Science.gov

Sample records for forbidden line intensities

  1. Forbidden lines of np/q/ ions. I - Detailed balance and line intensity ratios

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Lynch, J. P.

    1980-01-01

    The detailed balance equations are solved in the ground state terms of 37 ions of C, N, O, Ne, Mg, Si, S and Fe; atomic data for 235 transitions of these ions are tabulated, and 14 line ratios of q = 2,4 ions and eight line ratios of q = 3 ions are graphed. Forbidden emission lines of these ions are in the far and near UV, visible, and near and far IR regions of the spectrum. In addition, detailed calculations of the relative populations of the levels of the ground state are presented as a function of temperature and density.

  2. On the variations of O III forbidden line intensities in the spectrum of the planetary nebula IC 4997

    NASA Astrophysics Data System (ADS)

    Egikyan, A. G.

    1997-10-01

    The causes of asynchronous variations in the intensities of forbidden O III lines in the spectrum of the planetary nebula IC 4997 are considered. It is shown that the strengthening of the 4363-A line with a simultaneous weakening of the N1 and N2 lines can be explained by a severalfold increase of the mass-loss rate from the nucleus, up to 1-2 x 10 exp -7 solar mass/yr, over several years. The ionization model of the nebula under the combined effect of nucleus emission and the emission from a variable hot stellar wind with electron temperature of 500,000 K is used to calculate the theoretical line intensities. The calculations included 12 levels of O III. In the region of O III line formation, the electron density of 10 exp 6/cu cm and Te, which varies from 12,000 to 15,000 K, yield theoretical line intensities that are in best agreement with observations. The X-ray luminosity of the stellar wind from the nucleus at energies not less than 0.2 keV is on the order of 10 exp 35 erg/s, but the interstellar extinction rules out the possibility of observing this object.

  3. Forbidden line emission from highly ionized atoms in tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Bhatia, A. K.

    1982-01-01

    Considerable interest in the observation of forbidden spectral lines from highly ionized atoms in tokamak plasmas is related to the significance of such observations for plasma diagnostic applications. Atomic data for the elements Ti Cr, Mn, Fe, Ni, and Kr have been published by Feldman et al. (1980) and Bhatia et al. (1980). The present investigation is concerned with collisional excitation rate coefficients and radiative decay rates, which are interpolated for ions of elements between calcium, and krypton and for levels of the 2s2 2pk, 2s 2p(k+1), and 2p(k+2) configurations, and for the O I, N I, C I, B I, and Be I isoelectronic sequences. The provided interpolated atomic data can be employed to calculate level populations and relative line intensities for ions of the considered sequences, taking into account levels of the stated configurations. Important plasma diagnostic information provided by the forbidden lines includes the ion temperature

  4. Recombination Line vs. Forbidden Line Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Robertson-Tessi, M.; Garnett, D. R.

    2004-05-01

    Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNe) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally-excited lines. Combining our new data with published results on RLs in other PNe, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Δ (O+2) = log O+2(RL) - log O+2(CEL), ranging from approximately 0.1 dex (within the 1σ measurement errors) up to 1.3 dex. This tends to rule out errors in the recombination coefficients as a source of the discrepancy. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Δ (O+2) against a variety of physical properties of the PNe to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlation is found with Balmer surface brightness; high surface brightness, compact PNe show small values of Δ (O+2), while large low surface brightness PNe show the largest discrepancies. Rougher correlations of Δ (O+2) are found with He+2/He+ and with the expansion velocity. No correlations are seen with electron temperature, electron density, central star effective temperature and luminosity, stellar mass loss rate, or nebular morphology. Similar results are found for carbon, comparing C II RL abundances with ultraviolet measurements of C III]. This work is supported by NSF grant AST-0203905.

  5. Far-infrared forbidden O III line emission from the galactic center

    NASA Technical Reports Server (NTRS)

    Watson, D. M.; Storey, J. W. V.; Townes, C. H.; Haller, E. E.

    1980-01-01

    The forbidden O III 51.8 micron fine-structure line has been detected in Sgr A West. It appears that the emission arises from the same compact clouds within the central parsec of the Galaxy which are observed in forbidden Ne II. The line intensity is used to derive an effective temperature of 32,000-40,000 K for the radiation field that ionizes the clouds. An upper limit is also reported for the forbidden O III 88.4 micron fine-structure line in Sgr A West. From this upper limit, one can conclude that the average electron density outside the known ionized clouds and within 30 arcsec of the galactic center is less than 40 per cu cm.

  6. The detection of the 5577.3 A forbidden line of O I in comets

    NASA Technical Reports Server (NTRS)

    Krishna Swamy, K. S.; Spinrad, H.

    1984-01-01

    The spectral synthesis of C2 Swan band sequence Delta V = -1 indicates the intensity of the forbidden green oxygen line of 5577.3 A to be about 3 to 5 percent of the 6300 A line. Therefore, it appears that the green line should be observable in high-resolution spectra of a bright comet. Festou and Feldman suggest red/green greater than or equal to 10 means a water parent origin.

  7. Collision strengths and transition probabilities for Co III forbidden lines

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, Taha

    2016-07-01

    In this paper we compute the collision strengths and their thermally averaged Maxwellian values for electron transitions between the 15 lowest levels of doubly ionized cobalt, Co2+, which give rise to forbidden emission lines in the visible and infrared region of spectrum. The calculations also include transition probabilities and predicted relative line emissivities. The data are particularly useful for analysing the thermodynamic conditions of supernova ejecta.

  8. Recombination Line versus Forbidden Line Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Robertson-Tessi, Mark; Garnett, Donald R.

    2005-04-01

    Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Δ(O+2)=logO+2(RL)-logO+2(CEL), ranging from approximately 0.1 dex (within the 1 σ measurement errors) up to 1.4 dex. This tends to rule out errors in the recombination coefficients as a source of the discrepancy. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Δ(O+2) against a variety of physical properties of the PNs to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlations are found with the nebula diameter and the Balmer surface brightness; high surface brightness, compact PNs show small values of Δ(O+2), while large low surface brightness PNs show the largest discrepancies. An inverse correlation of Δ(O+2) with nebular density is also seen. A marginal correlation of Δ(O+2) is found with expansion velocity. No correlations are seen with electron temperature, He+2/He+, central star effective temperature and luminosity, stellar mass-loss rate, or nebular morphology. Similar results are found for carbon in comparing C II RL abundances with ultraviolet measurements of C III].

  9. The optical depth of the 158 micron forbidden C-12 II line - Detection of the F = 1 - 0 forbidden C-13 II hyperfine-structure component. [in Orion nebula

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.

    1991-01-01

    The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.

  10. Search for variations of forbidden Fe VII 6087-A lines and forbidden Fe X 6375-A lines in high-ionization Seyfert galaxies

    SciTech Connect

    Veilleux, S.

    1988-06-01

    Results for the forbidden Fe X 6375-A and forbidden Fe VII 6087-A emission lines of 18 high-ionization active galaxies are presented and compared with spectra obtained with the same instrument. Variations of 6375-A and 6087-A were tested for various line ratios under the assumption of constant forbidden OI and forbidden S II line fluxes. The best candidate for variations of forbidden Fe VII and forbidden Fe X lines is found to be NGC 5548, with seven other galaxies showing possible variations of one or both of these lines. A timescale of less than 3 yr is noted for the variations in NGC 5548. Potential sources of error taken into account in the interpretation of the results are considered. 61 references.

  11. Forbidden coronal iron line images of Puppis A - Cloud evaporation or shocked cloud?

    NASA Technical Reports Server (NTRS)

    Teske, Richard G.; Petre, Robert

    1987-01-01

    Calibrated CCD images of the eastern X-ray knot in Puppis A, made in the forbidden red and green coronal Fe lines, are discussed. They show the high-temperature gas to have a rich morphology, with the scale of some features approaching the 2.6 arcsec resolution of the data. The pictures have been compared with an Einstein HRI soft X-ray image; there is close correspondence in the position and size of structures seen in the optical forbidden lines and in the X-rays. Located near the shock front a cloud of about 0.4 pc x 0.9 pc dimension shines brilliantly in the 5303 A line. To test the hypothesis that the cloud might be evaporating into the remnant interior, the 5303 A and 6374 A intensity distributions expected for a steady state, one-fluid evaporatig model have been computed.

  12. Forbidden coronal iron line images of Puppis A - cloud evaporation or shocked cloud

    SciTech Connect

    Teske, R.G.; Petre, R.

    1987-03-01

    Calibrated CCD images of the eastern X-ray knot in Puppis A, made in the forbidden red and green coronal Fe lines, are discussed. They show the high-temperature gas to have a rich morphology, with the scale of some features approaching the 2.6 arcsec resolution of the data. The pictures have been compared with an Einstein HRI soft X-ray image; there is close correspondence in the position and size of structures seen in the optical forbidden lines and in the X-rays. Located near the shock front a cloud of about 0.4 pc x 0.9 pc dimension shines brilliantly in the 5303 A line. To test the hypothesis that the cloud might be evaporating into the remnant interior, the 5303 A and 6374 A intensity distributions expected for a steady state, one-fluid evaporatig model have been computed. 28 references.

  13. Forbidden lines of the solar corona and transition zone - 975-3000 A

    NASA Technical Reports Server (NTRS)

    Sandlin, G. D.; Brueckner, G. E.; Tousey, R.

    1977-01-01

    Forbidden lines characteristic of plasmas at temperatures of 50,000 to 3 million K are observed in ATM UV spectra. Identifications, accurate wavelengths, ionization classes, intensities, and half-widths are presented. Coronal blends with He II at 1640 A are noted. Variations in nonthermal velocities with limb distance are observed. Doppler shifts in the coronal lines observed on the disk may be related to the solar wind. The coincidence of two lines with F IV(3P-5S) is evidence for atomic fluorine in the sun.

  14. Magellanic cloud planetary nebula with suspected strong forbidden iron lines

    PubMed Central

    Aller, L. H.; Czyzak, S. J.

    1983-01-01

    The relatively high-excitation nebula (Westerlund-Smith object 25) in the large Magellanic cloud shows prominent forbidden lines of [Ar IV], the close [Ne IV] pair λ4724, 4726, [Ca V] λ5309, [Fe V] λ4227, and probably [Fe VI] and [Fe VII], as well. A conventional interpretation of observations secured with a vidicon detector at the Cerro Tololo 4-m telescopes indicates an essentially “normal” helium abundance but depletions of N, O, Ne, and other elements with respect to our own galaxy. When a comparison is made with diffuse nebulae or H II regions in the large Magellanic cloud, we find helium to be more abundant, oxygen to be depleted, and nitrogen, neon, and argon to be comparable. The abundance of sulfur is uncertain. Iron in the gaseous phase is certainly more plentiful than in conventional planetaries. PMID:16593294

  15. Magellanic cloud planetary nebula with suspected strong forbidden iron lines.

    PubMed

    Aller, L H; Czyzak, S J

    1983-03-01

    The relatively high-excitation nebula (Westerlund-Smith object 25) in the large Magellanic cloud shows prominent forbidden lines of [Ar IV], the close [Ne IV] pair lambda4724, 4726, [Ca V] lambda5309, [Fe V] lambda4227, and probably [Fe VI] and [Fe VII], as well. A conventional interpretation of observations secured with a vidicon detector at the Cerro Tololo 4-m telescopes indicates an essentially "normal" helium abundance but depletions of N, O, Ne, and other elements with respect to our own galaxy. When a comparison is made with diffuse nebulae or H II regions in the large Magellanic cloud, we find helium to be more abundant, oxygen to be depleted, and nitrogen, neon, and argon to be comparable. The abundance of sulfur is uncertain. Iron in the gaseous phase is certainly more plentiful than in conventional planetaries. PMID:16593294

  16. Magellanic Cloud Planetary Nebula with Suspected Strong Forbidden Iron Lines

    NASA Astrophysics Data System (ADS)

    Aller, L. H.; Czyzak, S. J.

    1983-03-01

    The relatively high-excitation nebula (Westerlund-Smith object 25) in the large Magellanic cloud shows prominent forbidden lines of [Ar IV], the close [Ne IV] pair λ 4724, 4726, [Ca V] λ 5309, [Fe V] λ 4227, and probably [Fe VI] and [Fe VII], as well. A conventional interpretation of observations secured with a vidicon detector at the Cerro Tololo 4-m telescopes indicates an essentially ``normal'' helium abundance but depletions of N, O, Ne, and other elements with respect to our own galaxy. When a comparison is made with diffuse nebulae or H II regions in the large Magellanic cloud, we find helium to be more abundant, oxygen to be depleted, and nitrogen, neon, and argon to be comparable. The abundance of sulfur is uncertain. Iron in the gaseous phase is certainly more plentiful than in conventional planetaries.

  17. Balloon observations of interstellar CII (158 microns) and OI (63 microns) forbidden lines

    NASA Technical Reports Server (NTRS)

    Shibai, H.; Okuda, H.; Nakagawa, T.; Maihara, T.; Mizutani, K.; Matsuhara, H.; Kobayashi, Y.; Hiromoto, N.; Low, F. J.; Nishimura, T.

    1993-01-01

    Interstellar CII and OI forbidden lines were observed by the Balloon-Borne Infrared Telescope (BIRT) with a Fabry-Perot spectrometer. Two balloon flights were successfully made. With a method of 'frequency switching', diffuse CII forbidden-line emission was efficiently detected and mapped in extended regions around HII/molecular cloud complexes and in a wide area of the Galactic plane. It has been shown that the CII forbidden-line emission is very strong and ubiquitously distributed in interstellar space in the Galaxy.

  18. Forbidden oxygen lines at various nucleocentric distances in comets

    NASA Astrophysics Data System (ADS)

    Decock, A.; Jehin, E.; Rousselot, P.; Hutsemékers, D.; Manfroid, J.; Raghuram, S.; Bhardwaj, A.; Hubert, B.

    2015-01-01

    Aims: We study the formation of the [OI] lines - that is, 5577.339 Å (the green line), 6300.304 Å and 6363.776 Å (the two red lines) - in the coma of comets and determine the parent species of the oxygen atoms using the ratio of the green-to-red-doublet emission intensity, I5577/(I6300 + I6364), (hereafter the G/R ratio) and the line velocity widths. Methods: We acquired high-resolution spectroscopic observations at the ESO Very Large Telescope of comets C/2002 T7 (LINEAR), 73P-C/Schwassmann-Wachmann 3, 8P/Tuttle, and 103P/Hartley 2 when they were close to Earth (<0.6 au). Using the observed spectra, which have a high spatial resolution (<60 km/pixel), we determined the intensities and widths of the three [OI] lines. We spatially extracted the spectra to achieve the best possible resolution of about 1-2'', that is, nucleocentric projected distances of 100 to 400 km depending on the geocentric distance of the comet. We decontaminated the [OI] green line from C2 lines blends that we identified. Results: The observed G/R ratio in all four comets varies as a function of nucleocentric projected distance (between ~0.25 to ~0.05 within 1000 km). This is mainly due to the collisional quenching of O(1S) and O(1D) by water molecules in the inner coma. The observed green emission line width is about 2.5 km s-1 and decreases as the distance from the nucleus increases, which can be explained by the varying contribution of CO2 to the O(1S) production in the innermost coma. The photodissociation of CO2 molecules seem to produce O(1S) closer to the nucleus, while the water molecule forms all the O(1S) and O(1D) atoms beyond 103 km. Thus we conclude that the main parent species producing O(1S) and O(1D) in the inner coma is not always the same. The observations have been interpreted in the framework of the previously described coupled-chemistry-emission model, and the upper limits of the relative abundances of CO2 were derived from the observed G/R ratios. Measuring the [OI

  19. Detection of Forbidden Line Components of Lithium-like Carbon in Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Rauch, Thomas; Hoyer, Denny; Quinet, Pascal

    2016-08-01

    We report the first identification of forbidden line components from an element heavier than helium in the spectrum of astrophysical plasmas. So far, these components were identified only in laboratory plasmas and not in astrophysical objects. Forbidden components are well known for neutral helium lines in hot stars, particularly in helium-rich post-AGB stars and white dwarfs. We discovered that two hitherto unidentified lines in the ultraviolet spectra of hot hydrogen-deficient (pre-) white dwarfs can be identified as forbidden line components of triply ionized carbon (C iv). The forbidden components (3p–4f and 3d–4d) appear in the blue and red wings of the strong, Stark broadened 3p–4d and 3d–4f lines at 1108 Å and 1169 Å, respectively. They are visible over a wide effective temperature range (60,000–200,000 K) in helium-rich (DO) white dwarfs and PG 1159 stars that have strongly oversolar carbon abundances.

  20. The interacting winds of Eta Carinae: Observed forbidden line changes and the Forbidden Blue(-Shifted) Crab

    NASA Astrophysics Data System (ADS)

    Gull, Theodore R.; Madura, Thomas; Corcoran, Michael F.; Teodoro, Mairan; Richardson, Noel; Hamaguchi, Kenji; Groh, Jose H.; Hillier, Desmond John; Damineli, Augusto; Weigelt, Gerd

    2015-01-01

    The massive binary, Eta Carinae (EC), produces such massive winds that strong forbidden line emission of singly- and doubly-ionized iron traces wind-wind interactions from the current cycle plus fossil interactions from one, two and three 5.54-year cycles ago.With an eccentricity of >0.9, the >90 solar mass primary (EC-A) and >30 solar mass secondary (EC-B) approach to within 1.5 AU during periastron and recede to nearly 30 AU across apastron. The wind-wind structures move outward driven by the 420 km/s primary wind interacting with the ~3000 km/s secondary wind yielding partially-accelerated compressed primary wind shells that are excited by mid-UV from EC-A and in limited lines of sight, FUV from EC-B.These structures are spectroscopically and spatially resolved by HST's Space Telescope Imaging Spectrograph. At critical binary phases, we have mapped the central 2'x2' region in the light of [Fe III] and [Fe II] with spatial resolution of 0.12' and velocity resolution of 40 km/s.1) The bulk of forbidden emission originates from the large cavity northwest of EC and is due to ionization of massive ejecta from the 1840s and 1890s eruptions. The brightest clumps are the Weigelt Blobs C and D, but there are additionally multiple, fainter emission clumps. Weigelt B appears to have faded.2) Three concentric, red-shifted [FeII] arcs expand at ~470 km/s excited by mid-UV of EC-A.3) The structure of primarily blue-shifted [Fe III] emission resembles a Maryland Blue Crab. The claws appear at the early stages of the high-excitation recovery from the periastron passage, expand at radial velocities exceeding the primary wind terminal velocity, 420 km/s and fade as the binary system approaches periastron with the primary wind enveloping the FUV radiation from EC-B.4) All [Fe III] emission faded by late June 2014 and disappeared by August 2, 2014, the beginning of periastron passage.Comparisons to HST/STIS observations between 1998 to 2004.3 indicate long-term fading of [Fe II

  1. Detection of forbidden line O I 63 micron emission from the galactic center

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Werner, M. W.; Storey, J. W. V.; Watson, D. M.; Townes, C. H.

    1981-01-01

    The detection of the 63 micron line of forbidden line O I is reported for three positions in the H II region complex Sgr A at the galactic center. Velocity resolution of the line indicates that the emitting material has both rotational and radial motion of magnitude similar to that of the ionized gas in the core, and that a substantial amount of the emitting material lies within the central few parsecs of the Galaxy. A model in which forbidden line O I is collisionally excited by neutral hydrogen, either from the warm region ahead of an ionization front or behind a shock, is proposed and gives a total mass of hot, neutral gas within the central 3 pc of the Galaxy of between 10 and 1000 solar mass. A limit on the flux of this line has been set for Sgr B2.

  2. Detection of the NE III 36 micron forbidden line in the planetary nebula NGC 6543

    NASA Astrophysics Data System (ADS)

    Shure, M. A.; Houck, J. R.; Gull, G. E.; Herter, T.

    1984-06-01

    The first observation of the Ne III 36.02 micron forbidden line in a planetary nebula, NGC 6543, is presented. Since the dominant form of neon in medium-excitation to high-excitation planetary nebulae is Ne III, the abundance of this ion is important in determining the total neon abundance. Use of the 36 micron line for an abundance determination has the advantage of insensitivity to temperature uncertainties. However, current atomic parameters lead to a Ne III abundance in NGC 6543 which is 4.5 times the cosmic neon abundance and 2.6 times the abundance from optical line studies. Although such a high abundance cannot be ruled out immediately, inaccuracies in the infrared level collision strengths are suspected because resonances were neglected in their calculation. The 36 micron line is also useful as a temperature probe when combined with the Ne III 3868-A forbidden line. When compared to Ne III 15.56 micron forbidden line fluxes, a temperature-insensitive density estimate may be obtained. The utility of these line ratios depends upon the actual infrared level collision strengths, which will affect the density range over which they are sensitive.

  3. 51.8 micron forbidden O III line emission observed in four galatic H II regions

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1979-01-01

    The 51.8-micron forbidden O III line has been detected in four H II regions: M42, M17, W51, and NGC 6357A. The respective line strengths are 7 x 10 to the -15th, 1.0 x 10 to the -14th, 2.1 x 10 to the -15th, and 2.6 x 10 to the -15th W/sq cm. The observations are consistent with a previously reported line position and place the line at 51.80 + or - 0.05-micron. When combined with the 88.35-micron forbidden O III observations reported earlier, clumpiness is found to be an important factor in NGC 6357A and M42 and nonnegligible in W51 and M17. The combined data also suggest an O III abundance of about 0.0003 times the electron density, which is a factor of 2 greater than a number of investigators have reported.

  4. Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Ding, M. D.

    2016-05-01

    In this Letter, we present Interface Region Imaging Spectrograph Fe xxi 1354.08 Å forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of ≥1000 km s‑1 and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The extreme-ultraviolet images at the 131 and 94 Å passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe xxi 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe xxi forbidden line requires a critical temperature (˜11.5 MK) and density. Moreover, the line shows a non-thermal broadening and a blueshift in the early phase. It suggests that magnetic reconnection at that time has initiated; it not only heats the MFR and, at the same time, produces a non-thermal broadening of the Fe xxi line but also produces the poloidal flux, leading to the ascension of the MFRs.

  5. Seyfert galaxy narrow-line regions. I - Observations of forbidden O III lambda 5007

    NASA Technical Reports Server (NTRS)

    Vrtilek, J. M.; Carleton, N. P.

    1985-01-01

    High-resolution (23 km/s) spectra of the forbidden O III emission line at 500.7 nm from the nuclear regions of 32 Seyfert galaxies and low-redshift QSOs have been obtained at the Smithsonian Institution/University of Arizona Multiple Mirror Telescope. The properties of the data are summarized by a group of measures which efficiently describe the entire line profiles, are stable in the presence of noise, and have easily visualized geometric meaning. The distributions of line profile measures are shown. In particular, typical forbidden O III FWHM values of 200-520 km/s (mean + or - 1 sigma) and a highly significant tendency for the lines to fall off more slowly on the blue than on the red side of the peak have been found, in agreement with previous work. Using galaxian system velocities obtained from absorption-line measurements, the distribution of differences between forbidden O III emission-line velocities and galaxian system velocities has been determined; in disagreement with previous work, this distribution has been found to be consistent with symmetry about zero difference velocity.

  6. Accurate Ritz Wavelengths of Parity-forbidden [Co II] and [V II] Lines of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-01

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 × 10-2 s-1 and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  7. ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co II] AND [V II] LINES OF ASTROPHYSICAL INTEREST

    SciTech Connect

    Ruffoni, M. P.; Pickering, J. C.

    2013-08-15

    We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co II] and [V II] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co II and V II are included in our analysis, producing wavelengths for 1477 [V II] lines and 782 [Co II] lines. Of these, 170 [V II] lines and 171 [Co II] lines arise from transitions with calculated transition probabilities greater than 1 Multiplication-Sign 10{sup -2} s{sup -1} and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

  8. Improved low-lying energy levels determined from solar coronal forbidden and spin-forbidden lines in the 500-1500 A range

    SciTech Connect

    Feldman, U.; Doschek, G.A. . E-mail: george.doschek@nrl.navy.mil

    2007-09-15

    We list observed parity-forbidden and spin-forbidden lines in the 500-1600 A range emitted by solar coronal plasmas and derive improved energy levels from their wavelengths. The lines, emitted by astrophysical abundant elements, belong to transitions within the ground configurations of the type ns{sup 2} np {sup k}, for n = 2, 3 and k = 0-5, and between the lowest term of the first excited configuration 2s2p {sup k+1} and the 2s{sup 2}2p {sup k} ground configurations for k = 0, 1, 2. For each line we give the newly measured wavelength, and the measured or predicted wavelength from the NIST Atomic Spectra Database (ASD) (which except for a few cases includes the previously reported compilation of Kaufman and Sugar [J. Phys. Chem. Ref. Data 15 (1986) 321]), and the values of the transition probability taken from the ASD and CHIANTI database. The list contains measured wavelengths of 136 lines of which over 100 were not available for the Kaufman and Sugar compilation. In addition we provide energy levels that were derived from the reported lines.

  9. Observations of the 51.8 micron forbidden O III emission line in Orion

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.; Ward, D. B.

    1978-01-01

    This letter reports observations of the 51.8-micron fine-structure transition p2: 3P(2) - 3P(1) for doubly ionized oxygen. The observed line strength in the Orion Nebula is (5 + or - 3) by 10 to the -15th power W/sq cm, in good agreement with the theoretical predictions of Simpson (1975). The observations are also consistent with the predicted line position, 51.8 microns. The line lies close to an atmospheric water-vapor feature at 51.7 microns but is sufficiently distant so that corrections for this feature are straightforward. Observations of the 51.8-micron forbidden O III line are particularly important, since the previously discovered 88-micron line from the same ion also is strong. This pair of lines should therefore yield new data about densities in observed H II regions; or else, if density data already are available from radio or other observations, the lines can be used to determine the differential dust absorption between 52 and 88 microns in front of heavily obscured regions.

  10. Neutral carbon far-red forbidden line emission from planetary nubulae

    NASA Astrophysics Data System (ADS)

    Liu, X.-W.; Barlow, M. J.; Danziger, I. J.; Clegg, R. E. S.

    1995-03-01

    The temperature-sensitive neutral carbon forbidden lines at 8727, 9824 and 9850 A have been measured simultaneously for the first time from a planetary nebula. The nebulae NGC 2346, NGC 2440, NGC 3132 and IC 4406 were observed. Accurate rest wavelengths of these lines are obtained. The observed line ratios I(lambda9824+lambda9850)/I(lambda8727) are consistent with collisional excitation by electron impacts. It is demonstrated that radiative recombination and stellar continuum fluorescence are unimportant in exciting the observed [CI] lines, with the possible exception of NGC 2440 where a contribution from the former process cannot be ruled out. For NGC 2346, NGC 3132 and IC 4406, the observed [C I]line ratios yield electron temperatures between 7400 and 8000 K, about 1800 to 2800 K lower than those deduced from the [N II], [S III] and [O III] line ratios that we also measured. Electron densities are derived from the observed [N I], [S II] and [Cl III] doublet ratios.

  11. Measurement of S II forbidden lines in three southern planetary nebulae

    NASA Astrophysics Data System (ADS)

    Macron, A.; Louise, R.

    1990-06-01

    Three southern planetary nebulae (NGC 2818, He 2-130, and NGC 3132) have been observed with the IDS (Image Dessector Scanner) combined with the Boller and Chivens spectrograph mounted at the Cassegrain focus of the 1.52 m telescope of the ESO in Chile. The spectrograph dispersion was 60 A/mm in the spectral range 6170-7298 A. Spectra were obtained from an array of positions across each nebula along the E-W direction and/or N-S direction. In order to derive electron density, only the S II forbidden lines (6617 A-6731 A) are given here. The results are in agreement with a shell structure for the observed nebulae.

  12. FORBIDDEN AND INTERCOMBINATION LINES OF RR TELESCOPII: WAVELENGTH MEASUREMENTS AND ENERGY LEVELS

    SciTech Connect

    Young, P. R.; Feldman, U.; Lobel, A.

    2011-10-01

    Ultraviolet and visible spectra of the symbiotic nova RR Telescopii are used to derive reference wavelengths for many forbidden and intercombination transitions of ions +1 to +6 of elements C, N, O, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, and Ca. The wavelengths are then used to determine new energy values for the levels within the ions' ground configurations or first excited configuration. The spectra were recorded by the Space Telescope Imaging Spectrograph of the Hubble Space Telescope and the Ultraviolet Echelle Spectrograph of the European Southern Observatory in 2000 and 1999, respectively, and cover 1140-6915 A. Particular care was taken to assess the accuracy of the wavelength scale between the two instruments. An investigation of the profiles of the emission lines reveals that the nebula consists of at least two plasma components at different velocities. The components have different densities, and a simple model of the lines' emissions demonstrates that most of the lines principally arise from the high density component. Only these lines were used for the wavelength study.

  13. The forbidden 1082 nm line of sulphur:. the photospheric abundance of sulphur in the Sun and 3D effects

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Ludwig, H.-G.

    2007-05-01

    Context: Sulphur is an element which is formed in the α-process and is easily measured in the gaseous phase in external galaxies. Since it does not form dust, it is the preferred indicator for α-elements, rather than Si or Mg, for which dust corrections are necessary. The measurement of the sulphur abundance in stars is not an easy task, relying mainly on high excitation lines with non-negligible deviations from LTE. The 1082 nm sulphur forbidden transition is less sensitive to departures from LTE and is less dependent on temperature uncertainties than other sulphur lines usually employed as abundance indicators. Therefore it should provide a more robust abundance diagnostics. Aims: To derive the solar photospheric abundance of sulphur from the 1082 nm [SI] line and to investigate 3D effects present in G- and F-type atmospheres at solar and lower metallicity. Methods: High-resolution, high signal-to-noise solar intensity and flux spectra were used to measure the sulphur abundance from the [SI] 1082 nm line. CO^5BOLD hydrodynamical model atmospheres were applied to predict 3D abundance corrections for the [SI] line. Results: The solar sulphur abundance is derived to be 7.15± (0.01)_stat ± (0.05)_sys, where the statistical uncertainty represents the scatter in the determination using four different solar spectra and the systematic uncertainty is due to the modelling of the blending lines. Sulphur abundances obtained from this line are insensitive to the micro-turbulence. 3D abundance corrections, found from strictly differential comparisons between 1D and 3D models, are negligible in the Sun, but become sizable for more metal-poor dwarfs.

  14. Upgrading electron temperature and electron density diagnostic diagrams of forbidden line emission

    NASA Astrophysics Data System (ADS)

    Proxauf, B.; Öttl, S.; Kimeswenger, S.

    2014-01-01

    Context. Diagnostic diagrams of forbidden lines have been a useful tool for observers for many decades now. They are used to obtain information on the basic physical properties of thin gaseous nebulae. Some diagnostic diagrams are in wavelength domains that were difficult to apply either due to missing wavelength coverage or the low resolution of older spectrographs. Furthermore, most of the diagrams were calculated using just the species involved as a single atom gas, although several are affected by well-known fluorescence mechanisms as well. Additionally, the atomic data have improved up to the present time. Aims: The aim of this work is to recalculate well-known, but also sparsely used, unnoted diagnostics diagrams. The new diagrams provide observers with modern, easy-to-use recipes for determining electron temperature and densities. Methods: The new diagnostic diagrams were calculated using large grids of parameter space in the photoionization code CLOUDY. For a given basic parameter (e.g., electron density or temperature), the solutions with cooling-heating-equilibrium were chosen to derive the diagnostic diagrams. Empirical numerical functions were fitted to provide formulas usable in, e.g., data reduction pipelines. Results: The resulting diagrams differ significantly from those used up to now and will improve thermodynamic calculations. To our knowledge, detailed, directly applicable fit formulas are given for the first time, leading to the calculation of electron temperature or density from the line ratios.

  15. 3D Modeling of Forbidden Line Emission in the Binary Wind Interaction Region of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Madura, Thomas; Gull, T. R.; Owocki, S.; Okazaki, A. T.; Russell, C. M. P.

    2010-01-01

    We present recent work using three-dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations to model the high ([Fe III], [Ar III], [Ne III] and [S III]) and low ([Fe II], [Ni II]) ionization forbidden emission lines observed in Eta Carinae using the HST/STIS. These structures are interpreted as the time-averaged, outer extensions of the primary wind and the wind-wind interaction region directly excited by the FUV of the hot companion star of this massive binary system. We discuss how analyzing the results of the 3D SPH simulations and synthetic slit spectra and comparing them to the spectra obtained with the HST/STIS helps us determine the absolute orientation of the binary orbit and helps remove the degeneracy inherent to models based solely on the observed RXTE X-ray light curve. A key point of this work is that spatially resolved observations like those with HST/STIS and comparison to 3D models are necessary to determine the alignment or misalignment of the orbital angular momentum axis with the Homunculus, or correspondingly, the alignment of the orbital plane with the Homunculus skirt.

  16. Abundances of argon, sulfur, and neon in six galactic H II regions from infrared forbidden lines

    NASA Technical Reports Server (NTRS)

    Herter, T.; Helfer, H. L.; Forrest, W. J.; Mccarthy, J.; Houck, J. R.; Willner, S. P.; Puetter, R. C.; Rudy, R. J.; Soifer, B. T.; Pipher, J. L.

    1981-01-01

    Airborne measurements of the Ar II (6.99 micron) and S III (18.71 micron) forbidden lines for six compact H II regions are presented, as well as ground-based 2-4 micron and 8-13 micron spectroscopy if not already published. From these data and radio data, lower limits to the elemental abundances of Ar, Ne, and S are deduced. G29.9-0.0, at 5 kpc from the galactic center, is overabundant in all these elements. The other five regions (at distances 6-13 kpc from the center) mainly appear to be consistent with standard abundances, with the exception of G75.84 + 0.4 at 10 kpc from the galactic center, which is overabundant in S. However, preliminary results on G12.8-0.2 at 6 kpc from the galactic center suggest a possible underabundance. A large statistical sample of H II regions is required in order to determine if there is a radial gradient in the heavy element abundances of the Galaxy.

  17. Observation of visible forbidden lines from highly charged tungsten ions at the large helical device

    NASA Astrophysics Data System (ADS)

    Kato, D.; Goto, M.; Morita, S.; Murakami, I.; Sakaue, H. A.; Ding, X. B.; Sudo, S.; Suzuki, C.; Tamura, N.; Nakamura, N.; Watanabe, H.; Koike, F.

    2013-09-01

    Visible line emission from highly charged tungsten ions has been observed at the large helical device (LHD) using a tracer encapsulated solid pellet. One of the measured lines is assigned to a magnetic-dipole (M1) line of the ground-term fine-structure transition of W26+. The other line is unidentified but probably due to a highly charged tungsten ion. Photon emission was observed at 40 lines of sight divided along the vertical direction of a horizontally elongated poloidal cross section of the LHD plasma. The line-integrated intensity of the M1 line along each line of sight indicates a peaked profile at the plasma center where the electron temperatures are high enough so that tungsten ions are highly ionized.

  18. Combining Linear Polarization Measurements of both Forbidden/Permitted Coronal Emission Lines for measuring the Vector Magnetic Field in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Dima, G. I.; Kuhn, J. R.; Mickey, D.

    2014-12-01

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (~4 G at a height of 0.1 Rsun above an active region) and the large thermal broadening of coronal emission lines. Current methods deduce either the direction of the magnetic field or the magnetic flux density. We propose using concurrent linear polarization measurements in the near IR of forbidden and permitted lines to calculate the coronal vector magnetic field. The effect of the magnetic field on the polarization properties of emitted light is encapsulated in the Hanle effect. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while for saturated Hanle the polarization is insensitive to the strength of the field. Coronal forbidden lines are always in the saturated Hanle regime so the linear polarization holds no information on the strength of the field. By pairing measurements of both forbidden and permitted lines we would be able to obtain both the direction and strength of the field. The near-IR region of the spectrum offers the opportunity to study this problem from the ground. The FeXIII 1.075 um and SiX 1.431 um forbidden lines are strongly polarizable and are sufficiently bright over a large field of view (out to 1.5 Rsun). Measurements of both these lines can be paired up with the recently observed coronal HeI 1.083 um permitted line. The first data set used to test this technique was taken during the March 29, 2006 total solar eclipse and consisted of near-IR spectra covering the spectral region 0.9-1.8 um, with a field of view of 3 x 3 Rsun. The data revealed unexpectedly strong SiX emission compared to FeXIII. Using the HAO FORWARD suite of codes we produced simulated emission maps from a global HMD model for the day of the eclipse. Comparing the intensity variation of the measurements and the model we predict that SiX emission is more extended for

  19. Improved collision strengths and line ratios for forbidden [O III] far-infrared and optical lines

    NASA Astrophysics Data System (ADS)

    Palay, Ethan; Nahar, Sultana N.; Pradhan, Anil K.; Eissner, Werner

    2012-06-01

    Far-infrared and optical [O III] lines are useful temperature-density diagnostics of nebular as well as dust obscured astrophysical sources. Fine-structure transitions among the ground state levels 1 s22 s22 p33 P 0,1,2 give rise to the 52- and 88-?m lines, whereas transitions among the 3 P 0,1,2, 1 D 2, 1 S 0 levels yield the well-known optical lines λλ4363, 4959 and 5007 Å. These lines are excited primarily by electron impact excitation. However, despite their importance in nebular diagnostics collision strengths for the associated fine-structure transitions have not been computed taking full account of relativistic effects. We present Breit-Pauli R-matrix calculations for the collision strengths with highly resolved resonance structures. We find significant differences of up to 20 per cent in the Maxwellian averaged rate coefficients from previous works. We also tabulate these to lower temperatures down to 100 K to enable determination of physical conditions in cold dusty environments such photodissociation regions and ultraluminous infrared galaxies observed with the Herschel Space Observatory. We also examine the effect of improved collision strengths on temperature- and density-sensitive line ratios.

  20. Far-infrared line observations of planetary nebulae. I - The forbidden O III spectrum

    NASA Astrophysics Data System (ADS)

    Dinerstein, H. L.; Lester, D. F.; Werner, M. W.

    1985-04-01

    Observations of the far-infrared fine structure lines of O III have been obtained for six planetary nebulae. The infrared measurements are combined with optical O III line fluxes to probe physical conditions in the gas. From the observed line intensity ratios, a simultaneous solution was obtained for electron temperature and density, as well as means of evaluating the importance of inhomogeneities. Densities determined from the far-infrared O III lines agree well with density diagnostics from other ions, indicating a fairly homogeneous density in the emitting gas. Temperatures are determined separately from the O III 4363/5007 A and 5007 A/52 micron intensity ratios and compared. Systematically higher values are derived from the former ratio, which is expected from a nebula which is not isothermal. Allowance for the presence of temperature variations within these nebulae raises their derived oxygen abundances, determinations to be reconciled with the solar value.

  1. Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    NASA Astrophysics Data System (ADS)

    Simon, Molly; Pascucci, Ilaria; Edwards, Suzan; Feng, Wanda; Rigliaco, Elisabetta; Gorti, Uma; Hollenbach, David J.; Tuttle Keane, James

    2016-06-01

    Protoplanetary disks are a natural result of star formation, and they provide the material from which planets form. The evolutional and eventual dispersal of protoplanetary disks play critical roles in determining the final architecture of planetary systems. Models of protoplanetary disk evolution suggest that viscous accretion of disk gas onto the central star and photoevaporation driven by high-energy photons from the central star are the main mechanisms that drive disk dispersal. Understanding when photoevaporation begins to dominate over viscous accretion is critically important for models of planet formation and planetary migration. Using Keck/HIRES (resolution of ~ 7 km/s) we analyze three low excitation forbidden lines ([O I] 6300 Å, [O I] 5577 Å, and [S II] 6731 Å) previously determined to trace winds (including photoevaporative winds). These winds can be separated into two components, a high velocity component (HVC) with blueshifts between ~30 – 150 km/s, and a low velocity component (LVC) with blueshifts on the order of ~5 km/s (Hartigan et al. 1995). We selected a sample of 32 pre-main sequence T Tauri stars in the Taurus-Auriga star-forming region (plus TW Hya) with disks that span a range of evolutionary stages. We focus on the origin of the LVC specifically, which we are able to separate into a broad component (BC) and a narrow component (NC) due to the high resolution of our optical spectra. We focus our analysis on the [O I] 6300 Å emission feature, which is detected in 30/33 of our targets. Interestingly, we find wind diagnostics consistent with photoevaporation for only 21% of our sample. We can, however, conclude that a specific component of the LVC is tracing a magnetohydrodynamic (MHD) wind rather than a photoevaporative wind. We will present the details behind these findings and the implications they have for planet formation more generally.

  2. Towards Perfect Water Line Intensities

    NASA Astrophysics Data System (ADS)

    Lodi, L.; Tennyson, J.

    2012-06-01

    Over the last ten years the increased availability of computational resources and the steady refinement of theoretical methods have permitted more and more accurate first principle calculations of water-vapor spectra as exemplified, e.g., by the very successful BT2 line list both line positions and intensities, a reliable dipole moment surface (DMS), affecting line intensities. It is also very useful to several application to give reasonable uncertainty bars for computed quantities, an aspect which traditionally has received little attention. We report here recent progress leading to very accurate room-temperature linelists covering the range 0.05-20 000 cm-1, complete with uncertainty bars, for the H_218O and H_217O water isotopologues Line intensities were produced using a recent DMS produced by our group which is capable of giving line intensites accurate to 1% for most medium and strong transitions. Line positions are based if possible on the experimentally derived energy levels recently produced by a IUPAC task group and have a typical accuracy of 0.0002 cm-1; when experimentally derived energy levels are unavailable calculated line position are provided, with an accuracy of the order of 0.2 cm-1. An extension to the main isotopologue H_216O is currently underway. R. J. Barber, J. Tennyson, G. J. Harris and R. N. Tolchenov, Mon. Not. R. Astron. Soc. {368}, 1087-1094 (2006). L. Lodi and J. Tennyson, J. Quant. Spectrosc. Radiat. Trans. (2012), doi:10.1016/j.jqsrt.2012.02.023 L. Lodi, J. Tennyson and O. L. Polyansky, J. Chem. Phys. {135}, 034113 (2011). J. Tennyson at al., J. Quant. Spectrosc. Radiat. Trans. {110}, 573-96 (2009).

  3. Infrared spectrum involving forbidden transitions & coriolis interaction and identification of optically pumped far infrared laser lines in asymmetrically mono-deuterated methanol (Methanol-D1)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-05-01

    In this paper new type of ΔK = 2 and 0 transitions have been identified in the Fourier Transform spectrum of Methanol-D1 (CH2DOH). These transitions are normally forbidden but a "Coriolis" type interaction with nearby states is believed to be contributing sufficient transition strength through intensity borrowing effect. This is the first time such forbidden transitions are reported to be identified in the excited states, in this molecule. The present conjecture is supported by observation of a many strong allowed transitions to upper terminating levels which are seen to be highly perturbed. This conclusion has been reached by comparing calculated energy levels using known molecular parameters (Pearson et al., 2012; Coudert et al., 2014; El Hilali et al., 2011; Quade et al., 1998; Richard Quade, 1998, 1999; Mukhopadhyay, 1997) and the actually observed FIR lines. The upper levels are seen to be upshifted from expected position. A closer look at the calculated energy values seems to indicate a possible interaction between the above states and other proximate torsional-rotational states could occur. The possible candidates for the interacting level manifolds are narrowed down through the presence of the forbidden transition. We also take the opportunity to propose alternate rotational quantum numbers for some of the assignments recently reported in the literature (El Hilali et al., 2011). Some ambiguities are pointed out on the data and the reported analysis. There remain too many such irregularities and we propose to gather a large body assigned transitions in a future catalog. Assignments and relevant comments on optically pumped FIR laser radiation are also made.

  4. The intensity of forbidden torsional transitions in electronic spectra of molecules with a 6-fold barrier: Application to toluenes

    NASA Astrophysics Data System (ADS)

    Virgo, Edwina A.; Gascooke, Jason R.; Lawrance, Warren D.

    2014-04-01

    Franck-Condon forbidden transitions involving methyl rotor modes are seen in the S1 ← S0 spectrum of toluene and toluene-like molecules. The strongest of these rotor transitions (m″ = 1 → m' = 2, m″ = 0 → m' = 3a1″, and m″ = 1 → m' = 4) have been shown by Walker et al. [J. Chem. Phys. 102, 8718 (1995)] to gain intensity through the rotor equivalent of the Herzberg-Teller mechanism. Despite the m″ = 0 → m' = 3a2″ transition being forbidden in this formalism, it is sporadically observed. We show that this transition derives oscillator strength from incomplete mixing of the -3 and +3 free rotor basis states due to torsion-rotation coupling. Calculations demonstrate that this mechanism quantitatively explains the intensities observed for toluene, including their temperature dependence. Because the -3/+3 mixing is weakest when the torsional barrier height, V6, is small, the m″ = 0 → m' = 3a2″ transition increases in intensity as |V6| decreases. The temperature and |V6| dependencies explain why reports of the 0 → 3a2″ transition have been intermittent. The torsion-rotation coupling mechanism is predicted to also give significant intensity to m = 0 → m = 6a2' transitions relative to m = 0 → m = 6a1' transitions and to provide intensity to 0 → 3a2 transitions in molecules with a 3-fold (V3) barrier. Comparison between the observed and calculated rotor band contours shows, unexpectedly, that the 3a1″ constants fail to predict the 3a2″ contour despite these two states being derived from the same free rotor basis states. Comparison with the observed spectrum also reveals differences in the separation of the S1 3a2″ and 3a1″ levels. The V6 value determined from analysis of the high resolution, rotationally resolved m″ = 0 → m' = 3a1″ spectrum overestimates the 3a2″-3a1″ separation by 0.6 cm-1. We postulate that this may be due to torsion-vibration coupling. The observed toluene torsion-rotation contours have been modeled

  5. On the variability of the forbidden O III 4363/H-gamma 4340 line ratio in the young planetary nebula IC 4997 in 1979-1980

    NASA Astrophysics Data System (ADS)

    Purgathofer, A.; Stoll, M.

    1981-06-01

    More than 250 spectrograms of the planetary nebula IC 4997 were obtained by the L.Figl-Observatory, Austria, between August 1978 and December 1980. It is shown that the line intensity ratios R equals forbidden O III 4363 A/H-gamma 4340 A have again increased, returning to a value exceeding 1. The largest change occurred between May and June 1980, during which time R increased from 0.94 to 1.10. This 17% increase corresponds to a change in the electron temperature of some 200 K and of the incoming ionizing flux by about 6%. The general increasing trend is superimposed by rapid fluctuations with gradients up to Delta R/Delta t equals 0.005/d, suggesting that the star is in a flare-activity stage. It is assumed that R undergoes a long periodic change on a time scale of decades.

  6. Forbidden high excitation lines and TiO bands in the symbiotic system QW SGE = MH-alpha 80-5

    NASA Astrophysics Data System (ADS)

    Calabro, E.; Mammano, A.

    1992-11-01

    The suspected symbiotic nature of MH-alpha 80-5 = AS 360 was confirmed for the first time by spectra taken in 1967 at Asiago Observatory (Marini, 1969) showing the O III and Ne III forbidden lines, together with strong He II lines and TiO bands. According to Allen (1984) nebular lines were absent in 1978, while we recorded them again in 1985. Further excitation strengthening up to forbidden Fe VII and O VI, in 1990 were noted by Munari and Buson (1991). The evolution implies density variability in the thick nebula surrounding this new variable system.

