over and underestimated biomagnification factors (BMFs) based on predator--prey concentrations in poikilotherms (fish) and homeotherms (seabirds and mammals), respectively. Greater biomagnification in homeotherms was attributed to their greater energy requirement and subsequent feeding rates. Within the homeotherms, seabirds had greater BMFs than ringed seals, consistent with greater energy demands in birds. Scavenging from marine mammal carcasses and accumulation in more contaminated winter habitats were considered important variables in seabird BMFs. Metabolic differences between species resulted in lower than expected BMFs, which would not be recognized in whole food web trophic level--POP relationships. The use of sigma POP groups, such as sigma PCB, is problematic because FWMFs and BMFs varied considerably between individual POPs. FWMFs of recalcitrant POPs had a strong positive relationship with log octanol--water partition coefficient (Kow). Results of this study show the utility of using delta 15N to characterize trophic level and trophic transfer of POPs but highlight the effects of species and chemical differences on trophic transfer of POPs that can be overlooked when

  15. Food webs: a ladder for picking strawberries or a practical tool for practical problems?

    PubMed Central

    Memmott, Jane

    2009-01-01

    While food webs have provided a rich vein of research material over the last 50 years, they have largely been the subject matter of the pure ecologist working in natural habitats. While there are some notable exceptions to this trend, there are, as I explain in this paper, many applied questions that could be answered using a food web approach. The paper is divided into two halves. The first half provides a brief review of six areas where food webs have begun to be used as an applied tool: restoration ecology, alien species, biological control, conservation ecology, habitat management and global warming. The second half outlines five areas in which a food web approach could prove very rewarding: urban ecology, agroecology, habitat fragmentation, cross-habitat food webs and ecosystem services. PMID:19451120

  16. Anthropogenic effects are associated with a lower persistence of marine food webs

    PubMed Central

    Gilarranz, Luis J.; Mora, Camilo; Bascompte, Jordi

    2016-01-01

    Marine coastal ecosystems are among the most exposed to global environmental change, with reported effects on species biomass, species richness and length of trophic chains. By combining a biologically informed food-web model with information on anthropogenic influences in 701 sites across the Caribbean region, we show that fishing effort, human density and thermal stress anomaly are associated with a decrease in local food-web persistence. The conservation status of the site, in turn, is associated with an increase in food-web persistence. Some of these associations are explained through effects on food-web structure and total community biomass. Our results unveil a hidden footprint of human activities. Even when food webs may seem healthy in terms of the presence and abundance of their constituent species, they may be losing the capacity to withstand further environmental degradation. PMID:26867790

  17. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs.

    PubMed

    Gellner, Gabriel; McCann, Kevin S

    2016-01-01

    The growing realization of a looming biodiversity crisis has inspired considerable progress in the quest to link biodiversity, structure and ecosystem function. Here we construct a method that bridges low- and high-diversity approaches to food web theory by elucidating the connection between the stability of the basic building block of food webs and the mean stability properties of large random food web networks. Applying this theoretical framework to common food web models reveals two key findings. First, in almost all cases, high-diversity food web models yield a stability relationship between weak and strong interactions that are compatible in every way to simple low-diversity models. And second, the models that generate the recently discovered phenomena of being purely stabilized by increasing interaction strength correspond to the biologically implausible assumption of perfect interaction strength symmetry. PMID:27068000

  18. Consistent role of weak and strong interactions in high- and low-diversity trophic food webs

    PubMed Central

    Gellner, Gabriel; McCann, Kevin S.

    2016-01-01

    The growing realization of a looming biodiversity crisis has inspired considerable progress in the quest to link biodiversity, structure and ecosystem function. Here we construct a method that bridges low- and high-diversity approaches to food web theory by elucidating the connection between the stability of the basic building block of food webs and the mean stability properties of large random food web networks. Applying this theoretical framework to common food web models reveals two key findings. First, in almost all cases, high-diversity food web models yield a stability relationship between weak and strong interactions that are compatible in every way to simple low-diversity models. And second, the models that generate the recently discovered phenomena of being purely stabilized by increasing interaction strength correspond to the biologically implausible assumption of perfect interaction strength symmetry. PMID:27068000

  19. Anthropogenic effects are associated with a lower persistence of marine food webs.

    PubMed

    Gilarranz, Luis J; Mora, Camilo; Bascompte, Jordi

    2016-01-01

    Marine coastal ecosystems are among the most exposed to global environmental change, with reported effects on species biomass, species richness and length of trophic chains. By combining a biologically informed food-web model with information on anthropogenic influences in 701 sites across the Caribbean region, we show that fishing effort, human density and thermal stress anomaly are associated with a decrease in local food-web persistence. The conservation status of the site, in turn, is associated with an increase in food-web persistence. Some of these associations are explained through effects on food-web structure and total community biomass. Our results unveil a hidden footprint of human activities. Even when food webs may seem healthy in terms of the presence and abundance of their constituent species, they may be losing the capacity to withstand further environmental degradation. PMID:26867790

  20. Food Web Architecture and Basal Resources Interact to Determine Biomass and Stoichiometric Cascades along a Benthic Food Web

    PubMed Central

    Guariento, Rafael D.; Carneiro, Luciana S.; Caliman, Adriano; Leal, João J. F.; Bozelli, Reinaldo L.; Esteves, Francisco A.

    2011-01-01

    Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé – RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry. PMID:21789234

  1. The use of DNA barcodes in food web construction-terrestrial and aquatic ecologists unite!

    PubMed

    Roslin, Tomas; Majaneva, Sanna

    2016-09-01

    By depicting who eats whom, food webs offer descriptions of how groupings in nature (typically species or populations) are linked to each other. For asking questions on how food webs are built and work, we need descriptions of food webs at different levels of resolution. DNA techniques provide opportunities for highly resolved webs. In this paper, we offer an exposé of how DNA-based techniques, and DNA barcodes in particular, have recently been used to construct food web structure in both terrestrial and aquatic systems. We highlight how such techniques can be applied to simultaneously improve the taxonomic resolution of the nodes of the web (i.e., the species), and the links between them (i.e., who eats whom). We end by proposing how DNA barcodes and DNA information may allow new approaches to the construction of larger interaction webs, and overcome some hurdles to achieving adequate sample size. Most importantly, we propose that the joint adoption and development of these techniques may serve to unite approaches to food web studies in aquatic and terrestrial systems-revealing the extent to which food webs in these environments are structured similarly to or differently from each other, and how they are linked by dispersal. PMID:27484156

  2. Food-web structure and network theory: The role of connectance and size

    NASA Astrophysics Data System (ADS)

    Dunne, Jennifer A.; Williams, Richard J.; Martinez, Neo D.

    2002-10-01

    Networks from a wide range of physical, biological, and social systems have been recently described as "small-world" and "scale-free." However, studies disagree whether ecological networks called food webs possess the characteristic path lengths, clustering coefficients, and degree distributions required for membership in these classes of networks. Our analysis suggests that the disagreements are based on selective use of relatively few food webs, as well as analytical decisions that obscure important variability in the data. We analyze a broad range of 16 high-quality food webs, with 25-172 nodes, from a variety of aquatic and terrestrial ecosystems. Food webs generally have much higher complexity, measured as connectance (the fraction of all possible links that are realized in a network), and much smaller size than other networks studied, which have important implications for network topology. Our results resolve prior conflicts by demonstrating that although some food webs have small-world and scale-free structure, most do not if they exceed a relatively low level of connectance. Although food-web degree distributions do not display a universal functional form, observed distributions are systematically related to network connectance and size. Also, although food webs often lack small-world structure because of low clustering, we identify a continuum of real-world networks including food webs whose ratios of observed to random clustering coefficients increase as a power-law function of network size over 7 orders of magnitude. Although food webs are generally not small-world, scale-free networks, food-web topology is consistent with patterns found within those classes of networks.

  3. Watershed and Lake Influences on the Energetic Base of Coastal Wetland Food Webs across the Great Lakes Basin

    EPA Science Inventory

    This manuscript examines the responses of Great Lakes coastal wetland food webs to nutrient enrichment and identifies three classes of systems whose food webs respond differently. Or is that differentially? Anyway, coastal wetlands with relatively long hydraulic residence times ...

  4. Developing a broader scientific foundation for river restoration: Columbia River food webs

    USGS Publications Warehouse

    Naiman, Robert J.; Alldredge, Richard; Beauchamp, David A.; Bisson, Peter A.; Congleton, James; Henny, Charles J.; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Merrill, Erik N.; Pearcy, William G.; Rieman, Bruce E.; Ruggerone, Gregory T.; Scarnecchia, Dennis; Smouse, Peter E.; Wood, Chris C.

    2012-01-01

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management.

  5. Developing a broader scientific foundation for river restoration: Columbia River food webs

    PubMed Central

    Naiman, Robert J.; Alldredge, J. Richard; Beauchamp, David A.; Bisson, Peter A.; Congleton, James; Henny, Charles J.; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Merrill, Erik N.; Pearcy, William G.; Rieman, Bruce E.; Ruggerone, Gregory T.; Scarnecchia, Dennis; Smouse, Peter E.; Wood, Chris C.

    2012-01-01

    Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management. PMID:23197837

  6. Microbial food web dynamics along a soil chronosequence of a glacier forefield

    NASA Astrophysics Data System (ADS)

    Esperschütz, J.; Pérez-de-Mora, A.; Schreiner, K.; Welzl, G.; Buegger, F.; Zeyer, J.; Hagedorn, F.; Munch, J. C.; Schloter, M.

    2011-02-01

    Microbial food webs are critical for efficient nutrient turnover providing the basis for functional and stable ecosystems. However, the successional development of such microbial food webs and their role in "young" ecosystems is unclear. Due to a continuous glacier retreat since the middle of the 19th century, glacier forefields have expanded offering an excellent opportunity to study food web development at differently developed soils. In the present study, litter degradation and the corresponding C fluxes into microbial communities were investigated along the forefield of the Damma glacier (Switzerland). 13C-enriched litter of the pioneering plant Leucanthemopsis alpina (L.) Heywood was incorporated into the soil at sites that have been free from ice for approximately 10, 60, 100 and more than 700 years. The structure and function of microbial communities were identified by 13C analysis of phospholipid fatty acids (PLFA) and phospholipid ether lipids (PLEL). Results showed increasing microbial diversity and biomass, and enhanced proliferation of bacterial groups as ecosystem development progressed. Initially, litter decomposition proceeded faster at the more developed sites, but at the end of the experiment loss of litter mass was similar at all sites, once the more easily-degradable litter fraction was processed. As a result incorporation of 13C into microbial biomass was more evident during the first weeks of litter decomposition. 13C enrichments of both PLEL and PUFA biomarkers following litter incorporation were observed at all sites, suggesting similar microbial foodwebs at all stages of soil development. Nonetheless, the contribution of bacteria and actinomycetes to litter turnover became more pronounced as soil age increased in detriment of archaea, fungi and protozoa, more prominent in recently deglaciated terrain.

  7. Microbial food web dynamics along a soil chronosequence of a glacier forefield

    NASA Astrophysics Data System (ADS)

    Esperschütz, J.; Pérez-de-Mora, A.; Schreiner, K.; Welzl, G.; Buegger, F.; Zeyer, J.; Hagedorn, F.; Munch, J. C.; Schloter, M.

    2011-11-01

    Microbial food webs are critical for efficient nutrient turnover providing the basis for functional and stable ecosystems. However, the successional development of such microbial food webs and their role in "young" ecosystems is unclear. Due to a continuous glacier retreat since the middle of the 19th century, glacier forefields have expanded offering an excellent opportunity to study food web dynamics in soils at different developmental stages. In the present study, litter degradation and the corresponding C fluxes into microbial communities were investigated along the forefield of the Damma glacier (Switzerland). 13C-enriched litter of the pioneering plant Leucanthemopsis alpina (L.) Heywood was incorporated into the soil at sites that have been free from ice for approximately 10, 60, 100 and more than 700 years. The structure and function of microbial communities were identified by 13C analysis of phospholipid fatty acids (PLFA) and phospholipid ether lipids (PLEL). Results showed increasing microbial diversity and biomass, and enhanced proliferation of bacterial groups as ecosystem development progressed. Initially, litter decomposition proceeded faster at the more developed sites, but at the end of the experiment loss of litter mass was similar at all sites, once the more easily-degradable litter fraction was processed. As a result incorporation of 13C into microbial biomass was more evident during the first weeks of litter decomposition. 13C enrichments of both PLEL and PLFA biomarkers following litter incorporation were observed at all sites, suggesting similar microbial foodwebs at all stages of soil development. Nonetheless, the contribution of bacteria, especially actinomycetes to litter turnover became more pronounced as soil age increased in detriment of archaea, fungi and protozoa, more prominent in recently deglaciated terrain.

  8. Use of Metabolic Inhibitors to Characterize Ecological Interactions in an Estuarine Microbial Food Web.

    PubMed

    DeLorenzo, M.E.; Lewitus, A.J.; Scott, G.I.; Ross, P.E.

    2001-10-01

    Understanding microbial food web dynamics is complicated by the multitude of competitive or interdependent trophic interactions involved in material and energy flow. Metabolic inhibitors can be used to gain information on the relative importance of trophic pathways by uncoupling selected microbial components and examining the net effect on ecosystem structure and function. A eukaryotic growth inhibitor (cycloheximide), a prokaryotic growth inhibitor (antibiotic mixture), and an inhibitor of photosynthesis (DCMU) were used to examine the trophodynamics of microbial communities from the tidal creek in North Inlet, a salt marsh estuary near Georgetown, South Carolina. Natural microbial communities were collected in the spring, summer, and fall after colonization onto polyurethane foam substrates deployed in the tidal creek. Bacterial abundance and productivity, heterotrophic ciliate and flagellate abundance, and phototrophic productivity, biomass, and biovolume were measured at five time points after inhibitor additions. The trophic responses of the estuarine microbial food web to metabolic inhibitors varied with season. In the summer, a close interdependency among phototrophs, bacteria, and protozoa was indicated, and the important influence of microzooplanktonic nutrient recycling was evident (i.e., a positive feedback loop). In the fall, phototroph and bacteria interactions were competitive rather than interdependent, and grazer nutrient regeneration did not appear to be an important regulatory factor for bacterial or phototrophic activities. The results indicate a seasonal shift in microbial food web structure and function in North Inlet, from a summer community characterized by microbial loop dynamics to a more linear trophic system in the fall. This study stresses the important role of microbial loops in driving primary and secondary production in estuaries such as North Inlet that are tidally dominated by fluctuations in nutrient supply and a summer

  9. Food webs and carbon flux in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Wassmann, Paul; Reigstad, Marit; Haug, Tore; Rudels, Bert; Carroll, Michael L.; Hop, Haakon; Gabrielsen, Geir Wing; Falk-Petersen, Stig; Denisenko, Stanislav G.; Arashkevich, Elena; Slagstad, Dag; Pavlova, Olga

    2006-10-01

    Within the framework of the physical forcing, we describe and quantify the key ecosystem components and basic food web structure of the Barents Sea. Emphasis is given to the energy flow through the ecosystem from an end-to-end perspective, i.e. from bacteria, through phytoplankton and zooplankton to fish, mammals and birds. Primary production in the Barents is on average 93 g C m -2 y -1, but interannually highly variable (±19%), responding to climate variability and change (e.g. variations in Atlantic Water inflow, the position of the ice edge and low-pressure pathways). The traditional focus upon large phytoplankton cells in polar regions seems less adequate in the Barents, as the cell carbon in the pelagic is most often dominated by small cells that are entangled in an efficient microbial loop that appears to be well coupled to the grazing food web. Primary production in the ice-covered waters of the Barents is clearly dominated by planktonic algae and the supply of ice biota by local production or advection is small. The pelagic-benthic coupling is strong, in particular in the marginal ice zone. In total 80% of the harvestable production is channelled through the deep-water communities and benthos. 19% of the harvestable production is grazed by the dominating copepods Calanus finmarchicus and C. glacialis in Atlantic or Arctic Water, respectively. These two species, in addition to capelin ( Mallotus villosus) and herring ( Clupea harengus), are the keystone organisms in the Barents that create the basis for the rich assemblage of higher trophic level organisms, facilitating one of the worlds largest fisheries (capelin, cod, shrimps, seals and whales). Less than 1% of the harvestable production is channelled through the most dominating higher trophic levels such as cod, harp seals, minke whales and sea birds. Atlantic cod, seals, whales, birds and man compete for harvestable energy with similar shares. Climate variability and change, differences in recruitment

  10. Trophic groups and modules: two levels of group detection in food webs

    PubMed Central

    Gauzens, Benoit; Thébault, Elisa; Lacroix, Gérard; Legendre, Stéphane

    2015-01-01

    Within food webs, species can be partitioned into groups according to various criteria. Two notions have received particular attention: trophic groups (TGs), which have been used for decades in the ecological literature, and more recently, modules. The relationship between these two group concepts remains unknown in empirical food webs. While recent developments in network theory have led to efficient methods for detecting modules in food webs, the determination of TGs (groups of species that are functionally similar) is largely based on subjective expert knowledge. We develop a novel algorithm for TG detection. We apply this method to empirical food webs and show that aggregation into TGs allows for the simplification of food webs while preserving their information content. Furthermore, we reveal a two-level hierarchical structure where modules partition food webs into large bottom–top trophic pathways, whereas TGs further partition these pathways into groups of species with similar trophic connections. This provides new perspectives for the study of dynamical and functional consequences of food-web structure, bridging topological and dynamical analysis. TGs have a clear ecological meaning and are found to provide a trade-off between network complexity and information loss. PMID:25878127

  11. Trophic transfer of contaminants in a changing arctic marine food web: Cumberland Sound, Nunavut, Canada.

    PubMed

    McKinney, Melissa A; McMeans, Bailey C; Tomy, Gregg T; Rosenberg, Bruno; Ferguson, Steven H; Morris, Adam; Muir, Derek C G; Fisk, Aaron T

    2012-09-18

    Contaminant dynamics in arctic marine food webs may be impacted by current climate-induced food web changes including increases in transient/subarctic species. We quantified food web organochlorine transfer in the Cumberland Sound (Nunavut, Canada) arctic marine food web in the presence of transient species using species-specific biomagnification factors (BMFs), trophic magnification factors (TMFs), and a multifactor model that included δ(15)N-derived trophic position and species habitat range (transient versus resident), and also considered δ(13)C-derived carbon source, thermoregulatory group, and season. Transient/subarctic species relative to residents had higher prey-to-predator BMFs of biomagnifying contaminants (1.4 to 62 for harp seal, Greenland shark, and narwhal versus 1.1 to 20 for ringed seal, arctic skate, and beluga whale, respectively). For contaminants that biomagnified in a transient-and-resident food web and a resident-only food web scenario, TMFs were higher in the former (2.3 to 10.1) versus the latter (1.7 to 4.0). Transient/subarctic species have higher tissue contaminant levels and greater BMFs likely due to higher energetic requirements associated with long-distance movements or consumption of more contaminated prey in regions outside of Cumberland Sound. These results demonstrate that, in addition to climate change-related long-range transport/deposition/revolatilization changes, increasing numbers of transient/subarctic animals may alter food web contaminant dynamics. PMID:22957980

  12. Hydrology and grazing jointly control a large-river food web.

    PubMed

    Strayer, David L; Pace, Michael L; Caraco, Nina F; Cole, Jonathan J; Findlay, Stuart E G

    2008-01-01

    Inputs of fresh water and grazing both can control aquatic food webs, but little is known about the relative strengths of and interactions between these controls. We use long-term data on the food web of the freshwater Hudson River estuary to investigate the importance of, and interactions between, inputs of fresh water and grazing by the invasive zebra mussel (Dreissena polymorpha). Both freshwater inputs and zebra mussel grazing have strong, pervasive effects on the Hudson River food web. High flow tended to reduce population size in most parts of the food web. High grazing also reduced populations in the planktonic food web, but increased populations in the littoral food web, probably as a result of increases in water clarity. The influences of flow and zebra mussel grazing were roughly equal (i.e., within a factor of 2) for many variables over the period of our study. Zebra mussel grazing made phytoplankton less sensitive to freshwater inputs, but water clarity and the littoral food web more sensitive to freshwater inputs, showing that interactions between these two controlling factors can be strong and varied. PMID:18376541

  13. Trophic groups and modules: two levels of group detection in food webs.

    PubMed

    Gauzens, Benoit; Thébault, Elisa; Lacroix, Gérard; Legendre, Stéphane

    2015-05-01

    Within food webs, species can be partitioned into groups according to various criteria. Two notions have received particular attention: trophic groups (TGs), which have been used for decades in the ecological literature, and more recently, modules. The relationship between these two group concepts remains unknown in empirical food webs. While recent developments in network theory have led to efficient methods for detecting modules in food webs, the determination of TGs (groups of species that are functionally similar) is largely based on subjective expert knowledge. We develop a novel algorithm for TG detection. We apply this method to empirical food webs and show that aggregation into TGs allows for the simplification of food webs while preserving their information content. Furthermore, we reveal a two-level hierarchical structure where modules partition food webs into large bottom-top trophic pathways, whereas TGs further partition these pathways into groups of species with similar trophic connections. This provides new perspectives for the study of dynamical and functional consequences of food-web structure, bridging topological and dynamical analysis. TGs have a clear ecological meaning and are found to provide a trade-off between network complexity and information loss. PMID:25878127

  14. Food Webs in Relation to Variation in the Environment and Species Assemblage: A Multivariate Approach

    PubMed Central

    Schriever, Tiffany A.

    2015-01-01

    The abiotic environment has strong influences on the growth, survival, behavior, and ecology of aquatic organisms. Biotic interactions and species life histories interact with abiotic factors to structure the food web. One measure of food-web structure is food-chain length. Several hypotheses predict a linear relationship between one environmental variable (e.g., disturbance or ecosystem size) and food-chain length. However, many abiotic and biotic variables interact in diverse ways to structure a community, and may affect other measures of food web structure besides food-chain length. This study took a multivariate approach to test the influence of several important environmental variables on four food-web characteristics measured in nine ponds along a hydroperiod gradient over two years. This approach allowed for testing the ecosystem size and dynamic constraints hypotheses while in context of other possibly interacting environmental variables. The relationship between amphibian and invertebrate communities and pond habitat variables was assessed to understand the underlying food-web structure. Hydroperiod and pond area had a strong influence on amphibian and invertebrate communities, trophic diversity and δ15N range. The range in δ13C values responded strongly to dissolved oxygen. Food-chain length responded to multiple environmental variables. Invertebrate and amphibian communities were structured by pond hydroperiod which in turn influenced the trophic diversity of the food web. The results of this study suggest food-chain length is influenced by environmental variation and species assemblage and that a multivariate approach may allow us to better understand the dynamics within and across aquatic food webs. PMID:25880079

  15. Food webs in relation to variation in the environment and species assemblage: a multivariate approach.

    PubMed

    Schriever, Tiffany A

    2015-01-01

    The abiotic environment has strong influences on the growth, survival, behavior, and ecology of aquatic organisms. Biotic interactions and species life histories interact with abiotic factors to structure the food web. One measure of food-web structure is food-chain length. Several hypotheses predict a linear relationship between one environmental variable (e.g., disturbance or ecosystem size) and food-chain length. However, many abiotic and biotic variables interact in diverse ways to structure a community, and may affect other measures of food web structure besides food-chain length. This study took a multivariate approach to test the influence of several important environmental variables on four food-web characteristics measured in nine ponds along a hydroperiod gradient over two years. This approach allowed for testing the ecosystem size and dynamic constraints hypotheses while in context of other possibly interacting environmental variables. The relationship between amphibian and invertebrate communities and pond habitat variables was assessed to understand the underlying food-web structure. Hydroperiod and pond area had a strong influence on amphibian and invertebrate communities, trophic diversity and δ15N range. The range in δ13C values responded strongly to dissolved oxygen. Food-chain length responded to multiple environmental variables. Invertebrate and amphibian communities were structured by pond hydroperiod which in turn influenced the trophic diversity of the food web. The results of this study suggest food-chain length is influenced by environmental variation and species assemblage and that a multivariate approach may allow us to better understand the dynamics within and across aquatic food webs. PMID:25880079

  16. Dispersed oil disrupts microbial pathways in pelagic food webs.

    PubMed

    Ortmann, Alice C; Anders, Jennifer; Shelton, Naomi; Gong, Limin; Moss, Anthony G; Condon, Robert H

    2012-01-01

    Most of the studies of microbial processes in response to the Deepwater Horizon oil spill focused on the deep water plume, and not on the surface communities. The effects of the crude oil and the application of dispersants on the coastal microbial food web in the northern Gulf of Mexico have not been well characterized even though these regions support much of the fisheries production in the Gulf. A mesocosm experiment was carried out to determine how the microbial community off the coast of Alabama may have responded to the influx of surface oil and dispersants. While the addition of glucose or oil alone resulted in an increase in the biomass of ciliates, suggesting transfer of carbon to higher trophic levels was likely; a different effect was seen in the presence of dispersant. The addition of dispersant or dispersed oil resulted in an increase in the biomass of heterotrophic prokaryotes, but a significant inhibition of ciliates, suggesting a reduction in grazing and decrease in transfer of carbon to higher trophic levels. Similar patterns were observed in two separate experiments with different starting nutrient regimes and microbial communities suggesting that the addition of dispersant and dispersed oil to the northern Gulf of Mexico waters in 2010 may have reduced the flow of carbon to higher trophic levels, leading to a decrease in the production of zooplankton and fish on the Alabama shelf. PMID:22860136

  17. Food web dynamics affect Northeast Arctic cod recruitment

    PubMed Central

    Hjermann, Dag Ø; Bogstad, Bjarte; Eikeset, Anne Maria; Ottersen, Geir; Gjøsæter, Harald; Stenseth, Nils Chr

    2006-01-01

    Proper management of ecosystems requires an understanding of both the species interactions as well as the effect of climate variation. However, a common problem is that the available time-series are of different lengths. Here, we present a general approach for studying the dynamic structure of such interactions. Specifically, we analyse the recruitment of the world's largest cod stock, the Northeast Arctic cod. Studies based on data starting in the 1970–1980s indicate that this stock is affected by temperature through a variety of pathways. However, the value of such studies is somewhat limited by the fact that they are based on a quite specific ecological and climatic situation. Recently, this stock has consisted of fairly young fish and the spawning stock has consisted of relatively few age groups. In this study, we develop a model for the effect of capelin (the cod's main prey) and herring on cod recruitment since 1973. Based on this model, we analyse data on cod, herring and temperature going back to 1921 and find that food-web effects explain a significant part of the cod recruitment variation back to around 1950. PMID:17254990

  18. Food web magnificaton of persistent organic pollutants in poikilotherms and homeotherms.

    PubMed

    Hop, Haakon; Borgá, Katrine; Gabrielsen, Geir Wing; Kleivane, Lars; Skaare, Janneche Utne

    2002-06-15

    Food web magnification of persistent organic pollutants (POPs) was determined for the Barents Sea food web using 615N as a continuous variable for assessing trophic levels (TL). The food web investigated comprised zooplankton, ice fauna and fish (poikilotherms, TL 1.7-3.3), and seabirds and seals (homeotherms, TL 3.3-4.2), with zooplankton representing the lowest and glaucous gull the highest trophic level. Concentrations of lipophilic and persistent organochlorines were orders of magnitude higher in homeotherms than in poikilotherms. These compounds had significantly higher rates of increase per trophic level in homeotherms relative to poikilotherms, with the highest food web magnification factors (FWMFs) for cischlordane and p,p'-DDE. Some compounds, such as transnonachlor and HCB, had similar rates of increase throughout the food web, whereas compounds that are more readily eliminated (gamma-HCH) showed no relationship with trophic level. It is preferable to calculate FWMFs with regard to thermal groups, because the different energy requirements and biotransformation abilities between poikilotherms and homeotherms may give different rates of contaminant increase with trophic level. When biomagnification is compared between ecosystems, FWMFs are preferable to single predator-prey biomagnification factors. FWMFs represent a trophic level increase of contaminants that is average for the food chain rather than an increase for a specific predator-prey relationship. The Barents Sea FWMFs were generally comparable to those determined for marine food webs with similar food chain lengths in the Canadian Arctic. PMID:12099454

  19. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    USGS Publications Warehouse

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of

  20. Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows.

    PubMed

    Albrecht, Matthias; Duelli, Peter; Schmid, Bernhard; Müller, Christine B

    2007-09-01

    1. We studied the community and food-web structure of trap-nesting insects in restored meadows and at increasing distances within intensively managed grassland at 13 sites in Switzerland to test if declining species diversity correlates with declining interaction diversity and changes in food-web structure. 2. We analysed 49 quantitative food webs consisting of a total of 1382 trophic interactions involving 39 host/prey insect species and 14 parasitoid/predator insect species. Species richness and abundance of three functional groups, bees and wasps as the lower trophic level and natural enemies as the higher trophic level, were significantly higher in restored than in adjacent intensively managed meadows. Diversity and abundance of specific trophic interactions also declined from restored to intensively managed meadows. 3. The proportion of attacked brood cells and the mortality of bees and wasps due to natural enemies were significantly higher in restored than in intensively managed meadows. Bee abundance and the rate of attacked brood cells of bees declined with increasing distance from restored meadows. These findings indicate that interaction diversity declines more rapidly than species diversity in our study system. 4. Quantitative measures of food-web structure (linkage density, interaction diversity, interaction evenness and compartment diversity) were higher in restored than in intensively managed meadows. This was reflected in a higher mean number of host/prey species per consumer species (degree of generalism) in restored than in intensively managed meadows. 5. The higher insect species and interaction diversity was related to higher plant species richness in restored than in intensively managed meadows. In particular, bees and natural enemies reacted positively to increased plant diversity. 6. Our findings provide empirical evidence for the theoretical prediction that decreasing species richness at lower trophic levels should reduce species richness at

  1. Entry of Oil to the Coastal Planktonic Food Web During the Deepwater Horizon Spill (Invited)

    NASA Astrophysics Data System (ADS)

    Graham, W. M.; Condon, R. H.; Carmichael, R. H.; D'Ambra, I.; Patterson, H. K.; Hernandez, F. J., Jr.

    2010-12-01

    After the explosion and subsequent sinking of the Deepwater Horizon (DWH) on 22 April 2010, an estimated 780,000 m3 of Sweet Louisiana Crude (SLC) and 205,000 mT of methane were released into the northern Gulf of Mexico over an 85 d period. A great deal of controversy ensued regarding the application of unprecedented volumes of chemical dispersants both at the surface and at depth. One of the consequences of dispersing such large volumes of oil into the water column was the difficulty of tracking its fate over distance and through the food web. Most of the attention to date has been on large underwater plumes of oil, and scant evidence exists for subsea oil in warm (>25 °C), shallow shelf waters due to rapid weathering and utilization by prokaryotes. A large pool of isotopically depleted carbon from released oil and methane is presumably available to zooplankton and zooplankton-eating fish and invertebrates via prokaryotic consumers. Thus, carbon isotopic depletion extending into marine zooplankton grazers, a pathway mediated by the microbial food web, is a good proxy for food web modification by the spill. We employed δ13C as a tracer of oil-derived carbon incorporation into the lower marine food web across the middle and inner continental shelf. During June-August 2010, we followed two particle size classes: the nominally 1 μm - 0.2 mm “small suspended particulate” and the >0.2-2 mm “mesozooplankton” fractions, with the former considered likely food particle size for the latter. A clear pattern of δ13C depletion occurring in each fraction at middle and inner shelf stations was consistent with two sequential northward pulses of surface oil slicks from DWH. Relative to early June, an isotopic shift of -1 to -3 ‰ (toward weathered and fresh oil, -27.23 ± 0.03 ‰ and -27.34 ± 0.34 ‰, respectively) occurred during the peak of areal coverage of oil over the sites in late June 2010. Recovery of this depletion was 2-4 wks. A third pulse of residual oil

  2. Trophic magnification of chlorinated flame retardants and their dechlorinated analogs in a fresh water food web.

    PubMed

    Wang, De-Gao; Guo, Ming-Xing; Pei, Wei; Byer, Jonathan D; Wang, Zhuang

    2015-01-01

    Chlorinated flame retardants, particularly dechlorane plus (DP), were widely used in commercial applications and are ubiquitous in the environment. A total of seven species of aquatic organisms were collected concurrently from the region of a chemical production facility in Huai’an, China. DP and structurally related compounds including mirex, dechloranes 602, 603, 604, chlordene plus (CP), DP monoadduct (DPMA), and two dechlorinated breakdown products of DP, decachloropentacyclooctadecadiene (anti-Cl(10)-DP) and undecachloropentacyclooctadecadiene (anti-Cl(11)-DP), were detected in these aquatic organisms. Nitrogen stable isotope ratios were also measured to determine the trophic levels of the organisms. Trophic magnification factors (TMFs) for these chemicals were calculated with values ranging from 1.0 to 3.1. TMFs for CP, mirex, anti-DP, and ∑DP were statistically greater than 1, showing evidence of biomagnification in the food web. Concentration ratios of anti-Cl(11)-DP to anti-DP showed a significant relationship with trophic level, implying that anti-Cl(11)-DP had a higher food-web magnification potential than its precursor. The biota-sediment accumulation factors and TMFs for DP demonstrated stereoselectivity, with syn-DP having a greater bioaccumulation potential than anti-DP in the aquatic environment. PMID:25463253

  3. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    USGS Publications Warehouse

    Walters, David M.; E.J. Rosi-Marshall; Kennedy, Theodore A.; W.F. Cross; C.V. Baxter

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  4. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA.

    PubMed

    Walters, David M; Rosi-Marshall, Emma; Kennedy, Theodore A; Cross, Wyatt F; Baxter, Colden V

    2015-10-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17-1.59 μg g(-1) Hg and 1.35-2.65 μg g(-1) Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ(15) N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6-100% and 56-100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. PMID:26287953

  5. Analysis of governmental Web sites on food safety issues: a global perspective.

    PubMed

    Namkung, Young; Almanza, Barbara A

    2006-10-01

    Despite a growing concern over food safety issues, as well as a growing dependence on the Internet as a source of information, little research has been done to examine the presence and relevance of food safety-related information on Web sites. The study reported here conducted Web site analysis in order to examine the current operational status of governmental Web sites on food safety issues. The study also evaluated Web site usability, especially information dimensionalities such as utility, currency, and relevance of content, from the perspective of the English-speaking consumer. Results showed that out of 192 World Health Organization members, 111 countries operated governmental Web sites that provide information about food safety issues. Among 171 searchable Web sites from the 111 countries, 123 Web sites (71.9 percent) were accessible, and 81 of those 123 (65.9 percent) were available in English. The majority of Web sites offered search engine tools and related links for more information, but their availability and utility was limited. In terms of content, 69.9 percent of Web sites offered information on foodborne-disease outbreaks, compared with 31.5 percent that had travel- and health-related information. PMID:17066944

  6. Bioaccumulation and Trophic Transfer of Mercury and Selenium in African Sub-Tropical Fluvial Reservoirs Food Webs (Burkina Faso)

    PubMed Central

    Ouédraogo, Ousséni; Chételat, John; Amyot, Marc

    2015-01-01

    The bioaccumulation and biomagnification of mercury (Hg) and selenium (Se) were investigated in sub-tropical freshwater food webs from Burkina Faso, West Africa, a region where very few ecosystem studies on contaminants have been performed. During the 2010 rainy season, samples of water, sediment, fish, zooplankton, and mollusks were collected from three water reservoirs and analysed for total Hg (THg), methylmercury (MeHg), and total Se (TSe). Ratios of δ13C and δ15N were measured to determine food web structures and patterns of contaminant accumulation and transfer to fish. Food chain lengths (FCLs) were calculated using mean δ15N of all primary consumer taxa collected as the site-specific baseline. We report relatively low concentrations of THg and TSe in most fish. We also found in all studied reservoirs short food chain lengths, ranging from 3.3 to 3.7, with most fish relying on a mixture of pelagic and littoral sources for their diet. Mercury was biomagnified in fish food webs with an enrichment factor ranging from 2.9 to 6.5 for THg and from 2.9 to 6.6 for MeHg. However, there was no evidence of selenium biomagnification in these food webs. An inverse relationship was observed between adjusted δ15N and log-transformed Se:Hg ratios, indicating that Se has a lesser protective effect in top predators, which are also the most contaminated animals with respect to MeHg. Trophic position, carbon source, and fish total length were the factors best explaining Hg concentration in fish. In a broader comparison of our study sites with literature data for other African lakes, the THg biomagnification rate was positively correlated with FCL. We conclude that these reservoir systems from tropical Western Africa have low Hg biomagnification associated with short food chains. This finding may partly explain low concentrations of Hg commonly reported in fish from this area. PMID:25875292

  7. Impact of non-native terrestrial mammals on the structure of the terrestrial mammal food web of Newfoundland, Canada.

    PubMed

    Strong, Justin S; Leroux, Shawn J

    2014-01-01

    The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat) became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator). This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland. PMID:25170923

  8. Impact of Non-Native Terrestrial Mammals on the Structure of the Terrestrial Mammal Food Web of Newfoundland, Canada

    PubMed Central

    Strong, Justin S.; Leroux, Shawn J.