  7. Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Keyser, J. De; Maggiolo, R.; Gibbons, A.; Gronoff, G.; Gunell, H.; Dhooghe, F.; Loreau, J.; Vaeck, N.; Altwegg, K.; Bieler, A.; Briois, C.; Calmonte, U.; Combi, M. R.; Fiethe, B.; Fuselier, S. A.; Gombosi, T. I.; Hässig, M.; Le Roy, L.; Neefs, E.; Rubin, M.; Sémon, T.

    2016-01-01

    Observations of the green and red-doublet emission lines have previously been realized for several comets. We present here a chemistry-emission coupled model to study the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines of interest for comet 67P/Churyumov-Gerasimenko. The recent discovery of O2 in significant abundance relative to water 3.80 ± 0.85 within the coma of 67P has been taken into consideration for the first time in such models. We evaluate the effect of the presence of O2 on the green to red-doublet emission intensity ratio, which is traditionally used to assess the CO2 abundance within cometary atmospheres. Model simulations, solving the continuity equation with transport, show that not taking O2 into account leads to an underestimation of the CO2 abundance within 67P, with a relative error of about 25%. This strongly suggests that the green to red-doublet emission intensity ratio alone is not a proper tool for determining the CO2 abundance, as previously suggested. Indeed, there is no compelling reason why O2 would not be a common cometary volatile, making revision of earlier assessments regarding the CO2 abundance in cometary atmospheres necessary. The large uncertainties of the CO2 photodissociation cross section imply that more studies are required in order to better constrain the O(1S) and O(1D) production through this mechanism. Space weather phenomena, such as powerful solar flares, could be used as tools for doing so, providing additional information on a good estimation of the O2 abundance within cometary atmospheres.

  8. A deep survey of heavy element lines in planetary nebulae - I. Observations and forbidden-line densities, temperatures and abundances

    NASA Astrophysics Data System (ADS)

    Tsamis, Y. G.; Barlow, M. J.; Liu, X.-W.; Danziger, I. J.; Storey, P. J.

    2003-10-01

    We present deep optical spectrophotometry of 12 Galactic planetary nebulae (PNe) and three Magellanic Cloud PNe. Nine of the Galactic PNe were observed by scanning the slit of the spectrograph across the nebula, yielding relative line intensities for the entire nebula that are suitable for comparison with integrated nebular fluxes measured in other wavelength regions. In this paper we use the fluxes of collisionally excited lines (CELs) from the nebulae to derive electron densities and temperatures, and ionic abundances. We find that the nebular electron densities derived from optical CEL ratios are systematically higher than those derived from the ratios of the infrared (IR) fine-structure (FS) lines of [OIII]. The latter have lower critical densities than the typical nebular electron densities derived from optical CELs, indicating the presence of significant density variations within the nebulae, with the IR CELs being biased towards lower density regions. We find that for several nebulae the electron temperatures obtained from [OII] and [NII] optical CELs are significantly affected by recombination excitation of one or more of the CELs. When allowance is made for recombination excitation, much better agreement is obtained with the electron temperatures obtained from optical [OIII] lines. We also compare electron temperatures obtained from the ratio of optical nebular to auroral [OIII] lines with temperatures obtained from the ratio of [OIII] optical lines to [OIII] IR FS lines. We find that when the latter are derived using electron densities based on the [OIII]52 μm/88 μm line ratio, they yield values that are significantly higher than the optical [OIII] electron temperatures. In contrast to this, [OIII] optical/IR temperatures derived using the higher electron densities obtained from optical [ClIII]λ5517/λ5537 ratios show much closer agreement with optical [OIII] electron temperatures, implying that the observed [OIII] optical/IR ratios are significantly

  9. The N(^2D - ^4S) 520 nm forbidden doublet transition in the nightglow: An experimental test of the theoretical intensity ratio

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Cosby, P. C.; Huestis, D. L.

    2003-04-01

    N(^2D) is an important species in the nighttime ionosphere, as its reaction with O_2 is a principal source of NO. Its modeled concentration peaks near 200 km, at approximately 4 × 10^5 cm-3. Nightglow emission in the optically forbidden lines at 519.8 and 520.0 nm is quite weak, a consequence of the combination of an extremely long radiative lifetime, about 10^5 sec, and quenching by O-atoms, O_2, and N_2. The radiative lifetime is known only from theory, and various calculations lead to a range of possible values for the intensity ratio R = I(519.8)/I(520.0) of 1.5-2.5. On the observational side, Hernandez and Turtle [1969] determined a range of R = 1.3-1.9 in the nightglow, and Sivjee et al. [1981] reported a variable ratio in aurorae, between 1.2 and 1.6. From sky spectra obtained at the Keck II telescope on Mauna Kea, we have accumulated eighty-five 30-60 minute data sets, from March and October, 2000, and April, 2001, over 13 nights of astronomical observations. We find R to have a quite precise value of 1.760± 0.012 (2-σ). There is no difference between the three data sets in terms of the extracted ratio, which therefore seems to be independent of external conditions. At the same time, determination of the O(^1D - ^3P) doublet intensity ratio, I(630.0)/I(636.4), gives a value of 3.03 ± 0.01, the statistical expectation. G. Hernandez and J. P. Turtle, Planet. Space Sci. 17, 675, 1969. G. G. Sivjee, C. S. Deehr, and K. Henricksen, J. Geophys. Res. 86, 1581, 1981.

  10. Forbidden coronal iron line emission in the Puppis A shock front: The effect of inhomogeneities

    NASA Technical Reports Server (NTRS)

    Teske, Richard G.; Petre, Robert

    1986-01-01

    We have obtained CCD images of the shock front at the eastern rim of Puppis A in (Fe X) lambda 6374 and (Fe XIV) lambda 5303 and have compared the optical data to Einstein HRI soft X-ray data. The observed part of the remnant is complex, containing density irregularities. Optical and X-ray data are consistent in showing a nearly flat gradient of ionization behind the shock. To determine conditions in the shock, scans of surface brightness across it in the optical lines were compared to surface brightnesses predicted by idealized Sedov models. We were unable to match both the red and green line scans by a simple, single-component model, and have ascribed the failure to the presence of the density inhomogeneities. Our result has important implications for the determination of SNR shock front models by means of fitting X-ray data with Sedov models.

  11. Transition moments, Franck-Condon factors, and lifetimes of forbidden transitions - Calculation of the intensity of the Cameron system of CO.

    NASA Technical Reports Server (NTRS)

    James, T. C.

    1971-01-01

    Discussion of the factors affecting the intensity of forbidden transitions in diatomic molecules. It is shown that using Franck-Condon factors to predict relative band intensities is less reliable for forbidden transitions than it is for allowed transitions. The intensity of the 0,0 and 1,0 bands of the a super 3 pi-super 1 sigma Cameron system of CO are calculated using perturbation theory. The intensity arises from spin-orbit mixing of the A super 1 pi state with the a super 3 pi state. From the known spin-orbit coupling constant of the a super 1 pi state and the known intensity of the fourth positive A super 1 pi-super 1 sigma transition, the oscillator strengths of the 0,0 and 1,0 bands are calculated to be 1.63 x 10 to the minus 7th power and 1.99 x 10 to the minus 7th power. Lifetimes of various rotational levels are shown to range from 2.9 to several hundred milliseconds.-

  12. 2D-photochemical model for forbidden oxygen line emission for comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; De Keyser, J.; Maggiolo, R.; Rubin, M.; Gronoff, G.; Gibbons, A.; Jehin, E.; Dhooghe, F.; Gunell, H.; Vaeck, N.; Loreau, J.

    2016-08-01

    We present here a 2D-model of photochemistry for computing the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines at 577.7 nm, 630 nm, and 636.4 nm, in case of the comet 1P/Halley. The presence of O2 within cometary atmospheres, measured by the in-situ ROSETTA and GIOTTO missions, necessitates a revision of the usual photochemical models. Indeed, the photodissociation of molecular oxygen also leads to a significant production of oxygen in excited electronic states. In order to correctly model the solar UV flux absorption, we consider here a 2D configuration. While the green to red-doublet ratio is not affected by the solar UV flux absorption, estimates of the red-doublet and green lines emissions are, however, overestimated by a factor of two in the 1D model compared to the 2D model. Considering a spherical symmetry, emission maps can be deduced from the 2D model in order to be directly compared to ground and/or in-situ observations.

  13. Forbidden lines of (O I) in the high-resolution optical spectra of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Aller, L. H.; Hyung, S.; Brown, P. J. F.

    1995-02-01

    Electron impact excitation rates for transitions in O I, calculated with the R-matrix code, are used to derive the electron-temperature sensitive emission-line ratio R = I(2s22p4 (1D) -2s22p4 1S/2s22p4 (3P)1,2-2s22p4 1D = I(5577 A)/I(6300+6365 A), for a range of electron temperatures Te = 5000-20 000 K) and densities (ne = 104 - 106/cu cm) applicable to planetary nebulae. Experimental values of R for a number of planetaries have been measured from high-resolution (approximately 0.6 A FWHM) spectra obtained with the Hamilton Echelle spectrograph on the 3-m telescope at the Lick Observatory. These measurements should be particularly reliable, as the sample of planetaries was restricted to those with large enough radial velocities for the nebular (O I) 5577 A emission to be red- or blue-shifted from the atmospheric airglow feature by a sufficient amount for the former to be reliably determined. Electron temperatures deduced from the observed values of R are generally in good agreement with those derived from Te-sensitive line ratios in other species, providing observational support for the accuracy of the atomic data adopted in the calculations.

  14. Observations of the 63 micron forbidden OI emission line in the Orion and Omega Nebulae

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1979-01-01

    Observations of 63-micron neutral oxygen emission from the Orion and Omega Nebulae are reported which were carried out from the NASA Lear Jet flying at an altitude of approximately 13.7 km. The best estimate for the 3 P 1 - 3 P 2 transition wavelength is shown to be 63.2 microns, and the detected fluxes are found to be extraordinarily high (amounting to approximately 600 suns in M42 at 0.5 kpc and to about 2900 suns in the line in M17 at 2 kpc). Attempts are made to estimate the minimum temperature and other parameters of the emitting region in Orion. It is concluded that conditions not too different from those permitted by some current models appear to provide fluxes that agree in order of magnitude with those observed.

  15. The neutral oxygen spectrum. 1: Collisionally excited level populations and line intensities under optically thin conditions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1995-01-01

    This is the first paper in a projected program to produce quantitative information on the spectrum of the neutral oxygen atom under a variety of excitation conditions. Radiative rates and effective collision strengths are assembled from the recent literature where available, or are calculated for as yet untreated transitions using the University College superstructure/distorted-wave computer package, to produce a complete set of atomic data for a 13 hybrid level model of neutral oxygen. Level populations and relative intensities for 28 allowed, inter-combination, and forbidden oxygen lines are computed, under optically thin conditions, for the electron density range 4.0 less than log N(sub e) less than 12.0 and the electron temperature values T(sub e) = 5000, 10,000, 20,000, 50,000, and 100,000 K. Preliminary applications to observed intercombination/allowed and forbidden/allowed line ratios are discussed.

  16. The abundance discrepancy - recombination line versus forbidden line abundances for a northern sample of galactic planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wesson, R.; Liu, X.-W.; Barlow, M. J.

    2005-09-01

    We present deep optical spectra of 23 galactic planetary nebulae, which are analysed in conjunction with archival infrared and ultraviolet spectra. We derive nebular electron temperatures based on standard collisionally excited line (CEL) diagnostics as well as the hydrogen Balmer jump and find that, as expected, the Balmer jump almost always yields a lower temperature than the [OIII] nebular-to-auroral line ratio. We also make use of the weak temperature dependence of helium and OII recombination line ratios to further investigate the temperature structure of the sample nebulae. We find that, in almost every case, the derived temperatures follow the relation , which is the relation predicted by two-component nebular models in which one component is cold and hydrogen-deficient. Te(OII) may be as low as a few hundred Kelvin, in line with the low temperatures found for the hydrogen-deficient knots of Abell 30 by Wesson, Liu and Barlow. Elemental abundances are derived for the sample nebulae from both CELs and optical recombination lines (ORLs). ORL abundances are higher than CEL abundances in every case, by factors ranging from 1.5 to 12. Five objects with O2+ abundance discrepancy factors greater than 5 are found. DdDm 1 and Vy 2-2 are both found to have a very large abundance discrepancy factor of 11.8. We consider the possible explanations for the observed discrepancies. From the observed differences between Te(OIII) and Te(BJ), we find that temperature fluctuations cannot resolve the abundance discrepancies in 22 of the 23 sample nebulae, implying some additional mechanism for enhancing ORL emission. In the one ambiguous case, the good agreement between abundances derived from temperature-insensitive infrared lines and temperature-sensitive optical lines also points away from temperature fluctuations being present. The observed recombination line temperatures, the large abundance discrepancies and the generally good agreement between infrared and optical CEL

  17. Optical line intensities in the Trifid nebula

    SciTech Connect

    Lynds, B.T.; Oneil, E.J. Jr.

    1985-07-01

    Observations of the Trifid nebula (M20) obtained in H-alpha; He I (587.6 nm); and the forbidden lines of N II (658.3 nm), S II (671.6 and 673 nm), O III (500.7 nm), and O II (272.6 and 372.9 nm) using either the CIT long-slit spectrograph or a direct-mode CCD with narrow-band interference filters on the 92-cm telescope at KPNO are reported. The data are presented in extensive graphs and characterized in detail and a model is proposed to explain the scattering measurements. Findings discussed include a single central O7 V star with Teff = about 37,500 K, a dusty plasma ionized by this star, mean nebular electron density 150/cu cm, a central hole of radius 0.2 times that of the ionized zone, dust extending beyond the ionized region, overall temperature 7000-8000 K, filament temperatures up to 9000 K, dust optical depth 1.5 at H-beta, dust albedo 0.5, emission-nebula radius 2.8 pc, and total mass about 1700 solar mass (comprising 340 solar mass ionized material, about 800 solar mass unionized cloud material, and about 600 solar mass in an outer dust sphere). 18 references.

  18. Computer program for determining rotational line intensity factors for diatomic molecules

    NASA Technical Reports Server (NTRS)

    Whiting, E. E.

    1973-01-01

    A FORTRAN IV computer program, that provides a new research tool for determining reliable rotational line intensity factors (also known as Honl-London factors), for most electric and magnetic dipole allowed diatomic transitions, is described in detail. This users manual includes instructions for preparing the input data, a program listing, detailed flow charts, and three sample cases. The program is applicable to spin-allowed dipole transitions with either or both states intermediate between Hund's case (a) and Hund's case (b) coupling and to spin-forbidden dipole transitions with either or both states intermediate between Hund's case (c) and Hund's case (b) coupling.

  19. Longitudinal asymmetries of the coronal line intensities

    NASA Astrophysics Data System (ADS)

    Xanthakis, J.; Petropoulos, B.; Tritakis, V. P.; Mavromichalaki, H.; Marmatsuri, L.

    The analysis of the daily measurements of the coronal green line intensity which have been collected by the Pic-du-Midi Observatory during the period 1944-1974 has led to some very interesting results. The main finding of this analysis is a permanent longitudinal asymmetry of the green line intensity which has been determined all along the data record. In an effort to make this asymmetry certain E-W intensity differences very close to the solar equator where the rotation rate for coronal features is equal to 25.35 days on the average are examined. When these data are examined every 25 days, namely data which almost correspond to the same points of the solar disk, it confirms the above mentioned longitudinal asymmetry.

  20. Anomalous fluorescence line intensity in megavoltage bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Pereira, Nino; Litz, Marc; Merkel, George; Schumer, Joseph; Seely, John; Carroll, Jeff

    2009-11-01

    A Cauchois transmission crystal spectrometer intended for laser plasma diagnostics has measured an anomalous ratio between the fluorescence lines in megavoltage bremsstrahlung. When observed in reflection, Kα1 fluorescence is twice as strong as the Kβ line, as is usual. However, in forward-directed bremsstrahlung from a 2 MV end point linear accelerator with a tungsten converter, the Kα1 and Kβ fluorescence are approximately equal. The anomalous fluorescence line ratio, unity, reflects the large amount of fluorescence generated on the side of the converter where the electrons enter, and the differential attenuation of the fluorescence photons as they pass through the converter to opposite side. Understanding of fluorescence in megavoltage bremsstrahlung is relevant to the explanation of anomalous line ratios in spectra produced by high-energy electrons generated by intense femtosecond laser irradiation.

  1. Line Positions, Intensities And Line Shape Parameters Of PH3 Near 4.4 µm

    NASA Astrophysics Data System (ADS)

    Venkataraman, Malathy; Benner, D. C.; Kleiner, I.; Brown, L. R.; Sams, R. L.; Fletcher, L. N.

    2012-10-01

    Accurate knowledge of spectral line parameters in the 2000 to 2400 cm-1 region of PH3 is important for the CASSINI/VIMS exploration of dynamics and chemistry of Saturn and for the correct interpretation of future Jovian observations by JUNO and ESA’s newly-selected mission JUICE. Since the available intensity information for phosphine is inconsistent, we measured line positions and intensities for over 4000 individual transitions in the 2ν2, ν2+ν4, 2ν4, ν1 and the ν3 bands from analyzing high-resolution, high S/N spectra recorded at room temperature using two Fourier transform spectrometers (FTS); the Bruker IFS 125 HR FTS at PNNL and the Kitt Peak FTS at the National Solar Observatory in Arizona. In addition to line positions and intensities, self-broadened half width and self-induced pressure-shift coefficients were also measured for about 800 transitions for the various bands. The strong Coriolis and other types of interactions occurring among the various vibrational levels result in a large number of forbidden transitions as well as cause A+A- splittings in transitions with K″ that are multiples of 3. Line mixing was detected between several A+A- pairs of transitions; and self- line mixing coefficients were measured for several such pairs of transitions by applying the off-diagonal relaxation matrix formalism of Levy et al.1 A multispectrum nonlinear least squares technique2 employing a non-Voigt line shape including line mixing and speed dependence was used in fitting all the spectra simultaneously. Present results are compared with other reported values. This research is supported by NASA’s Outer Planets Research Program. References [1] A. Lévy et al., In “Spectroscopy of the Earth’s Atmosphere and Interstellar Medium”, Ed. K, Narahari Rao and A. Weber, Boston, Academic Press; p, 261-337 (1992). [2] D. C. Benner et al., J Quant. Spectrosc. Radiat. Transfer 53, 705, 1995.

  2. Methane Line Intensities: Near and Far IR

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Devi, V. Malathy; Wishnow, Edward H.; Sung, Keeyoon; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Predoi-Cross, Adriana; Benner, D. Chris

    2014-11-01

    Accurate knowledge of line intensities is crucial input for radiance calculations to interpret atmospheric observations of planets and moons. We have therefore undertaken extensive laboratory studies to measure the methane spectrum line-by-line in order to improve theoretical quantum mechanical modeling for molecular spectroscopy databases (e. g. HITRAN and GEISA) used by planetary astronomers. Preliminary results will be presented for selected ro-vibrational transitions in both the near-IR (1.66 and 2.2 - 2.4 microns) and the far-IR (80 - 120 microns) regions. For this, we have recorded high-resolution spectra (instrumental resolving power: 1,300,000 (NIR) and 10,000 (FIR)) with the Bruker 125HR Fourier transform spectrometer at JPL using isotopically-enriched 12CH4 and 13CH4, as well as normal methane samples. For the NIR wavelengths, three different absorption cells have been employed to achieve sample temperatures ranging from 78 K to 299 K: 1) a White cell set to a path length of 13.09 m for room temperature data, 2) a single-pass 0.2038 m cold cell and 3) a new coolable Herriott cell with a fixed 20.941 m optical path and configured for the first time to a FT-IR spectrometer. For the Far-IR, another coolable absorption chamber set to a 52 m optical path has been used. These new experiments and intensity measurements will be presented and discussed.Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the University of California, Berkeley, Connecticut College, and NASA Langley under contracts and grants with the National Aeronautics and Space Administration. A. Predoi-Cross and her research group have been supported by the National Science and Engineering Research Council of Canada.

  3. Nebular kinematics of planetary nebulae as tests of possible differences of distribution of permitted and forbidden emission lines

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, S.; Arrieta, A.; Georgiev, L.; Richer, M.

    2009-05-01

    In gaseous nebulae the abundances of heavy elements derived from recombination lines are systematically higher than those derived from collisionally excited lines. The possible explanations to obtain compatible solutions are: either to attribute the difference to the presence of temperature inhomogeneities or to the presence of dense clumps of colder enriched material. We have obtained long slit echelle spectrograms in several planetary nebulae to try to shed light on this topic. We present preliminary results for NGC 6543.

  4. Measurements of the intercombination and forbidden lines from helium-like ions in Tokamaks and Electron Beam Ion Traps

    SciTech Connect

    Bitter, M; Hill, K W; von Goeler, S; Stodiek, W; Beiersdorfer, P; Rice, J E; Ince-Cushman, A

    2007-08-22

    The paper reviews the results from tokamak experiments for the line ratios x/w, y/w, and z/w from helium-like ions with Z in the range from 14 to 28. With exception of the DITE experiments, where these line ratios were found to be in agreement with theoretical predictions, all other tokamak experiments yielded values that were significantly larger than predicted. The reasons for these discrepancies are not yet understood. It is possible that radial profile effects were not properly taken into account in the majority of the tokamak experiments. The paper also gives a short historical review of the X-ray diagnostic developments and also presents very recent data from a new type of X-ray imaging crystal spectrometer, which records spatially resolved spectra with a spatial resolution of about 1 cm in the plasma. These new data can be Abel inverted, so that it will be possible to determine line ratios at each radial position in the plasma. Effects of radial profiles, which may have affected the chord-integrated measurements of the past, will thus be eliminated in the future.

  5. Excitation of O(1D) atoms in aurorae and emission of the forbidden OI 6300-A line

    NASA Technical Reports Server (NTRS)

    Rees, M. H.; Roble, R. G.

    1986-01-01

    The electron aurora leads to six processes capable of exciting the O(1D2) metastable state of the atomic-oxygen ground-state configuration, the parent state of the 6300-A red line. Altitude profiles of the volume emission rate resulting from each process are computed for Maxwellian electron spectra with characteristic energies between 0.1 and 2.0 keV. Since each process peaks at a different altitude, the sum or total volume emission rate extends over a wide altitude range. Measurements of 6300-A emission obtained by rocket and satellite-borne instruments are summarized, and it is shown that the chemical reaction of N(2D) with O2 is the major source of O(1D) atoms in the electron aurora. New calculations of the 6300-A:4728-A column emission-rate ratio are presented for a range of characteristic energies in an assumed Maxwellian electron spectrum. An approximate equation for the red-line emission per unit energy input is given as a function of electron-spectrum characteristic energy.

  6. Forbidden Iron Lines and Dust Destruction in Supernova Remnant Shocks: The Case of N49 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Seitenzahl, Ivo R.; Sutherland, Ralph S.; Vogt, Frédéric P. A.; Winkler, P. Frank; Blair, William P.

    2016-08-01

    We present the results of a complete integral-field survey of the bright supernova remnant (SNR) N49 in the Large Magellanic Cloud, obtained with the WiFeS instrument mounted on the ANU 2.3 m telescope at Siding Spring Observatory. From theoretical shock modeling with the new MAPPINGS 5.1 code, we have, for the first time, subjected the optical Fe emission line spectrum of an SNR to a detailed abundance and dynamical analysis covering eight separate stages of ionization. This allows us to derive the dust depletion factors as a function of ionization stage. We have shown that there is substantial (30%–90%) destruction of Fe-bearing dust grains in these fast shocks (v s ˜ 250 km s‑1), and we have confirmed that the dominant dust destruction occurs through the non-thermal sputtering and grain–grain collision mechanisms developed in a number of theoretical works.

  7. Forbidden Iron Lines and Dust Destruction in Supernova Remnant Shocks: The Case of N49 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Seitenzahl, Ivo R.; Sutherland, Ralph S.; Vogt, Frédéric P. A.; Winkler, P. Frank; Blair, William P.

    2016-08-01

    We present the results of a complete integral-field survey of the bright supernova remnant (SNR) N49 in the Large Magellanic Cloud, obtained with the WiFeS instrument mounted on the ANU 2.3 m telescope at Siding Spring Observatory. From theoretical shock modeling with the new MAPPINGS 5.1 code, we have, for the first time, subjected the optical Fe emission line spectrum of an SNR to a detailed abundance and dynamical analysis covering eight separate stages of ionization. This allows us to derive the dust depletion factors as a function of ionization stage. We have shown that there is substantial (30%–90%) destruction of Fe-bearing dust grains in these fast shocks (v s ∼ 250 km s‑1), and we have confirmed that the dominant dust destruction occurs through the non-thermal sputtering and grain–grain collision mechanisms developed in a number of theoretical works.

  8. C II forbidden-line 158 micron mapping in Sagittarius A Rotation curve and mass distribution in the galactic center

    NASA Technical Reports Server (NTRS)

    Lugten, J. B.; Genzel, R.; Crawford, M. K.; Townes, C. H.

    1986-01-01

    Based on data obtained with the NASA Kuiper Airborne Observatory 91.4 cm telescope, the 158-micron fine structure line emission of C(+) is mapped near the galactic center. The strongest emission comes from a 10-pc FWHM diameter disk centered on Sgr A West whose dominant motion is rotation. Extended C(+) emission is also found from the +50 km/s galactic center molecular cloud, and a second cloud at v(LSR) of about -35 km/s. The rotation curve and mass distribution within 10 pc of the galactic center are derived, and the C(+) profiles show a drop-off of rotation velocity between 2 and 10 pc. A mass model is suggested with 2-4 million solar masses in a central point mass, and a M/L ratio of the central stellar cluster of 0.5 solar masses/solar luminosities, suggesting a large abundance of giants and relatively recent star formation in the center.

  9. Gamma-ray line intensities for depleted uranium

    SciTech Connect

    Moss, C.E.

    1985-01-01

    Measurements of the gamma-ray line intensities from depleted uranium allowed us to determine which of two conflicting previous experiments was correct. For the 1001-keV line we obtain a branching ratio of 0.834 +- 0.007, in good agreement with one of the previous experiments. A table compares our intensities for several lines with those obtained in previous experiments. 5 refs., 2 figs., 1 tab.

  10. Study of NH3 Line Intensities in the THz and Far-IR Region

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan

    Ammonia (NH3) exists in the interstellar medium, late-type stars and giant planets of our solar system. Its temperature and abundance profiles in these environments, which are derived with its line parameters as fixed input , are commonly used to provide constraints on retrieving minor species. Therefore NH3 line parameters are essential for interpreting astrophysical and planetary spectra from Herschel, SOFIA, ALMA and JWST. However, our work under a predecessor grant with the APRA program revealed significant deficiencies in NH3 intensities in the terahertz and FIR region, including some weak Delta(K)=3 forbidden transitions predicted to be 100 times stronger. The Delta(K)=3 transitions are the ones connecting levels with different K values and therefore the only way other than collisions and l-doubled states to excite NH3 to K>0 levels. Their intensities have to be corrected to explain the observed high K excitation, such as the detection of NH3 (J,K) = (1,1), (2,2)&(14,14) and (18,18) transitions toward the galactic center star forming region Sgr B2, and to provide insights into the radiative- transfer vs. collision excitation mechanics of interstellar NH3. This proposal will remedy the serious deficiencies in the current databases involving NH3 line parameters in the terahertz and FIR region. We will target transitions with intensities greater than 10^{-23} cm-1/ (molecule/cm2) at 296 K, which will be among new astrophysical detections made by SOFIA, ALMA and JWST, and are 1000 times weaker than the strongest ground state transitions. We will retrieve new positions and intensities from existing laboratory spectra, use them to evaluate the current databases and ab initio calculations, and repair the line positions and intensities by replacing poorly calculated values with our new measurements. The proposed research will result in (1) a validated linelist containing the positions, intensities and lower state energies for the very important Delta(K)=3 NH3 FIR

  11. Line intensities: the good, the bad and the ugly

    NASA Technical Reports Server (NTRS)

    Brown, L. R.

    2000-01-01

    Atmospheric remote sensing requires that line intensities be measured and modeled to 5 percent or better in laboratory studies. Successes and failures for analyses of carbon monoxide, methane, methanol and nitric acid will be reviewed.

  12. Line Intensities of the Phosphine Dyad at 10 mu m

    SciTech Connect

    Brown, Linda R.; Sams, Robert L.; Kleiner, Isabelle; Cottaz, C; Sagui, L

    2002-10-01

    Over 1000 measured line intensities of phosphine (PH3) are reported for the 830 to 1310 cm-1 region that contains the two lowest fundamentals in Coriolis interaction. These measurements are fitted to 1.5% for v2 at 992.13 cm-1 for v4 at 1118.31 cm-1, respectively, using five intensity parameters that include three Herman-Wallis type terms. In addition, some 60 intensities of the 2v2-v2 hot band are modeled. The corresponding assignments and line positions of the dyad from previous work [L. Fusina and G. Di Lonardo, J. Mol. Struct. 517-518, 67-78 (2000)] are combined with the present intensity study to provide an improved PH3 database for planetary studies. The total integrated intensity for the dyad is 156.(4) cm-2atm-1 at 296 K.

  13. The Forbidden Quantum Adder

    NASA Astrophysics Data System (ADS)

    Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E.

    2015-07-01

    Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices.

  14. The Forbidden Quantum Adder.

    PubMed

    Alvarez-Rodriguez, U; Sanz, M; Lamata, L; Solano, E

    2015-01-01

    Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices. PMID:26153134

  15. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  16. Forbidden coronal iron emission in the Cygnus Loop

    SciTech Connect

    Teske, R.G. )

    1990-12-01

    Forbidden iron line images of parts of the Cygnus Loop supernova remnant are reported and discussed. Images in both the red and green lines on the rim of NGC 6995 cannot be well interpreted in terms of cloud evaporation, and instead support the reflected shock model of Hester and Cox (1986). On the northeast rim both lines are brightest at the radiative filaments of NGC 6992 and fade to invisibility in the remnant's interior, in agreement with the sheet model for the Cygnus Loop. Forbidden Fe X emission is also found just behind some of the nonradiative filaments lying northeast of the main optical nebulosity, at a location quantitatively consistent with the cosmic-ray shock model of Boulares and Cox (1988). However, the forbidden Fe X and forbidden Fe IV data taken together also qualitatively agree with a hydrodynamic shock and cavity explosion model for the event which created the Cygnus Loop. 20 refs.

  17. Observation of forbidden C II 158 micron emission from the diffuse interstellar medium at high Galactic latitude

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Hristov, V. V.; Kawada, M.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Mauskopf, P. D.; Richards, P. L.; Tanaka, M.; Lange, A. E.

    1993-01-01

    We report the first detection of forbidden C II 158 micron line emission from the diffuse interstellar medium at high Galactic latitude. We have measured the integrated line intensity in a 36 arcmin field of view along a triangular scan path in a 5 x 20 deg region in Ursa Major using a rocket-borne, liquid-helium-cooled spectrophotometer. The scan included high-latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the H I Hole, which is a region of uniquely low neutral hydrogen column density. Emission from forbidden C II is observed in all regions, and, in the absence of appreciable CO emission, it is well correlated with neutral hydrogen column density. We observe a forbidden C II gas cooling rate which varies from (1.18 +/- 0.4 to 3.25 +/- 0.8) x 10 exp -26 ergs/s/H atom. Regions with CO emission have enhanced forbidden C II line emission over that expected from the correlation with neutral hydrogen column density. We measure a line-to-continuum ratio which varies from 0.002 to 0.008 in comparison with the all-sky average of 0.0082 reported by FIRAS, which is heavily weighted toward the Galactic plane.

  18. Empowering line intensity mapping to study early galaxies

    NASA Astrophysics Data System (ADS)

    Comaschi, P.; Ferrara, A.

    2016-09-01

    Line intensity mapping is a superb tool to study the collective radiation from early galaxies. However, the method is hampered by the presence of strong foregrounds, mostly produced by low-redshift interloping lines. We present here a general method to overcome this problem which is robust against foreground residual noise and based on the cross-correlation function ψαL(r) between diffuse line emission and Lyα emitters (LAE). We compute the diffuse line (Lyα is used as an example) emission from galaxies in a (800Mpc)3 box at z = 5.7 and 6.6. We divide the box in slices and populate them with 14000(5500) LAEs at z = 5.7(6.6), considering duty cycles from 10-3 to 1. Both the LAE number density and slice volume are consistent with the expected outcome of the Subaru HSC survey. We add gaussian random noise with variance σN up to 100 times the variance of the Lyα emission, σα, to simulate residual foregrounds and compute ψαL(r). We find that the signal-to-noise of the observed ψαL(r) does not change significantly if σN ≤ 10σα and show that in these conditions the mean line intensity, ILyα, can be precisely recovered independently of the LAE duty cycle. Even if σN = 100σα, Iα can be constrained within a factor 2. The method works equally well for any other line (e.g. [CII], HeII) used for the intensity mapping experiment.

  19. High intensity line source for x-ray spectrometer calibration

    SciTech Connect

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 ..mu.. x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10/sup 4/) time-resolved cyrstal spectrometer, will be discussed in detail.

  20. Asymmetric variations of the coronal green line intensity

    NASA Astrophysics Data System (ADS)

    Tritakis, V. P.; Petropoulos, B.; Mavromichalaki, H.

    1988-09-01

    The analysis of the daily measurements of the coronal green line intensity, which have been extensively tested for homogeneity and freedom of trends observed at the Pic-du-Midi observatory during the period 1944 - 1974, has revealed some characteristic asymmetric variations. The NW solar-quarter appears to be the most active of all in the 22-yr cycle 1949 - 1971, while in the periods 1944 - 1948 and 1972 - 1974 the SW quarter is the most active. The green line intensity distribution shows that the maximum values of the asymmetries occur in heliocentric sectors ±10° - 20° far from the solar equator on both sides of the central meridian. Physical mechanisms like different starting time of an 11-yr solar cycle in the two solar hemispheres, the motion of the Sun towards the Apex, and short-lived "active" solar longitudes formed by temporal clustering of solar active centers, have been discussed.

  1. Differential imaging of forbidden Fe X in IC 443

    NASA Technical Reports Server (NTRS)

    Brown, Larry W.; Woodgate, Bruce E.; Petre, Robert

    1988-01-01

    This paper presents images of two areas of the supernova remnant IC 443 showing emission from the forbidden 6374 A red coronal line taken with an emission-line differential imaging camera. The areas are in the vicinity of strong soft X-ray emission as observed with the Einstein Observatory. The forbidden Fe X emission is patchy on the scale of seconds of arc. For the brightest emission regions, an electron density of approximately 60/cu cm and gas pressures of 0.l7 x 10 to the 8th/cu cm K are found. These estimates are speculative because of the large correction for interstellar dust, and the assumption of sheetlike structure. Although this region has the highest average surface brightness, no direct correlation is found between the X-ray and forbidden Fe X knots. The implied physical conditions in the region suggest that the forbidden Fe X knots are being evaporated.

  2. Interpreting the Unresolved Intensity of Cosmologically Redshifted Line Radiation

    NASA Astrophysics Data System (ADS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2015-12-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically ~102-103 times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of foregrounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  3. Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation

    NASA Technical Reports Server (NTRS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2016-01-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  4. Model for the intense molecular line emission from OMC-1

    SciTech Connect

    Draine, B.T.; Roberge, W.G.

    1982-08-15

    We present a model which attributes the observed H/sub 2/ and CO line emission OMC-1 to a magnetohydrodynamic shock propagating into magnetized molecular gas. By requiring the shock to reporoduce the observed line intensities, we determine the shock speed to be v/sub s/roughly-equal38 km s/sup -1/ and the preshock density and (transverse) magnetic field to be n/sub H/roughly-equal7 x 10/sup 5/ cm/sup -3/, B/sub O/roughly-equal1.5 milligauss. The model is compared to observations of H/sub 2/, CO, OH, O I, and C I in emission and of CO in absorption. The shock gas may be detectible in H I 21 cm emission.

  5. Atomic data and spectral line intensities for S IX

    NASA Astrophysics Data System (ADS)

    Bhatia, A. K.; Landi, E.

    2003-09-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for the O-like ion S IX. The configurations used are 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, and 2s 22p 33d giving rise to 86 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 25, 50, 75, 100, and 125 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at several electron temperatures in the 5.6 ⩽log Te (K)⩽6.2 range, where S IX is formed. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10 8-10 14 cm -3. Relative spectral line intensities are calculated. Proton excitation rates among the lowest three levels have been included in the statistical equilibrium equations. The predicted S IX line intensities are compared with SUMER (SOHO) observations of the quiet Sun.

  6. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.

  7. Large-scale forbidden C II 158 micron emission from the Galaxy

    NASA Technical Reports Server (NTRS)

    Shibai, Hiroshi; Okuda, Haruyuki; Nakagawa, Takao; Matsuhara, Hideo; Maihara, Toshinori

    1991-01-01

    A diffuse FIR C II forbidden emission line was detected in an extensive region (l = 30-51 deg) along the Galactic plane; the line is bright and extended far from discrete luminous H II regions. The diffuse forbidden C II emission probably originates from the photodissociated C(+) regions enveloping giant molecular clouds exposed to the general interstellar ultraviolet radiation field.

  8. Atomic Data and Emission Line Intensities for CA VII

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2003-01-01

    In the present work we calculate energy levels, transition probabilities and electron-ion collisional excitation rates for the 3s(sup 2)3p(sup 2), 3s3p(sup 3) and 3s(sup 2)3p3d configurations of the silicon-like ion Ca VII. The total number of intermediate coupling levels considered is 27. Collision strengths are calculated at seven incident electron energies: 8, 10, 15, 20, 30,40 and 60 Ry, using the Distorted Wave approximation and a 5-configuration model. Excitation rate coefficients are calculated by assuming a Maxwellian distribution of velocities and are used to calculate level populations and line emissivities under the assumption of statistical equilibrium. Line intensity ratios are calculated and compared with observed values measured from SERTS and SOHO/CDS spectra. The diagnostic potential of Ca VII is demonstrated, with particular emphasis on the possibility to measure the Ne/Ca relative abundance through simultaneous observations of Ca VII and N VI lines. Ca VII proves to be an excellent tool for the study of the FIP effect in the solar transition region.

  9. Atomic Data and Spectral Line Intensities for Ni XXI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XXI. The configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2p(sup 6), 2s(sup 2)2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 58 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 85, 170, 255, 340, and 425 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of log T(sub e)(K)=6.9, corresponding to maximum abundance of Ni XXI. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted intensity ratios are compared with available observations.

  10. Ft-Ir Measurements of NH_3 Line Intensities in the 60 - 550 CM-1 Using Soleil/ailes Beamline

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Yu, Shanshan; Pearson, John; Manceron, Laurent; Kwabia Tchana, F.; Pirali, Olivier

    2015-06-01

    Ammonia (NH_3) has been found ubiquitous, e.g., in the interstellar medium, low-mass stars, Jovian planets of our solar system, and possibly in the low temperature exoplanets. Their spectroscopic line parameters are essential in the accurate interpretation of the planetary and astrophysical spectra observed with Herschel, SOFIA, ALMA, and JWST. In our previous paper, the NH_3 line positions in the far-IR region were studied for the ground state and ν_2 in an unprecedented accuracy, which revealed significant deficiencies in the NH_3 intensities, for instance, some weak ΔK = 3 lines were predicted to be ~100 times stronger. Measurement of line intensity for these lines in a consistent manner is demanded because the ΔK = 3 forbidden lines are only way other than collisions and l-doubled states to excite NH_3 to K > 0 levels. Recalling that NH_3 transition lines in the high J and K up to 18 were detected toward the galactic center in the star forming region of Sgr B_2, their accurate intensity measurements are critical in explaining the observed high K excitation, which will provide insights into radiative-transfer vs.levels. The interaction between a large amplitude torsional motion and the hyperfine coupling may also lead to a less known hyperfine effect, the so-called magnetic spin-torsion coupling, which was first studied by Heuvel and Dymanus and which has not yet been conclusively evidenced. In this talk, the magnetic hyperfine structure of the non-rigid methanol molecule will be investigated experimentally and theoretically. 13 hyperfine patterns were recorded using two molecular beam microwave spectrometers. These patterns, along with previously recorded ones,^c were analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling. The theoretical approach setup to analyze the observed data accounts for the spin-torsion coupling, in addition to the familiar magnetic spin-rotation and spin-spin couplings, and relies on symmetry

  11. Radio lobes and forbidden O III profile substructure in Seyfert galaxies

    SciTech Connect

    Whittle, M.; Pedlar, A.; Unger, S.W.; Axon, D.J.; Meurs, E.J.A.

    1988-03-01

    High spatial and spectral resolution observations are presented for 10 Seyfert galaxies in the H-beta-forbidden O III 5007 A spectral region. In most of the objects, there is evidence for forbidden O III profile substructure, which appears to be most conspicuous close to the location of a radio lobe. The relative intensities of forbidden O III component emission and ambient forbidden O III emission vary greatly from object to object. A control sample shows little evidence for spatially resolved forbidden O III profile substructure. The forbidden O III components usually have high excitation. The component velocities can fall well outside the maximum galactic rotation amplitude and, in some cases, are opposite to the sense of rotation. This strongly suggests that the component gas does not rotate with the rest of the galactic gas but is instead undergoing systematic outflow. 47 references.

  12. a Nonhydrostatic Modeling Analysis of AN Intense Midlatitude Squall Line.

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Jen

    1995-01-01

    Nonhydrostatic modeling shows that the convective cells of a squall line, which occurred over Kansas and Oklahoma on 10-11 June 1985, behaves as gravity waves. In the simulation, the gust front generates a continuous low -level updraft. Updraft cells periodically break away from the gust-front updraft and move at their associated gravity -wave phase speeds. Linear theory shows that waves are trapped in the troposphere because of the strong decrease of Scorer parameter with height. Linear theory predicts the gravity-wave amplitudes, quadrature relations, and the gravity-wave periods. The stronger front-to-rear propagation mode dominates in the mature stage of the storm. The decrease of Scorer parameter with height encountered by the rearward propagating waves is a product of the storm circulation. The drop-off in Scorer parameter with height is a manifestation of the shear between ascending front-to-rear and descending rear-to-front flows of the squall-line system. The squall line produces an environment conducive to trapping rearward propagating gravity waves generated at the gust front. Numerical experiments show that the rear inflow and related aspects of storm structure are sensitive to hydrometer types, ice-phase microphysics, and the midlevel environmental humidity. Ice-phase microphysics is important for the model to produce realistic air motions and precipitation in the stratiform region. With the occurrence of heavy hailstones, there is no enhanced rear-to-front flow at the back edge of the storm. Evaporation is the most important latent cooling process determining the structure and strength of the descending rear inflow and the mesoscale downdraft. Latent cooling by melting snow enhances the strength of the rear -to-front flow at the back edge of storm and the intensity of mesoscale downdraft. Mesoscale downdraft is initiated above the rm 0^circC level by sublimational cooling. With the environmental midlevel moisture reduced by half, mesoscale downdrafts

  13. Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds

    NASA Technical Reports Server (NTRS)

    Crawford, M. K.; Genzel, R.; Townes, C. H.; Watson, D. M.

    1985-01-01

    Observations of the 158 microns fine-structure line of C(+) toward the nuclei of six gas-rich galaxies are presented. The observations are compared with observations of the CO J = 1-0 and H I 21 cm lines, observations of far-IR continuum emission, and observations of forbidden C II emission with the Galaxy. The forbidden C II line comes from dense, warm gas in UV-illuminated photodissociation regions at the surfaces of molecular clouds. This line is probably optically thin in all but the brightest of galactic sources. The variation of forbidden C II brightness from source to source and its ratio to the integrated infrared continuum intensity agree well with the theoretical prediction that UV absorption by dust controls the C(+) column density. The forbidden C II line is a tracer of molecular clouds, especially those near intense sources of UV radiation.

  14. Distribution of forbidden neutral carbon emission in the ring nebula (NGC 6720)

    NASA Technical Reports Server (NTRS)

    Jewitt, D. C.; Danielson, G. E.; Kupferman, P. N.; Maran, S. P.

    1983-01-01

    The spatial distribution of forbidden C I 9823, 9850 A emission in NGC 6720 is reported. Like forbidden O I, the forbidden C I radiation appears enhanced in the region of the bright filaments. A few percent of the carbon atoms in the filaments are neutral. The neutral fraction is consistent with ionization equilibrium calculations made under the assumption of complete shielding of direct stellar radiation by hydrogen. The observed carbon lines are excited by photoelectrons produced from hydrogen by the nebular diffuse radiation field. The forbidden C I observations confirm that the filaments in NGC 6720 are regions of locally enhanced shielding.

  15. Atomic Data and Spectral Line Intensities for Ca IX

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2012-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n = 3, 4, 5 complexes, corresponding to 283 fine structure levels in the 3l3l ', 3l4l'' and 3l4l''' configurations, where l,l' = s, p, d, l '' = s, p, d, f and l''' = s, p, d, f, g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6 and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cubic cm range and at an electron temperature of log T(sub e)(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.

  16. Atomic Data and Spectral Line Intensities for Ni XV

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XV.Weinclude in the calculations the 9 lowest configurations, corresponding to 126 fine structure levels: 3s23p2, 3s3p3, 3s23p3d, 3p4, 3s3p23d, and 3s2 3p4l with l =, s, p, d, f. Collision strengths are calculated at five incident energies for all transitions: 7.8, 18.5, 33.5, 53.5, and 80.2 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.004 and 0.28 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted-wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cu cm range and at an electron temperature of log T(sub e)(K) = 6.4, corresponding to the maximum abundance of Ni XV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  17. Atomic Data and Spectral Line Intensities for NI XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database

  18. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  19. Atomic Data and Spectral Line Intensities for Ni XI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2010-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XI. We include in the calculations the 10 lowest configurations, corresponding to 164 fine structure levels: 3s(sup 2)3p(sup 6), 3s(sup 2)3p(sup 5)3d, 3s(sup 2)3p(sup 4)3d(sup 2), 3s3p(sup 6)3d, 3s(sup 2)3p(sup 5)4l and 3s3p6 4l with l =.s, p, d. Collision strengths are calculated at five incident energies for all transitions: 7.1, 16.8, 30.2, 48.7 and 74.1 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.06 Ry and 0.25 Ry depending on the lower level. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, combined with Close Coupling collision excitation rate coefficient available in the literature for the lowest 17 levels, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14) cu cm range and at an electron temperature of logT(sub c)(K)=6.1, corresponding to the maximum abundance of Ni XI. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  20. Atomic data and spectral line intensities for Ca IX

    SciTech Connect

    Landi, E.; Bhatia, A.K.

    2014-11-15

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n=3,4, and 5 complexes, corresponding to 283 fine-structure levels in the 3l3l{sup ′}, 3l4l{sup ″}, and 3l5l{sup ‴} configurations, where l,l{sup ′}=s,p,d, l{sup ″}=s,p,d,f and l{sup ‴}=s,p,d,f,g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6, and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10{sup 8}–10{sup 14}  cm{sup −3} and at an electron temperature of logT{sub e}(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.

  1. Atomic Data and Spectral Line Intensities for CA XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A.K.; Landi, E.

    2007-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca XVII. The configurations used are 2s(sup 2), 2s2p, 2p(sup 2), 2l3l', 214l' and 2s5l', with l = s,p and l' = s,p, d giving rise to 92 fine-structure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (15, 30, 75, 112.5, 150, 187.5 and 225 Ry) for the transitions within the three lowest configurations corresponding to the 10 lowest energy levels, and five incident energies (75, 112.5, 150, 187.5 and 225 Ry) for transitions between the lowest five levels and the n = 3,4,5 configurations. Calculations have been carried out using the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, and R-Matrix results for the 2s2, 2s2p, 2p2 configurations available in the literature, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14)/cu cm at an electron temperature of log Te(K)=6.7, corresponding to the maximum abundance of Ca XVII. Spectral line intensities are calculated, and their diagnostic relevance L; discussed. This dataset will be made available in the next version of the CHIANTI database.