    2014-01-01

    The island of Newfoundland is unique because it has as many non-native terrestrial mammals as native ones. The impacts of non-native species on native flora and fauna can be profound and invasive species have been identified as one of the primary drivers of species extinction. Few studies, however, have investigated the effects of a non-native species assemblage on community and ecosystem properties. We reviewed the literature to build the first terrestrial mammal food web for the island of Newfoundland and then used network analyses to investigate how the timing of introductions and trophic position of non-native species has affected the structure of the terrestrial mammal food web in Newfoundland. The first non-native mammals (house mouse and brown rat) became established in Newfoundland with human settlement in the late 15th and early 16th centuries. Coyotes and southern red-backed voles are the most recent mammals to establish themselves on the island in 1985 and 1998, respectively. The fraction of intermediate species increased with the addition of non-native mammals over time whereas the fraction of basal and top species declined over time. This increase in intermediate species mediated by non-native species arrivals led to an overall increase in the terrestrial mammal food web connectance and generality (i.e. mean number of prey per predator). This diverse prey base and sources of carrion may have facilitated the natural establishment of coyotes on the island. Also, there is some evidence that the introduction of non-native prey species such as the southern red-backed vole has contributed to the recovery of the threatened American marten. Long-term monitoring of the food web is required to understand and predict the impacts of the diverse novel interactions that are developing in the terrestrial mammal food web of Newfoundland. PMID:25170923

  9. Energy and nutrient flows connecting coastal wetland food webs to land and lake

    EPA Science Inventory

    Both landscape character and hydrologic forces (principally, tributary discharge and seiches) can influence utilization of externally-derived energy and nutrients in coastal wetland food webs. We quantified the contribution of internal vs external energy and nutrients among wetla...

  10. Integrating Ecosystem Engineering and Food Web Ecology: Testing the Effect of Biogenic Reefs on the Food Web of a Soft-Bottom Intertidal Area

    PubMed Central

    De Smet, Bart; Fournier, Jérôme; De Troch, Marleen; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The potential of ecosystem engineers to modify the structure and dynamics of food webs has recently been hypothesised from a conceptual point of view. Empirical data on the integration of ecosystem engineers and food webs is however largely lacking. This paper investigates the hypothesised link based on a field sampling approach of intertidal biogenic aggregations created by the ecosystem engineer Lanice conchilega (Polychaeta, Terebellidae). The aggregations are known to have a considerable impact on the physical and biogeochemical characteristics of their environment and subsequently on the abundance and biomass of primary food sources and the macrofaunal (i.e. the macro-, hyper- and epibenthos) community. Therefore, we hypothesise that L. conchilega aggregations affect the structure, stability and isotopic niche of the consumer assemblage of a soft-bottom intertidal food web. Primary food sources and the bentho-pelagic consumer assemblage of a L. conchilega aggregation and a control area were sampled on two soft-bottom intertidal areas along the French coast and analysed for their stable isotopes. Despite the structural impacts of the ecosystem engineer on the associated macrofaunal community, the presence of L. conchilega aggregations only has a minor effect on the food web structure of soft-bottom intertidal areas. The isotopic niche width of the consumer communities of the L. conchilega aggregations and control areas are highly similar, implying that consumer taxa do not shift their diet when feeding in a L. conchilega aggregation. Besides, species packing and hence trophic redundancy were not affected, pointing to an unaltered stability of the food web in the presence of L. conchilega. PMID:26496349

  11. Integrating Ecosystem Engineering and Food Web Ecology: Testing the Effect of Biogenic Reefs on the Food Web of a Soft-Bottom Intertidal Area.

    PubMed

    De Smet, Bart; Fournier, Jérôme; De Troch, Marleen; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The potential of ecosystem engineers to modify the structure and dynamics of food webs has recently been hypothesised from a conceptual point of view. Empirical data on the integration of ecosystem engineers and food webs is however largely lacking. This paper investigates the hypothesised link based on a field sampling approach of intertidal biogenic aggregations created by the ecosystem engineer Lanice conchilega (Polychaeta, Terebellidae). The aggregations are known to have a considerable impact on the physical and biogeochemical characteristics of their environment and subsequently on the abundance and biomass of primary food sources and the macrofaunal (i.e. the macro-, hyper- and epibenthos) community. Therefore, we hypothesise that L. conchilega aggregations affect the structure, stability and isotopic niche of the consumer assemblage of a soft-bottom intertidal food web. Primary food sources and the bentho-pelagic consumer assemblage of a L. conchilega aggregation and a control area were sampled on two soft-bottom intertidal areas along the French coast and analysed for their stable isotopes. Despite the structural impacts of the ecosystem engineer on the associated macrofaunal community, the presence of L. conchilega aggregations only has a minor effect on the food web structure of soft-bottom intertidal areas. The isotopic niche width of the consumer communities of the L. conchilega aggregations and control areas are highly similar, implying that consumer taxa do not shift their diet when feeding in a L. conchilega aggregation. Besides, species packing and hence trophic redundancy were not affected, pointing to an unaltered stability of the food web in the presence of L. conchilega. PMID:26496349

  12. Predator hunting mode influences patterns of prey use from grazing and epigeic food webs.

    PubMed

    Wimp, Gina M; Murphy, Shannon M; Lewis, Danny; Douglas, Margaret R; Ambikapathi, Ramya; Van-Tull, Lie'Ann; Gratton, Claudio; Denno, Robert F

    2013-02-01

    Multichannel omnivory by generalist predators, especially the use of both grazing and epigeic prey, has the potential to increase predator abundance and decrease herbivore populations. However, predator use of the epigeic web (soil surface detritus/microbe/algae consumers) varies considerably for reasons that are poorly understood. We therefore used a stable isotope approach to determine whether prey availability and predator hunting style (active hunting vs. passive web-building) impacted the degree of multichannel omnivory by the two most abundant predators on an intertidal salt marsh, both spiders. We found that carbon isotopic values of herbivores remained constant during the growing season, while values for epigeic feeders became dramatically more enriched such that values for the two webs converged in August. Carbon isotopic values for both spider species remained midway between the two webs as values for epigeic feeders shifted, indicating substantial use of prey from both food webs by both spider species. As the season progressed, prey abundance in the grazing food web increased while prey abundance in the epigeic web remained constant or declined. In response, prey consumption by the web-building spider shifted toward the grazing web to a much greater extent than did consumption by the hunting spider, possibly because passive web-capture is more responsive to changes in prey availability. Although both generalist predator species engaged in multichannel omnivory, hunting mode influenced the extent to which these predators used prey from the grazing and epigeic food webs, and could thereby influence the strength of trophic cascades in both food webs. PMID:22926724

  13. Road salts as environmental constraints in urban pond food webs.

    PubMed

    Van Meter, Robin J; Swan, Christopher M

    2014-01-01

    Freshwater salinization is an emerging environmental filter in urban aquatic ecosystems that receive chloride road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs through changes in zooplankton community composition as well as density and biomass of primary producers and consumers. From May - July 2009, we employed a 2×2×2 full-factorial design to manipulate chloride concentration (low = 177 mg L(-1) Cl(-/)high = 1067 mg L(-1) Cl(-)), gray treefrog (Hyla versicolor) tadpoles (presence/absence) and source of stormwater pond algae and zooplankton inoculum (low conductance/high conductance urban ponds) in 40, 600-L mesocosms. Road salt did serve as a constraint on zooplankton community structure, driving community divergence between the low and high chloride treatments. Phytoplankton biomass (chlorophyll [a] µg L(-1)) in the mesocosms was significantly greater for the high conductance inoculum (P<0.001) and in the high chloride treatment (P = 0.046), whereas periphyton biomass was significantly lower in the high chloride treatment (P = 0.049). Gray treefrog tadpole time to metamorphosis did not vary significantly between treatments. However, mass at metamorphosis was greater among tadpoles that experienced a faster than average time to metamorphosis and exposure to high chloride concentrations (P = 0.039). Our results indicate differential susceptibility to chloride salts among algal resources and zooplankton taxa, and further suggest that road salts can act as a significant environmental constraint on urban stormwater pond communities. PMID:24587259

  14. Biogeochemistry and the structure of tropical brown food webs.

    PubMed

    Kaspari, Michael; Yanoviak, Stephen P

    2009-12-01

    Litter invertebrates are notoriously patchy at small scales. Here we show that the abundance of 10 litter taxa also varies 100-fold at landscape and regional scales across 26 forest stands in Peru and Panama. We contrast three hypotheses that link gradients of abundance to ecosystem biogeochemistry. Of 14 factors considered (12 chemical elements, plus fiber and litter depth), four best predicted the abundance of litter invertebrates. In the Secondary Productivity Hypothesis, phosphorus limits abundance via the conversion of detritus to microbial biomass. Two of four microbivore taxa, collembola and isopods, increased with the percentage of P (%P) of decomposing litter. However, percentage of S (correlated with %P) best predicted the abundance of collembola, oribatids, and diplopods (r2 = 0.38, 0.33, 0.21, respectively). In the Structural Elements Hypotheses, N and Ca limit the abundance of silk-spinning and calcareous taxa, respectively. Mesostigmatids, pseudoscorpions, and spiders, all known to make silk, each increased with percentage of N of litter (r2 = 0.22, 0.31, 0.26, respectively). Calcareous isopods, but not diplopods, increased with percentage of Ca of litter (r2 = 0.59). In the Ecosystem Size Hypothesis, top predators are limited by available space. The abundance of the three remaining predators, chilopods, staphylinids, and ants, increased with litter depth (r2 = 0.31, 0.74, 0.69, respectively), and food webs from forests with deeper litter supported a higher ratio of predators to microbivores. These results suggest that biogeochemical gradients can provide a mechanism, through stoichiometry and trophic theory, shaping the geography of community structure. PMID:20120804

  15. Road Salts as Environmental Constraints in Urban Pond Food Webs

    PubMed Central

    Van Meter, Robin J.; Swan, Christopher M.

    2014-01-01

    Freshwater salinization is an emerging environmental filter in urban aquatic ecosystems that receive chloride road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs through changes in zooplankton community composition as well as density and biomass of primary producers and consumers. From May – July 2009, we employed a 2×2×2 full-factorial design to manipulate chloride concentration (low = 177 mg L−1 Cl−/high = 1067 mg L−1 Cl−), gray treefrog (Hyla versicolor) tadpoles (presence/absence) and source of stormwater pond algae and zooplankton inoculum (low conductance/high conductance urban ponds) in 40, 600-L mesocosms. Road salt did serve as a constraint on zooplankton community structure, driving community divergence between the low and high chloride treatments. Phytoplankton biomass (chlorophyll [a] µg L−1) in the mesocosms was significantly greater for the high conductance inoculum (P<0.001) and in the high chloride treatment (P = 0.046), whereas periphyton biomass was significantly lower in the high chloride treatment (P = 0.049). Gray treefrog tadpole time to metamorphosis did not vary significantly between treatments. However, mass at metamorphosis was greater among tadpoles that experienced a faster than average time to metamorphosis and exposure to high chloride concentrations (P = 0.039). Our results indicate differential susceptibility to chloride salts among algal resources and zooplankton taxa, and further suggest that road salts can act as a significant environmental constraint on urban stormwater pond communities. PMID:24587259

  16. Food web topology and parasites in the pelagic zone of a subarctic lake

    USGS Publications Warehouse

    Amundsen, P.-A.; Lafferty, K.D.; Knudsen, R.; Primicerio, R.; Klemetsen, A.; Kuris, A.M.

    2009-01-01

    Parasites permeate trophic webs with their often complex life cycles, but few studies have included parasitism in food web analyses. Here we provide a highly resolved food web from the pelagic zone of a subarctic lake and explore how the incorporation of parasites alters the topology of the web. 2. Parasites used hosts at all trophic levels and increased both food-chain lengths and the total number of trophic levels. Their inclusion in the network analyses more than doubled the number of links and resulted in an increase in important food-web characteristics such as linkage density and connectance. 3. More than half of the parasite taxa were trophically transmitted, exploiting hosts at multiple trophic levels and thus increasing the degree of omnivory in the trophic web. 4. For trophically transmitted parasites, the number of parasite-host links exhibited a positive correlation with the linkage density of the host species, whereas no such relationship was seen for nontrophically transmitted parasites. Our findings suggest that the linkage density of free-living species affects their exposure to trophically transmitted parasites, which may be more likely to adopt highly connected species as hosts during the evolution of complex life cycles. 5. The study supports a prominent role for parasites in ecological networks and demonstrates that their incorporation may substantially alter considerations of food-web structure and functioning. ?? 2009 British Ecological Society.

  17. Regime shifts in marine communities: a complex systems perspective on food web dynamics

    PubMed Central

    Yletyinen, Johanna; Bodin, Örjan; Weigel, Benjamin; Nordström, Marie C.; Bonsdorff, Erik; Blenckner, Thorsten

    2016-01-01

    Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs. PMID:26888032

  18. Towards a framework for assessment and management of cumulative human impacts on marine food webs.

    PubMed

    Giakoumi, Sylvaine; Halpern, Benjamin S; Michel, Loïc N; Gobert, Sylvie; Sini, Maria; Boudouresque, Charles-François; Gambi, Maria-Cristina; Katsanevakis, Stelios; Lejeune, Pierre; Montefalcone, Monica; Pergent, Gerard; Pergent-Martini, Christine; Sanchez-Jerez, Pablo; Velimirov, Branko; Vizzini, Salvatrice; Abadie, Arnaud; Coll, Marta; Guidetti, Paolo; Micheli, Fiorenza; Possingham, Hugh P

    2015-08-01

    Effective ecosystem-based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components' vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions. PMID:25704365

  19. From the Cover: Ecological community description using the food web, species abundance, and body size

    NASA Astrophysics Data System (ADS)

    Cohen, Joel E.; Jonsson, Tomas; Carpenter, Stephen R.

    2003-02-01

    Measuring the numerical abundance and average body size of individuals of each species in an ecological community's food web reveals new patterns and illuminates old ones. This approach is illustrated using data from the pelagic community of a small lake: Tuesday Lake, Michigan, United States. Body mass varies almost 12 orders of magnitude. Numerical abundance varies almost 10 orders of magnitude. Biomass abundance (average body mass times numerical abundance) varies only 5 orders of magnitude. A new food web graph, which plots species and trophic links in the plane spanned by body mass and numerical abundance, illustrates the nearly inverse relationship between body mass and numerical abundance, as well as the pattern of energy flow in the community. Species with small average body mass occur low in the food web of Tuesday Lake and are numerically abundant. Larger-bodied species occur higher in the food web and are numerically rarer. Average body size explains more of the variation in numerical abundance than does trophic height. The trivariate description of an ecological community by using the food web, average body sizes, and numerical abundance includes many well studied bivariate and univariate relationships based on subsets of these three variables. We are not aware of any single community for which all of these relationships have been analyzed simultaneously. Our approach demonstrates the connectedness of ecological patterns traditionally treated as independent. Moreover, knowing the food web gives new insight into the disputed form of the allometric relationship between body mass and abundance.

  20. Ecological-network models link diversity, structure and function in the plankton food-web

    PubMed Central

    D’Alelio, Domenico; Libralato, Simone; Wyatt, Timothy; Ribera d’Alcalà, Maurizio

    2016-01-01

    A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named ‘green’ and ‘blue’ - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the ‘adaptive’ responses of plankton communities to perturbations. PMID:26883643

  1. Ecological-network models link diversity, structure and function in the plankton food-web.

    PubMed

    D'Alelio, Domenico; Libralato, Simone; Wyatt, Timothy; Ribera d'Alcalà, Maurizio

    2016-01-01

    A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named 'green' and 'blue' - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the 'adaptive' responses of plankton communities to perturbations. PMID:26883643

  2. Regime shifts in marine communities: a complex systems perspective on food web dynamics.

    PubMed

    Yletyinen, Johanna; Bodin, Örjan; Weigel, Benjamin; Nordström, Marie C; Bonsdorff, Erik; Blenckner, Thorsten

    2016-02-24

    Species composition and habitats are changing at unprecedented rates in the world's oceans, potentially causing entire food webs to shift to structurally and functionally different regimes. Despite the severity of these regime shifts, elucidating the precise nature of their underlying processes has remained difficult. We address this challenge with a new analytic approach to detect and assess the relative strength of different driving processes in food webs. Our study draws on complexity theory, and integrates the network-centric exponential random graph modelling (ERGM) framework developed within the social sciences with community ecology. In contrast to previous research, this approach makes clear assumptions of direction of causality and accommodates a dynamic perspective on the emergence of food webs. We apply our approach to analysing food webs of the Baltic Sea before and after a previously reported regime shift. Our results show that the dominant food web processes have remained largely the same, although we detect changes in their magnitudes. The results indicate that the reported regime shift may not be a system-wide shift, but instead involve a limited number of species. Our study emphasizes the importance of community-wide analysis on marine regime shifts and introduces a novel approach to examine food webs. PMID:26888032

  3. Effects of Seasonal and Spatial Differences in Food Webs on Mercury Concentrations in Fish in the Everglades

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Bemis, B. E.; Wankel, S. D.; Rawlik, P. S.; Lange, T.; Krabbenhoft, D. P.

    2002-05-01

    A clear understanding of the aquatic food web is essential for determining the entry points and subsequent biomagnification pathways of contaminants such as methyl-mercury (MeHg) in the Everglades. Anthropogenic changes in nutrients can significantly affect the entry points of MeHg by changing food web structure from one dominated by algal productivity to one dominated by macrophytes and associated microbial activity. These changes in the base of the food web can also influence the distribution of animals within the ecosystem, and subsequently the bioaccumulation of MeHg up the food chain. As part of several collaborations with local and other federal agencies, more than 7000 Everglades samples were collected in 1995-99, and analysed for d13C and d15N. Many organisms were also analysed for d34S, gut contents, total Hg, and MeHg. Carbon isotopes effectively distinguish between two main types of food webs: ones where algae is the dominant base of the food web, which are characteristic of relatively pristine marsh sites with long hydroperiods, and ones where macrophyte debris appears to be a significant source of nutrients, which are apparently characteristic of shorter hydroperiod sites, and nutrient-impacted marshes and canals. Many organisms show significant (5-12%) spatial and temporal differences in d13C and d15N values across the Everglades. These differences may reflect site and season-specific differences in the relative importance of algae vs. macrophyte debris to the food web. However, there is a lack of evidence that these sites otherwise differ in food chain length (as determined by d15N values). This conclusion is generally supported by gut contents and mercury data. Furthermore, there are no statistically significant differences between the Delta d15N (predator-algae) values at pristine marsh, nutrient-impacted marsh, or canal sites. The main conclusions from this preliminary comparison of gut contents, stable isotope, and Hg data are: (1) there is

  4. Midwater food web in the vicinity of a marginal ice zone in the western Weddell Sea

    NASA Astrophysics Data System (ADS)

    Hopkins, Thomas L.; Torres, Joseph J.

    1989-04-01

    The structure of the food web in the vicinity of a marginal ice zone was investigated in the western Weddell Sea during austral autumn 1986. The diets of 40 species of zooplankton and micronekton occurring in the epipelagic zone were examined and compared using non-hierarchical clustering procedures. Over half the species were in three clusters of predominantly small-particle (phytoplankton; protozoans) grazers. These included biomass dominants Calanoides acutus, Calanus propinquus, Metridia gerlachei and Salpa thompsoni. Six clusters contained omnivores that had diets consisting of small particles as well as a substantial fraction of metazoan food. Among these was Euphausia superba. Seven groups were carnivorous, including species of copepods (1), chaetognaths (3), and fishes (5). Copepods were the most frequent food of carnivores; however krill also were important in the diets of three fish species. Among small-particle grazers, phytoplankton occurred more frequently in guts of individuals from open water; carnivory was more in evidence in samples collected under the pack ice. Regional comparisons of material taken on this and several previous cruises indicate that, in most of the dominant species, diets remain relatively consistent with respect to major food categories. Seasonal impact on feeding dynamics appears to be great: the guts of grazing species were generally much more full (visual evidence) during summer bloom conditions than during the autumn. The following trophic sequence is suggested for grazing zooplankton species in ice-covered regions of the Antarctic: (1) Active small-particle grazing during the summer bloom period; (2) reduced ingestion rates in autumn as primary production declines and the system becomes more oligotrophic, with some species augmenting grazing with carnivory; (3) descent of zooplankton biomass species into the mesopelagic zone in late autumn-early winter with feeding largely terminated. The sequence applies to the dominant

  5. Temporal characterization of mercury accumulation at different trophic levels and implications for metal biomagnification along a coastal food web.

    PubMed

    Cardoso, P G; Pereira, E; Duarte, A C; Azeiteiro, U M

    2014-10-15

    The main goal of this study was to assess temporal mercury variations along an estuarine food web to evaluate the mercury contamination level of the system and the risks that humans are exposed to, due to mercury biomagnification. The highest mercury concentrations in the sediments and primary producers (macrophytes) were observed during winter sampling. Instead, the highest mercury concentrations in the water, suspended particulate matter as well as in the zooplanktonic and suprabenthic communities were observed during summer sampling. Evidences of mercury biomagnification along the food web were corroborated by the positive biomagnification factors, particularly for omnivorous macrobenthic species. Comparing the mercury levels at distinct components with several environmental quality criteria it suggests that sediments, water and edible species (e.g., bivalve Scrobicularia plana and the crustacean Carcinus maenas) presented higher mercury levels than the values accepted by legislation which represent a matter of concern for the environment and human health. PMID:25172612

  6. Food web structure of sandy beaches: Temporal and spatial variation using stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Bergamino, Leandro; Lercari, Diego; Defeo, Omar

    2011-03-01

    The food web structure of two sandy beach ecosystems with contrasting morphodynamics (dissipative vs. reflective) was examined using stable carbon (δ 13C) and nitrogen (δ 15N) isotope analysis. Organic matter sources (POM: particulate organic matter; SOM: sediment organic matter) and consumers (zooplankton, benthic invertebrates and fishes) were sampled seasonally in both sandy beaches. Food webs significantly differed between beaches: even though both webs were mainly supported by POM, depleted δ 13C and δ 15N values for food sources and consumers were found in the dissipative system (following the reverse pattern in δ 13C values for consumers) for all the four seasons. Primary consumers (zooplankton and benthic invertebrates) use different organic matter sources on each beach and these differences are propagated up in the food web. The higher productivity found in the dissipative beach provided a significant amount of food for primary consumers, notably suspension feeders. Thus, the dissipative beach supported a more complex food web with more trophic links and a higher number of prey and top predators than the reflective beach. Morphodynamic factors could explain the contrasting differences in food web structure. The high degree of retention (nutrients and phytoplankton) recorded for the surf zone of the dissipative beach would result in the renewed accumulation of POM that sustains a more diverse and richer fauna than the reflective beach. Further studies directed to assess connections between the macroscopic food web, the surf-zone microbial loop and the interstitial compartment will provide a deeper understanding on the functioning of sandy beach ecosystems.

  7. Uncertainties in a Baltic sea food-web model reveal challenges for future projections.

    PubMed

    Niiranen, Susa; Blenckner, Thorsten; Hjerne, Olle; Tomczak, Maciej T

    2012-09-01

    Models that can project ecosystem dynamics under changing environmental conditions are in high demand. The application of such models, however, requires model validation together with analyses of model uncertainties, which are both often overlooked. We carried out a simplified model uncertainty and sensitivity analysis on an Ecopath with Ecosim food-web model of the Baltic Proper (BaltProWeb) and found the model sensitive to both variations in the input data of pre-identified key groups and environmental forcing. Model uncertainties grew particularly high in future climate change scenarios. For example, cod fishery recommendations that resulted in viable stocks in the original model failed after data uncertainties were introduced. In addition, addressing the trophic control dynamics produced by the food-web model proved as a useful tool for both model validation, and for studying the food-web function. These results indicate that presenting model uncertainties is necessary to alleviate ecological surprises in marine ecosystem management. PMID:22926883

  8. Food Chains & Webs. A Multimedia CD-ROM. [CD-ROM].

    ERIC Educational Resources Information Center

    2001

    This CD-ROM is designed for classroom and individual use to teach and learn about food chains and food webs. Integrated animations, custom graphics, three-dimensional representations, photographs, and sound are featured for use in user-controlled activities. Interactive lessons are available to reinforce the subject material. Pre- and post-testing…

  9. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments.

    PubMed

    Meunier, Cédric L; Gundale, Michael J; Sánchez, Irene S; Liess, Antonia

    2016-01-01

    Increased reactive nitrogen (Nr ) deposition has raised the amount of N available to organisms and has greatly altered the transfer of energy through food webs, with major consequences for trophic dynamics. The aim of this review was to: (i) clarify the direct and indirect effects of Nr deposition on forest and lake food webs in N-limited biomes, (ii) compare and contrast how aquatic and terrestrial systems respond to increased Nr deposition, and (iii) identify how the nutrient pathways within and between ecosystems change in response to Nr deposition. We present that Nr deposition releases primary producers from N limitation in both forest and lake ecosystems and raises plants' N content which in turn benefits herbivores with high N requirements. Such trophic effects are coupled with a general decrease in biodiversity caused by different N-use efficiencies; slow-growing species with low rates of N turnover are replaced by fast-growing species with high rates of N turnover. In contrast, Nr deposition diminishes below-ground production in forests, due to a range of mechanisms that reduce microbial biomass, and decreases lake benthic productivity by switching herbivore growth from N to phosphorus (P) limitation, and by intensifying P limitation of benthic fish. The flow of nutrients between ecosystems is expected to change with increasing Nr deposition. Due to higher litter production and more intense precipitation, more terrestrial matter will enter lakes. This will benefit bacteria and will in turn boost the microbial food web. Additionally, Nr deposition promotes emergent insects, which subsidize the terrestrial food web as prey for insectivores or by dying and decomposing on land. So far, most studies have examined Nr -deposition effects on the food web base, whereas our review highlights that changes at the base of food webs substantially impact higher trophic levels and therefore food web structure and functioning. PMID:25953197

  10. The meaning of functional trait composition of food webs for ecosystem functioning.

    PubMed

    Gravel, Dominique; Albouy, Camille; Thuiller, Wilfried

    2016-05-19

    There is a growing interest in using trait-based approaches to characterize the functional structure of animal communities. Quantitative methods have been derived mostly for plant ecology, but it is now common to characterize the functional composition of various systems such as soils, coral reefs, pelagic food webs or terrestrial vertebrate communities. With the ever-increasing availability of distribution and trait data, a quantitative method to represent the different roles of animals in a community promise to find generalities that will facilitate cross-system comparisons. There is, however, currently no theory relating the functional composition of food webs to their dynamics and properties. The intuitive interpretation that more functional diversity leads to higher resource exploitation and better ecosystem functioning was brought from plant ecology and does not apply readily to food webs. Here we appraise whether there are interpretable metrics to describe the functional composition of food webs that could foster a better understanding of their structure and functioning. We first distinguish the various roles that traits have on food web topology, resource extraction (bottom-up effects), trophic regulation (top-down effects), and the ability to keep energy and materials within the community. We then discuss positive effects of functional trait diversity on food webs, such as niche construction and bottom-up effects. We follow with a discussion on the negative effects of functional diversity, such as enhanced competition (both exploitation and apparent) and top-down control. Our review reveals that most of our current understanding of the impact of functional trait diversity on food web properties and functioning comes from an over-simplistic representation of network structure with well-defined levels. We, therefore, conclude with propositions for new research avenues for both theoreticians and empiricists. PMID:27114571

  11. The effects of food web structure on ecosystem function exceeds those of precipitation.

    PubMed

    Trzcinski, M Kurtis; Srivastava, Diane S; Corbara, Bruno; Dézerald, Olivier; Leroy, Céline; Carrias, Jean-François; Dejean, Alain; Céréghino, Régis

    2016-09-01

    Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder-microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder-microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder-microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation. PMID:27120013

  12. Production and food web efficiency decrease as fishing activity increases in a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Anh, Pham Viet; Everaert, Gert; Goethals, Peter; Vinh, Chu Tien; De Laender, Frederik

    2015-11-01

    Fishing effort in the Vietnamese coastal ecosystem has rapidly increased from the 1990s to the 2000s, with unknown consequences for local ecosystem structure and functioning. Using ecosystem models that integrate fisheries and food webs we found profound differences in the production of six functional groups, the food web efficiency, and eight functional food web indices between the 1990s (low fishing intensity) and the 2000s (high fishing intensity). The functional attributes (e.g. consumption) of high trophic levels (e.g. predators) were lower in the 2000s than in the 1990s while primary production did not vary, causing food web efficiency to decrease up to 40% with time for these groups. The opposite was found for lower trophic levels (e.g. zooplankton): the functional attributes and food web efficiency increased with time (22 and 10% for the functional attributes and food web efficiency, respectively). Total system throughput, a functional food web index, was about 10% higher in the 1990s than in the 2000s, indicating a reduction of the system size and activity with time. The network analyses further indicated that the Vietnamese coastal ecosystem in the 1990s was more developed (higher ascendancy and capacity), more stable (higher overhead) and more mature (higher ratio of ascendancy and capacity) than in the 2000s. In the 1990s the recovery time of the ecosystem was shorter than in 2000s, as indicated by a higher Finn's cycling index in the 1990s (7.8 and 6.5% in 1990s and 2000s, respectively). Overall, our results demonstrate that the Vietnamese coastal ecosystem has experienced profound changes between the 1990s and 2000s, and emphasise the need for a closer inspection of the ecological impact of fishing.

  13. Defining ecospace of Arctic marine food webs using a novel quantitative approach

    NASA Astrophysics Data System (ADS)

    Gale, M.; Loseto, L. L.

    2011-12-01

    The Arctic is currently facing unprecedented change with developmental, physical and climatological changes. Food webs within the marine Arctic environment are highly susceptible to anthropogenic stressors and have thus far been understudied. Stable isotopes, in conjunction with a novel set of metrics, may provide a framework that allows us to understand which areas of the Arctic are most vulnerable to change. The objective of this study was to use linear distance metrics applied to stable isotopes to a) define and quantify four Arctic marine food webs in ecospace; b) enable quantifiable comparisons among the four food webs and with other ecosystems; and, c) evaluate vulnerability of the four food webs to anthropogenic stressors such as climate change. The areas studied were Hudson Bay, Beaufort Sea, Lancaster Sound and North Water Polynya. Each region was selected based on the abundance of previous research and published and available stable isotope data in peer-review literature. We selected species to cover trophic levels ranging from particulate matter to polar bears with consideration of pelagic, benthic and ice-associated energy pathways. We interpret higher diversity in baseline carbon energy as signifying higher stability in food web structure. Based on this, the Beaufort Sea food web had the highest stability; the Beaufort Sea food web occupied the largest isotopic niche space and was supported by multiple carbon sources. Areas with top-down control system, such as Lancaster Sound and North Water Polynya, would be the first to experience an increase in trophic redundancy and possible hardships from external stressors, as they have fewer basal carbon sources and greater numbers of mid-high level consumers. We conclude that a diverse carbon energy based ecosystem such as the Beaufort Sea and Hudson Bay regions are more resilient to change than a top down control system.

  14. Parameter uncertainty, sensitivity, and sediment coupling in bioenergetics-based food web models

    SciTech Connect

    Barron, M.G.; Cacela, D.; Beltman, D.

    1995-12-31

    A bioenergetics-based food web model was developed and calibrated using measured PCB water and sediment concentrations in two Great Lakes food webs: Green Bay, Michigan and Lake Ontario. The model incorporated functional based trophic levels and sediment, water, and food chain exposures of PCBs to aquatic biota. Sensitivity analysis indicated the parameters with the greatest influence on PCBs in top predators were lipid content of plankton and benthos, planktivore assimilation efficiency, Kow, prey selection, and ambient temperature. Sediment-associated PCBs were estimated to contribute over 90% of PCBs in benthivores and less than 50% in piscivores. Ranges of PCB concentrations in top predators estimated by Monte Carlo simulation incorporating parameter uncertainty were within one order of magnitude of modal values. Model applications include estimation of exceedences of human and ecological thresholds. The results indicate that point estimates from bioenergetics-based food web models have substantial uncertainty that should be considered in regulatory and scientific applications.

  15. Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment

    PubMed Central

    Woodward, Guy; Brown, Lee E.; Edwards, Francois K.; Hudson, Lawrence N.; Milner, Alexander M.; Reuman, Daniel C.; Ledger, Mark E.

    2012-01-01

    Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size–scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts. PMID:23007087

  16. Vertical flux of biogenic carbon in the ocean: Is there food web control?

    SciTech Connect

    Rivkin, R.B.; Legendre, L.; Deibel, D.

    1996-05-24

    Models of biogenic carbon (BC) flux assume that short herbivorous food chains lead to high export, whereas complex microbial or omnivorous food webs lead to recycling and low export, and that export of BC from the euphotic zone equals new production (NP). In the Gulf of St. Lawrence, particulate organic carbon fluxes were similar during the spring phytoplankton bloom, when herbivory dominated, and during nonbloom conditions, when microbial and omnivorous food webs dominated. In contrast, NP was 1.2 to 161 times greater during the bloom than after it. Thus, neither food web structure nor NP can predict the magnitude or patterns of BC export, particularly on time scales over which the ocean is in nonequilibrium conditions. 29 refs., 3 figs., 1 tab.

  17. Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment.

    PubMed

    Woodward, Guy; Brown, Lee E; Edwards, Francois K; Hudson, Lawrence N; Milner, Alexander M; Reuman, Daniel C; Ledger, Mark E

    2012-11-01

    Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size-scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts. PMID:23007087

  18. Assimilation of aged organic carbon in a glacial river food web

    NASA Astrophysics Data System (ADS)

    Fellman, J.; Hood, E. W.; Raymond, P. A.; Bozeman, M.; Hudson, J.; Arimitsu, M.

    2013-12-01

    Identifying the key sources of organic carbon supporting fish and invertebrate consumers is fundamental to our understanding of stream ecosystems. Recent laboratory bioassays highlight that aged organic carbon from glacier environments is highly bioavailable to stream bacteria relative to carbon originating from ice-free areas. However, there is little evidence suggesting that this aged, bioavailable organic carbon is also a key basal carbon source for stream metazoa. We used natural abundance of Δ14C, δ13C, and δ15N to determine if fish and invertebrate consumers are subsidized by aged organic carbon in a glacial river in southeast Alaska. We collected biofilm, leaf litter, three different species of macroinvertebrates, and resident juvenile salmonids from a reference stream and two sites (one site is directly downstream of the glacial outflow and one site is upstream of the tidal estuary) on the heavily glaciated Herbert River. Key producers, fish, and invertebrate consumers in the reference stream had carbon isotope values that ranged from -26 to -30‰ for δ13C and from -12 to 53‰ for Δ14C, reflecting a food web sustained mainly on contemporary primary production. In contrast, biofilm in the two glacial sites was highly Δ14C depleted (-203 to -215‰) relative to the reference site. Although biofilm may consist of both bacteria and benthic algae utilizing carbon depleted in Δ14C, δ13C values for biofilm (-24.1‰), dissolved inorganic carbon (-5.9‰), and dissolved organic carbon (-24.0‰) suggest that biofilm consist of bacteria sustained in part by glacier-derived, aged organic carbon. Invertebrate consumers (mean Δ14C of -80.5, mean δ13C of -26.5) and fish (mean Δ14C of -63.3, mean δ13C of -25.7) in the two glacial sites had carbon isotope values similar to biofilm. These results similarly show that aged organic carbon is incorporated into the metazoan food web. Overall, our findings indicate that continued watershed deglaciation and

  19. Nutrition Content of Food and Beverage Products on Web Sites Popular With Children

    PubMed Central

    Lingas, Elena O.; Bukofzer, Eliana

    2009-01-01

    We assessed the nutritional quality of branded food and beverage products advertised on 28 Web sites popular with children. Of the 77 advertised products for which nutritional information was available, 49 met Institute of Medicine criteria for foods to avoid, 23 met criteria for foods to neither avoid nor encourage, and 5 met criteria for foods to encourage. There is a need for further research on the nature and extent of food and beverage advertising online to aid policymakers as they assess the impact of this marketing on children. PMID:19443816

  20. Nutrition content of food and beverage products on Web sites popular with children.

    PubMed

    Lingas, Elena O; Dorfman, Lori; Bukofzer, Eliana

    2009-11-01

    We assessed the nutritional quality of branded food and beverage products advertised on 28 Web sites popular with children. Of the 77 advertised products for which nutritional information was available, 49 met Institute of Medicine criteria for foods to avoid, 23 met criteria for foods to neither avoid nor encourage, and 5 met criteria for foods to encourage. There is a need for further research on the nature and extent of food and beverage advertising online to aid policymakers as they assess the impact of this marketing on children. PMID:19443816

  1. The impact of anticyclonic mesoscale structures on microbial food webs in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Christaki, U.; van Wambeke, F.; Lefevre, D.; Lagaria, A.; Prieur, L.; Pujo-Pay, M.; Grattepanche, J.-D.; Colombet, J.; Psarra, S.; Dolan, J. R.; Sime-Ngando, T.; Conan, P.; Weinbauer, M. G.; Moutin, T.

    2011-01-01

    The abundance and activity of the major members of the heterotrophic microbial community - from viruses to ciliates - were studied along a longitudinal transect across the Mediterranean Sea in the summer of 2008. The Mediterranean Sea is characterized by a west to the east gradient of deepening of DCM (deep chlorophyll maximum) and increasing oligotrophy reflected in gradients of heterotrophic microbial biomass and production. However, within this longitudinal trend, hydrological mesoscale features exist and likely influence microbial dynamics. We show here the importance of mesoscale structures by a description of the structure and function of the microbial food web through an investigation of 3 geographically distant eddies within a longitudinal transect. Three selected sites each located in the center of an anticyclonic eddy were intensively investigated: in the Algero-Provencal Basin (St. A), the Ionian Basin (St. B), and the Levantine Basin (St. C). The 3 geographically distant eddies showed the lowest values of the different heterotrophic compartments of the microbial food web, and except for viruses in site C, all stocks were higher in the neighboring stations outside the eddies. During our study the 3 eddies showed equilibrium between GCP (Gross Community Production) and DCR (Dark Community Respiration); moreover, the west-east (W-E) gradient was evident in terms of heterotrophic biomass but not in terms of production. Means of integrated PPp values were higher at site B (~190 mg C m-2 d-1) and about 15% lower at sites A and C (~160 mg C m-2 d-1). Net community production fluxes were similar at all three stations exhibiting equilibrium between gross community production and dark community respiration.

  2. Food web structure and bioregions in the Scotia Sea: A seasonal synthesis

    NASA Astrophysics Data System (ADS)

    Ward, Peter; Atkinson, Angus; Venables, Hugh J.; Tarling, Geraint A.; Whitehouse, Mick J.; Fielding, Sophie; Collins, Martin A.; Korb, Rebecca; Black, Andrew; Stowasser, Gabriele; Schmidt, Katrin; Thorpe, Sally E.; Enderlein, Peter

    2012-01-01

    Bioregionalisation, the partitioning of large ecosystems into functionally distinct sub-units, facilitates ecosystem modelling, management and conservation. A variety of schemes have been used to partition the Southern Ocean, based variously on frontal positions, sea ice, productivity, water depth and nutrient concentrations. We have tested the utility and robustness of ecosystem bioregionalisation for the Scotia Sea, by classifying spring, summer and autumn stations on the basis of nutrient concentrations, phytoplankton taxa, meso- and macrozooplankton, fish catches and acoustic data. Despite sampling across different seasons and years, at different spatial scales and taxonomic resolutions, cluster analysis indicated basically consistent spatial divisions across this wide range of trophic levels. Stations could be classified into two main groups, lying broadly to the north and south of the Southern Antarctic Circumpolar Current Front (SACCF). In some aspects the 2 station groups were similar, with both having variable but often high phytoplankton biomass as well as similar biomass of fish. However, the colder water southern group, most of which was covered by seasonal sea ice, had a fundamentally different food web structure to that in the northern Scotia Sea. The cold water community had a depleted, cold-adapted fauna characterised by low zooplankton biomass, Euphausia superba and the fish Electrona antarctica and Gymnoscopelus braueri. In contrast the northern group was richer with higher mesozooplankton biomass and a fauna of warmer or more cosmopolitan species such as Themisto gaudichaudii, Euphausia triacantha and the fish Protomyctophum bolini, Kreffticthys anderssoni and Gymnoscopelus fraseri. The position of the food web transition, broadly consistent with the position of the SACCF, supports a recent circumpolar-scale bioregionalisation. However, there is little evidence that this relatively weak frontal transition represents a significant barrier either

  3. Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web.

    PubMed

    Ruhí, Albert; Acuña, Vicenç; Barceló, Damià; Huerta, Belinda; Mor, Jordi-Rene; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2016-01-01

    Increasing evidence exists that emerging pollutants such as pharmaceuticals (PhACs) and endocrine-disrupting compounds (EDCs) can be bioaccumulated by aquatic organisms. However, the relative role of trophic transfers in the acquisition of emerging pollutants by aquatic organisms remains largely unexplored. In freshwater ecosystems, wastewater treatment plants are a major source of PhACs and EDCs. Here we studied the entrance of emerging pollutants and their flow through riverine food webs in an effluent-influenced river. To this end we assembled a data set on the composition and concentrations of a broad spectrum of PhACs (25 compounds) and EDCs (12 compounds) in water, biofilm, and three aquatic macroinvertebrate taxa with different trophic positions and feeding strategies (Ancylus fluviatilis, Hydropsyche sp., Phagocata vitta). We tested for similarities in pollutant levels among these compartments, and we compared observed bioaccumulation factors (BAFs) to those predicted by a previously-developed empirical model based on octanol-water distribution coefficients (Dow). Despite a high variation in composition and levels of emerging pollutants across food web compartments, observed BAFs in Hydropsyche and Phagocata matched, on average, those already predicted. Three compounds (the anti-inflammatory drug diclofenac, the lipid regulator gemfibrozil, and the flame retardant TBEP) were detected in water, biofilm and (at least) one macroinvertebrate taxa. TBEP was the only compound present in all taxa and showed magnification across trophic levels. This suggests that prey consumption may be, in some cases, a significant exposure route. This study advances the notion that both waterborne exposure and trophic interactions need to be taken into account when assessing the potential ecological risks of emerging pollutants in aquatic ecosystems. PMID:26170111

  4. Isotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food web.

    PubMed

    Kwon, Sae Yun; Blum, Joel D; Nadelhoffer, Knute J; Timothy Dvonch, J; Tsui, Martin Tsz-Ki

    2015-11-01

    Studies of monomethylmercury (MMHg) sources and biogeochemical pathways have been extensive in aquatic ecosystems, but limited in forest ecosystems. Increasing evidence suggests that there is significant mercury (Hg) exchange between aquatic and forest ecosystems. We use Hg stable isotope ratios (δ(202)Hg and Δ(199)Hg) to investigate the relative importance of MMHg sources and assess Hg transfer pathways between Douglas Lake and adjacent forests located at the University of Michigan Biological Station, USA. We characterize Hg isotopic compositions of basal resources and use linear regression of % MMHg versus δ(202)Hg and Δ(199)Hg to estimate Hg isotope values for inorganic mercury (IHg) and MMHg in the aquatic and adjacent forest food webs. In the aquatic ecosystem, we found that lake sediment represents a mixture of IHg pools deposited via watershed runoff and precipitation. The δ(202)Hg and Δ(199)Hg values estimated for IHg are consistent with other studies that measured forest floor in temperate forests. The Δ(199)Hg value estimated for MMHg in the aquatic food web indicates that MMHg is subjected to ~20% photochemical degradation prior to bioaccumulation. In the forest ecosystem, we found a significant negative relationship between total Hg and δ(202)Hg and Δ(199)Hg of soil collected at multiple distances from the lakeshore and lake sediment. This suggests that IHg input from watershed runoff provides an important Hg transfer pathway between the forest and aquatic ecosystems. We measured Δ(199)Hg values for high trophic level insects and compared these insects at multiple distances perpendicular to the lake shoreline. The Δ(199)Hg values correspond to the % canopy cover suggesting that forest MMHg is subjected to varying extents of photochemical degradation and the extent may be controlled by sunlight. Our study demonstrates that the use of Hg isotopes adds important new insight into the relative importance of MMHg sources and complex Hg transfer

  5. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions?

    PubMed

    Sarmento, Hugo; Montoya, José M; Vázquez-Domínguez, Evaristo; Vaqué, Dolors; Gasol, Josep M

    2010-07-12

    Previsions of a warmer ocean as a consequence of climatic change point to a 2-6 degrees C temperature rise during this century in surface oceanic waters. Heterotrophic bacteria occupy the central position of the marine microbial food web, and their metabolic activity and interactions with other compartments within the web are regulated by temperature. In particular, key ecosystem processes like bacterial production (BP), respiration (BR), growth efficiency and bacterial-grazer trophic interactions are likely to change in a warmer ocean. Different approaches can be used to predict these changes. Here we combine evidence of the effects of temperature on these processes and interactions coming from laboratory experiments, space-for-time substitutions, long-term data from microbial observatories and theoretical predictions. Some of the evidence we gathered shows opposite trends to warming depending on the spatio-temporal scale of observation, and the complexity of the system under study. In particular, we show that warming (i) increases BR, (ii) increases bacterial losses to their grazers, and thus bacterial-grazer biomass flux within the microbial food web, (iii) increases BP if enough resources are available (as labile organic matter derived from phytoplankton excretion or lysis), and (iv) increases bacterial losses to grazing at lower rates than BP, and hence decreasing the proportion of production removed by grazers. As a consequence, bacterial abundance would also increase and reinforce the already dominant role of microbes in the carbon cycle of a warmer ocean. PMID:20513721

  6. A new modeling approach to define marine ecosystems food-web status with uncertainty assessment

    NASA Astrophysics Data System (ADS)

    Chaalali, Aurélie; Saint-Béat, Blanche; Lassalle, Géraldine; Le Loc'h, François; Tecchio, Samuele; Safi, Georges; Savenkoff, Claude; Lobry, Jérémy; Niquil, Nathalie

    2015-06-01

    Ecosystem models are currently one of the most powerful approaches used to project and analyse the consequences of anthropogenic and climate-driven changes in food web structure and function. The modeling community is however still finding the effective representation of microbial processes as challenging and lacks of techniques for assessing flow uncertainty explicitly. A linear inverse model of the Bay of Biscay continental shelf was built using a Monte Carlo method coupled with a Markov Chain (LIM-MCMC) to characterize the system's trophic food-web status and its associated structural and functional properties. By taking into account the natural variability of ecosystems (and their associated flows) and the lack of data on these environments, this innovative approach enabled the quantification of uncertainties for both estimated flows and derived food-web indices. This uncertainty assessment constituted a real improvement on the existing Ecopath model for the same area and both models results were compared. Our results suggested a food web characterized by main flows at the basis of the food web and a high contribution of primary producers and detritus to the entire system input flows. The developmental stage of the ecosystem was characterized using estimated Ecological Network Analysis (ENA) indices; the LIM-MCMC produced a higher estimate of flow specialization (than the estimate from Ecopath) owing to better consideration of bacterial processes. The results also pointed to a detritus-based food-web with a web-like structure and an intermediate level of internal flow complexity, confirming the results of previous studies. Other current research on ecosystem model comparability is also presented.

  7. Is benthic food web structure related to diversity of marine macrobenthic communities?

    NASA Astrophysics Data System (ADS)

    Sokołowski, A.; Wołowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaité, Z.; Grémare, A.; Hummel, H.; Lesutiené, J.; Razinkovas, A.; Renaud, P. E.; Richard, P.; Kędra, M.

    2012-08-01

    Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning. Abundance and classical species diversity indices (S, H', J) of macrofaunal communities were related to principal attributes of food webs (relative trophic level and food chain length, FCL) that were determined from carbon and nitrogen stable isotope values. Structure of marine macrobenthos varies substantially at a geographical scale; total abundance ranges from 63 ind. m-2 to 34,517 ind. m-2, species richness varies from 3 to 166 and the Shannon-Weaver diversity index from 0.26 to 3.26 while Pielou's evenness index is below 0.73. The major source of energy for macrobenthic communities is suspended particulate organic matter, consisting of phytoplankton and detrital particles, sediment particulate organic matter, and microphytobenthos in varying proportions. These food sources support the presence of suspension- and deposit-feeding communities, which dominate numerically on the sea floor. Benthic food webs include usually four to five trophic levels (FCL varies from 3.08 to 4.86). Most species are assigned to the second trophic level (primary consumers), fewer species are grouped in the third trophic level (secondary consumers), and benthic top predators are the least numerous. Most species cluster primarily at the lowest trophic level that is consistent with the typical organization of pyramidal food webs. Food chain length increases with biodiversity, highlighting a positive effect of more complex community structure on food web organisation. In more diverse benthic communities, energy is transferred through more trophic levels while species-poor communities sustain a shorter food chain.

  8. How habitat-modifying organisms structure the food web of two coastal ecosystems.

    PubMed

    van der Zee, Els M; Angelini, Christine; Govers, Laura L; Christianen, Marjolijn J A; Altieri, Andrew H; van der Reijden, Karin J; Silliman, Brian R; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A; van der Veer, Henk W; Piersma, Theunis; de Ruiter, Peter C; Olff, Han; van der Heide, Tjisse

    2016-03-16

    The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main interaction networks has remained elusive. In this study, we assessed how habitat-modifying organisms affect basic food web properties by conducting in-depth empirical investigations of two ecosystems: North American temperate fringing marshes and West African tropical seagrass meadows. Results reveal that habitat-modifying species, through non-trophic facilitation rather than their trophic role, enhance species richness across multiple trophic levels, increase the number of interactions per species (link density), but decrease the realized fraction of all possible links within the food web (connectance). Compared to the trophic role of the most highly connected species, we found this non-trophic effects to be more important for species richness and of more or similar importance for link density and connectance. Our findings demonstrate that food webs can be fundamentally shaped by interactions outside the trophic network, yet intrinsic to the species participating in it. Better integration of non-trophic interactions in food web analyses may therefore strongly contribute to their explanatory and predictive capacity. PMID:26962135

  9. Floods, Food Webs, and Fluxes in a Northern California channel network

    NASA Astrophysics Data System (ADS)

    Power, M. E.; Dietrich, W. E.; Hondzo, M.; Finlay, J. C.; McNeely, C.; Schade, J.; Welter, J.; Limm, M.; Bode, C.

    2005-05-01

    Following flood scour, re-assembling river food webs respond to solute and particle fluxes. During periods of relatively low flow and high biomass, food webs will also intercept and alter these fluxes. We are studying these interactions in the South Fork Eel River and its tributaries in northern California, a steep drainage system subject to a Mediterranean climate regime. During the biologically productive summer low flow season, large algal blooms in sunlit channels tend to follow bed scouring winter floods. These blooms have strong impacts on consumers and predators in local food webs, and on local fluxes, including cross-habitat food web exchange mediated by insect emergence. We are just beginning to study the effects of blooms on fluxes through channels over larger spatial and temporal scales. Year-to-year variation in the magnitude of algal blooms will produce corresponding variation in pulsed releases of organic matter, stored temporarily in the beds of deep pools, and ultimately, in this incised system, in off shore ocean sediments. A small but ecologically significant component, however, may be stored as biomass in long lived vertebrate predators, including bats and salmonids. The ultimate goal of quantifying relationships among flow regimes, ecosystem productivity, food web responses, and fluxes through watersheds will require prolonged cross-disciplinary collaborations, but may become increasingly feasible due to access to new sensor, tracing and mapping technologies.

  10. Soil food web properties explain ecosystem services across European land use systems

    PubMed Central

    de Vries, Franciska T.; Thébault, Elisa; Liiri, Mira; Birkhofer, Klaus; Tsiafouli, Maria A.; Bjørnlund, Lisa; Bracht Jørgensen, Helene; Brady, Mark Vincent; Christensen, Søren; de Ruiter, Peter C.; d’Hertefeldt, Tina; Frouz, Jan; Hedlund, Katarina; Hemerik, Lia; Hol, W. H. Gera; Hotes, Stefan; Mortimer, Simon R.; Setälä, Heikki; Sgardelis, Stefanos P.; Uteseny, Karoline; van der Putten, Wim H.; Wolters, Volkmar; Bardgett, Richard D.

    2013-01-01

    Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world. PMID:23940339

  11. Soil food web properties explain ecosystem services across European land use systems.

    PubMed

    de Vries, Franciska T; Thébault, Elisa; Liiri, Mira; Birkhofer, Klaus; Tsiafouli, Maria A; Bjørnlund, Lisa; Bracht Jørgensen, Helene; Brady, Mark Vincent; Christensen, Søren; de Ruiter, Peter C; d'Hertefeldt, Tina; Frouz, Jan; Hedlund, Katarina; Hemerik, Lia; Hol, W H Gera; Hotes, Stefan; Mortimer, Simon R; Setälä, Heikki; Sgardelis, Stefanos P; Uteseny, Karoline; van der Putten, Wim H; Wolters, Volkmar; Bardgett, Richard D

    2013-08-27

    Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world. PMID:23940339

  12. The role of body mass in diet contiguity and food-web structure

    PubMed Central

    Stouffer, Daniel B.; Rezende, Enrico L.; Amaral, Luís A. Nunes

    2013-01-01

    Summary The idea that species occupy distinct niches is a fundamental concept in ecology. Classically, the niche was described as an n-dimensional hypervolume where each dimension represents a biotic or abiotic characteristic. More recently, it has been hypothesised that a single dimension may be sufficient to explain the system-level organization of trophic interactions observed between species in a community.Here, we test the hypothesis that species body mass is that single dimension. Specifically, we determine how the intervality of food webs ordered by body size compares to that of randomly ordered food webs. We also extend this analysis beyond the community level to the effect of body mass in explaining the diets of individual species.We conclude that body mass significantly explains the ordering of species and the contiguity of diets in empirical communities.At the species-specific level, we find that the degree to which body mass is a significant explanatory variable depends strongly on the phylogenetic history, suggesting that other evolutionarily conserved traits partly account for species’ roles in the food web.Our investigation of the role of body mass in food webs thus helps us to better understand the important features of community food-web structure and the evolutionary forces that have led us to the communities we observe. PMID:21401590

  13. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.

    PubMed

    Kautza, Adam; Mazeika, S; Sullivan, P

    2016-03-01

    Rivers are increasingly recognized as providing nutritional subsidies (i.e., energy and nutrients) to adjacent terrestrial food webs via depredation of aquatic organisms (e.g., emergent aquatic insects, crayfish, fish) by terrestrial consumers. However, because these prey organisms assimilate energy from both aquatic (e.g., benthic algae, phytoplankton, aquatic macrophytes) and terrestrial (e.g., riparian leaf detritus) primary producers, river subsidies to terrestrial consumers represent a combination of aquatically and terrestrially derived energy. To date, the explicit contribution of energy derived from aquatic primary producers to terrestrial consumers has not been fully explored yet might be expected to be quantitatively important to terrestrial food webs. At 12 reaches along a 185-km segment of the sixth-order Scioto River system (Ohio, USA), we quantified the relative contribution of energy derived from aquatic primary producers to a suite of terrestrial riparian consumers that integrate the adjacent landscape across multiple spatial scales through their foraging activities (tetragnathid spiders, rove beetles, adult coenagrionid damselflies, riparian swallows, and raccoons). We used naturally abundant stable isotopes (13C and 15N) of periphyton, phytoplankton, macrophytes, and terrestrial vegetation to evaluate the energetic contribution of aquatic primary producers to terrestrial food webs. Shoreline tetragnathid spiders were most reliant on aquatic primary producers (50%), followed by wider-ranging raccoons (48%), damselflies (44%), and riparian swallows (41%). Of the primary producers, phytoplankton (19%) provisioned the greatest nutritional contribution to terrestrial consumers (considered collectively), followed by periphyton (14%) and macrophytes (11%). Our findings provide empirical evidence that aquatic primary producers of large streams and rivers can be a critical nutritional resource for terrestrial food webs. We also show that aquatically

  14. Changes in food web structure affect rate of PCB decline in herring gull (Larus argentatus) eggs

    SciTech Connect

    Hebert, C.E.; Hobson, K.A.; Shutt, J.L.

    2000-05-01

    Biological monitors provide important information regarding temporal trends in levels of persistent organic pollutants. Correct interpretation of these trends is critical if one is to accurately assess his progress in eliminating these contaminants from the environment. In the Laurentian Great Lakes, polychlorinated biphenyl concentrations in herring gull eggs declined during the 1970s and early 1980s. By the mid-1980s, further declines were not as obvious. An exception to this trend was observed in eggs from Lake Erie. On that lake, egg PCB concentrations continued to decline rapidly during the 1980s/1990s. Evidence from stable isotope analysis indicated that temporal changes in the composition of the herring gull diet occurred on Lake Erie. In the eastern basin, declines in fish availability may have forced the gulls to incorporate a greater proportion of terrestrial food into their diets. Decreases in the proportion of fish in the gull diet would have resulted in reduced PCB exposure. This may be partially responsible for the continuing rapid rate of decline in egg PCB concentrations. This decline should be interpreted with caution. These trends may not be indicative of lake-wide declines in PCB bioavailability but only reflect changes in dietary exposure brought about by alterations in food web structure.

  15. Hydrological and Biogeochemical Controls on Seasonal and Spatial Differences in Food Webs in the Everglades

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Wankel, S. D.; Bemis, B. E.; Rawlik, P. S.; Krabbenhoft, D. P.; Lange, T.

    2002-05-01

    Stable isotopes can be used to determine the relative trophic positions of biota within a food web, and to improve our understanding of the biomagnification of contaminants. Plants at the base of the food web uptake dissolved organic carbon (DIC) and nitrogen (DIN) for growth, and their tissue reflects the isotopic composition of these sources. Animals then mirror the isotopic composition of the primary producers, as modified by consumer-diet fractionations at successive trophic steps. During 1995-99, we collected algae, macrophyte, invertebrate, and fish samples from 15 USGS sites in the Everglades and analyzed them for d13C and d15N with the goal of characterizing seasonal and spatial differences in food web relations. Carbon isotopes effectively distinguish between two main types of food webs: ones where algae is the dominant base of the food web, which are characteristic of relatively pristine marsh sites with long hydroperiods, and ones where macrophyte debris appears to be a significant source of nutrients, which are apparently characteristic of shorter hydroperiod sites, and nutrient-impacted marshes and canals. There usually is an inverse relation between d13C and d15N of organisms over time, especially in more pristine environments, reflecting seasonal changes in the d13C of DIC and the d15N of DIN. The d13C and d15N of algae also show strong positive correlations with seasonal changes in water levels. This variability is substantially damped up the food chain, probably because of the longer integration times of animals vs. plants. We speculate that these seasonal shifts in water level result in changes in biogeochemical reactions and nutrient levels, with corresponding variations in the d15N and d13C of biota. For example, small changes in water level may change the balance of photosynthesis, bacterial respiration, and atmospheric exchange reactions that control the d13C of DIC. Such changes will probably also affect the d15N of dissolved inorganic N (DIN

  16. Distributions of key exposure factors controlling the uptake of xenobiotic chemicals in an estuarine food web

    SciTech Connect

    Iannuzzi, T.J.; Harrington, N.W.; Shear, N.M.; Curry, C.L.; Carlson-Lynch, H.; Henning, M.H.; Su, S.H.; Rabbe, D.E.

    1996-11-01

    A critical evaluation of literature on the behavior, physiology, and ecology of common estuarine organisms was conducted in an attempt to develop probabilistic distributions for those variables that influence the uptake of xenobiotic chemicals from sediments, water, and food sources. The ranges, central tendencies, and distributions of several key parameter values were identified for dominant organisms from various trophic levels, including the polychaete Nereis virens, mummichog (Fundulus heteroclitus), blue crab (Callinectes sapidus), and striped bass (Morone saxatilis). The exposure factors of interest included ingestion rate for various food sources, growth rate, respiration rate, excretion rate, body weight, wet/dry weight ratio, lipid content, chemical assimilation efficiency, and food assimilation efficiency. These exposure factors are critical to the execution of mechanistic food web models, which, when properly calibrated, can be used to estimate tissue concentrations of nonionic chemicals in aquatic organisms based on knowledge of the bioenergetics and feeding interactions within a food web and the sediment and water concentrations of chemicals. In this article the authors describe the use of distributions for various exposure factors in the context of a mechanistic bioaccumulation model that is amenable to probabilistic analyses for multiple organisms within a food web. A case study is provided which compares the estimated versus measured concentrations of five polychlorinated biphenyl (PCB) congeners in a representative food web from the tidal portion of the Passaic River, New Jersey, USA. The results suggest that the model is accurate within an order of magnitude or less in estimating the bioaccumulation of PCBs in this food web without calibration. The results of a model sensitivity analysis suggest that the input parameters which most influence the output of the model are both chemical and organism specific.

  17. More than a meal: integrating non-feeding interactions into food webs

    USGS Publications Warehouse

    Kéfi, Sonia; Berlow, Eric L.; Wieters, Evie A.; Navarrete, Sergio A.; Petchey, Owen L.; Wood, Spencer A.; Boit, Alice; Joppa, Lucas N.; Lafferty, Kevin D.; Williams, Richard J.; Martinez, Neo D.; Menge, Bruce A.; Blanchette, Carol A.; Iles, Alison C.; Brose, Ulrich

    2012-01-01

    Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (<3) interaction types. The great diversity of non-trophic interactions observed in nature has been poorly addressed by ecologists and largely excluded from network theory. Herein, we propose a conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.

  18. Indicator species for limited budgets: Profiles of trophic levels, food web placement, and ecotoxicological sensitivity

    SciTech Connect

    Sorenson, M.T.; Margolin, J.A.

    1995-12-31

    The identification of indicator and/or keystone species is directly related to the success of a quantitative Ecological Risk Assessment (ERA) at a hazardous waste site. In a fiscally perfect world, species would be selected to represent each and every trophic level within the aquatic and/or terrestrial food web. However, because limited budgets are the norm, scientifically valid ``shortcuts`` are in high demand. LAW has conducted quantitative ERAs at more than thirty hazardous waste sites, with as many as ten indicator species per site (selected to represent trophic levels within each habitat type present). Data from these assessments have been compiled and evaluated for the purpose of identifying species which demonstrate the highest toxicological sensitivity within the food web. Budgets can be reduced by incorporating this proposed quantitative screening-level ERA approach. This presentation will specify quantitative ERA methodology, ecotoxicological extrapolations, uncertainties to consider, trophic level profiles, food web placement, and indicator species sensitivity.

  19. The rapid return of marine-derived nutrients to a freshwater food web following dam removal

    USGS Publications Warehouse

    Tonra, Christopher M; Sager-Fradkin, Kimberly A.; Morley, Sarah A; Duda, Jeff; Marra, Peter P.

    2015-01-01

    Dam removal is increasingly being recognized as a viable river restoration action. Although the main beneficiaries of restored connectivity are often migratory fish populations, little is known regarding recovery of other parts of the freshwater food web, particularly terrestrial components. We measured stable isotopes in key components to the freshwater food web: salmon, freshwater macroinvertebrates and a river specialist bird, American dipper (Cinclus mexicanus), before and after removal of the Elwha Dam, WA, USA. Less than a year after dam removal, salmon returned to the system and released marine-derived nutrients (MDN). In that same year we documented an increase in stable-nitrogen and carbon isotope ratios in American dippers. These results indicate that MDN from anadromous fish, an important nutrient subsidy that crosses the aquatic–terrestrial boundary, can return rapidly to food webs after dams are removed which is an important component of ecosystem recovery.

  20. Free-living nematodes in the freshwater food web: a review.

    PubMed

    Majdi, Nabil; Traunspurger, Walter

    2015-03-01

    Free-living nematodes are well-recognized as an abundant and ubiquitous component of benthic communities in inland waters. Compelling evidence from soil and marine ecosystems has highlighted the importance of nematodes as trophic intermediaries between microbial production and higher trophic levels. However, the paucity of empirical evidence of their role in freshwater ecosystems has hampered their inclusion in our understanding of freshwater food web functioning. This literature survey provides an overview of research efforts in the field of freshwater nematode ecology and of the complex trophic interactions between free-living nematodes and microbes, other meiofauna, macro-invertebrates, and fishes. Based on an analysis of the relevant literature and an appreciation of the potential of emerging approaches for the evaluation of nematode trophic ecology, we point out research gaps and recommend relevant directions for further research. The latter include (i) interactions of nematodes with protozoans and fungi; (ii) nonconsumptive effects of nematodes on microbial activity and the effects of nematodes on associated key ecosystem processes (decomposition, primary production); and (iii) the feeding selectivity and intraspecific feeding variability of nematodes and their potential impacts on the structure of benthic communities. PMID:25861114

  1. Free-Living Nematodes in the Freshwater Food Web: A Review

    PubMed Central

    Majdi, Nabil; Traunspurger, Walter

    2015-01-01

    Free-living nematodes are well-recognized as an abundant and ubiquitous component of benthic communities in inland waters. Compelling evidence from soil and marine ecosystems has highlighted the importance of nematodes as trophic intermediaries between microbial production and higher trophic levels. However, the paucity of empirical evidence of their role in freshwater ecosystems has hampered their inclusion in our understanding of freshwater food web functioning. This literature survey provides an overview of research efforts in the field of freshwater nematode ecology and of the complex trophic interactions between free-living nematodes and microbes, other meiofauna, macro-invertebrates, and fishes. Based on an analysis of the relevant literature and an appreciation of the potential of emerging approaches for the evaluation of nematode trophic ecology, we point out research gaps and recommend relevant directions for further research. The latter include (i) interactions of nematodes with protozoans and fungi; (ii) nonconsumptive effects of nematodes on microbial activity and the effects of nematodes on associated key ecosystem processes (decomposition, primary production); and (iii) the feeding selectivity and intraspecific feeding variability of nematodes and their potential impacts on the structure of benthic communities. PMID:25861114

  2. Food webs are more than the sum of their tritrophic parts.

    PubMed

    Cohen, Joel E; Schittler, Daniella N; Raffaelli, David G; Reuman, Daniel C

    2009-12-29

    Many studies have aimed to understand food webs by investigating components such as trophic links (one consumer taxon eats one resource taxon), tritrophic interactions (one consumer eats an intermediate taxon, which eats a resource), or longer chains of links. We show here that none of these components (links, tritrophic interactions, and longer chains), individually or as an ensemble, accounts fully for the properties of the next higher level of organization. As a cell is more than its molecules, as an organ is more than its cells, and as an organism is more than its organs, in a food web, new structure emerges at every organizational level up to and including the whole web. We demonstrate the emergence of properties at progressively higher levels of structure by using all of the directly observed, appropriately organized, publicly available food web datasets with relatively complete trophic link data and with average body mass and population density data for each taxon. There are only three such webs, those of Tuesday Lake, Michigan, in 1984 and 1986, and Ythan Estuary, Scotland. We make the data freely available online with this report. Differences in web patterns between Tuesday Lake and Ythan Estuary, and similarities of Tuesday Lake in 1984 and 1986 despite 50% turnover of species, suggest that the patterns we describe respond to major differences between ecosystem types. PMID:20018774

  3. Can we predict indirect interactions from quantitative food webs?--an experimental approach.

    PubMed

    Tack, Ayco J M; Gripenberg, Sofia; Roslin, Tomas

    2011-01-01

    1. Shared enemies may link the dynamics of their prey. Recently, quantitative food webs have been used to infer that herbivorous insect species attacked by the same major parasitoid species will affect each other negatively through apparent competition. Nonetheless, theoretical work predicts several alternative outcomes, including positive effects. 2. In this paper, we use an experimental approach to link food web patterns to realized population dynamics. First, we construct a quantitative food web for three dominant leaf miner species on the oak Quercus robur. We then measure short- and long-term indirect effects by increasing leaf miner densities on individual trees. Finally, we test whether experimental results are consistent with natural leaf miner dynamics on unmanipulated trees. 3. The quantitative food web shows that all leaf miner species share a minimum of four parasitoid species. While only a small fraction of the parasitoid pool is shared among Tischeria ekebladella and each of two Phyllonorycter species, the parasitoid communities of the congeneric Phyllonorycter species overlap substantially. 4. Based on the structure of the food web, we predict strong short- and long-term indirect interactions between the Phyllonorycter species, and limited interactions between them and T. ekebladella. As T. ekebladella is the main source of its own parasitoids, we expect to find intraspecific density-dependent parasitism in this species. 5. Consistent with these predictions, parasitism in T. ekebladella was high on trees with high densities of conspecifics in the previous generation. Among leaf miner species sharing more parasitoids, we found positive rather than negative interactions among years. No short-term indirect interactions (i.e. indirect interactions within a single generation) were detected. 6. Overall, this study is the first to experimentally demonstrate that herbivores with overlapping parasitoid communities may exhibit independent population dynamics

  4. Parasites affect food web structure primarily through increased diversity and complexity

    USGS Publications Warehouse

    Dunne, Jennifer A.; Lafferty, Kevin D.; Dobson, Andrew P.; Hechinger, Ryan F.; Kuris, Armand M.; Martinez, Neo D.; McLaughlin, John P.; Mouritsen, Kim N.; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B.; Thieltges, David W.; Williams, Richard J.; Zander, Claus Dieter

    2013-01-01

    Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites ‘‘dominate’’ food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites’ roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites’ feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic

  5. Effects of lake acidification and recovery on the stability of zooplankton food webs

    SciTech Connect

    Locke, A. ); Sprules, W.G. )

    1994-03-01

    The effect of food web structure on community stability and resilience has rarely been examined using empirical data. Yet there is a practical application for such studies insofar as resistance stability determines the ability of a system to adsorb' anthropogenic stress and adjustment stability determines the reversibility of resulting damage. The stability of zooplankton food webs in 46 Precambrian Shield lakes was examined using data collected in the 1970s, when pH ranged from 3.8 to 7.0, and in 1990, when pH had increased by up to two units in some lakes. Acidification overcame resistance stability at pH <5.0, as evidenced by decreases in species richness, numbers of predatory and competitive links, directed connectance, predator generalization, and linkage density, identified by analysis of variance. Adjustment stability was demonstrated by changes in food web attributes in lakes with higher pH in 1990 than in the 1970s. Species richness, numbers of predatory and competitive links, linkage density, and predator generalization all increased relative to the 1970s values. Food web attributes of recovering' lakes were statistically indistinguishable from those of lakes of similar pH that had not been more acidic in the 1970s. Similar trajectors of food web change were followed during environmental degradation and recovery. Planktonic food webs of anthropogenically acidified lakes may eventually recover to resemble their pre-acidification condition, given sufficient time without acidic inputs. Whether adjustment stability is a general feature of anthropogenically stressed systems remains to be determined. 42 refs., 2 figs., 4 tabs.

  6. Impacts of food web structure and feeding behavior on mercury exposure in Greenland Sharks (Somniosus microcephalus).

    PubMed

    McMeans, Bailey C; Arts, Michael T; Fisk, Aaron T

    2015-03-15

    Benthic and pelagic food web components in Cumberland Sound, Canada were explored as sources of total mercury (THg) to Greenland Sharks (Somniosus microcephalus) via both bottom-up food web transfer and top-down shark feeding behavior. Log10THg increased significantly with δ(15)N and trophic position from invertebrates (0.01 ± 0.01 μg · g(-1) [113 ± 1 ng · g(-1)] dw in copepods) to Greenland Sharks (3.54 ± 1.02 μg · g(-1)). The slope of the log10THg vs. δ(15)N linear regression was higher for pelagic compared to benthic food web components (excluding Greenland Sharks, which could not be assigned to either food web), which resulted from THg concentrations being higher at the base of the benthic food web (i.e., in benthic than pelagic primary consumers). However, feeding habitat is unlikely to consistently influence shark THg exposure in Cumberland Sound because THg concentrations did not consistently differ between benthic and pelagic shark prey. Further, size, gender and feeding behavior (inferred from stable isotopes and fatty acids) were unable to significantly explain THg variability among individual Greenland Sharks. Possible reasons for this result include: 1) individual sharks feeding as generalists, 2) high overlap in THg among shark prey, and 3) differences in turnover time between ecological tracers and THg. This first assessment of Greenland Shark THg within an Arctic food web revealed high concentrations consistent with biomagnification, but low ability to explain intra-specific THg variability. Our findings of high THg levels and consumption of multiple prey types, however, suggest that Greenland Sharks acquire THg through a variety of trophic pathways and are a significant contributor to the total biotic THg pool in northern seas. PMID:24630590

  7. US Food and Drug Administration Web Site: A Primer for Pharmacists.

    PubMed

    Leonard, James; Baker, Danial E

    2015-11-01

    The US Food and Drug Administration (FDA) Web site includes a vast amount of information, but it can be difficult to navigate. Despite frequently asked question (FAQ)-type pages within the Web site, it may not be easy for first-time users to find drug information. This article presents some examples of common questions, provides the locations of the answers on the FDA Web site, and gives a brief description of some of the many resources the FDA provides for health care professionals. Additionally, a newer project being undertaken by the FDA, Snapshot, is introduced. PMID:27621506

  8. High-resolution food webs based on nitrogen isotopic composition of amino acids

    PubMed Central

    Chikaraishi, Yoshito; Steffan, Shawn A; Ogawa, Nanako O; Ishikawa, Naoto F; Sasaki, Yoko; Tsuchiya, Masashi; Ohkouchi, Naohiko

    2014-01-01

    Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well-understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher-order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free-roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets.This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs. PMID:25360278

  9. Intraspecific differences in plant chemotype determine the structure of arthropod food webs.

    PubMed

    Bálint, János; Zytynska, Sharon E; Salamon, Rozália Veronika; Mehrparvar, Mohsen; Weisser, Wolfgang W; Schmitz, Oswald J; Benedek, Klára; Balog, Adalbert

    2016-03-01

    It is becoming increasingly appreciated that the structure and functioning of ecological food webs are controlled by the nature and level of plant chemicals. It is hypothesized that intraspecific variation in plant chemical resistance, in which individuals of a host-plant population exhibit genetic differences in their chemical contents (called 'plant chemotypes'), may be an important determinant of variation in food web structure and functioning. We evaluated this hypothesis using field assessments and plant chemical assays in the tansy plant Tanacetum vulgare L. (Asteraceae). We examined food webs in which chemotypes of tansy plants are the resource for two specialized aphids, their predators and mutualistic ants. The density of the ant-tended aphid Metopeurum fuscoviride was significantly higher on particular chemotypes (borneol) than others. Clear chemotype preferences between predators were also detected. Aphid specialist seven-spotted ladybird beetles (Coccinella septempunctata) were more often found on camphor plants, while significantly higher numbers of the polyphagous nursery web spider (Pisaura mirabilis) were observed on borneol plants. The analysis of plant chemotype effects on the arthropod community clearly demonstrates a range of possible outcomes between plant-aphid-predator networks. The findings help to offer a deeper insight into how one important factor--plant chemical content--influences which species coexist within a food web on a particular host plant and the nature of their trophic linkages. PMID:26581421

  10. High-resolution food webs based on nitrogen isotopic composition of amino acids.

    PubMed

    Chikaraishi, Yoshito; Steffan, Shawn A; Ogawa, Nanako O; Ishikawa, Naoto F; Sasaki, Yoko; Tsuchiya, Masashi; Ohkouchi, Naohiko

    2014-06-01

    Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well-understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher-order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free-roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets.This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs. PMID:25360278

  11. A non-equilibrium model for predicting bioaccumulation of organic contaminants in aquatic food-webs

    SciTech Connect

    Morrison, H.; Lazar, R.; Haffner, G.D.; Whittle, D.M.; Gobas, F.A.P.C.

    1995-12-31

    A sub-model describing bioaccumulation and biomagnification in benthic invertebrates was incorporated into a steady-state food-web model (Gobas, 1993) was modified, to estimate concentrations of organic contaminants in aquatic organisms based on chemical concentrations in water and sediments. Model predictions were in good agreement with field data when applied to western Lake Erie. The improved ability of the model to simulate bioaccumulation by benthic invertebrates, makes this model particularly useful for quantifying contaminant transfer in the benthic food-web.

  12. Stabilization of chaotic and non-permanent food-web dynamics

    NASA Astrophysics Data System (ADS)

    Williams, R. J.; Martinez, N. D.