  2. Effect of Sodium Chloride on the Intensity of the Spectral Lines of Elements During ARC Discharge

    NASA Astrophysics Data System (ADS)

    Strunina, N. N.; Baisova, B. T.

    2016-01-01

    The effect of the carrier (NaCl) during arc discharge on the intensity of the lines for elements with various ionization potentials (Al, Ca, Fe, Mg, Si, Ti, Zn) was investigated. It was found that the intensity of the spectral lines of the elements increases with increase in the concentration of the carrier. The relative roles of the factors responsible for the increase in the intensity of the spectral lines (the plasma temperature, the intensity of the spectral lines of the elements, and the degree of ionization of the elements, the fl ow rate and residence time of the atoms in the plasma) were analyzed.

  3. Calculation of Intensity Ratios of Observed Infrared [Fe II] Lines

    NASA Astrophysics Data System (ADS)

    Deb, Narayan C.; Hibbert, Alan

    2010-03-01

    Two recent observational studies of the [Fe II] λ12567/λ16435 line ratio by Smith & Hartigan and Rodriguez-Ardila et al. have suggested that the available theoretical A-values could be incorrect to 10%-40%. We have carried out an extensive configuration interaction calculation of [Fe II] lines to investigate this claim, as well as the variability in observed line ratios for λ8617/λ9052 and λ8892/λ9227 of Dennefeld. For these transitions, we are generally in good agreement with the results of Nussbaumer & Storey, less so with those of Quinet et al. In comparison, the ratios derived from observations appear either to be less secure, or other factors influence those results.

  4. E1-forbidden transition rates in ions of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Träbert, E.

    2014-11-01

    Transition rates in atomic systems may appear to be of little importance in steady-state plasmas that are observed at great distances from Earth. However, some of the transition rates compete with collision rates, and in these cases certain line intensity ratios are affected and can serve as remote indicators of density. In the low-density environments of stellar coronae and planetary nebulae, the transition rates of interest are mostly spin-forbidden E1 decays, higher-multipole order transitions (M1, E2, M2, M3), and hyperfine-induced transitions. On Earth, measurements of the long upper level lifetimes of these atomic systems require the use of ion traps. A fair number of test cases with lifetimes in the range from nanoseconds to many seconds have been treated successfully, and the evolution of calculations along with the experimental progress is notable. A new generation of cold ion traps is expected to extend the atomic lifetime measurements on multiply charged ions into the range of many minutes.

  5. Spectrum line intensity as a surrogate for solar irradiance variations.

    PubMed

    Livingston, W C; Wallace, L; White, O R

    1988-06-24

    Active Cavity Radiometer Irradiance Monitor (ACRIM) solar constant measurements from 1980 to 1986 are compared with ground-based, irradiance spectrophotometry of selected Fraunhofer lines. Both data sets were identically sampled and smoothed with an 85-day running mean, and the ACRIM total solar irradiance (S) values were corrected for sunspot blocking (S(c)). The strength of the mid-photospheric manganese 539.4-nanometer line tracks almost perfectly with ACRIM S(e), Other spectral features formed high in the photosphere and chromosphere also track well. These comparisons independently confirm the variability in the ACRIM S(e), signal, indicate that the source of irradiance is faculae, and indicate that ACRIM S(e), follows the 11-year activity cycle. PMID:17842428

  6. FT-IR measurements of mid-IR propene (C3H6) cross sections and far-IR ammonia (NH3) line intensities

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Toon, Geoffrey C.; Crawford, Timothy J.; Yu, Shanshan; Pearson, John C.; Kwabia Tchana, Fridolin; Manceron, Laurent; Pirali, Olivier

    2015-11-01

    We present spectroscopy measurements of propene (C3H6) in the mid-infrared and ammonia (NH3) in the far-infrared from two different laboratory studies. [1] For propene (CH2-CH-CH3, alias. propylene), which was detected in the stratosphere of Titan [Nixon et al. 2013], temperature dependent cross sections in the 650 - 1530 cm-1 (6.5 - 15.3 μm) have been measured from a series of high-resolution (0.0022 cm-1) spectra of pure and N2-mixture samples of C3H6 recorded at 150 - 296 K at Jet Propulsion Laboratory. The observed spectral features cover the strongest v19 band with its outstanding Q-branch peak at 912 cm-1 and three other strong bands of v18, v16 and v7 at 990, 1442, and 1459 cm-1, respectively. In addition, we have generated a HITRAN-format empirical ‘pseudoline list' containing line positions, intensities, and effective lower state energies by fitting all the observed spectra simultaneously. The results are compared with early work from relatively warm temperatures (278 - 323 K). [2] For ammonia (NH3), we obtained multiple sets of high-resolution spectra in the THz and far-infrared region (50 - 650 cm-1) at room temperature using AILES beamline at Synchrotron SOLEIL, France (NH3). In this work, we have measured line intensities for more than 4500 transitions, and made quantum assignments for ~2900 lines including ~960 very weak ΔK = 3 forbidden lines. Final results will be compared with the current databases (e.g., HITRAN, GEISA) and ab initio calculations. [Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Sung and Yu acknowledge the Synchrotron Soleil for the AILES beam line time.

  7. Forbidden O III electron temperature in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Aggarwal, K. M.

    1989-06-01

    The electron-temperature-sensitive emission-line ratio I(2s2 2p2 1D - 2s2 2p2 1S)/I(2s2 2p2 3P1,2 - 2s2 2p2 1D) = I(4363 A)/I(4959 + 5007 A) has been determined based upon relative level populations for O III obtained using impact excitation rates calculated with the R-matrix code. Results are presented for a temperature range which is applicable to planetary nebulae. Electron temperatures derived from the observed R values of several planetary nebulae agree well with those determined from electron-temperature-sensitive line ratios is such other species as (semiforbidden C III)/C II, forbidden N II, and forbidden Ar II.

  8. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    A number of satellites and rockets have been launched to observe radiation from the Sun and other astrophysical objects. Line radiation is emitted when the electron impact excited levels decay to the lower levels by photon emission. From this radiation, the physical parameters such as electron temperature and density of the astrophysical plasma, elemental abundance, and opacity can be inferred. Ne III lines have been observed in H II regions, Ne-rich filaments in supernovae, and planetary nebulae. The allowed line at 489.50 Angstroms due to the transition 2s(sup 2) 2p(sup 5) (sup 3) P2 (goes to) 2s(sup 2)2p(sup 4)(sup 3)P2 has been identified in the solar spectrum by Vernazza and Reeves using Skylab observations. Other Ne III lines in the solar EUV spectrum have been reported by Thomas and Neupert based on observations from the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. Atomic data for Ne III have been calculated by using a set of programs developed at, University College, London. The Superstructure and Distorted Wave (DW) programs have been updated over the years. In the Superstructure program, configuration interaction can be taken into account and radial functions are calculated in a modified Thomas-Fermi-Amaldi potential. This is a statistical potential and depends on parameters lambda 1 which are determined by optimizing the weighted sum of term energies. They are found to be lambda(sub 0)=1.2467, lambda(sub 1)=1.1617, and lambda(sub 2)=1.0663. The relativistic corrections are included by using the Breit-Pauli Hamiltonian as a perturbation to the nonrelativistic Hamiltonian. The same potential is used to calculate reactance matrices in the DW approximation in LS coupling. Collision strengths in intermediate coupling are obtained by using term coupling coefficients obtained from the Superstructure program. In this calculation, the configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2s(sup 2)2p(sup 3)3s, 2s(sup 2)p(sup 3)3d giving rise

  9. Electron impact excitation of Mg VIII . Collision strengths, transition probabilities and theoretical EUV and soft X-ray line intensities for Mg VIII

    NASA Astrophysics Data System (ADS)

    Grieve, M. F. R.; Ramsbottom, C. A.; Keenan, F. P.

    2013-08-01

    Context. Mg viii emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg viii emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics. Aims: Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg viii ion. The 125 levels arise from the 2s22p, 2s2p2, 2p3, 2s23s, 2s23p, 2s23d, 2s2p3s, 2s2p3p, 2s2p3d, 2p23s, 2p23p and 2p23d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg viii models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 Å, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 Å) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data. Methods: The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg viii models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas. Results: The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the

  10. Catalogue of equivalent widths and line intensities for prominences observed during 1964-1965

    NASA Technical Reports Server (NTRS)

    Rakhubovskiy, A. S.

    1973-01-01

    The method of observation and processing of the prominence spectra are described briefly. The equivalent widths, central intensities, half-widths and Doppler halfwidths are presented of the emission lines of the prominences.

  11. A room temperature CO2 line list with ab initio computed intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergey A.; Perevalov, Valery I.

    2016-07-01

    Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate ab initio dipole moment surface (DMS). The theoretical model developed is used to compute CO2 intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all 12C16O2 transitions below 8000cm-1 and stronger than 10-30 cm/molecule at T = 296 K.

  12. On the line intensity ratios of prominent Si II, Si III, and Si IV multiplets

    NASA Astrophysics Data System (ADS)

    Djeniže, S.; Srećković, A.; Bukvić, S.

    2010-01-01

    Line intensities of singly, doubly and triply ionized silicon (Si II, Si III, and Si IV, respectively) belonging to the prominent higher multiplets, are of interest in laboratory and astrophysical plasma diagnostics. We measured these line intensities in the emission spectra of pulsed helium discharge. The Si II line intensity ratios in the 3 s3 p22D-3 s24 p2Po, 3 s23 d2D-3 s24 f2Fo, and 3 s24 p2Po-3 s24 d2D transitions, the Si III line intensity ratios in the 3 s3 d3D-3 s4 p3Po, 3 s4 p3Po-3 s4 d3D, 3 s4 p3Po-3 s5 s3S, 3 s4 s3S-3 s4 p3Po, and 3 s4 f3Fo-3 s5 g3G transitions, and the Si IV line intensity ratios in the 4 p2Po-4 d2D and 4 p2Po-5 s2S transitions were obtained in a helium plasma at an electron temperature of about 17,000 ± 2000 K. Line shapes were recorded using a spectrograph and an ICCD camera as a highly-sensitive detection system. The silicon atoms were evaporated from a Pyrex discharge tube designed for the purpose. They represent impurities in the optically thin helium plasma at the silicon ionic wavelengths investigated. The line intensity ratios obtained were compared with those available in the literature, and with values calculated on the basis of available transition probabilities. The experimental data corresponded well with line intensity ratios calculated using the transition probabilities obtained from a Multi Configuration Hartree-Fock approximation for Si III and Si IV spectra. We recommend corrections of some Si II transition probabilities.

  13. Forbidden Ca II in the sun unmasked by way of Venus

    NASA Technical Reports Server (NTRS)

    Schorn, R. A.; Young, A. T.; Barker, E. S.

    1975-01-01

    Eleven high dispersion spectra of Venus, taken with blue Doppler shifts, have been used to unmask the 7323.88 angstrom forbidden line of Ca II from the earth atmospheric H2O absorption line at 7323.972 angstroms. An equivalent width for the Ca II line has been obtained in integrated sunlight. A model giving the solar calcium abundance is presented.

  14. Expected intensities of solar neon-like ions

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1985-01-01

    A study of the expected intensities of the stronger solar neon-like ion emission lines, some not yet observed, is carried out to compare with the observational situation. The potential usefulness of the 2p5 3s(3P2) - 2p6 forbidden line as a density diagnostic is discussed, and new electric quadrupole lines in the soft X-ray range are noted. 'Observability diagrams' are presented as a convenient overview of the known and unobserved lines. The S VII resonance lines appear to have anomalous intensities.

  15. Emission intensities and line ratios from a fast neutral helium beam

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Craig, D.; Fiksel, G.; Den Hartog, D. J.; Anderson, J. K.; O'Mullane, M. G.

    2007-08-01

    The emission intensities and line ratios from a fast neutral helium beam is investigated in the Madison Symmetric Torus (MST) [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 1991]. Predicted He I line intensities and line ratios from a recently developed collisional-radiative model are compared with experiment. The intensity of singlet lines comes mostly (>95%) from the contribution of the ground state population and is very weakly dependent on the initial metastable fraction at the observation point in the plasma core. On the other hand, the intensity of triplet lines is strongly affected by the local metastable state (21S and 23S) populations and the initial metastable fraction plays an important role in determining line intensities. The fraction of local metastable states can only be estimated by making use of electron temperature (Te), electron density (ne), and effective ion charge (Zeff) profiles as inputs to the population balance equations. This leads triplet lines to be unusable for the investigation of their local plasma parameter dependence. The ratio of singlet lines at 667.8nm and 492.2nm (I667/I492) as well as the ratio of 667.8nm and 501.6nm lines (I667/I501) has been investigated for the dependence on Te and ne both theoretically and experimentally. I667/I492 shows strong dependence on ne with weak sensitivity to Te. Measurements and predictions agree quantitatively within a factor of 2. There has been no ratio of singlet lines identified to have strong enough Te dependence yet. The ratios are expected to be reasonably insensitive to the variation of Zeff.

  16. Emission intensities and line ratios from a fast neutral helium beam

    SciTech Connect

    Ahn, J-W.; Craig, D.; Fiksel, G.; Den Hartog, D. J.; Anderson, J. K.; O'Mullane, M. G.

    2007-08-15

    The emission intensities and line ratios from a fast neutral helium beam is investigated in the Madison Symmetric Torus (MST) [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 1991]. Predicted He I line intensities and line ratios from a recently developed collisional-radiative model are compared with experiment. The intensity of singlet lines comes mostly (>95%) from the contribution of the ground state population and is very weakly dependent on the initial metastable fraction at the observation point in the plasma core. On the other hand, the intensity of triplet lines is strongly affected by the local metastable state (2{sup 1}S and 2{sup 3}S) populations and the initial metastable fraction plays an important role in determining line intensities. The fraction of local metastable states can only be estimated by making use of electron temperature (T{sub e}), electron density (n{sub e}), and effective ion charge (Z{sub eff}) profiles as inputs to the population balance equations. This leads triplet lines to be unusable for the investigation of their local plasma parameter dependence. The ratio of singlet lines at 667.8 nm and 492.2 nm (I{sub 667}/I{sub 492}) as well as the ratio of 667.8 nm and 501.6 nm lines (I{sub 667}/I{sub 501}) has been investigated for the dependence on T{sub e} and n{sub e} both theoretically and experimentally. I{sub 667}/I{sub 492} shows strong dependence on n{sub e} with weak sensitivity to T{sub e}. Measurements and predictions agree quantitatively within a factor of 2. There has been no ratio of singlet lines identified to have strong enough T{sub e} dependence yet. The ratios are expected to be reasonably insensitive to the variation of Z{sub eff}.

  17. Measurements of absolute line intensities in carbon dioxide bands near 5.2 microns

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Benner, D. C.; Devi, V. M.

    1985-01-01

    A nonlinear least-squares spectral fitting procedure has been used to derive experimental absolute intensities for over 300 unblended lines belonging to twelve CO2 bands in the 5.2-micron region. The spectral data were recorded at 0.01/cm resolution and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak and have a signal-to-rms noise ratio of 2000-4000. A natural sample of carbon dioxide was used as the sample gas. For each band, the measured line intensities have been analyzed to derive the vibrational band intensity and coefficients of the F factor. The results are compared to the values used to calculate the intensities in the 1982 Air Force Geophysics Laboratory line parameters compilation.

  18. Forbidden patterns in financial time series.

    PubMed

    Zanin, Massimiliano

    2008-03-01

    The existence of forbidden patterns, i.e., certain missing sequences in a given time series, is a recently proposed instrument of potential application in the study of time series. Forbidden patterns are related to the permutation entropy, which has the basic properties of classic chaos indicators, such as Lyapunov exponent or Kolmogorov entropy, thus allowing to separate deterministic (usually chaotic) from random series; however, it requires fewer values of the series to be calculated, and it is suitable for using with small datasets. In this paper, the appearance of forbidden patterns is studied in different economical indicators such as stock indices (Dow Jones Industrial Average and Nasdaq Composite), NYSE stocks (IBM and Boeing), and others (ten year Bond interest rate), to find evidence of deterministic behavior in their evolutions. Moreover, the rate of appearance of the forbidden patterns is calculated, and some considerations about the underlying dynamics are suggested. PMID:18377070

  19. The Labile Limits of Forbidden Interactions.

    PubMed

    González-Varo, Juan P; Traveset, Anna

    2016-09-01

    Forbidden links are defined as pairwise interactions that are prevented by the biological traits of the species. We focus here on the neglected importance of intraspecific trait variation in the forbidden link concept. We show how intraspecific trait variability at different spatiotemporal scales, and through ontogeny, reduces the expected prevalence of forbidden interactions. We also highlight how behavior can foster interactions that, from traits, would be predicted to be forbidden. We therefore discuss the drawbacks of frameworks recently developed to infer biotic interactions using available trait data (mean values). Mispredictions can have disproportionate effects on inferences about community dynamics. Thus, we suggest including intraspecific variability in trait-based models and using them to guide the sampling of real interactions in the field for validation. PMID:27471077

  20. Excitation of emission lines by fluorescence and recombination in IC 418

    NASA Astrophysics Data System (ADS)

    Escalante, Vladimir; Morisset, Cristophe; Georgiev, Leonid

    2012-08-01

    We predict intensities of lines of CII, NI, NII, OI and OII and compare them with a deep spectroscopic survey of IC 418 to test the effect of excitation of nebular emission lines by continuum fluorescence of starlight. Our calculations use a nebular model and a synthetic spectrum of its central star to take into account excitation of the lines by continuum fluorescence and recombination. The NII spectrum is mostly produced by fluorescence due to the low excitation conditions of the nebula, but many CII and OII lines have more excitation by fluorescence than recombination. In the neutral envelope, the NI permitted lines are excited by fluorescence, and almost all the OI lines are excited by recombination. Electron excitation produces the forbidden optical lines of OI, but continuum fluorescence excites most of the NI forbidden line intensities. Lines excited by fluorescence of light below the Lyman limit thus suggest a new diagnostic to explore the photodissociation region of a nebula.

  1. Stark profiles of forbidden and allowed transitions in a dense, laser produced helium plasma.

    NASA Technical Reports Server (NTRS)

    Ya'akobi, B.; George, E. V.; Bekefi, G.; Hawryluk, R. J.

    1972-01-01

    Comparisons of experimental and theoretical Stark profiles of the allowed 2(1)P-3(1)D helium line at 6678 A and of the forbidden 2(1)P-3(1)P component at 6632 A in a dense plasma were carried out. The plasma was produced by optical breakdown of helium by means of a repetitive, high power CO2 laser. The allowed line shows good agreement with conventional theory, but discrepancies are found around the centre of the forbidden component. When normally neglected ion motions are taken into consideration, the observed discrepancies are partially removed. Tables of the Stark profiles for the pair of lines are given.

  2. Detection of the N II 122 and 205 micron lines - Densities in G333.6-0.2

    NASA Technical Reports Server (NTRS)

    Colgan, Sean W. J.; Haas, Michael R.; Erickson, Edwin F.; Rubin, Robert H.; Simpson, Janet P.; Russell, R. W.

    1993-01-01

    Measurements of the G333.6-0.2 H II region which include the first detection of the N II 122 micron forbidden line in an astronomical force and the first measurement of the N II 205 micron forbidden line in a discrete source are presented. Also considered are fine structure lines of forbidden S III, forbidden Fe III, forbidden Si II, forbidden Ne III, forbidden O III, forbidden N III, forbidden O I, and forbidden C II from 19 to 206 microns. It is concluded that the N II 122 and 205 microns forbidden line pair in a discrete astronomical source was detected for the first time. The emission in transitions is produced largely by low-ioninzation, low-density material not easily probed by other lines. Other FIR line pairs generally originate in higher density regions closer to the exciting force.

  3. Intensity oscillations in Na(I) D1 and D2 lines

    NASA Technical Reports Server (NTRS)

    Kariyappa, R.; Pap, Judit M.

    1995-01-01

    The central intensities of Na(I) D1 and D2 linear profiles at the sites of the chromospheric bright points in the interior of the supergranulation cells were derived from photographic spectra. The observation scheme sampled spectra simultaneously in seven lines at a repetition rate of 12 sec. It is shown that the Na(I) D1 and D2 lines exhibit a four minute periodicity in their intensity oscillations. It is seen that the period of intensity oscillations decreases outwardly from the photosphere to the corona. It is surmised that the spatial and temporal relationships between intensity and/or velocity in the photosphere and chromosphere may explain the physical mechanisms of the underlying oscillations.

  4. The safety of obstetric acupuncture: forbidden points revisited

    PubMed Central

    2015-01-01

    Background/aim Although the safety of acupuncture per se in pregnancy is reasonably well accepted, there remains debate regarding needling at points historically considered to be ‘forbidden’ during pregnancy. This article reviews the scientific literature on this topic. Main findings There is no objective evidence of harm following needling at forbidden points, summarised by the following four lines of evidence. (1) In 15 clinical trials (n=823 women receiving n=4549–7234 acupuncture treatments at one or more forbidden points) rates of preterm birth (PTB) and stillbirth following are equivalent to those in untreated control groups and consistent with background rates of these complications in the general population. (2) Observational studies, including a large cohort of 5885 pregnant women needled at forbidden points at all stage of pregnancy, demonstrate that rates of miscarriage, PTB, preterm prelabour rupture of membranes (PPROM), and preterm contractions (preterm labour (PTL) or threatened PTL) are comparable with untreated controls and/or consistent with their anticipated incidence. (3) There is no reliable evidence that acupuncture/electroacupuncture (EA) can induce miscarriage/labour, even under otherwise favourable circumstances such as post-dates pregnancy or intrauterine fetal death. (4) Laboratory experiments using pregnant rats have demonstrated that repeated EA at forbidden points throughout gestation does not influence rates of post-implantation embryonic demise or cause miscarriage, fetal loss or resorption. Conclusions These findings are reassuring and will help individualised risk:benefit assessment before treating pregnant women. Given the numerous evidence-based indications for obstetric acupuncture and lack of evidence of harm, risk:benefit assessments will often fall in favour of treatment. PMID:26362792

  5. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGESBeta

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; Heikkinen, D.; Ibrahim, M. A.

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  6. Absolute line intensities in CO2 bands near 4.8 microns

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Benner, D. C.; Devi, V. M.

    1986-01-01

    Absolute intensities for 726 unblended lines in 20 bands of C-12(O-16)2, C-13(O-16)2, O-16C-12O-18, and O-16C-12O-17 in the 4.8-micron spectral region have been determined using a natural sample of ultrahigh-purity CO2. Spectral data were recorded at low pressure (less than 10 torr) and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex on Kitt Peak. Derived vibrational band intensities and coefficients of the F factor for each band were compared to values of the 1982 Air Force Geophysics Laboratory line parameters compilation. The present work fills out the CO2 lines in the 5-micron band systems. Lines in the strongest of these measured bands are being used to infer atmospheric pressure from high-resolution stratospheric spectra recorded during the Spacelab 3 Atmospheric Trace Molecule Spectroscopy experiment.

  7. Intensity increases of actin layer-lines on activation of the Limulus muscle.

    PubMed Central

    Maéda, Y; Boulin, C; Gabriel, A; Sumner, I; Koch, M H

    1986-01-01

    Small angle x-ray diffraction patterns were recorded from isometrically contracting Limulus (horseshoe crab) telson levator muscle using a multiwire proportional-area detector on the storage ring DORIS. In the pattern a substantial increase in intensity is observed on the thin-filament-associated layer-line at 1/38 nm-1 (the first actin layer-line) with a maximum increase at a radial spacing of R = 0.07 nm-1 but there is a much smaller change in the intensity of the 5.9-nm layer-line, which also arises from the thin filament structure. The results suggest that during contraction the myosin heads, presumably being attached to the thin filaments, are arranged along the long-stranded helical tracks of the thin filaments but that the spatial relationship between the heads and the actin monomers varies. Intensity increases have also been observed (Maéda et al., manuscript in preparation) in the part of the patterns from frog muscle and barnacle muscle, which are attributable to the first actin layer-line. It is thus likely that the intensity increase of the first actin layer-line on the Limulus pattern is associated not with structural features which are special to Limulus muscle, but with the tension generating processes that are shared by muscles in general. Images FIGURE 1 FIGURE 2 PMID:3801566

  8. Ratios of molecular hydrogen line intensities in shocked gas - Evidence for cooling zones

    NASA Technical Reports Server (NTRS)

    Brand, P. W. J. L.; Moorhouse, A.; Bird, M.; Burton, M. G.; Geballe, T. R.

    1988-01-01

    Column densities of molecular hydrogen have been calculated from 19 infrared vibration-rotation and pure rotational line intensities measured at peak 1 of the Orion molecular outflow. The run of column density with energy level is similar to a simple coolng zone model of the line-emitting region, but is not well fitted by predictions of C-shock models current in the literature.

  9. Theoretical rovibrational line intensities in the electronic ground state of ozone

    NASA Astrophysics Data System (ADS)

    Diehr, Matthieu; Rosmus, Pavel; Carter, Stuart; Knowles, Peter J.

    2004-01-01

    First-principles calculations of absolute line intensities and rovibrational energies of ozone (16O3) are reported using potential energy and electric dipole moment functions calculated by the internally contracted MRCI approach. The rovibrational energies and eigenfunctions (up to about 8500 cm-1 and J = 64) were obtained variationally with an exact Hamiltonian in internal valence coordinates. More than 4.8 × 106 electric dipole transition matrix elements were calculated for the absolute rovibrational line intensities. They are compared with the values of the HITRAN database. The purely rotational absolute line intensities in the (000) state and the rovibrational intensities for the (001)-(000) band agree to within about 0.3 to 1% for the (010)-(000) band to within about 3 to 4%. Excellent agreement with experiment is also achieved for low-lying overtone and combination bands. Inconsistencies are found for the (100)-(000) band overlapping with the antisymmetric stretching fundamental and also for the (002)-(000) antisymmetric stretching overtone. The generated dipole moment function can be used for predicting the absorption intensities in any of the heavier isotopomers, hot bands or the rates of spontaneous emission.

  10. Line intensities and self-broadening coefficients for the ν2 band of methyl chloride

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.

    2016-08-01

    The present report concerns measurements of lines intensities and self-broadening coefficients for 170 transitions of the ν2 band of both 12CH335Cl and 12CH337Cl isotopologues between 1291 and 1403 cm-1. This work is the continuation of a previous effort on the ν5 band (Barbouchi Ramchani et al., 2013). For these studies, spectra of CH3Cl have been recorded at room temperature using a rapid scan Bruker IFS120 HR interferometer. The line parameters have been retrieved using a Voigt profile and a multispectrum fitting procedure. The average accuracy of the line parameters obtained in this work has been estimated to be between 2% and 5% for line intensities and between 5% and 10% for self-broadening coefficients depending on the transitions. A global comparison with the experimental values existing in the literature has been performed. The measurements of line intensities have also been compared to calculated values from HITRAN and GEISA databases.

  11. Relation of the green coronal line intensity to sunspot areas and magnetic fields of different scales

    NASA Astrophysics Data System (ADS)

    Badalyan, O. G.; Bludova, N. G.

    2014-07-01

    The intensity of Fe XIV 530.3-nm green coronal line is compared quantitatively with the strength of magnetic fields of small and large scales and also with total sunspot areas for 1977-2001. A degree of similarity of appropriate synoptic maps is evaluated using correlation analysis. The green line intensity maps are constructed from data of its daily monitoring. Strengths of magnetic fields are calculated in a potential approximation using the photosphere observations of Wilcox Solar Observatory for a distance of 1.1 The calculations are performed separately for fields of large and small spatial scales. The total area of sunspots is obtained using data from the Greenwich Catalogue and its continuation by USAF/NOAA. The correlation has been calculated for the aggregate of areas (with a size of 20° in latitude and 30° in longitude) coinciding spatially on all maps. It is found that the most correlation between the green line intensity and coronal fields of small scales is observed in a zone of 0°-20°. The correlation with total sunspot areas (i.e., with local fields at the photosphere level) is substantially less here. In the higher-latitude zone 20°-40°, correlation of the green-line intensity with spot areas and small-scale coronal fields decreases. The large-scale fields have little influence on the green-line emission in the spot-formation zone. These results are the evidence of a complex nature of the effect of different-scale fields, arising as a result of dynamo activity in the subsurface (leptocline) and deep-lying (tachocline) layers of the convective zone, on the processes of the Sun's corona heating and green coronal line emission.

  12. Unique forbidden beta decays and neutrino mass

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-01

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  13. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  14. Examining Helium Line Intensities and Ratios in a Linear Helium Plasma to Identify Te and ne

    NASA Astrophysics Data System (ADS)

    Ray, H.; Biewer, T. M.; Unterberg, E. A.; Fehling, D. T.; Isler, R. C.

    2015-11-01

    Oak Ridge National Laboratory's prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device dedicated to the understanding of plasma material interaction physics. A photomultiplier tube (PMT) based diagnostic system called a filterscope examines the visible light emission from Proto-MPEX. The filterscope is a non-invasive, high sensitivity, and high temporal resolution compact system with multiple PMT channels. Three PMTs contain He I narrow bandpass filters of wavelengths 667.9, 723.6, and 706.7 nm for line ratio analysis. Helium line intensities and ratios have been widely applied on astrophysical plasmas and machines such as JET and NSTX to determine profiles of electron temperatures, Te, and densities, ne. Ratios of the He I intensities measured by the filterscope are compared to calculated intensity ratios determined through a collisional radiative model (CRM) as follows: An excited He atom in state P will de-excite to a lower energy level Q by emitting a photon of a specific wavelength. A CRM uses the interactions P has with Q and other energy levels to calculate the population density of P. The calculated population density is used to determine the spectral line intensity of the wavelength analyzed. The aforementioned process is performed for each of the He I bandpass filters, and ratios dependent on Te and ne are calculated and compared to the filterscopes measured ratios. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  15. INTENSITY ENHANCEMENT OF O VI ULTRAVIOLET EMISSION LINES IN SOLAR SPECTRA DUE TO OPACITY

    SciTech Connect

    Keenan, F. P.; Mathioudakis, M.; Doyle, J. G.; Madjarska, M. S.; Rose, S. J.; Bowler, L. A.; Britton, J.; McCrink, L.

    2014-04-01

    Opacity is a property of many plasmas. It is normally expected that if an emission line in a plasma becomes optically thick, then its intensity ratio to that of another transition that remains optically thin should decrease. However, radiative transfer calculations undertaken both by ourselves and others predict that under certain conditions the intensity ratio of an optically thick to an optically thin line can show an increase over the optically thin value, indicating an enhancement in the former. These conditions include the geometry of the emitting plasma and its orientation to the observer. A similar effect can take place between lines of differing optical depths. While previous observational studies have focused on stellar point sources, here we investigate the spatially resolved solar atmosphere using measurements of the I(1032 Å)/I(1038 Å) intensity ratio of O VI in several regions obtained with the Solar Ultraviolet Measurements of Emitted Radiation instrument on board the Solar and Heliospheric Observatory satellite. We find several I(1032 Å)/I(1038 Å) ratios observed on the disk to be significantly larger than the optically thin value of 2.0, providing the first detection (to our knowledge) of intensity enhancement in the ratio arising from opacity effects in the solar atmosphere. The agreement between observation and theory is excellent and confirms that the O VI emission originates from a slab-like geometry in the solar atmosphere, rather than from cylindrical structures.

  16. Determination of sulfur in biodiesel microemulsions using the summation of the intensities of multiple emission lines.

    PubMed

    Young, Carl G; Amais, Renata S; Schiavo, Daniela; Garcia, Edivaldo E; Nóbrega, Joaquim A; Jones, Bradley T

    2011-05-15

    A method for the determination of sulfur in biodiesel samples by inductively coupled plasma optical emission spectrometry which uses microemulsion for sample preparation and the summation of the intensities of multiple emission lines has been developed. Microemulsions were prepared using 0.5 mL of 20% v/v HNO(3), 0.5 mL of Triton X-100, 2-3 mL of biodiesel sample, and diluted with n-propanol to a final volume of 10 mL. Summation of the emission intensities of multiple sulfur lines allowed for increased accuracy and sensitivity. The amounts of sulfur determined experimentally were between 2 and 7 mg L(-1), well below legislative standards for many countries. Recoveries obtained ranged from 72 to 119%, and recoveries obtained for the 182.562 nm line were slightly lower. This is most likely due to its lower sensitivity. Using microemulsion for sample preparation and the summation of the intensities of multiple emission lines for the successful determination of sulfur in biodiesel has been demonstrated. PMID:21482315

  17. Calculation of the water vapor line intensities for rotational transitions between high-excited energy levels

    NASA Astrophysics Data System (ADS)

    Egorov, O. V.; Voitsekhovskaya, O. K.; Kashirskii, D. E.

    2015-11-01

    The intensities of water vapor in the range of pure rotational transitions were calculated up to high quantum numbers (Jmax ~ 30 and Ka max ~ 25). The diagonalization of the effective rotational Hamiltonian, approximated by Pade-Borel method, is applied to obtain the eigenvectors. The centrifugal distortion perturbations in line intensities were taken into account by the traditional equations for matrix elements of the transformed dipole moment, including eight parameters, and previously developed by authors Pade approximant. Moreover, to conduct the calculations, the rotational wavefunctions of the symmetric rotor molecule were applied. The results were compared with the known theoretical data.

  18. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  19. Line positions, intensities and self-broadening coefficients for the ν5 band of methyl chloride

    NASA Astrophysics Data System (ADS)

    Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.

    2013-05-01

    High resolution Fourier transform spectra have been recorded around 6.9 μm at room temperature using a rapid scan Bruker IFS 120 HR interferometer (unapodized Bruker resolution=0.005 cm-1). Transitions of both 12CH335Cl and 12CH337Cl isotopologues belonging to the ν5 perpendicular band have been studied. Line positions, intensities, and self-broadening coefficients have been retrieved using a multispectrum fitting procedure that allowed to fit simultaneously the whole set of experimental spectra recorded at various pressures of CH3Cl. The wavenumber calibration has been performed using the frequencies of CO2 transitions. The transition dipole moments squared have been determined for each measured line and the whole set of measurements has been compared with previous measurements and with values from HITRAN and GEISA databases. The rotational J and K dependencies of the self-broadening coefficients have been clearly observed and modeled using empirical polynomial expansions. The average accuracy of the line parameters obtained in this work has been estimated to be between 0.1×10-3 and 1×10-3 cm-1 for line positions, between 2% and 5% for line intensities and between 5% and 10% for self-broadening coefficients depending on the transitions.

  20. Communication: Visible line intensities of the triatomic hydrogen ion from experiment and theory

    NASA Astrophysics Data System (ADS)

    Petrignani, Annemieke; Berg, Max H.; Grussie, Florian; Wolf, Andreas; Mizus, Irina I.; Polyansky, Oleg L.; Tennyson, Jonathan; Zobov, Nikolai F.; Pavanello, Michele; Adamowicz, Ludwik

    2014-12-01

    The visible spectrum of H3 + is studied using high-sensitivity action spectroscopy in a cryogenic radiofrequency multipole trap. Advances are made to measure the weak ro-vibrational transitions from the lowest rotational states of H3 + up to high excitation energies providing visible line intensities and, after normalisation to an infrared calibration line, the corresponding Einstein B coefficients. Ab initio predictions for the Einstein B coefficients are obtained from a highly precise dipole moment surface of H3 + and found to be in excellent agreement, even in the region where states have been classified as chaotic.

  1. Communication: Visible line intensities of the triatomic hydrogen ion from experiment and theory

    SciTech Connect

    Petrignani, Annemieke; Berg, Max H.; Grussie, Florian; Wolf, Andreas; Mizus, Irina I.; Zobov, Nikolai F.; Polyansky, Oleg L.; Tennyson, Jonathan; Pavanello, Michele; Adamowicz, Ludwik

    2014-12-28

    The visible spectrum of H{sub 3}{sup +} is studied using high-sensitivity action spectroscopy in a cryogenic radiofrequency multipole trap. Advances are made to measure the weak ro-vibrational transitions from the lowest rotational states of H{sub 3}{sup +} up to high excitation energies providing visible line intensities and, after normalisation to an infrared calibration line, the corresponding Einstein B coefficients. Ab initio predictions for the Einstein B coefficients are obtained from a highly precise dipole moment surface of H{sub 3}{sup +} and found to be in excellent agreement, even in the region where states have been classified as chaotic.

  2. 49 CFR 173.54 - Forbidden explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Forbidden explosives. 173.54 Section 173.54 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS...

  3. Line Positions and Intensities for the ν12 Band of 13C12CH_6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Mantz, Arlan; Smith, Mary Ann H.

    2014-06-01

    High-resolution, high signal-to-noise spectra of mono-substituted 13C-ethane (13C12CH_6) in the 12.2 μm region were recorded with a Bruker IFS 125HR Fourier transform spectrometer. The spectra were obtained for four sample pressures at three different temperatures between 130 and 208 K using a 99% 13C-enriched ethane sample contained in a 20.38-cm long coolable absorption cell. A multispectrum nonlinear least squares fitting technique was used to fit the same intervals in the four spectra simultaneously to determine line positions and intensities. Similar to our previous analyses of 12C_2H_6 spectra in this same region, constraints were applied to accurately fit each pair of doublet components arising from torsional Coriolis interaction of the excited ν12 = 1 state with the nearby torsional ν_6 = 3 state. Line intensities corresponding to each spectrum temperature (130 K, 178 K and 208 K) are reported for 1660 ν12 absorption lines for which the assignments are known, and integrated intensities are estimated as the summation of the measured values. The measured line positions and intensities (re-scaled to 296 K) are compared with values in recent editions of spectroscopic databases. K. Sung, A. W. Mantz, L. R. Brown, et al., J. Mol. Spectrosc., 162 (2010) 124-134. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. Atkins, JQSRT, 53 (1995) 705-721. V. Malathy Devi, C. P. Rinsland, D. Chris Benner, et al., JQSRT, 111 (2010) 1234-1251 V. Malathy Devi, D. Chris Benner, C. P. Rinsland, et al., JQSRT, 111 (2010) 2481-2504. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  4. Line Positions and Intensities of Monodeuterated Methane Between 2.2 and 2.5 Microns

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Sung, K.; Nikitin, A. V.; Smith, M. H.; Mantz, A. W.; Tyuterev, V. G.; Rey, M.

    2012-10-01

    A new study of 12CH3D line positions and intensities was performed for the upper portion of the Enneadecad polyad between 4000 and 4550 cm-1. For this, FTIR spectra were recorded with D-enriched methane samples (at 80 K with a Bruker 125 IFS at 0.005 cm-1 resolution and at 291 K with the McMath-Pierce FTS at 0.011 cm-1 resolution, respectively). Line positions and intensities were retrieved by least square curve-fitting procedures and analyzed using the effective Hamiltonian and the effective Dipole moment expressed in terms of irreducible tensors operators adapted to symmetric top molecules. Initially, only the cold spectrum was used to identify quantum assignments and predict 12CH3D relative intensities in this region. Combining the two temperature datasets confirmed the assumed quantum assignments and also demonstrated the relative accuracies to be better than ±0.0002 cm-1 for line positions and at least ±6% for 1160 selected features. Including additional assignments from the room temperature spectra alone permitted 1362 line intensities of 12 bands (involving 23 vibrational symmetry components) to be reproduced with an RMS of 9%. Over 4085 selected positions for 12 bands were modeled to 0.008 cm-1. More work is needed to obtain a complete characterization of this complex polyad. This work is part of the ANR project "CH4@Titan" (ref: BLAN08-2_321467). Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the NASA Langley Research Center and Connecticut College under contracts and grants with the National Aeronautics and Space Administration. We acknowledge the LEFE-CHAT INSU project APOA1 (CNRS, France); the Groupement de Recherche International SAMIA between CNRS (France), RFBR (Russia) and CAS (China).

  5. Generalized in-line digital holographic technique based on intensity measurements at two different planes

    NASA Astrophysics Data System (ADS)

    Situ, Guohai; Ryle, James P.; Gopinathan, Unnikrishnan; Sheridan, John T.

    2008-02-01

    In-line digital holography based on two-intensity measurements [Zhang et al. Opt. Lett. 29, 1787 (2004)], is modified by introducing a π shifting in the reference phase. Such an improvement avoids the assumption that the object beam must be much weaker than the reference beam in strength and results in a simplified experimental implementation. Computer simulations and optical experiments are carried out to validate the method, which we refer to as position-phase-shifting digital holography.

  6. Line Intensities in the Far-Infrared Spectrum of H 2O 2

    NASA Astrophysics Data System (ADS)

    Perrin, A.; Flaud, J.-M.; Camy-Peyret, C.; Schermaul, R.; Winnewisser, M.; Mandin, J.-Y.; Dana, V.; Badaoui, M.; Koput, J.

    1996-04-01

    Using high resolution Fourier transform spectra (resolution 0.002 cm -1) recorded at the Instituto Ricerca Onde Electromagnetiche Firenze and at the Justus Liebig University Giessen, it has been possible to measure the relative intensities of lines in the far-infrared spectrum of H 2O 2in the 25-400 cm -1spectral region. These intensities were used as input data in a least-squares fit calculation in order to obtain the expansion parameters of the transition moment operator of the pure torsional-rotational transitions of H 2O 2. For these intensity calculations, the theoretical model takes into account the cos γ-type dependence of the dipole moment due to the large amplitude motion of the H atoms relative to the O-O bond, where 2γ is the torsion angle. The value of the dipole moment obtained from the fit of the observed intensities was then scaled to the value obtained from Stark effect measurements. Finally, a synthetic spectrum of the far infrared band of H 2O 2was generated, using the dipole moment expansion determined in this work for the line intensities and the parameters and the Hamiltonian matrix given in a previous analysis (C. Camy-Peyret, J.-M. Flaud, J. W. C. Johns, and M. Noel, J. Mol. Spectrosc.155,84-104 (1992)) for the line positions. In addition to the (Δ n= ±1, Δ Ka= ∓2) torsional-rotational resonances within the ground vibrational state, which are usually observed for H 2O 2, the Hamiltonian model takes explicitly into account both the vibration-rotation resonances involving the ground state and the v3= 1 vibrational state and the "staggering" effect which is due to the cispotential barrier.

  7. The 3ν 1+ ν 2Combination Band of HOCl: Assignments, Perturbations, and Line Intensities

    NASA Astrophysics Data System (ADS)

    Charvát, Aleš; Deppe, Sabine F.; Hamann, Hilmar H.; Abel, Bernd

    1997-10-01

    The high-resolution spectra (0.012 cm-1) of the 3ν1+ ν2combination band of hypochlorous acid HO35(37)Cl in the near infrared (∼11 478 cm-1) have been measured using a titanium:sapphire intracavity laser absorption (ICLA) spectrometer. Line assignments, absolute intensities, and the total band intensity for both isotopomers are reported. In the course of the band analysis twoKabranches (Ka= 2,3) were found to be perturbed via low-order Fermi-type (anharmonic) resonances by a dark perturber which has been identified to be the 2ν1+ 2ν2+ 3ν3state. The data are compared with intensity predictions from simple empirical models and discussed with regard to detection limits for this molecule in the near infrared spectral region of the atmosphere.

  8. Intensity Mapping across Cosmic Times with the Lyα Line

    NASA Astrophysics Data System (ADS)

    Pullen, Anthony R.; Doré, Olivier; Bock, Jamie

    2014-05-01

    We present a quantitative model of Lyα emission throughout cosmic history and determine the prospects for intensity mapping spatial fluctuations in the Lyα signal. Since (1) our model assumes at z > 6 the minimum star formation required to sustain reionization and (2) is based at z < 6 on a luminosity function (LF) extrapolated from the few observed bright Lyα emitters, this should be considered a lower limit. Mapping the line emission allows probes of reionization, star formation, and large-scale structure (LSS) as a function of redshift. While Lyα emission during reionization has been studied, we also predict the postreionization signal to test predictions of the intensity and motivate future intensity mapping probes of reionization. We include emission from massive dark matter halos and the intergalactic medium (IGM) in our model. We find agreement with current, measured LFs of Lyα emitters at z < 8. However, diffuse IGM emission, not associated with Lyα emitters, dominates the intensity up to z ~ 10. While our model is applicable for deep-optical or near-infrared observers like the James Webb Space Telescope, only intensity mapping will detect the diffuse IGM emission. We also construct a three-dimensional power spectrum model of the Lyα emission. Finally, we consider the prospects of an intensity mapper for measuring Lyα fluctuations while identifying interloper contamination for removal. Our results suggest that while the reionization signal is challenging, Lyα fluctuations can be an interesting new probe of LSS at late times when used in conjunction with other lines, e.g., Hα, to monitor low-redshift foreground confusion.

  9. Intensity mapping across cosmic times with the Lyα line

    SciTech Connect

    Pullen, Anthony R.; Doré, Olivier; Bock, Jamie

    2014-05-10

    We present a quantitative model of Lyα emission throughout cosmic history and determine the prospects for intensity mapping spatial fluctuations in the Lyα signal. Since (1) our model assumes at z > 6 the minimum star formation required to sustain reionization and (2) is based at z < 6 on a luminosity function (LF) extrapolated from the few observed bright Lyα emitters, this should be considered a lower limit. Mapping the line emission allows probes of reionization, star formation, and large-scale structure (LSS) as a function of redshift. While Lyα emission during reionization has been studied, we also predict the postreionization signal to test predictions of the intensity and motivate future intensity mapping probes of reionization. We include emission from massive dark matter halos and the intergalactic medium (IGM) in our model. We find agreement with current, measured LFs of Lyα emitters at z < 8. However, diffuse IGM emission, not associated with Lyα emitters, dominates the intensity up to z ∼ 10. While our model is applicable for deep-optical or near-infrared observers like the James Webb Space Telescope, only intensity mapping will detect the diffuse IGM emission. We also construct a three-dimensional power spectrum model of the Lyα emission. Finally, we consider the prospects of an intensity mapper for measuring Lyα fluctuations while identifying interloper contamination for removal. Our results suggest that while the reionization signal is challenging, Lyα fluctuations can be an interesting new probe of LSS at late times when used in conjunction with other lines, e.g., Hα, to monitor low-redshift foreground confusion.

  10. Variations of intensity in Rb D2 line at weak/intermediate fields

    NASA Astrophysics Data System (ADS)

    Ummal Momeen, M.; Rangarajan, G.; Deshmukh, P. C.

    2007-08-01

    Zeeman splitting in the D2 line of rubidium atoms (87Rb and 85Rb) has been studied using 'Doppler broadened' as well as 'saturation absorption spectroscopy'. While a linearly polarized beam was used for the former experiment, in the latter case a (π, σ±) polarization configuration was employed for both pump and probe beams. Zeeman lines have been observed by applying a field up to 5 mT. The field variation of relative line intensities in Doppler-broadened spectrum was determined following Tremblay et al and Nakayama's four-level model. For the saturation spectrum, a four-level model was used. Because the enhancement of absorption at the field is as low as 1 mT, the Fg = 2 to Fe = 3 transition for 87Rb can be used as the reference for laser locking. Level crossing is observed in 85Rb at fields less than 5 mT.

  11. Radiative and magnetic properties of solar active regions. I. Global magnetic field and EUV line intensities

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Ireland, J.

    2008-05-01

    Context: The relationships between the photospheric magnetic flux and either the X-ray or extreme ultraviolet emission from the solar atmosphere have been studied by several authors. Power-law relations have been found between the total magnetic flux and X-ray flux or intensities of the chromospheric, transition region, and coronal emission lines in solar active regions. These relations were then used to infer the mechanism of the coronal heating. Aims: We derive accurate power laws between EUV line intensities and the total magnetic flux in solar active regions and discuss their applications. We examine whether these global power laws are capable of providing the diagnostics of the coronal heating mechanism. Methods: This analysis is based on EUV lines recorded by the Coronal Diagnostic Spectrometer (CDS) on SOHO for 48 solar active regions, as they crossed the central meridian in years 1996-1998. Four spectral lines are used: He I 584.3 Å (3×104 K), O V 629.7 Å (2.2×105 K), Mg IX 368.06 Å (9.5×105 K), and Fe XVI 360.76 Å (2.0×106 K). In particular, the Fe XVI 360.76 Å line, seen only in areas of enhanced heating in active regions or bright points, has not been used before for this analysis. Results: Empirical power laws are established between the total active region intensity in the lines listed above and the total magnetic flux. We demonstrate the usefulness of some spatially integrated EUV line intensities, I_T, as a proxy for the total magnetic flux, Φ, in active regions. We point out the approximate, empirical nature of the I_T-Φ relationships and discuss the interpretation of the global power index. Different power index values for transition region and coronal lines are explained by their different dependence on pressure under the assumption of hydrostatic loop models. However, the global power laws are dominated by the size of the active regions, and we demonstrate for the first time the difficulties in uniquely relating the power index in the

  12. INTENSITY MAPPING OF THE [C II] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION

    SciTech Connect

    Gong Yan; Cooray, Asantha; Silva, Marta; Santos, Mario G.; Bock, James; Bradford, C. Matt; Zemcov, Michael

    2012-01-20

    The atomic C II fine-structure line is one of the brightest lines in a typical star-forming galaxy spectrum with a luminosity {approx}0.1%-1% of the bolometric luminosity. It is potentially a reliable tracer of the dense gas distribution at high redshifts and could provide an additional probe to the era of reionization. By taking into account the spontaneous, stimulated, and collisional emission of the C II line, we calculate the spin temperature and the mean intensity as a function of the redshift. When averaged over a cosmologically large volume, we find that the C II emission from ionized carbon in individual galaxies is larger than the signal generated by carbon in the intergalactic medium. Assuming that the C II luminosity is proportional to the carbon mass in dark matter halos, we also compute the power spectrum of the C II line intensity at various redshifts. In order to avoid the contamination from CO rotational lines at low redshift when targeting a C II survey at high redshifts, we propose the cross-correlation of C II and 21 cm line emission from high redshifts. To explore the detectability of the C II signal from reionization, we also evaluate the expected errors on the C II power spectrum and C II-21 cm cross power spectrum based on the design of the future millimeter surveys. We note that the C II-21 cm cross power spectrum contains interesting features that capture physics during reionization, including the ionized bubble sizes and the mean ionization fraction, which are challenging to measure from 21 cm data alone. We propose an instrumental concept for the reionization C II experiment targeting the frequency range of {approx}200-300 GHz with 1, 3, and 10 m apertures and a bolometric spectrometer array with 64 independent spectral pixels with about 20,000 bolometers.

  13. Measuring Galaxy Clustering and the Evolution of [C II] Mean Intensity with Far-IR Line Intensity Mapping during 0.5 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Uzgil, Bade; Aguirre, James E.; Bradford, Charles; Lidz, Adam

    2016-01-01

    Infrared fine-structure emission lines from trace metals are powerful diagnostics of the interstellar medium in galaxies. We explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. As a case study, we consider measurement of [C II] autocorrelation in the 0.5 < z < 1.5 epoch, where interloper lines are minimized, using far-IR/submillimeter balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture.

  14. Electron Temperature Measurement by a Helium Line Intensity Ratio Method in Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Balkey, M. M.; Blackburn, M. A.; Keiter, P. A.; Kline, J. L.; Scime, E. E.; Spangler, R.

    1999-10-01

    Te measurements in helicon plasmas are not an easy task. The presence of intense RF fields complicates the interpretation of the Langmuir probe curves. A spectroscopy technique based on the relative intensities of He I lines is used to measure Te in the HELIX plasmas. This non-intrusive diagnostic is based on the fact that the dependence on the electron energy of the excitation rate differs between singlet and triplet lines of the He atom. This method has been applied to measure Te in many plasma conditions and, lately has been extended to high-density, fusion edge plasmas. The validity of this technique to measure Te in RF plasmas has not yet been established. The wide range in density that can generated by HELIX (10^10 to 10^13 cm-3) makes it an ideal source to verify if this diagnostic can be used in such RF plasmas. At low density, this diagnostic is believed to be very reliable since the population of the emitting levels can be accurately estimated by assuming that all excitation originate from the ground state. At higher density, secondary processes become important and can seriously affect the validity of the diagnostic. We measured the excitation rate for many He lines and compared them to the excitation rate from ground state previously published. The validity density range for the diagnostic is presented together with the apparent excitation rate observed for the different transitions.

  15. Doppler cooling and trapping on forbidden transitions.

    PubMed

    Binnewies, T; Wilpers, G; Sterr, U; Riehle, F; Helmcke, J; Mehlstäubler, T E; Rasel, E M; Ertmer, W

    2001-09-17

    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of (40)Ca atoms has been cooled and trapped to a temperature as low as 6 microK by operating a magnetooptical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method, more than 10% of precooled atoms from a standard magnetooptical trap have been transferred to the ultracold trap. Monte Carlo simulations of the cooling process are in good agreement with the experiments. PMID:11580503

  16. Measuring galaxy clustering and the evolution of [C II] mean intensity with far-IR line intensity mapping during 0.5 < z < 1.5

    SciTech Connect

    Uzgil, B. D.; Aguirre, J. E.; Lidz, A.; Bradford, C. M.

    2014-10-01

    Infrared fine-structure emission lines from trace metals are powerful diagnostics of the interstellar medium in galaxies. We explore the possibility of studying the redshifted far-IR fine-structure line emission using the three-dimensional (3D) power spectra obtained with an imaging spectrometer. The intensity mapping approach measures the spatio-spectral fluctuations due to line emission from all galaxies, including those below the individual detection threshold. The technique provides 3D measurements of galaxy clustering and moments of the galaxy luminosity function. Furthermore, the linear portion of the power spectrum can be used to measure the total line emission intensity including all sources through cosmic time with redshift information naturally encoded. Total line emission, when compared to the total star formation activity and/or other line intensities, reveals evolution of the interstellar conditions of galaxies in aggregate. As a case study, we consider measurement of [C II] autocorrelation in the 0.5 < z < 1.5 epoch, where interloper lines are minimized, using far-IR/submillimeter balloon-borne and future space-borne instruments with moderate and high sensitivity, respectively. In this context, we compare the intensity mapping approach to blind galaxy surveys based on individual detections. We find that intensity mapping is nearly always the best way to obtain the total line emission because blind, wide-field galaxy surveys lack sufficient depth and deep pencil beams do not observe enough galaxies in the requisite luminosity and redshift bins. Also, intensity mapping is often the most efficient way to measure the power spectrum shape, depending on the details of the luminosity function and the telescope aperture.

  17. On-line measurement of wavefront aberration on optics caused by intense lasers

    NASA Astrophysics Data System (ADS)

    Xu, Zuodong; Liu, Fuhua; Jiang, Chang; Wang, Fei; Shao, Bibo; Ji, Yunfeng

    2015-05-01

    It is presented that the thermally induced transmitted wavefront aberration of a high-reflectivity sampling mirror was detected on line using a Shack-Hartmann wavefront sensor (SHWS) in the beam quality measurement of an intense laser. As a result of heat absorption in the sampling mirror with active aperture of 120 mm, thermally induced wavefront aberration emerged when the mirror was exposed to high laser intensity of several kilowatts per centimeter square. Time-dependent wavefront aberration curves were acquired, and the transmitted wavefronts were reconstructed based on Zernike mode reconstruction theory. The experimental results indicate that the magnitude of the dynamic transmitted wavefront aberration increases gradually with the growing heat deposit during laser irradiation. The maximum of wavefront aberration observed after irradiation for 5 seconds reaches 0.11 μm of root-mean-square value. After further analysis, the experimental results of dynamic aberration can be applied in modifications for the measurement results of intense laser beam quality or tests for the thermal stability of optics used in the intense laser systems.

  18. Absolute intensities of CO2 lines in the 3140-3410/cm spectral region

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Devi, V. Malathy; Ferry-Leeper, Penelope S.; Rinsland, Curtis P.

    1988-01-01

    Absolute intensities for 430 transitions belonging to eleven rotation-vibration bands of (C-12)(O-16)2, (C-13)(O-16)2, and (O-16)(C-18)(O-18) in the 3140-3410/cm spectral region have been determined by analyzing spectra recorded at 0.01/cm resolution with the Fourier transform spectrometer in the McMath solar telescope complex at the National Solar Observatory on Kitt Peak. The data were recorded at room temperature and low pressures (less than 10 torr) using a natural sample of carbon dioxide. Intensities were derived using a nonlinear least-squares spectral fitting procedure, and the values obtained for each band have been analyzed to determine the vibrational band intensity and nonrigid rotor coefficients. An alternative mathematical formulation is shown in the case of bands for which the Coriolis effect is large and the Q-branch line intensities were not determinable either because they were severely blended or absent from the spectra. Comparison are made between the results obtained in this study and other published values.

  19. Measurement of the Relative Intensity of the Ly-(alpha) Lines in Fe 25+

    SciTech Connect

    Wong, K L; Beiersdorfer, P; Reed, K J; Osterheld, A L

    2002-06-18

    The intensity of the polarized Ly-{alpha}{sub 1} (2p{sub 3/2} {yields} 1s{sub 1/2}) transition has been measured relative to that of the unpolarized Ly-{alpha}{sub 2} (2p{sub 1/2} {yields} 1s{sub 1/2}) transition in Fe{sup 25+}. The measurements were made with the Livermore electron beam ion trap EBIT-II for beam energies from threshold to 2.5 times threshold. The results are compared to the corresponding intensity ratio predicted using excitation cross sections from distorted-wave calculations, which includes polarization, the M1(2s{sub 1/2} {yields} 1s{sub 1/2}) transition, and cascade contributions. Discrepancies are found that tend to confirm a recent report of a measurement of the Ly-{alpha} lines in Ti{sup 21+} performed on the Tokyo electron beam ion trap.

  20. Low intensity noise and narrow line-width diode laser light at 540 nm

    NASA Astrophysics Data System (ADS)

    Wang, Lirong; Tamaki, Ryo; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2015-05-01

    We present a convenient method to generate high quality single-frequency green light at a wavelength of 540 nm. It consists of a noise suppressed external cavity diode laser at a wavelength of 1080 nm by optical filtering and resonant optical feedback, and a frequency doubling of the fundamental light with an a-cut KTP crystal. Highly efficient conversion is realized by type II non-critical phase matching. A stable single-frequency operation with a maximum power of about 20 mW is performed for more than 3 h. Both the intensity noise and line-width reach the level of a monolithic nonplanar ring laser, which is well known for its extraordinarily narrow line-width and extremely low noise among available single-frequency operating lasers.

  1. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    NASA Technical Reports Server (NTRS)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  2. Forbidden Ca 2 in the sun unmasked by way of Venus

    NASA Technical Reports Server (NTRS)

    Schorn, R. A.; Young, A. T.; Barker, E. S.

    1975-01-01

    Eleven high-dispersion spectra of Venus, taken with blue Doppler shifts have permitted the unmasking of the 7323.88A forbidden line of Ca II from terrestrial absorption. An equivalent width is obtained of 7.4 + or - 0.4mA for this line in integrated sunlight. Our value of W sub lambda is smaller than previous values and much more accurate. The HSRA solar model gives a solar calcium abundance of A sub Ca = 6.21.

  3. The relative line strength and intensity of the N II 2143 doublet

    NASA Technical Reports Server (NTRS)

    Bucsela, Eric J.; Sharp, William E.

    1989-01-01

    The doublet emission from N II at 2139.7 A and 2143.6 A was observed by a 1.4-m scanning spectrometer with 3.1 A resolution in the daytime, high-altitude thermosphere during moderate levels of solar activity. The spectrometer viewed the earth's limb 5 deg below the local horizontal to give a nominal tangent height of 152 km. Both sub band heads of the nitric oxide gamma band system were resolved in the data at the resolution used. The emission features from N II are clearly evident on the short wavelength shoulder of the (1, 0) band. Synthetic profiles of the (1, 0) gamma band and the (0, 3) delta band of nitric oxide were fitted to the data using a chi-square analysis. These contributions were removed from the data leaving a residual emission, considered to be the N II doublet. A chi-square minimization of the data relative to a synthetic intensity profile was done. The minimum was for a line strength ratio between the 2139 A and 2143 A lines of 0.58 + or - 0.08. The mean solar EUV flux deduced from the intensity of the N II emission in this experiment is lower than other reported observations, consistent with a lower solar activity level.

  4. The holographic recording in photopolymer by excitation forbidden singlet-triplet transitions

    NASA Astrophysics Data System (ADS)

    Shelkovnikov, V. V.; Pen, E. F.; Russkich, V. V.; Vasiliev, E. V.; Kovalevsky, V. I.

    2006-05-01

    The possibility and features of the holographic recording by excitation of the forbidden singlet-triplet transitions are considered in the report. The experimental demonstration of the hologram recording on forbidden transition is carried out in thick photopolymer material sensitized by Erithrozine dye. The single hologram with diffraction efficiency DE=50% and 16 angle multiplexing hologram were recorded by irradiation of the low intensity He-Ne laser (632 nm) at high concentration of the sensitizing dye and at high optical density in allowed absorption band of dye. The growth of DE of transition hologram depending on the Kr+(647 nm) laser irradiation intensity of was studied. The observed linear dependence of the maximal rate of DE growth on the intensity of recording irradiation was explained by two steps-two photon excitation (T I<--S 0, T II<--T I) of the dye in the photopolymer samples.

  5. Line Intensities of Isotopic Carbonyl Sulfide (ocs) at 2.5 Micrometer

    NASA Astrophysics Data System (ADS)

    Toth, Robert A.; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.

    2009-06-01

    We have measured line intensities of ^{16}O^{12}C^{32}S, ^{16}O^{13}C^{32}S, ^{16}O^{12}C^{33}S, ^{16}O^{12}C^{34}S, and ^{18}O^{12}C^{32}S in the 2.5 μm region for the first time to support planetary studies of the Venus atmosphere. Laboratory absorption spectra of OCS were recorded at 0.0033 cm^{-1} resolution at room temperature using a Bruker IFS 125-HR Fourier transform spectrometer at the Jet Propulsion Laboratory. Normal samples of OCS were used in this study, and sample impurities and isotopic abundances were determined from mass spectrum analysis. Optical densities sufficient to observe isotopic bands and weaker hot bands were achieved by using a multi-pass White cell and single pass gas cells in various path lengths, which were validated by analyzing near-IR CO_2 spectra. We present line intensities for almost 30 bands of the OCS isotopes excluding ground state bands of ^{16}O^{12}C^{32}S, which we have reported recently. We have Herman-Wallis factors determined for the individual bands. In some cases, it has been observed that band intensities normalized to 100% isotopic species show a significant deviation from that of the primary isotopic species (up to by 12.5%). No earlier measurements have been reported for these bands. Measurement precision and accuracies will be discussed. Research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. We thank Drs. Stojan Madzunkov, John A. MacAskill, and Murray R. Darrach from the Atomic and Molecular Collision Group at Jet Propulsion Laboratory for recording mass spectrum of the OCS sample used in this work.

  6. Limitations to Accuracy in Extracting Characteristic Line Intensities From X-Ray Spectra

    PubMed Central

    Statham, Peter J.

    2002-01-01

    The early development of quantitative electron probe microanalysis, first using crystal spectrometers, then energy dispersive x-ray spectrometers (EDXS), demonstrated that elements could be detected at 0.001 mass fraction level and major concentrations measured within 2 % relative uncertainty. However, during this period of extensive investigation and evaluation, EDXS detectors were not able to detect x rays below 1 keV and all quantitative analysis was performed using a set of reference standards measured on the instrument. Now that EDXS systems are often used without standards and are increasingly being used to analyse elements using lines well below 1 keV, accuracy can be considerably worse than is documented in standard textbooks. Spectrum processing techniques found most applicable to EDXS have now been integrated into total system solutions and can give excellent results on selected samples. However, the same techniques fail in some applications because of a variety of instrumental effects. Prediction of peak shape, width and position for every characteristic line and measurement of background intensity is complicated by variations in response from system to system and with changing count rate. However, with an understanding of the fundamental sources of error, even a total system can be tested like a “black box” in areas where it is most likely to fail and thus establish the degree of confidence that should apply in the intended application. This approach is particularly important when the microanalysis technique is applied at lower electron beam voltages where the extraction of line intensities is complicated by extreme peak overlap and higher background levels.

  7. Predicting the intensity mapping signal for multi-J CO lines

    NASA Astrophysics Data System (ADS)

    Mashian, Natalie; Sternberg, Amiel; Loeb, Abraham

    2015-11-01

    We present a novel approach to estimating the intensity mapping signal of any CO rotational line emitted during the Epoch of Reionization (EoR). Our approach is based on large velocity gradient (LVG) modeling, a radiative transfer modeling technique that generates the full CO spectral line energy distribution (SLED) for a specified gas kinetic temperature, volume density, velocity gradient, molecular abundance, and column density. These parameters, which drive the physics of CO transitions and ultimately dictate the shape and amplitude of the CO SLED, can be linked to the global properties of the host galaxy, mainly the star formation rate (SFR) and the SFR surface density. By further employing an empirically derived SFR-M relation for high redshift galaxies, we can express the LVG parameters, and thus the specific intensity of any CO rotational transition, as functions of the host halo mass M and redshift z. Integrating over the range of halo masses expected to host CO-luminous galaxies, we predict a mean CO(1-0) brightness temperature ranging from ~ 0.6 μK at z = 6 to ~ 0.03 μK at z = 10 with brightness temperature fluctuations of ΔCO2 ~ 0.1 and 0.005 μK respectively, at k = 0.1 Mpc-1. In this model, the CO emission signal remains strong for higher rotational levels at z = 6, with langle TCO rangle ~ 0.3 and 0.05 μK for the CO J = 6arrow5 and CO J = 10arrow9 transitions respectively. Including the effects of CO photodissociation in these molecular clouds, especially at low metallicities, results in the overall reduction in the amplitude of the CO signal, with the low- and high-J lines weakening by 2-20% and 10-45%, respectively, over the redshift range 4 < z < 10.

  8. Line position and line intensity analyses of the high-resolution spectrum of H218O up to the First Triad and J = 17

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Chelin, P.

    2016-08-01

    Line position and line intensity analyses of the high-resolution spectrum of the H218O isotopic species of the water molecule are performed with the Bending-Rotation approach up to J = 17 and the First Triad of interacting states, (0 2 0), (1 0 0), and (0 0 1). The line position analysis involves microwave and terahertz transitions, ground state combination differences, far infrared and infrared lines, and experimental energy levels which were reproduced with a 1.2 unitless standard deviation. The data set considered in the line intensity analysis consists of 3707 infrared transitions recorded using absorption spectroscopy at room temperature which were fitted with a 1.4 unitless standard deviation. The results of both analyses are compared with previous investigations and are used to build a line position and line intensity database to update the HITRAN and GEISA databases. A comparison with the HITRAN 2012 database reveals that the new database yields intensity values closer to the experimental ones.

  9. Light Dark Matter from Forbidden Channels.

    PubMed

    D'Agnolo, Raffaele Tito; Ruderman, Joshua T

    2015-08-01

    Dark matter (DM) may be a thermal relic that annihilates into heavier states in the early universe. This forbidden DM framework accommodates a wide range of DM masses from keV to weak scales. An exponential hierarchy between the DM mass and the weak scale follows from the exponential suppression of the thermally averaged cross section. Stringent constraints from the cosmic microwave background are evaded because annihilations turn off at late times. We provide an example where DM annihilates into dark photons, which is testable through large DM self-interactions and direct detection. PMID:26296106

  10. Impact of intense pulsed light irradiation on cultured primary fibroblasts and a vascular endothelial cell line

    PubMed Central

    WU, DI; ZHOU, BINGRONG; XU, YANG; YIN, ZHIQIANG; LUO, DAN

    2012-01-01

    The aim of this study was to determine the effects of intense pulsed light (IPL) on cell proliferation and the secretion of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in human fibroblasts and vascular endothelial cell lines, and to investigate the effects of IPL on the mRNA expression levels of type I and III procollagens in cultured human fibroblasts. Foreskin fibroblasts and a vascular endothelial cell line (ECV034) were cultured and treated with various wavelengths and doses of IPL irradiation. After culture for 1, 12, 24 and 48 h following IPL irradiation, fibroblasts and the vascular endothelial cell line were harvested for investigation of morphological changes by light microscopy, cell proliferation viability by MTT assay, and VEGF and MMP secretions by ELISA. The mRNA expression levels of type I and III procollagens in the fibroblasts were detected by RT-PCR. No marked morphological changes were observed in the cultured fibroblasts compared with the control. Cell growth and cellular viability were increased in fibroblasts 24 and 48 h after IPL irradiation. The levels of type I and III procollagen mRNA expression in fibroblasts increased in a time-dependent manner. However, the IPL management had no impact on VEGF and MMP secretion levels in fibroblasts and the ECV034 cell line at any time-point after irradiation as well as cell morphology and cellular proliferation. IPL irradiation may induce cellular proliferation and promote the expression of procollagen mRNAs directly in cultured primary fibroblasts, which may primarily contribute to photorejuvenation. PMID:23170124

  11. Resolution of the forbidden (J = 0 → 0) excitation puzzle in Mg-like ions

    NASA Astrophysics Data System (ADS)

    Fernández-Menchero, L.; Del Zanna, G.; Badnell, N. R.

    2015-05-01

    We investigate the source of the discrepancy between R-matrix and distorted-wave (DW) collision strengths for J - J' = 0-0 transitions in Mg-like ions, for example 3s21S0-3p21S0, as reported previously. We find it to be due to the neglect of coupling, for example via 3s3p 1P1, as done by most DW codes. We have implemented an option to account for such coupling as a perturbation within the autostructure DW code. This removes the discrepancy of a factor ~10 and ~100 for Fe14 + and S4 +, respectively, for such transitions. The neglect of coupling would have affected (to some degree) the atomic data for a few weak optically forbidden transitions in other isoelectronic sequences if they were calculated with DW codes such as FAC and HULLAC. In addition, we compare the Fe14 + line intensities predicted with the R-matrix collision strengths against observations of solar active regions and flares; they agree well. For Fe14 +, we suggest that the best density diagnostic ratio is 327.0/321.8 Å.

  12. A comparison of theoretical and solar-flare intensity ratios for the Fe XIX X-ray lines

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Fawcett, B. C.; Phillips, K. J. H.; Lemen, J. R.; Mason, H. E.

    1989-01-01

    Atomic data including energy levels, gf-values, and wavelengths are given for the Fe XIX transitions that give rise to lines in solar-flare and active-region X-ray spectra. Collision strengths and theoretical intensity ratios are presented for lines which occur in the 13.2-14.3-A range. Observed spectra are found to be consistent with those derived from the present Fe XIX atomic data. For the case of spectra in which the Fe XIX lines are very strong, such as those at the maxima of hot flares, two observed line features due to Fe XIX are shown to have larger intensities than calculated. The calculated Fe XIX and Ne IX line spectra are used to determine electron densities from Ne IX line ratios.

  13. Coronal line intensities for ions with fine-structured ground states - SI X

    NASA Astrophysics Data System (ADS)

    Saha, H. P.; Trefftz, E.

    1982-12-01

    The data of Saha and Trefftz (1982) are used to determine populations of the 15 lowest levels (2s2 2p, 2s2p2, 2p3) of Si X observed in the solar corona. A simple formula for the balance between the two ground state levels makes it possible to quickly estimate the relative importance of radiative and collisional excitations, and to determine the cascade contribution to the effective impact excitation rate. The present line intensity ratios diverge from those of Flower and Nussbaumer (1975) by approximately 5%, except for I272/I258, which is more than 10% less in the present calculations due to a 10% higher emissivity in I258.

  14. Hydrogen Balmer alpha intensity distributions and line profiles from multiple scattering theory using realistic geocoronal models

    NASA Technical Reports Server (NTRS)

    Anderson, D. E., Jr.; Meier, R. R.; Hodges, R. R., Jr.; Tinsley, B. A.

    1987-01-01

    The H Balmer alpha nightglow is investigated by using Monte Carlo models of asymmetric geocoronal atomic hydrogen distributions as input to a radiative transfer model of solar Lyman-beta radiation in the thermosphere and atmosphere. It is shown that it is essential to include multiple scattering of Lyman-beta radiation in the interpretation of Balmer alpha airglow data. Observations of diurnal variation in the Balmer alpha airglow showing slightly greater intensities in the morning relative to evening are consistent with theory. No evidence is found for anything other than a single sinusoidal diurnal variation of exobase density. Dramatic changes in effective temperature derived from the observed Balmer alpha line profiles are expected on the basis of changing illumination conditions in the thermosphere and exosphere as different regions of the sky are scanned.

  15. Line intensities and collisional-broadening parameters for the nu4 and nu6 bands of carbonyl fluoride

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1992-01-01

    Line intensities, air- and self-broadening parameters have been measured for selected lines in the nu4 (1243/cm) and nu6 (774/cm) bands of carbonyl fluoride at 296 and 215 K using a tunable diode-laser spectrometer. Measured line intensities are in good agreement +/- 6 percent with recently reported values derived from rotational analyses of the nu4 and nu6 bands. The measured average air-broadening coefficient at 296 K also agrees well (+/- 5 percent) with N2-broadening coefficients determined from microwave studies, while the average self-broadening coefficient reported here is smaller than a previously reported value by 45 percent.

  16. Nitrogen, oxygen and air broadened widths and relative intensities of N2O lines near 2450/cm

    NASA Technical Reports Server (NTRS)

    Hawkins, R. L.

    1982-01-01

    Spectra of the v sub 1 + 2v sub 2 and the weak underlying v sub 1 + 3v sub 2 - v sub 2 band of N2O near 2450/cm were analyzed by the nonlinear, least squares, whole band technique. The oxygen, nitrogen, and air broadened line widths and the relative line intensities were determined. The air broadened widths, for/m/3, are in agreement with those in the 1980 AFGL line listing and the relative band intensities also agree, within about 20% with the values in this listing.

  17. Absolute integrated intensity and individual line parameters for the 6.2-micron band of NO2. [in solar spectrum

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Bonomo, F. S.; Williams, W. J.; Murcray, D. G.; Snider, D. E.

    1975-01-01

    The absolute integrated intensity of the 6.2-micron band of NO2 at 40 C was determined from quantitative spectra at about 10 per cm resolution by the spectral band model technique. A value of 1430 plus or minus 300 per sq cm per atm was obtained. Individual line parameters, positions, intensities, and ground-state energies were derived, and line-by-line calculations were compared with the band model results and with the quantitative spectra obtained at about 0.5 per cm resolution.

  18. ``Forbidden'' phonon in the iron chalcogenide series

    NASA Astrophysics Data System (ADS)

    Fobes, David M.; Zaliznyak, Igor A.; Xu, Zhijun; Gu, Genda; Tranquada, John M.

    2015-03-01

    Recently, we uncovered evidence for the formation of a bond-order wave (BOW) leading to ferro-orbital order at low temperature, acting to stabilize the bicollinear AFM order, in the iron-rich parent compound, Fe1+yTe. Investigating the inelastic spectra centered near (100) in Fe1+yTe, a signature peak for the BOW formation in the monoclinic phase, we observed an acoustic phonon dispersion in both tetragonal and monoclinic phases. While a structural Bragg peak accompanies the mode in the monoclinic phase, in the tetragonal phase Bragg scattering at this Q is forbidden by symmetry, and we observed no elastic peak. This phonon mode was also observed in superconducting FeTe0.6Se0.4, where structural and magnetic transitions are suppressed. LDA frozen phonon calculations suggested that this mode could result from a spin imbalance between neighboring Fe atoms, but polarized neutron measurements revealed no additional magnetic scattering. We propose that this ``forbidden'' phonon mode may originate from dynamically broken symmetry, perhaps related to the strong dynamic spin correlations in these materials. Work at BNL was supported by BES, US DOE, under Contract No. DE-AC02-98CH10886. Research at ORNL's HFIR and SNS sponsored by Scientific User Facilities Division, BES, US DOE. We acknowledge the support of NIST, in providing neutron research facilities.

  19. Line Intensities of CH3D in the Triad Region: 6-10 mu m

    SciTech Connect

    Brown, L. R.; Nikitin, A.; Benner, D. C.; Devi, V. M.; Smith, M.A.H.; Fejard, L.; Champion, J. P.; Tyuterev, Vl G.; Sams, Robert L.

    2004-06-30

    Line intensities of the three fundamentals of the 12CH3D Triad are modeled with an RMS of 3.2% using over 2100 observed values retrieved by multispectrum fitting of enriched sample spectra recorded with two Fourier transform spectrometers. The band strengths of the Triad in units of 10-18 cm-1/(molecule cm-2) at 296 K are, respectively, 2.33 for v6 (E) at 1161 cm-1, 1.75 for v3 (A1) at 1307 cm-1 and 0.571 for v5 (E) at 1472 cm-1. The total calculated absorption arising from 12CH3D Triad fundamentals is 4.65x10-18 cm-1/molecule cm-2) at 296K. In addition, some 740 intensities of nine hotbands are fitted to 8.1%; most of the hotband measurements belong to 2v6-v6 and v3+v6-v3 near 1160 cm-1, 2v3-v3 near 1304 cm-1. The other observed hotbands are v5 + v6-v6 2v5-v5, v5+v6-v5, v3+v5-v3, and v3+v5-v5.

  20. Transport of intense ion beams and space charge compensation issues in low energy beam lines (invited)

    SciTech Connect

    Chauvin, N.; Delferriere, O.; Duperrier, R.; Gobin, R.; Nghiem, P. A. P.; Uriot, D.

    2012-02-15

    Over the last few years, the interest of the international scientific community for high power accelerators in the megawatt range has been increasing. For such machines, the ion source has to deliver a beam intensity that ranges from several tens up to a hundred of mA. One of the major challenges is to extract and transport the beam while minimizing the emittance growth and optimizing its injection into the radio frequency quadrupole. Consequently, it is crucial to perform precise simulations and cautious design of the low energy beam transport (LEBT) line. In particular, the beam dynamics calculations have to take into account not only the space charge effects but also the space charge compensation of the beam induced by ionization of the residual gas. The physical phenomena occurring in a high intensity LEBT and their possible effects on the beam are presented, with a particular emphasis on space charge compensation. Then, beam transport issues in different kind of LEBTs are briefly reviewed. The SOLMAXP particle-in-cell code dedicated to the modeling of the transport of charge particles under a space charge compensation regime is described. Finally, beam dynamics simulations results obtained with SOLMAXP are presented in the case of international fusion materials irradiation facility injector.

  1. Intense gamma-ray lines from hidden vector dark matter decay

    SciTech Connect

    Arina, Chiara; Hambye, Thomas; Ibarra, Alejandro; Weniger, Christoph E-mail: thambye@ulb.ac.be E-mail: christoph.weniger@desy.de

    2010-03-01

    Scenarios with hidden, spontaneously broken, non-abelian gauge groups contain a natural dark matter candidate, the hidden vector, whose longevity is due to an accidental custodial symmetry in the renormalizable Lagrangian. Nevertheless, non-renormalizable dimension six operators break the custodial symmetry and induce the decay of the dark matter particle at cosmological times. We discuss in this paper the cosmic ray signatures of this scenario and we show that the decay of hidden vector dark matter particles generically produce an intense gamma ray line which could be observed by the Fermi-LAT experiment, if the scale of custodial symmetry breaking is close to the Grand Unification scale. This gamma line proceeds directly from a tree level dark matter 2-body decay in association with a Higgs boson. Within this model we also perform a determination of the relic density constraints taking into account the dark matter annihilation processes with one dark matter particle in the final state. The corresponding direct detection rates can be easily of order the current experimental sensitivities.

  2. Fourier transform spectroscopy of CO2 isotopologues at 1.6 μm: Line positions and intensities

    NASA Astrophysics Data System (ADS)

    Jacquemart, D.; Borkov, Yu. G.; Lyulin, O. M.; Tashkun, S. A.; Perevalov, V. I.

    2015-07-01

    The line positions and intensities of carbon dioxide isotopologues have been retrieved between 5900 and 6400 cm-1 region from Fourier transform spectra of 17O- and 18O-enriched carbon dioxide recorded in LADIR (Paris, France) with the Bruker IFS 125-HR. In total 1634 line positions and intensities of 20 bands of the 5 major CO2 isotopologues present in our sample 16O12C17O (39.48%), 17O12C17O (27.73%), 16O12C16O (15.20%), 16O12C18O (7.32%) and 17O12C18O (8.25%) are retrieved. All studied bands belong to the ΔP=8 (only for asymmetric species) and 9 series of transitions, where P = 2V1 +V2 + 3V3 is the polyad number (Vi are vibrational quantum numbers). The accuracy of the line position determination is about 0.3×10-3 cm-1 for the unblended and not very weak lines and the accuracy for the line intensities varies from 4% to 30% depending on the intensity of the line and on the extent of the line overlapping. For the 16O12C17O, 17O12C17O, 16O12C18O and 17O12C18O isotopologues the systematic comparisons have been performed with the recent CRDS measurements.

  3. Allowed and forbidden transition parameters for Fe XV

    SciTech Connect

    Nahar, Sultana N.

    2009-07-15

    A comprehensive set of fine structure energy levels, oscillator strengths (f), line strengths (S), and radiative decay rates (A) for bound-bound transitions in Fe XV is presented. The allowed electric dipole (E1) transitions were obtained from the relativistic Breit-Pauli R-matrix method which is based on the close coupling approximation. A total of 507 fine structure energy levels with n {<=} 10, l {<=} 9, and 0 {<=} J {<=} 10 are found. They agree within 1% with the available observed energies. These energy levels yield a total of 27,812 E1, same-spin multiplets and intercombination transitions. The A values are in good agreement with those compiled by NIST and other existing values for most transitions. Forbidden transitions are obtained from a set of 20 configurations with orbitals ranging from 1s to 5f using the relativistic code SUPERSTRUCTURE (SS) in the Breit-Pauli approximation. From a set of 123 fine structure levels, a total of 6962 S and A values are presented for forbidden electric quadrupole (E2), electric octupole (E3), magnetic dipole (M1), and magnetic quadrupole (M2) transitions. The energies from SS calculations agree with observed energies to within 1-3%. A values for E2, M1 transitions agree very well with the available values for most transitions while those for M2 transitions show variable agreement. The large set of transition parameters presented should be applicable for both diagnostics and spectral modeling in the X-ray, ultraviolet, and optical regions of astrophysical plasmas.

  4. S V line ratios in the sun

    NASA Technical Reports Server (NTRS)

    Dufton, P. L.; Hibbert, A.; Keenan, F. P.; Kingston, A. E.; Doschek, G. A.

    1986-01-01

    In the present prediction of level populations and emission line intensity ratios for electron densities and temperatures appropriate to the sun, on the basis of new atomic data for S V, the electron impact collision rates for spin-forbidden transitions, and the intercombination transition spontaneous radiative rate, are noted to be substantially larger than previously ascertained. The S V intensity ratio is shown to be a useful electron density diagnostic for log N(e) greater than 11.5 ratios deduced from observations obtained with a slit spectrograph aboard Skylab generally agree with the theoretical values presented.

  5. Numerical and experimental study of atomic transport and Balmer line intensity in Linac4 negative ion source

    SciTech Connect

    Shibata, T. Nishida, K.; Hatayama, A.; Mattei, S.; Lettry, J.

    2015-04-08

    Time structure of Balmer H{sub α} line intensity in Linac4 RF plasma has been analyzed by the combined simulation model of atomic transport and Collisional-Radiative models. As a preliminary result, time variation of the line intensity in the ignition phase of RF plasma is calculated and compared with the experimental results by photometry. For the comparison, spatial distribution of the local H{sub α} photon emission rate at each time is calculated from the numerical model. The contribution of the local photon emission rates to the observed line intensity via optical viewing port is also investigated by application of the mock-up of the optical viewing port and the known light source. It has been clarified from the analyses that the higher and the lower peaks of the H{sub α} line intensity observed during 1 RF cycle is mainly due to the different spatial distributions in the electron energy distribution function and the resultant local photon emission rate. These results support previous suggestion that the existence of the capacitive electric field in axial direction leads to the higher/lower peaks of the line intensity.

  6. Absolute Line Intensities in the ν 3Band of 12CH 3F by Diode-Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lepère, Muriel; Blanquet, Ghislain; Walrand, Jacques

    1996-06-01

    Infrared absolute line intensities of the ν 3band of 12CH 3F have been measured around 9.5 μm using a diode-laser spectrometer. These line strengths were obtained from the equivalent width method and, for a few lines, by fitting a Rautian profile to the measured shape of the lines. From these results, we have deduced the vibrational bandstrength ( Sv0= 379.2 ± 5.9 cm -2·atm -1at 296 K) and the first Herman-Wallis factor (α = 0.35 × 10 -3± 0.10 × 10 -3).

  7. Absolute Line Intensities in the 2ν 02 Band of Cyanogen Chloride at 12.8 μm

    NASA Astrophysics Data System (ADS)

    Lepère, Muriel; Blanquet, Ghislain; Walrand, Jacques

    2000-05-01

    Absolute line intensities were measured at high resolution with a tunable diode laser. This work concerns the 2ν02 band of cyanogen chloride ClCN in the region 780 cm-1. Thirty-two absorption lines were recorded for the isotopomer 35ClCN and 26 lines for 37ClCN. From the analysis of these lines, we determined the bandstrengths: S0v = 19.14 cm-2 atm-1 for 35ClCN and S0v = 17.84 cm-2 atm-1 for 37ClCN.

  8. 49 CFR 174.102 - Forbidden mixed loading and storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Forbidden mixed loading and storage. 174.102 Section 174.102 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... RAIL Class I (Explosive) Materials § 174.102 Forbidden mixed loading and storage. (a) Division 1.1 or...

  9. Forbidden friends as forbidden fruit: parental supervision of friendships, contact with deviant peers, and adolescent delinquency.

    PubMed

    Keijsers, Loes; Branje, Susan; Hawk, Skyler T; Schwartz, Seth J; Frijns, Tom; Koot, Hans M; van Lier, Pol; Meeus, Wim

    2012-01-01

    Spending leisure time with deviant peers may have strong influences on adolescents' delinquency. The current 3-wave multi-informant study examined how parental control and parental prohibition of friendships relate to these undesirable peer influences. To this end, annual questionnaires were administered to 497 Dutch youths (283 boys, mean age = 13 years at baseline), their best friends, and both parents. Cross-lagged panel analyses revealed strong longitudinal links from contacts with deviant peers to adolescent delinquency, but not vice versa. Parent-reported prohibition of friendships positively predicted contacts with deviant peers and indirectly predicted higher adolescent delinquency. Similar indirect effects were not found for parental control. The results suggest that forbidden friends may become "forbidden fruit," leading to unintended increases in adolescents' own delinquency. PMID:22181711

  10. 158 micron forbidden C II mapping of NGC 6946 - Probing the atomic medium

    NASA Technical Reports Server (NTRS)

    Madden, S. C.; Geis, N.; Genzel, R.; Herrmann, F.; Jackson, J.; Poglitsch, A.; Stacey, G. J.; Townes, C. H.

    1993-01-01

    A well-sampled map (23 x 17 kpc) of the strong 158 micron forbidden C II cooling line in the Scd galaxy NGC 6946 at 55 arcsec resolution is presented which was taken with the MPE/UCB Far-infrared Imaging Fabry-Perot Interferometer (FIFI) in the Kuiper Airborne Observatory. It is concluded that the line emission in NGC 6946 is present in three spatially distinct components including nucleus, spiral arms, and extended region. An extended emission region is a source of most of the forbidden C II luminosity in NGC 6946. The 1 arcmin nuclear component has a line luminosity of 1.5 x 10 exp 7 solar luminosity and contributes 0.15 percent of the galaxy's total FIR luminosity. An extended component of forbidden C II emission is found to exist past the molecular extent of the galaxy and to be present to at least the full dimensions of the map. This component is attributed to a mixture of neutral and atomic clouds.

  11. Recombination line intensities for hydrogenic ions. II - Case B calculations for C VI, N VII and O VIII

    NASA Technical Reports Server (NTRS)

    Storey, P. J.; Hummer, D. G.

    1988-01-01

    The intensities of recombination lines formed in extended, optically thim, photoionized plasmas such as those found in PN, H II regions, and winds of certain hot stars are an important source of information on chemical abundances and can sometimes provide estimates of electron temperature. In this paper, the intensities of the recombination lines of C VI, N VII, and O VIII are calculated, accounting for both electron and heavy particle collisions and assuming case B of Baker and Menzel. The computational procedure is explained. The intensities of lines formed by transitions n(u) - n(l) are tabulated for n(u) of 50 or less, n(l) of 29 or less, at log N(e) = 4(1)13 and 10 values of electron temperature in the interval 10,000 K to 500,000 K.

  12. Allowed and forbidden transition parameters for Fe XXII

    SciTech Connect

    Nahar, Sultana N.

    2010-01-15

    Radiative transitions for photo-excitations and de-excitations in Fe XXII are studied in the relativistic Breit-Pauli approximation. A comprehensive set of fine structure energy levels, oscillator strengths (f), line strengths (S), and radiative decay rates (A) for electric dipole (E1), same spin multiplicity and intercombination, fine structure transitions is presented. These are obtained from the first calculations in the close coupling approximation using the Breit-Pauli R-matrix method for this ion, all existing theoretical results having been obtained from various other atomic structure calculations. The present work obtains a set of 771 fine structure energy levels with n {<=} 10, l {<=} 9, and 1/2 {<=} J {<=} 17/2, only 52 of which have been observed. The f, S, and A values are reported for 70,372 allowed E1 transitions, exceeding by far those published previously. The calculated fine structure levels have been identified spectroscopically using a procedure based on quantum defect analysis. The energies agree with the available observed energies to within less than one to a few percent. The A values for E1 transitions are in good agreement with other existing values for most transitions. Using the atomic structure code SUPERSTRUCTURE (SS), S and A values are also presented for 38,215 forbidden transitions of the types electric quadrupole (E2), electric octupole (E3), magnetic dipole (M1), and magnetic quadrupole (M2) among 274 fine structure levels formed from 25 configurations with orbitals ranging from 1s to 4f. Some of these levels lie above the ionization limit and hence can form autoionizing lines. Such lines for 1s-2p K{sub {alpha}} transitions have been observed in experiments. The energies from the SS calculations agree with observed energies within a few percent. The A values for E2 and M1 transitions agree very well with the available values. The atomic parameters for both allowed and forbidden transitions should be applicable for diagnostics as

  13. Coupling between meridional wind nightly behavior and mid-latitude oxygen red 630.0 nm line intensity predawn enhancement

    NASA Astrophysics Data System (ADS)

    Didebulidze, Goderdzi; Gudadze, Nikoloz; Lomidze, Levan; Todua, Maya

    The coupling between meridional wind nightly behavior and winter time predawn enhancement (PE) in the mid-latitude oxygen red 630.0 nm line intensity at Abastumani (41.75 N, 42.82 E) is investigated. It is shown that red line intensity PE, which was considered as a result of increase in the photoelectron flux from magnetically conjugate regions, also can be caused by increase in the mid-latitude northward wind (or decrease in the southward one). In this case the observed mean monthly/seasonal nightly behavior of the red line intensity can be verified by the ionosphere F2 layer parameters observed at Tbilisi ionosphere station (41.65 N, 44.75 E -neighboring Abastumani) and the meridional component of the thermosphere wind given by Horizontal Wind Model 93 (HWM93). The estimation shows that the mean monthly/seasonal northward wind for 1957-1993 and the observed F2 layer peak density NmF2 and height hmF2 can be responsible for the PE in the red line intensity (LT 03 h-05 h), which is also noticeable in early spring and later fall. The observed seasonal midnight negative trend in the red line intensity is accompanied by its wintertime positive trend before morning twilight, which includes the PE and can be explained by long-term increase in the northward wind velocity. In these cases, the increase in the mid-latitude northward wind or decrease in the southward one following to the equatorial midnight temperature maximum (MTM) or similar phenomena could be important in the observed mid-latitude PE of the red line intensity.

  14. Electric dipole moment function and line intensities for the ground state of carbon monxide

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Jun; Wu, Jie; Liu, Hao; Cheng, Xin-Lu

    2015-08-01

    An accurate electric dipole moment function (EDMF) is obtained for the carbon monoxide (CO) molecule (X1Σ+) by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional (ACPF) approach with the basis set, aug-cc-pV6Z, and a finite-field with ±0.005 a.u. (The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman-Wallis factors, calculated with the Rydberg-Klein-Rees (RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission (HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217 and 11474207).

  15. Extended line positions, intensities, empirical lower state energies and quantum assignments of NH3 from 6300 to 7000 cm-1

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Brown, Linda R.; Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.; Coy, Stephen L.; Lehmann, Kevin K.

    2012-07-01

    Nearly 4800 features of ammonia between 6300 and 7000 cm-1 with intensities ≥4×10-24 cm-1/(molecule·cm-2) at 296 K were measured using 16 pure NH3 spectra recorded at various temperatures (296-185 K) with the McMath-Pierce Fourier Transform Spectrometer at Kitt Peak National Observatory, AZ. The line positions and intensities were retrieved by fitting individual spectra based on a Voigt line shape profile and then averaging the values to form the experimental linelist. The integrated intensity of the region was 4.68×10-19 cm-1/(molecule·cm-2) at 296 K. Empirical lower state energies were also estimated for 3567 absorption line features using line intensities retrieved from 10 spectra recorded at gas temperature between 185 and 233 K. Finally, using Ground State Combination Differences (GSCDs) and the empirical lower state energy estimates, the quantum assignments were determined for 1096 transitions in the room temperature linelist, along with empirical upper state energies for 434 levels. The assignments correspond to seven vibrational states, as confirmed from recent ab initio calculations. The resulting composite database of 14NH3 line parameters will provide experimental constraints to ab initio calculations and support remote sensing of gaseous bodies including the atmospheres of Earth, (exo)planets, brown dwarfs, and other astrophysical environments.

  16. Theoretical intensity ratios for the UV lines of Mg VII, Si IX and S XI. [observation of solar atmosphere

    NASA Technical Reports Server (NTRS)

    Mason, H. E.; Bhatia, A. K.

    1978-01-01

    Energy levels, oscillator strengths, and electron collision strengths have been computed for the configurations 2s2 2p2, 2s 2p3, 2p4 of Mg VII, Si IX, and S XI. Level populations for the ground configuration and theoretical intensity ratios for the UV lines are tabulated for electron densities and temperatures appropriate to the solar atmosphere. The identification of the Mg VII, Si IX, and S XI UV lines is discussed.

  17. Discovery of Time Variation of the Intensity of Molecular Lines in IRC+10216 in The Submillimeter and Far Infrared Domains

    PubMed Central

    Cernicharo, J.; Teyssier, D.; Quintana-Lacaci, G.; Daniel, F.; Agúndez, M.; Prieto, L. Velilla; Decin, L.; Guélin, M.; Encrenaz, P.; García-Lario, P.; de Beck, E.; Barlow, M.J.; Groenewegen, M.A.T.; Neufeld, D.; Pearson, J.