    2004-03-01

    Several decades of dynamical analyses of food-web networks[CITE] have led to important insights into the effects of complexity, omnivory and interaction strength on food-web stability[CITE]. Several recent insights[CITE] are based on nonlinear bioenergetic consumer-resource models[CITE] that display chaotic behavior in three species food chains[CITE] which can be stabilized by omnivory[CITE] and weak interaction of a fourth species[CITE]. We slightly relax feeding on low-density prey in these models by modifying standard food-web interactions known as “typeII” functional responses[CITE]. This change drastically alters the dynamics of realistic systems containing up to ten species. Our modification stabilizes chaotic dynamics in three species systems and reduces or eliminates extinctions and non-persistent chaos[CITE] in ten species systems. This increased stability allows analysis of systems with greater biodiversity than in earlier work and suggests that dynamic stability is not as severe a constraint on the structure of large food webs as previously thought. The sensitivity of dynamical models to small changes in the predator-prey functional response well within the range of what is empirically observed suggests that functional response is a crucial aspect of species interactions that must be more precisely addressed in empirical studies.

  13. Food web pathway determines how selenium affects aquatic ecosystems: a San Francisco Bay case study.

    PubMed

    Stewart, A Robin; Luoma, Samuel N; Schlekat, Christian E; Doblin, Martina A; Hieb, Kathryn A

    2004-09-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d(-1), respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se >15 microg g(-1) dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts. PMID:15461158

  14. Ecological Processes Driving Trophic Transfer Of Metals In Aquatic Food Webs

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Folt, C. L.

    2004-05-01

    The transfer of metals in aquatic food webs from water to fish varies among lakes and metals. It is influenced by four ecological processes: biomagnification, biodiminution, biodilution (decreasing mass specific concentrations with increased biomass), and transfer by keystone conduit species. Data from three different field studies will be used to discuss the fate of Hg, Zn, As, and Pb in food webs typical of lakes throughout the northeast US. Metal concentrations were measured in the water, particulates, two size fractions of zooplankton, and in fish in a broad gradient of lakes and were related to ecological, physico-chemical and land use variables. Some metals biomagnified (Hg, Zn) while others biodiminished (As, Pb). Hg and Zn in zooplankton and fish were also correlated suggesting food is an important source of bioaccumulation. Both plankton abundance and species composition influenced the trophic transfer of metals, particularly Hg, to fish. Specifically, Hg concentrations in both zooplankton and fish were lower in lakes with higher plankton biomass. Moreover, Hg and As bioaccumulation was greater in cladocerans than copepods suggesting that cladocerans are major metal conduits in food webs. These results underscore the importance of biological interactions to trophic transfer of metals in aquatic food webs.

  15. Food web pathway determines how selenium affects aquatic ecosystems: A San francisco Bay case study

    USGS Publications Warehouse

    Stewart, A.R.; Luoma, S.N.; Schlekat, C.E.; Doblin, M.A.; Hieb, K.A.

    2004-01-01

    Chemical contaminants disrupt ecosystems, but specific effects may be under-appreciated when poorly known processes such as uptake mechanisms, uptake via diet, food preferences, and food web dynamics are influential. Here we show that a combination of food web structure and the physiology of trace element accumulation explain why some species in San Francisco Bay are threatened by a relatively low level of selenium contamination and some are not. Bivalves and crustacean Zooplankton form the base of two dominant food webs in estuaries. The dominant bivalve Potamocorbula amurensis has a 10-fold slower rate constant of loss for selenium than do common crustaceans such as copepods and the mysid Neomysis mercedis (rate constant of loss, ke = 0.025, 0.155, and 0.25 d-1, respectively). The result is much higher selenium concentrations in the bivalve than in the crustaceans. Stable isotope analyses show that this difference is propagated up the respective food webs in San Francisco Bay. Several predators of bivalves have tissue concentrations of selenium that exceed thresholds thought to be associated with teratogenesis or reproductive failure (liver Se > 15 ??g g-1 dry weight). Deformities typical of selenium-induced teratogenesis were observed in one of these species. Concentrations of selenium in tissues of predators of Zooplankton are less than the thresholds. Basic physiological and ecological processes can drive wide differences in exposure and effects among species, but such processes are rarely considered in traditional evaluations of contaminant impacts.

  16. Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): Predictive model and empirical data

    USGS Publications Warehouse

    Lazarus, Rebecca; Rattner, Barnett A.; Du, Bowen; McGowan, Peter C.; Blazer, Vicki; Ottinger, Mary Ann

    2015-01-01

    The osprey (Pandion haliaetus) is a well-known sentinel of environmental contamination, yet no studies have traced pharmaceuticals through the water–fish–osprey food web. A screening-level exposure assessment was used to evaluate the bioaccumulation potential of 113 pharmaceuticals and metabolites, and an artificial sweetener in this food web. Hypothetical concentrations in water reflecting “wastewater effluent dominated” or “dilution dominated” scenarios were combined with pH-specific bioconcentration factors (BCFs) to predict uptake in fish. Residues in fish and osprey food intake rate were used to calculate the daily intake (DI) of compounds by an adult female osprey. Fourteen pharmaceuticals and a drug metabolite with a BCF greater than 100 and a DI greater than 20 µg/kg were identified as being most likely to exceed the adult human therapeutic dose (HTD). These 15 compounds were also evaluated in a 40 day cumulative dose exposure scenario using first-order kinetics to account for uptake and elimination. Assuming comparable absorption to humans, the half-lives (t1/2) for an adult osprey to reach the HTD within 40 days were calculated. For 3 of these pharmaceuticals, the estimated t1/2 in ospreys was less than that for humans, and thus an osprey might theoretically reach or exceed the HTD in 3 to 7 days. To complement the exposure model, 24 compounds were quantified in water, fish plasma, and osprey nestling plasma from 7 potentially impaired locations in Chesapeake Bay. Of the 18 analytes detected in water, 8 were found in fish plasma, but only 1 in osprey plasma (the antihypertensive diltiazem). Compared to diltiazem detection rate and concentrations in water (10/12 detects,

  17. Depth-specific Analyses of the Lake Superior Food Web

    EPA Science Inventory

    Characteristics of large, deep aquatic systems include depth gradients in community composition, in the quality and distribution of food resources, and in the strategies that organisms use to obtain their nutrition. In Lake Superior, nearshore communities that rely upon a combina...

  18. Food web of the intertidal rocky shore of the west Portuguese coast - Determined by stable isotope analysis.

    PubMed

    Vinagre, Catarina; Mendonça, Vanessa; Narciso, Luís; Madeira, Carolina

    2015-09-01

    The characterization of food web structure, energy pathways and trophic linkages is essential for the understanding of ecosystem functioning. Isotopic analysis was performed on food web components of the rocky intertidal ecosystem in four sites along the Portuguese west coast. The aim was to 1) determine the general food web structure, 2) estimate the trophic level of the dominant organisms and 3) track the incorporation of organic carbon of different origins in the diet of the top consumers. In this food web, fish are top consumers, followed by shrimp. Anemones and gastropods are intermediate consumers, while bivalves and zooplankton are primary consumers. Macroalgae Bifurcaria bifurcata, Ulva lactuca, Fucus vesiculosus, Codium sp. and phytoplankton are the dominant producers. Two energy pathways were identified, pelagic and benthic. Reliance on the benthic energy pathway was high for many of the consumers but not as high as previously observed in subtidal coastal food webs. The maximum TL was 3.3, which is indicative of a relatively short food web. It is argued that the diet of top consumers relies directly on low levels of the food web to a considerable extent, instead of on intermediate levels, which shortens the trophic length of the food web. PMID:26275753

  19. Contribution of Allochthonous Carbon Subsidies to the Minho Estuary Lower Food Web

    EPA Science Inventory

    To study the contribution of autochthonous and allochthonous organic matter (OM) sources fuelling the lower food web in Minho River estuary (N-Portugal, Europe), we characterized the carbon (?13C) and nitrogen (?15N) stable isotope ratios of zooplankton and their potential OM sou...

  20. Effects of light reduction on food webs and associated ecosystem services of Yaquina Bay

    EPA Science Inventory

    Reduced water clarity can affect estuarine primary production but little is known of its subsequent effects to consumer guilds or ecosystem services. We investigated those effects using inverse analysis of modeled food webs of the lower (polyhaline) and upper (mesohaline) reache...

  1. The role of a water bug, Sigara striata, in freshwater food webs.

    PubMed

    Klecka, Jan

    2014-01-01

    Freshwater food webs are dominated by aquatic invertebrates whose trophic relationships are often poorly known. Here, I used laboratory experiments to study the role of a water bug, Sigara striata, as a potential predator and prey in food webs of stagnant waters. Multiple-choice predation experiment revealed that Sigara, which had been considered mostly herbivorous, also consumed larvae of Chironomus midges. Because they often occur in high densities and are among the most ubiquitous aquatic insects, Sigara water bugs may be important predators in fresh waters. A second experiment tested the role of Sigara as a potential prey for 13 common invertebrate predators. Mortality of Sigara inflicted by different predators varied widely, especially depending on body mass, foraging mode (ambush/searching) and feeding mode (chewing/suctorial) of the predators. Sigara was highly vulnerable to ambush predators, while searching predators caused on average 8.1 times lower mortality of Sigara. Additionally, suctorial predators consumed on average 6.6 times more Sigara individuals than chewing predators, which supports previous results hinting on potentially different predation pressures of these two types of predators on prey populations. The importance of these two foraging-related traits demonstrates the need to move from body mass based to multiple trait based descriptions of food web structure. Overall, the results suggests that detailed experimental studies of common but insufficiently known species can significantly enhance our understanding of food web structure. PMID:24883250

  2. BENTHIC PRODUCTION AS THE BASE FOR FOOD WEBS IN ALASKAN ARCTIC LAKES

    EPA Science Inventory

    Plankton are traditionally viewed as the basis for limnetic food webs, with zooplankton acting as an energy gateway between phytoplanktonic primary producers and fish. Often, benthic production is considered to be important primarily to the benthos and in shallow systems, such as...

  3. High School Students' Understanding of Food Webs: Identification of a Learning Hierarchy and Related Misconceptions.

    ERIC Educational Resources Information Center

    Griffiths, Alan K.; Grant, Bette A. C.

    1985-01-01

    Developed and validated a learning hierarchy for the concept "food web" (the hierarchy consisting of nine skill areas). Also investigated the misconceptions of 200 students related to these nine areas. Suggestions for applying the hierarchy model to remediation and resolution of the misconceptions are provided. (DH)

  4. A new dimension: Evolutionary food web dynamics in two dimensional trait space.

    PubMed

    Ritterskamp, Daniel; Bearup, Daniel; Blasius, Bernd

    2016-09-21

    Species within a habitat are not uniformly distributed. However this aspect of community structure, which is fundamental to many conservation activities, is neglected in the majority of models of food web assembly. To address this issue, we introduce a model which incorporates a second dimension, which can be interpreted as space, into the trait space used in evolutionary food web models. Our results show that the additional trait axis allows the emergence of communities with a much greater range of network structures, similar to the diversity observed in real ecological communities. Moreover, the network properties of the food webs obtained are in good agreement with those of empirical food webs. Community emergence follows a consistent pattern with spread along the second trait axis occurring before the assembly of higher trophic levels. Communities can reach either a static final structure, or constantly evolve. We observe that the relative importance of competition and predation is a key determinant of the network structure and the evolutionary dynamics. The latter are driven by the interaction-competition and predation-between small groups of species. The model remains sufficiently simple that we are able to identify the factors, and mechanisms, which determine the final community state. PMID:27060671

  5. SEASONAL DYNAMICS OF PCB ACCUMULATION IN A GREAT LAKES FOOD WEB. (R825151)

    EPA Science Inventory

    Seston, sediment, settling organic matter, and food web members were
    collected from Grand Traverse Bay, Lake Michigan, between April 1997 and
    September 1998 to examine PCB and toxaphene biomagnification. Stable isotopes of
    nitrogen and carbon were analyzed in sampl...

  6. Seeking Emotional Involvement in Science Education: Food-Chains and Webs.

    ERIC Educational Resources Information Center

    Alsop, Steve

    2001-01-01

    Documents a study of emotion in two grade 8 science classrooms. Describes a lesson on food-chains and webs designed with a conceptual and an emotional agenda. Discusses issues of emotion, sensation and relevance in science teaching. (Author/MM)

  7. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Fish, crustaceans, mollusks, and other aquatic organisms in the food web. 230.31 Section 230.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL...

  8. MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH

    EPA Science Inventory

    Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...

  9. SHIFTS BETWEEN PERIPHYTON-AND PHYTOPLANKTON-BASED FOOD WEBS IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Numerous studies have revealed the importance of algae as an energetic base for wetland food webs. Earlier carbon and nitrogen stable isotope analyses in a Lake Superior coastal wetland (Allouez Bay, WI) indicated that, despite the large amount of vascular plant biobass present, ...

  10. Columbia River food webs: Developing a broader scientific foundation for river restoration

    USGS Publications Warehouse

    Alldredge, J. Richard; Beauchamp, David; Bisson, Peter A.; Congleton, James; Henny, Charles; Huntly, Nancy; Lamberson, Roland; Levings, Colin; Naiman, Robert J.; Pearcy, William; Rieman, Bruce; Ruggerone, Greg; Scarnecchia, Dennis; Smouse, Peter; Wood, Chris C.

    2011-01-01

    The objectives of this report are to provide a fundamental understanding of aquatic food webs in the Columbia River Basin and to illustrate and summarize their influences on native fish restoration efforts. The spatial scope addresses tributaries, impoundments, the free-flowing Columbia and Snake rivers, as well as the estuary and plume. Achieving the Council's vision for the Columbia River Fish and Wildlife Program (NPCC 2009-09) of sustaining a "productive and diverse community" that provides "abundant" harvest, is best accomplished through a time-prioritized action plan, one that complements other approaches while addressing important challenges and uncertainties related to the Basin's food webs. Note that the oceanic food webs, although of immense importance in sustaining fish populations, are not considered beyond the plume since they involve an additional set of complex and rapidly evolving issues. An analysis of oceanic food webs of relevance to the Columbia River requires a separately focused effort (e.g., Hoegh- Guldberg and Bruno 2010).

  11. Non-random food-web assembly at habitat edges increases connectivity and functional redundancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Habitat fragmentation dramatically alters the spatial configuration of landscapes, with the creation of artificial edges affecting community structure and species interactions. Despite this, it is not known how the different food-webs in adjacent habitats merge at their boundaries, and what the cons...

  12. Detritus fuels ecosystem metabolism but not metazoan food webs in San Francisco estuary's freshwater delta

    USGS Publications Warehouse

    Sobczak, W.V.; Cloern, J.E.; Jassby, A.D.; Cole, B.E.; Schraga, T.S.; Arnsberg, A.

    2005-01-01

    Detritus from terrestrial ecosystems is the major source of organic matter in many streams, rivers, and estuaries, yet the role of detritus in supporting pelagic food webs is debated. We examined the importance of detritus to secondary productivity in the Sacramento and San Joaquin River Delta (California, United States), a large complex of tidal freshwater habitats. The Delta ecosystem has low primary productivity but large detrital inputs, so we hypothesized that detritus is the primary energy source fueling production in pelagic food webs. We assessed the sources, quantity, composition, and bioavailability of organic matter among a diversity of habitats (e.g., marsh sloughs, floodplains, tidal lakes, and deep river channels) over two years to test this hypothesis. Our results support the emerging principle that detritus dominates riverine and estuarine organic matter supply and supports the majority of ecosystem metabolism. Yet in contrast to prevailing ideas, we found that detritus was weakly coupled to the Delta's pelagic food web. Results from independent approaches showed that phytoplankton production was the dominant source of organic matter for the Delta's pelagic food web, even though primary production accounts for a small fraction of the Delta's organic matter supply. If these results are general, they suggest that the value of organic matter to higher trophic levels, including species targeted by programs of ecosystem restoration, is a function of phytoplankton production. ?? 2005 Estuarine Research Federation.

  13. Primary consumers enhance connectivity to marine and terrestrial ecosystems within estuarine food webs

    EPA Science Inventory

    The flux of organic matter (OM) across ecosystem boundaries can influence estuarine food web dynamics and productivity. However, this process is seldom investigated taking into account all the adjacent ecosystems (e.g. ocean, river, land) and different hydrological settings (i.e....

  14. Contribution of nematodes to the structure and function of the soil food web.

    PubMed

    Ferris, Howard

    2010-03-01

    As carbon and energy flow through the soil food web they are depleted by the metabolic and production functions of organisms. To be sustained, a "long" food web, with a large biomass at higher trophic levels, must receive a high rate of rhizodeposition or detrital subsidy, or be top-populated by organisms of slow growth and long life cycle. Disturbed soil food webs tend to be bottom heavy and recalcitrant to restoration due to the slow growth of upper predator populations, physical and chemical constraints of the soil matrix, biological imbalances, and the relatively low mobility and invasion potential of soil organisms. The functional roles of nematodes, determined by their metabolic and behavioral activities, may be categorized as ecosystem services, disservices or effect-neutral. Among the disservices attributable to nematodes are overgrazing, which diminishes services of prey organisms, and plant-damaging herbivory, which reduces carbon fixation and availability to other organisms in the food web. Unfortunately, management to ameliorate potential disservices of certain nematodes results in unintended but long-lasting diminution of the services of others. Beneficial roles of nematodes may be enhanced by environmental stewardship that fosters greater biodiversity and, consequently, complementarity and continuity of their services. PMID:22736838

  15. Evolutionary food web model based on body masses gives realistic networks with permanent species turnover

    NASA Astrophysics Data System (ADS)

    Allhoff, K. T.; Ritterskamp, D.; Rall, B. C.; Drossel, B.; Guill, C.

    2015-06-01

    The networks of predator-prey interactions in ecological systems are remarkably complex, but nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In order to understand the mechanism driving the complexity and stability of such food webs, we developed an eco-evolutionary model in which new species emerge as modifications of existing ones and dynamic ecological interactions determine which species are viable. The food-web structure thereby emerges from the dynamical interplay between speciation and trophic interactions. The proposed model is less abstract than earlier evolutionary food web models in the sense that all three evolving traits have a clear biological meaning, namely the average body mass of the individuals, the preferred prey body mass, and the width of their potential prey body mass spectrum. We observed networks with a wide range of sizes and structures and high similarity to natural food webs. The model networks exhibit a continuous species turnover, but massive extinction waves that affect more than 50% of the network are not observed.

  16. Climate change impacts on body size and food web structure on mountain ecosystems

    PubMed Central

    Lurgi, Miguel; López, Bernat C.; Montoya, José M.

    2012-01-01

    The current distribution of climatic conditions will be rearranged on the globe. To survive, species will have to keep pace with climates as they move. Mountains are among the most affected regions owing to both climate and land-use change. Here, we explore the effects of climate change in the vertebrate food web of the Pyrenees. We investigate elevation range expansions between two time-periods illustrative of warming conditions, to assess: (i) the taxonomic composition of range expanders; (ii) changes in food web properties such as the distribution of links per species and community size-structure; and (iii) what are the specific traits of range expanders that set them apart from the other species in the community—in particular, body mass, diet generalism, vulnerability and trophic position within the food web. We found an upward expansion of species at all elevations, which was not even for all taxonomic groups and trophic positions. At low and intermediate elevations, predator : prey mass ratios were significantly reduced. Expanders were larger, had fewer predators and were, in general, more specialists. Our study shows that elevation range expansions as climate warms have important and predictable impacts on the structure and size distribution of food webs across space. PMID:23007094

  17. Climate change impacts on body size and food web structure on mountain ecosystems.

    PubMed

    Lurgi, Miguel; López, Bernat C; Montoya, José M

    2012-11-01

    The current distribution of climatic conditions will be rearranged on the globe. To survive, species will have to keep pace with climates as they move. Mountains are among the most affected regions owing to both climate and land-use change. Here, we explore the effects of climate change in the vertebrate food web of the Pyrenees. We investigate elevation range expansions between two time-periods illustrative of warming conditions, to assess: (i) the taxonomic composition of range expanders; (ii) changes in food web properties such as the distribution of links per species and community size-structure; and (iii) what are the specific traits of range expanders that set them apart from the other species in the community-in particular, body mass, diet generalism, vulnerability and trophic position within the food web. We found an upward expansion of species at all elevations, which was not even for all taxonomic groups and trophic positions. At low and intermediate elevations, predator : prey mass ratios were significantly reduced. Expanders were larger, had fewer predators and were, in general, more specialists. Our study shows that elevation range expansions as climate warms have important and predictable impacts on the structure and size distribution of food webs across space. PMID:23007094

  18. HYDROLOGY AND NUTRIENT EFFECTS ON FOOD-WEB STRUCTURE IN TEN LAKE SUPERIOR COASTAL WETLANDS

    EPA Science Inventory

    The manuscript examines the effects of hydrology and nutrient enrichment on food-web structure. We find that the hydraulic residence time is a paramount constraint upon the relative contributions of planktonic versus benthic production to the fish community. Nutrient enrichment...

  19. Evolutionary food web model based on body masses gives realistic networks with permanent species turnover

    PubMed Central

    Allhoff, K. T.; Ritterskamp, D.; Rall, B. C.; Drossel, B.; Guill, C.

    2015-01-01

    The networks of predator-prey interactions in ecological systems are remarkably complex, but nevertheless surprisingly stable in terms of long term persistence of the system as a whole. In order to understand the mechanism driving the complexity and stability of such food webs, we developed an eco-evolutionary model in which new species emerge as modifications of existing ones and dynamic ecological interactions determine which species are viable. The food-web structure thereby emerges from the dynamical interplay between speciation and trophic interactions. The proposed model is less abstract than earlier evolutionary food web models in the sense that all three evolving traits have a clear biological meaning, namely the average body mass of the individuals, the preferred prey body mass, and the width of their potential prey body mass spectrum. We observed networks with a wide range of sizes and structures and high similarity to natural food webs. The model networks exhibit a continuous species turnover, but massive extinction waves that affect more than 50% of the network are not observed. PMID:26042870

  20. The Importance of Allochthonous Subsidies to an Estuarine Food Web along a Salinity Gradient

    EPA Science Inventory

    Estuarine food webs function within a heterogeneous mosaic and are supported by a mix of primary producers from both local and distant sources. Processes governing the exchange and consumption of organic matter (OM), however, are poorly understood. To study the contribution of ...

  1. Applying stable isotopes to examine food-web structure: an overview of analytical tools.

    PubMed

    Layman, Craig A; Araujo, Marcio S; Boucek, Ross; Hammerschlag-Peyer, Caroline M; Harrison, Elizabeth; Jud, Zachary R; Matich, Philip; Rosenblatt, Adam E; Vaudo, Jeremy J; Yeager, Lauren A; Post, David M; Bearhop, Stuart

    2012-08-01

    Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food-web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food-web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field. PMID:22051097

  2. Transfer of mercury in the marine food web of West Greenland.

    PubMed

    Rigét, F; Møller, P; Dietz, R; Nielsen, T G; Asmund, G; Strand, J; Larsen, M M; Hobson, K A

    2007-08-01

    Total mercury (THg), methylmercury (MeHg) and stable isotopes of nitrogen (delta(15)N) and carbon (delta(13)C) were measured in three invertebrate, five fish, three seabird and three marine mammal species of central West Greenland to investigate trophic transfer of mercury in this Arctic marine food web. The food web magnification factor (FWMF) estimated as the slope of the regression between the natural logarithm of THg or MeHg concentrations (mg kg(-1) dw) and tissue delta(15)N ( per thousand) was estimated to 0.183 (SE = 0.052) for THg and 0.339 (SE = 0.075) for MeHg. The FWMFs were not only comparable with those reported for other Arctic marine food webs but also with quite different food webs such as freshwater lakes in the sub-Arctic, East Africa and Papua New Guinea. This suggests similar mechanisms of mercury assimilation and isotopic (delta(15)N) discrimination among a broad range of aquatic taxa and underlines the possibility of broad ecosystem comparisons using the combined contaminant and stable isotope approach. PMID:17671670

  3. Grazing food web view from compound-specific stable isotope analysis of amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the trophic position (TP) of organisms in food webs allows ecologists to track energy flow and trophic linkages among organisms in complex networks of ecosystems. Compound-specific stable isotope analysis (CSIA) of amino acids has been employed as a relatively new method with the high p...

  4. Differences in methylmercury and inorganic mercury biomagnification in a tropical marine food web.

    PubMed

    Seixas, Tércia G; Moreira, Isabel; Siciliano, Salvatore; Malm, Olaf; Kehrig, Helena A

    2014-03-01

    Methylmercury (MeHg), inorganic mercury (Hginorg) and their biomagnification factors (BMF) were evaluated along a non-degraded Brazilian bay food web. Highly significant differences (p < 0.0001) were found between MeHg and Hginorg concentrations among all organisms (microplankton, shrimp, fish and dolphin). MeHg increased with increasing trophic position while Hginorg did not present the same pattern. BMF values for MeHg were higher than 1 for all trophic interactions from source to consumer, indicating that MeHg was transferred more efficiently and biomagnified over the entire web. Only one BMF exceeding one was observed for Hginorg (27) between microplankton and their consumer, planktivorous fish. BMF values for Hginorg were significantly different than those found for MeHg (20) at the base of the food web. PMID:24452478

  5. Reducing Methylmercury Accumulation in the Food Webs of San Francisco Bay and Its Local Watersheds

    PubMed Central

    Davis, J.A.; Looker, R.E.; Yee, D.; Marvin-DiPasquale, M.; Grenier, J.L.; Austin, C.M.; McKee, L.J.; Greenfield, B.K.; Brodberg, R.; Blum, J.D.

    2013-01-01

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for the past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce loads

  6. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula.

    PubMed

    Saba, Grace K; Fraser, William R; Saba, Vincent S; Iannuzzi, Richard A; Coleman, Kaycee E; Doney, Scott C; Ducklow, Hugh W; Martinson, Douglas G; Miles, Travis N; Patterson-Fraser, Donna L; Stammerjohn, Sharon E; Steinberg, Deborah K; Schofield, Oscar M

    2014-01-01

    Understanding the mechanisms by which climate variability affects multiple trophic levels in food webs is essential for determining ecosystem responses to climate change. Here we use over two decades of data collected by the Palmer Long Term Ecological Research program (PAL-LTER) to determine how large-scale climate and local physical forcing affect phytoplankton, zooplankton and an apex predator along the West Antarctic Peninsula (WAP). We show that positive anomalies in chlorophyll-a (chl-a) at Palmer Station, occurring every 4-6 years, are constrained by physical processes in the preceding winter/spring and a negative phase of the Southern Annular Mode (SAM). Favorable conditions for phytoplankton included increased winter ice extent and duration, reduced spring/summer winds, and increased water column stability via enhanced salinity-driven density gradients. Years of positive chl-a anomalies are associated with the initiation of a robust krill cohort the following summer, which is evident in Adélie penguin diets, thus demonstrating tight trophic coupling. Projected climate change in this region may have a significant, negative impact on phytoplankton biomass, krill recruitment and upper trophic level predators in this coastal Antarctic ecosystem. PMID:25000452

  7. Deep-sea food web analysis using cross-reacting antisera

    NASA Astrophysics Data System (ADS)

    Feller, Robert J.; Zagursky, Gregory; Day, Elizabeth A.

    1985-04-01

    The high incidence of unrecognizable prey in the stomachs of deep-sea predators prompted the application of serological methods for identification of trophic connections. Antisera to whole-organism extracts of estuarine taxa cross-reacted with antigenic protein extracts of mid-water and deep-sea taxa along phylogenetically correct lines, indicating their potential as tools for gut contents immunoassay. Stomach, intestine, and rectum contents of grenadiers ( Coryphaenoides armatus) trapped at 2500 m in the North Atlantic were analyzed visually and with 32 antisera representing taxa from 10 common deep-sea phyla. While visual analysis only revealed the presence of fluids, parasites, crustacean exoskeletons, and gastropod opercula, the immunoassay indicated the presence of antigenic proteins from holothurian, anemone, gastropod, decapod, and foraminiferan prey in the same samples. This qualitative serological identification of prey at non-specific taxonomic levels provides evidence that benthic predation may be important within deep-sea communities. The immunoassay technique, although not a panacea for elucidating food web dynamics in remote environments, may be useful when other methods fail to identify trophic pathways.

  8. Automated Discovery of Food Webs from Ecological Data Using Logic-Based Machine Learning

    PubMed Central

    Bohan, David A.; Caron-Lormier, Geoffrey; Muggleton, Stephen; Raybould, Alan; Tamaddoni-Nezhad, Alireza

    2011-01-01

    Networks of trophic links (food webs) are used to describe and understand mechanistic routes for translocation of energy (biomass) between species. However, a relatively low proportion of ecosystems have been studied using food web approaches due to difficulties in making observations on large numbers of species. In this paper we demonstrate that Machine Learning of food webs, using a logic-based approach called A/ILP, can generate plausible and testable food webs from field sample data. Our example data come from a national-scale Vortis suction sampling of invertebrates from arable fields in Great Britain. We found that 45 invertebrate species or taxa, representing approximately 25% of the sample and about 74% of the invertebrate individuals included in the learning, were hypothesized to be linked. As might be expected, detritivore Collembola were consistently the most important prey. Generalist and omnivorous carabid beetles were hypothesized to be the dominant predators of the system. We were, however, surprised by the importance of carabid larvae suggested by the machine learning as predators of a wide variety of prey. High probability links were hypothesized for widespread, potentially destabilizing, intra-guild predation; predictions that could be experimentally tested. Many of the high probability links in the model have already been observed or suggested for this system, supporting our contention that A/ILP learning can produce plausible food webs from sample data, independent of our preconceptions about “who eats whom.” Well-characterised links in the literature correspond with links ascribed with high probability through A/ILP. We believe that this very general Machine Learning approach has great power and could be used to extend and test our current theories of agricultural ecosystem dynamics and function. In particular, we believe it could be used to support the development of a wider theory of ecosystem responses to environmental change. PMID

  9. Hydrogeomorphic features mediate the effects of land use/cover on reservoir productivity and food webs

    USGS Publications Warehouse

    Bremigan, M.T.; Soranno, P.A.; Gonzalez, M.J.; Bunnell, D.B.; Arend, K.K.; Renwick, W.H.; Stein, R.A.; Vanni, M.J.

    2008-01-01

    Although effects of land use/cover on nutrient concentrations in aquatic systems are well known, half or more of the variation in nutrient concentration remains unexplained by land use/cover alone. Hydrogeomorphic (HGM) landscape features can explain much remaining variation and influence food web interactions. To explore complex linkages among land use/cover, HGM features, reservoir productivity, and food webs, we sampled 11 Ohio reservoirs, ranging broadly in agricultural catchment land use/cover, for 3 years. We hypothesized that HGM features mediate the bottom-up effects of land use/cover on reservoir productivity, chlorophyll a, zooplankton, and recruitment of gizzard shad, an omnivorous fish species common throughout southeastern U.S. reservoirs and capable of exerting strong effects on food web and nutrient dynamics. We tested specific hypotheses using a model selection approach. Percent variation explained was highest for total nitrogen (R2 = 0.92), moderately high for total phosphorus, chlorophyll a, and rotifer biomass (R2 = 0.57 to 0.67), relatively low for crustacean zooplankton biomass and larval gizzard shad hatch abundance (R2 = 0.43 and 0.42), and high for larval gizzard shad survivor abundance (R2 = 0.79). The trophic status models included agricultural land use/cover and an HGM predictor, whereas the zooplankton models had few HGM predictors. The larval gizzard shad models had the highest complexity, including more than one HGM feature and food web components. We demonstrate the importance of integrating land use/cover, HGM features, and food web interactions to investigate critical interactions and feedbacks among physical, chemical, and biological components of linked land-water ecosystems.

  10. Warming-induced changes in predation, extinction and invasion in an ectotherm food web.

    PubMed

    Seifert, Linda I; Weithoff, Guntram; Gaedke, Ursula; Vos, Matthijs

    2015-06-01

    Climate change will alter the forces of predation and competition in temperate ectotherm food webs. This may increase local extinction rates, change the fate of invasions and impede species reintroductions into communities. Invasion success could be modulated by traits (e.g., defenses) and adaptations to climate. We studied how different temperatures affect the time until extinction of species, using bitrophic and tritrophic planktonic food webs to evaluate the relative importance of predatory overexploitation and competitive exclusion, at 15 and 25 °C. In addition, we tested how inclusion of a subtropical as opposed to a temperate strain in this model food web affects times until extinction. Further, we studied the invasion success of the temperate rotifer Brachionus calyciflorus into the planktonic food web at 15 and 25 °C on five consecutive introduction dates, during which the relative forces of predation and competition differed. A higher temperature dramatically shortened times until extinction of all herbivore species due to carnivorous overexploitation in tritrophic systems. Surprisingly, warming did not increase rates of competitive exclusion among the tested herbivore species in bitrophic communities. Including a subtropical herbivore strain reduced top-down control by the carnivore at high temperature. Invasion attempts of temperate B. calyciflorus into the food web always succeeded at 15 °C, but consistently failed at 25 °C due to voracious overexploitation by the carnivore. Pre-induction of defenses (spines) in B. calyciflorus before the invasion attempt did not change its invasion success at the high temperature. We conclude that high temperatures may promote local extinctions in temperate ectotherms and reduce their chances of successful recovery. PMID:25564019

  11. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure

    USGS Publications Warehouse

    Turschak, Benjamin A; Bunnell, David B.; Czesny, Sergiusz J.; Höök, Tomas O.; Janssen, John; Warner, David M.; Bootsma, Harvey A

    2014-01-01

    Aquatic food webs that incorporate multiple energy channels (e.g. nearshore benthic or pelagic) with varying productivity and turnover rates convey stability to biological communities by providing multiple independent energy sources. Within the Lake Michigan food web, invasive dreissenid mussels have caused rapid changes to food web structure and potentially altered the channels through which consumers acquire energy. We used stable C and N isotopes to determine how Lake Michigan food web structure has changed in the past decade, coincident with the expansion of dreissenid mussels, decreased pelagic phytoplankton production and increased nearshore benthic algal production. Fish and invertebrate samples collected from sites around Lake Michigan were analyzed to determine taxa-specific 13C:12C (delta 13C) and 15N:14N (delta 15N) ratios. Sampling took place during two distinct periods, 2002-2003 and 2010-2012, that spanned the period of dreissenid expansion, and included nearshore, pelagic and profundal fish and invertebrate taxa. Magnitude and direction of the 13C shift indicated significantly greater reliance upon nearshore benthic energy sources among nearly all fish taxa as well as profundal invertebrates. Although the mechanisms underlying this 13C shift likely varied among species, possible causes include the transport of benthic algal production to offshore waters and an increased reliance on nearshore prey items. Delta 15N shifts were more variable and of smaller magnitude across taxa although declines in delta 15N among some pelagic fishes may indicate a shift to alternative prey resources. Lake Michigan fishes and invertebrates appear to have responded to dreissenid induced changes in nutrient and energy pathways by switching from pelagic to alternative nearshore energy subsidies. Although large shifts in energy allocation (i.e. pelagic to nearshore benthic) resulting from invasive species appear to have affected total production at upper trophic

  12. Influence of trophic position on organochlorine concentrations and compositional patterns in a marine food web.

    PubMed

    Ruus, Anders; Ugland, Karl Inne; Skaare, Janneche Utne

    2002-11-01

    The accumulation of polychlorinated biphenyls (PCBs), DDTs (p,p'-DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], o,p'-DDT [1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane], p,p'-DDD [1,1,-dichloro-2,2-bis(4-chlorophenyl)ethane], o.p'-DDD [1,1-dichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane], and p,p'-DDE [1,1-dichloro-2,2-bis(4-chlorophenyl)ethene]), chlordanes (trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor and oxychlordane), hexachlorocyclohexanes (alpha-, beta-, and gamma-isomers), hexachlorobenzene, and mirex was investigated in a marine food web from southeastern Norway. The food web consisted of the polychaete Nereis diversicolor, lesser sandeel (Ammodytes tobianus), three species of gobys (Gobiusculus flavescens, Pomatoschistus sp., and Gobius niger), bullrout (Myoxocephalus scorpius), cod (Gadus morhua), herring gull (Larus argentatus), and harbor seal (Phoca vitulina). The results show that interspecies differences in organochlorine (OC) compositional patterns in the food web depend on several factors (allometric, biochemical, physical, and physicochemical) specific to both the chemicals and the organisms. The importance of dietary accumulation and metabolic capacity increases toward higher trophic levels, while the OC patterns are to a larger extent determined by the lipophilicity and water solubility of the compounds at lower trophic levels. Furthermore, stable nitrogen isotopes provided a continuous measure of trophic position, rendering us capable of quantifying the increases in the concentrations of sigma PCB, sigma dichorodiphenyltrichloroethane (DDT), and sigma chlordane (CHL) and the percentages of highly chlorinated PCBs through the food web. The information provided may be important for future modeling of the fate of organochlorine contaminants in marine food webs. PMID:12389914

  13. Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait)

    NASA Astrophysics Data System (ADS)

    van Oevelen, Dick; Bergmann, Melanie; Soetaert, Karline; Bauerfeind, Eduard; Hasemann, Christiane; Klages, Michael; Schewe, Ingo; Soltwedel, Thomas; Budaeva, Nataliya E.

    2011-11-01

    The HAUSGARTEN observatory is located in the eastern Fram Strait (Arctic Ocean) and used as long-term monitoring site to follow changes in the Arctic benthic ecosystem. Linear inverse modelling was applied to decipher carbon flows among the compartments of the benthic food web at the central HAUSGARTEN station (2500 m) based on an empirical data set consisting of data on biomass, prokaryote production, total carbon deposition and community respiration. The model resolved 99 carbon flows among 4 abiotic and 10 biotic compartments, ranging from prokaryotes up to megafauna. Total carbon input was 3.78±0.31 mmol C m -2 d -1, which is a comparatively small fraction of total primary production in the area. The community respiration of 3.26±0.20 mmol C m -2 d -1 is dominated by prokaryotes (93%) and has lower contributions from surface-deposit feeding macro- (1.7%) and suspension feeding megafauna (1.9%), whereas contributions from nematode and other macro- and megabenthic compartments were limited to <1%. The high prokaryotic contribution to carbon processing suggests that functioning of the benthic food web at the central HAUSGARTEN station is comparable to abyssal plain sediments that are characterised by strong energy limitation. Faunal diet compositions suggest that labile detritus is important for deposit-feeding nematodes (24% of their diet) and surface-deposit feeding macrofauna (˜44%), but that semi-labile detritus is more important in the diets of deposit-feeding macro- and megafauna. Dependency indices on these food sources were also calculated as these integrate direct (i.e. direct grazing and predator-prey interactions) and indirect (i.e. longer loops in the food web) pathways in the food web. Projected sea-ice retreats for the Arctic Ocean typically anticipate a decrease in the labile detritus flux to the already food-limited benthic food web. The dependency indices indicate that faunal compartments depend similarly on labile and semi-labile detritus

  14. Thirty thousand-year-old evidence of plant food processing.

    PubMed

    Revedin, Anna; Aranguren, Biancamaria; Becattini, Roberto; Longo, Laura; Marconi, Emanuele; Lippi, Marta Mariotti; Skakun, Natalia; Sinitsyn, Andrey; Spiridonova, Elena; Svoboda, Jirí

    2010-11-01

    European Paleolithic subsistence is assumed to have been largely based on animal protein and fat, whereas evidence for plant consumption is rare. We present evidence of starch grains from various wild plants on the surfaces of grinding tools at the sites of Bilancino II (Italy), Kostenki 16-Uglyanka (Russia), and Pavlov VI (Czech Republic). The samples originate from a variety of geographical and environmental contexts, ranging from northeastern Europe to the central Mediterranean, and dated to the Mid-Upper Paleolithic (Gravettian and Gorodtsovian). The three sites suggest that vegetal food processing, and possibly the production of flour, was a common practice, widespread across Europe from at least ~30,000 y ago. It is likely that high energy content plant foods were available and were used as components of the food economy of these mobile hunter-gatherers. PMID:20956317

  15. Thirty thousand-year-old evidence of plant food processing

    PubMed Central

    Revedin, Anna; Aranguren, Biancamaria; Becattini, Roberto; Longo, Laura; Marconi, Emanuele; Lippi, Marta Mariotti; Skakun, Natalia; Sinitsyn, Andrey; Spiridonova, Elena; Svoboda, Jiří

    2010-01-01

    European Paleolithic subsistence is assumed to have been largely based on animal protein and fat, whereas evidence for plant consumption is rare. We present evidence of starch grains from various wild plants on the surfaces of grinding tools at the sites of Bilancino II (Italy), Kostenki 16–Uglyanka (Russia), and Pavlov VI (Czech Republic). The samples originate from a variety of geographical and environmental contexts, ranging from northeastern Europe to the central Mediterranean, and dated to the Mid-Upper Paleolithic (Gravettian and Gorodtsovian). The three sites suggest that vegetal food processing, and possibly the production of flour, was a common practice, widespread across Europe from at least ~30,000 y ago. It is likely that high energy content plant foods were available and were used as components of the food economy of these mobile hunter–gatherers. PMID:20956317

  16. Food-Web Structure in Relation to Environmental Gradients and Predator-Prey Ratios in Tank-Bromeliad Ecosystems

    PubMed Central

    Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests. PMID:23977128

  17. Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems.

    PubMed

    Dézerald, Olivier; Leroy, Céline; Corbara, Bruno; Carrias, Jean-François; Pélozuelo, Laurent; Dejean, Alain; Céréghino, Régis

    2013-01-01

    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators:prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests. PMID:23977128

  18. Regulation of intertidal food webs by avian predators on New England rocky shores.

    PubMed

    Ellis, Julie C; Shulman, Myra J; Wood, Megan; Witman, Jon D; Lozyniak, Sara

    2007-04-01

    Although there is a large body of research on food webs in rocky intertidal communities, most of the emphasis has been on the marine benthic components. Effects of avian predation on highly mobile predators such as crabs, remains practically unstudied in rocky shore ecosystems. The crab, Cancer borealis, is an important component of the diet of gulls (Larus marinus, L. argentatus) at the Isles of Shoals, Maine, USA. C. borealis prey include the predatory gastropod Nucella lapillus L., the herbivore Littorina littorea, and mussels Mytilus edulis L. We hypothesized that gulls reduce abundance of C. borealis in the low intertidal and shallow subtidal, thereby allowing C. borealis prey to persist in high numbers. A study of crab tidal migration showed that C. borealis density nearly doubled at high tide compared to low tide; thus, crabs from a large subtidal source population migrate into the intertidal zone during high tides and either emigrate or are removed by gulls during low tides. Results from a small-scale (1 m2) predator caging experiment in the low intertidal zone indicated that enclosed crabs significantly reduced L. littorea abundance when protected from gull predation. In a much larger-scale gull exclusion experiment, densities of C. borealis increased significantly during low and high tides in exclosures relative to the controls. C. borealis density was inversely correlated with changes in the abundance of two mesopredators Carcinus maenas and Nucella lapillus, and with the space-occupier M. edulis. There was a similar negative correlation between abundance of C. borealis and the change in abundance of the herbivore L. littorea, but the trend was not significant. Mortality of tethered L. littorea was associated with C. borealis density across sites. However, preferred algae did not change in response to L. littorea density during the experiment. Thus, we found suggestive, but not conclusive, evidence for a three-level cascade involving gulls, crabs, and L

  19. Consequences of regime shifts for marine food webs

    NASA Astrophysics Data System (ADS)

    Alheit, Jürgen

    2009-03-01

    Climate-mediated ecological regime shifts can re-structure entire ecosystems from primary producers to top predators. As a consequence, major trophodynamic pathways change with the altered mix of dominating species. Four cases of ecosystem regime shifts forced by climate variability are presented (North Sea, central Baltic Sea, central North Pacific and Humboldt Current ecosystems) and the effect on food chains is elucidated. Different types of trophodynamic control mechanisms set in motion through the impact of climate variability and the potential impact of regime shifts on biogeochemical cycles are discussed.

  20. Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities.

    PubMed

    Hutchins, Benjamin T; Engel, Annette Summers; Nowlin, Weston H; Schwartz, Benjamin F

    2016-06-01

    The prevailing paradigm in subterranean ecology is that below-ground food webs are simple, limited to one or two trophic levels, and composed of generalist species because of spatio-temporally patchy food resources and pervasive energy limitation. This paradigm is based on relatively few studies of easily accessible, air-filled caves. However, in some subterranean ecosystems, chemolithoautotrophy can subsidize or replace surface-based allochthonous inputs of photosynthetically derived organic matter (OM) as a basal food resource and promote niche specialization and evolution of higher trophic levels. Consequently, the current subterranean trophic paradigm fails to account for variation in resources, trophic specialization, and food chain length in some subterranean ecosystems. We reevaluated the subterranean food web paradigm by examining spatial variation in the isotopic composition of basal food resources and consumers, food web structure, stygobiont species diversity, and chromophoric organic matter (CDOM), across a geochemical gradient in a large and complex groundwater system, the Edwards Aquifer in Central Texas (USA). Mean δ13C values of stygobiont communities become increasingly more negative along the gradient of photosynthetic OM sources near the aquifer recharge zone to chemolithoautotrophic OM sources closer to the freshwater-saline water interface (FWSWI) between oxygenated freshwater and anoxic, sulfide-rich saline water. Stygobiont community species richness declined with increasing distance from the FWSWI. Bayesian mixing models were used to estimate the relative importance of photosynthetic OM and chemolithoautorophic OM for stygobiont communities at three biogeochemically distinct sites. The contribution of chemolithoautotrophic OM to consumers at these sites ranged between 25% and 69% of total OM utilized and comprised as much as 88% of the diet for one species. In addition, the food web adjacent to the FWSWI had greater trophic diversity when

  1. Food web structure in exotic and native mangroves: A Hawaii-Puerto Rico comparison

    USGS Publications Warehouse

    Demopoulos, A.W.J.; Fry, B.; Smith, C.R.

    2007-01-01

    Plant invasions can fundamentally alter detrital inputs and the structure of detritus-based food webs. We examined the detrital pathways in mangrove food webs in native (Puerto Rican) and introduced (Hawaiian) Rhizophora mangle forests using a dual isotope approach and a mixing model. Based on trophic-level fractionation of 0-1??? for ?? 13C and 2-3??? for ?? 15N, among the invertebrates, only nematodes, oligochaetes, and nereid polychaetes from native mangroves exhibited stable isotopes consistent with a mangrove-derived diet. Certain fauna, in particular tubificid oligochaetes, had ?? 13C values consistent with the consumption of mangrove leaves, but they were depleted in 15N, suggesting their primary nitrogen source was low in 15N, and was possibly N 2-fixing bacteria. In introduced mangroves, all feeding groups appeared to rely heavily on non-mangrove sources, especially phytoplankton inputs. Mixing model results and discriminant analysis showed clear separation of introduced and native mangrove sites based on differential food source utilization within feeding groups, with stronger and more diverse use of benthic foods observed in native forests. Observed differences between native and invasive mangrove food webs may be due to Hawaiian detritivores being poorly adapted to utilizing the tannin-rich, nitrogen-poor mangrove detritus. In addition, differential utilization of mangrove detritus between native and introduced mangroves may be a consequence of forest age. We postulate that increasing mangrove forest age may promote diversification of bacterial food webs important in N and S cycling. Our results also suggest a potentially important role for sulfur bacteria in supporting the most abundant infaunal consumers, nematodes, in the most mature systems. ?? 2007 Springer-Verlag.

  2. FoodWiki: a Mobile App Examines Side Effects of Food Additives Via Semantic Web.

    PubMed

    Çelik Ertuğrul, Duygu

    2016-02-01

    In this article, a research project on mobile safe food consumption system (FoodWiki) is discussed that performs its own inferencing rules in its own knowledge base. Currently, the developed rules examines the side effects that are causing some health risks: heart disease, diabetes, allergy, and asthma as initial. There are thousands compounds added to the processed food by food producers with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. Those commonly used ingredients or compounds in manufactured foods may have many side effects that cause several health risks such as heart disease, hypertension, cholesterol, asthma, diabetes, allergies, alzheimer etc. according to World Health Organization. Safety in food consumption, especially by patients in these risk groups, has become crucial, given that such health problems are ranked in the top ten health risks around the world. It is needed personal e-health knowledge base systems to help patients take control of their safe food consumption. The systems with advanced semantic knowledge base can provide recommendations of appropriate foods before consumption by individuals. The proposed FoodWiki system is using a concept based search mechanism that performs on thousands food compounds to provide more relevant information. PMID:26590979

  3. Trophic efficiency of plankton food webs: Observations from the Gulf of Mannar and the Palk Bay, Southeast Coast of India

    NASA Astrophysics Data System (ADS)

    Anjusha, A.; Jyothibabu, R.; Jagadeesan, L.; Mohan, Arya P.; Sudheesh, K.; Krishna, Kiran; Ullas, N.; Deepak, M. P.

    2013-04-01

    This paper introduces the structure and trophic efficiency of plankton food webs in the Gulf of Mannar (GoM) and the Palk Bay (PB) — two least studied marine environments located between India and Sri Lanka. The study is based on the results obtained from a field sampling exercise carried out in the GoM and the PB in March 2010 (Spring Intermonsoon — SIM), September 2010 (Southwest Monsoon — SWM) and January 2011 (Northeast Monsoon — NEM). Based on multivariate analysis of major environmental parameters during different seasons, it was possible to clearly segregate the GoM and the PB into separate clusters, except during the SWM. This segregation of the GoM and the PB was closely linked with the seasonally reversing ocean currents in the region, as evident from the MIKE 21 flow model results. During the period of relatively low phytoplankton biomass (< 23 mg C m- 3), the organic carbon contribution of the microbial loop was significantly high — both in the GoM and the PB. During the SIM, the carbon biomass available in the plankton food web was significantly higher in the PB (av. 122.8 ± 47.60 mg C m- 3) than in the GoM (av. 81.89 ± 35.50 mg C m- 3). This was due to a strong microbial loop in the former region. In the GoM, phytoplankton contributed a considerable portion (> 50%) of the carbon biomass during the SWM and the NEM, whereas, microbial loop contributed significantly (80%) during the SIM. The microbial loop was predominant in the PB throughout the study period, being as high as 83% of the total plankton biomass during the SIM. As compared to the PB, the mesozooplankton biomass was higher in the GoM during the SWM and the NEM and lower during the SIM. The relatively high mesozooplankton stock in the PB during the SIM was closely linked with a strong microbial loop, which contributed the major share (av. 101.6 ± 24.3 mg C m- 3) of the total organic carbon available in the food web (av. 126.6 ± 24.3 mg C m- 3). However, when microbial loop

  4. River Food Web Response to Large-Scale Riparian Zone Manipulations

    PubMed Central

    Wootton, J. Timothy

    2012-01-01

    Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr) goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR) and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks. PMID:23284786

  5. From projected species distribution to food-web structure under climate change.

    PubMed

    Albouy, Camille; Velez, Laure; Coll, Marta; Colloca, Francesco; Le Loc'h, François; Mouillot, David; Gravel, Dominique

    2014-03-01

    Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food-web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food-web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080-2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large-scale impacts of climate change on marine food-web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems. PMID:24214576

  6. River food web response to large-scale riparian zone manipulations.

    PubMed

    Wootton, J Timothy

    2012-01-01

    Conservation programs often focus on select species, leading to management plans based on the autecology of the focal species, but multiple ecosystem components can be affected both by the environmental factors impacting, and the management targeting, focal species. These broader effects can have indirect impacts on target species through the web of interactions within ecosystems. For example, human activity can strongly alter riparian vegetation, potentially impacting both economically-important salmonids and their associated river food web. In an Olympic Peninsula river, Washington state, USA, replicated large-scale riparian vegetation manipulations implemented with the long-term (>40 yr) goal of improving salmon habitat did not affect water temperature, nutrient limitation or habitat characteristics, but reduced canopy cover, causing reduced energy input via leaf litter, increased incident solar radiation (UV and PAR) and increased algal production compared to controls. In response, benthic algae, most insect taxa, and juvenile salmonids increased in manipulated areas. Stable isotope analysis revealed a predominant contribution of algal-derived energy to salmonid diets in manipulated reaches. The experiment demonstrates that riparian management targeting salmonids strongly affects river food webs via changes in the energy base, illustrates how species-based management strategies can have unanticipated indirect effects on the target species via the associated food web, and supports ecosystem-based management approaches for restoring depleted salmonid stocks. PMID:23284786

  7. Evidence for fast dynamo action in a chaotic web

    NASA Technical Reports Server (NTRS)

    Gilbert, A. D.; Childress, S.

    1990-01-01

    The evolution of a magnetic field in a chaotic web is studied. The model flow possessing the web is closely related to the nearly integrable ABC flow with A = B and C much less than 1. The magnetic diffusivity is taken to be zero and the field is followed using the Cauchy solution. It is found that the flow folds the magnetic field constructively, in the sense that the average magnetic field in a chaotic region grows exponentially in time. This is suggestive of fast dynamo action, although the effect of diffusion of the strong streamwise magnetic field remains to be assessed.

  8. Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds.

    PubMed

    Davis, J A; Looker, R E; Yee, D; Marvin-Di Pasquale, M; Grenier, J L; Austin, C M; McKee, L J; Greenfield, B K; Brodberg, R; Blum, J D

    2012-11-01

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for the past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce loads

  9. Reducing methylmercury accumulation in the food webs of San Francisco Bay and its local watersheds

    SciTech Connect

    Davis, J.A.; Looker, R.E.; Yee, D.; Marvin-Di Pasquale, M.; Austin, C.M.; McKee, L.J.; Greenfield, B.K.; Brodberg, R.; Blum, J.D.

    2012-11-15

    San Francisco Bay (California, USA) and its local watersheds present an interesting case study in estuarine mercury (Hg) contamination. This review focuses on the most promising avenues for attempting to reduce methylmercury (MeHg) contamination in Bay Area aquatic food webs and identifying the scientific information that is most urgently needed to support these efforts. Concern for human exposure to MeHg in the region has led to advisories for consumption of sport fish. Striped bass from the Bay have the highest average Hg concentration measured for this species in USA estuaries, and this degree of contamination has been constant for the past 40 years. Similarly, largemouth bass in some Bay Area reservoirs have some of the highest Hg concentrations observed in the entire US. Bay Area wildlife, particularly birds, face potential impacts to reproduction based on Hg concentrations in the tissues of several Bay species. Source control of Hg is one of the primary possible approaches for reducing MeHg accumulation in Bay Area aquatic food webs. Recent findings (particularly Hg isotope measurements) indicate that the decades-long residence time of particle-associated Hg in the Bay is sufficient to allow significant conversion of even the insoluble forms of Hg into MeHg. Past inputs have been thoroughly mixed throughout this shallow and dynamic estuary. The large pool of Hg already present in the ecosystem dominates the fraction converted to MeHg and accumulating in the food web. Consequently, decreasing external Hg inputs can be expected to reduce MeHg in the food web, but it will likely take many decades to centuries before those reductions are achieved. Extensive efforts to reduce loads from the largest Hg mining source (the historic New Almaden mining district) are underway. Hg is spread widely across the urban landscape, but there are a number of key sources, source areas, and pathways that provide opportunities to capture larger quantities of Hg and reduce loads

  10. Spatial guilds in the Serengeti food web revealed by a Bayesian group model.

    PubMed

    Baskerville, Edward B; Dobson, Andy P; Bedford, Trevor; Allesina, Stefano; Anderson, T Michael; Pascual, Mercedes

    2011-12-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  11. Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    PubMed Central

    Baskerville, Edward B.; Dobson, Andy P.; Bedford, Trevor; Allesina, Stefano; Anderson, T. Michael; Pascual, Mercedes

    2011-01-01

    Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts. PMID:22219719

  12. From ontology selection and semantic web to an integrated information system for food-borne diseases and food safety.

    PubMed

    Yan, Xianghe; Peng, Yun; Meng, Jianghong; Ruzante, Juliana; Fratamico, Pina M; Huang, Lihan; Juneja, Vijay; Needleman, David S

    2011-01-01

    Several factors have hindered effective use of information and resources related to food safety due to inconsistency among semantically heterogeneous data resources, lack of knowledge on profiling of food-borne pathogens, and knowledge gaps among research communities, government risk assessors/managers, and end-users of the information. This paper discusses technical aspects in the establishment of a comprehensive food safety information system consisting of the following steps: (a) computational collection and compiling publicly available information, including published pathogen genomic, proteomic, and metabolomic data; (b) development of ontology libraries on food-borne pathogens and design automatic algorithms with formal inference and fuzzy and probabilistic reasoning to address the consistency and accuracy of distributed information resources (e.g., PulseNet, FoodNet, OutbreakNet, PubMed, NCBI, EMBL, and other online genetic databases and information); (c) integration of collected pathogen profiling data, Foodrisk.org ( http://www.foodrisk.org ), PMP, Combase, and other relevant information into a user-friendly, searchable, "homogeneous" information system available to scientists in academia, the food industry, and government agencies; and (d) development of a computational model in semantic web for greater adaptability and robustness. PMID:21431616

  13. Density outbursts in a food web model with a closed nutrient cycle

    NASA Astrophysics Data System (ADS)

    Szwabiński, Janusz

    2013-09-01

    A spatial three level food web model with a closed nutrient cycle is presented and analyzed via Monte Carlo simulations. The food web consists of three trophic levels. The basal level species (called resources, R) corresponds to primary producers in real ecosystems. The species at an intermediate level (consumers, C) relates to herbivores. It feeds on the resources. The consumers themselves constitute food for the top level species (predators, P), which corresponds to carnivores. The remains of the consumers and predators (detritus, D) provide nutrient for the resources. The time evolution of the model reveals two asymptotic states: an absorbing one with all species being extinct, and a coexisting one, in which concentrations of all species are non-zero. There are two possible ways for the system to reach the absorbing state. In some cases the densities increase very quickly at the beginning of a simulation and then decline slowly and almost monotonically. In others, well pronounced peaks in the R, C and D densities appear regularly before the extinction. Those peaks correspond to density outbursts (waves) traveling through the system. We investigate the mechanisms leading to the waves. In particular, we show that the percolation of the detritus (i.e. the accumulation of nutrients) is necessary for the emergence of the waves. Moreover, our results corroborate the hypothesis that top-level predators play an essential role in maintaining the stability of a food web (top-down control).

  14. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Boyd, E.S.; King, S.; Tomberlin, J.K.; Nordstrom, D.K.; Krabbenhoft, D.P.; Barkay, T.; Geesey, G.G.

    2009-01-01

    Summary Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH ??? 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg +), while undetectable or near the detection limit (0.025 ng l -1) in the source water of the springs, was present at concentrations of 4-7 ng g-1 dry weight of mat biomass. Detection of MeHg + in tracheal tissue of larvae grazing the mat suggests that MeHg+ enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg+ was two to five times higher in larval tissue than mat biomass indicating MeHg+ biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg+ to species in the food web whose range extends beyond a particular geothermal feature of YNP. ?? 2008 The Authors. Journal compilation ?? 2008 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Application of nitrogen stable isotope analysis in size-based marine food web and macroecological research.

    PubMed

    Jennings, Simon; Barnes, Carolyn; Sweeting, Christopher J; Polunin, Nicholas V C

    2008-06-01

    Interacting human and environmental pressures influence the structure and dynamics of marine food webs. To describe and predict the effects of these pressures, theoretical advances need to be supported by a capacity to validate the underlying models and assumptions. Here, we review recent applications of nitrogen stable isotope analysis in marine food web and macroecological research, with a focus on work that has paralleled a resurgence of interest in the development and application of size-based models. Nitrogen stable isotope data have been used to estimate intra- and inter-specific variation in trophic level, predator-prey size ratios, transfer efficiency, food chain length, relationships between predator and prey species diversity and the dynamics of energy use. Many of these estimates have contributed to the development, testing and parameterisation of food web and ecosystem models, some of which have been used to establish baselines for assessing the scale of human impacts. The interpretation of results depends on assumed fractionation but, when supported by sensitivity analyses and experimental validation, nitrogen stable isotope data provide valuable insights into the structuring of marine communities and ecosystems. PMID:18438766

  16. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    PubMed

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP. PMID:19170726

  17. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists

    PubMed Central

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V.; Aschan, Michaela

    2015-01-01

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. PMID:26336179

  18. Isotopic studies in Pacific Panama mangrove estuaries reveal lack of effect of watershed deforestation on food webs.

    PubMed

    Viana, Inés G; Valiela, Ivan; Martinetto, Paulina; Monteiro Pierce, Rita; Fox, Sophia E

    2015-02-01

    Stable isotopic N, C, and S in food webs of 8 mangrove estuaries on the Pacific coast of Panama were measured to 1) determine whether the degree of deforestation of tropical forests on the contributing watersheds was detectable within the estuarine food web, and 2) define external sources of the food webs within the mangrove estuaries. Even though terrestrial rain forest cover on the contributing watersheds differed between 23 and 92%, the effect of deforestation was not detectable on stable isotopic values in food webs present at the mouth of the receiving estuaries. We used stable isotopic measures to identify producers or organic sources that supported the estuarine food web. N isotopic values of consumers spanned a broad range, from about 2.7 to 12.3‰. Mean δ(15)N of primary producers and organic matter varied from 3.3 for macroalgae to 4.7‰ for suspended particulate matter and large particulate matter. The δ(13)C consumer data varied between -26 and -9‰, but isotopic values of the major apparent producers or organic matter sampled could not account for this range variability. The structure of the food web was clarified when we added literature isotopic values of microphytobenthos and coralline algae, suggesting that these, or other producers with similar isotopic signature, may be part of the food webs. PMID:25481652

  19. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists.

    PubMed

    Kortsch, Susanne; Primicerio, Raul; Fossheim, Maria; Dolgov, Andrey V; Aschan, Michaela

    2015-09-01

    Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning. PMID:26336179

  20. Analyzing pelagic food webs leading to top predators in the Pacific Ocean: A graph-theoretic approach

    NASA Astrophysics Data System (ADS)

    Dambacher, Jeffrey M.; Young, Jock W.; Olson, Robert J.; Allain, Valérie; Galván-Magaña, Felipe; Lansdell, Matthew J.; Bocanegra-Castillo, Noemí; Alatorre-Ramírez, Vanessa; Cooper, Scott P.; Duffy, Leanne M.

    2010-07-01

    This work examined diet data from studies of top pelagic predators from three large regions of the equatorial and South Pacific Ocean. Food webs of each of these three systems were found to have relatively high species diversity, but in contrast to other marine systems, relatively low connectance. Food webs were examined using graph-theoretic methods, which included aggregating species based on food-web relationships and identification of potentially influential species. Species aggregations were used to construct simplified qualitative models from each region’s food web. Models from each region were then analyzed to make predictions of response to climate change for six commercially important species: mahi mahi, skipjack tuna, albacore tuna, yellowfin tuna, bigeye tuna, and swordfish. We found little commonality in the structure of the three food webs, although the two regions in the equatorial Pacific had food webs composed of four predation tiers, as defined by network levels of predation, whereas the south-western region had only three predation tiers. We also found no consistent pattern in the predicted outcomes of the perturbations, which underlines the need for detailed trophic databases to adequately describe regional pelagic ecosystems. This work demonstrates that food-web structure will be central to understanding and predicting how top pelagic predators, and the ecosystems in which they are embedded, will respond to climate change.

  1. Food webs and physical biological coupling on pan-Arctic shelves: Unifying concepts and comprehensive perspectives

    NASA Astrophysics Data System (ADS)

    Carmack, Eddy; Wassmann, Paul

    2006-10-01

    Perhaps more than in any other ocean, our understanding of the continental shelves of the Arctic Mediterranean is decidedly disciplinary, regional and fractured, and this shortcoming must be addressed if we are to face and prepare for climate change. A fundamental flaw is that while excellent process studies exist, and while recent ship-based expeditions have added greatly to our collective body of knowledge, an integrated and fully pan-Arctic perspective on the structure and function of food webs on Arctic shelves is lacking. Based on the collective overviews given in Progress in Oceanography xx, xx-xx, we attempt to address this issue. To build a perspective that inter-connects the various shelf regions we suggest three unifying typologies affecting food webs that will hopefully allow inter-comparison of regional investigations. The first is for shelf geography, wherein shelves are classified according to their role in the Arctic throughflow. The second is for ice climate, wherein the various ice regimes are examined for their specific impacts on food web dynamics. The third is for stratification where it is argued that the source of buoyancy, thermal or haline, impacts production and the vertical carbon flux. We then address the connection between physical habitat and biota on pan-Arctic (and global climate) scales. This discussion begins with the recognition that the Arctic Ocean is integral to the World Ocean via its thermohaline (“estuarine”) exchanges with the Atlantic and Pacific. As such the Arctic and its shelves act as a double estuary, wherein incoming waters become both lighter (positive estuary), by mixing with freshwater sources, and heavier (negative estuary) by cooling and brine release. Shelves are central to such transformations. This complex interconnectivity coupling of the Arctic Ocean to its sub-Arctic (and more productive) neighbors demands that food webs be considered through a macroecological view that includes an ecology of advection

  2. Grazer traits, competition, and carbon sources to a headwater-stream food web.

    PubMed

    McNeely, Camille; Finlay, Jacques C; Power, Mary E

    2007-02-01

    We investigated the effect of grazing by a dominant invertebrate grazer (the caddisfly Glossosoma penitum) on the energy sources used by other consumers in a headwater-stream food web. Stable isotope studies in small, forested streams in northern California have shown that G. penitum larvae derive most of their carbon from algae, despite low algal standing crops. We hypothesized that the caddisfly competes with other primary consumers (including mayflies) for algal food and increases their reliance on terrestrial detritus. Because Glossosoma are abundant and defended from predators by stone cases, their consumption of algal energy may reduce its transfer up the food chain. We removed Glossosoma (natural densities >1000 caddisflies/m2) from five approximately 4 m2) stream sections during the summer of 2000 and measured responses of algae, invertebrate primary consumers, and invertebrate predators. The treatment reduced Glossosoma biomass by 80-90%. We observed a doubling in chlorophyll a per area in sections with reduced Glossosoma abundance and aggregative increases in the biomass of undefended primary consumers. Heptageniid mayfly larvae consumed more algae (as measured by stable carbon isotope ratios and gut content analysis) in caddisfly removal plots at the end of the 60-day experiment, although not after one month. We did not see isotopic evidence of increased algal carbon in invertebrate predators, however. Patterns of caddisfly and mayfly diets in the surrounding watershed suggested that mayfly diets are variable and include algae and detrital carbon in variable proportions, but scraping caddisflies consume primarily algae. Caddisfly and mayfly diets are more similar in larger, more productive streams where the mayflies assimilate more algae. Isotopic analysis, in combination with measurements of macroinvertebrate abundance and biomass in unmanipulated plots, suggested that a substantial portion of the invertebrate community (>50% of biomass) was supported

  3. Brown trout and food web interactions in a Minnesota stream

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Vondracek, B.

    2007-01-01

    1. We examined indirect, community-level interactions in a stream that contained non-native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined-species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non-native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek. ?? 2007 Blackwell Publishing Ltd.

  4. PCBs in sediments and the coastal food web near a local contaminant source in Saglek Bay, Labrador.

    PubMed

    Kuzyk, Z A; Stow, J P; Burgess, N M; Solomon, S M; Reimer, K J

    2005-12-01

    Polychlorinated biphenyls (PCBs) were measured in marine sediments and the coastal food web in Saglek Bay, Labrador, to investigate the influence of a local PCB source. Saglek Bay has been the site of a military radar station since the late 1950s and there was PCB-contaminated soil at a beach prior to cleanup in 1997-1999. PCB concentrations in marine sediments during 1997-1999 ranged from 0.24 to 62000 ng/g (dry weight) and decreased exponentially with distance from the contaminated beach. Given this gradient, spatial trends of PCBs in the food web were examined over four zones, according to distance from the contaminated beach: within 1.5 km--zone one, 1.5-4.5 km--zone two, 4.5-7.5 km--zone three, and greater than 7.5 km--zone four. PCB concentrations in a bottom-feeding fish (shorthorn sculpin, Myoxocephalus scorpius), decreased significantly from zone one to zone two, three, four, and distant Labrador reference sites. PCB concentrations in the eggs of a diving seabird (black guillemot, Cepphus grylle) were as high as 48000 ng/g during 1997-1999 and average concentrations in zones one and two were 84 and 13 times higher than in zone four. Marine invertebrates closely reflected the concentrations of PCBs in the associated sediment. In contrast to the benthic-based food web, anadromous arctic char (Salvelinus alpinus) showed no evidence of PCB accumulation from the contaminated sediments. Relatively high PCB concentrations were discovered in some great black-backed gulls (Larus marinus) and ringed seals (Phoca hispida) but appear to relate more to their high trophic level than sampling location. Those species that fed on or near the seabed and had limited foraging ranges were strongly influenced by the local contamination. Total PCB concentrations in the benthic-based food web were significantly higher than background levels for a distance of at least 7.5 km from the contaminated beach. This area is small in the context of widely distributed contamination from

  5. Reciprocal Subsidies and Food Web Pathways Leading to Chum Salmon Fry in a Temperate Marine-Terrestrial Ecotone

    PubMed Central

    Romanuk, Tamara N.; Levings, Colin D.

    2010-01-01

    Stable isotope analysis was used to determine the relative proportions of terrestrial and marine subsidies of carbon to invertebrates along a tidal gradient (low-intertidal, mid-intertidal, high-intertidal, supralittoral) and to determine the relative importance of terrestrial carbon in food web pathways leading to chum salmon fry Oncorhynchus keta (Walbaum) in Howe Sound, British Columbia. We found a clear gradient in the proportion of terrestrially derived carbon along the tidal gradient ranging from 68% across all invertebrate taxa in the supralittoral to 25% in the high-intertidal, 20% in the mid-intertidal, and 12% in the low-intertidal. Stable isotope values of chum salmon fry indicated carbon contributions from both terrestrial and marine sources, with terrestrially derived carbon ranging from 12.8 to 61.5% in the muscle tissue of chum salmon fry (mean 30%). Our results provide evidence for reciprocal subsidies of marine and terrestrially derived carbon on beaches in the estuary and suggest that the vegetated supralittoral is an important trophic link in supplying terrestrial carbon to nearshore food webs. PMID:20386705

  6. Experimental warming transforms multiple predator effects in a grassland food web.

    PubMed

    Barton, Brandon T; Schmitz, Oswald J

    2009-12-01

    This experimental study tests new theory for multiple predator effects on communities by using warming to alter predator habitat use and hence direct and indirect interactions in a grassland food web containing two dominant spider predator species, a dominant grasshopper herbivore and grass and herb plants. Experimental warming further offers insight into how climate change might alter direct and indirect effects. Under ambient environmental conditions, spiders used habitat in spatially complementary locations. Consistent with predictions, the multiple predator effect on grasshoppers and on plants was the average of the individual predator effects. Warming strengthened the single predator effects. It also caused the spider species to overlap lower in the vegetation canopy. Consistent with predictions, the system was transformed into an intraguild predation system with the consequent extinction of one spider species. The results portend climate caused loss of predator diversity with important consequences for food web structure and function. PMID:19780788

  7. Extinction Dynamics and Evolution of a Survivability-Based Multi-Level Food-Web Model

    NASA Astrophysics Data System (ADS)

    Berger, B. W.; Boulter, C. J.

    A multi-level evolution model where forced extinctions occur throughout the system based on a species fitness value (or survivability) is developed that is essentially the fusion of the evolution model of Bak and Sneppen and the food-web model of Amaral and Meyer. This model is found to describe the fossil record and behave as a self-organized critical system with a power law exponent of approximately 2, but is also found to be remarkably similar to a model that causes the forced extinctions randomly throughout the system. To explain this result we show that fitness is nearly randomly distributed with a slight peak in forced extinction (due to fitness) in the middle levels. These findings lend strong support to the hypothesis that coextinction effects (propagated through a food-web) provide a robust explanation of the fossil record, independent of the mechanism for species competition.

  8. Impact of biodiversity loss on production in complex marine food webs mitigated by prey-release.

    PubMed

    Fung, Tak; Farnsworth, Keith D; Reid, David G; Rossberg, Axel G

    2015-01-01

    Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis-Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing 'fishing down the food web', accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at ≈40% of initial species richness. These findings have important implications for the valuation of marine biodiversity. PMID:25799523

  9. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil

    PubMed Central

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-01-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H′), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments. PMID:27311984

  10. Competition and predation in simple food webs: intermediately strong trade-offs maximize coexistence.

    PubMed Central

    HilleRisLambers, Reinier; Dieckmann, Ulf

    2003-01-01

    Competition and predation are fundamental interactions structuring food webs. However, rather than always following these neat theoretical categories, mixed interactions are ubiquitous in nature. Of particular importance are omnivorous species, such as intra-guild predators that can both compete with and predate on their prey. Here, we examine trade-offs between competitive and predatory capacities by analysing the entire continuum of food web configurations existing between purely predator-prey and purely competitive interactions of two consumers subsisting on a single resource. Our results show that the range of conditions allowing for coexistence of the consumers is maximized at intermediately strong trade-offs. Even though coexistence under weak trade-offs and under very strong trade-offs is also possible, it occurs under much more restrictive conditions. We explain these findings by an intricate interplay between energy acquisition and interaction strength. PMID:14728782

  11. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil.

    PubMed

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-01-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H'), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments. PMID:27311984

  12. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil

    NASA Astrophysics Data System (ADS)

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-06-01

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H‧), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments.

  13. From aquatic to terrestrial food webs: decrease of the docosahexaenoic acid/linoleic acid ratio.

    PubMed

    Koussoroplis, Apostolos-Manuel; Lemarchand, Charles; Bec, Alexandre; Desvilettes, Christian; Amblard, Christian; Fournier, Christine; Berny, Philippe; Bourdier, Gilles

    2008-05-01

    Fatty acid composition of the adipose tissue of six carnivorous mammalian species (European otter Lutra lutra, American mink Mustela vison, European Mink Mustela lutreola, European polecat Mustela putorius, stone marten Martes foina and European wild cat Felis silvestris) was studied. These species forage to differing degrees in aquatic and terrestrial food webs. Fatty acid analysis revealed significant differences in polyunsaturated fatty acid composition between species. More specifically, our results underline a gradual significant decrease in the docosahexaenoic acid (DHA)/linoleic acid (LNA) ratio of carnivore species as their dependence on aquatic food webs decreases. In conclusion, the use of the DHA/LNA ratio in long-term studies is proposed as a potential proxy of changes in foraging behaviour of semi-aquatic mammals. PMID:18335265

  14. Nutrient enrichment and trophic organisation in an estuarine food web

    NASA Astrophysics Data System (ADS)

    Raffaelli, Dave

    1999-07-01

    This paper reviews several long-term (30 years) data sets relevant to eutrophication in the Ythan estuary, Aberdeenshire, Scotland. These data sets are land-use in the catchment, nutrients in the river and estuary, macro-algal cover and biomass, mudflat invertebrate abundance and shorebird counts and distributions. The links between the observed patterns of change in these parameters are explored and the evidence for causal relationships assessed, especially in relation to experimental tests of potentially competing hypotheses. A likely scenario is proposed involving shifts in agriculture towards more nitrogen-demanding crops and a higher rate of application of nitrogen to the land; a consequent increase in nitrogen levels in the river and the estuary associated with an increase in the biomass and distribution of macro-algal mats; reductions in invertebrate densities (especially Corophium volutator) in the worst-affected areas of the estuary and increases in abundance in the upper reaches; an initial increase in the shorebird populations followed by a decline and a shift in shorebird distributions towards areas less affected by macro-algal mats. Important ecological processes for which data are limited or our understanding is poor are identified and the need for rigorous testing of hypotheses is highlighted.