    2015-01-01

    We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species towards the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the HIFI instrument on board Herschel1 and with the IRAM2 30-m telescope. They cover several observing periods spreading over 3 years. The line intensity variations for molecules produced in the external layers of the envelope most probably result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations have to take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The sub-mm and FIR lines of AGB stars cannot anymore be considered as safe intensity calibrators. PMID:26722620

  18. Radiative Electron Capture in the First-Forbidden Unique Decay of 81Kr

    SciTech Connect

    Mianowski, S.; Werner-Malento, E.; Korgul, A.; Pomorski, M.; Pachucki, K.; Pfutzner, M.; Szweryn, B.; Zylicz, J.; Hornshoj, P.; Nilsson, T.; Rykaczewski, Krzysztof Piotr

    2010-01-01

    The photon spectrum accompanying the orbital K-electron capture in the first-forbidden unique decay of 81Kr was measured.The total radiation intensity for photon energies larger than 50 keVwas found to be 1.42(22) 10 4 per K capture. Both the shape of the spectrum and its intensity relative to the ordinary, nonradiative capture rate are compared to theoretical predictions. The best agreement is found for the recently developed model that employs the length gauge for the electromagnetic field.

  19. Real Distribution of the Coronal Green Line Intensity and Modelling Study of Galactic Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Gushchina, R. T.; Alania, M. V.; Gil, A.; Iskra, K.; Siluszyk, M.

    2003-07-01

    transport equation of galactic cosmic rays (GCR) has been numerically solved for different qA>0 (1996) and qA<0 (1987) epochs assuming that free path of GCR scattering in the interplanetary space is controlled by the Sun's coronal green line intensity (CGLI). We found some distinctions in the distribution of the expected heliolatitudinal gradients of GCR for two and three dimensional interplanetary magnetic field. INTRODUCTION. modulation of GCR in the interplanetary space is generally determined by four processesdiffusion, convection, drift and energy change of GCR particles due to interaction with the solar wind. The joint effect of all above mentioned processes result the 11year variation of GCR. In papers [1-3] are assumed that the general reason of the 11-year variation of GCR in the energy range more than 1 GeV is different structure of the irregularities of the IMF in the maxima and minima epochs of solar activity (SA) caused the radical changes of the dependence of diffusion coefficient on the rigidity of GCR particles. EXPERIMENTAL DATA AND METHOD OF INVESTIGATION. experimental data of sunspot numbers, sunspots' areas and CGLI (λ = 5303˚) show a considerable changes during the 11-year cycle of SA, while e.g. A the changes of the solar wind velocity are not so noticeable [4, 5]. An attempt to take into account influences of the real distributions of the sunspot's areas and the Sun's CGLI on the modulation of GCR considering delay time of the phenomena in the interplanetary space with respect to the processes on the Sun have been undertaken in papers [6-8]. One of parameters of SA contentiously observed on the Earth is the Sun's CGLI. One can suppose that a modulation of GCR by some means is controlled by the changes of the CGLI; particularly there is assumed that a scattering free path of GCR transport is related with the

  20. Ambiguous and forbidden parameter combinations for aqueous plutonium.

    PubMed

    Silver, G L

    2009-01-01

    The concepts of forbidden and ambiguous oxidation-state distributions for plutonium are easier to understand when presented graphically. This note describes two diagrams that illustrate the phenomena. PMID:18986812

  1. Infrared line intensity measurements in the v = 0-1 band of the ClO radical

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Howard, Carleton J.; Hammer, Philip D.; Goldman, Aaron

    1989-01-01

    Integrated line intensity measurements in the ClO-radical fundamental vibrational v = 0-1 band were carried out using a high-resolution Fourier transform spectrometer coupled to a long-path-length absorption cell. The results of a series of measurements designed to minimize systematic errors, yielded a value of the fundamental IR band intensity of the ClO-radical equal to 9.68 + or - 1.45/sq cm per atm at 296 K. This result is consistent with all the earlier published results, with the exception of measurements reported by Kostiuk et al. (1986) and Lang et al. (1988).

  2. ANALYSIS OF BREIT-PAULI TRANSITION PROBABILITIES FOR LINES IN O III

    SciTech Connect

    Fischer, C. Froese; Tachiev, G.; Rubin, R. H.; Rodriguez, M.

    2009-09-20

    Accurate atomic data are essential for understanding the properties of both O III lines produced by the Bowen fluorescence mechanism and [O III] forbidden lines observed in numerous gaseous nebulae. Improved Breit-Pauli transition probabilities have been published for the carbon sequence. Included were revised data for O III. The present paper analyzes the accuracy of the data specifically for O III by comparison with other theory as well as some recent experiments and observations. For the electric dipole transition probabilities, good agreement is found for allowed Bowen fluorescence lines between predictions of intensity ratios with observed data. For forbidden transitions, the Breit-Pauli magnetic dipole transition operator requires corrections that often are neglected. Good agreement is found when these transition probabilities are computed with multiconfiguration Dirac-Hartree-Fock methods.

  3. Use of generalized population ratios to obtain Fe XV line intensities and linewidths at high electron densities

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1980-01-01

    A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.

  4. Proposed rocket experiments to measure the profile and intensity of the solar He1584A resonance line

    NASA Technical Reports Server (NTRS)

    Judge, D. L.

    1978-01-01

    The intensity and profile of the helium resonance line at 584 A from the entire disc of the sun was investigated using a rocket-borne helium-filled spectrometer and a curve of growth technique. The line profile was found to be accurately represented by a Gaussian profile with full width at half maximum of 122 plus or minus 10m A while the integrated intensity was measured to be (2.6 plus or minus 1.3) x 10 to the 9th power/photons sec sq cm at solar levels of F sub 10.7 = 90.8 x 10 to the minus 22th power/sq m H sub z and R sub z = 27. The measured linewidth is in good agreement with previous spectrographic measurement but the integrated intensity is larger than most previous photoelectric measurements. However, the derived line center flux of (2.0 plus or minus 1.0) x 10 to the 10th power/photons sec sq cm A is in good agreement with values inferred from airglow measurements.

  5. Determination of plume temperature distribution based on the ratios of the radiation intensities of multiple CO2 lines

    NASA Astrophysics Data System (ADS)

    Cieszczyk, S.

    2015-05-01

    New inversion scheme for gas temperature distribution retrieval utilized CO2 spectrum between 2350 cm-1 and 2400 cm-1 is proposed. Inversion model is build base on neural networks. Considered spectral remote sensing method is commonly used for industrial and environmental monitoring. It is a passive single-ended sensor technique in which radiation intensity emerging from a studied object is analyzed. Quantitative investigation of heated gas radiation emission to determine temperature and gas mixture by infrared spectroscopy requires two components apart from optical radiation sensor. First appropriate spectral database and second efficient inversion techniques. In this study calculation of one-dimensional radiative transfer equation have been used for simulation of spectral radiation intensity. To increase quality of retrieval a spectrum preprocessing and feature extraction method is applied. Simulated spectra were parameterized and expressed as ratios of intensities of multiple rotational lines. Each neural network estimates temperature (NN response) at one point on studied path basing on given spectrum (NN input).

  6. Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra

    NASA Astrophysics Data System (ADS)

    Abdel-Salam, Z. A.; Galmed, A. H.; Tognoni, E.; Harith, M. A.

    2007-12-01

    Calcified tissues representing three different matrices, namely enamel of human teeth, shells and eggshell, have been studied via Laser Induced Breakdown Spectroscopy (LIBS) technique. The experimental CaII/CaI and MgII/MgI ratios have been measured, in view of the expected correlation between the extent of ionization caused by the laser induced shock wave (SW) and the hardness of the target. The ratio CaII/CaI between the ionic calcium line at 373.69 nm and the neutral line at 428.9 nm is obtained for enamel, shells and eggshell spectra, as well as the ratio MgII/MgI between the ionic magnesium line at 280.26 nm and the neutral line at 285.22 nm. The results show that such spectral lines intensities ratio differs for different matrices and is indeed related to the target materials hardness. It is also found that the MgII/MgI ratio is preferable as an indicator of hardness since these lines are less affected by self absorption. The SW front speed has been measured in the three cases and the obtained values confirm the proportionality to the target hardness. The results here obtained suggest the feasibility of the quantitative estimation of hardness for any other calcified tissues.

  7. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    PubMed

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  8. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity

    PubMed Central

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-01-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  9. Line intensities and temperature-dependent line broadening coefficients of Q-branch transitions in the v2 band of ammonia near 10.4 μm

    NASA Astrophysics Data System (ADS)

    Sur, Ritobrata; Spearrin, R. Mitchell; Peng, Wen Y.; Strand, Christopher L.; Jeffries, Jay B.; Enns, Gregory M.; Hanson, Ronald K.

    2016-05-01

    We report measured line intensities and temperature-dependent broadening coefficients of NH3 with Ar, N2, O2, CO2, H2O, and NH3 for nine sQ(J,K) transitions in the ν2 fundamental band in the frequency range 961.5-967.5 cm-1. This spectral region was chosen due to the strong NH3 absorption strength and lack of spectral interference from H2O and CO2 for laser-based sensing applications. Spectroscopic parameters were determined by multi-line fitting using Voigt lineshapes of absorption spectra measured with two quantum cascade lasers in thermodynamically-controlled optical cells. The temperature dependence of broadening was measured over a range of temperatures between 300 and 600 K. These measurements aid the development of mid-infrared NH3 sensors for a broad range of gas mixtures and at elevated temperatures.

  10. Line positions and intensities of the phosphine (PH3) Pentad near 4.5μm

    SciTech Connect

    Malathy Devi, V.; Kleiner, Isabelle; Sams, Robert L.; Brown, Linda R.; Benner, D. Chris; Fletcher, Leigh N.

    2014-04-01

    In order to improve the spectroscopic database for remote sensing of the giant planets, line positions and intensities are determined for the five bands (2ν2, ν2 + ν4, 2ν4, ν1 and ν3) that comprise the Pentad of PH3 between 1950 and 2450 cm-1. Knowledge of PH3 spectral line parameters in this region is important for the exploration of dynamics and chemistry on Saturn, (using existing Cassini/VIMS observations) and future near-IR data of Jupiter from Juno and ESA’s Jupiter Icy Moons Explorer (JUICE). For this study, spectra of pure PH3 from two Fourier transform spectrometers were obtained: (a) five high-resolution (0.00223 cm-1), high signal-to-noise (~1800) spectra recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL), Richland, Washington and (b) four high-resolution (at 0.0115 cm-1 resolution), high signal-to-noise (~700) spectra recorded at room temperature in the region 1800–5200 cm-1 using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak. Individual line parameters above 2150 cm-1 were retrieved by simultaneous multispectrum fittings of all five Bruker spectra, while retrievals with the four Kitt Peak spectra were done in the 1938–2168 cm-1 range spectrum by spectrum and averaged. In all, positions and intensities were obtained for more than 4400 lines. These included 53 A+A- split pairs of transitions (arising due to vibration–rotation interactions (Coriolis-type interaction) between the ν3 and ν1 fundamental bands) for K" = 3, 6, and 9. Over 3400 positions and 1750 intensities of these lines were ultimately identified as relatively unblended and modeled up to J = 14 and K = 12 with rms values of 0

  11. Reading between the Lines: The Case for Qualitative Research in Intensive Family Preservation Services.

    ERIC Educational Resources Information Center

    Wells, Kathleen; Freer, Richard

    1994-01-01

    Focuses on current knowledge of families' involvement in intensive family preservation services. Identifies gaps in knowledge pertaining to the context of service delivery, the theory of family preservation practice, the process of service delivery, and the conceptualization and meaning of service outcomes. Suggests that gaps might be…

  12. Recombination line intensities for hydrogenic ions. III - Effects of finite optical depth and dust

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Storey, P. J.

    1992-01-01

    The effect on the recombination spectrum of hydrogen arising from: (1) finite optical thickness in the Lyman lines; (2) the overlapping of Lyman lines near the series limit; (3) the absorption of Lyman lines by dust or photoionization, and (4) the long-wave radiation emitted by dust is examined. Full account is taken of electron and heavy particle collisions in redistributing energy and angular momentum. It is seen that each of these deviations from the classical Case B leads to observable effects, and that dust influences the recombination spectrum in characteristic ways that may make possible new observational constraints on dust properties in nebulosities. On the basis of these calculations it is believed that the uncertainty in the determination of the helium-to-hydrogen abundance ratio in the universe may be larger than currently claimed.

  13. Excitation of emission lines by fluorescence and recombination in IC 418

    NASA Astrophysics Data System (ADS)

    Escalante, V.; Morisset, C.; Georgiev, L.

    2012-11-01

    We compare calculated intensities of lines of C II, N I, N II, O I and O II with a published deep spectroscopic survey of IC 418. Our calculations use a self-consistent nebular model and a synthetic spectrum of the central star atmosphere to take into account line excitation by continuum fluorescence and electron recombination. We found that the N II spectrum of the s, p and most d states is excited by fluorescence due to the low-excitation conditions of the nebula. Many C II and O II lines have significant amount of excitation by fluorescence. Recombination excites all the lines from the f and g states and most O II lines. In the neutral-ionized boundary, the N I quartet and O I triplet dipole-allowed lines are excited by fluorescence, while the quintet O I lines are excited by recombination. Electron excitation produces the forbidden optical lines of O I, and continuum fluorescence enhances the N I forbidden line intensities. Lines excited by fluorescence of light below the Lyman limit thus suggest a new diagnostic to explore the inner boundary of the photodissociation region of the nebula.

  14. A region of intense plasma wave turbulence on auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1976-01-01

    This report presents a detailed study of the plasma wave turbulence observed by HAWKEYE-1 and IMP-6 on high latitude auroral field lines and investigates the relationship of this turbulence to magnetic field and plasma measurements obtained in the same region.

  15. Monitoring the Intensity of Ice Formation on Overhead Electric Power Lines and Contact Networks

    SciTech Connect

    Titov, D. E.; Ugarov, G. G.; Soshinov, A. G.

    2015-05-15

    The conditions for ice to form on a conductor are explained. A hypothesis on the existence of a functional relation between the rate of growth of a mass deposited on a non-live conductor, the dew and desublimation points, and the temperature of the wire surface when there is no wind is suggested and proved. Equations for determining the density, maximum possible mass of the coating and the intensity with which they are formed are proposed, which take into account the temperature of the conductor, the temperature and humidity of the air, the direction and velocity of the wind and the electric field strength of the conductor. The equations are the basis of a proposed thermodynamic method of monitoring the intensity of ice formation. Versions of a technical method and algorithms of the functioning of ice-formation monitoring are proposed.

  16. Study of the line intensity in the optical and magnetooptical spectra in holmium-containing paramagnetic garnets

    NASA Astrophysics Data System (ADS)

    Valiev, Uygun V.; Gruber, John B.; Burdick, Gary W.; Pelenovich, Vasiliy O.; Fu, Dejun; Dzhuraev, Davron R.

    2016-01-01

    Studies of line intensity in the optical and magneto-optical spectra in the holmium-containing paramagnetic garnet Ho3+:YAG were carried out within the visible spectrum at T = 85 K. Detailed investigation of the magnetic circularly polarized luminescence spectra at 85 and 300 K on 5S2 → 5I8 emission transition in Ho3+:YAG was carried out. A quasi-doublet state in the energy spectrum of the Ho3+ ions was observed, characterized by a significant magneto-optical activity, which is caused by a large Zeeman splitting of the quasi-doublet. The measurement of the magnetic circular polarized luminescence spectrum carried out within one of the emission lines of the luminescence band 5S2 → 5I8 in Ho3+:YAG at 85 K shows significant magneto-optical effects of the intensity change of the emitted light, compared to that measured for the other emission lines in the same luminescent band.

  17. A brief review of the intensity of lines 3C and 3D in neon-like Fe XVII

    SciTech Connect

    Brown, G V

    2007-06-13

    X-ray emission from neon-like Fe XVII has been measured with high-resolution spectrometers from laboratory or celestial sources for nearly seven decades. Two of the strongest lines regularly identified in these spectra are the {sup 1}P{sub 1} {yields} {sup 1}S{sub 0} resonance, and {sup 3}D{sub 1} {yields} {sup 1}S{sub 0} intercombination line, known as 3C and 3D, respectively. This paper gives a brief overview of measurements of the intensities of the lines 3C and 3D from laboratory and celestial sources, and their comparison to model calculations, with an emphasis on measurements completed using an electron beam ion trap. It includes a discussion of the measured absolute cross sections compared to results from modern atomic theory calculations, as well as the diagnostic utility of the relative intensity, R = I{sub 3C}/I{sub 3D}, as it applies to the interpretation of spectra measured from the Sun and extra-Solar sources.

  18. Atomic Data and Spectral Line Intensities for Be-like Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand; Landi, E.

    2008-01-01

    Atomic data and collision rates are needed to model the spectrum of optically thin astrophysical sources. Recent observations from solar instrumentation such as SOH0 and Hinode have revealed the presence of hosts of lines emitted by high-energy configurations from ions belonging to the Be-like to the 0-like isoelectronic sequences. Data for such configurations are often unavailable in the literature. We have started a program to calculate the atomic parameters and rates for the high-energy configurations of Be-like ions of the type ls2.21.nl' where n=3,4,5. We report on the results of this project and on the diagnostic application of the predicted spectral lines.

  19. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    NASA Astrophysics Data System (ADS)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-01

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  20. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    NASA Astrophysics Data System (ADS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-07-01

    Inelastic structure factors for rotational transitions of uniaxial NH3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling. Present address: LPCM, CNRS-Université de Bordeaux I, 351 Cours de Libération, Talence F-33405, France.

  1. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  2. A Central Line Care Maintenance Bundle for the Prevention of Central Line-Associated Bloodstream Infection in Non-Intensive Care Unit Settings.

    PubMed

    O'Neil, Caroline; Ball, Kelly; Wood, Helen; McMullen, Kathleen; Kremer, Pamala; Jafarzadeh, S Reza; Fraser, Victoria; Warren, David

    2016-06-01

    OBJECTIVE To evaluate a central line care maintenance bundle to reduce central line-associated bloodstream infection (CLABSI) in non-intensive care unit settings. DESIGN Before-after trial with 12-month follow-up period. SETTING A 1,250-bed teaching hospital. PARTICIPANTS Patients with central lines on 8 general medicine wards. Four wards received the intervention and 4 served as controls. INTERVENTION A multifaceted catheter care maintenance bundle consisting of educational programs for nurses, update of hospital policies, visual aids, a competency assessment, process monitoring, regular progress reports, and consolidation of supplies necessary for catheter maintenance. RESULTS Data were collected for 25,542 catheter-days including 43 CLABSI (rate, 1.68 per 1,000 catheter-days) and 4,012 catheter dressing observations. Following the intervention, a 2.5% monthly decrease in the CLABSI incidence density was observed on intervention floors but this was not statistically significant (95% CI, -5.3% to 0.4%). On control floors, there was a smaller but marginally significant decrease in CLABSI incidence during the study (change in monthly rate, -1.1%; 95% CI, -2.1% to -0.1%). Implementation of the bundle was associated with improvement in catheter dressing compliance on intervention wards (78.8% compliance before intervention vs 87.9% during intervention/follow-up; P<.001) but improvement was also observed on control wards (84.9% compliance before intervention vs 90.9% during intervention/follow-up; P=.001). CONCLUSIONS A multifaceted program to improve catheter care was associated with improvement in catheter dressing care but no change in CLABSI rates. Additional study is needed to determine strategies to prevent CLABSI in non-intensive care unit patients. Infect Control Hosp Epidemiol 2016;37:692-698. PMID:26999746

  3. A possible E-W asymmetry of the coronal emission line intensities and K-corona brightness

    NASA Astrophysics Data System (ADS)

    Mavromichalaki, H.; Tritakis, V.; Petropoulos, B.; Marmatsouri, E.; Vassilaki, A.; Belehaki, A.; Raphios, X.; Noens, J. C.; Pech, B.

    1994-08-01

    The analysis of the daily measurements of the coronal green and red line intensities as well as the K-corona brightness, which have been collected by the Pic-du-Midi Observatory, for the time period 1944-1974, has revealed some very interesting features. North-South (N-S) asymmetries for all these coronal intensities are confirmed again for this time period. The main point of this analysis is a strong evidence of longitudinal distribution of the coronal intensities as derived from the data record. In our effort to confirm this asymmetry, we have examined the yearly and monthly distribution of the asymmetry coefficient in each solar quadrant showing that the northeast (NE) quadrant appears the most active of all. We have also examined the intensity ratios measured at the East and West solar limbs which is continuously greater than the unit. A seasonal variation of this ratio has also been reported with a maximum during the winter period and a minimum during the summer period.

  4. Reduction of Central Line-Associated Bloodstream Infection Rates in Patients in the Adult Intensive Care Unit.

    PubMed

    Wallace, Mary C; Macy, Deborah L

    2016-01-01

    Central line-associated bloodstream infections (CLABSIs) prolong hospital stays and increase cost, morbidity, and mortality. An intensive care unit (ICU) in a suburban Baltimore hospital reduced CLABSI rates to zero in 2012, by revising central venous access device policies and initiatives, which included a bloodstream infection alert system, bundle compliance monitoring and routine evaluation, and use of positive displacement needleless connectors. The hospital's ICU infection rate decreased from 2.9/1000 central-line days in 2010 to 0.8 by 2011, 0 by 2012, and 0.91 in 2013. The utilization ratio was 0.64 in 2011, 0.60 in 2012, and 0.58 in 2013. CLABSI prevention involves all disciplines and requires staff accountability for patient safety. PMID:26714119

  5. Aerodynamic Mixing Downstream from Line Source of Heat in High-intensity Sound Field

    NASA Technical Reports Server (NTRS)

    Mickelson, William R; Baldwin, Lionel V

    1956-01-01

    Theory and measurement showed that the heat wake downstream from a line source is displaced by a transverse standing sound wave in a manner similar to a flag waving in a harmonic mode. With a 147 db, 104 cps standing wave, time-mean temperatures were reduced by an order of magnitude except near the displacement-pattern nodal points. The theory showed that a 161 db, 520 cps standing wave considerably increased the mixing in both the time-mean and instantaneous senses.

  6. The effect of sideband ratio on line intensity for Herschel/HIFI

    NASA Astrophysics Data System (ADS)

    Higgins, Ronan; Teyssier, David; Borys, Colin; Braine, Jonathan; Comito, Claudia; Delforge, Bertrand; Helmich, Frank; Olberg, Michael; Ossenkopf, Volker; Pearson, John; Shipman, Russell

    2014-07-01

    The Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory is composed of a set of fourteen double sideband mixers. We discuss the general problem of the sideband ratio (SBR) determination and the impact of an imbalanced sideband ratio on the line calibration in double sideband heterodyne receivers. The HIFI SBR is determined from a combination of data taken during pre-launch gas cell tests and in-flight. The results and some of the calibration artefacts discovered in the gas cell test data are presented here along with some examples of how these effects appear in science data taken in orbit.

  7. Quantitative Kα line spectroscopy for energy transport in ultra-intense laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Nishimura, H.; Fujioka, S.; Arikawa, Y.; Nakai, M.; Chen, H.; Park, J.; Williams, G. J.; Ozaki, T.; Shiraga, H.; Kojima, S.; Johzaki, T.; Sunahara, A.; Miyanaga, N.; Kawanaka, J.; Nakata, Y.; Jitsuno, T.; Azechi, H.

    2016-03-01

    Absolute Ka line spectroscopy is proposed for studying laser-plasma interactions taking place in the cone-guided fast ignition targets. X-ray spectra ranging from 20 to 100 keV were quantitatively measured with a Laue spectrometer. The absolute sensitivities of the Laue spectrometer system were calibrated using pre-characterized laser-produced x-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency, is derived as a consequence of this work. The absolute yield of Au and Ta Ka lines were measured in the fast ignition experimental campaign performed at Institute of Laser Engineering, Osaka University. Applying the hot electron spectrum information from the electron spectrometer, an energy transfer efficiency of the incident LFEX [1], a kJ-class PW laser, to hot electrons was derived for a planar and cone-guided geometry.

  8. Tracking objects outside the line of sight using 2D intensity images

    PubMed Central

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  9. Tracking objects outside the line of sight using 2D intensity images.

    PubMed

    Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B

    2016-01-01

    The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time. PMID:27577969

  10. Critical datasets for benchmarking atomic codes: Calibrated line intensities emitted by well-diagnosed solar plasmas

    NASA Astrophysics Data System (ADS)

    Feldman, U.; Landi, E.; Doschek, G. A.

    2006-10-01

    The accuracy of available spectral codes is dependent on the quality of the atomic data and transition rates that they include, and can only be tested by benchmarking predicted line emissivities with observations from plasmas whose physical properties are known with precision. In the present work we describe a few high-resolution spectra emitted by solar flare plasmas under condition of ionization equilibrium, and one quiet Sun off-disk region spectrum, and we propose these datasets as benchmarks for the assessment of the accuracy of existing spectral codes in the 1.84-1.90 Å and 3.17-3.22 Å X-ray ranges and in the 500-1600 Å far ultraviolet range.

  11. Simultaneous analysis of the Ballik-Ramsay and Phillips systems of C2 and observation of forbidden transitions between singlet and triplet states.

    PubMed

    Chen, Wang; Kawaguchi, Kentarou; Bernath, Peter F; Tang, Jian

    2015-02-14

    6229 lines of the Ballik-Ramsay system (b(3)Σg (-)-a(3)Πu) and the Phillips system (A(1)Πu-X(1)Σg (+)) of C2 up to v = 8 and J = 76, which were taken from the literature or assigned in the present work, were analyzed simultaneously by least-squares fitting with 82 Dunham-like molecular parameters and spin-orbit interaction constants between the b(3)Σg (-) and X(1)Σg (+) states with a standard deviation of 0.0037 cm(-1) for the whole data set. As a result of the deperturbation analysis, the spin-orbit interaction constant AbX was determined as 6.333(7) cm(-1) and the energy difference between the X(1)Σg (+) and a(3)Πu states was determined as 720.008(2) cm(-1) for the potential minima or 613.650(3) cm(-1) for the v = 0 levels with Merer and Brown's N(2) Hamiltonian for (3)Π states, which is about 3.3 cm(-1) larger than the previously determined value. Due to this sizable change, a new energy-level crossing was found at J = 2 for v = 3 (F1) of b(3)Σg (-) state and v = 6 of X(1)Σg (+) state, where the strong interaction causes a nearly complete mixing of the wave functions of the b(3)Σg (-) and X(1)Σg (+) states and the forbidden transitions become observable. Using the predictions of our deperturbation analysis, we were able to identify 16 forbidden transitions between the singlet and triplet states at the predicted frequencies with the expected intensities, which verifies our value for the energy difference between the X(1)Σg (+) and a(3)Πu states. PMID:25681916

  12. Designing a Method for AN Automatic Earthquake Intensities Calculation System Based on Data Mining and On-Line Polls

    NASA Astrophysics Data System (ADS)

    Liendo Sanchez, A. K.; Rojas, R.

    2013-05-01

    Seismic intensities can be calculated using the Modified Mercalli Intensity (MMI) scale or the European Macroseismic Scale (EMS-98), among others, which are based on a serie of qualitative aspects related to a group of subjective factors that describe human perception, effects on nature or objects and structural damage due to the occurrence of an earthquake. On-line polls allow experts to get an overview of the consequences of an earthquake, without going to the locations affected. However, this could be a hard work if the polls are not properly automated. Taking into account that the answers given to these polls are subjective and there is a number of them that have already been classified for some past earthquakes, it is possible to use data mining techniques in order to automate this process and to obtain preliminary results based on the on-line polls. In order to achieve these goal, a predictive model has been used, using a classifier based on a supervised learning techniques such as decision tree algorithm and a group of polls based on the MMI and EMS-98 scales. It summarized the most important questions of the poll, and recursive divides the instance space corresponding to each question (nodes), while each node splits the space depending on the possible answers. Its implementation was done with Weka, a collection of machine learning algorithms for data mining tasks, using the J48 algorithm which is an implementation of the C4.5 algorithm for decision tree models. By doing this, it was possible to obtain a preliminary model able to identify up to 4 different seismic intensities with 73% correctly classified polls. The error obtained is rather high, therefore, we will update the on-line poll in order to improve the results, based on just one scale, for instance the MMI. Besides, the integration of automatic seismic intensities methodology with a low error probability and a basic georeferencing system, will allow to generate preliminary isoseismal maps

  13. First on-line isotopic characterization of N2O above intensively managed grassland

    NASA Astrophysics Data System (ADS)

    Wolf, B.; Merbold, L.; Decock, C.; Tuzson, B.; Harris, E.; Six, J.; Emmenegger, L.; Mohn, J.

    2015-04-01

    The analysis of the four main isotopic N2O species (14N14N16O, 14N15N16O, 15N14N16O, 14N14N18O) and especially the intramolecular distribution of 15N ("site preference", SP) has been suggested as a tool to distinguish source processes and to help constrain the global N2O budget. However, current studies suffer from limited spatial and temporal resolution capabilities due to the combination of discrete flask sampling with subsequent laboratory-based mass-spectrometric analysis. Quantum cascade laser absorption spectroscopy (QCLAS) allows the selective high-precision analysis of N2O isotopic species at trace levels and is suitable for in situ measurements. Here, we present results from the first field campaign, conducted on an intensively managed grassland site in central Switzerland. N2O mole fractions and isotopic composition were determined in the atmospheric surface layer (at 2.2 m height) at a high temporal resolution with a modified state-of-the-art laser spectrometer connected to an automated N2O preconcentration unit. The analytical performance was determined from repeated measurements of a compressed air tank and resulted in measurement repeatability of 0.20, 0.12 and 0.11‰ for δ15Nα, δ15Nβ and δ18O, respectively. Simultaneous eddy-covariance N2O flux measurements were used to determine the flux-averaged isotopic signature of soil-emitted N2O. Our measurements indicate that, in general, nitrifier-denitrification and denitrification were the prevalent sources of N2O during the campaign and that variations in isotopic composition were due to alterations in the extent to which N2O was reduced to N2 rather than to other pathways, such as hydroxylamine oxidation. Management and rewetting events were characterized by low values of the intramolecular 15N site preference (SP), δ15Nbulk and δ18O, suggesting that nitrifier-denitrification and incomplete heterotrophic bacterial denitrification responded most strongly to the induced disturbances. The flux

  14. First on-line isotopic characterization of N2O emitted from intensively managed grassland

    NASA Astrophysics Data System (ADS)

    Wolf, B.; Merbold, L.; Decock, C.; Tuzson, B.; Harris, E.; Six, J.; Emmenegger, L.; Mohn, J.

    2015-01-01

    The analysis of the four main isotopic N2O species (14N14N16O, 14N15N16O, 15N14N16O, 14N14N18O) and especially the intramolecular distribution of 15N (site preference, SP) has been suggested as a tool to distinguish source processes and to help constrain the global N2O budget. However, current studies suffer from limited spatial and temporal resolution capabilities due to the combination of discrete flask sampling with subsequent laboratory-based mass spectrometric analysis. Quantum cascade laser absorption spectroscopy (QCLAS) allows selective high-precision analysis of N2O isotopic species at trace levels and is suitable for in situ measurements. Here, we present results from the first field campaign, conducted on an intensively managed grassland in central Switzerland. N2O mole fractions and isotopic composition were determined in the atmospheric surface layer (2 m height) at high temporal resolution with a modified state-of-the-art laser spectrometer connected to an automated N2O preconcentration unit. The analytical performance was determined from repeated measurements of a compressed air tank and resulted in measurement repeatability of 0.20, 0.12 and 0.11‰ for δ15Nα, δ15Nβ and δ18O, respectively. Simultaneous eddy-covariance N2O flux measurements were used to determine the flux-averaged isotopic signature of soil-emitted N2O. Our measurements indicate that in general, nitrifier-denitrification and denitrification were the prevalent sources of N2O during the campaign, and that variations in isotopic composition were rather due to alterations in the extent to which N2O was reduced to N2, than other pathways such as hydroxylamine oxidation. Management and rewetting events were characterized by low values of the intra-molecular 15N site preference (SP), δ15Nbulk and δ18O, suggesting nitrifier denitrification and incomplete heterotrophic bacterial denitrification responded most strongly to the induced disturbances. Flux-averaged isotopic composition of N

  15. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  16. New experimental limits on the probabilities of pauli-forbidden transitions in the {sup 12}C nucleus from data obtained with the borexino detector

    SciTech Connect

    Derbin, A. V.; Fomenko, K. A.

    2010-12-15

    The Pauli exclusion principle was tested for nucleons in the {sup 12}C nucleus by using data from the Borexino detector. The approach used consisted in seeking photons, neutrons, and protons, as well as electrons and positrons, emitted in the Pauli-forbidden transitions of nucleons from the 1P{sub 3/2} shell to the filled 1S{sub 1/2} shell. Owing to a uniquely low background level in the Borexino detector and its large mass, the currently most stringent experimental limits were obtained for the probabilities and relative intensities of Pauli-forbidden transitions for the electromagnetic, strong, and weak channels.

  17. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  18. Detection of Formaldehyde Emission in Comet C/2002 T7 (LINEAR) at Infrared Wavelengths: Line-by-Line Validation of Modeled Fluorescent Intensities

    NASA Astrophysics Data System (ADS)

    DiSanti, M. A.; Bonev, B. P.; Magee-Sauer, K.; Dello Russo, N.; Mumma, M. J.; Reuter, D. C.; Villanueva, G. L.

    2006-10-01

    Formaldehyde (H2CO) was observed in comet C/2002 T7 (LINEAR) with spectral resolving power λ/Δλ~2.5×104 using the Cryogenic Echelle Spectrometer (CSHELL) at the NASA Infrared Telescope Facility, on UT 2004 May 5, 7, and 9. The observations, which sampled emission in the ν1 and ν5 rovibrational bands between 3.53 and 3.62 μm, represent the first spectrally resolved detection, at infrared wavelengths, of monomeric H2CO spanning a range of rotational energies. A comparison of measured line intensities with an existing fluorescence model permitted extraction of rotational temperatures and production rates. Two complementary approaches were used: (1) a correlation analysis that provided a direct global comparison of the observed cometary emissions with the model and (2) an excitation analysis that provided a robust line-by-line comparison. Our results validate the fluorescence model. The overall correlation coefficient was near or above 0.9 in our two principal grating settings. The excitation analysis provided accurate measures of rotational excitation (rotational temperature) on all three dates, with retrieved values of Trot clustering near 100 K. Through simultaneous measurement of OH prompt emission, which we use as a proxy for H2O, we obtained native production rates and mixing ratios for H2CO. The native production of H2CO varied from day to day, but its abundance relative to H2O, Xnative, remained approximately constant within the errors, which may suggest an overall homogeneous composition of the nucleus. We measured a mean mixing ratio Xnative= (0.79+/-0.09) × 10-2 for the three dates.

  19. HST imaging of the inner 3 arcseconds of NGC 1068 in the light of forbidden O III 5007 A

    NASA Technical Reports Server (NTRS)

    Evans, I. N.; Kinney, A. L.; Ford, H. C.; Antonucci, R. R. J.; Armus, L.

    1991-01-01

    The Planetary Camera aboard HST has been used to obtain a high spatial resolution forbidden O III 5007 A image of the nucleus of the barred spiral galaxy NGC 1068. This image shows more detail than any previously published images and resolves the NLR into several distinct clouds arranged in an apparently conical geometry. The individual emission-line regions appear to be resolved with sizes of 0.1-0.2 arcsec. There is a strong apparent correspondence between the 1.3 cm radio structure and several of the forbidden O III 5007 A clouds, although there are also bright emission-line clouds for which there are no radio counterparts. In particular, the radio 'triple' of Ulvestad et al. (1987) appears to correspond directly to the forbidden O III 5007 A clouds A-D. It is concluded that the distribution of the clouds is consistent with ionization core models. The hidden nucleus is located somewhere in the southern radio component and may be coincident with the H2O megamaser.

  20. Measurements of [O I] λ6300/Hα Line Intensity Ratios for Four O Star H II Regions

    NASA Astrophysics Data System (ADS)

    Hausen, N. R.; Reynolds, R. J.; Haffner, L. M.

    2002-12-01

    We have used the Wisconsin Hα Mapper facility to measure the [O I] λ6300/Hα line intensity ratios for four O star H II regions: S27 (observation coordinates l=6.3d,b=+23.6d), S252 (l=190.1d,b=+0.6d), S261 (l=194.1d,b=-1.9d), and S264 (l=195.1d,b=-12.0d). We find that the ratios range from 0.0015 to 0.0053. These results are roughly a factor of 10 lower than measured [O I]/Hα ratios in directions that sample the warm ionized component of the interstellar medium. This difference implies a significantly lower hydrogen ionization ratio n(H+)/n(H0) or higher electron temperature in the diffuse ionized gas compared with that in the bright discrete O star H II regions.

  1. SF_6: the Forbidden Band Unveiled

    NASA Astrophysics Data System (ADS)

    Boudon, V.; Manceron, L.; Kwabia-Tchana, F.; Roy, P.

    2013-06-01

    Sulfur hexafluoride (SF_6) is a greenhouse gas of anthropogenic origin, whose strong infrared absorption in the ν_3 S-F stretching region near 948 cm^{-1} induces a global warming potential 23900 times bigger than CO_2. This heavy species features many hot bands at room temperature (at which the ground state population is only 30 %), especially those originating from the v_6=1 state. Unfortunately, the ν_6 band itself (near 347 cm^{-1}) being, in first approximation, both infrared and Raman inactive, no reliable information could be obtained about it up to now. A long time ago, some authors suggested that this band may be slightly activated through Coriolis interaction and may appear as a very faint band, with an integrated intensity about 2 millionths of that of ν_3. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 165± 2 K temperature, we recorded a spectrum of the ν_6 far-infrared region thanks to the performances of the AILES Beamline at the SOLEIL french synchrotron facility. Low temperature was used to avoid the presence of the 2ν_6-ν_6 hot band and to reduce the neighboring, stronger ν_4-ν_2 difference band. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution is indeed ν_6. We present its fully resolved spectrum. It appears to be activated thanks to unidentified faint interactions resulting in the presence of a first-order dipole moment term that induces unusual selection rules. This spectrum was analyzed thanks to the XTDS software package, leading to accurate molecular spectroscopic parameters that should be useful to model the hot bands of SF_6. W. B. Person, B. J. Krohn, J. Mol. Spectrosc. {98}, 229-257 (1983), C. Chappados, G. Birnbaum, J. Mol. Spectrosc. {105}, 206-214 (1984). Ch. Wenger, V. Boudon, M. Rotger, M. Sanzharov and J.-P. Champion, J. Mol. Spectrosc., {251} 102-113 (2008).

  2. Resolving the forbidden band of SF6.

    PubMed

    Boudon, V; Manceron, L; Kwabia Tchana, F; Loëte, M; Lago, L; Roy, P

    2014-01-28

    D and the ν6 integrated intensity to be 0.0035 km mol(-1). PMID:24297100

  3. The rise and fall of horror autotoxicus and forbidden clones.

    PubMed

    Jennette, J Charles; Falk, Ronald J

    2010-09-01

    Cui and associates show that healthy individuals have natural autoantibodies (NAAs) specific for myeloperoxidase, proteinase 3, and glomerular basement membrane (GBM) with the same specificity as anti-neutrophil cytoplasmic antibodies and anti-GBM antibodies that are pathogenic. Although Ehrlich proposed horror autotoxicus and Burnet envisioned elimination of forbidden clones, NAAs are present in all healthy individuals and play beneficial homeostatic roles. Pathogenic autoimmunity is dysregulation of natural homeostatic autoimmunity rather than onset of a previously absent self-recognition. PMID:20805814

  4. Shape of solitons in classically forbidden states - 'Lorentz expansion'

    NASA Technical Reports Server (NTRS)

    Guinea, F.; Peierls, R. E.; Schrieffer, R.

    1986-01-01

    The shape of extended objects in classically forbidden regions is shown to undergo expansion analogous to Lorentz contraction of a relativistic body of finite velocities. The problem of two interacting Dirac particles moving in one dimension is solved explicitly and the results are generalized to soliton solutions of field theories. An estimate of the effect on tunneling rates is also given, including solitons in (CH)z.

  5. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption.

    PubMed

    Kamiński, Maciej; Cukras, Janusz; Pecul, Magdalena; Rizzo, Antonio; Coriani, Sonia

    2015-07-15

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spin-forbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet-singlet transitions in chiral compounds. The protocol is based on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n → π* and n ← π* transitions, respectively, in several chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin-orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the β,γ-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign. PMID:26126575

  6. FE-XIII Infrared / FE-XIV Green Line Ratio Diagnostics (P55)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; et al.

    2006-11-01

    aks.astro.itbhu@gmail.com We consider the first 27-level atomic model of Fe XIII (5.9 < log Te < 6.4 K) to estimate its ground level populations, taking account of electron as well as proton collisional excitations and de-excitations, radiative cascades, radiative excitations and de-excitations. Radiative cascade is important but the effect of dilution factor is negligible at higher electron densities. The 3 P1-3P0 and 3P2-3P1 transitions in the ground configuration 3s2 3p2 of Fe XIII result in two forbidden coronal emission lines in the infrared region, namely 10747 Å and 10798 Å., while the 5303 Å green line is formed in the 3s2 3p 2 2 ground configuration of Fe XIV as a result of P3 / 2 - P1 / 2 magnetic dipole transition. The line-widths of appropriate pair of forbidden coronal emission lines observed simultaneously can be useful diagnostic tool to deduce temperature and non-thermal velocity in the large scale coronal structures using intensity ratios of the lines as the temperature signature, instead of assuming ion temperature to be equal to the electron temperature. Since the line intensity ratios IG5303/IIR10747 and IG5303/IIR10798 have very week density dependence, they are ideal monitors of temperature mapping in the solar corona.

  7. High-resolution characterization of the forbidden Si 200 and Si 222 reflections1

    PubMed Central

    Zaumseil, Peter

    2015-01-01

    The occurrence of the basis-forbidden Si 200 and Si 222 reflections in specular X-ray diffraction ω–2Θ scans is investigated in detail as a function of the in-plane sample orientation Φ. This is done for two different diffractometer types with low and high angular divergence perpendicular to the diffraction plane. It is shown that the reflections appear for well defined conditions as a result of multiple diffraction, and not only do the obtained peaks vary in intensity but additional features like shoulders or even subpeaks may occur within a 2Θ range of about ±2.5°. This has important consequences for the detection and verification of layer peaks in the corresponding angular range. PMID:25844081

  8. Observations and morphological study of ring planetary nebulae in forbidden O III

    NASA Astrophysics Data System (ADS)

    Louise, R.

    1982-03-01

    A photometric study is presented of the morphology of forbidden O III emission from 10 ring planetary nebulae. Observations were made in a narrowband interference filter centered at 5007 A for the objects NGC 40, 1514, 2392, 6543, 6781, 6826, 7354, 7048, 7009 and 7662, and used to obtain values for the major axis, the distance separating two successive maxima of the photometric profile, the ring/center intensity ratio and eccentricity. These parameters are found to be consistent with a shell model for most of the nebulae, although it is noted that the model only applies to the O III distribution. Fine structure is also found in certain nebulae, indicating the presence of more complex structures to which the shell model is only a first approximation.

  9. Defect Cores Investigated by X-Ray Scattering close to Forbidden Reflections in Silicon

    SciTech Connect

    Richard, M.-I.; Holy, V.; Nordlund, K.

    2007-11-30

    A new x-ray scattering method is presented making possible the detection of defects and the investigation of the structure of their cores. The method uses diffuse x-ray scattering measured close to a forbidden diffraction peak, in which the intensity scattered from the distorted crystal lattice around the defects is minimized. As a first example of this nondestructive method we demonstrate how the local compression of the extra (111) double planes in extrinsic stacking faults in Si can be probed and quantified using a continuum approach for the simulation of the displacements. The results of the theory developed are found to be in very good agreement with atomistic simulations and experiments.

  10. Critical Reexamination of Resonant Soft X-Ray Bragg Forbidden Reflections in Magnetite

    SciTech Connect

    Wilkins, S.B.; Di Matteo, S.; Beale, T.A.W.; Joly, Y.; Mazzoli, C.; Hatton, P.D.; Bencok, P.; Yakhou, F.; Brabers, V.A.M.

    2009-05-01

    Magnetite, Fe{sub 3}O{sub 4}, displays a highly complex low-temperature crystal structure that may be charge and orbitally ordered. Many of the recent experimental claims of such ordering rely on resonant soft x-ray diffraction at the oxygen K and iron L edges. We have reexamined this system and undertaken soft x-ray diffraction experiments on a high-quality single crystal. Contrary to previous claims in the literature, we show that the intensity observed at the Bragg forbidden (001/2){sub c} reflection can be explained purely in terms of the low-temperature structural displacements around the resonant atoms. This does not necessarily mean that magnetite is not charge or orbitally ordered but rather that the present sensitivity of resonant soft x-ray experiments does not allow conclusive demonstration of such ordering.

  11. Modeling Optical Emission Intensities of Rapid Small-Scale Aurora

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Minow, J. I.

    2014-12-01

    Auroral transitional line emissions have often been used to infer the fluence and characteristic energy of precipitating electrons. A common practice is to use emissions from an allowed transition to infer absolute particle flux since the odds of quenching before photon emission are negligible. Characteristic energy is then determined by line emission intensity ratios between a forbidden and allowed transitions: The intensity of a forbidden transition will increase with altitude since the probability for quenching drops with decreasing density. Bright metastable lines such as 630.0 nm O(1D) -> O(3P) and the 557.7 nm O(1S) -> O(1D) are often used with a prompt line such as 427.8 nm N2+(1N) to determine characteristic energy. With the advances in scientific cameras, narrow-band filtered video of pulsing aurora up to 32 fps are now in use. The question then becomes, if the transitional lifetimes of the metastable species are significantly greater (or even comparable to) the aurora pulsing period, how can the ratio technique be used to determine the characteristic energy of the precipitating electrons? Once it is realized that the quoted lifetimes are average values, we note that there will be a fraction of photons that are emitted before the species is quenched. With this study, we present results from the GLOW model for different metastable species to determine the optimal combination of lines that would be helpful in determination of precipitating electron characteristics in pulsing aurora up to 100 Hz. Enabling technology and optimal configurations will be presented, along with suggested applications for linking different optical signatures with their corresponding precipitating electron distribution shape.

  12. Observation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium using optical-optical double-resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; López-Hernández, O.; Mojica-Casique, C.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2015-10-01

    Direct evidence of excitation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium is presented. The experiments were performed in a room-temperature rubidium cell with continuous-wave external cavity diode lasers. Optical-optical double-resonance spectroscopy with counterpropagating beams allows the detection of the nondipole transition free of Doppler broadening. The 5 p3 /2 state is prepared by excitation with a laser locked to the maximum F cyclic transition of the D2 line, and the forbidden transition is produced by excitation with a 911 nm laser. Production of the forbidden transition is monitored by detection of the 420 nm fluorescence that results from decay of the 6 p3 /2 state. Spectra with three narrow lines (≈13 MHz FWHM) with the characteristic F -1 , F , and F +1 splitting of the 6 p3 /2 hyperfine structure in both rubidium isotopes were obtained. The results are in very good agreement with a direct calculation that takes into account the 5 s →5 p3 /2 preparation dynamics, the 5 p3 /2→6 p3 /2 nondipole excitation geometry, and the 6 p3 /2→5 s1 /2 decay. The comparison also shows that the electric-dipole-forbidden transition is a very sensitive probe of the preparation dynamics.