  15. Roles of epiphytes associated with macroalgae in benthic food web of a eutrophic coastal lagoon

    NASA Astrophysics Data System (ADS)

    Zheng, Xinqing; Huang, Lingfeng; Lin, Rongcheng; Du, Jianguo

    2015-11-01

    Macroalgae perform a significant function in the trophic dynamics in many coastal lagoons, and conventionally, they are the key trophic base that fuels the overall aquatic food web. However, few studies have considered the trophic contribution of epiphytes that attach to macroalgae in the diet of benthic primary consumers or their contribution to the trophic base of the aquatic food web. In this study, macrobenthic invertebrate biomass was combined with multiple-isotope-mixing models to distinguish the trophic importance of macroalgae and their associated epiphytic assemblages in the benthic food web during Ulva lactuca bloom in the Yundang Lagoon, a eutrophic coastal lagoon in Xiamen, China. Amphipods primarily dominated the zoobenthos, with the biomass varied from 40.9 g/m2 in January to 283.9 g/m2 in March. They mainly fed on U. lactuca and its associated epiphytes, which jointly contributed more than 60% to amphipod diets, but species-specific feeding habits were exhibited among amphipods. Using the zoobenthos biomass as a weighting factor, the contribution of U. lactuca and its epiphytes to total benthic communities during U. lactuca bloom exceeded 65%.The epiphytes were clearly utilized more than U. lactuca, with a median contribution ranging from 48.5% in January to 66.6% in March. Our findings demonstrate the trophic importance of the epiphytes in macroalgae-based coastal habitats, as found in many seagrass beds. Therefore, we propose that further food web studies of macroalgae-based ecosystems should pay greater attention to the role of epiphytes.

  16. Longer and Less Overlapping Food Webs in Anthropogenically Disturbed Marine Ecosystems: Confirmations from the Past

    PubMed Central

    Saporiti, Fabiana; Bearhop, Stuart; Silva, Laura; Vales, Damián G.; Zenteno, Lisette; Crespo, Enrique A.; Aguilar, Alex; Cardona, Luis

    2014-01-01

    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs. PMID:25076042

  17. Current opinions: Zeros in host–parasite food webs: Are they real?☆

    PubMed Central

    Rossiter, Wayne

    2013-01-01

    As the data have poured in, and the number of published food webs containing parasites has increased, questions have been raised as to why free-living species consistently outnumber parasites, even though most general reviews on the subject of host:parasite species richness suggest the contrary. Here, I describe this pattern as it exists in the literature, posit both real and artifactual sources of these findings, and suggest ways that we might interpret existing parasite-inclusive food webs. In large part, the reporting of free-living species devoid of any associated parasites (termed here in the coding of food web matrices as “zeros”) is a consequence of either sampling issues or the intent of the study. However, there are also several powerful explanatory features that validate real cases of this phenomenon. Some hosts appear to authentically lack parasitism in portions of their geographic ranges, and parasites are often lost from systems that are either in early phases of community re-colonization or are compromised by environmental perturbation. Additionally, multi-stage parasite life cycles and broad host spectra allow some parasite species to partially saturate systems without providing a corresponding increase in parasite species richness, leading to low parasite species richness values relative to the free-living community. On the whole, the existing published food webs are sufficient to, at least in principle, determine basic patterns and pathways associated with parasite establishment and persistence in free-living communities because (1) for the purpose of those features, species rarity is roughly analogous to absence and (2) the existing data seem to suggest that the addition of more parasite taxa would reinforce the patterns already observed. This is particularly true for helminth parasites, in which our understanding and the resolution of our work is most robust. PMID:24533341

  18. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: confirmations from the past.

    PubMed

    Saporiti, Fabiana; Bearhop, Stuart; Silva, Laura; Vales, Damián G; Zenteno, Lisette; Crespo, Enrique A; Aguilar, Alex; Cardona, Luis

    2014-01-01

    The human exploitation of marine resources is characterised by the preferential removal of the largest species. Although this is expected to modify the structure of food webs, we have a relatively poor understanding of the potential consequences of such alteration. Here, we take advantage of a collection of ancient consumer tissues, using stable isotope analysis and SIBER to assess changes in the structure of coastal marine food webs in the South-western Atlantic through the second half of the Holocene as a result of the sequential exploitation of marine resources by hunter-gatherers, western sealers and modern fishermen. Samples were collected from shell middens and museums. Shells of both modern and archaeological intertidal herbivorous molluscs were used to reconstruct changes in the stable isotopic baseline, while modern and archaeological bones of the South American sea lion Otaria flavescens, South American fur seal Arctocephalus australis and Magellanic penguin Spheniscus magellanicus were used to analyse changes in the structure of the community of top predators. We found that ancient food webs were shorter, more redundant and more overlapping than current ones, both in northern-central Patagonia and southern Patagonia. These surprising results may be best explained by the huge impact of western sealing on pinnipeds during the fur trade period, rather than the impact of fishing on fish populations. As a consequence, the populations of pinnipeds at the end of the sealing period were likely well below the ecosystem's carrying capacity, which resulted in a release of intraspecific competition and a shift towards larger and higher trophic level prey. This in turn led to longer and less overlapping food webs. PMID:25076042

  19. Fatty acids as biomarkers for food web structure in the eastern North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Behrens, J.; Aluwihare, L.; Stephens, B. M.

    2015-12-01

    Resulting from a NSF funded REU program at Scripps Institution of Oceanography in 2015, this research utilized gas chromatography-mass spectrometry (GC-MS) to analyze the fatty acid composition of suspended particulate organic matter (POM) and zooplankton (ZP; primarily copepods). Samples analyzed for this study were collected simultaneously from surface waters approximately 9 miles off the coast of San Diego in June 2015. I was testing the hypothesis that essential fatty acids in ZP should reflect their diet, in particular, distinguishing contributions from a microbial versus traditional food web. Food web structure in this region of the ocean has been shown to be sensitive to climate change on inter-annual and longer timescales. Thus, a proxy that identifies restructuring of food webs would be useful for examining the response of ocean ecosystems to future climate change. Lipids were extracted from ZP and POM using a modified Bligh and Dyer method with sonication. Following saponification free fatty acids and other lipids were further purified using column chromatography. Polar functional groups in lipids were then methylated prior to GC-MS analysis. In addition, 2-dimensional GCxGC with time of flight MS was used to distinguish polyunsaturated fatty acid isomers. My poster will present initial findings of shared fatty acids of zooplankton and POM suspended material from the Northern Pacific collection site. Further research will be focused on analyzing the hydrogen isotope composition of fatty acids in zooplankton and suspended DOM obtained at the collection site to further characterize and increase certainty on the role of microbes and phytoplankton in the region's food-web to distinguish prokaryotic and eukaryotic sources.

  20. Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States.

    PubMed

    Chen, Celia Y; Borsuk, Mark E; Bugge, Deenie M; Hollweg, Terill; Balcom, Prentiss H; Ward, Darren M; Williams, Jason; Mason, Robert P

    2014-01-01

    Methylmercury (MeHg) is a contaminant of global concern that bioaccumulates and bioamagnifies in marine food webs. Lower trophic level fauna are important conduits of MeHg from sediment and water to estuarine and coastal fish harvested for human consumption. However, the sources and pathways of MeHg to these coastal fisheries are poorly known particularly the potential for transfer of MeHg from the sediment to biotic compartments. Across a broad gradient of human land impacts, we analyzed MeHg concentrations in food webs at ten estuarine sites in the Northeast US (from the Hackensack Meadowlands, NJ to the Gulf of Maine). MeHg concentrations in water column particulate material, but not in sediments, were predictive of MeHg concentrations in fish (killifish and Atlantic silversides). Moreover, MeHg concentrations were higher in pelagic fauna than in benthic-feeding fauna suggesting that MeHg delivery to the water column from methylation sites from within or outside of the estuary may be an important driver of MeHg bioaccumulation in estuarine pelagic food webs. In contrast, bulk sediment MeHg concentrations were only predictive of concentrations of MeHg in the infaunal worms. Our results across a broad gradient of sites demonstrate that the pathways of MeHg to lower trophic level estuarine organisms are distinctly different between benthic deposit feeders and forage fish. Thus, even in systems with contaminated sediments, transfer of MeHg into estuarine food webs maybe driven more by the efficiency of processes that determine MeHg input and bioavailability in the water column. PMID:24558491

  1. Organochlorine compounds in Lake Superior: Chiral polychlorinated biphenyls and biotransformation in the aquatic food web

    USGS Publications Warehouse

    Wong, Charles S.; Mabury, Scott A.; Whittle, D. Michael; Backus, Sean M.; Teixeira, Camilla; DeVault, David S.; Bronte, Charles R.; Muir, Derek C.G.

    2004-01-01

    The enantiomeric composition of seven chiral PCB congeners was measured in the Lake Superior aquatic food web sampled in 1998, to determine the extent of enantioselective biotransformation in aquatic biota. All chiral PCB congeners studied (CBs 91, 95, 136, 149, 174, 176, and 183) biomagnified in the Lake Superior aquatic food web, based on biomagnification and food web magnification factors greater than unity. PCB atropisomers were racemic in phytoplankton and zooplankton, suggesting no biotransformation potential toward PCBs for these low trophic level organisms. However, Diporeia and mysids had significantly nonracemic residues for most chiral congeners studied. This observation suggests that these macrozooplankton can stereoselectively metabolize chiral congeners. Alternatively, macrozooplankton obtained nonracemic residues from feeding on organic-rich suspended particles and sediments, which would imply that stereoselective microbial PCB biotransformation may be occurring in Lake Superior sediments at PCB concentrations far lower than that previously associated with such activity. Widely nonracemic PCB residues in forage fish (lake herring, rainbow smelt, and slimy sculpin) and lake trout suggest a combination of both in vivo biotransformation and uptake of nonracemic residues from prey for these species. Minimum biotransformation rates, calculated from enantiomer mass balances between predators and prey, suggest metabolic half-lives on the order of 8 yr for CB 136 in lake trout and 2.6 yr for CB 95 in sculpins. This result suggests that significant biotransformation may occur for metaboliz able PCB congeners over the lifespan of these biota. This study highlights the potential of chiral analysis to study biotransformation processes in food webs.

  2. Benthic and Pelagic Pathways of Methylmercury Bioaccumulation in Estuarine Food Webs of the Northeast United States

    PubMed Central

    Chen, Celia Y.; Borsuk, Mark E.; Bugge, Deenie M.; Hollweg, Terill; Balcom, Prentiss H.; Ward, Darren M.; Williams, Jason; Mason, Robert P.

    2014-01-01

    Methylmercury (MeHg) is a contaminant of global concern that bioaccumulates and bioamagnifies in marine food webs. Lower trophic level fauna are important conduits of MeHg from sediment and water to estuarine and coastal fish harvested for human consumption. However, the sources and pathways of MeHg to these coastal fisheries are poorly known particularly the potential for transfer of MeHg from the sediment to biotic compartments. Across a broad gradient of human land impacts, we analyzed MeHg concentrations in food webs at ten estuarine sites in the Northeast US (from the Hackensack Meadowlands, NJ to the Gulf of Maine). MeHg concentrations in water column particulate material, but not in sediments, were predictive of MeHg concentrations in fish (killifish and Atlantic silversides). Moreover, MeHg concentrations were higher in pelagic fauna than in benthic-feeding fauna suggesting that MeHg delivery to the water column from methylation sites from within or outside of the estuary may be an important driver of MeHg bioaccumulation in estuarine pelagic food webs. In contrast, bulk sediment MeHg concentrations were only predictive of concentrations of MeHg in the infaunal worms. Our results across a broad gradient of sites demonstrate that the pathways of MeHg to lower trophic level estuarine organisms are distinctly different between benthic deposit feeders and forage fish. Thus, even in systems with contaminated sediments, transfer of MeHg into estuarine food webs maybe driven more by the efficiency of processes that determine MeHg input and bioavailability in the water column. PMID:24558491

  3. Food webs of two intermittently open estuaries receiving 15N-enriched sewage effluent

    NASA Astrophysics Data System (ADS)

    Hadwen, Wade L.; Arthington, Angela H.

    2007-01-01

    Carbon and nitrogen stable isotope signatures were used to assess the response of food webs to sewage effluent discharged into two small intermittently open estuaries in northern New South Wales, Australia. One of these systems, Tallows Creek, has a history of direct sewage inputs, whilst the other, Belongil Creek, receives wastewater via an extensive wetland treatment system. The food webs of both systems were driven by algal sources of carbon, reflecting high autotrophic productivity in response to the nutrients entering the system from sewage effluent. All aquatic biota collected from Tallows Creek had significantly enriched δ15N signatures relative to their conspecifics from Belongil Creek, indicating that sewage nitrogen had been assimilated and transferred throughout the Tallows Creek food web. These δ15N values were higher than those reported from studies in permanently open estuaries receiving sewage effluent. We suggest that these enriched signatures and the transfer of nitrogen throughout the entire food web reflect differences in hydrology and associated nitrogen cycling processes between permanently open and intermittently open estuaries. Although all organisms in Tallows Creek were generally 15N-enriched, isotopically light (less 15N-enriched) individuals of estuary perchlet ( Ambassis marianus) and sea mullet ( Mugil cephalus) were also collected. These individuals were most likely recent immigrants into Tallows Creek, as this system had only recently been opened to the ocean. This isotopic discrimination between resident (enriched) and immigrant (significantly less enriched) individuals can provide information on fish movement patterns and the role of heavily polluted intermittently open estuaries in supporting commercially and recreationally valuable estuarine species.

  4. Evidence that 'food addiction' is a valid phenotype of obesity.

    PubMed

    Davis, Caroline; Curtis, Claire; Levitan, Robert D; Carter, Jacqueline C; Kaplan, Allan S; Kennedy, James L

    2011-12-01

    There is growing evidence of 'food addiction' (FA) in sugar- and fat-bingeing animals. The purpose of this study was to investigate the legitimacy of this disorder in the human condition. It was also our intention to extend the validation of the Yale Food Addiction Scale (YFAS) - the first tool developed to identify individuals with addictive tendencies towards food. Using a sample of obese adults (aged 25-45 years), and a case-control methodology, we focused our assessments on three domains relevant to the characterization of conventional substance-dependence disorders: clinical co-morbidities, psychological risk factors, and abnormal motivation for the addictive substance. Results were strongly supportive of the FA construct and validation of the YFAS. Those who met the diagnostic criteria for FA had a significantly greater co-morbidity with Binge Eating Disorder, depression, and attention-deficit/hyperactivity disorder compared to their age- and weight-equivalent counterparts. Those with FA were also more impulsive and displayed greater emotional reactivity than obese controls. They also displayed greater food cravings and the tendency to 'self-soothe' with food. These findings advance the quest to identify clinically relevant subtypes of obesity that may possess different vulnerabilities to environmental risk factors, and thereby could inform more personalized treatment approaches for those who struggle with overeating and weight gain. PMID:21907742

  5. Using food web dominator trees to catch secondary extinctions in action

    PubMed Central

    Bodini, Antonio; Bellingeri, Michele; Allesina, Stefano; Bondavalli, Cristina

    2009-01-01

    In ecosystems, a single extinction event can give rise to multiple ‘secondary’ extinctions. Conservation effort would benefit from tools that help forecast the consequences of species removal. One such tool is the dominator tree, a graph-theoretic algorithm that when applied to food webs unfolds their complex architecture, yielding a simpler topology made of linear pathways that are essential for energy delivery. Each species along these chains is responsible for passing energy to the taxa that follow it and, as such, it is indispensable for their survival. To assess the predictive potential of the dominator tree, we compare its predictions with the effects that followed the collapse of the capelin (Mallotus villosus) in the Barents Sea ecosystem. To this end, we first compiled a food web for this ecosystem, then we built the corresponding dominator tree and, finally, we observed whether model predictions matched the empirical observations. This analysis shows the potential and the drawbacks of the dominator trees as a tool for understanding the causes and consequences of extinctions in food webs. PMID:19451123

  6. Mercury Bioavailability and Bioaccumulation in Estuarine Food Webs in the Gulf of Maine

    PubMed Central

    Chen, Celia Y.; Dionne, Michele; Mayes, Brandon M.; Ward, Darren M.; Sturup, Stefan; Jackson, Brian P.

    2009-01-01

    Marine food webs are important links between Hg in the environment and human exposure via consumption of fish. Estuaries contain sediment repositories of Hg and are also critical habitat for marine fish and shellfish species consumed by humans. MeHg biotransfers from sites of production in estuarine sediments to higher trophic levels via both benthic and pelagic pathways. In this study, we investigated the potential for Hg biotransfer to estuarine food webs across a Hg contamination gradient in the Gulf of Maine. Despite the variation in sediment Hg concentrations across sites (>100 fold), Hg concentrations in biota ranged by only 2–4 fold for each species across sites. Sediment contamination alone explained some variation in Hg and MeHg concentrations in biota across sites. However, biogeochemical and ecological factors also explained significant variation in Hg bioaccumulation across species. Contaminated sites had higher total organic carbon concentrations in sediments, which related to a decrease in Hg bioaccumulation (measured as biota-sediment concentration factors, BSCF). Moreover, concentrations of MeHg were higher in pelagic-feeding than benthic-feeding fauna (determined from delta 13C) indicating the importance of pelagic pathways in transferring MeHg. Lastly, the proportion of total Hg as MeHg increased with trophic level (measured as delta 15N). These results reveal the importance of both biogeochemical and ecological factors in determining the bioavailability and trophic transfer of MeHg in estuarine food webs. PMID:19368175

  7. Carbon fluxes through food webs of the eastern equatorial Pacific: an inverse approach

    NASA Astrophysics Data System (ADS)

    Richardson, Tammi L.; Jackson, George A.; Ducklow, Hugh W.; Roman, Michael R.

    2004-09-01

    We used inverse and network analyses to examine food web interactions at 0°, 140°W during EqPac time-series cruises in March-April and October 1992. Our goal was to characterize carbon flows and trophic transfers while synthesizing the available information into a complete picture of ecosystem dynamics. The inverse approach allowed us to trace the pathway of fixed carbon through a representative food web and to characterize the role of various food web components in the recycling of carbon within, and export of carbon from, the euphotic zone. The key findings of these analyses were: (1) primary production of the larger phytoplankton size classes was most often dominated by the prymnesiophytes and pelagophytes and not by the diatoms, (2) picoplankton primary production was not always balanced by protozoan and microzooplankton grazing, despite conventional views of balanced microbial producer/grazer interactions in this system, (3) the picoplankton played an important direct + indirect role in the export of carbon from the euphotic zone through a pathway involving production of detritus from picoplankton carbon and subsequent grazing of this picoplankton-based detritus by the mesozooplankton, and (4) export of carbon through consumption of mesozooplankton by higher trophic levels was of the same magnitude as DOC export (9-25 mmol C m -2 d -1), yet this pathway is rarely considered in equatorial carbon balances.

  8. Lipids of prokaryotic origin at the base of marine food webs.

    PubMed

    de Carvalho, Carla C C R; Caramujo, Maria José

    2012-12-01

    In particular niches of the marine environment, such as abyssal trenches, icy waters and hot vents, the base of the food web is composed of bacteria and archaea that have developed strategies to survive and thrive under the most extreme conditions. Some of these organisms are considered "extremophiles" and modulate the fatty acid composition of their phospholipids to maintain the adequate fluidity of the cellular membrane under cold/hot temperatures, elevated pressure, high/low salinity and pH. Bacterial cells are even able to produce polyunsaturated fatty acids, contrarily to what was considered until the 1990s, helping the regulation of the membrane fluidity triggered by temperature and pressure and providing protection from oxidative stress. In marine ecosystems, bacteria may either act as a sink of carbon, contribute to nutrient recycling to photo-autotrophs or bacterial organic matter may be transferred to other trophic links in aquatic food webs. The present work aims to provide a comprehensive review on lipid production in bacteria and archaea and to discuss how their lipids, of both heterotrophic and chemoautotrophic origin, contribute to marine food webs. PMID:23342392

  9. Lipids of Prokaryotic Origin at the Base of Marine Food Webs

    PubMed Central

    de Carvalho, Carla C. C. R.; Caramujo, Maria José

    2012-01-01

    In particular niches of the marine environment, such as abyssal trenches, icy waters and hot vents, the base of the food web is composed of bacteria and archaea that have developed strategies to survive and thrive under the most extreme conditions. Some of these organisms are considered “extremophiles” and modulate the fatty acid composition of their phospholipids to maintain the adequate fluidity of the cellular membrane under cold/hot temperatures, elevated pressure, high/low salinity and pH. Bacterial cells are even able to produce polyunsaturated fatty acids, contrarily to what was considered until the 1990s, helping the regulation of the membrane fluidity triggered by temperature and pressure and providing protection from oxidative stress. In marine ecosystems, bacteria may either act as a sink of carbon, contribute to nutrient recycling to photo-autotrophs or bacterial organic matter may be transferred to other trophic links in aquatic food webs. The present work aims to provide a comprehensive review on lipid production in bacteria and archaea and to discuss how their lipids, of both heterotrophic and chemoautotrophic origin, contribute to marine food webs. PMID:23342392

  10. Using food web dominator trees to catch secondary extinctions in action.

    PubMed

    Bodini, Antonio; Bellingeri, Michele; Allesina, Stefano; Bondavalli, Cristina

    2009-06-27

    In ecosystems, a single extinction event can give rise to multiple 'secondary' extinctions. Conservation effort would benefit from tools that help forecast the consequences of species removal. One such tool is the dominator tree, a graph-theoretic algorithm that when applied to food webs unfolds their complex architecture, yielding a simpler topology made of linear pathways that are essential for energy delivery. Each species along these chains is responsible for passing energy to the taxa that follow it and, as such, it is indispensable for their survival. To assess the predictive potential of the dominator tree, we compare its predictions with the effects that followed the collapse of the capelin (Mallotus villosus) in the Barents Sea ecosystem. To this end, we first compiled a food web for this ecosystem, then we built the corresponding dominator tree and, finally, we observed whether model predictions matched the empirical observations. This analysis shows the potential and the drawbacks of the dominator trees as a tool for understanding the causes and consequences of extinctions in food webs. PMID:19451123

  11. PCB Food Web Dynamics Quantify Nutrient and Energy Flow in Aquatic Ecosystems.

    PubMed

    McLeod, Anne M; Paterson, Gordon; Drouillard, Ken G; Haffner, G Douglas

    2015-11-01

    Measuring in situ nutrient and energy flows in spatially and temporally complex aquatic ecosystems represents a major ecological challenge. Food web structure, energy and nutrient budgets are difficult to measure, and it is becoming more important to quantify both energy and nutrient flow to determine how food web processes and structure are being modified by multiple stressors. We propose that polychlorinated biphenyl (PCB) congeners represent an ideal tracer to quantify in situ energy and nutrient flow between trophic levels. Here, we demonstrate how an understanding of PCB congener bioaccumulation dynamics provides multiple direct measurements of energy and nutrient flow in aquatic food webs. To demonstrate this novel approach, we quantified nitrogen (N), phosphorus (P) and caloric turnover rates for Lake Huron lake trout, and reveal how these processes are regulated by both growth rate and fish life history. Although minimal nutrient recycling was observed in young growing fish, slow growing, older lake trout (>5 yr) recycled an average of 482 Tonnes·yr(-1) of N, 45 Tonnes·yr(-1) of P and assimilated 22 TJ yr(-1) of energy. Compared to total P loading rates of 590 Tonnes·yr(-1), the recycling of primarily bioavailable nutrients by fish plays an important role regulating the nutrient states of oligotrophic lakes. PMID:26437236

  12. Nitrogen Addition and Warming Independently Influence the Belowground Micro-Food Web in a Temperate Steppe

    PubMed Central

    Li, Qi; Bai, Huahua; Liang, Wenju; Xia, Jianyang; Wan, Shiqiang; van der Putten, Wim H.

    2013-01-01

    Climate warming and atmospheric nitrogen (N) deposition are known to influence ecosystem structure and functioning. However, our understanding of the interactive effect of these global changes on ecosystem functioning is relatively limited, especially when it concerns the responses of soils and soil organisms. We conducted a field experiment to study the interactive effects of warming and N addition on soil food web. The experiment was established in 2006 in a temperate steppe in northern China. After three to four years (2009–2010), we found that N addition positively affected microbial biomass and negatively influenced trophic group and ecological indices of soil nematodes. However, the warming effects were less obvious, only fungal PLFA showed a decreasing trend under warming. Interestingly, the influence of N addition did not depend on warming. Structural equation modeling analysis suggested that the direct pathway between N addition and soil food web components were more important than the indirect connections through alterations in soil abiotic characters or plant growth. Nitrogen enrichment also affected the soil nematode community indirectly through changes in soil pH and PLFA. We conclude that experimental warming influenced soil food web components of the temperate steppe less than N addition, and there was little influence of warming on N addition effects under these experimental conditions. PMID:23544140

  13. Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs

    USGS Publications Warehouse

    Kraus, Johanna M.; Walters, David M.; Wesner, Jeff S.; Stricker, Craig A.; Schmidt, Travis S.; Zuellig, Robert E.

    2014-01-01

    Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ15N, widely used to estimate relative trophic position in biomagnification studies, was enriched by 1‰ during metamorphosis, while δ13C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.

  14. Diet breadth influences how the impact of invasive plants is propagated through food webs.

    PubMed

    Carvalheiro, Luisa G; Buckley, Yvonne M; Memmott, Jane

    2010-04-01

    Invasive plants are considered a major cause of ecosystem degradation worldwide. While their impacts on native plants have been widely reported, there is little information on how these impacts propagate through food webs and affect species at higher trophic levels. Using a quantitative food web approach we evaluated the impacts of an invasive plant on plant-herbivore-parasitoid communities, asking specifically how diet breadth influences the propagation of such impacts. Measuring the impact of the alien plant at the plant level seriously underestimated the community-level effect of this weed as it also caused changes in the abundance of native herbivores and parasitoids, along with a decrease in parasitoid species richness. The invading plant affected specialist and generalist subsets of communities differently, having significant and strong negative impacts on the abundance of all specialists with no negative effect on generalist consumers. Specialist consumer decline led to further disruptions of top-down regulatory mechanisms, releasing generalist species from competition via shared natural enemies. Plant invasion also significantly increased the evenness of species abundance of all trophic levels in the food webs, as well as the evenness of species interaction frequency. Extending impact evaluation to higher trophic levels and considering changes in trophic diversity within levels is hence essential for a full evaluation of the consequences of invasion by alien plants. Moreover, information on diet breadth of species in the invaded community should be taken into account when evaluating/predicting the impacts on any introduced species. PMID:20462120

  15. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; De Silva, Amila O; Williamson, Mary; Spencer, Christine; Wang, Xiaowa; Muir, Derek C G

    2015-03-01

    Per- and polyfluorinated alkyl substances (PFASs) enter Arctic lakes through long-range atmospheric transport and local contamination, but their behavior in aquatic food webs at high latitudes is poorly understood. This study compared the concentrations of perfluorocarboxylates, perfluorosulfonates, and fluorotelomer sulfonates (FTS) in biotic and abiotic samples from six high Arctic lakes near Resolute Bay, Nunavut, Canada. Two of these lakes are known to be locally contaminated by a small airport and Arctic char (Salvelinus alpinus) from these lakes had over 100 times higher total [PFAS] when compared to fish from neighboring lakes. Perfluorononanoate (PFOA) and perfluorooctanesulfonate (PFOS) dominated in char, benthic chironomids (their main prey), and sediments, while pelagic zooplankton and water were dominated by lower chain acids and perfluorodecanesulfonate (PFDS). This study also provides the first measures of perfluoroethylcyclohexanesulfonate (PFECHS) and FTS compounds in water, sediment, juvenile char, and benthic invertebrates from lakes in the high Arctic. Negative relationships between [PFAS] and δ(15)N values (indicative of trophic position) within these food webs indicated no biomagnification. Overall, these results suggest that habitat use and local sources of contamination, but not trophic level, are important determinants of [PFAS] in biota from freshwater food webs in the Canadian Arctic. PMID:25604756

  16. Trophic magnification of poly- and perfluorinated compounds in a subtropical food web.

    PubMed

    Loi, Eva I H; Yeung, Leo W Y; Taniyasu, Sachi; Lam, Paul K S; Kannan, Kurunthachalam; Yamashita, Nobuyoshi

    2011-07-01

    Perfluorinated compounds (PFCs) are known to biomagnify in temperate and Arctic food webs, but little is known about their behavior in subtropical systems. The environmental distribution and biomagnification of PFCs, extractable organic fluorine (EOF), and total fluorine were investigated in a subtropical food web. Surface water, sediment, phytoplankton, zooplankton, gastropods, worms, shrimps, fishes, and waterbirds collected in the Mai Po Marshes Nature Reserve in Hong Kong were analyzed. Trophic magnification was observed for perfluorooctanesulfonate (PFOS), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA), and perfluorododecanoate (PFDoDA) in this food web. Risk assessment results for PFOS, PFDA, and perfluorooctanoate (PFOA) suggest that current PFC concentrations in waterbird livers are unlikely to pose adverse biological effects to waterbirds. All hazard ratio (HR) values reported for PFOS and PFOA are less than one, which suggests that the detected levels will not cause any immediate health effects to the Hong Kong population through the consumption of shrimps and fishes. However, only 10-12% of the EOF in the shrimp samples was comprised of known PFCs, indicating the need for further investigation to identify unknown fluorinated compounds in wildlife. PMID:21644538

  17. Soil resource supply influences faunal size-specific distributions in natural food webs

    NASA Astrophysics Data System (ADS)

    Mulder, Christian; den Hollander, Henri A.; Vonk, J. Arie; Rossberg, Axel G.; Jagers Op Akkerhuis, Gerard A. J. M.; Yeates, Gregor W.

    2009-07-01

    The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass-abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways.

  18. Spatial complexity reduces interaction strengths in the meta-food web of a river floodplain mosaic

    USGS Publications Warehouse

    Bellmore, James Ryan; Baxter, Colden Vance; Connolly, Patrick J.

    2015-01-01

    Theory states that both the spatial complexity of landscapes and the strength of interactions between consumers and their resources are important for maintaining biodiversity and the 'balance of nature.' Spatial complexity is hypothesized to promote biodiversity by reducing potential for competitive exclusion; whereas, models show weak trophic interactions can enhance stability and maintain biodiversity by dampening destabilizing oscillations associated with strong interactions. Here we show that spatial complexity can reduce the strength of consumer-resource interactions in natural food webs. By sequentially aggregating food webs of individual aquatic habitat patches across a floodplain mosaic, we found that increasing spatial complexity resulted in decreases in the strength of interactions between predators and prey, owing to a greater proportion of weak interactions and a reduced proportion of strong interactions in the meta-food web. The main mechanism behind this pattern was that some patches provided predation refugia for species which were often strongly preyed upon in other patches. If weak trophic interactions do indeed promote stability, then our findings may signal an additional mechanism by which complexity and stability are linked in nature. In turn, this may have implications for how the values of landscape complexity, and the costs of biophysical homogenization, are assessed.

  19. Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard.

    PubMed

    Jaeger, Iris; Hop, Haakon; Gabrielsen, Geir W

    2009-08-01

    Concentrations and biomagnification of total mercury (TotHg) and methyl mercury (MeHg) were studied in selected species from the pelagic food web in Kongsfjorden, Svalbard. Twelve species of zooplankton, fish and seabirds, were sampled representing a gradient of trophic positions in the Svalbard marine food web. TotHg and MeHg were analysed in liver, muscle and/or whole specimens. The present study is the first to provide MeHg levels in seabirds from the Svalbard area. The relative MeHg levels decreased with increasing levels of TotHg in seabird tissues. Stable isotopes of nitrogen (delta(15)N) were used to determine the trophic levels and the rate of biomagnification of mercury in the food web. A linear relationship between mercury levels and trophic position was found for all seabird species combined and their trophic level, but there was no relationship within species. Biomagnification factors were all >1 for both TotHg and MeHg, indicating biomagnification from prey to predator. TotHg levels in the different seabirds were similar to levels detected in the Kongsfjorden area in the 1990s. PMID:19454364

  20. Evolution mediates the effects of apex predation on aquatic food webs.

    PubMed

    Urban, Mark C

    2013-07-22

    Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance. PMID:23720548

  1. Development of a dynamic model for estimating the food web transfer of chemicals in small aquatic ecosystems.

    PubMed

    Nfon, Erick; Armitage, James M; Cousins, Ian T

    2011-11-15

    A dynamic combined fate and food web model was developed to estimate the food web transfer of chemicals in small aquatic ecosystems (i.e. ponds). A novel feature of the modeling approach is that aquatic macrophytes (submerged aquatic vegetation) were included in the fate model and were also a food item in the food web model. The paper aims to investigate whether macrophytes are effective at mitigating chemical exposure and to compare the modeling approach developed here with previous modeling approaches recommended in the European Union (EU) guideline for risk assessment of pesticides. The model was used to estimate bioaccumulation of three hypothetical chemicals of varying hydrophobicity in a pond food web comprising 11 species. Three different macrophyte biomass densities were simulated in the model experiments to determine the influence of macrophytes on fate and bioaccumulation. Macrophytes were shown to have a significant effect on the fate and food web transfer of highly hydrophobic compounds with log KOW>=5. Modeled peak concentrations in biota were highest for the scenarios with the lowest macrophyte biomass density. The distribution and food web transfer of the hypothetical compound with the lowest hydrophobicity (log KOW=3) was not affected by the inclusion of aquatic macrophytes in the pond environment. For the three different hypothetical chemicals and at all macrophyte biomass densities, the maximum predicted concentrations in the top predator in the food web model were at least one order of magnitude lower than the values estimated using methods suggested in EU guidelines. The EU guideline thus provides a highly conservative estimate of risk. In our opinion, and subject to further model evaluation, a realistic assessment of dynamic food web transfer and risk can be obtained using the model presented here. PMID:21962596

  2. Trophic transfer of methyl siloxanes in the marine food web from coastal area of Northern China.

    PubMed

    Jia, Hongliang; Zhang, Zifeng; Wang, Chaoqun; Hong, Wen-Jun; Sun, Yeqing; Li, Yi-Fan

    2015-03-01

    Methyl siloxanes, which belong to organic silicon compounds and have linear and cyclic structures, are of particular concern because of their potential characteristic of persistent, bioaccumulated, toxic, and ecological harm. This study investigated the trophic transfer of four cyclic methyl siloxanes (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and tetradecamethylcycloheptasiloxane (D7)) in a marine food web from coastal area of Northern China. Trophic magnification of D4, D5, D6, and D7 were assessed as the slope of lipid equivalent concentrations regressed against trophic levels of marine food web configurations. A significant positive correlation (R = 0.44, p < 0.0001) was found between lipid normalized D5 concentrations and trophic levels in organisms, showing the trophic magnification potential of this chemical in the marine food web. The trophic magnification factor (TMF) of D5 was estimated to be 1.77 (95% confidence interval (CI): 1.41-2.24, 99.8% probability of the observing TMF > 1). Such a significant link, however, was not found for D4 (R = 0.14 and p = 0.16), D6 (R = 0.01 and p = 0.92), and D7 (R = -0.15 and p = 0.12); and the estimated values of TMFs (95% CI, probability of the observing TMF > 1) were 1.16 (0.94-1.44, 94.7%), 1.01 (0.84-1.22, 66.9%) and 0.85 (0.69-1.04, 48.6%) for D4, D6, and D7, respectively. The TMF value for the legacy contaminant BDE-99 was also estimated as a benchmark, and a significant positive correlation (R = 0.65, p < 0.0001) was found between lipid normalized concentrations and trophic levels in organisms. The TMF value of BDE-99 was 3.27 (95% CI: 2.49-4.30, 99.7% probability of the observing TMF > 1), showing the strong magnification in marine food webs. To the best of our knowledge, this is the first report on the trophic magnification of methyl siloxanes in China, which provided important information for trophic transformation of these compounds in marine

  3. Healthy food subsidies and unhealthy food taxation: A systematic review of the evidence.

    PubMed

    Niebylski, Mark L; Redburn, Kimbree A; Duhaney, Tara; Campbell, Norm R

    2015-06-01

    The Global Burden of Disease Study and related studies report unhealthy diet is the leading risk for death and disability globally. Given the evidence associating diet and non-communicable diseases (NCDs), international and national health bodies including the World Health Organization and United Nations have called for population health interventions to improve diet as a means to target NCDs. One of the proposed interventions is to ensure healthy foods/beverages are more accessible to purchasers and unhealthy ones less accessible via fiscal policy, namely taxation and subsidies. The objective of this systematic review was to evaluate the evidence base to assess the effect of healthy food/beverage subsidies and unhealthy food/beverage taxation. A comprehensive review was conducted by searching PubMed, Medline, and Google Scholar for peer-reviewed publications and seventy-eight studies were identified for inclusion in this review. This review was performed in keeping with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. Although moderate in quality, there was consistent evidence that taxation and subsidy intervention influenced dietary behaviors. The quality, level and strength of evidence along with identified gaps in research support the need for further policies and ongoing evaluation of population-wide food/beverage subsidies and taxation. To maximize success and effect, this review suggests that food taxes and subsidies should be a minimum of 10 to 15% and preferably used in tandem. Implementation of population-wide polices for taxation and subsides with ongoing evaluation of intended and unintended effects are supported by this review. PMID:25933484

  4. The effects of mixotrophy on the stability and dynamics of a simple planktonic food web

    USGS Publications Warehouse

    Jost, Christian; Lawrence, Cathryn A.; Campolongo, Francesca; Wouter, van de Bund; Hill, Sheryl; DeAngelis, Donald L.