  13. Infrared spectroscopy of 17O- and 18O-enriched carbon dioxide: Line positions and intensities in the 4681-5337 cm-1 region

    NASA Astrophysics Data System (ADS)

    Borkov, Yu. G.; Jacquemart, D.; Lyulin, O. M.; Tashkun, S. A.; Perevalov, V. I.

    2015-07-01

    The line positions and intensities of carbon dioxide isotopologues have been retrieved in the 4681-5337 cm-1 spectral range from Fourier transform spectra of carbon dioxide recorded in LADIR (Paris, France) with the Bruker IFS 125-HR [Jacquemart D, et al., J Quant Spectrosc Radiat Transf 2012;113:961-975]. In total 6386 line positions and intensities of 89 bands of 12 isotopologues 16O12C16O, 16O13C16O, 16O12C18O, 16O12C17O, 16O13C18O, 16O13C17O, 18O12C18O, 17O12C18O, 17O12C17O, 18O13C18O, 17O13C18O, and 17O13C17O have been retrieved. 23 bands were newly assigned. All studied bands belong to the ΔP=7 series of transitions, where P = 2V1 +V2 + 3V3 is the polyad number (Vi are vibrational quantum numbers). The accuracy of the line position measurement is about 0.3×10-3 cm-1 for the unblended and not very weak lines. The accuracy of the line intensities varies from 4% to 15% depending on the isotopologue, on the intensity of the line and on the extent of the line overlapping. The observed intensities were used to fit the effective dipole moment parameters for the ΔP=7 series of transitions in 16O12C18O, 16O12C17O, 12C17O2, 17O12C18O, 16O13C17O, 13C17O2 and 17O13C18O isotopologues of carbon dioxide.

  14. Calculation of K Shell Intensity Ratios and Line Widths of Ti and some of its compounds by means of 5,96 keV energy

    NASA Astrophysics Data System (ADS)

    Kağan Köksal, Oğuz; Apaydın, Gökhan; Cengiz, Erhan; Karabulut, Kazım

    2016-04-01

    K shell intensity ratios and Line Widths of pure Ti and some of its compounds have been determined experimentally using an Ultra-LEGe detector with resolution 140 eV at 5.9 keV. The samples were excited 5.96 keV photons emitted from a 55Fe radioisotope source with 50 mCi activity. The experimental values of the K shell intensity ratios have been compared with the experimental and theoretical values available in the literature for pure Ti and line widths have been only compared with a theoretical value for pure Ti.

  15. Relative coronal abundances derived from X-ray observations 3: The effect of cascades on the relative intensity of Fe (XVII) line fluxes, and a revised iron abundance

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.; Rugge, H. R.; Weiss, K.

    1974-01-01

    Permitted lines in the optically thin coronal X-ray spectrum were analyzed to find the distribution of coronal material, as a function of temperature, without special assumptions concerning coronal conditions. The resonance lines of N, O, Ne, Na, Mg, Al, Si, S, and Ar which dominate the quiet coronal spectrum below 25A were observed. Coronal models were constructed and the relative abundances of these elements were determined. The intensity in the lines of the 2p-3d transitions near 15A was used in conjunction with these coronal models, with the assumption of coronal excitation, to determine the Fe XVII abundance. The relative intensities of the 2p-3d Fe XVII lines observed in the corona agreed with theoretical prediction. Using a more complete theoretical model, and higher resolution observations, a revised calculation of iron abundance relative to hydrogen of 0.000026 was made.

  16. Implementing a multifaceted intervention to decrease central line-associated bloodstream infections in SEHA (Abu Dhabi Health Services Company) intensive care units: the Abu Dhabi experience.

    PubMed

    Latif, Asad; Kelly, Bernadette; Edrees, Hanan; Kent, Paula S; Weaver, Sallie J; Jovanovic, Branislava; Attallah, Hadeel; de Grouchy, Kristin K; Al-Obaidli, Ali; Goeschel, Christine A; Berenholtz, Sean M

    2015-07-01

    OBJECTIVE To determine whether implementation of a multifaceted intervention would significantly reduce the incidence of central line-associated bloodstream infections. DESIGN Prospective cohort collaborative. SETTING AND PARTICIPANTS Intensive care units of the Abu Dhabi Health Services Company hospitals in the Emirate of Abu Dhabi. INTERVENTIONS A bundled intervention consisting of 3 components was implemented as part of the program. It consisted of a multifaceted approach that targeted clinician use of evidence-based infection prevention recommendations, tools that supported the identification of local barriers to these practices, and implementation ideas to help ensure patients received the practices. Comprehensive unit-based safety teams were created to improve safety culture and teamwork. Finally, the measurement and feedback of monthly infection rate data to safety teams, senior leaders, and staff in participating intensive care units was encouraged. The main outcome measure was the quarterly rate of central line-associated bloodstream infections. RESULTS Eighteen intensive care units from 7 hospitals in Abu Dhabi implemented the program and achieved an overall 38% reduction in their central line-associated bloodstream infection rate, adjusted at the hospital and unit level. The number of units with a quarterly central line-associated bloodstream infection rate of less than 1 infection per 1,000 catheter-days increased by almost 40% between the baseline and postintervention periods. CONCLUSION A significant reduction in the global morbidity and mortality associated with central line-associated bloodstream infections is possible across intensive care units in disparate settings using a multifaceted intervention. PMID:25871927

  17. Discovery of Time Variation of the Intensity of Molecular Lines in IRC+10216 in the Submillimeter and Far-Infrared Domains

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Teyssier, D.; Quintana-Lacaci, G.; Daniel, F.; Agúndez, M.; Velilla-Prieto, L.; Decin, L.; Guélin, M.; Encrenaz, P.; García-Lario, P.; de Beck, E.; Barlow, M. J.; Groenewegen, M. A. T.; Neufeld, D.; Pearson, J.

    2014-11-01

    We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species toward the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the Heterodyne Instrument for the Far-Infrared (HIFI) instrument on board Herschel and with the IRAM30 m telescope. They cover several observing periods spreading over three years. The line intensity variations for molecules produced in the external layers of the envelope most likely result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations must take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The submillimeter and far infrared lines of asymptotic giant branch stars can no longer be considered as safe intensity calibrators.

  18. DISCOVERY OF TIME VARIATION OF THE INTENSITY OF MOLECULAR LINES IN IRC+10216 IN THE SUBMILLIMETER AND FAR-INFRARED DOMAINS

    SciTech Connect

    Cernicharo, J.; Quintana-Lacaci, G.; Agúndez, M.; Velilla-Prieto, L.; Daniel, F.; Decin, L.; Guélin, M.; Encrenaz, P.; De Beck, E.; Barlow, M. J.; Groenewegen, M. A. T.; Neufeld, D.; Pearson, J.

    2014-11-20

    We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species toward the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the Heterodyne Instrument for the Far-Infrared (HIFI) instrument on board Herschel and with the IRAM30 m telescope. They cover several observing periods spreading over three years. The line intensity variations for molecules produced in the external layers of the envelope most likely result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations must take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The submillimeter and far infrared lines of asymptotic giant branch stars can no longer be considered as safe intensity calibrators.

  19. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy.

    PubMed

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-21

    In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general. PMID:26801040

  20. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-01

    In this report, we show that the ability to measure the sub-1 cm-1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm-1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm-1 and 21.6 ± 0.4 cm-1, respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm-1 agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm-1 and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm-1. These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

  1. Absolute ν 2 Line Intensities of HOCl by Simultaneous Measurements in the Infrared with a Tunable Diode Laser and Far-Infrared Region Using a Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Vander Auwera, J.; Kleffmann, J.; Flaud, J.-M.; Pawelke, G.; Bürger, H.; Hurtmans, D.; Pétrisse, R.

    2000-11-01

    We have measured absolute line intensities in the ν2 fundamental band at 1238 cm-1 of both isotopomers of hypochlorous acid, HOCl. To obtain the partial pressure of the species in the sample mixture, unavailable through direct measurement since HOCl exists only in equilibrium with H2O and Cl2O and may decay by secondary reactions, we relied on known absolute line intensities in the pure rotational far-infrared (FIR) spectrum determined from Stark effect measurements. We have thus recorded simultaneously the FIR pure rotation spectrum of HOCl using a Bruker IFS120HR interferometer and the spectrum of a few vibration-rotation lines in the infrared (IR) ν2 band using a tunable diode laser spectrometer. The absolute intensities of these IR lines thus determined allowed us to 'calibrate' the intensities of vibration-rotation lines in the whole ν2 band, measured previously using Fourier transform spectroscopy. The treatment of the data took into account the blackbody emission contribution in the FIR and the evolution of the HOCl amount during the recording of the spectra. The latter was found to be almost constant over hours after conditioning of the cell. The square of the ν2 band vibrational transition dipole moment was determined to be 0.013947(23) D2 and 0.013870(51) D2 for HO35Cl and HO37Cl, respectively, that is, 29 to 73% lower than previous measurements. A linear Herman-Wallis factor was also determined for both isotopomers. Finally, the line intensities were least-squares fitted using a model that takes into account a weak resonance between the (010) and (002) levels.

  2. Radiative rates for forbidden M1 and E2 transitions of astrophysical interest in doubly ionized iron-peak elements

    NASA Astrophysics Data System (ADS)

    Fivet, V.; Quinet, P.; Bautista, M. A.

    2016-01-01

    Aims: Accurate and reliable atomic data for lowly ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are of paramount importance for analyzing the high-resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources, such as Herbig-Haro objects in the Orion Nebula and stars like Eta Carinae. However, forbidden M1 and E2 transitions between low-lying metastable levels of doubly charged iron-peak ions have been investigated very little so far, and radiative rates for those lines remain sparse or nonexistent. We attempt to fill that gap and provide transition probabilities for the most important forbidden lines of all doubly ionized iron-peak elements. Methods: We carried out a systematic study of the electronic structure of doubly ionized Fe-peak species. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities were computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan and the central Thomas-Fermi-Dirac-Amaldi potential approximation implemented in AUTOSTRUCTURE. This multiplatform approach allowed for consistency checks and intercomparison and has proven very useful in many previous works for estimating the uncertainties affecting the radiative data. Results: We present transition probabilities for the M1 and E2 forbidden lines depopulating the metastable even levels belonging to the 3dk and 3dk-14s configurations in Sc III (k = 1), Ti III (k = 2), V III (k = 3), Cr III (k = 4), Mn III (k = 5), Fe III (k = 6), Co III (k = 7), and Ni III (k = 8).

  3. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  4. New Measurements of H2 16O Line Intensities around 8800 CM-1 and 1300 CM-1

    NASA Astrophysics Data System (ADS)

    Oudot, C.; Regalia, L.; Le Wang; Daumont, L.; Thomas, X.; von der Heyden, P.; Decatoire, D.

    2010-06-01

    A precise knowledge of spectroscopic parameters for atmospheric molecules is necessary for the control and the modelling of the Earth's atmosphere. The water vapor take a special key as it participate to the global radiative balance of the atmosphere. Our laboratory is engaged since many years in the study of H216O vapor and its isotopologues [1, 2, 3]. An important work has been already made in the spectral region of 4000 to 6600 cm-1 [3] and it continues now in the following spectral window : 6600-9000 cm-1. We have focused on the lines around 8800 cm-1, as the latest version of HITRAN database still relies on the work of Mandin et al. performed in 1988 [4, 5]. We have recorded several spectra of water vapor with our step-by-step Fourier Transform Spectrometer built in our laboratory [6, 7]. We present here our intensity measurements compared to recent literature data [8] and HITRAN2008 database. Also we have performed a study around 1300 cm-1. The precise knowledge of water vapor for this spectral range is very useful for inversion of IASI spectra. We show some comparisons between our new intensity measurements and LISA database, HITRAN2004, and recent literature data [9]. References: [1] M. Carleer, A. Jenouvrier, A.-C. Vandaele, M.-F. Mérienne, R. Colin, N. F. Zobov, O. L. Polyansky, J. Tennyson and V. A. Savin, J. Chem Phys 111 (1999) 2444-2450. [2] M.-F. Mérienne, A. Jenouvrier, C. Hermans, A.-C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, M. Bachc J. Quant. Spectrosc. Rad. Trans. 82 (2003) 99-117. [3] A. Jenouvrier, L. Daumont, L. RÉgalia-Jarlot, Vl. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko and S. Fally, JQSRT, 105 (2007) 326-355. [4] J.-Y. Mandin, J.-P. Chevillard, J.-M. Flaud, C. Camy-Peyret, Can. J. Phys, 66 (1988) 997-1011. [5] J.-Y. Mandin, J.-P. Chevillard, J.-M. Flaud, C. Camy-Peyret, J. Mol. Spectrosc, 132 (1988) 352-360. [6] J-J. Plateaux, A. Barbe and A. Delahaigue, Spectrochim. Acta, 51A (1995) 1169

  5. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    NASA Astrophysics Data System (ADS)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  6. Forbidden transition probabilities for ground terms of ions with p or p5 configurations. [for solar atmosphere

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1976-01-01

    Forbidden transition probabilities are given for ground term transitions of ions in the isoelectronic sequences with outer configurations 2s2 2p (B I), 2p5 (F I), 3s2 3p (Al I), and 3p5 (Cl I). Tables give, for each ion, the ground term interval, the associated wavelength, the quadrupole radial integral, the electric quadrupole transition probability, and the magnetic dipole transition probability. Coronal lines due to some of these ions have been observed, while others are yet to be observed. The tales for the Al I and Cl I sequences include elements up to germanium.

  7. Cellular effects of low-intensity pulsed ultrasound and X-irradiation in combination in two human leukaemia cell lines.

    PubMed

    Buldakov, Mikhail A; Hassan, Mariame A; Jawaid, Paras; Cherdyntseva, Nadejda V; Kondo, Takashi

    2015-03-01

    Previously, we have shown that a combination between X-irradiation and low-intensity pulsed ultrasound (US) could synergistically suppress cell survival post exposure (Buldakov et al., 2014). In this study, the cellular effects underlying the enhanced cell killing are investigated. U937 and Molt-4 cell lines were exposed to 1.0 MHz US with 50% duty factor at 0.3 W/cm(2) and pulsed at 1, 5 and 10 Hz immediately after exposure to X-rays at 0, 0.5, 2.5 and 5 Gy. The cells were assayed at different time points to depict the major cellular events that culminated in cell death. For instance, membrane damage and cell lysis were estimated immediately following exposure and 24 h later. Intracellular reactive oxygen species (ROS) were also determined flow cytometrically after treatment. Moreover, the extent of DNA damage and cell cycle progression were determined at 6 and 24 h, respectively. Despite the general trend for synergism, there was a disproportionation of mediating factors depending on the cell type and its specific biological makeup. Immediately, US could induce appreciable necrotic cell death through extensive membrane damage in U937 but induced cell lysis in Molt-4 cells. ROS might have contributed to cell killing in Molt-4 but not in U937 cells. Although both of the physical modalities are significantly DNA-damaging alone, no additional damage was observed in combination. Moreover, override in some arrested cell cycle phases was also observed following combination. Collectively, the interaction between X-rays and US seems to depend mainly on the acoustic environment determined by the setup and this might explain the contradictory data among reports. PMID:25287395

  8. Einstein A coefficients and absolute line intensities for the E2Π-X2Σ+ transition of CaH

    NASA Astrophysics Data System (ADS)

    Li, Gang; Harrison, Jeremy J.; Ram, Ram S.; Western, Colin M.; Bernath, Peter F.

    2012-01-01

    Einstein A coefficients and absolute line intensities have been calculated for the E2Π-X2Σ+ transition of CaH. Using wavefunctions derived from the Rydberg-Klein-Rees (RKR) method and electronic transition dipole moment functions obtained from high-level ab initio calculations, rotationless transition dipole moment matrix elements have been calculated for all 10 bands involving v‧=0,1 of the E2Π state and v″=0,1,2,3,4 of the X2Σ state. The rotational line strength factors (Hönl-London factors) are derived for the intermediate coupling case between Hund's case (a) and (b) for the E2Π-X2Σ+ transition. The computed transition dipole moments and the spectroscopic constants from a recent study [Ram et al., Journal of Molecular Spectroscopy 2011;266:86-91] have been combined to generate line lists containing Einstein A coefficients and absolute line intensities for 10 bands of the E2Π-X2Σ+ transition of CaH for J-values up to 50.5. The absolute line intensities have been used to determine a rotational temperature of 778±3 °C for the CaH sample in the recent study.

  9. Near-Infrared Coronal Lines in Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Viegas, S. M.; Pastoriza, M. G.; Prato, L.

    2002-11-01

    We report spectroscopic observations in the wavelength region 0.8-2.4 μm aimed at detecting near-infrared coronal lines in a sample of five narrow-line and one broad-line Seyfert 1 galaxies. Our measurements show that [Si VI] 1.963 μm, [S IX] 1.252 μm, and [S VIII] 0.991 μm are present in most of the objects and are useful tracers of nuclear activity. Line ratios between coronal and low-ionization forbidden lines are larger in narrow-line Seyfert 1 galaxies. A positive correlation between FHWM and ionization potential of the forbidden lines is observed. Some coronal lines have widths similar to those of lines emitted in the broad-line region (BLR), indicating that part of their flux originates in gas close to the outer portions of the BLR. Most coronal lines are blueshifted relative to the systemic velocity of the galaxy, and this shift increases with the increase in line width. Asymmetries toward the blue are observed in the profiles of high-ionization Fe lines, suggesting that the emitting gas is related to winds or outflows, most probably originating in material that is being evaporated from the torus. This scenario is supported by models that combine the effects of shock ionization and photoionization by a central continuum source in the gas clouds. The agreement between the coronal line emission predicted by the models and the observations is satisfactory; the models reproduced the whole range of coronal line intensities observed. We also report the detection of [Fe XIII] 1.074, 1.079 μm in three of our objects and the first detection of [P II] 1.188 μm and [Ni II] 1.191 μm in a Seyfert 1 galaxy, Ark 564. Using the ratio [P II]/[Fe II], we deduced that most Fe present in the outer narrow-line region of Ark 564 is locked up in grains and that the influence of shocks is negligible.

  10. Radial profile measurement of electron temperature in edge stochastic magnetic field layer of LHD using intensity ratio of extreme ultraviolet line emissions

    SciTech Connect

    Wang Erhui; Morita, Shigeru; Kobayashi, Masahiko; Murakami, Izumi; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    Vertical profile of neon line emissions in 30-650 A wavelength range has been observed in horizontally elongated plasma cross section of Large Helical Device (LHD). Intensity ratio between the neon line emissions is studied to measure the radial profile of electron temperature in the edge stochastic magnetic field layer of LHD. The edge temperature profile successfully obtained from the line ratio of NeVIII 2s-3p to 2p-3s transitions is compared with the simulation based on three-dimensional edge transport code. The result shows a reasonably good agreement with the edge temperature profile analyzed from atomic data and analysis structure code. The electron temperature at last closed flux surface measured from the intensity ratio is also in good agreement with that measured from Thomson scattering.

  11. Luminosity and spatial distribution of the forbidden O I 6300-A emission in comets

    NASA Astrophysics Data System (ADS)

    Fink, U.; Johnson, J. R.

    1984-10-01

    The authors have obtained CCD observations of the forbidden oxygen lines at 6300 and 6364 Å for the comets Tuttle, Stephan-Oterma, and Brooks 2. Their high-quality observations have allowed the authors to perform good cancellation of the night sky [O I] lines and to determine the spatial profiles and the absolute luminosities of the cometary [O I] lines. Analysis of both the spatial emission profiles and the total [O I] flux demonstrates that the source of the observed [O I] photons is direct photodissociation of water vapor. Production of O1D by dissociation of OH is of minor importance in the inner coma, but becomes dominant at larger distances from the nucleus. Spatial profiles for comets Tuttle and Stephan-Oterma agree well with the model calculations of Festou and Feldman (1981), as well as with a more simple Haser model having a scale length at 1 AU of 8.2×104km for the parent molecule water vapor.

  12. Analysis of the ν 8+ ν 9Band of HNO 3, Line Positions and Intensities, and Resonances Involving the v6= v7= 1 Dark State

    NASA Astrophysics Data System (ADS)

    Perrin, A.; Flaud, J.-M.; Keller, F.; Goldman, A.; Blatherwick, R. D.; Murcray, F. J.; Rinsland, C. P.

    1999-03-01

    Using a high-resolution (R= 0.0025 cm-1) Fourier transform spectrum of nitric acid recorded at room temperature in the 1100-1240 cm-1region, it has been possible to perform a more extended analysis of the ν8+ ν9band of HNO3centered at 1205.7075 cm-1. As in a recent analysis of this band [W. F. Wang, P. P. Ong, T. L. Tan, E. C. Looi, and H. H. Teo,J. Mol. Spectrosc.183, 407-413 (1997)], the Hamiltonian used for the line positions calculation takes into account, for the upper state, the ΔK= ±2 anharmonic resonance linking the rotational levels of thev8=v9= 1 "bright" vibrational state and those of the "dark"v6=v7= 1 vibrational state. More than 4800 lines were assigned in the ν8+ ν9band, which involve significantly higher rotational quantum numbers than in previous works. On the other hand, and surprisingly as compared to previous studies, the ν8+ ν9band appears to be a hybrid band. In fact, nonnegligibleB-type transitions could be clearly identified among the much strongerA-type lines. Accordingly, a set of individual line intensities were measured for lines of both types and were introduced in a least-squares fit to get theA- andB-type components of the transition moment operator. Finally, a synthetic spectrum of the 8.3-μm region of HNO3has been generated, using for the line positions and line intensities the Hamiltonian constants and the expansion of the transition moment operator which were determined in this work. In this way, theB-type and theA-type components of the ν8+ ν9band appear to contribute for about {1}/{4} and {3}/{4}, respectively, to the total band intensity.

  13. The on-line each hour and each minute automatically correction data of total NM intensity and different multiplicities on snow effect

    NASA Astrophysics Data System (ADS)

    Lev, Dorman; Zukerman, Igor; Pustilnik, Lev; Dai, Uri; Shternlib, Abracham; Shai Applbaum, David; Kazantsev, Vasilii; Kozliner, Lev; Ben Israel, Isaac

    In our report Dorman et al. “Snow effect for total NM intensity and different multiplicities on Mt. Hermon during 1998 - 2014”, we described the method to determine the snow effect in the total NM intensity and different multiplicities. By using regression coefficients obtained for the long period of observations, obtained in this paper, we developed method of automatically correction on-line each hour and each minute data of total NM intensity and different multiplicities on snow effect. We show that expected average errors in this method for one hour observation is about 0.2%, what is comparable with the statistical error. We show also how to correct on-line automatically one-minute data on snow effect. Corrected on-line one minute data can be now used for the forecasting of great radiation hazards from solar flares and estimation of expected total fluency and radiation hazards for satellites electronics and astronauts health, as well as for people and electronics on regular airlines at altitudes about 10 km. Corrected on-line one hour data can be now used for the forecasting of great magnetic storms, dangerous for satellites, technologies, and people health. https://www.cospar-assembly.org/user/download2.php?id=29566&type=preview

  14. Far-ultraviolet MAMA detector imagery and emission-line CCD imagery of NGC 6240

    NASA Technical Reports Server (NTRS)

    Smith, Andrew M.; Hill, Robert S.; Vrba, Frederick J.; Timothy, J. G.

    1992-01-01

    An image of the luminous infrared galaxy NGC 6240 at 1480 A was obtained using a multianode microchannel array (MAMA) detector with a rocket-borne telescope. At distances greater than 12 arcsec from the nucleus, the measured ultraviolet luminosity implies intensive star formation activity equal to 2-3 times that of a spiral galaxy such as M83. Optical images in the H-beta and forbidden O III 5007 A emission lines reveal a region of high excitation east of the nucleus between the centers of disks 1 and 2 as described by Bland-Hawthorn et al.

  15. On the chromatic number of a space with forbidden equilateral triangle

    SciTech Connect

    Zvonarev, A E; Raigorodskii, A M; Kharlamova, A A; Samirov, D V

    2014-09-30

    We improve the Frankl-Rödl estimate for the product of the numbers of edges in uniform hypergraphs with forbidden cardinalities of the intersection of edges. By using this estimate, we obtain explicit bounds for the chromatic number of a space with forbidden monochromatic equilateral triangles. Bibliography: 31 titles.

  16. Fieldwork in Forbidden Terrain: The U.S. State and the Case of Cuba.

    ERIC Educational Resources Information Center

    Fuller, Linda

    1988-01-01

    Introduces the concept of state-forbidden research terrains and examines one such terrain in detail: post-revolutionary Cuba. Examines how U.S. decision makers create and maintain forbidden research terrain and explores the consequences of Cuba's closure to social science investigation. Suggests actions that social scientists might take to open up…

  17. Oscillator strengths and transition probabilities for allowed and forbidden transitions in Fe XIX

    SciTech Connect

    Nahar, Sultana N.

    2011-07-15

    An extensive set of oscillator strengths, line strengths, and radiative decay rates for the allowed and forbidden transitions in Fe XIX is presented. They correspond to 1626 fine structure levels of total angular momenta 0{<=}J{<=}8 of even and odd parities with 2{<=}n{<=}10, 0{<=}l{<=}9, 0{<=}L{<=}10, and (2S+1)=1, 3, 5. In contrast, the compiled table of the National Institute for Standards and Technology (NIST) lists only 63 observed levels. A total of 289,291 electric dipole allowed transitions are presented. They were obtained in the close coupling approximation using the relativistic Breit-Pauli R-matrix method. The wavefunction expansion included 15 levels of the configurations 2s{sup 2}2p{sup 3}, 2s2p{sup 4}, and 2p{sup 5} of the Fe XX core. The calculated fine structure levels are assigned with spectroscopic identifications using quantum defect analysis. Comparison with the observed energies shows very good agreement, the largest difference being less than 4%. The transitions also compare well with the compiled data by NIST and recent calculations. The forbidden transitions of the electric quadrupole and octupole, and magnetic dipole and quadrupole, type are presented for the 379 levels of the configurations 2s{sup 2}2p{sup 4}, 2s2p{sup 5}, 2p{sup 6}, 2s{sup 2}2p{sup 3}3s, 2s{sup 2}2p{sup 3}3p, 2s{sup 2}2p{sup 3}3d, 2s{sup 2}2p{sup 3}4s, 2s{sup 2}2p{sup 3}4p, 2s{sup 2}2p{sup 3}4d, 2s{sup 2}2p{sup 3}4f, 2s2p{sup 4}3s, 2s2p{sup 4}3p, 2s2p{sup 4}3d, 2s2p{sup 4}4s, 2s2p{sup 4}4p, and 2s{sup 2}2p{sup 2}3s{sup 2} of Fe XIX. They correspond to a total of 66,619 transitions. These results have been obtained from relativistic Breit-Pauli atomic structure calculations using the program SUPERSTRUCTURE. The forbidden transition probabilities show very good agreement with those compiled by NIST. - Highlights: {yields} Presents the most complete (n up to 10) set of transitions for Fe XIX. {yields} Considers both allowed and forbidden transitions. {yields} Large number

  18. Simultaneous analysis of the Ballik-Ramsay and Phillips systems of C{sub 2} and observation of forbidden transitions between singlet and triplet states

    SciTech Connect

    Chen, Wang; Kawaguchi, Kentarou; Tang, Jian; Bernath, Peter F.

    2015-02-14

    6229 lines of the Ballik-Ramsay system (b{sup 3}Σ{sub g}{sup −}–a{sup 3}Π{sub u}) and the Phillips system (A{sup 1}Π{sub u}–X{sup 1}Σ{sub g}{sup +}) of C{sub 2} up to v = 8 and J = 76, which were taken from the literature or assigned in the present work, were analyzed simultaneously by least-squares fitting with 82 Dunham-like molecular parameters and spin-orbit interaction constants between the b{sup 3}Σ{sub g}{sup −} and X{sup 1}Σ{sub g}{sup +} states with a standard deviation of 0.0037 cm{sup −1} for the whole data set. As a result of the deperturbation analysis, the spin-orbit interaction constant A{sub bX} was determined as 6.333(7) cm{sup −1} and the energy difference between the X{sup 1}Σ{sub g}{sup +} and a{sup 3}Π{sub u} states was determined as 720.008(2) cm{sup −1} for the potential minima or 613.650(3) cm{sup −1} for the v = 0 levels with Merer and Brown’s N{sup 2} Hamiltonian for {sup 3}Π states, which is about 3.3 cm{sup −1} larger than the previously determined value. Due to this sizable change, a new energy-level crossing was found at J = 2 for v = 3 (F{sub 1}) of b{sup 3}Σ{sub g}{sup −} state and v = 6 of X{sup 1}Σ{sub g}{sup +} state, where the strong interaction causes a nearly complete mixing of the wave functions of the b{sup 3}Σ{sub g}{sup −} and X{sup 1}Σ{sub g}{sup +} states and the forbidden transitions become observable. Using the predictions of our deperturbation analysis, we were able to identify 16 forbidden transitions between the singlet and triplet states at the predicted frequencies with the expected intensities, which verifies our value for the energy difference between the X{sup 1}Σ{sub g}{sup +} and a{sup 3}Π{sub u} states.

  19. X-ray line ratios from helium-like ions - Updated theory and SMM flare observations

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Leibacher, J. W.; Doyle, J. G.; Phillips, K. J. H.

    1983-01-01

    The potential which the conduction of measurements of the three principal lines emitted from helium-like ions has for the determination of plasma electron density was initially pointed out by Gabriel and Jordan (1969). The diagnostic technique is based on the fact that the ratio, R, of the intensity of a forbidden line to the intensity of an intercombination line decreases as electron density increases due to collisional excitation of levels. In the present investigation a further refinement of this procedure is provided by specifically calculating the effects of cascades from levels with principal quantum numbers up to n=6. Two improved spectrometers recently placed in operation include the SOLEX instrument on the satellite P78-1 and the X-ray Polychromator (XRP) instrument on the NASA Solar Maximum Mission satellite. Measurements obtained with one of the spectrometers making up the XRP are presented, taking into account the emission from Ne IX ions.

  20. Forbidden fruit: inattention to attractive alternatives provokes implicit relationship reactance.

    PubMed

    DeWall, C Nathan; Maner, Jon K; Deckman, Timothy; Rouby, D Aaron

    2011-04-01

    Being inattentive to attractive relationship alternatives can enhance relationship well-being. The current investigation, however, demonstrates that implicitly preventing people from attending to desirable relationship alternatives may undermine, rather than bolster, the strength of that person's romantic relationship. Consistent with the notion of "forbidden fruit," we found that subtly limiting people's attention to attractive alternatives reduced relationship satisfaction and commitment and increased positive attitudes toward infidelity (Experiment 1), increased memory for attractive relationship alternatives (Experiment 2), and increased attention to attractive alternatives (Experiment 3). Findings suggest that although attention to attractive alternatives can harm one's relationship, situations that implicitly limit one's attention to alternatives can, rather ironically, increase the temptation of alternatives and undermine relationship well-being. PMID:21244177

  1. Spin-forbidden CO ligand recombination in myoglobin.

    PubMed

    Harvey, Jeremy N

    2004-01-01

    The reaction of small ligands within the distal pocket of haem proteins such as myoglobin, to form ligated, low-spin iron complexes is an archetypal spin-forbidden process in bioinorganic chemistry, because the initial, "deoxy" iron complex has a high-spin ground state. Density functional theory (DFT), transition-state theory (TST), and hybrid DFT/molecular mechanics (QM/MM) calculations are reported on the carbon monoxide reaction. Using DFT data for a model compound, TST rate calculations at room temperature are carried out which give fair agreement with experiment, and suggest a highly non-adiabatic nature to the reaction. QM/MM calculations on the whole protein are reported, which are in qualitative agreement with the gas-phase model results, but suggest that protein matrix effects on the reaction rate may be important. PMID:15471345

  2. Transient lasing without inversion via forbidden and virtual transitions

    NASA Astrophysics Data System (ADS)

    Yuan, Luqi; Wang, Dawei; Svidzinsky, Anatoly A.; Xia, Hui; Kocharovskaya, Olga; Sokolov, Alexei; Welch, George R.; Suckewer, Szymon; Scully, Marlan O.

    2014-01-01

    Lasing without inversion (LWI) in the extreme-ultraviolet (XUV) has been the focus of recent research of our Princeton/Texas group. Because of the restriction imposed on the decay rates associated with the usual LWI schemes, it is difficult to transfer the physics gleaned from previous experiments to the XUV. However, with the advent of tunable-ultrashort-high-power laser pulses, we find that the possibility of transient LWI holds promise for a different LWI paradigm in which the lasing is based on forbidden and/or virtual transitions. It is the purpose of the present paper to present simple but (hopefully) convincing arguments and suggest realistic experiments to stimulate interest in this idea.

  3. Measurement of transverse hyperfine interaction by forbidden transitions

    NASA Astrophysics Data System (ADS)

    Chen, Mo; Hirose, Masashi; Cappellaro, Paola

    2015-07-01

    Precise characterization of a system's Hamiltonian is crucial to its high-fidelity control that would enable many quantum technologies, ranging from quantum computation to communication and sensing. In particular, nonsecular parts of the Hamiltonian are usually more difficult to characterize, even if they can give rise to subtle but non-negligible effects. Here we present a strategy for the precise estimation of the transverse hyperfine coupling between an electronic and a nuclear spin, exploiting effects due to nominally forbidden transitions during the Rabi nutation of the nuclear spin. We applied the method to precisely determine the transverse coupling between a nitrogen-vacancy center electronic spin and its nitrogen nuclear spin. In addition, we show how this transverse hyperfine coupling, which has been often neglected in experiments, is crucial to achieving large enhancements of the nuclear Rabi nutation rate.

  4. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    NASA Astrophysics Data System (ADS)

    Niu, Kai; Lee, Soo-Y.

    2015-12-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  5. What are the intensities and line-shapes of the twenty four polarization terms in coherent anti-Stokes Raman spectroscopy?

    SciTech Connect

    Niu, Kai; Lee, Soo-Y.

    2015-12-15

    Coherent anti-Stokes Raman spectroscopy (CARS) is conventionally described by just one diagram/term where the three electric field interactions act on the ket side in a Feynman dual time-line diagram in a specific time order of pump, Stokes and probe pulses. In theory, however, any third-order nonlinear spectroscopy with three different electric fields interacting with a molecule can be described by forty eight diagrams/terms. They reduce to just 24 diagrams/terms if we treat the time ordering of the electric field interactions on the ket independently of those on the bra, i.e. the ket and bra wave packets evolve independently. The twenty four polarization terms can be calculated in the multidimensional, separable harmonic oscillator model to obtain the intensities and line-shapes. It is shown that in fs/ps CARS, for the two cases of off-resonance CARS in toluene and resonance CARS in rhodamine 6G, where we use a fs pump pulse, a fs Stokes pulse and a ps probe pulse, we obtain sharp vibrational lines in four of the polarization terms where the pump and Stokes pulses can create a vibrational coherence on the ground electronic state, while the spectral line-shapes of the other twenty terms are broad and featureless. The conventional CARS term with sharp vibrational lines is the dominant term, with intensity at least one order of magnitude larger than the other terms.

  6. The Role of Velocity Redistribution in Enhancing the Intensity of the He II 304 A Line in the Quiet Sun Spectrum

    NASA Technical Reports Server (NTRS)

    Andretta, Vincenzo; Jordan, Stuart D.; Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Behring, William E.; Thompson, William T.; Garcia, Adriana

    1999-01-01

    We present observational evidence of the effect of small scale ("microturbulent") velocities in enhancing the intensity of the He II lambda304 line with respect to other transition region emission lines, a process we call "velocity redistribution". We first show results from the 1991 and 1993 flights of SERTS (Solar EUV Rocket Telescope and Spectrograph). The spectral resolution of the SERTS instrument was sufficient to infer that, at the spatial resolution of 5", the line profile is nearly gaussian both in the quiet Sun and in active regions. We were then able to determine, for the quiet Sun, a lower limit for the amplitude of non-thermal motions in the region of formation of the 304 A line of the order of 10 km/s. We estimated that, in the presence of the steep temperature gradients of the solar Transition Region (TR), velocities of this magnitude can significantly enhance the intensity of that line, thus at least helping to bridge the gap between calculated and observed values. We also estimated the functional dependence of such an enhancement on the relevant parameters (non-thermal velocities, temperature gradient, and pressure). We then present results from a coordinated campaign, using SOHO/CDS and H-alpha spectroheliograms from Coimbra Observatory, aimed at determining the relationship between regions of enhanced helium emission and chromospheric velocity fields and transition region emission in the quiescent atmosphere. Using these data, we examined the behavior of the He II lambda304 line in the quiet Sun supergranular network and compared it with other TR lines, in particular with O III lambda600. We also examined the association of 304 A emission with the so-called "coarse dark mottle", chromospheric structures seen in H-alpha red wing images and associated with spicules. We found that all these observations are consistent with the velocity redistribution picture.

  7. Giant modification of atomic transition probabilities induced by a magnetic field: forbidden transitions become predominant

    NASA Astrophysics Data System (ADS)

    Sargsyan, Armen; Tonoyan, Ara; Hakhumyan, Grant; Papoyan, Aram; Mariotti, Emilio; Sarkisyan, David

    2014-05-01

    The magnetic field-induced giant modification of probabilities for seven components of 6S1/2, Fg = 3 → 6P3/2, Fe = 5 transition of the Cs D2 line, forbidden by selection rules, is observed experimentally for the first time. For the case of excitation with circularly polarized laser radiation, the probability of a Fg = 3, mF = -3 → Fe = 5, mF = -2 transition becomes the largest of 25 transitions of the Fg = 3 → Fe = 2,3,4,5 group in a wide-range magnetic field of 200-3200 G. Moreover, the modification is the largest among D2 lines of alkali metals. A half-wave-thick cell (the length along the beam propagation axis L = 426 nm) filled with Cs has been used in order to achieve sub-Doppler resolution, which allows the large number of atomic transitions that appear in the absorption spectrum to be separated when an external magnetic field is applied. For B > 3000 G the group of seven transitions Fg = 3 → Fe = 5 is completely resolved and is located at the high frequency level of Fg= 3 → Fe = 2,3,4 transitions. The applied theoretical model describes very well the experimental curves.

  8. Influence of laser pulse energy on emission lines intensity in the femtosecond laser-induced breakdown spectroscopy of iron in aqua solution

    NASA Astrophysics Data System (ADS)

    Golik, S. S.; Ilyin, A. A.; Babiy, M. Y.; Biryukova, Yu. S.; Lisitsa, V. V.; Shmirko, K. A.

    2015-11-01

    The influence of pulse energy on the time evolution of the intensity of the continuum and emission lines of plasma generated on the surface of aqueous solutions of iron by focused radiation Ti: sapphire laser with a wavelength of 800 nm and pulse duration of 45 fs and a range of energy 3-7 mJ was investigated. The calibration curve for iron in water and 3-ó limit of detection of iron in water was obtained.

  9. The solar XUV He I and He II emission lines. I - Intensities and gross center-to-limb behavior

    NASA Technical Reports Server (NTRS)

    Mango, S. A.; Bohlin, J. D.; Glackin, D. L.; Linsky, J. L.

    1978-01-01

    The center-to-limb variation of the He II 304- and 256-A lines and He I 584- and 537-A lines is derived for different solar features, but averaged over the chromospheric supergranulation structure. The general trend is for limb brightening in quiet-sun regions, limb neutrality in unipolar magnetic regions (UMR), and limb darkening in polar coronal holes. The center-to-limb behavior in these optically thick emission lines indicates collisional excitation and decreasing transition-region temperature gradients with respect to optical depth in the sequence quiet sun to UMR to coronal hole.

  10. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Ham, Kyung-Sik; Han, Song-Hee; Yoo, Jonghyun; Jeong, Sungho

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results.

  11. Recent high resolution laboratory determinations of line broadening and intensity parameters: PH3, CH3D, and CO2

    NASA Technical Reports Server (NTRS)

    Suarez, C. B.; Chackerian, C., Jr.; Valero, F. P. J.; Tarrago, G.

    1990-01-01

    Recent unpublished laboratory work on rovibrational line strengths and broadening coefficients which is of interest in the study of planetary atmospheres was reviewed. The molecules discussed are PH3, CH3D and CO2.

  12. Spectral line and white-light intensities in the corona in the presence of propagating or standing shocks

    NASA Technical Reports Server (NTRS)

    Esser, Ruth; Habbal, Shadia Rifai

    1990-01-01

    The effect of a propagating shock on the H I Ly-alpha line and the polarization brightness in the inner solar wind region is investigated. The shock produces measurable changes in both, and, provided the measurements are made simultaneously, the alteration of the density and velocity across the shock can be derived. For a standing shock, the effect of the Ly-alpha line and the white-light radiation is much smaller.

  13. Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Schwemmer, G.; Gentry, B.; Giver, L. P.

    1979-01-01

    Intensities and N2 collision-broadening coefficients are measured for 62 water vapor absorption lines between 715 and 732 nm potentially applicable to laser remote sensing of atmospheric water vapor. Absolute line strengths and widths were determined from spectra corrected for instrument resolution, air-path absorption and Lorentz and Doppler broadening for pure water vapor and water vapor-nitrogen mixtures in a multipass absorption cell with a base path length of 25 m (White cell). Line strengths are observed to range from 4 x 10 to the -25th to 4 x 10 to the -23rd kayser/molecule per sq cm, and collision broadening coefficients are found to be approximately equal to 0.1 kayser/atm.

  14. An optical emission-line phase of the extreme carbon star IRC +30219

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1980-01-01

    Optical spectroscopic monitoring of the extreme carbon star IRC +30219 has revealed striking changes between 1977 and 1980. The stellar photosphere was barely visible in early 1979. There was an emission line spectrum consisting of H, forbidden O I, forbidden O II, forbidden N I, forbidden N II, forbidden S II, and He I. It is likely that these lines arose in a shocked region where recent stellar mass loss encountered the extensive circumstellar envelope. By late 1979, this emission-line spectrum had vanished, and the photosphere had reappeared. The weakening of the photospheric features in early 1979 was caused by increased attenuation of starlight and overlying thermal emission, both due to recently condensed hot dust grains.

  15. Magnetic drifts at Io - Depletion of 10-MeV electrons at Voyager 1 encounter due to a forbidden zone

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Ip, W.-H.

    1983-01-01

    A model for magnetic field lines is used to track the Voyager spacecraft trajectory past Io back to the equatorial plane in order to determine the cause of an observed depletion of 10 MeV electrons in Io's orbit. The field lines are in the vicinity of an Alfven wing, a noncompressive field perturbation. It is suggested that the Jovian magnetospheric drift features influence the behavior of particles around Io, which also has a zone of reduced convection velocity. An analytical model is developed that demonstrates that a forbidden zone may exist around Io due to the gradient drifts and reduced convection velocity, and projections of particles convecting to the Io surface agree well with the Voyager data for particle concentrations. Discrepancies in the measured 9 MeV fluxes with respect to Pioneer data indicate that a possible change in the Io conductance in the interval between the passages of the two spacecraft.

  16. A Solar-pumped Fluorescence Model for Line-by-line Emission Intensities in the B–X, A–X, and X–X Band Systems of 12C14N

    NASA Astrophysics Data System (ADS)

    Paganini, L.; Mumma, M. J.

    2016-09-01

    We present a new quantitative model for detailed solar-pumped fluorescent emission of the main isotopologue of CN. The derived fluorescence efficiencies permit estimation and interpretation of ro-vibrational infrared line intensities of CN in exospheres exposed to solar (or stellar) radiation. Our g-factors are applicable to astronomical observations of CN extending from infrared to optical wavelengths, and we compare them with previous calculations in the literature. The new model enables extraction of rotational temperature, column abundance, and production rate from astronomical observations of CN in the inner coma of comets. Our model accounts for excitation and de-excitation of rotational levels in the ground vibrational state by collisions, solar excitation to the {A}2{{{\\Pi }}}{{i}} and {B}2{{{Σ }}}+ electronically excited states followed by cascade to ro-vibrational levels of {X}2{{{Σ }}}+, and direct solar infrared pumping of ro-vibrational levels in the {X}2{{{Σ }}}+ state. The model uses advanced solar spectra acquired at high spectral resolution at the relevant infrared and optical wavelengths and considers the heliocentric radial velocity of the comet (the Swings effect) when assessing the exciting solar flux for a given transition. We present model predictions for the variation of fluorescence rates with rotational temperature and heliocentric radial velocity. Furthermore, we test our fluorescence model by comparing predicted and measured line-by-line intensities for {X}2{{{Σ }}}+ (1–0) in comet C/2014 Q2 (Lovejoy), thereby identifying multiple emission lines observed at IR wavelengths.

  17. A color graphics display of the field intensity around the insulator on 13. 2 kv distribution lines

    SciTech Connect

    Yamashita, H.; Nakamae, E. ); Okano, T. ); Hammam, M.S.A.A. ); Burns, C.; Adams, G. )

    1993-10-01

    Covered conductors have been used, especially in wooded areas on low as well as high voltage overhead distribution lines for preventing brush contact and short circuit faults between conductors. Burndown on covered conductors has become a significant problem. The burndown mechanism is complicated since it is determined by combinations of the various types of insulators, ties, and conductors. In order to investigate the burndown mechanism for this paper a finite element analysis has been carried out to identify the electric field around the insulator. In this paper a newly developed electric field simulation system is reported; the finite element analysis method considering isoparametric triangular and line elements has been developed and a new color display method for electric potential and electric field distributions with lines of electric force has also been developed in order to easily observe the results.

  18. Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping.

    PubMed

    Sifain, Andrew E; Wang, Linjun; Prezhdo, Oleg V

    2016-06-01

    Surface hopping is the most popular method for nonadiabatic molecular dynamics. Many have reported that it does not rigorously attain detailed balance at thermal equilibrium, but does so approximately. We show that convergence to the Boltzmann populations is significantly improved when the nuclear velocity is reversed after a classically forbidden hop. The proposed prescription significantly reduces the total number of classically forbidden hops encountered along a trajectory, suggesting that some randomization in nuclear velocity is needed when classically forbidden hops constitute a large fraction of attempted hops. Our results are verified computationally using two- and three-level quantum subsystems, coupled to a classical bath undergoing Langevin dynamics. PMID:27276938

  19. Forbidden unique beta-decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-30

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that the p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.

  20. Searches for Rare or Forbidden Semileptonic Charm Decays

    SciTech Connect

    Lees, J.P.

    2011-08-15

    We present searches for rare or forbidden charm decays of the form X{sub c}{sup +} {yields} h{sup {+-}}{ell}{sup {-+}}{ell}{sup ({prime})+}, where X{sub c}{sup +} is a charm hardron (D{sup +}, D{sub s}{sup +}, or {Lambda}{sub c}{sup +}), h{sup {+-}} is a pion, kaon, or proton, and {ell}{sup ({prime}){+-}} is an electron or muon. The analysis is based on 384 fb{sup -1} of e{sup +}e{sup -} annihilation data collected at or close to the {Upsilon}(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory. No significant signal is observed for any of the 35 decay modes that are investigated. We establish 90% confidence-level upper limits on the branching fractions between 1 x 10{sup -6} and 44 x 10{sup -6} depending on the channel. In most cases, these results represent either the first limits or significant improvements on existing limits for the decay modes studied.