    2004-01-01

    Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs—organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients–autotrophs–herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included.

  5. Bioaccumulation Dynamics of Arsenate at the Base of Aquatic Food Webs.

    PubMed

    Lopez, Adeline R; Hesterberg, Dean R; Funk, David H; Buchwalter, David B

    2016-06-21

    Periphyton is an important food source at the base of freshwater ecosystems that tends to bioconcentrate trace elements making them trophically available. The potential for arsenic-a trace element of particular concern due to its widespread occurrence, toxicity, and carcinogenicity-to bioconcentrate in periphyton and thus be available to benthic grazers is less well characterized. To better understand arsenate bioaccumulation dynamics in lotic food webs, we used a radiotracer approach to characterize accumulation in periphyton and subsequent trophic transfer to benthic grazers. Periphyton bioconcentrated As between 3,200-9,700-fold (dry weight) over 8 days without reaching steady state, suggesting that periphyton is a major sink for arsenate. However, As-enriched periphyton as a food source for the mayfly Neocloeon triangulifer resulted in negligible As accumulation in a full lifecycle exposure. Additional studies estimate dietary assimilation efficiency in several primary consumers ranging from 22% in the mayfly N. triangulifer to 75% in the mayfly Isonychia sp. X-ray fluorescence mapping revealed that As was predominantly associated with iron oxides in periphyton. We speculate that As adsorption to Fe in periphyton may play a role in reducing dietary bioavailability. Together, these results suggest that trophic movement of As in lotic food webs is relatively low, though species differences in bioaccumulation patterns are important. PMID:27223406

  6. Intraguild interactions between spiders and ants and top-down control in a grassland food web.

    PubMed

    Sanders, Dirk; Platner, Christian

    2007-01-01

    In most terrestrial ecosystems ants (Formicidae) as eusocial insects and spiders (Araneida) as solitary trappers and hunters are key predators. To study the role of predation by these generalist predators in a dry grassland, we manipulated densities of ants and spiders (natural and low density) in a two-factorial field experiment using fenced plots. The experiment revealed strong intraguild interactions between ants and spiders. Higher densities of ants negatively affected the abundance and biomass of web-building spiders. The density of Linyphiidae was threefold higher in plots without ant colonies. The abundance of Formica cunicularia workers was significantly higher in spider-removal plots. Also, population size of springtails (Collembola) was negatively affected by the presence of wandering spiders. Ants reduced the density of Lepidoptera larvae. In contrast, the abundance of coccids (Ortheziidae) was positively correlated with densities of ants. To gain a better understanding of the position of spiders, ants and other dominant invertebrate groups in the studied food web and important trophic links, we used a stable isotope analysis ((15)N and (13)C). Adult wandering spiders were more enriched in (15)N relative to (14)N than juveniles, indicating a shift to predatory prey groups. Juvenile wandering and web-building spiders showed delta(15)N ratios just one trophic level above those of Collembola, and they had similar delta(13)C values, indicating that Collembola are an important prey group for ground living spiders. The effects of spiders demonstrated in the field experiment support this result. We conclude that the food resource of spiders in our study system is largely based on the detrital food web and that their effects on herbivores are weak. The effects of ants are not clear-cut and include predation as well as mutualism with herbivores. Within this diverse predator guild, intraguild interactions are important structuring forces. PMID:17091284

  7. Food web structure of the coastal area adjacent to the Tagus estuary revealed by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2012-01-01

    The identification of energy sources, pathways and trophic linkages among organisms is crucial for the understanding of food web dynamics. Stable isotopes were used to identify the trophic level of food web components and track the incorporation of organic matter of different origins in the coastal ecosystem adjacent to the Tagus estuary. It was shown that the river Tagus is a major source of organic carbon to this system. Also, the wide difference in δ 13C among the primary consumers allowed the identification of the pelagic and the benthic energy pathways. The maximum trophic level observed was 2.4 for Sepia officinalis. This value is indicative of a short food web. It was concluded that the diet of the upper trophic level species relies directly on the lower food web levels to a considerable extent, instead of relying mostly on intermediate trophic level species. Moreover, the δ 15N values of primary consumers were very close to that of particulate organic matter, probably due to poorly known processes occurring at the basis of the food web. This lowers the trophic length of the whole food web. Reliance on benthic affinity prey was high for all upper trophic level secondary consumers.

  8. Seasonality in contaminant accumulation in Arctic marine pelagic food webs using trophic magnification factor as a measure of bioaccumulation.

    PubMed

    Hallanger, Ingeborg G; Warner, Nicholas A; Ruus, Anders; Evenset, Anita; Christensen, Guttorm; Herzke, Dorte; Gabrielsen, Geir W; Borgå, Katrine

    2011-05-01

    Seasonality in biomagnification of persistent organic pollutants (POPs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) in Arctic marine pelagic food webs was investigated in Kongsfjorden, Svalbard, Norway. Trophic magnification factors (TMFs; average factor change in concentration between two trophic levels) were used to measure food web biomagnification in biota in May, July, and October 2007. Pelagic zooplankton (seven species), fish (five species), and seabirds (two species) were included in the study. For most POP compounds, highest TMFs were found in July and lowest were in May. Seasonally changing TMFs were a result of seasonally changing POP concentrations and the δ¹⁵N-derived trophic positions of the species included in the food web. These seasonal differences in TMFs were independent of inclusion/exclusion of organisms based on physiology (i.e., warm- versus cold-blooded organisms) in the food web. The higher TMFs in July, when the food web consisted of a higher degree of boreal species, suggest that future warming of the Arctic and increased invasion by boreal species can result in increased food web magnification. Knowledge of the seasonal variation in POP biomagnification is a prerequisite for understanding changes in POP biomagnification caused by climate change. PMID:21312250

  9. Seasonal food web structures and sympagic pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model

    NASA Astrophysics Data System (ADS)

    Søreide, Janne E.; Hop, Haakon; Carroll, Michael L.; Falk-Petersen, Stig; Hegseth, Else Nøst

    2006-10-01

    We simultaneously followed stable carbon ( δ13C) and nitrogen ( δ15N) isotopes in a two-source food web model to determine trophic levels and the relative importance of open water- and ice-associated food sources (phytoplankton vs. ice algae) in the lower marine food web in the European Arctic during four seasons. The model is based upon extensive seasonal data from 1995 to 2001. Phytoplankton, represented by samples of particulate organic matter from open water (Pelagic-POM) and ice algae, represented by samples from the underside of the ice (Ice-POM), were isotopically different. Ice-POM was generally dominated by the typical ice diatoms Nitzschia frigida and Melosira arctica and was more enriched than Pelagic-POM in 13C ( δ13C = -20‰ vs. -24‰), but less enriched in 15N ( δ15N = 1.8‰ vs. 4.0‰). However, when dominated by pelagic algae, Ice-POM was enriched in 13C and 15N similarly to Pelagic-POM. The derived trophic enrichment factors for δ15N (Δ N = 3.4‰) and δ13C (Δ C = 0.6‰) were similar in both pelagic and sympagic (ice-associated) systems, although the Δ C for the sympagic system was variable. Trophic level (TL) range for zooplankton (TL = 1.8-3.8) was similar to that of ice fauna (TL = 1.9-3.7), but ice amphipods were generally less enriched in δ15N than zooplankton, reflecting lower δ15N in Ice-POM compared to Pelagic-POM. For bulk zooplankton, TLs and carbon sources changed little seasonally, but the proportion of herbivores was higher during May-September than in October and March. Overall, we found that the primary carbon source for zooplankton was Pelagic-POM (mean 74%), but depending on species, season and TL, substantial carbon (up to 50%) was supplied from the sympagic system. For bulk ice fauna, no major changes were found in TLs or carbon sources from summer to autumn. The primary carbon source for ice fauna was Ice-POM (mean 67%), although ice fauna with TL > 3 (adult Onisimus nanseni and juvenile polar cod) primarily

  10. Impact of proliferation strategies on food web viability in a model with closed nutrient cycle

    NASA Astrophysics Data System (ADS)

    Szwabiński, Janusz

    2012-11-01

    A food web model with a closed nutrient cycle is presented and analyzed via Monte Carlo simulations. The model consists of three trophic levels, each of which is populated by animals of one distinct species. While the species at the intermediate level feeds on the basal species, and is eaten by the predators living at the highest level, the basal species itself uses the detritus of animals from higher levels as the food resource. The individual organisms remain localized, but the species can invade new lattice areas via proliferation. The impact of different proliferation strategies on the viability of the system is investigated. From the phase diagrams generated in the simulations it follows that in general a strategy with the intermediate level species searching for food is the best for the survival of the system. The results indicate that both the intermediate and top level species play a critical role in maintaining the structure of the system.

  11. Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    PubMed Central

    Spivak, Amanda C.; Canuel, Elizabeth A.; Duffy, J. Emmett; Richardson, J. Paul

    2009-01-01

    Background Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood. Methodology/Principal Findings Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments. Conclusions/Significance Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing

  12. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; Kirk, Jane L; O'Driscoll, Nelson J; Wang, Xiaowa; Muir, Derek C G

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ(13)C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ(15)N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. PMID:24909711

  13. Linking ecosystems, food webs, and fish production: subsidies in salmonid watersheds

    USGS Publications Warehouse

    Wipfli, Mark S.; Baxter, Colden V.

    2010-01-01

    Physical characteristics of riverine habitats, such as large wood abundance, pool geometry and abundance, riparian vegetation cover, and surface flow conditions, have traditionally been thought to constrain fish production in these ecosystems. Conversely, the role of food resources (quantity and quality) in controlling fish production has received far less attention and consideration, though they can also be key productivity drivers. Traditional freshwater food web illustrations have typically conveyed the notion that most fish food is produced within the local aquatic habitat itself, but the concepts and model we synthesize in this article show that most fish food comes from external or very distant sources—including subsidies from marine systems borne from adult returns of anadromous fishes, from fishless headwater tributaries that transport prey to downstream fish, and from adjacent streamside vegetation and associated habitats. The model we propose further illustrates how key trophic pathways and food sources vary through time and space throughout watersheds. Insights into how food supplies affect fishes can help guide how we view riverine ecosystems, their structure and function, their interactions with marine and terrestrial systems, and how we manage natural resources, including fish, riparian habitats, and forests.

  14. Common patterns of energy flow and biomass distribution on weighted food webs

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Feng, Yuanjing

    2014-07-01

    Weights of edges and nodes on food webs which are available from the empirical data hide much information about energy flows and biomass distributions in ecosystem. We define a set of variables related to weights for each species i, including the throughflow Ti, the total biomass Xi, and the dissipated flow Di (output to the environment) to uncover the following common patterns in 19 empirical weighted food webs: (1) DGBD distributions (Discrete version of a Generalized Beta Distribution), a kind of deformed Zipf's law, of energy flow and storage biomass; (2) The allometric scaling law Ti∝Xiα, which can be viewed as the counterpart of the Kleiber's 3/4 law at the population level; (3) The dissipation law Di∝Tiβ; and (4) The gravity law, including univariate version f∝( and bivariate approvement f∝Tiγ1Tjγ2. These patterns are very common and significant in all collected webs, as a result, some remarkable regularities are hidden in weights.

  15. Effects of anthropogenic nitrogen input on the aquatic food webs of river ecosystem in central Japan

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Togashi, H.; Tokuchi, N.; Yoshimura, M.; Kato, Y.; Ishikawa, N. F.; Osaka, K.; Kondo, M.; Tayasu, I.

    2014-12-01

    To evaluate the impact of the anthropogenic nitrogen input to the river ecosystem, we conducted the monitoring on nutrient status of river waters and food web structures of aquatic organisms. Especially, changes of sources and concentration of nitrate (NO3-) in river water were focused to evaluate the impact of anthropogenic nitrogen loadings from agricultural and residential areas. Stable nitrogen isotope ratio (δ15N) of aquatic organisms has also intensively been monitored not only to describe their food web structure, but also to detect the influences of extraneous nitrogen inputs. Field samplings an observation campaigns were conducted in the Arida river watershed located in central part of Japan at four different seasons from September 2011 to October 2012. Five observation points were set from headwaters to the point just above the brackish waters starts. Water samples for chemical analysis were taken at the observation points for each campaign. Organisms including leaf litters, benthic algae, aquatic insects, crustacean, and fishes were sampled at each point quantitatively. Results of the riverine survey utilizing 5 regular sampling points showed that δ15N of nitrate (NO3-) increased from forested upstream (˜2 ‰) to the downstream (˜7 ‰) due to the sewage loads and fertilizer effluents from agricultural area. Correspondingly the δ15N of benthic algae and aquatic insects increased toward the downstream. This indicates that primary producers of each reach strongly relied on the local N sources and it was utilized effectively in their food web. Simulation using a GIS based mixing model considering the spatial distributions of human population density and fertilizer effluents revealed that strongest impacts of N inputs was originated from organic fertilizers applied to orchards in the middle to lower parts of catchment. Differences in δ15N between primary producers and predators were 6-7 ‰ similarly at all sampling points. Food web structural

  16. iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence.

    PubMed

    Turner, Brian; Razick, Sabry; Turinsky, Andrei L; Vlasblom, James; Crowdy, Edgard K; Cho, Emerson; Morrison, Kyle; Donaldson, Ian M; Wodak, Shoshana J

    2010-01-01

    We present iRefWeb, a web interface to protein interaction data consolidated from 10 public databases: BIND, BioGRID, CORUM, DIP, IntAct, HPRD, MINT, MPact, MPPI and OPHID. iRefWeb enables users to examine aggregated interactions for a protein of interest, and presents various statistical summaries of the data across databases, such as the number of organism-specific interactions, proteins and cited publications. Through links to source databases and supporting evidence, researchers may gauge the reliability of an interaction using simple criteria, such as the detection methods, the scale of the study (high- or low-throughput) or the number of cited publications. Furthermore, iRefWeb compares the information extracted from the same publication by different databases, and offers means to follow-up possible inconsistencies. We provide an overview of the consolidated protein-protein interaction landscape and show how it can be automatically cropped to aid the generation of meaningful organism-specific interactomes. iRefWeb can be accessed at: http://wodaklab.org/iRefWeb. Database URL: http://wodaklab.org/iRefWeb/ PMID:20940177

  17. Parasites reduce food web robustness because they are sensitive to secondary extinction as illustrated by an invasive estuarine snail.

    PubMed

    Lafferty, Kevin D; Kuris, Armand M

    2009-06-27

    A robust food web is one in which few secondary extinctions occur after removing species. We investigated how parasites affected the robustness of the Carpinteria Salt Marsh food web by conducting random species removals and a hypothetical, but plausible, species invasion. Parasites were much more likely than free-living species to suffer secondary extinctions following the removal of a free-living species from the food web. For this reason, the food web was less robust with the inclusion of parasites. Removal of the horn snail, Cerithidea californica, resulted in a disproportionate number of secondary parasite extinctions. The exotic Japanese mud snail, Batillaria attramentaria, is the ecological analogue of the native California horn snail and can completely replace it following invasion. Owing to the similarities between the two snail species, the invasion had no effect on predator-prey interactions. However, because the native snail is host for 17 host-specific parasites, and the invader is host to only one, comparison of a food web that includes parasites showed significant effects of invasion on the native community. The hypothetical invasion also significantly reduced the connectance of the web because the loss of 17 native trematode species eliminated many links. PMID:19451117

  18. Effects of zebra mussels on food webs: Interactions with juvenile bluegill and water residence time

    USGS Publications Warehouse

    Richardson, W.B.; Bartsch, L.A.

    1997-01-01

    We evaluated how water residence time mediated the impact of zebra mussels Dreissena polymorpha and bluegill sunfish Lepomis macrochirus on experimental food webs established in 1100-1 outdoor mesocosms. Water residence time was manipulated as a surrogate for seston resupply - a critical variable affecting growth and survival of suspension-feeding invertebrates. We used a 2 x 2 x 2 factorial experimental design with eight treatment combinations (3 replicates/treatment) including the presence or absence of Dreissena (2000 per m2), juvenile bluegill (40 per mesocosm), and short (1100 1 per d) or long (220 1 per d) water residence time. Measures of seston concentration (chlorophyll a, turbidity and suspended solids) were greater in the short- compared to long water-residence mesocosms, but intermediate in short water-residence mesocosms containing Dreissena. Abundance of rotifers (Keratella and Polyarthra) was reduced in Dreissena mesocosms and elevated in short residence time mesocosms. Cladocera abundance, in general, was unaffected by the presence of Dreissena; densities were higher in short-residence time mesocosms, and reduced in the presence of Lepomis. The growth of juvenile Lepomis were unaffected by Dreissena because of abundant benthic food. The final total mass of Dreissena was significantly greater in short- than long-residence mesocosms. Impacts of Dreissena on planktonic food webs may not only depend on the density of zebra mussels but also on the residence time of the surrounding water and the resupply of seston. ?? 1997 Kluwer Academic Publishers.

  19. Determining the trophic guilds of fishes and macroinvertebrates in a seagrass food web

    USGS Publications Warehouse

    Luczkovich, J.J.; Ward, G.P.; Johnson, J.C.; Christian, R.R.; Baird, D.; Neckles, H.; Rizzo, W.M.

    2002-01-01

    We established trophic guilds of macroinvertebrate and fish taxa using correspondence analysis and a hierarchical clustering strategy for a seagrass food web in winter in the northeastern Gulf of Mexico. To create the diet matrix, we characterized the trophic linkages of macroinvertebrate and fish taxa present in Halodule wrightii seagrass habitat areas within the St. Marks National Wildlife Refuge (Florida) using binary data, combining dietary links obtained from relevant literature for macroinvertebrates with stomach analysis of common fishes collected during January and February of 1994. Heirarchical average-linkage cluster analysis of the 73 taxa of fishes and macroinvertebrates in the diet matrix yielded 14 clusters with diet similarity ??? 0.60. We then used correspondence analysis with three factors to jointly plot the coordinates of the consumers (identified by cluster membership) and of the 33 food sources. Correspondence analysis served as a visualization tool for assigning each taxon to one of eight trophic guilds: herbivores, detritivores, suspension feeders, omnivores, molluscivores, meiobenthos consumers, macrobenthos consumers, and piscivores. These trophic groups, cross-classified with major taxonomic groups, were further used to develop consumer compartments in a network analysis model of carbon flow in this seagrass ecosystem. The method presented here should greatly improve the development of future network models of food webs by providing an objective procedure for aggregating trophic groups.

  20. Determining the trophic guilds of fishes and macroinvertebrates in a seagrass food web

    USGS Publications Warehouse

    Luczkovich, J.J.; Ward, G.P.; Johnson, J.C.; Christian, R.R.; Baird, D.; Neckles, H.; Rizzo, W.M.

    2002-01-01

    We established trophic guilds of macroinvertebrate and fish taxa using correspondence analysis and a hierarchical clustering strategy for a seagrass food web in winter in the northeastern Gulf of Mexico. To create the diet matrix, we characterized the trophic linkages of macroinvertebrate and fish taxa. present in Hatodule wrightii seagrass habitat areas within the St. Marks National Wildlife Refuge (Florida) using binary data, combining dietary links obtained from relevant literature for macroinvertebrates with stomach analysis of common fishes collected during January and February of 1994. Heirarchical average-linkage cluster analysis of the 73 taxa of fishes and macroinvertebrates in the diet matrix yielded 14 clusters with diet similarity greater than or equal to 0.60. We then used correspondence analysis with three factors to jointly plot the coordinates of the consumers (identified by cluster membership) and of the 33 food sources. Correspondence analysis served as a visualization tool for assigning each taxon to one of eight trophic guilds: herbivores, detritivores, suspension feeders, omnivores, molluscivores, meiobenthos consumers, macrobenthos consumers, and piscivores. These trophic groups, cross-classified with major taxonomic groups, were further used to develop consumer compartments in a network analysis model of carbon flow in this seagrass ecosystem. The method presented here should greatly improve the development of future network models of food webs by providing an objective procedure for aggregating trophic groups.

  1. Chironomidae feeding habits in different habitats from a Neotropical floodplain: exploring patterns in aquatic food webs.

    PubMed

    Butakka, C M M; Ragonha, F H; Train, S; Pinha, G D; Takeda, A M

    2016-02-01

    Ecological studies on food webs have considerably increased in recent decades, especially in aquatic communities. Because Chironomidae family are highly specious, occurring in almost all aquatic habitats is considered organisms-key to initiate studies on ecological relationships and trophic webs. We tested the hypothesis that the diversity of the morphospecies diet reflects differences on both the food items available among habitats and the preferences of larval feeding. We analyzed the gut content of the seven most abundant Chironomidae morphospecies of the different habitats from the Upper Paraná River. We categorized the food items found into algae, fungal spores, fragments of plants, algae and animal fragments and sponge spicules. We observed the algae predominance in the gut content of morphospecies from lakes. Considering the different regions from each lake, we registered the highest food abundance in the littoral regions in relation to the central regions. From the variety of feeding habits (number of item kinds), we classified Chironomus strenzkei, Tanytarsus sp.1, Procladius sp.1 as generalist morphospecies. We found a nested pattern between food items and Chironomidae morphospecies, where some items were common to all taxa (e.g., Bacillariophyceae algae, especially), while others were found in specific morphospecies (e.g., animals fragments found in Procladius sp.1). The algae represented the most percentage of gut contents of Chironomidae larvae. This was especially true for the individuals from littoral regions, which is probably due to the major densities of algae associated to macrophytes, which are abundant in these regions. Therefore, the feeding behavior of these morphospecies was generalist and not selective, depending only of the available resources. PMID:26909630

  2. River and Wetland Food Webs in Australia's Wet-Dry Tropics: General Principles and Implications for Management.

    NASA Astrophysics Data System (ADS)

    Douglas, M. M.; Bunn, S. E.; Davies, P. M.

    2005-05-01

    The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.

  3. Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation

    PubMed Central

    Ward, Darren M.; Nislow, Keith H.; Folt, Carol L.

    2010-01-01

    Mercury is a ubiquitous contaminant in aquatic ecosystems, posing a significant health risk to humans and wildlife that eat fish. Mercury accumulates in aquatic food webs as methylmercury (MeHg), a particularly toxic and persistent organic mercury compound. While mercury in the environment originates largely from anthropogenic activities, MeHg accumulation in freshwater aquatic food webs is not a simple function of local or regional mercury pollution inputs. Studies show that even sites with similar mercury inputs can produce fish with mercury concentrations ranging over an order of magnitude. While much of the foundational work to identify the drivers of variation in mercury accumulation has focused on freshwater lakes, mercury contamination in stream ecosystems is emerging as an important research area. Here, we review recent research on mercury accumulation in stream-dwelling organisms. Taking a hierarchical approach, we identify a suite of characteristics of individual consumers, food webs, streams, watersheds, and regions that are consistently associated with elevated MeHg concentrations in stream fish. We delineate a conceptual, mechanistic basis for explaining the ecological processes that underlie this vulnerability to MeHg. Key factors, including suppressed individual growth of consumers, low rates of primary and secondary production, hydrologic connection to methylation sites (e.g. wetlands), heavily forested catchments, and acidification are frequently associated with increased MeHg concentrations in fish across both streams and lakes. Hence, we propose that these interacting factors define a syndrome of characteristics that drive high MeHg production and bioaccumulation rates across these freshwater aquatic ecosystems. Finally, based on an understanding of the ecological drivers of MeHg accumulation, we identify situations when anthropogenic effects and management practices could significantly exacerbate or ameliorate MeHg accumulation in stream fish

  4. Fungal-to-bacterial dominance of soil detrital food-webs: Consequences for biogeochemistry

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2015-04-01

    Resolving fungal and bacterial groups within the microbial decomposer community is thought to capture disparate microbial life strategies, associating bacteria with an r-selected strategy for carbon (C) and nutrient use, and fungi with a K-selected strategy. Additionally, food-web models have established a widely held belief that the bacterial decomposer pathway in soil supports high turnover rates of easily available substrates, while the slower fungal pathway supports the decomposition of more complex organic material, thus characterising the biogeochemistry of the ecosystem. Three field-experiments to generate gradients of SOC-quality were assessed. (1) the Detritus Input, Removal, and Trenching - DIRT - experiment in a temperate forest in mixed hardwood stands at Harvard Forest LTER, US. There, experimentally adjusted litter input and root input had affected the SOC quality during 23 years. (2) field-application of 14-C labelled glucose to grassland soils, sampled over the course of 13 months to generate an age-gradient of SOM (1 day - 13 months). (3) The Park Grass Experiment at Rothamsted, UK, where 150-years continuous N-fertilisation (0, 50, 100, 150 kg N ha-1 y-1) has affected the quality of SOM in grassland soils. A combination of carbon stable and radio isotope studies, fungal and bacterial growth and biomass measurements, and C and N mineralisation (15N pool dilution) assays were used to investigate how SOC-quality influenced fungal and bacterial food-web pathways and the implications this had for C and nutrient turnover. There was no support that decomposer food-webs dominated by bacteria support high turnover rates of easily available substrates, while slower fungal-dominated decomposition pathways support the decomposition of more complex organic material. Rather, an association between high quality SOC and fungi emerges from the results. This suggests that we need to revise our basic understanding for soil microbial communities and the processes

  5. Modeling selenium bioaccumulation through arthropod food webs in San Francisco Bay, California, USA

    USGS Publications Warehouse

    Schlekat, C.E.; Purkerson, D.G.; Luoma, S.N.

    2004-01-01

    Trophic transfer is the main process by which upper trophic level wildlife are exposed to selenium. Transfers through lower levels of a predator's food web thus can be instrumental in determining the threat of selenium in an ecosystem. Little is known about Se transfer through pelagic, zooplankton-based food webs in San Francisco Bay ([SFB], CA, USA), which serve as an energy source for important predators such as striped bass. A dynamic multipathway bioaccumulation model was used to model Se transfer from phytoplankton to pelagic copepods to carnivorous mysids (Neomysis mercedis). Uptake rates of dissolved Se, depuration rates, and assimilation efficiencies (AE) for the model were determined for copepods and mysids in the laboratory. Small (73-250 ??m) and large (250-500 ??m) herbivorous zooplankton collected from SFB (Oithona/Limnoithona and Acartia sp.) assimilated Se with similar efficiencies (41-52%) from phytoplankton. Mysids assimilated 73% of Se from small herbivorous zooplankton; Se AE was significantly lower (61%) than larger herbivorous zooplankton. Selenium depuration rates were high for both zooplankton and mysids (12-25% d-1), especially compared to bivalves (2-3% d-1). The model predicted steady state Se concentrations in mysids similar to those observed in the field. The predicted concentration range (1.5-5.4 ??g g -1) was lower than concentrations of 4.5 to 24 ??g g-1 observed in bivalves from the bay. Differences in efflux between mysids and bivalves were the best explanation for the differences in uptake. The results suggest that the risk of selenium toxicity to predators feeding on N. mercedis would be less than the risk to predators feeding on bivalves. Management of selenium contamination should include food webs analyses to focus on the most important exposure pathways identified for a given watershed.

  6. Changes in the Lake Michigan food web following dreissenid mussel invasions: A synthesis

    USGS Publications Warehouse

    Madenjian, Charles P.; Bunnell, David B.; Warner, David M.; Pothoven, Steven A.; Fahnenstiel, Gary L.; Nalepa, Thomas F., (Edited By); Vanderploeg, Henry A.; Tsehaye, Iyob; Claramunt, Randall M.; Clark, Richard D

    2015-01-01

    Using various available time series for Lake Michigan, we examined changes in the Lake Michigan food web following the dreissenid mussel invasions and identified those changes most likely attributable to these invasions, thereby providing a synthesis. Expansion of the quagga mussel (Dreissena rostriformis bugensis) population into deeper waters, which began around 2004, appeared to have a substantial predatory effect on both phytoplankton abundance and primary production, with annual primary production in offshore (> 50 m deep) waters being reduced by about 35% by 2007. Primary production likely decreased in nearshore waters as well, primarily due to predatory effects exerted by the quagga mussel expansion. The drastic decline inDiporeia abundance in Lake Michigan during the 1990s and 2000s has been attributed to dreissenid mussel effects, but the exact mechanism by which the mussels were negatively affecting Diporeia abundance remains unknown. In turn, decreased Diporeiaabundance was associated with reduced condition, growth, and/or energy density in alewife (Alosa pseudoharengus), lake whitefish (Coregonus clupeaformis), deepwater sculpin (Myoxocephalus thompsonii), and bloater (Coregonus hoyi). However, lake-wide biomass of salmonines, top predators in the food web, remained high during the 2000s, and consumption of alewives by salmonines actually increased between the 1980–1995 and 1996–2011 time periods. Moreover, abundance of the lake whitefish population, which supports Lake Michigan's most valuable commercial fishery, remained at historically high levels during the 2000s. Apparently, counterbalancing mechanisms operating within the complex Lake Michigan food web have enabled salmonines and lake whitefish to retain relatively high abundances despite reduced primary production.

  7. Are Algae Relevant to the Detritus-Based Food Web in Tank-Bromeliads?

    PubMed Central

    Brouard, Olivier; Le Jeune, Anne-Hélène; Leroy, Céline; Cereghino, Régis; Roux, Olivier; Pelozuelo, Laurent; Dejean, Alain; Corbara, Bruno; Carrias, Jean-François

    2011-01-01

    We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼102 to 104 cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter), our results indicate that primary producers (i.e., autochtonous organic matter) are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web. PMID:21625603

  8. Linking Food Webs and Biogeochemical Processes in Wetlands: Insights From Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Stricker, C. A.; Guntenspergen, G. R.; Rye, R. O.

    2005-05-01

    To better understand the transfer of nutrients into prairie wetland food webs we have investigated the cycling of S (via S isotope systematics and geochemistry) in a prairie wetland landscape by characterizing sources (ground water, interstitial water, surface water) and processes in a small catchment comprised of four wetlands in eastern South Dakota. We focused on S to derive process information that is not generally available from carbon isotopes alone. The wetlands chosen for study spanned a considerable range in SO4 concentration (0.1-13.6 mM), which corresponded with landscape position. Ground water δ34SSO4 values remained relatively constant (mean = -13.2 per mil) through time. However, δ34SSO4 values of wetland surface waters ranged from -2.9 to -30.0 per mil (CDT) and were negatively correlated with SO4 concentrations (p<0.05). The isotopic variability of surface water SO4 resulted from mixing with re-oxidized sulfides associated with recently flushed wetland soils. The δ34S signatures of wetland primary (Gastropoda: Stagnicola elodes) and secondary (Odonata: Anax sp.) consumers were significantly related to surface water δ34SSO4 values (p<0.05) suggesting that food web components were responding to changes in the isotopic composition of the S source. Both primary and secondary consumer δ34S signatures differed between wetlands (ANOVA, p<0.05). These data illustrate the complexity of S cycling in prairie wetlands and the influence of wetland hydrologic and biogeochemical processes on prairie wetland food webs. Additionally, this work has demonstrated that sulfur isotopes can provide unique source and process information that cannot be derived from traditional carbon and nitrogen isotope studies.

  9. Direct and indirect effects of ants on a forest-floor food web.

    PubMed

    Moya-Laraño, Jordi; Wise, David H

    2007-06-01

    Interactions among predators that prey on each other and are potential competitors for shared prey (intraguild [IG] predators) are widespread in terrestrial ecosystems and have the potential to strongly influence the dynamics of terrestrial food webs. Ants and spiders are abundant and ubiquitous terrestrial IG predators, yet the strength and consequences of interactions between them are largely unknown. In the leaf-litter food web of a deciduous forest in Kentucky (USA), we tested the direct and indirect effects of ants on spiders and a category of shared prey (Collembola) by experimentally subsidizing ants in open plots in two field experiments. In the first experiment, ant activity was increased, and the density of ants in the litter was doubled, by placing carbohydrate and protein baits in the center of each plot. Gnaphosa spiders were almost twice as abundant and Schizocosa spiders were half as abundant in baited plots relative to controls. There were more tomocerid Collembola in baited plots, suggesting possible indirect effects on Collembola caused by ant-spider interactions. The second experiment, in which screening of two mesh sizes selectively excluded large and small worker ants from a sugar bait, revealed that the large ants, primarily Camponotus, could alone induce similar effects on spiders. Gnaphosa biomass density was almost twice as high in the plots where large ants were more active, whereas Schizocosa biomass density was reduced by half in these plots. Although tomocerid densities did not differ between treatments, tomocerid numbers were negatively correlated with the activity of Formica, another large ant species. Path analysis failed to support the hypothesis that the ant Camponotus indirectly affected tomocerid Collembola through effects on densities of spiders. However, path analysis also revealed other indirect effects of Camponotus affecting tomocerids. These results illustrate the complexity of interactions between and within two major IG

  10. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    PubMed

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies. PMID:25047656

  11. Terrestrial Contributions to the Aquatic Food Web in the Middle Yangtze River

    PubMed Central

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies. PMID:25047656

  12. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.

    PubMed

    Kainz, Martin; Telmer, Kevin; Mazumder, Asit

    2006-09-01

    Organisms of the planktonic food web convey essential nutrients as well as contaminants to animals at higher trophic levels. We measured concentrations of methyl mercury (MeHg) and essential fatty acids (EFAs, key nutrients for aquatic food webs) in four size categories of planktonic organisms - seston (10-64 microm), micro-(100-200 microm), meso-(200-500 microm), and macrozooplankton (>500 microm) - as well as total mercury (THg) and EFAs in rainbow trout (Oncorhynchus mykiss) in coastal lakes. We demonstrate that, in all lakes during this summer sampling, MeHg concentrations of planktonic organisms increase significantly with plankton size, independent of their taxonomic composition, and that their MeHg accumulation patterns predict significantly THg concentrations in rainbow trout (R2=0.71, p<0.05). However, concentrations of total EFAs do not follow this pattern. Total EFAs increased from seston to mesozooplankton but decreased in the largest zooplankton size fraction. Moreover, concentrations of individual EFA compounds in rainbow trout are consistently lower, with the exception of docosahexaenoic acid, than those in macrozooplankton. The continuous increase of MeHg concentrations in aquatic organisms, therefore, differs from patterns of EFA accumulation in zooplankton and fish. We interpret these contrasting accumulation patterns of MeHg and EFA compounds as the inability of aquatic organisms to regulate the assimilation of dietary MeHg, whereas the rate of EFA retention may be controlled to optimize their physiological performance. Therefore, we conclude that bioaccumulation patterns of Hg in these aquatic food webs are not controlled by lipid solubility and/or the retention of EFA compounds. PMID:16226794

  13. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production.

    PubMed

    Lefébure, R; Degerman, R; Andersson, A; Larsson, S; Eriksson, L-O; Båmstedt, U; Byström, P

    2013-05-01

    Both temperature and terrestrial organic matter have strong impacts on aquatic food-web dynamics and production. Temperature affects vital rates of all organisms, and terrestrial organic matter can act both as an energy source for lower trophic levels, while simultaneously reducing light availability for autotrophic production. As climate change predictions for the Baltic Sea and elsewhere suggest increases in both terrestrial matter runoff and increases in temperature, we studied the effects on pelagic food-web dynamics and food-web efficiency in a plausible future scenario with respect to these abiotic variables in a large-scale mesocosm experiment. Total basal (phytoplankton plus bacterial) production was slightly reduced when only increasing temperatures, but was otherwise similar across all other treatments. Separate increases in nutrient loads and temperature decreased the ratio of autotrophic:heterotrophic production, but the combined treatment of elevated temperature and terrestrial nutrient loads increased both fish production and food-web efficiency. CDOM: Chl a ratios strongly indicated that terrestrial and not autotrophic carbon was the main energy source in these food webs and our results also showed that zooplankton biomass was positively correlated with increased bacterial production. Concomitantly, biomass of the dominant calanoid copepod Acartia sp. increased as an effect of increased temperature. As the combined effects of increased temperature and terrestrial organic nutrient loads were required to increase zooplankton abundance and fish production, conclusions about effects of climate change on food-web dynamics and fish production must be based on realistic combinations of several abiotic factors. Moreover, our results question established notions on the net inefficiency of heterotrophic carbon transfer to the top of the food web. PMID:23505052

  14. Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington

    USGS Publications Warehouse

    McIntyre, J.K.; Beauchamp, D.A.

    2007-01-01

    Understanding the mechanisms of bioaccumulation in food webs is critical to predicting which food webs are at risk for higher rates of bioaccumulation that endanger the health of upper-trophic predators, including humans. Mercury and organochlorines were measured concurrently with stable isotopes of nitrogen and carbon in key fishes and invertebrates of Lake Washington to explore important pathways of bioaccumulation in this food web. Across the food web, age and trophic position together were highly significant predictors of bioaccumulation. Trophic position was more important than age for predicting accumulation of mercury, ???DDT, and ???-chlordane, whereas age was more important than trophic position for predicting ???PCB. Excluding age from the analysis inflated the apparent importance of trophic position to bioaccumulation for all contaminants. Benthic and pelagic habitats had similar potential to bioaccumulate contaminants, although higher ???-chlordane concentrations in organisms were weakly associated with more benthic carbon signals. In individual fish species, contaminant concentrations increased with age, size, and trophic position (??15N), whereas relationships with carbon source (??13C) were not consistent. Lipid concentrations were correlated with contaminant concentrations in some but not all fishes, suggesting that lipids were not involved mechanistically in bioaccumulation. Contaminant concentrations in biota did not vary among littoral sites. Collectively, these results suggest that age may be an important determinant of bioaccumulation in many food webs and could help explain a significant amount of the variability in apparent biomagnification rates among food webs. As such, effort should be made when possible to collect information on organism age in addition to stable isotopes when assessing food webs for rates of biomagnification. ?? 2006 Elsevier B.V. All rights reserved.