  1. Shrinking light to allow forbidden transitions on the atomic scale.

    PubMed

    Rivera, Nicholas; Kaminer, Ido; Zhen, Bo; Joannopoulos, John D; Soljačić, Marin

    2016-07-15

    The diversity of light-matter interactions accessible to a system is limited by the small size of an atom relative to the wavelength of the light it emits, as well as by the small value of the fine-structure constant. We developed a general theory of light-matter interactions with two-dimensional systems supporting plasmons. These plasmons effectively make the fine-structure constant larger and bridge the size gap between atom and light. This theory reveals that conventionally forbidden light-matter interactions--such as extremely high-order multipolar transitions, two-plasmon spontaneous emission, and singlet-triplet phosphorescence processes--can occur on very short time scales comparable to those of conventionally fast transitions. Our findings may lead to new platforms for spectroscopy, sensing, and broadband light generation, a potential testing ground for quantum electrodynamics (QED) in the ultrastrong coupling regime, and the ability to take advantage of the full electronic spectrum of an emitter. PMID:27418505

  2. Shrinking light to allow forbidden transitions on the atomic scale

    NASA Astrophysics Data System (ADS)

    Rivera, Nicholas; Kaminer, Ido; Zhen, Bo; Joannopoulos, John D.; Soljačić, Marin

    2016-07-01

    The diversity of light-matter interactions accessible to a system is limited by the small size of an atom relative to the wavelength of the light it emits, as well as by the small value of the fine-structure constant. We developed a general theory of light-matter interactions with two-dimensional systems supporting plasmons. These plasmons effectively make the fine-structure constant larger and bridge the size gap between atom and light. This theory reveals that conventionally forbidden light-matter interactions—such as extremely high-order multipolar transitions, two-plasmon spontaneous emission, and singlet-triplet phosphorescence processes—can occur on very short time scales comparable to those of conventionally fast transitions. Our findings may lead to new platforms for spectroscopy, sensing, and broadband light generation, a potential testing ground for quantum electrodynamics (QED) in the ultrastrong coupling regime, and the ability to take advantage of the full electronic spectrum of an emitter.

  3. Using satellite data to aid in diagnosing and forecasting convective development and intensity along arc cloud lines

    NASA Technical Reports Server (NTRS)

    Purdom, James F. W.; Sinclair, Peter C.

    1988-01-01

    The convective scale interactions associated with the arc cloud line are studied using GOES data. Studies of convective scale interactions are reviewed and the convective scale interaction phenomena is described. The use of satellite data in nowcasting and forecasting convective storms is discussed.

  4. Ratio of forbidden transition rates in the ground-state configuration of O ii

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Ying; Gao, Xiang; Zeng, De-Ling; Yan, Jun; Li, Jia-Ming

    2012-06-01

    Based on a set of “quasicomplete bases,” using the large-scale multiconfiguration Dirac-Fock (MCDF) method, we calculate the forbidden electric quadrupole (E2) and magnetic dipole (M1) transition rates of the transitions 2D5/2,3/2o→4S3/2o of the O ii ground state considering the quantum electrodynamics (QED) corrections. Our calculations demonstrate that the Breit interactions are most important among all the QED corrections. The calculated E2 and M1 transition rates converge in a systematical and uniform manner with the extending orbital basis and the calculation uncertainty of 2.5% is achieved by considering the valence- and core-excitation correlations totally. With the converged transition rates, a value of the intensity ratio between the two transitions in high-electron-density limit in planetary nebulas is given, that is, r(∞)=0.363±0.009, which is within the overlap of the different observations and with the least uncertainty up to now. In addition, the E2 and M1 transition rates of two transitions 2P3/2,1/2o→4S3/2o of O ii ground state and the ratio between the two transition rates in high-electron-density limit are calculated and compared with the previous results.

  5. Conversion efficiency and spectral broadening of the K-{alpha} line emitted from planar titanium targets irradiated with ultra-short laser pulses of high intensity

    SciTech Connect

    Arora, V.; Singhal, H.; Naik, P. A.; Gupta, P. D.

    2011-10-15

    A study of the conversion efficiency and line shape of the K-{alpha} x-ray line radiation from a planar titanium target irradiated by an ultra-short laser pulse is performed. The conversion efficiency and spectral broadening are studied as a function of laser intensity (5 x 10{sup 16}-10{sup 18} W cm{sup -2}), laser pulse duration (45 fs-800 fs), and laser fluence (2 x 10{sup 3}-4.2 x 10{sup 4} J cm{sup -2}). The K-{alpha}{sub 1} line (4510 eV) is observed to be broadened (up to {approx}9 eV), predominantly towards the higher energy side and strongly depends on the laser fluence rather than on laser intensity. The reason for the spectral broadening is attributed to K-{alpha} emission in warm dense plasma. The role of hot electrons and direct laser heating on spectral broadening is outlined. In addition to this, our observations indicates that the presence of pre-plasma strongly contribute to the observed broadening through the inner-shell transitions in multiply charged titanium ions in the pre-plasma. The appropriate laser irradiation parameters to achieve high conversion efficiency and minimum spectral width of the K-{alpha} radiation are identified. The study is important, since the control of the spectral profile is of general interest for diffraction or scattering experiments in view of its potential in increasing temporal resolution.

  6. Laboratory Identification of Temperature Diagnostic Si VII and S IX Lines Present in the Solar Coronal Spectra Measured by SUMER/SOHO

    NASA Astrophysics Data System (ADS)

    Kink, I.; Jupén, C.; Engström, L.; Feldman, U.; Laming, J. M.; Schühle, U.

    1997-10-01

    The solar coronal spectrum between 500 and 1610 Å and at a height of 21,000 km above the west equatorial limb has recently been recorded by the SUMER instrument on SOHO. Using laboratory spectra obtained with the beam-foil technique, we report the identification of 32 lines observed in this spectrum as 2s22p33s-2s22p33p and 2s22p33p-2s22p33d transitions in Si VII and S IX. Theoretical gA-values and branching ratios for the observed lines, obtained from semiempirical configuration interaction calculations, are also presented. Intensity ratios between the 2s22p4 3P1-2s22p4 1S0 forbidden transition and transition from the newly identified high-excitation lines that appear in the same wavelength range are temperature sensitive. Calculations of the intensity ratios between the forbidden line and the high-excitation lines for three temperatures are presented. A comparison between the calculations and some of the SUMER observations is provided.

  7. A linear correlation between H2 v = 1-0 S(1) and forbidden O I 6300 emission in Seyfert and starburst galaxies

    SciTech Connect

    Mouri, H.; Taniguchi, Y.; Kawara, K.; Nishida, M. Kiso Observatory, Mitake National Astronomical Observatory of Japan, Mitaka Kyoto Univ. )

    1989-11-01

    A good linear correlation is found between the H2 v = 1-0 S(1)/Br-gamma and the forbidden O I 6300/H-alpha emission-line ratios on a sample of 28 galaxies containing an AGN or a starburst nucleus (SBN). In the SBNs, the observed relation between the line ratios concerned matches the relation for SNRs. Thus the dominant excitation mechanism of molecular hydrogen is shock heating. In the AGNs, X-ray heating is the dominant mechanism because the model of Lepp and McCray (1983) reasonably explains the observed correlation. 48 refs.

  8. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  9. Seyfert galaxy ultraviolet emission-line intensities and variability - A self-consistent photoionization analysis applied to broad-line-emitting gas in NGC 3783

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha P.; Macalpine, Gordon M.

    1992-01-01

    Well-constrained photoionization models for the Seyfert I galaxy NGC 3783 are developed. Both cross-correlation analyses and line variability trends with varying ionizing radiation flux require a multicomponent picture. All the data for He II 1640 A, C IV 1549 A, and semiforbidden C III 1909 A can be reasonably well reproduced by two cloud components. One has a source-cloud distance of 24 lt-days, gas density around 3 x 10 exp 10/cu cm, ionization parameter range of 0.04-0.2, and cloud thickness such that about half of the carbon is doubly ionized and about half is triply ionized. The other component is located approximately 96 lt-days from the source, is shielded from the source by the inner cloud, has a density about 3 x 10 to the 9th/cu cm, and is characterized by an ionization parameter range of 0.001-0.03, The cloud thickness is such that about 45 percent carbon is doubly ionized and about 55 percent is singly ionized.

  10. Intensity of lines from low-lying levels in C II, N III, O IV, NE VI, MG VIII, SI X, and SI II

    NASA Astrophysics Data System (ADS)

    Chandra, S.

    1982-01-01

    The populations of the excited state 2P 0 3/2 relative to the ground state 2P 0 1/2 are obtained, in a study of line intensities of the transition between those two states in C II, N III, O IV, Ne VI, Mg VIII, Si X, and Si II in the chromosphere-corona transition region, by considering all the radiative and collisional transition processes. The collisional transitions to the higher states which cascade to the upper level are included among these processes. It is found that the intensity, which may be expressed as a function of temperature alone, increases in the transition region with the charge on the ion for a sequence.

  11. Line Positions and Intensities in the 2nu2/nu4 Vibrational System of 14NH3 near 5-7 micron

    NASA Astrophysics Data System (ADS)

    Cottaz, C.; Kleiner, I.; Tarrago, G.; Brown, L. R.; Margolis, J. S.; Poynter, R. L.; Pickett, H. M.; Fouchet, T.; Drossart, P.; Lellouch, E.

    2000-10-01

    Line positions and intensities belonging to the vibrational system 2nu2/nu4 of ammonia 14NH3 are measured and analyzed between 1200 and 2200 cm-1 in order to improve the molecular database. For this, laboratory spectra are obtained at 0.006 and 0.011 cm-1 unapodized resolution and with 4% precisions for the intensities using Fourier transform spectrometers located at the Kitt Peak National Observatory and the Jet Propulsion Laboratory. The observed data contain transitions of the nu4 fundamental band near 1626.276(1) and 1627.375(2) cm-1 (for s and a inversion upper states, respectively) and the 2nu2 overtone band near 1597.470(3) and 1882.179(5) cm-1 (for s and a inversion states, respectively). A total of 2345 lines with J'<=15 is assigned from which 2114 line positions with J'<=15 are fitted using an effective rotation-inversion-rotation Hamiltonian to achieve an rms of 0.003 cm-1 with 57 molecular parameters. Over 1200 intensity measurements are modeled to +/-4.7% using 16 terms of the dipole moment expansion. A dyad model is used in order to model all the interactions expected within the 2nu2/nu4 system. The bandstrength of 2nu2 (s <- a), 2nu2 (a <- s) and nu4 (s <- s and a <- a) are estimated to be 6.68(24), 0.201(5) and 116(3) cm-1 atm-1, respectively, at 296 K. The prediction generated by this study is available for planetary studies.

  12. Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia

    PubMed Central

    Bouvet, Emmanuelle; Borel, Cécile; Obéric, Lucie; Compaci, Gisèle; Cazin, Bruno; Michallet, Anne-Sophie; Laurent, Guy; Ysebaert, Loic

    2013-01-01

    Fludarabine-cyclophosphamide-rituximab is the most efficient first-line treatment for chronic lymphocytic leukemia patients. Many dose adjustments of the original MD Anderson Cancer Center regimen have been proposed. However, whether fludarabine-cyclophosphamide-rituximab relative dose intensity may have an impact on outcome has not yet been investigated. We retrospectively assessed relative dose intensity in 106 community-based patients included in our regional healthcare network from 2004-11, all receiving fludarabine-cyclophosphamide-rituximab as first-line treatment outside clinical trials. Dose reductions were observed in 51.4% of patients, mainly decided by the individual physician and not based on recommendations (52.7%), while there were fewer reports of toxicity or dose reduction because of impaired renal function. Progression-free survival was significantly reduced in patients who had a reduction in dose intensity of more than 20% in fludarabine-cyclophosphamide and/or rituximab. Multivariate analysis showed dose of rituximab had a significant impact on minimal residual disease and progression-free survival. Although prophylactic granulocyte-colony stimulating factor significantly reduced the rate of grade 3-4 neutropenia and febrile neutropenia, it had no impact on relative dose intensity and outcome. This study shows that, in routine clinical practice, there is low adherence to the original MD Anderson Cancer Center fludarabine-cyclophosphamide-rituximab schedule, and that the decision to modify dosage was mostly taken by the individual physician and was based on anticipated toxicity. This study shows that reduction of fludarabine-cyclophosphamide and, more importantly, of rituximab doses seriously interferes with progression-free survival. PMID:23065520

  13. Rotational line intensities of the c4‧1Σu+(1)-X1Σg+(0-2) bands of N2

    NASA Astrophysics Data System (ADS)

    C.; Lavín | A., M.; | I., Velasco; Martín

    2010-02-01

    Oscillator strengths and integrated cross-sections for rotational lines of the c4'1Σu+(1)-X1Σg+(0-2) bands of N 2 have been calculated with the molecular quantum defect orbital (MQDO) method. The known strong homogeneous interaction of the c4'1Σu+(1) Rydberg state with the b' 1Σu+(4) valence state has been presently dealt with through an interaction matrix for each value of the rotational quantum number, J. Because of perturbations, the intensity distribution of the rotational lines within each of the vibronic bands deviates from the predictions based on Hönl-London factors. Band oscillator strengths are also reported and their J-dependence has been analyzed.

  14. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft-Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  15. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    SciTech Connect

    Drakakis, E.; Karabourniotis, D.

    2012-09-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  16. Noise-benefit forbidden-interval theorems for threshold signal detectors based on cross correlations.

    PubMed

    Mitaim, Sanya; Kosko, Bart

    2014-11-01

    We show that the main forbidden interval theorems of stochastic resonance hold for a correlation performance measure. Earlier theorems held only for performance measures based on mutual information or the probability of error detection. Forbidden interval theorems ensure that a threshold signal detector benefits from deliberately added noise if the average noise does not lie in an interval that depends on the threshold value. We first show that this result holds for correlation for all finite-variance noise and for all forms of infinite-variance stable noise. A second forbidden-interval theorem gives necessary and sufficient conditions for a local noise benefit in a bipolar signal system when the noise comes from a location-scale family. A third theorem gives a general condition for a local noise benefit for arbitrary signals with finite second moments and for location-scale noise. This result also extends forbidden intervals to forbidden bands of parameters. A fourth theorem gives necessary and sufficient conditions for a local noise benefit when both the independent signal and noise are normal. A final theorem derives necessary and sufficient conditions for forbidden bands when using arrays of threshold detectors for arbitrary signals and location-scale noise. PMID:25493756

  17. Analysis of chemical abundances in planetary nebulae with [WC] central stars. I. Line intensities and physical conditions

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Peña, M.; Morisset, C.; Mesa-Delgado, A.; Ruiz, M. T.

    2012-02-01

    Context. Planetary nebulae (PNe) around Wolf-Rayet [WR] central stars ([WR]PNe) constitute a particular photoionized nebula class that represents about 10% of the PNe with classified central stars. Aims: We analyse deep high-resolution spectrophotometric data of 12 [WR] PNe. This sample of [WR]PNe represents the most extensive analysed so far, at such high spectral resolution. We aim to select the optimal physical conditions in the nebulae to be used in ionic abundance calculations that will be presented in a forthcoming paper. Methods: We acquired spectra at Las Campanas Observatory with the 6.5-m telescope and the Magellan Inamori Kyocera (MIKE) spectrograph, covering a wavelength range from 3350 Å to 9400 Å. The spectra were exposed deep enough to detect, with signal-to-noise ratio higher than three, the weak optical recombination lines (ORLs) of O ii, C ii, and other species. We detect and identify about 2980 emission lines, which, to date, is the most complete set of spectrophotometric data published for this type of objects. From our deep data, numerous diagnostic line ratios for Te and ne are determined from collisionally excited lines (CELs), ORLs, and continuum measurements (H i Paschen continuum in particular). Results: Densities are closely described by the average of all determined values for objects with ne < 104 cm-3, and by ne([Cl iii]) for the densest objects. For some objects, ne([Ar iv]) is adopted as the characteristic density of the high ionization zone. For Te, we adopt a three-zone ionization scheme, where the low ionization zone is characterised by Te([N ii]), the medium ionization zone by Te([O iii]), and the highest ionization one by Te([Ar iv]) when available. We compute Te from the H i Paschen discontinuity and from He i lines. For each object, Te(H i) is, in general, consistent with Te derived from CELs, although it has a very large error. Values of Te(He i) are systematically lower than the Te derived from CELs. When comparing Te(H i

  18. Implementation of central venous catheter bundle in an intensive care unit in Kuwait: Effect on central line-associated bloodstream infections.

    PubMed

    Salama, Mona F; Jamal, Wafaa; Al Mousa, Haifa; Rotimi, Vincent

    2016-01-01

    Central line-associated bloodstream infection (CLABSIs) is an important healthcare-associated infection in the critical care units. It causes substantial morbidity, mortality and incurs high costs. The use of central venous line (CVL) insertion bundle has been shown to decrease the incidence of CLABSIs. Our aim was to study the impact of CVL insertion bundle on incidence of CLABSI and study the causative microbial agents in an intensive care unit in Kuwait. Surveillance for CLABSI was conducted by trained infection control team using National Health Safety Network (NHSN) case definitions and device days measurement methods. During the intervention period, nursing staff used central line care bundle consisting of (1) hand hygiene by inserter (2) maximal barrier precautions upon insertion by the physician inserting the catheter and sterile drape from head to toe to the patient (3) use of a 2% chlorohexidine gluconate (CHG) in 70% ethanol scrub for the insertion site (4) optimum catheter site selection. (5) Examination of the daily necessity of the central line. During the pre-intervention period, there were 5367 documented catheter-days and 80 CLABSIs, for an incidence density of 14.9 CLABSIs per 1000 catheter-days. After implementation of the interventions, there were 5052 catheter-days and 56 CLABSIs, for an incidence density of 11.08 per 1000 catheter-days. The reduction in the CLABSI/1000 catheter days was not statistically significant (P=0.0859). This study demonstrates that implementation of a central venous catheter post-insertion care bundle was associated with a reduction in CLABSI in an intensive care area setting. PMID:26138518

  19. X-ray line polarization of He-like Si satellite spectra in plasmas driven by high-intensity ultrashort pulsed lasers.

    PubMed

    Hakel, Peter; Mancini, Roberto C; Gauthier, Jean-Claude; Mínguez, Emilio; Dubau, Jacques; Cornille, Marguerite

    2004-05-01

    We present a modeling study of x-ray line polarization in plasmas driven by high-intensity, ultrashort duration pulsed lasers. Electron kinetics simulations of these transient and nonequilibrium plasmas predict non-Maxwellian and anisotropic electron distribution functions. Under these conditions, the magnetic sublevels within fine structure levels can be unequally populated which leads to the emission of polarized lines. We have developed a time-dependent, collisional-radiative atomic kinetics model of magnetic sublevels to understand the underlying processes and mechanisms leading to the formation of polarized x-ray line emission in plasmas with anisotropic electron distribution functions. The electron distribution function consists of a thermal component extracted from hydrodynamic calculations and a beam component determined by PIC simulations of the laser-plasma interaction. We focus on the polarization properties of the He-like Si satellites of the L y(alpha) line, discuss the time evolution of polarized satellite spectra, and identify suitable polarization markers that are sensitive to the anisotropy of the electron distribution function and can be used for diagnostic applications. PMID:15244949

  20. Search for ultraviolet emission lines from a hot gaseous halo in the edge-on galaxy NGC 4244

    NASA Technical Reports Server (NTRS)

    Deharveng, J.-M.; Joubert, M.; Bixler, J.; Bowyer, S.; Malina, R.

    1986-01-01

    Short and long wavelength IUE spectra of the halo region in the edge-on galaxy NGC 4244 are analyzed in order to identify evidence of line emission at the level of 0.000001 ergs per cu cm sr/s. Features are found at 1245 A and 1402 A, having peaks four times greater than the rms intensity fluctuations of nearby spectra. The spectral features are identified with semi-forbidden N V, semi-forbidden S IV at 1240 A, and Si IV and semi-forbidden O IV multiplets at 1400 A, respectively. The appearance of high-peak features and the lack of astrophysically important lines in the sample are evidence of a gas near T = 10 exp 5.2 and emission measure (EM) equal to about 0.000001 pc. However, the case for the existence of such a gas is weakened due to the existence of two other similarly sized features with no identifiable astrophysical origin and the extremely faint nature of the candidate features. The assumed upper limit for the line intensities in NGC 4244 leads to the conclusion that at T less than 100,000 K any emitting gas is either highly clumped or has a p/k value of less than 1000 per cu cm K. It is suggested that if the observed low level features in the short wavelength spectrum are real, the temperature and emission measures allow for a single component gas in the halo of NGC 4244, and are in agreement with those derived by Paresce et al. (1983).

  1. Transition dipole matrix elements for 14NH 3 from the line intensities of the 2 ν2 and ν4 bands

    NASA Astrophysics Data System (ADS)

    Urban, Š.; Papoušek, D.; Malathy Devi, V.; Fridovich, B.; D'Cunha, Romola; Narahari Rao, K.

    1984-07-01

    Line intensities as well as self- and nitrogen-broadening coefficients have been determined for 20 transitions in the 2 ν2 and ν4 bands of 14NH 3 using a diode laser spectrometer. Vibrational-inversional transition moments have been determined for transitions from the ground state to the ν2, 2 ν2 and ν4 states by a least-squares fit to the line intensities, taking into account Coriolis and l-type interactions between the nν2 ( n = 1, 2, 3), ν4 and ν2 + ν4 states [Š. Urban, V. Špirko, D. Papoušek, R. S. McDowell, N. G. Nereson, S. P. Belov, L. I. Gershtein, A. V. Maslovskij, A. F. Krupnov, J. Curtis, and K. Narahari Rao, J. Mol. Spectrosc.79, 455-495 (1980)]. The values of these transition moments have been combined with the previously obtained transition moments for NH 3 and its isotopomers to obtain an improved fit to the μz component of the electric dipole moment function of ammonia [cf. V. Špirko, J. Mol. Spectrosc.74, 456-464 (1979)].

  2. [Detection of the lethal process in plankton noctiluca by means of a forbidden transition of ESR of Mn2+ ion].

    PubMed

    Kamenev, S E; Kopvillem, U Kh; Pasynkov, A S; Sharipov, R Z

    1981-01-01

    A forbidden ESR line of Mn2+ that is connected with the penetration of Mn into the plancton organism and binding it to a marcomolecule is selected from the experiment. A method for saturating the plancton organism with paramagnetic ions is proposed. It is shown that the constant of the axial electric field in the spin hamiltonian of Mn2+ ion described the dynamics of a selforganizing system. It is tested that the lethal process in the plancton with paramagnetic ion enrichment originated from boson avalanche. Experiments are performed with plancton noctiluca which illustrate the occurrence of avalancheline lethal process in the case of paramagnetic ion enrichment with limiting concentration. The meaning of these results for the problems of oceanology and pollution-ocean inhabitants interaction in the case of paramagnetic ions is discussed. PMID:6274429

  3. The line-emitting regions of the exceptional Seyfert galaxy Markarian 359

    SciTech Connect

    Veilleux, S. )

    1991-02-01

    The results of a kinematic study of the narrow- and broad-line regions in Mrk 359 are presented. The emission-line profiles between 4600 and 7500 A are used to derive the physical characteristics of the line-emitting gas. Many aspects of the emission-line profiles of Mrk 359 make this object an exceptional Seyfert galaxy: extremely small widths of both the forbidden lines and the broad component of the permitted lines, absence of profile substructure, large blueward asymmetry of the high-ionization forbidden lines despite the apparent absence of reddening in the narrow-line region. Various scenarios are proposed to explain these results. 65 refs.

  4. On the forbidden gap of finite graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Vergés, José Antonio; Chiappe, Guillermo; Louis, Enrique

    2015-08-01

    The electronic structure of isolated finite graphene nanoribbons is investigated by solving, at the Hartree-Fock (HF) level, the Pariser, Parr and Pople (PPP) many-body Hamiltonian. The study is mainly focused on 7-AGNR and 13-AGNR (Armchair Graphene Nano-Ribbons), whose electronic structures have been recently experimentally investigated. Only paramagnetic solutions are considered. The characteristics of the forbidden gap are studied as a function of the ribbon length. For a 7-AGNR, the gap monotonically decreases from a maximum value of ~6.5 eV for short nanoribbons to a very small value of ~0.12 eV for the longer calculated systems. Gap edges are defined by molecular orbitals that are spatially localized near the nanoribbon extremes, that is, near both zig-zag edges. On the other hand, two delocalized orbitals define a much larger gap of about 5 eV. Conductance measurements report a somewhat smaller gap of ~3 eV. The small real gap lies in the middle of the one given by extended states and has been observed by STM and reproduced by DFT calculations. On the other hand, the length dependence of the gap is not monotonous for a 13-AGNR. It decreases initially but sharply increases for lengths beyond 30 Å remaining almost constant thereafter at a value of ~2.1 eV. Two additional states localized at the nanoribbon extremes show up at energies 0.31 eV below the HOMO (Highest Occupied Molecular Orbital) and above the LUMO (Lowest Unoccupied Molecular Orbital). These numbers compare favorably with those recently obtained by means of STS for a 13-AGNR sustained by a gold surface, namely 1.4 eV for the energy gap and 0.4 eV for the position of localized band edges. We show that the important differences between 7- and 13-AGNR should be ascribed to the charge rearrangement near the zig-zag edges obtained in our calculations for ribbons longer than 30 Å, a feature that does not show up for a 7-AGNR no matter its length.

  5. Forbidden transitions in a magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Mishkatul

    This thesis deals with advances in atomic and molecular spectroscopy and scattering that have become possible as a result of the invention of laser cooling and trapping of atoms. Cold atomic ensembles are ideal candidates for high-resolution spectroscopy. The first part of this thesis explores forbidden-transition spectroscopy in the context of a Magneto-Optical Trap (MOT). It describes the first observation of a nondipole (E2) transition in an ultracold atomic vapor. The usefulness of such excitations for performing high-resolution, Autler-Townes, and multiphoton ionization spectroscopies is demonstrated. Results include the first measurement of the magnetic dipole constant of the 4P1/2 state of sodium. Efforts to create samples of ultracold molecules are at the forefront of experimental atomic and molecular physics. Cold polar molecules are in demand as ideal laboratories for Electron Dipole Moment (EDM) searches, as qubits in a scalable quantum computer, for making polar Bose-Einstein condensates (BECs), etc. The second part of this thesis describes one of the first instances of formation and detection of ultracold polar ground-state molecules. Ultracold 23Na133Cs molecules in the lowest electronic state were produced via photoassociation in a two-species MOT and detected using time-of-flight mass spectrometry. In a two-species BEC the interspecies scattering length determines the efficiency of sympathetic cooling, the stability and miscibility of the mixture as well as the strength of the coupling between the two species. The third part of this thesis describes a quantitative study of the 23Na- 85,87Rb alkali mixture. Accurate molecular potentials have been constructed for the ground state of Na-Rb. A first calculation of the two-species s-wave triplet and singlet scattering lengths has been made and used to predict, in the Thomas-Fermi approximation, the instability of a composite BEC in this system. The suppression of inelastic losses and the ensuing

  6. Fast electron heating in ultra-intense laser-solid interaction by shifted Kα line fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Martinolli, E.; Koenig, M.; Santos, J. J.; Amiranoff, F.; Baton, S. D.; Batani, D.; Perelli, E.; Scianitti, F.; Gremillet, L.; Rabec, M.; Rousseaux, C.; Hall, T. A.; Key, M. H.; MacKinnon, A. J.; Koch, J. A.; Freeman, R. R.; Snavely, R. A.; King, J. A.; Andersen, C.; Hill, J. M.; Stephens, R. B.; Cowan, T. E.; Ng, A.; Ao, T.

    2002-11-01

    In the context of the fast ignition studies[1], the heating of the dense fuel by fast electrons appears to be one of the most relevant aspects currently investigated [2]. In order to estimate the energy deposition and the efficiency of the fast electron transport in solid targets, we have performed experiments on LULI and RAL high power lasers, at irradiances up to a few 10^19 W/cm^2. Shifted Kα lines from an aluminum fluorescer layer buried at different depths in multilayered targets were detected using a Bragg conical-crystal spectrograph. The results were used to infer the ionization stage of the Al layer. Monte Carlo and hybrid transport codes[3] were used to study fast electron energy release by collisions and ohmic effect. The energy coupling to the target is described within an ionization model for dense matter[4] and compared to the experimental data. Despite some uncertainties of the modeling, the results give an indication of a deep heating of the target up to 30 eV after propagation in 100 μm Al. [1] M Tabak et al., Phys. of Plasmas 1, 1626 (1994) [2] E Martinolli et al., submitted to PRL, may 2002 [3] L Gremillet et al. Phys. of Plasmas 9, 941, (2002) [4] G Chiu and A Ng, PRE 59, 1024, (1999)

  7. High sensitivity cavity ring down spectroscopy of N2O near 1.22 μm: (II) 14N216O line intensity modeling and global fit of 14N218O line positions

    NASA Astrophysics Data System (ADS)

    Tashkun, S. A.; Perevalov, V. I.; Karlovets, E. V.; Kassi, S.; Campargue, A.

    2016-06-01

    In a recent work (Karlovets et al., 2016 [1]), we reported the measurement and rovibrational assignments of more than 3300 transitions belonging to 64 bands of five nitrous oxide isotopologues (14N216O, 14N15N16O, 15N14N16O, 14N218O and 14N217O) in the high sensitivity CRDS spectrum recorded in the 7915-8334 cm-1 spectral range. The assignments were performed by comparison with predictions of the effective Hamiltonian models developed for each isotopologue. In the present paper, the large amount of measurements from our previous work mentioned above and literature are gathered to refine the modeling of the nitrous oxide spectrum in two ways: (i) improvement of the intensity modeling for the principal isotopologue, 14N216O, near 8000 cm-1 from a new fit of the relevant effective dipole moment parameters, (ii) global modeling of 14N218O line positions from a new fit of the parameters of the global effective Hamiltonian using an exhaustive input dataset collected in the literature in the 12-8231 cm-1 region. The fitted set of 81 parameters allowed reproducing near 5800 measured line positions with an RMS deviation of 0.0016 cm-1. The dimensionless weighted standard deviation of the fit is 1.22. As an illustration of the improvement of the predictive capabilities of the obtained effective Hamiltonian, two new 14N218O bands could be assigned in the CRDS spectrum in the 7915-8334 cm-1 spectral range. A line list at 296 K has been generated in the 0-10,700 cm-1 range for 14N218O in natural abundance with a 10-30 cm/molecule intensity cutoff.

  8. Measurement at different temperatures of absolute intensities, line half-widths, and broadening by Ar and N2 for the 30 0 1 II--00 0 0 band of CO2

    NASA Technical Reports Server (NTRS)

    Valero, F. P. J.; Suarez, C. B.

    1978-01-01

    Vibration-rotation line intensities, self-broadening coefficients, and foreign-gas-broadening (Ar and N2) coefficients were measured at 197, 233, and 294 K for the 30 0 1 II--00 0 0 band of CO2 at 6348/cm. Values for the total band intensity, purely vibrational transition moment, and vibration-rotation interaction factor were deduced from the measurements.

  9. Physical processes in an electron current layer causing intense plasma heating and formation of x-lines

    SciTech Connect

    Singh, Nagendra; Wells, B. E.; Khazanov, Igor

    2015-05-15

    We study the evolution of an electron current layer (ECL) through its several stages by means of three-dimensional particle-in-cell (PIC) simulations with ion to electron mass ratio M/m{sub e} = 400. An ECL evolves through the following stages: (i) Electrostatic (ES) current-driven instability (CDI) soon after its formation with half width w about 2 electron skin depth (d{sub e}), (ii) current disruption in the central part of the ECL by trapping of electrons and generation of anomalous resistivity, (iii) electron tearing instability (ETI) with significantly large growth rates in the lower end of the whistler frequency range, (iv) widening of the ECL and modulation of its width by the ETI, (v) gradual heating of electrons by the CDI-driven ES ion modes create the condition that the electrons become hotter than the ions, (vi) despite the reduced electron drift associated with the current disruption by the CDI, the enhanced electron temperature continues to favor a slow growth of the ion waves reaching nonlinear amplitudes, (vii) the nonlinear ion waves undergo modulation and collapse into localized density cavities containing spiky electric fields like in double layers (DLs), (viii) such spiky electric fields are very effective in further rapid heating of both electrons and ions. As predicted by the electron magnetohydrodynamic (EMHD) theories, the ETI growth rate maximizes at wave numbers in the range 0.4 < k{sub x}W < 0.8 where k{sub x} is the wave number parallel to the ECL magnetic field and w is the evolving half width of the ECL. The developing ETI generates in-plane currents that support out-of-plane magnetic fields around the emerging x-lines. The ETI and the spiky electrostatic structures are accompanied by fluctuations in the magnetic fields near and above the lower-hybrid (ion plasma) frequency, including the whistler frequency range. We compare our results with experimental results and satellite observation.

  10. Using forbidden ordinal patterns to detect determinism in irregularly sampled time series.

    PubMed

    Kulp, C W; Chobot, J M; Niskala, B J; Needhammer, C J

    2016-02-01

    It is known that when symbolizing a time series into ordinal patterns using the Bandt-Pompe (BP) methodology, there will be ordinal patterns called forbidden patterns that do not occur in a deterministic series. The existence of forbidden patterns can be used to identify deterministic dynamics. In this paper, the ability to use forbidden patterns to detect determinism in irregularly sampled time series is tested on data generated from a continuous model system. The study is done in three parts. First, the effects of sampling time on the number of forbidden patterns are studied on regularly sampled time series. The next two parts focus on two types of irregular-sampling, missing data and timing jitter. It is shown that forbidden patterns can be used to detect determinism in irregularly sampled time series for low degrees of sampling irregularity (as defined in the paper). In addition, comments are made about the appropriateness of using the BP methodology to symbolize irregularly sampled time series. PMID:26931588

  11. Using forbidden ordinal patterns to detect determinism in irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Kulp, C. W.; Chobot, J. M.; Niskala, B. J.; Needhammer, C. J.

    2016-02-01

    It is known that when symbolizing a time series into ordinal patterns using the Bandt-Pompe (BP) methodology, there will be ordinal patterns called forbidden patterns that do not occur in a deterministic series. The existence of forbidden patterns can be used to identify deterministic dynamics. In this paper, the ability to use forbidden patterns to detect determinism in irregularly sampled time series is tested on data generated from a continuous model system. The study is done in three parts. First, the effects of sampling time on the number of forbidden patterns are studied on regularly sampled time series. The next two parts focus on two types of irregular-sampling, missing data and timing jitter. It is shown that forbidden patterns can be used to detect determinism in irregularly sampled time series for low degrees of sampling irregularity (as defined in the paper). In addition, comments are made about the appropriateness of using the BP methodology to symbolize irregularly sampled time series.

  12. Influence of Forbidden Processes on Similarity Law in Argon Glow Discharge at Low Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yang-Yang; Luo, Hai-Yun; Zou, Xiao-Bing; Wang, Xin-Xin

    2014-07-01

    The similarity law of gas discharge is not always valid due to the occurrence of some elementary processes, such as the stepwise ionization process, which are defined as the forbidden processes. To research the influence of forbidden processes on the similarity law, physical parameters (i.e., the electric field, electron density, electron temperature) in similar gaps are investigated based on the fluid model of gas discharge. The products of gas pressure p and dimensions are kept to be constant in similar gaps and the discharge model is solved with and without the forbidden processes, respectively. Discharges in similar gaps are identified as glow discharges and the typical similarity relations all are investigated. The results show that the forbidden processes cause significant deviations of similarity relations from the theoretical ones and the deviations are enlarged as the scaled-down factor k increases. If the forbidden processes are excluded from the model, the similarity law will be valid in argon glow discharge at low pressure.

  13. Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry.

    PubMed

    Wang, Junpeng; Kouznetsova, Tatiana B; Niu, Zhenbin; Ong, Mitchell T; Klukovich, Hope M; Rheingold, Arnold L; Martinez, Todd J; Craig, Stephen L

    2015-04-01

    Forbidden reactions, such as those that violate orbital symmetry effects as captured in the Woodward-Hoffmann rules, remain an ongoing challenge for experimental characterization, because when the competing allowed pathway is available the reactions are intrinsically difficult to trigger. Recent developments in covalent mechanochemistry have opened the door to activating otherwise inaccessible reactions. Here we report single-molecule force spectroscopy studies of three mechanically induced reactions along both their symmetry-allowed and symmetry-forbidden pathways, which enables us to quantify just how 'forbidden' each reaction is. To induce reactions on the ~0.1 s timescale of the experiments, the forbidden ring-opening reactions of benzocyclobutene, gem-difluorocyclopropane and gem-dichlorocyclopropane require approximately 130 pN less, 560 pN more and 1,000 pN more force, respectively, than their corresponding allowed analogues. The results provide the first experimental benchmarks for mechanically induced forbidden reactions, and in some cases suggest revisions to prior computational predictions. PMID:25803470

  14. Status of the "ARC", a Quad of High-Intensity Beam Lines at the National Ignition Facility

    SciTech Connect

    Crane, J K; Arnold, P; Beach, R J; Betts, S; Boley, C; Chang, M; Chrisp, M; Clark, W; Dawson, J W; Erlandson, A; Henesian, M; Hernandez, J E; Jovanovic, I; Kanz, V; Key, M; Lucianetti, A; Messerly, M J; Page, R; Rushford, M; Semenov, V; Seppala, L; Siders, C; Stolz, C; Trummer, D J; Williams, W; Wong, J N; Tiebohl, G; Barty, C J

    2006-06-21

    We present the status of plans to commission a short-pulse, quad of beams on the National Ignition Facility (NIF), capable of generating > 10 kJ of energy in 10 ps. These beams will initially provide an advanced radiographic capability (ARC) to generate brilliant, x-ray back-lighters for diagnosing fuel density and symmetry during ignition experiments. A fiber, mode-locked oscillator generates the seed pulse for the ARC beam line in the NIF master oscillator room (MOR). The 200 fs, 1053 nm oscillator pulse is amplified and stretched in time using a chirped-fiber-Bragg grating. The stretched pulse is split to follow two separate beam paths through the chain. Each pulse goes to separate pulse tweakers where the dispersion can be adjusted to generate a range of pulse widths and delays at the compressor output. After further fiber amplification the two pulses are transported to the NIF preamplifier area and spatially combined using shaping masks to form a split-spatial-beam profile that fits in a single NIF aperture. This split beam propagates through a typical NIF chain where the energy is amplified to several kilojoules. A series of mirrors directs the amplified, split beam to a folded grating compressor that is located near the equator of the NIF target chamber. Figure 1 shows a layout of the beam transport and folded compressor, showing the split beam spatial profile. The folder compressor contains four pairs of large, multi-layer-dielectric gratings; each grating in a pair accepts half of the split beam. The compressed output pulse can be 0.7-50 ps in duration, depending on the setting of the pulse tweaker in the MOR. The compressor output is directed to target chamber center using four additional mirrors that include a 9 meter, off-axis parabola. The final optic, immediately following the parabola, is a pair of independently adjustable mirrors that can direct the pair of ARC beams to individual x-ray backlighter targets. The first mirror after the compressor

  15. Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements

    NASA Astrophysics Data System (ADS)

    Fivet, Vanessa; Quinet, P.; Bautista, M.

    2012-05-01

    Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189

  16. Near-infrared emission-line spectra of the Orion Nebula, NGC 4151, and other Seyfert galaxies

    SciTech Connect

    Osterbrock, D.E.; Shaw, R.A.; Veilleux, S. )

    1990-04-01

    Near-IR CCD moderate-resolution spectra in the 7000-11,000 wavelength range were obtained for NGC 1976 and NGC 4151 in three overlapping segments. The strongest three lines in both objects are forbidden S III 9531, He I 10830, and forbidden S III 9069. Also, lower resolution spectra of 14 additional Seyfert galaxies were obtained. In all but two of these spectra, the strongest line is forbidden S III 9531. The line strengths among these galaxies are compared to trace ionization behavior. 59 refs.

  17. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    SciTech Connect

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S. E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D. E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  18. Measurement of dynamic Stark polarizabilities by analyzing spectral line shapes of forbidden transitions

    SciTech Connect

    Dounas-Frazer, D. R.; Tsigutkin, K.; Family, A.; Budker, D.

    2010-12-15

    We present a measurement of the dynamic scalar and tensor polarizabilities of the excited state |5d6s {sup 3}D{sub 1}> in atomic ytterbium. The polarizabilities were measured by analyzing the spectral lineshape of the 408-nm 6s{sup 2} {sup 1}S{sub 0{yields}}5d6s {sup 3}D{sub 1} transition driven by a standing wave of resonant light in the presence of static electric and magnetic fields. Due to the interaction of atoms with the standing wave, the lineshape has a characteristic polarizability-dependent distortion. A theoretical model was used to simulate the lineshape and determine a combination of the polarizabilities of the ground and excited states by fitting the model to experimental data. This combination was measured with a 13% uncertainty, only 3% of which was due to uncertainty in the simulation and fitting procedure. By comparing two different combinations of polarizabilities, the scalar and tensor polarizabilities of the state |5d6s {sup 3}D{sub 1}> were measured to be {alpha}{sub 0}({sup 3}D{sub 1})=0.009(21) Hz(V/cm){sup -2} and {alpha}{sub 2}({sup 3}D{sub 1})=-0.103(26) Hz(V/cm){sup -2}, respectively. We show that this technique can be applied to similar atomic systems.

  19. Emission intensity of the λ = 1.54 μm line in ZnO films grown by magnetron sputtering, diffusion doped with Ce, Yb, Er

    SciTech Connect

    Mezdrogina, M. M. Eremenko, M. V.; Smirnov, A. N.; Petrov, V. N.; Terukov, E. I.

    2015-08-15

    The effect of the Er{sup 3+}-ion excitation type on the photoluminescence spectra of crystalline ZnO(ZnO〈Ce, Yb, Er〉) films is determined in the cases of resonant (λ = 532 nm, Er{sup 3+}-ion transition from {sup 4}S{sub 3/2}, {sup 2}H{sub 11/2} levels to {sup 4}I{sub 15/2}) and non-resonant (λ = 325 nm, in the region near the ZnO band-edge emission) excitation. It is shown that resonant excitation gives rise to lines with various emission intensities, characteristic of the Er{sup 3+}-ion intracenter 4f transition with λ = 1535 nm when doping crystalline ZnO films with three rare-earth ions (REIs, Ce, Yb, Er) or with two impurities (Ce, Er) or (Er, Yb), independently of the measurement temperature (T = 83 and 300 K). The doping of crystalline ZnO films with rare-earth impurities (Ce, Yb, Er) leads to the efficient transfer of energy to REIs, a consequence of which is the intense emission of an Er{sup 3+} ion in the IR spectral region at λ{sub max} = 1535 nm. The kick-out diffusion mechanism is used upon the sequential introduction of impurities into semiconductor matrices and during the postgrowth annealing of the ZnO films under study. The crystalline ZnO films doped with Ce, Yb, Er also exhibit intense emission in the visible spectral region at room temperature, which makes them promising materials for optoelectronics.

  20. Design of the axial beam line for the injection of high intensity beams into the Laboratorio Nazionale del Sud superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Gammino, S.; Ciavola, G.

    1996-03-01

    At Laboratorio Nazionale del Sud the superconducting electron cyclotron resonance source SERSE will be used as injector for the K-800 Superconducting Cyclotron which in the future will provide the intense light ion beams to be used as primary beams for the radioactive beam project EXCYT. The goal is to inject and accelerate a few pμA of fully stripped carbon and oxygen into the cyclotron with an emittance as close as possible to the typical acceptance of the cyclotron, which should be in the order of 50π mm mrad. The study of the beam line has been carried out by taking into account both the phase space growth due to space charge and the aberrations inside the magnets. The design has been based on the results of different codes (TRANSPORT, GIOSP, PARMILA). A few details on the diagnostics will also be given. The assembly of the beam line is scheduled for the summer of 1996, just before the transfer of the source SERSE from Grenoble to Catania.

  1. Mesosphere-thermosphere regions coupling with the lower atmosphere through the inter-annual variations of the hydroxyl OH(8-3) bands, the oxygen 557.7 nm and 630.0 nm lines nightglow intensities

    NASA Astrophysics Data System (ADS)

    Didebulidze, Goderdzi; Javakhishvili, Giorgi; Todua, Maya; Toriashvili, Lekso

    2016-04-01

    The characteristics of the inter-annual/seasonal distributions of the mid-latitude nightglow intensities of the mesopause hydroxyl OH(8-3) bands (maximum luminous layer about 87 km), the thermosphere oxygen green 557.7 nm (main maximum of luminous layer in the lower thermosphere at about 95 km) and the red 630.0 nm line (emitted from the ionosphere F2 region with maximum luminous layer about 230-280 km) intensities are considered by observations from Abastumani (41.75 E; 42.82 E). The observed inter-annual variations of the OH bands and green line, along with the maximal values at spring (March-April) and fall (September-October) equinoxial periods which are noticed also from other regions, exhibit maxima in June as well. The red line intensity mainly tends to decrease at equinoxial months, while it is maximal in summer and is accompanied by relatively small increase in June (compared to May and July). Maximal values of OH band and green line intensities in June are observed both in maximum and minimum phases of solar activity. This is considered as a manifestation of the features of upper and lower atmosphere dynamical coupling of this region of the South Caucasus. Such dynamical coupling can involve the ionosphere F2 region and can be accompanied by relative decrease of the red line intensity in June. It is observed that the increase of OH band and green line intensities is accompanied by the red line intensity decrease at the end of March and beginning of April, which also is considered as a manifestation of lower and upper atmosphere dynamical coupling. Acknowledgements: This work has been supported by Shota Rustaveli National Science Foundation Grants no. 31/56 and 31/81.

  2. Search for the charge-conjugation-forbidden decay {omega}{yields}{eta}{pi}{sup 0}

    SciTech Connect

    Starostin, A.; Nefkens, B. M. K.; Brudvik, J.; Prakhov, S.; Suarez, I. M.; Ahrens, J.; Arends, H. J.; Bartolome, P. A.; Heid, E.; Jahn, O.; Martinez, M.; Ostrick, M.; Rost, M.; Thomas, A.; Annand, J. R. M.; Livingston, K.; MacGregor, I. J. D.; McGeorge, J. C.; McNicoll, E. F.; Robinson, J.

    2009-06-15

    A new upper limit of 2.3x10{sup -4} on the branching ratio of the decay {omega}{yields}{eta}{pi}{sup 0} has been obtained using the Crystal Ball multiphoton spectrometer at the Mainz Microtron MAMI. This decay is forbidden by charge-conjugation invariance of the strong and electromagnetic interactions. We have also obtained the upper limit of 2.3x10{sup -4} for the forbidden decay {omega}{yields}3{pi}{sup 0} and the upper limit of 2.4x10{sup -4} for {omega}{yields}2{pi}{sup 0}.

  3. Forbidden pitches: causes, source optimization, and their role in design rules

    NASA Astrophysics Data System (ADS)

    Apostol, Štefan; Hurley, Paul

    2015-03-01

    Forbidden pitches are the result of unwanted, non-linear effects that limit yield and not always well understood. Yet, as approximations, they are implicitly deployed through design rules. Many believe they result as a consequence of more complicated light sources. We develop an analytical model of aerial image quality as a function of light source. We show the effect is most pronounced for a point light source, the simplest of all. We develop a method to improve print image quality by illumination source optimization, and show promising first results. Additionally, it is shown how design rules capture forbidden pitches unsatisfactorily.