  15. Dynamics of Leslie-Gower type generalist predator in a tri-trophic food web system

    NASA Astrophysics Data System (ADS)

    Priyadarshi, A.; Gakkhar, S.

    2013-11-01

    In this paper, the dynamics of a tri-trophic food web system consists of Leslie-Gower type generalist predator has been explored. The system is bounded under certain conditions. The Hopf-bifurcation has been established in the phase planes. The bifurcation diagrams exhibit coexistence of all three species in the form of periodic/chaotic solutions. The "snail-shell" chaotic attractor has very high Lyapunov exponents. The coexistence in the form of stable equilibrium is also possible for lower values of parameters. The two-parameter bifurcation diagrams are drawn for critical parameters.

  16. Trophodynamics of some PFCs and BFRs in a western Canadian Arctic marine food web.

    PubMed

    Tomy, Gregg T; Pleskach, Kerri; Ferguson, Steve H; Hare, Jonathon; Stern, Gary; Macinnis, Gordia; Marvin, Chris H; Loseto, Lisa

    2009-06-01

    The trophodynamics of per- and polyfluorinated compounds and bromine-based flame retardants were examined in components of a marine food web from the western Canadian Arctic. The animals studied and their relative trophic status in the food web, established using stable isotopes of nitrogen (delta15N), were beluga (Delphinapterus leucas) > ringed seal (Phoca hispida) > Arctic cod (Boreogadus saida) > Pacific herring (Clupea pallasi) approximately equal to Arctic cisco (Coregonus autumnalis) > pelagic amphipod (Themisto libellula) > Arctic copepod (Calanus hyperboreus). For the brominated diphenyl ethers, the lipid adjusted concentrations of the seven congeners analyzed (Sigma7BDEs: -47, -85, -99, -100, -153, -154, and -209) ranged from 205.4 +/- 52.7 ng/g in Arctic cod to 2.6 +/- 0.4 ng/g in ringed seals. Mean Sigma7BDEs concentrations in Arctic copepods, 16.4 ng/g (n = 2, composite sample), were greater than those in the top trophic level (TL) marine mammals and suggests that (i) Arctic copepods are an important dietary component that delivers BDEs to the food web and (ii) because these compounds are bioaccumulative, metabolism and depletion of BDE congeners in top TL mammals is an important biological process. There were differences in the concentration profiles of the isomers of hexabromocyclododecane (HBCD) in the food web. The most notable difference was observed for beluga, where the alpha-isomer was enriched (accounting for approximately 90% of the SigmaHBCD body burden), relative to its primary prey species, Arctic cod, where the alpha-isomer accounted for only 20% of the SigmaHBCD body burden (beta: 4% and gamma: 78%). For the C8-C11 perfluorinated carboxylic acids, the trophic magnification factors (TMFs) were all greater than unity and increased with increasing carbon chain length. PFOS and its neutral precursor, PFOSA, also had TMF values greater than one. There were also pronounced differences in the PFOSA to PFOS ratio in ringed seal (0.04) and in

  17. THE CONTRIBUTION OF MICROARTHROPODS TO ABOVE GROUND FOOD WEBS: A REVIEW AND MODEL OF BELOW GROUND TRANSFER IN A CONIFEROUS FOREST

    EPA Science Inventory

    Although belowground food webs have received much attention, studies concerning microarthropods in nondetrital food webs are scarce. Because adult oribatid mites often number between 250,000-500,000/m(2) in coniferous forests, microarthropods are a potential food resource for mic...

  18. Food-web structure and ecosystem services: insights from the Serengeti

    PubMed Central

    Dobson, Andy

    2009-01-01

    The central organizing theme of this paper is to discuss the dynamics of the Serengeti grassland ecosystem from the perspective of recent developments in food-web theory. The seasonal rainfall patterns that characterize the East African climate create an annually oscillating, large-scale, spatial mosaic of feeding opportunities for the larger ungulates in the Serengeti; this in turn creates a significant annual variation in the food available for their predators. At a smaller spatial scale, periodic fires during the dry season create patches of highly nutritious grazing that are eaten in preference to the surrounding older patches of less palatable vegetation. The species interactions between herbivores and plants, and carnivores and herbivores, are hierarchically nested in the Serengeti food web, with the largest bodied consumers on each trophic level having the broadest diets that include species from a large variety of different habitats in the ecosystem. The different major habitats of the Serengeti are also used in a nested fashion; the highly nutritious forage of the short grass plains is available only to the larger migratory species for a few months each year. The longer grass areas, the woodlands and kopjes (large partially wooded rocky islands in the surrounding mosaic of grassland) contain species that are resident throughout the year; these species often have smaller body size and more specialized diets than the migratory species. Only the larger herbivores and carnivores obtain their nutrition from all the different major habitat types in the ecosystem. The net effect of this is to create a nested hierarchy of subchains of energy flow within the larger Serengeti food web; these flows are seasonally forced by rainfall and operate at different rates in different major branches of the web. The nested structure that couples sequential trophic levels together interacts with annual seasonal variation in the fast and slow chains of nutrient flow in a way that

  19. Impact of biodiversity loss on production in complex marine food webs mitigated by prey-release

    PubMed Central

    Fung, Tak; Farnsworth, Keith D.; Reid, David G.; Rossberg, Axel G.

    2015-01-01

    Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis–Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing ‘fishing down the food web’, accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at ≈40% of initial species richness. These findings have important implications for the valuation of marine biodiversity. PMID:25799523

  20. Contrasting food-web support bases for adjoining river-influenced and non-river influenced continental shelf ecosystems

    NASA Astrophysics Data System (ADS)

    Mallin, Michael A.; Cahoon, Lawrence B.; Durako, Michael J.

    2005-01-01

    Nutrient and chlorophyll a concentrations and distributions in two adjoining regions of the South Atlantic Bight (SAB), Onslow Bay and nearshore Long Bay, were investigated over a 3-year period. Onslow Bay represents the northernmost region of the SAB, and receives very limited riverine influx. In contrast, Long Bay, just to the south, receives discharge from the Cape Fear River, draining the largest watershed within the State of North Carolina, USA. Northern Long Bay is a continental shelf ecosystem that has a nearshore area dominated by nutrient, turbidity and water-color loading from inputs from the river's plume. Average planktonic chlorophyll a concentrations ranged from 4.2 μg l -1 near the estuary mouth, to 3.1 μg l -1 7 km offshore in the plume's influence, to 1.9 μg l -1 at a non-plume station 7 km offshore to the northeast. Average areal planktonic chlorophyll a was approximately 3X that of benthic chlorophyll a at plume-influenced stations in Long Bay. In contrast, planktonic chlorophyll a concentrations in Onslow Bay were normally <0.50 μg l -1 at a nearshore (8 km) site, and <0.15 μg l -1 at sites located 45 and 100 km offshore. However, high water clarity ( KPAR 0.10-0.25 m -1) provides a favorable environment for benthic microalgae, which were abundant both nearshore (average 58.3 mg m -2) and to at least 45 km offshore in Onslow Bay (average 70.0 mg m -2) versus average concentrations of 10-12 mg m -2 for river-influenced areas of Long Bay. This provides evidence that much of the inner shelf food web in Onslow Bay is based on benthic microalgal production, in contrast to a plankton-based food web in northern Long Bay and more southerly areas of the SAB.

  1. The Role of Highly Unsaturated Fatty Acids in Aquatic Food Webs

    NASA Astrophysics Data System (ADS)

    Perhar, G.; Arhonditsis, G. B.

    2009-05-01

    Highly unsaturated fatty acids (HUFAs) are important molecules transferred across the plant-animal interface in aquatic food webs. Defined here as carbon chains of length 18 (carbons) or more, with a double bond in the third (Omega 3) or sixth (Omega 6) bond from the methyl end, HUFAs are formed in primary producers (phytoplankton). With limited abilities to synthesize de novo, consumers and higher trophic organisms are required to obtain their HUFAs primarily from diet. Bioconversion of HUFAs from one form to another is in theory possible, as is synthesis via elongation and the transformation of a saturated to highly saturated fatty acid, but the enzymes required for these processes are absent in most species. HUFAs are hypothesized to be somatic growth limiting compounds for herbivorous zooplankton and have been shown to be critical for juvenile fish growth and wellbeing. Zooplankton tend to vary their fatty acid concentrations, collection strategies and utilization methods based on taxonomy, and various mechanisms have been suggested to account for these differences i.e., seasonal and nervous system hypotheses. Considering also the facts that copepods overwinter in an active state while daphnids overwinter as resting eggs, and that copepods tend to accumulate Docosahexaenoic acid (DHA) through collection and bioconversion, while daphnids focus on Eicosapentaenoic acid (EPA), one can link high DHA concentrations to active overwintering; but both EPA and DHA have similar melting points, putting DHA's cold weather adaptation abilities into question. Another characteristic setting copepods apart from daphnids is nervous system complexity: copepod axons are coated in thick myelin sheaths, permitting rapid neural processing, such as rapid prey attack and intelligent predator avoidance; DHA may be required for the proper functioning of copepod neurons. Recent modeling results have suggested food webs with high quality primary producers (species high in HUFAs, i

  2. Evaluation of a Web-Based Food Record for Children Using Direct Unobtrusive Lunch Observations: A Validation Study

    PubMed Central

    Astrup, Helene; Kåsin, Britt Marlene; Andersen, Lene Frost

    2015-01-01

    Background High-quality, Web-based dietary assessment tools for children are needed to reduce cost and improve user-friendliness when studying children’s dietary practices. Objective To evaluate the first Web-based dietary assessment tool for children in Norway, the Web-based Food Record (WebFR), by comparing children’s true school lunch intake with recordings in the WebFR, using direct unobtrusive observation as the reference method. Methods A total of 117 children, 8-9 years, from Bærum, Norway, were recruited from September to December 2013. Children completed 4 days of recordings in the WebFR, with parental assistance, and were observed during school lunch in the same period by 3 observers. Interobserver reliability assessments were satisfactory. Match, omission, and intrusion rates were calculated to assess the quality of the recordings in the WebFR for different food categories, and for all foods combined. Logistic regression analyses were used to investigate whether body mass index (BMI), parental educational level, parental ethnicity or family structure were associated with having a “low match rate” (≤70%). Results Bread and milk were recorded with less bias than spreads, fruits, and vegetables. Mean (SD) for match, omission, and intrusion rates for all foods combined were 73% (27%), 27% (27%), and 19% (26%), respectively. Match rates were statistically significantly associated with parental educational level (low education 52% [32%] versus high 77% [24%], P=.008) and parental ethnicity (non-Norwegian 57% [28%] versus others 75% [26%], P=.04). Only parental ethnicity remained statistically significant in the logistic regression model, showing an adjusted odds ratio of 6.9 and a 95% confidence interval between 1.3 and 36.4. Conclusions Compared with other similar studies, our results indicate that the WebFR is in line with, or better than most of other similar tools, yet enhancements could further improve the WebFR. PMID:26680744

  3. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects.

    PubMed

    Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H

    2010-10-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon

  4. Prey Vulnerability Limits Top-Down Control and Alters Reciprocal Feedbacks in a Subsidized Model Food Web

    PubMed Central

    Atlas, William I.; Palen, Wendy J.

    2014-01-01

    Resource subsidies increase the productivity of recipient food webs and can affect ecosystem dynamics. Subsidies of prey often support elevated predator biomass which may intensify top-down control and reduce the flow of reciprocal subsidies into adjacent ecosystems. However, top-down control in subsidized food webs may be limited if primary consumers posses morphological or behavioral traits that limit vulnerability to predation. In forested streams, terrestrial prey support high predator biomass creating the potential for strong top-down control, however armored primary consumers often dominate the invertebrate assemblage. Using empirically based simulation models, we tested the response of stream food webs to variations in subsidy magnitude, prey vulnerability, and the presence of two top predators. While terrestrial prey inputs increased predator biomass (+12%), the presence of armored primary consumers inhibited top-down control, and diverted most aquatic energy (∼75%) into the riparian forest through aquatic insect emergence. Food webs without armored invertebrates experienced strong trophic cascades, resulting in higher algal (∼50%) and detrital (∼1600%) biomass, and reduced insect emergence (−90%). These results suggest prey vulnerability can mediate food web responses to subsidies, and that top-down control can be arrested even when predator-invulnerable consumers are uncommon (20%) regardless of the level of subsidy. PMID:24465732

  5. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment

    PubMed Central

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J.; Balog, Adalbert

    2014-01-01

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes. PMID:24937207

  6. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment.

    PubMed

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J; Balog, Adalbert

    2014-01-01

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes. PMID:24937207

  7. Amphipod-supported food web: Themisto gaudichaudii, a key food resource for fishes in the southern Patagonian Shelf

    NASA Astrophysics Data System (ADS)

    Padovani, Luciano N.; Viñas, María Delia; Sánchez, Felisa; Mianzan, Hermes

    2012-01-01

    The trophic role of the hyperiid amphipod Themisto gaudichaudii in the southern Patagonian shelf food web was assessed from the analysis of stomach contents of the local fish assemblage. A total of 461 trawl samples were collected during seven seasonal cruises. A total of 17 out of 38 fish species were found to ingest T. gaudichaudii. This amphipod was a main prey item in five of these species, showing high values of alimentary index: Seriolella porosa (99.9%), Macruronus magellanicus (68.8%), Micromesistius australis (59.1%), Patagonotothen ramsayi (48.6%), and Merluccius hubbsi (10.9%). The contribution of T. gaudichaudii, in weight, to their summer diet was 60%, on average. This contribution was minimal in winter and maximal in summer. Fisheries studies have indicated that these five species, mainly M. magellanicus, account for almost 85% of the fish biomass in the area. Although the remaining 15% did not feed heavily on T. gaudichaudii, they are known to prey on the main hyperiid predators. Our study shows that T. gaudichaudii contributes greatly, both directly and indirectly, to supporting the fish community. We thus proposed that T. gaudichaudii plays a key role as a "wasp-waist" species in the sub-Antarctic region, similar to that of krill in Antarctic waters, channeling the energy flow and enabling a short and efficient food chain.

  8. Examining the Utility of Stable Hydrogen Isotopes in Aquatic Food-Web Ecology

    NASA Astrophysics Data System (ADS)

    Doucett, R. R.; Blinn, D. W.; Caron, M.; Ellis, B. K.; Marks, J. C.; Hungate, B. A.

    2005-05-01

    The utility of stable hydrogen isotopes (dD) in hydrology and terrestrial ecology is well understood, but it has not been sufficiently examined in the field of aquatic ecology. Here, we present initial results from: (1) the Colorado River (AZ), Fossil Creek (AZ) and Devil's Hole (NV), where we examined the usefulness of dD to distinguish between allochthonous and autochthonous inputs to aquatic food webs, and (2) from the Sopochnaya River, Russia, where we tested the ability of dD to discern between anadromous and freshwater steelhead trout. In general, aquatic inputs (-320 to -168 per mil) were much more depleted than terrestrial inputs (-166 to -105 per mil). Macroinvertebrates displayed dD values similar to presumed food sources (e.g., baetid mayflies ranged from -299 to -222 per mil). In some cases, mixing models suggested that dD was a better predictor of food-source origin than d13C. As expected, dD values for anadromous trout (-121 to -103 per mil) were more enriched than those of freshwater residents (-161 to -123 per mil), and strong correlations existed between dD, d34S, and d13C. Methodological considerations (e.g., exchangeable hydrogen) and certain assumptions (e.g., importance of food vs. water on tissue dD) will be discussed.

  9. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web

    NASA Astrophysics Data System (ADS)

    Loeb, V.; Siegel, V.; Holm-Hansen, O.; Hewitt, R.; Fraser, W.; Trivelpiece, W.; Trivelpiece, S.

    1997-06-01

    Krill (Euphausia superba) provide a direct link between primary producers and higher trophic levels in the Antarctic marine food web. The pelagic tunicate Salpa thompsoni can also be important during spring and summer through the formation of extensive and dense blooms. Although salps are not a major dietary item for Antarctic vertebrate predators,, their blooms can affect adult krill reproduction and survival of krill larvae. Here we provide data from 1995 and 1996 that support hypothesized relationships between krill, salps and region-wide sea-ice conditions,. We have assessed salp consumption as a proportion of net primary production, and found correlations between herbivore densities and integrated chlorophyll-a that indicate that there is a degree of competition between krill and salps. Our analysis of the relationship between annual sea-ice cover and a longer time series of air temperature measurements, indicates a decreased frequency of winters with extensive sea-ice development over the last five decades. Our data suggest that decreased krill availability may affect the levels of their vertebrate predators. Regional warming and reduced krill abundance therefore affect the marine food web and krill resource management.

  10. Local adaptation to temperature conserves top-down control in a grassland food web.

    PubMed

    Barton, Brandon T

    2011-10-22

    A fundamental limitation in many climate change experiments is that tests represent relatively short-term 'shock' experiments and so do not incorporate the phenotypic plasticity or evolutionary change that may occur during the gradual process of climate change. However, capturing this aspect of climate change effects in an experimental design is a difficult challenge that few studies have accomplished. I examined the effect of temperature and predator climate history in food webs composed of herbaceous plants, generalist grasshopper herbivores and spider predators across a natural 4.8°C temperature gradient spanning 500 km in northeastern USA. In these grasslands, the effects of rising temperatures on the plant community are indirect and arise via altered predator-herbivore interactions. Experimental warming had no direct effect on grasshoppers, but reduced predation risk effects by causing spiders from all study sites to seek thermal refuge lower in the plant canopy. However, spider thermal tolerance corresponded to spider origin such that spiders from warmer study sites tolerated higher temperatures than spiders from cooler study sites. As a consequence, the magnitude of the indirect effect of spiders on plants did not differ along the temperature gradient, although a reciprocal transplant experiment revealed significantly different effects of spider origin on the magnitude of top-down control. These results suggest that variation in predator response to warming may maintain species interactions and associated food web processes when faced with long term, chronic climate warming. PMID:21367789

  11. Assessing the Health of Puget Sound's Pelagic Food Web at Multiple Trophic Levels

    NASA Astrophysics Data System (ADS)

    Rhodes, L. D.; Greene, C. M.; Rice, C. A.; Hall, J. E.; Baxter, A. E.; Naman, S. M.; Chamberlin, J.

    2012-12-01

    Puget Sound is an estuarine fjord in the northwestern United State surrounded by variable upland uses, ranging from industrial and urban to agricultural to forested lands. The quality of Puget Sound's ecosystem is under scrutiny because of the biological resources that depend on its function. In 2011, we undertook a study of the Sound's pelagic food web that measured water quality, microbial parameters, and abundance of higher trophic levels including gelatinous zooplankton, forage fish, and salmon. More than 75 sites spanning the latitudinal expanse of Puget Sound and the range of developed and agricultural land uses were sampled monthly from April to October. Strong relationships between water quality and microbial parameters suggest that microbes may modulate water quality indicators, such as dissolved inorganic nitrogen and pH, and that land use may be an influential factor. Basins within Puget Sound exhibit distinct biological profiles at the microbial and macrobiotic levels, emphasizing that Puget Sound is not a homogenous water body and suggesting that informative food web indicators may vary across the basins.

  12. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs

    PubMed Central

    Higgins, Steve I.; Johnson, Chris N.; Fuhlendorf, Samuel D.

    2016-01-01

    Fire positively and negatively affects food webs across all trophic levels and guilds and influences a range of ecological processes that reinforce fire regimes, such as nutrient cycling and soil development, plant regeneration and growth, plant community assembly and dynamics, herbivory and predation. Thus we argue that rather than merely describing spatio-temporal patterns of fire regimes, pyrodiversity must be understood in terms of feedbacks between fire regimes, biodiversity and ecological processes. Humans shape pyrodiversity both directly, by manipulating the intensity, severity, frequency and extent of fires, and indirectly, by influencing the abundance and distribution of various trophic guilds through hunting and husbandry of animals, and introduction and cultivation of plant species. Conceptualizing landscape fire as deeply embedded in food webs suggests that the restoration of degraded ecosystems requires the simultaneous careful management of fire regimes and native and invasive plants and animals, and may include introducing new vertebrates to compensate for extinctions that occurred in the recent and more distant past. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216526

  13. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    PubMed

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs. PMID:24069196

  14. Invasive crayfish as vectors of mercury in freshwater food webs of the Pacific Northwest

    USGS Publications Warehouse

    Johnson, Branden L.; Willacker, James J.; Eagles-Smith, Collin A.; Pearl, Christopher A.; Adams, Michael J.

    2014-01-01

    Invasive species are important drivers of environmental change in aquatic ecosystems and can alter habitat characteristics, community composition, and ecosystem energetics. Such changes have important implications for many ecosystem processes, including the bioaccumulation and biomagnification of contaminants through food webs. Mercury concentrations were measured in 2 nonnative and 1 native crayfish species from western Oregon (USA). Nonnative red swamp crayfish had mercury concentrations similar to those in native signal crayfish (0.29 ± 0.05 µg/g dry wt and 0.36 ± 0.06 µg/g dry wt, respectively), whereas the nonnative ringed crayfish had lower mercury concentrations (0.10 ± 0.02 µg/g dry wt) than either of the other species. The mean energy content of muscle was similar between the native signal crayfish and nonnative ringed crayfish but was significantly higher in the nonnative red swamp crayfish. Across species, mercury concentrations were negatively correlated with energy density. Such energetic differences could exacerbate changes in mercury transfer through trophic pathways of food webs, especially via alterations to the growth dynamics of consumers. Thus, it is important to consider the role of energy content in determining effective mercury exposure even when mercury concentrations on a per-unit mass basis do not differ between species.

  15. Donor-Control of Scavenging Food Webs at the Land-Ocean Interface

    PubMed Central

    Schlacher, Thomas A.; Strydom, Simone; Connolly, Rod M.; Schoeman, David

    2013-01-01

    Food webs near the interface of adjacent ecosystems are potentially subsidised by the flux of organic matter across system boundaries. Such subsidies, including carrion of marine provenance, are predicted to be instrumental on open-coast sandy shores where in situ productivity is low and boundaries are long and highly permeable to imports from the sea. We tested the effect of carrion supply on the structure of consumer dynamics in a beach-dune system using broad-scale, repeated additions of carcasses at the strandline of an exposed beach in eastern Australia. Carrion inputs increased the abundance of large invertebrate scavengers (ghost crabs, Ocypode spp.), a numerical response most strongly expressed by the largest size-class in the population, and likely due to aggregative behaviour in the short term. Consumption of carrion at the beach-dune interface was rapid and efficient, driven overwhelmingly by facultative avian scavengers. This guild of vertebrate scavengers comprises several species of birds of prey (sea eagles, kites), crows and gulls, which reacted strongly to concentrations of fish carrion, creating hotspots of intense scavenging activity along the shoreline. Detection of carrion effects at several trophic levels suggests that feeding links arising from carcasses shape the architecture and dynamics of food webs at the land-ocean interface. PMID:23826379

  16. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs.

    PubMed

    Bowman, David M J S; Perry, George L W; Higgins, Steve I; Johnson, Chris N; Fuhlendorf, Samuel D; Murphy, Brett P

    2016-06-01

    Fire positively and negatively affects food webs across all trophic levels and guilds and influences a range of ecological processes that reinforce fire regimes, such as nutrient cycling and soil development, plant regeneration and growth, plant community assembly and dynamics, herbivory and predation. Thus we argue that rather than merely describing spatio-temporal patterns of fire regimes, pyrodiversity must be understood in terms of feedbacks between fire regimes, biodiversity and ecological processes. Humans shape pyrodiversity both directly, by manipulating the intensity, severity, frequency and extent of fires, and indirectly, by influencing the abundance and distribution of various trophic guilds through hunting and husbandry of animals, and introduction and cultivation of plant species. Conceptualizing landscape fire as deeply embedded in food webs suggests that the restoration of degraded ecosystems requires the simultaneous careful management of fire regimes and native and invasive plants and animals, and may include introducing new vertebrates to compensate for extinctions that occurred in the recent and more distant past.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216526

  17. Contrasting Food Web Factor and Body Size Relationships with Hg and Se Concentrations in Marine Biota

    PubMed Central

    Karimi, Roxanne; Frisk, Michael; Fisher, Nicholas S.

    2013-01-01

    Marine fish and shellfish are primary sources of human exposure to mercury, a potentially toxic metal, and selenium, an essential element that may protect against mercury bioaccumulation and toxicity. Yet we lack a thorough understanding of Hg and Se patterns in common marine taxa, particularly those that are commercially important, and how food web and body size factors differ in their influence on Hg and Se patterns. We compared Hg and Se content among marine fish and invertebrate taxa collected from Long Island, NY, and examined associations between Hg, Se, body length, trophic level (measured by δ15N) and degree of pelagic feeding (measured by δ13C). Finfish, particularly shark, had high Hg content whereas bivalves generally had high Se content. Both taxonomic differences and variability were larger for Hg than Se, and Hg content explained most of the variation in Hg:Se molar ratios among taxa. Finally, Hg was more strongly associated with length and trophic level across taxa than Se, consistent with a greater degree of Hg bioaccumulation in the body over time, and biomagnification through the food web, respectively. Overall, our findings indicate distinct taxonomic and ecological Hg and Se patterns in commercially important marine biota, and these patterns have nutritional and toxicological implications for seafood-consuming wildlife and humans. PMID:24019976

  18. Eating up the world’s food web and the human trophic level

    PubMed Central

    Bonhommeau, Sylvain; Dubroca, Laurent; Le Pape, Olivier; Barde, Julien; Kaplan, David M.; Chassot, Emmanuel; Nieblas, Anne-Elise

    2013-01-01

    Trophic levels are critical for synthesizing species’ diets, depicting energy pathways, understanding food web dynamics and ecosystem functioning, and monitoring ecosystem health. Specifically, trophic levels describe the position of species in a food web, from primary producers to apex predators (range, 1–5). Small differences in trophic level can reflect large differences in diet. Although trophic levels are among the most basic information collected for animals in ecosystems, a human trophic level (HTL) has never been defined. Here, we find a global HTL of 2.21, i.e., the trophic level of anchoveta. This value has increased with time, consistent with the global trend toward diets higher in meat. National HTLs ranging between 2.04 and 2.57 reflect a broad diversity of diet, although cluster analysis of countries with similar dietary trends reveals only five major groups. We find significant links between socio-economic and environmental indicators and global dietary trends. We demonstrate that the HTL is a synthetic index to monitor human diets and provides a baseline to compare diets between countries. PMID:24297882

  19. Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM

    NASA Astrophysics Data System (ADS)

    Piercy, C.; Swannack, T. M.

    2012-12-01

    Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.

  20. Methylmercury Bioaccumulation in Stream Food Webs Declines with Increasing Primary Production.

    PubMed

    Walters, David M; Raikow, David F; Hammerschmidt, Chad R; Mehling, Molly G; Kovach, Amanda; Oris, James T

    2015-07-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048-0.71 mg O2 L(-1) d(-1)) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems. PMID:26018982

  1. Incorporation of an invasive plant into a native insect herbivore food web

    PubMed Central

    Santos Pimenta, Lúcia P.; Lammers, Youri; Steenbergen, Peter J.; Flohil, Marco; Beveridge, Nils G.P.; van Duijn, Pieter T.; Meulblok, Marjolein M.; Sosef, Nils; van de Ven, Robin; Werring, Ralf; Beentjes, Kevin K.; Meijer, Kim; Vos, Rutger A.; Vrieling, Klaas; Gravendeel, Barbara; Choi, Young; Verpoorte, Robert; Smit, Chris; Beukeboom, Leo W.

    2016-01-01

    The integration of invasive species into native food webs represent multifarious dynamics of ecological and evolutionary processes. We document incorporation of Prunus serotina (black cherry) into native insect food webs. We find that P. serotina harbours a herbivore community less dense but more diverse than its native relative, P. padus (bird cherry), with similar proportions of specialists and generalists. While herbivory on P. padus remained stable over the past century, that on P. serotina gradually doubled. We show that P. serotina may have evolved changes in investment in cyanogenic glycosides compared with its native range. In the leaf beetle Gonioctena quinquepunctata, recently shifted from native Sorbus aucuparia to P. serotina, we find divergent host preferences on Sorbus- versus Prunus-derived populations, and weak host-specific differentiation among 380 individuals genotyped for 119 SNP loci. We conclude that evolutionary processes may generate a specialized herbivore community on an invasive plant, allowing prognoses of reduced invasiveness over time. On the basis of the results presented here, we would like to caution that manual control might have the adverse effect of a slowing down of processes of adaptation, and a delay in the decline of the invasive character of P. serotina. PMID:27190702

  2. Dreissenid mussels are not a "dead end" in Great Lakes food webs

    USGS Publications Warehouse

    Madenijan, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; Ebener, Mark P.; Mohr, Lloyd C.; Nalepa, Thomas F.; Bence, James R.

    2010-01-01

    Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.

  3. The roles and impacts of human hunter-gatherers in North Pacific marine food webs.

    PubMed

    Dunne, Jennifer A; Maschner, Herbert; Betts, Matthew W; Huntly, Nancy; Russell, Roly; Williams, Richard J; Wood, Spencer A

    2016-01-01

    There is a nearly 10,000-year history of human presence in the western Gulf of Alaska, but little understanding of how human foragers integrated into and impacted ecosystems through their roles as hunter-gatherers. We present two highly resolved intertidal and nearshore food webs for the Sanak Archipelago in the eastern Aleutian Islands and use them to compare trophic roles of prehistoric humans to other species. We find that the native Aleut people played distinctive roles as super-generalist and highly-omnivorous consumers closely connected to other species. Although the human population was positioned to have strong effects, arrival and presence of Aleut people in the Sanak Archipelago does not appear associated with long-term extinctions. We simulated food web dynamics to explore to what degree introducing a species with trophic roles like those of an Aleut forager, and allowing for variable strong feeding to reflect use of hunting technology, is likely to trigger extinctions. Potential extinctions decreased when an invading omnivorous super-generalist consumer focused strong feeding on decreasing fractions of its possible resources. This study presents the first assessment of the structural roles of humans as consumers within complex ecological networks, and potential impacts of those roles and feeding behavior on associated extinctions. PMID:26884149

  4. Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting

    PubMed Central

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O’Brien, Diane M.; Piatkowski, Uwe; McCarthy, Matthew D.

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ13C patterns among amino acids (δ13CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ13CAA patterns in contrast to bulk δ13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs. PMID:24069196

  5. Millennial-aged organic carbon subsidies to a modern river food web.

    PubMed

    Caraco, Nina; Bauer, James E; Cole, Jonathan J; Petsch, Steven; Raymond, Peter

    2010-08-01

    Recent studies indicate that highly aged material is a major component of organic matter transported by most rivers. However, few studies have used natural 14C to trace the potential entry of this aged material into modern river food webs. Here we use natural abundance 14C, 13C, and deuterium (2H) to trace the contribution of aged and contemporary organic matter to an important group of consumers, crustacean zooplankton, in a large temperate river (the Hudson River, New York, USA). Zooplankton were highly 14C depleted (mean delta14C = -240 per thousand) compared to modern primary production in the river or its watershed (delta14C = -60 per thousand to +50 per thousand). In order to account for the observed 14C depletion, zooplankton must be subsidized by highly aged particulate organic carbon. IsoSource modeling suggests that the range of the aged dietary subsidy is between approximately 57%, if the aged organic matter source was produced 3400 years ago, and approximately 21%, if the organic carbon used is > or = 50 000 years in age, including fossil material that is millions of years in age. The magnitude of this aged carbon subsidy to river zooplankton suggests that modern river food webs may in some cases be buffered from the limitations set by present-day primary production. PMID:20836460

  6. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    PubMed

    Takemoto, Kazuhiro; Kajihara, Kosuke

    2016-01-01

    Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities. PMID:27322185

  7. Herbivore diet breadth mediates the cascading effects of carnivores in food webs

    PubMed Central

    Singer, Michael S.; Lichter-Marck, Isaac H.; Farkas, Timothy E.; Aaron, Eric; Whitney, Kenneth D.; Mooney, Kailen A.

    2014-01-01

    Predicting the impact of carnivores on plants has challenged community and food web ecologists for decades. At the same time, the role of predators in the evolution of herbivore dietary specialization has been an unresolved issue in evolutionary ecology. Here, we integrate these perspectives by testing the role of herbivore diet breadth as a predictor of top-down effects of avian predators on herbivores and plants in a forest food web. Using experimental bird exclosures to study a complex community of trees, caterpillars, and birds, we found a robust positive association between caterpillar diet breadth (phylodiversity of host plants used) and the strength of bird predation across 41 caterpillar and eight tree species. Dietary specialization was associated with increased enemy-free space for both camouflaged (n = 33) and warningly signaled (n = 8) caterpillar species. Furthermore, dietary specialization was associated with increased crypsis (camouflaged species only) and more stereotyped resting poses (camouflaged and warningly signaled species), but was unrelated to caterpillar body size. These dynamics in turn cascaded down to plants: a metaanalysis (n = 15 tree species) showed the beneficial effect of birds on trees (i.e., reduced leaf damage) decreased with the proportion of dietary specialist taxa composing a tree species’ herbivore fauna. We conclude that herbivore diet breadth is a key functional trait underlying the trophic effects of carnivores on both herbivores and plants. PMID:24979778

  8. The roles and impacts of human hunter-gatherers in North Pacific marine food webs

    PubMed Central

    Dunne, Jennifer A.; Maschner, Herbert; Betts, Matthew W.; Huntly, Nancy; Russell, Roly; Williams, Richard J.; Wood, Spencer A.

    2016-01-01

    There is a nearly 10,000-year history of human presence in the western Gulf of Alaska, but little understanding of how human foragers integrated into and impacted ecosystems through their roles as hunter-gatherers. We present two highly resolved intertidal and nearshore food webs for the Sanak Archipelago in the eastern Aleutian Islands and use them to compare trophic roles of prehistoric humans to other species. We find that the native Aleut people played distinctive roles as super-generalist and highly-omnivorous consumers closely connected to other species. Although the human population was positioned to have strong effects, arrival and presence of Aleut people in the Sanak Archipelago does not appear associated with long-term extinctions. We simulated food web dynamics to explore to what degree introducing a species with trophic roles like those of an Aleut forager, and allowing for variable strong feeding to reflect use of hunting technology, is likely to trigger extinctions. Potential extinctions decreased when an invading omnivorous super-generalist consumer focused strong feeding on decreasing fractions of its possible resources. This study presents the first assessment of the structural roles of humans as consumers within complex ecological networks, and potential impacts of those roles and feeding behavior on associated extinctions. PMID:26884149

  9. Food webs in Mongolian grasslands: the analysis of 13C and 15N natural abundances.

    PubMed

    Kohzu, Ayato; Iwata, T; Kato, M; Nishikawa, J; Wada, Eitaro; Amartuvshin, N; Namkhaidorj, B; Fujita, N

    2009-09-01

    Overgrazing often lowers species richness and productivity of grassland communities. For Mongolian grassland ecosystems, a lack of detailed information about food-web structures makes it difficult to predict the effects of overgrazing on species diversity and community composition. We analysed the delta13C and delta15N signatures of herbaceous plants, arthropods (grouped by feeding habit), wild and domestic mammals, and humans in central Mongolia to understand the predominant food-web pathways in this grassland ecosystem. The delta13C and delta15N values of mammals showed little variation within species, but varied considerably with slope position for arthropods. The apparent isotopic discrimination between body tissue and hair of mammals was estimated as 2.0 per thousand for delta13C and 2.1 per thousand for delta15N, which was large enough to cause overestimation of the trophic level of mammals if not taken into account when using hair samples to measure isotopic enrichment. PMID:19507080

  10. Urbanization in a great plains river: Effects on fishes and food webs

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    Spatial variation of habitat and food web structure of the fish community was investigated at three reaches in the Kansas River, USA to determine if ??13C variability and ??15N values differ longitudinally and are related to urbanization and instream habitat. Fish and macroinvertebrates were collected at three river reaches in the Kansas River classified as the less urbanized reach (no urban in riparian zone; 40% grass islands and sand bars, braided channel), intermediate (14% riparian zone as urban; 22% grass islands and sand bars) and urbanized (59% of riparian zone as urban; 6% grass islands and sand bars, highly channelized) reaches in June 2006. The less urbanized reach had higher variability in ??13C than the intermediate and urbanized reaches, suggesting fish from these reaches utilized a variety of carbon sources. The ??15N also indicated that omnivorous and detritivorous fish species tended to consume prey at higher trophic levels in the less urbanized reach. Channelization and reduction of habitat related to urbanization may be linked to homogenization of instream habitat, which was related to river food webs. ?? 2009.

  11. Contrasting food web factor and body size relationships with Hg and Se concentrations in marine biota.

    PubMed

    Karimi, Roxanne; Frisk, Michael; Fisher, Nicholas S

    2013-01-01

    Marine fish and shellfish are primary sources of human exposure to mercury, a potentially toxic metal, and selenium, an essential element that may protect against mercury bioaccumulation and toxicity. Yet we lack a thorough understanding of Hg and Se patterns in common marine taxa, particularly those that are commercially important, and how food web and body size factors differ in their influence on Hg and Se patterns. We compared Hg and Se content among marine fish and invertebrate taxa collected from Long Island, NY, and examined associations between Hg, Se, body length, trophic level (measured by δ(15)N) and degree of pelagic feeding (measured by δ(13)C). Finfish, particularly shark, had high Hg content whereas bivalves generally had high Se content. Both taxonomic differences and variability were larger for Hg than Se, and Hg content explained most of the variation in Hg:Se molar ratios among taxa. Finally, Hg was more strongly associated with length and trophic level across taxa than Se, consistent with a greater degree of Hg bioaccumulation in the body over time, and biomagnification through the food web, respectively. Overall, our findings indicate distinct taxonomic and ecological Hg and Se patterns in commercially important marine biota, and these patterns have nutritional and toxicological implications for seafood-consuming wildlife and humans. PMID:24019976

  12. Combining food web and species distribution models for improved community projections.