  4. The epidemiology of tick-borne haemoparasites as determined by the reverse line blot hybridization assay in an intensively studied cohort of calves in western Kenya

    PubMed Central

    Njiiri, Nyawira E.; Bronsvoort, B. Mark deC.; Collins, Nicola E.; Steyn, Helena C.; Troskie, Milana; Vorster, Ilse; Thumbi, S.M.; Sibeko, Kgomotso P.; Jennings, Amy; van Wyk, Ilana Conradie; Mbole-Kariuki, Mary; Kiara, Henry; Poole, E. Jane; Hanotte, Olivier; Coetzer, Koos; Oosthuizen, Marinda C.; Woolhouse, Mark; Toye, Philip

    2015-01-01

    The development of sensitive surveillance technologies using PCR-based detection of microbial DNA, such as the reverse line blot assay, can facilitate the gathering of epidemiological information on tick-borne diseases, which continue to hamper the productivity of livestock in many parts of Africa and elsewhere. We have employed a reverse line blot assay to detect the prevalence of tick-borne parasites in an intensively studied cohort of indigenous calves in western Kenya. The calves were recruited close to birth and monitored for the presence of infectious disease for up to 51 weeks. The final visit samples from 453 calves which survived for the study period were analyzed by RLB. The results indicated high prevalences of Theileria mutans (71.6%), T. velifera (62.8%), Anaplasma sp. Omatjenne (42.7%), A. bovis (39.9%), Theileria sp. (sable) (32.7%), T. parva (12.9%) and T. taurotragi (8.5%), with minor occurrences of eight other haemoparasites. The unexpectedly low prevalence of the pathogenic species Ehrlichia ruminantium was confirmed by a species-specific PCR targeting the pCS20 gene region. Coinfection analyses of the seven most prevalent haemoparasites indicated that they were present as coinfections in over 90% of the cases. The analyses revealed significant associations between several of the Theileria parasites, in particular T. velifera with Theileria sp. sable and T. mutans, and T. parva with T. taurotragi. There was very little coinfection of the two most common Anaplasma species, although they were commonly detected as coinfections with the Theileria parasites. The comparison of reverse line blot and serological results for four haemoparasites (T. parva, T. mutans, A. marginale and B. bigemina) indicated that, except for the mostly benign T. mutans, indigenous cattle seem capable of clearing infections of the three other, pathogenic parasites to below detectable levels. Although the study site was located across four agroecological zones, there was

  5. On the dependence of solar flare X-ray spectral line intensity ratios of highly ionized sulfur, calcium, and iron on electron temperature, differential emission measure, and atomic physics

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Fludra, A.; Bentley, R. D.; Lang, J.; Phillips, K. J. H.

    1990-01-01

    This paper focuses on what can be learned about the emission measure distribution and certain atomic physics parameters from spectral lines of highly ionized ions of sulfur, calcium, and iron that appear in solar flare spectra. The particular lines chosen for analysis allow the electron temperature to be determined independently of the assumption of ionization equilibrium. An attempt is made to find emission measure models based on selected functional dependences of emission measure on temperature that reproduce the observed temperatures deduced from spectral line ratios as well as the relative intensities of resonance lines of different elements.

  6. Nitroxyl free radical enhancement of the forbidden singlet oxygen luminescent transition

    SciTech Connect

    Belford, R.E.

    1993-01-01

    Utilizing transient near IR luminescence spectroscopy, nitroxyl free radicals like TEMPO, (2,2,6,6-tetramethyl piperidine-N-oxyl), have been shown to increase the rate of quantum mechanically forbidden O[sub 2]([sup 3][Sigma][sub g][sup [minus

  7. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line.

    PubMed

    Kobayashi, Y; Sakai, D; Iwashina, T; Iwabuchi, S; Mochida, J

    2009-01-01

    Low-intensity pulsed ultrasound (LIPUS) stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG) synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1) exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x10(5) cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm(2) compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF). These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration. PMID:19598131

  8. Low Intensity Pulsed Ultrasound (LIPUS) Influences the Multilineage Differentiation of Mesenchymal Stem and Progenitor Cell Lines through ROCK-Cot/Tpl2-MEK-ERK Signaling Pathway*

    PubMed Central

    Kusuyama, Joji; Bandow, Kenjiro; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-01-01

    Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway. PMID:24550383

  9. A survey of Preventive Measures Used and their Impact on Central Line-Associated Bloodstream Infections (CLABSI) in Intensive Care Units (SPIN-BACC)

    PubMed Central

    2013-01-01

    Background The Quebec central line-associated bloodstream infections (CLABSI) in intensive care units (ICUs) Surveillance Program saw a decrease in CLABSI rates in most ICUs. Given the surveillance trends observed in recent years, we aimed to determine what preventive measures have been implemented, if compliance to measures was monitored and its impact on CLABSI incidence rates. Methods All hospitals participating in the Quebec healthcare-associated infections surveillance program (SPIN-BACC – n = 48) received a 77-question survey about preventive measures implemented and monitored in their ICU. The questionnaire was validated for construct, content, face validity, and reliability. We used Poisson regression to measure the association between compliance monitoring to preventive measures and CLABSI rates. Results Forty-two (88%) eligible hospitals completed the survey. Two components from the maximum barrier precautions were used less optimally: cap (88%) and full sterile body drape (71%). Preventive measures reported included daily review of catheter need (79%) and evaluation of insertion site for the presence of inflammation (90%). Two hospitals rewired lines even if an infection was suspected or documented. In adult ICUs, there was a statistically significant greater decrease in CLABSI rates in ICUs that monitored compliance to preventive insertion measures, after adjusting for teaching status and the number of hospital beds (p = 0.036). Conclusions Hospitals participating to the SPIN-BACC program follow recommendations for CLABSI prevention, but only a minority locally monitor their application. Compliance monitoring of preventive measures for catheter insertion was associated with a decrease in CLABSI incidence rates. PMID:24289473

  10. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway.

    PubMed

    Kusuyama, Joji; Bandow, Kenjiro; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-04-11

    Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway. PMID:24550383

  11. Far-infrared lines from G45.13 + 0.14 A and K3-50 A - Density fluctuations in compact H II regions

    NASA Technical Reports Server (NTRS)

    Colgan, Sean W. J.; Simpson, J. P.; Rubin, Robert H.; Erickson, Edwin F.; Haas, M. R.; Wolf, Juergen

    1991-01-01

    Properties of two compact H II regions, K3-50 A and G45.13 + 0.14 A, were investigated by measuring FIR fluxes from forbidden O III 51.8 and 88.4 micron lines, forbidden N III 57.3 micron line, forbidden S III 33.5 micron line, and forbidden Ne III 36.0 micron line of these regions, using a cooled grating spectrometer on NASA's Kuiper Airborne Observatory. For both H II regions, the ratio of the two FIR O(2+) lines indicates an electron density of about 1000/cu cm, which for K3-50 A is a factor of 10 to 100 lower than the density determined from optical line observations of the lower excitation species S(+) and N(+) and than the peak rms density deduced from radio continuum measurements by Turner and Matthews (1984). Detailed spherically symmetric models of the two sources were constructed using all available measurements.

  12. Tracing outflows in the AGN forbidden region with SINFONI

    NASA Astrophysics Data System (ADS)

    Kakkad, D.; Mainieri, V.; Padovani, P.; Cresci, G.; Husemann, B.; Carniani, S.; Brusa, M.; Lamastra, A.; Lanzuisi, G.; Piconcelli, E.; Schramm, M.

    2016-08-01

    Context. Active galactic nucleus (AGN) driven outflows are invoked in numerical simulations to reproduce several observed properties of local galaxies. The z > 1 epoch is of particular interest as it was during this time that the volume averaged star formation and the accretion rate of black holes were at their maximum. Radiatively driven outflows are therefore believed to be common during this epoch. Aims: We aim to trace and characterize outflows in AGN hosts with high mass accretion rates at z > 1 using integral field spectroscopy. We obtain spatially resolved kinematics of the [O iii] λ5007 line in two targets which reveal the morphology and spatial extension of the outflows. Methods: We present SINFONI observations in the J band and the H + K band of five AGNs at 1.2 < z < 2.2. To maximize the chance of observing radiatively driven outflows, our sample was pre-selected based on peculiar values of the Eddington ratio and the hydrogen column density of the surrounding interstellar medium. We observe high velocity (~600-1900 km s-1) and kiloparsec scale extended ionized outflows in at least three of our targets, using [O iii] λ5007 line kinematics tracing the AGN narrow line region. We estimate the total mass of the outflow, the mass outflow rate, and the kinetic power of the outflows based on theoretical models and report on the uncertainties associated with them. Results: We find mass outflow rates of ~1-10 M⊙/yr for the sample presented in this paper. Based on the high star formation rates of the host galaxies, the observed outflow kinetic power, and the expected power due to the AGN, we infer that both star formation and AGN radiation could be the dominant source for the outflows. The outflow models suffer from large uncertainties, hence we call for further detailed observations for an accurate determination of the outflow properties to confirm the exact source of these outflows.

  13. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    PubMed

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae. PMID:16591822

  14. Absolute intensities and self-, N2-, and air-broadened Lorentz halfwidths for selected lines in the nu3 band of (C-12)H3D from measurements with a tunable diode laser spectrometer

    NASA Technical Reports Server (NTRS)

    Malathy Devi, V.; Benner, D. C.; Rinsland, C. P.; Smith, M. A. H.; Thakur, K. B.

    1986-01-01

    Absolute intensities and self-, air- and N2-broadened half-widths have been determined for the first time for individual lines in the nu3(A1) band of (C-12)H3D near 7.6 microns from measurements of individual vibration-rotation lines using a tunable diode laser spectrometer. The intensity measurements are believed to be accurate to within three percent. Within experimental uncertainties, equal broadening efficiencies are found for both air and nitrogen. Self-broadened half-widths determined for three transitions yield an average half-width value of 0.803 + or -0.0010/cm/atm at 296 K.

  15. In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields.

    PubMed

    Wang, D H; Wang, S J; Jia, P G

    2012-06-01

    Aiming at detecting high intensity focused ultrasound (HIFU) fields, this letter reports on a novel in-line silica capillary tube all-silica fiber-optic Fabry-Perot (ILSCT-ASFP) interferometric sensor fabricated by splicing a commercially available silica capillary tube to two single-mode fibers. The experimental results show that such a novel ILSCT-ASFP interferometric sensor with a cavity length of ∼60.76 μm has an excellent fringe visibility of up to ∼20 dB, and the fringe visibility is still good when the cavity length extends up to ∼1031.07 μm. The measured wavelength-temperature sensitivity of 0.000858 nm/°C shows that the wavelength drift of the fabricated ILSCT-ASFP interferometric sensor towards temperature is extremely low. Meanwhile, the measurement of HIFU fields by this novel sensor is demonstrated, and the experimental results indicate that the signal-to-noise ratio of the sensing system for sensing a 0.93 MHz HIFU field with a pressure of 2.69 MPa in the focus area can reach 42.8 dB. The corresponding noise equivalent pressure is 0.0194 MPa, and the calculated acoustic sensitivity is 65.4 mV/MPa over a 2.5 MHz measurement bandwidth. PMID:22660116

  16. X-ray resonant scattering of (004n+2) forbidden reflections in spinel ferrites

    NASA Astrophysics Data System (ADS)

    Subías, G.; Garcia, J.; Proietti, M. G.; Blasco, J.; Renevier, H.; Hodeau, J. L.; Sánchez, M. C.

    2004-10-01

    The origin of the x-ray resonant scattering of (002) and (006) forbidden reflections in the spinel ferrites has been investigated. Resonant features were previously observed in Fe3O4 at the pre-edge and main-edge energies of the FeK -absorption edge. They were ascribed to dipole-quadrupole and dipole transitions at the tetrahedral and pseudo-octahedral Fe ions, respectively. To corroborate this origin and to differentiate between effects at the different metal sites, we have studied the energy and azimuthal dependencies of these reflections at the Fe, Co, and MnK edges in MnFe2O4 and CoFe2O4 spinels. Mn2+ mainly replaces Fe in the tetrahedral site whereas Co2+ occupies the octahedral site. No pre-edge peak is observed either at the FeK -edge in MnFe2O4 or at the CoK edge in CoFe2O4 . On the other hand, the peak at the absorption edge and the oscillations at energies beyond the edge are observed at the FeK edge in MnFe2O4 and CoFe2O4 and at the CoK edge in CoFe2O4 . Therefore, the pre-edge peak comes from the metal ions at the tetrahedral site while the main-edge peak arises from the metal ions at the pseudo-octahedral site of the spinel structure. The azimuthal dependence and the energy line shape confirm the dipole-quadrupole and dipole characters of these pre-edge and main-edge resonances, respectively. The energy-dependence spectra of Fe3O4 above and below the Néel temperature are alike, discarding any magnetic effect on the resonant spectra. Finally, the fine structure at energies beyond the absorption edge has been theoretically simulated considering only the local anisotropy of the dipolar atomic scattering factor of the pseudo-octahedral metal atom. These results demonstrate that (004n+2) resonant reflections arise from the anisotropy of the local structure around the transition-metal atom without contributions of charge or d -orbital ordering.

  17. Observation of the Forbidden Transitions Between the A^1Π_u and b^3Σ_g^- States of C_2

    NASA Astrophysics Data System (ADS)

    Chen, Wang; Tang, Jian; Kawaguchi, Kentarou

    2014-06-01

    In the last symposium, we reported that a global fit simultaneously for the Phillips band system (A^1Π_u-X^1Σ_g^+) and the Ballik-Ramsay band system (b^3Σ_g^-a^3Π_u) was carried out to deperturb the spin-orbit interaction between the X^1Σ_g^+ state and the b^3Σ_g^- state of C_2. As the result, the energy gap between the a^3Π_u state and the X^1Σ_g^+ state was obtained as 720.0 wn, which is quite larger than the previous value of about 716.7 wn (converted from 718.3 wn after the definition of the Hamiltonian for the ^3Π state is corrected by adding one B value on all the diagonal elements as the one we use widely today). This newly determined singlet-triplet energy gap showed that the X^1Σ_g^+ (v=6) level and the b^3Σ_g^- (v=3) level cross at J=2 with the energy difference of only 0.07 wn before the spin-orbit interaction is considered, which makes the singlet-triplet mixing nearly 50-50%. Therefore, we thought that the forbidden transitions related to this mixing should be observable. When rechecking the previously observed FTIR emission spectrum in the study of the CH radical, where the emission spectrum of C_2 appeared to be very strong, we found that the allowed A^1Π_u (v=4)-X^1Σ_g^+ (v=6) transitions of C_2 around 3950 wn were accompanied by the forbidden A^1Π_u (v=4)-b^3Σ_g^- (v=3) transitions with J"=2, and two such forbidden transitions were identified clearly with the similar intensities as the corresponding allowed transitions. The observation of the forbidden transitions exactly at the predicted positions means that our deperturbation analysis was successful. W. Chen, J. Tang, and K. Kawaguchi, 68th OSU International Symposium on Molecular Spectroscopy, WJ11 (2013). C. Amiot, J. Chauville, and J. -P. Maillard, J. Mol. Spectrosc., 75, 19 (1979). J. M. Brown and A. J. Merer, J. Mol. Spectrosc., 74, 488 (1979). P. N. Ghosh, M. N. Deo, and K. Kawaguchi, Astrophys. J., 525, 539 (1999).

  18. The response of the inductively coupled argon plasma to solvent plasma load: spatially resolved maps of electron density obtained from the intensity of one argon line

    NASA Astrophysics Data System (ADS)

    Weir, D. G. J.; Blades, M. W.

    1994-12-01

    A survey of spatially resolved electron number density ( ne) in the tail cone of the inductively coupled argon plasma (ICAP) is presented: all of the results of the survey have been radially inverted by numerical, asymmetric Abel inversion. The survey extends over the entire volume of the plasma beyond the exit of the ICAP torch; It extends over distances of z = 5-25 mm downstream from the induction coil, and over radial distances of ± 8 mm from the discharge axis. The survey also explores a range of inner argon flow rates ( QIN), solvent plasma load ( Qspl) and r.f. power: moreover, it explores loading by water, methanol and chloroform. Throughout the survey, ne was determined from the intensity of one, optically thin argon line, by a method which assumes that the atomic state distribution function (ASDF) for argon lies close to local thermal equilibrium (LTE). The validity of this assumption is reviewed. Also examined are the discrepancies between ne from this method and ne from Stark broadening measurements. With the error taken into account, the results of the survey reveal how time averaged values of ne in the ICAP respond over an extensive, previously unexplored range of experimental parameters. Moreover, the spatial information lends insight into how the thermal conditions and the transport of energy respond. Overall, the response may be described in terms of energy consumption along the axial channel and thermal pinch within the induction region. The predominating effect depends on the solvent plasma load, the solvent composition, the robustness of the discharge, and the distribution of solvent material over the argon stream.

  19. Highly Forbidden Transitions in Alkalis: Preparations for a Parity Violation Experiment

    NASA Astrophysics Data System (ADS)

    Oliveira, Claudia

    Preparatory steps for the experimental investigation of the highly forbidden 5s → 6s transition in rubidium using an atom trap and laser cooling are reported. A magneto-optical trap (MOT) has been assembled including saturation spectroscopy and a dichroic vapor laser lock. A frequency-doubled diode laser system has been installed to perform the spectroscopy of the forbidden transition with cold Rb atoms in the trap. The properties of the ns → n's transition in the presence of an external electric field have been investigated theoretically. A first measurement will be exploring the Stark-induced transition amplitude and the very faint magnetic dipole amplitude. The rubidium experiment is a precursor study for a long-term project at TRIUMF, Canada's National Laboratory for nuclear and particle physics, to measure atomic parity violation in the equivalent 7s → 8s transition in francium, the heaviest alkali atom which has no stable isotopes.

  20. Distances for galactic planetary nebulae using mean forbidden O II doublet ratio electron densities

    NASA Astrophysics Data System (ADS)

    Kingsburgh, Robin L.; Barlow, M. J.

    1992-07-01

    Forbidden O II 3726, 3729-A double ratios and electron densities are presented for 68 galactic PN. For 45 of the objects, the doublet ratios represent integrations over the whole of the nebula. Calibrations recently derived from the Magellanic Cloud PN are used to derive distances for the majority of the nebulae. The typical forbidden O II density at the transition point between an optically thick and thin nebula is 4500/cu cm. An extensive comparison is made between the distances derived and previously published distances and distance scales. It is shown that the present distances, based on Magellanic Cloud calibrations, yield consistency with independent distance estimates. They also exhibit much greater self-consistency between central star masses derived from luminosity vs Teff comparisons on the one hand, and from absolute magnitude vs evolutionary age comparisons on the other. For the PN in this sample, rms electron densities, filling factors, and absolute radii are also derived.

  1. Contribution of a pure NCG forbidden process to the Z associated Higgs production

    SciTech Connect

    Bradji, O.; Mebarki, N.

    2012-06-27

    The contribution of the pure NCG forbidden subprocess gg{yields}ZHis calculated. It is shown that the cross section becomes important at the LHC energies and depends strongly on the choice of the noncommutativity parameter. Because of the gluons luminosity inside the proton, it becomes comparable to that of the commutative standard model subprocess qq(bar sign)ZH for reasonable values of the NCG parameter.

  2. Energy transfer enhancement by oxygen perturbation of spin-forbidden electronic transitions in aromatic systems

    NASA Astrophysics Data System (ADS)

    Monguzzi, A.; Tubino, R.; Salamone, M. M.; Meinardi, F.

    2010-09-01

    Triplet-triplet energy transfer in multicomponent organic systems is usually entirely ascribed to a Dexter-type mechanism involving only short-range donor/acceptor interactions. We demonstrate that the presence of molecular oxygen introduces a perturbation to the electronic structure of one of the involved moieties which can induce a large increase in the spin-forbidden transition oscillator strength so that the otherwise negligible Förster contribution dominates the overall energy transfer rate.

  3. Probing the Extended Atmosphere and Wind of Betelgeuse with SOFIA-EXES: Exploiting the Forbidden Fe II Ladder

    NASA Astrophysics Data System (ADS)

    Harper, Graham M.; Richter, Matthew; O'Gorman, Eamon; DeWitt, Curtis; Guinan, Edward F.; EXES Instrument Team

    2016-01-01

    Betelgeuse is a proving ground for theories of mass loss from cool massive stars: it has little circumstellar dust and low molecular abundances, but it is still able to drive a massive outflow just like its dusty cousins of later spectral-types. To constrain the physical processes causing mass loss we need to examine the conditions in the wind acceleration zone where most of the required energy is deposited. To study the dynamics and thermodynamics in this zone requires spectrally-resolved line profiles from diagnostics with different excitation energies.Forbidden mid-IR Fe II transitions from within the first three terms, with Texc=540 K, 3,400 K, and 11,700 K, provide just such diagnostics. NASA-DLR SOFIA with the Echelon-Cross-Echelle Spectrograph (EXES) provide the required low water vapor (42,000~ft) and spectral resolution (R=50,000) for two of the transitions, while the 17.94 μm line can be observed with TEXES on NASA's IRTF.We present key spectra from our Cycle 2 SOFIA program, which also enabled us to explore the mid-IR signature of the two cm-radio hot-spots that had recently been reported from eMERLIN interferometry. Our high S/N spectra place tight constraints on the amount of warm chromospheric plasma, and we have resolved the 25.99 μm ground-state line for the first time, showing blue-shifted emission from the outflow. Please note that the nature of the puzzling radio-hot spots are now understood.

  4. Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex.

    PubMed

    Fataftah, Majed S; Zadrozny, Joseph M; Coste, Scott C; Graham, Michael J; Rogers, Dylan M; Freedman, Danna E

    2016-02-01

    The implementation of quantum computation (QC) would revolutionize scientific fields ranging from encryption to quantum simulation. One intuitive candidate for the smallest unit of a quantum computer, a qubit, is electronic spin. A prominent proposal for QC relies on high-spin magnetic molecules, where multiple transitions between the many MS levels are employed as qubits. Yet, over a decade after the original notion, the exploitation of multiple transitions within a single manifold for QC remains unrealized in these high-spin species due to the challenge of accessing forbidden transitions. To create a proof-of-concept system, we synthesized the novel nuclear spin-free complex [Cr(C3S5)3](3-) with precisely tuned zero-field splitting parameters that create two spectroscopically addressable transitions, with one being a forbidden transition. Pulsed electron paramagnetic resonance (EPR) measurements enabled the investigation of the coherent lifetimes (T2) and quantum control (Rabi oscillations) for two transitions, one allowed and one forbidden, within the S = (3)/2 spin manifold. This investigation represents a step forward in the development of high-spin species as a pathway to scalable QC systems within magnetic molecules. PMID:26739626

  5. Observation of electric-dipole-forbidden infrared transitions in cold molecular ions

    NASA Astrophysics Data System (ADS)

    Germann, Matthias; Tong, Xin; Willitsch, Stefan

    2014-11-01

    Spectroscopic transitions in atoms and molecules that are not allowed within the electric-dipole approximation, but occur because of higher-order terms in the interaction between matter and radiation, are termed dipole-forbidden. These transitions are extremely weak and therefore exhibit very small natural linewidths. Dipole-forbidden optical transitions in atoms form the basis of next-generation atomic clocks and of high-fidelity qubits used in quantum information processors and quantum simulators. In molecules, however, such transitions are much less characterized, reflecting the considerable challenges to address them. Here, we report direct observation of dipole-forbidden, electric-quadrupole-allowed infrared (IR) transitions in a molecular ion. Their detection was enabled by the very long interrogation times of several minutes afforded by the sympathetic cooling of individual quantum-state-selected molecular ions into the nearly perturbation-free environment of a Coulomb crystal. The present work paves the way for new mid-IR frequency standards and precision spectroscopic measurements on single molecules in the IR domain.

  6. A systematic and detailed investigation of radiative rates for forbidden transitions of astrophysical interest in doubly ionized iron peak elements

    NASA Astrophysics Data System (ADS)

    Quinet, Pascal; Fivet, Vanessa; Bautista, Manuel

    2015-08-01

    The knowledge of accurate and reliable atomic data for lowly ionized iron peak elements, from scandium to copper, is of paramount importance for the analysis of the high resolution spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly ionized species have been little investigated so far and radiative rates for those lines remain sparse or inexistent.In the present contribution, we report on the recent study we have performed concerning the determination of magnetic dipole (M1) and electric quadrupole (E2) transition probabilities in those ions. For the calculations, we have extensively used the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allowed us to check the consistency and to assess the accuracy of the results obtained.[1] Mesa-Delgado A. et al., MNRAS 395, 855 (2009)[2] Johansson S. et al., A&A 361, 977 (2000)[3] Cowan R.D., The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley (1981)[4] Badnell N.R., J. Phys. B: At. Mol. Opt. Phys. 30, 1 (1997)

  7. Absolute Rovibrational Intensities of C-12O2-16 Absorption Bands in the 3090-3850/ CM Spectral Region

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, Curtis P.; Smith, Mary Ann H.

    1998-01-01

    A multispectrum nonlinear least-squares fitting technique has been used to determine the absolute intensities for approximately 1500 spectral lines in 36 vibration - rotation bands Of C-12O2-16 between 3090 and 3850/ cm. A total of six absorption spectra of a high- purity (99.995% minimum) natural sample of carbon dioxide were used in the analysis. The spectral data (0.01/cm resolution) were recorded at room temperature and low pressure (1 to 10 Torr) using the McMath-Pierce Fourier transform spectrometer of the National Solar Observatory (NSO) on Kitt Peak. The absorption path lengths for these spectra varied between 24.86 and 385.76 m. The first experimental determination of the intensity of the theoretically predicted 2(nu)(sub 2, sup 2) + nu(sub 3) "forbidden" band has been made. The measured line intensities obtained for each band have been analyzed to determine the vibrational band intensity, S(sub nu), in /cm/( molecule/sq cm) at 296 K, square of the rotationless transition dipole moment |R|(exp 2) in Debye, as well as the nonrigid rotor coefficients. The results are compared to the values listed in the 1996 HITRAN database which are obtained using the direct numerical diagonalization (DND) technique as well as to other published values where available.

  8. Speeding up the r-PROCESS. Investigation of First Forbidden β Decays in N>50 Isotopes Near 78Ni

    NASA Astrophysics Data System (ADS)

    Padgett, S.; Grzywacz, R.; Liddick, S. N.; Batchelder, J. C.; Bingham, C.; Darby, I.; Gross, C. J.; Korgul, A.; Królas, W.; Mazzocchi, C.; Piechaczek, A.; Rajabali, M.; Rykaczewski, K.; Winger, J. A.; Zganjar, E.; Unirib Collaboration

    2008-08-01

    The calculation of β decay properties often only includes the Gamow-Teller allowed decays. Theory indicates that nuclei above Z=28, N=50 may need to include first forbidden decays as well in the calculations of β decay properties. An experiment will be conducted at the HRIBF of ORNL to investigate branching ratios of first forbidden decays in 86,88,90,92Br to Kr isotopes since nearly pure Br beams are available at the HRIBF.

  9. A multicenter quasi-experimental study: impact of a central line infection control program using auditing and performance feedback in five Belgian intensive care units

    PubMed Central

    2013-01-01

    Background We analyzed the impact associated with an intervention based on process control and performance feedback to decrease central line-associated bloodstream infection (CLABSI) rates. This study was conducted from March 2011 to September 2012 in five adult intensive care units (ICU) located in two Belgian tertiary hospitals A and B, with a total of 53 beds. Methods This study was divided in three phases: P1 (baseline), P2 (intervention) and P3 (post intervention). During P2, external monitoring of five central venous catheters (CVC) care critical processes and monthly reporting (meetings and feedbacks reports posted) of performance indicators (CLABSI rate, CVC utilization ratio, compliance rate with each care process, and insertion site) to ICU workers were performed. The external monitoring of process measures was assessed by the same trained research nurse. A Poisson regression analysis was used to compare CLABSI incidence density rate per phase. Statistical significance was achieved with 2-sided p-value of <0.05. For the analysis, we separated the five ICU in hospital A and B when appropriate. Results Significantly improved total mean compliance was achieved for hand hygiene, CVC handling and CVC dressing. CLABSI rate declined from 4.00 (95% confidence interval (CI): 1.94-6.06) to 1.81 (0.46-3.17) per 1,000 CVC-days in P2 with an incidence rate ratio (IRR) of 0.49 (0.24-0.98, p = 0.043). A better response was observed in hospital A where the nurse participation at the monthly meeting was significantly higher than in hospital B (p < 0.001) as the percentage of feedbacks reports posted in ICU (p < 0.001). The decline in the CLABSI rate observed during P2 in comparison with P1 was independent of the insertion site (femoral or non-femoral; p = 0.054). The overall CLABSI rate increased to 2.73 (1.17-4.29) per 1,000 CVC-days with IRR of 0.67 (0.36-1.26, p = 0.212) in P3 compared to P1, but a high nursing turnover was observed in both hospitals. Conclusions Our

  10. The structure and ionization of the extended emission-line filaments surrounding the QSO MR 2251-178

    SciTech Connect

    Macchetto, F.; Colina, L.; Golombek, D.; Perryman, M.A.C.; Di Serego Alighieri, S. ESA, Astrophysics Div., Noordwijk ESA, Space Telescope European Coordinating Facility, Garching )

    1990-06-01

    This paper presents new VLA radio maps, at 6 cm and 20 cm, of the QSO MR 2251-178, together with deep high-spatial-resolution images in the O II forbidden 3727-A line in the O III forbidden 5007-A line, and H-alpha emission lines, showing the presence of extended emission-line filaments surrounding the MR 2251-178. The morphology of the circumnuclear emission-line regions and an extended system of filaments in different ionization states are shown. The physical characteristics, such as luminosities, densities, mass, and ionization parameters of different filaments are derived. 48 refs.

  11. Ultraviolet observations of cool stars. IV - Intensities of Lyman-alpha and Mg II in epsilon Pegasi and epsilon Eridani, and line width-luminosity correlations

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Linsky, J. L.; Henry, R. C.; Moos, H. W.

    1975-01-01

    A spectrometer on the Copernicus satellite has been used to confirm the existence of a line width-luminosity relation for the Ly-alpha and Mg II 2800-A chromospheric emission lines in K-type stars by observation of a K2 dwarf (epsilon Eri) and a K2 supergiant (epsilon Peg). Combined with previously reported observations of lines in three K giants (alpha Boo, alpha Tau, and beta Gem), the data are consistent with an identical dependence of line width on absolute visual magnitude for the Ca II K, Ly-alpha, and Mg II 2795-A lines. Surface fluxes of Ly-alpha, Mg II 2800-A, and O V 1218-A (upper limit) for epsilon Eri, and of Mg II 2800-A for epsilon Peg are also compared with values reported previously for the three giant stars.

  12. Effect of a dimer of nanoparticles on the linewidth of forbidden E2 transitions

    NASA Astrophysics Data System (ADS)

    Guzatov, D. V.; Klimov, V. V.

    2016-07-01

    In the framework of classical electrodynamics we have obtained and investigated analytical expressions for the radiation linewidth of forbidden E2 transitions in an atom located near a dimer of spherical particles. It is shown that the material of particles, their location and size have a significant effect on the linewidth of the E2 transition in the atom. It is found that in the gap between metal spherical nanoparticles, the linewidth of E2 transitions in the atom can take on substantially larger values than in the case of an atom near a single metal nanoparticle.

  13. Strong coupling on a forbidden transition in strontium and nondestructive atom counting

    NASA Astrophysics Data System (ADS)

    Norcia, Matthew A.; Thompson, James K.

    2016-02-01

    We observe strong collective coupling between an optical cavity and the forbidden spin singlet to triplet optical transition S10 to P31 in an ensemble of 88Sr. Despite the transition being 1000 times weaker than a typical dipole transition, we observe a well-resolved vacuum Rabi splitting. We use the observed vacuum Rabi splitting to make nondestructive measurements of atomic population with the equivalent of projection-noise limited sensitivity between subsequent measurements and with minimal heating [<0.01 (photon recoils)/atom]. This technique may be used to enhance the performance of optical lattice clocks by generating entangled states and reducing dead time.

  14. Theoretical investigation on dye sensitizer solar cell: Spin-forbidden transition

    SciTech Connect

    Imamura, Yutaka

    2015-12-31

    We studied spin-forbidden transitions of metal polypyridyl sensitizers by two-component relativistic time-dependent density functional theory with the spin-orbit interaction based on Tamm-Dancoff approximation. The singlet-to-triplet transition, which is assigned to a metal-to-ligand charge-transfer type excitation, appears for a phosphine-coordinated Ru(II), DX1. Absorption spectra of the modified DX1 molecules, whose Ru is replaced with Fe and Os, were also calculated for examining the effects of metals on the spin-orbit interaction.

  15. Forbidden O II studies of galactic planetary nebulae and extragalactic H II complexes

    NASA Astrophysics Data System (ADS)

    Odell, C. R.; Castaneda, H. O.

    1984-08-01

    The 3727-A doublet ratio of forbidden O II was observed in five planetary nebulae and nine extragalactic groupings of H II regions (H II Complexes). The theoretical relation between this doublet ratio and nebular density was rederived using the most up-to-date atomic parameters, permitting columnar densities to be determined for all objects. The structure of extragalactic H II Complexes is discussed, and a preferred model advanced. A new method of distance determination for extragalactic systems is proposed and evaluated in the context of the presently available data.

  16. Prediction of Forbidden Ultraviolet and Visible Emissions in Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Raghuram, Susarla; Bhardwaj, Anil; Galand, Marina

    2016-02-01

    Remote observation of spectroscopic emissions is a potential tool for the identification and quantification of various species in comets. The CO Cameron band (to trace CO2) and atomic oxygen emissions (to trace H2O and/or CO2, CO) have been used to probe neutral composition in the cometary coma. Using a coupled-chemistry-emission model, various excitation processes controlling the CO Cameron band and different atomic oxygen and atomic carbon emissions have been modeled in comet 67P/Churyumov-Gerasimenko at 1.29 AU (perihelion) and at 3 AU heliocentric distances, which is being explored by ESA's Rosetta mission. The intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines as a function of projected distance are calculated for different CO and CO2 volume mixing ratios relative to water. Contributions of different excitation processes controlling these emissions are quantified. We assess how CO2 and/or CO volume mixing ratios with respect to H2O can be derived based on the observed intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines. The results presented in this work serve as baseline calculations to understand the behavior of low out-gassing cometary coma and compare them with the higher gas production rate cases (e.g., comet Halley). Quantitative analysis of different excitation processes governing the spectroscopic emissions is essential to study the chemistry of inner coma and to derive neutral gas composition.

  17. Some features of the radial-velocity variations of lines of different intensity in the spectrum of HD 93521. Variability of the stellar wind

    NASA Astrophysics Data System (ADS)

    Rzaev, A. Kh.

    2007-12-01

    CCD spectra taken with the PFES echelle spectrograph of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences are used to perform a detailed study of the variability of the profiles of Hell, H β, and H α lines in the spectrum of HD 93521. The pattern and nature of the variability of the Hell lines are similar to those of weak HeI lines and are due to nonradial pulsations. The period and amplitude of the radial-velocity variations are the same for the blue and red halves of the absorption profile but their phases are opposite. The behavior of the variations of H β and H α hydrogen lines relative to their mean profiles is the same as that of strong HeI line and is due to nonradial pulsations. The period and phase of the radial-velocity oscillations are the same for the blue and red halves of the absorption profile but their amplitude are different. The behavior of the radial-velocity variations of the absorption and emission components of the H α line indicates that the latter also are caused by nonradial pulsations. All this is indicative of the complex structure of the stellar wind in the region of its origin. The behavior of variability and wind kinematics differ in different directions and for different regions of the atmosphere and/or envelope.

  18. Temperature measurement of laser-induced plasmas from the intensity ratio of two lines emitted from different elements with the same ionization degree.

    PubMed

    Hou, Huaming; Tian, Ye; Lu, Yuan; Li, Ying; Zheng, Ronger

    2014-01-01

    A new laser induced plasma temperature measuring method with two lines emitted from different elements with the same ionization degree is proposed, assuming local thermodynamic equilibrium condition of the plasma. The influence of measurement error on deduced temperature accuracy was simulated in theory. A solution containing Cu, K, and Cr elements was used as the sample. Plasma was generated at the surface of the solution, and time-resolved spectra were recorded. Two atomic lines, Cu I 324 nm and K I 766 nm, were used to determine the plasma temperature with the proposed method. Four atomic lines and two ionic lines of Cr were selected to deduce plasma temperature with the Saha-Boltzmann plot method for comparison. The temperatures deduced from the two different methods showed similar behavior as a function of time. The results suggested that this method can be useful in cases where only very few lines from a single element are available in the spectrum and Boltzmann or Saha-Boltzmann plots cannot be built. PMID:25226263

  19. Extensive computation of allowed and forbidden transition probabilities in the potassium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Deshmukh, Pranawa C.; Manson, Steven T.; Majumder, Sonjoy

    2007-06-01

    Our primary aim in this work is to present both allowed and forbidden transition amplitudes and corresponding wavelengths and oscillator strengths for a few ions in the 19-electron potassium isoelectronic sequence. All of these ions have the configuration [Ar] 3^2D3/2 as their ground state, except in the case of K and Ca^+, where it is [Ar] 4^2S1/2.This difference in ground state configuration arises due to strong contributions of correlation effects in the energy levels of these systems [1]. Allowed and forbidden transitions in these systems are of great importance in astrophysics [2] and in laboratory plasma research [3]. We apply in the present work the relativistic coupled-cluster (RCC) theory [4] to evaluate the energy levels and wave functions of these systems and study amplitudes for electric and magnetic dipole transition amplitudes and also the electric quadrupole transition amplitudes. The contributions of various electron correlation effects to the transition amplitudes are estimated in some detail using the RCC theory. [1] Gopal Dixit et al., Astrophys. J (submitted); arXiv.org: physics/0702066. [2] C. R. Cowley and G. M. Wahlgern, Astronomy & Astrophysics, 447, 681 (2002). [3] J. E. Vernazza, E. M. Reeves, Astrophys. J. Suppl. 37, 485 (1978) [4] I. Lindgren, Physics Scripta, 36, 591 (1987).

  20. Plant species forbidden in health food and their toxic constituents, toxicology and detoxification.

    PubMed

    Xu, Xi-Lin; Shang, Yu; Jiang, Jian-Guo

    2016-02-01

    Many plants with pharmacological efficacies are widely used as ingredients in so-called "health foods", but many of them are toxic. In order to ensure the safety of "health food", the Chinese Ministry of Health has listed 59 materials that are forbidden from being used in health food and are called health food forbidden species (HFFS). This review focuses on 47 plants among the HFFS to discuss research regarding their pharmacology, toxicology, and detoxification methods. According to the literature published in the last 2 decades, the main constituents and the pharmacology of such plants are described here, especially their toxic constituents and toxicology. The toxicity mechanisms of several typical toxic components from the 47 plants are outlined and some effective detoxification methods are introduced. Although all HFFS are poisonous, they are considered to be useful in the treatment of many diseases. How to keep their pharmacological effects and at the same time decrease their toxicity is a great challenge. In the future, more attention should be paid to the application of modern science and technology in the exploration of the toxicology and detoxification of HFFS. PMID:26674019

  1. Intensity Frontier Instrumentation

    SciTech Connect

    Kettell S.; Rameika, R.; Tshirhart, B.

    2013-09-24

    The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked “Who ordered that?” upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

  2. Optimizing TaO{sub x} memristor performance and consistency within the reactive sputtering “forbidden region”

    SciTech Connect

    Lohn, Andrew J.; Stevens, James E.; Mickel, Patrick R.; Marinella, Matthew J.

    2013-08-05

    Standard deposition processes for depositing ReRAM oxides utilize mass flow of reactive gas to control stoichiometry and have difficulty depositing a precisely defined sub-stoichiometry within a “forbidden region” where film properties are discontinuous with mass flow. We show that by maintaining partial pressure within this discontinuous “forbidden region,” instead of by maintaining mass flow, we can optimize tantalum oxide device properties and reduce or eliminate the electroforming step. We also show that defining the partial pressure set point as a fraction of the “forbidden region” instead of as an absolute value can be used to improve wafer-to-wafer consistency with minimal recalibration efforts.

  3. Resonance Scattering of Fe XVII X-ray and EUV Lines

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Saba, J. L. R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Over the years a number of calculations have been carried out to derive intensities of various X-ray and EUV lines in Fe XVII to compare with observed spectra. The predicted intensities have not agreed with solar observations, particularly for the line at 1.5.02 Angstroms; resonance scattering has been suggested as the source for much of the disagreement. The atomic data calculated earlier used seven configurations having n=3 orbitals and the scattering calculations were carried out only for incident energies above the threshold of the highest fine-structure level. These calculations have now been extended to thirteen configurations having n=4 orbitals and the scattering calculations are carried out below as well as above the threshold of the highest fine structure level. These improved calculations of Fe XVII change the intensity ratios compared to those obtained earlier, bringing the optically thin F(15.02)/F(16.78) ratio and several other ratios closer to the observed values. However, some disagreement with the solar observations still persists, even thought the agreement of the presently calculated optically thin F(15.02)/F(15.26) ratio with the experimental results of Brown et al. (1998) and Laming et al. (2000) has improved. Some of the remaining discrepancy is still thought to be the effect of opacity, which is consistent with expected physical conditions for solar sources. EUV intensity ratios are also calculated and compared with observations. Level populations and intensity ratios are calculated, as a function of column density of Fe XVII, in the slab and cylindrical geometries. As found previously, the predicted intensities for the resonance lines at 15.02 and 15.26 Angstroms exhibit initial increases in flux relative to the forbidden line at 17.10 Angstroms and the resonance line at 16.78 Angstroms as optical thickness increases. The same behavior is predicted for the lines at 12.262 and 12.122 Angstroms. Predicted intensities for some of the allowed

  4. Remote sensing of atomic oxygen - Some observational difficulties in the use of the forbidden O I 1173-A and O I 1641-A transitions

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1987-01-01

    Recent sounding rocket and satellite studies suggest that simultaneous measurements of the O I 989-A and 1304-A resonance lines and of the forbidden 1172.6-A and 1641.3-A transitions would form the basis of a useful remote sensing technique for measuring the O I density and optical opacity of a planetary or stellar atmosphere. Because the 1172.6-A and 1641.3-A emissions are weak lines and are emitted in a wavelength region rich in spectral features, it is important to determine whether typical flight instruments can make measurements with sufficient spectral purity so that the remote sensing observations will yield accurate results. A detailed, high-resolution study of the far UV emission features in the regions surrounding the atomic oxygen transitions at 1172.6 and 1641.3 A was made. These spectra, which were excited by electron impact on O2 and N2, are presented in an attempt to display some potential sources of interference in aeronomical measurements of these O I lines. Both atomic and molecular emissions are found, and the spectral resolution necessary to make unambiguous measurements is discussed.

  5. Dual-wavelength in-line phase-shifting interferometry based on two dc-term-suppressed intensities with a special phase shift for quantitative phase extraction.

    PubMed

    Xu, Xiaoqing; Wang, Yawei; Xu, Yuanyuan; Jin, Weifeng

    2016-06-01

    To efficiently promote the phase retrieval in quantitative phase imaging, a new approach of quantitative phase extraction is proposed based on two intensities with dual wavelength after filtering the corresponding dc terms for each wavelength, in which a special phase shift is used. In this approach, only the combination of the phase-shifting technique and subtraction procedures is needed, and no additional algorithms are required. The thickness of the phase object can be achieved from the phase image, which is related to the synthetic beat wavelength. The feasibility of this method is verified by the simulated experiments of the optically transparent objects. PMID:27244381

  6. Analysis of the competition between forbidden and hyperfine-induced transitions in Ne-like ions

    NASA Astrophysics Data System (ADS)

    Andersson, Martin; Grumer, Jon; Brage, Tomas; Zou, Yaming; Hutton, Roger

    2016-03-01

    In this work we investigate the decay of the |2 p53 s P30> state in neon-like ions along the isoelectronic sequence ranging from Z =10 to Z =35 . In the absence of a nuclear spin, the magnetic dipole transition to |2 p53 s P31> is the dominating decay channel. However, for isotopes with a nuclear spin, the interaction between the nuclear magnetic dipole moment and the electronic field introduces a mixing of |2 p53 s P31> and |P11> into the |P30> state, which in turn opens up a competing hyperfine-induced electric dipole decay channel to the ground state. This hyperfine-induced transition channel clearly dominates over the magnetic dipole channel for the neutral end of the isoelectronic sequence, when present. We give values for the rates of both these competing channels and discuss how the introduction of the hyperfine-induced transition channel could have a dramatic influence on the spectrum, not only because it introduces a new line, but also since it can substantially decrease the intensity of the magnetic dipole 2 p53 s P30→2 p53 s P31 line and affect the predicted ionization balance in different plasmas.

  7. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  8. Photopolymer material sensitized by xanthene dyes for holographic recording using forbidden singlet–triplet electronic transitions

    NASA Astrophysics Data System (ADS)

    Shelkovnikov, Vladimir; Vasiljev, Evgeny; Russkih, Vladimlen; Berezhnaya, Viktoria

    2016-07-01

    A new holographic photopolymer material is developed. The photopolymer material is sensitized by dyes of xanthene and thioxanthene series which contain iodine and bromine heavy atoms. Holographic recording was carried out during excitation of forbidden singlet–triplet electron transitions of dyes. Thioerythrosin triethylammonium was identified as the most effective sensitizer among a number of tested dyes. The spectral absorption area of the singlet–triplet electronic transition of the dye is conveyed in the red spectral range from 600 to 700 nm. The sensitivity of the photopolymer material to radiation with 633 nm wavelength is 180 mJ cm‑2. Optimization of concentration of the main components of the photopolymer compositions was carried out in order to achieve maximum efficiency of holographic recording.

  9. Absolute mass of neutrinos and the first unique forbidden {beta} decay of {sup 187}Re

    SciTech Connect

    Dvornicky, Rastislav; Simkovic, Fedor; Muto, Kazuo; Faessler, Amand

    2011-04-15

    The planned rhenium {beta}-decay experiment, called the ''Microcalorimeter Arrays for a Rhenium Experiment'' (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which will take commissioning data in 2011 and will proceed for 5 years. We present the energy distribution of emitted electrons for the first unique forbidden {beta} decay of {sup 187}Re. It is found that the p-wave emission of electron dominates over the s wave. By assuming mixing of three neutrinos, the Kurie function for the rhenium {beta} decay is derived. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed {beta} decay of {sup 3}H.

  10. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods.

    PubMed

    Ali, Md Eaqub; Razzak, Md Abdur; Hamid, Sharifah Bee Abd; Rahman, Md Mahfujur; Amin, Md Al; Rashid, Nur Raifana Abd; Asing

    2015-06-15

    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation. PMID:25660879

  11. The Absolute Mass of Neutrino and the First Unique Forbidden β-DECAY of 187Re

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor; Muto, Kazuo

    2011-10-01

    The planned rhenium β-decay experiment MARE might probe the absolute mass scale of neutrinos with the same sensitivity as the tritium β-decay experiment KATRIN, which will start data taking in 2011 and will proceed for five years. We present the energy distribution of emitted electrons for the first unique forbidden β-decay of 187Re. It is found that the p-wave emission of electron dominates over the s-wave. By assuming mixing of three neutrinos the Kurie function for the rhenium β-decay is derived. It is shown that the Kurie plot near the endpoint is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed βof 3H.

  12. Full Polarization Analysis of Resonant Superlattice and Forbidden x-ray Reflections in Magnetite

    SciTech Connect

    Wilkins, S.B.; Bland, S.R.; Detlefs, B.; Beale, T.A.W.; Mazzoli, C.; Joly, Y.; Hatton, P.D.; Lorenzo, J.E.; Brabers, V.A.M.

    2009-12-02

    Despite being one of the oldest known magnetic materials, and the classic mixed valence compound, thought to be charge ordered, the structure of magnetite below the Verwey transition is complex and the presence and role of charge order is still being debated. Here, we present resonant x-ray diffraction data at the iron K-edge on forbidden (0, 0, 2n+1){sub C} and superlattice (0, 0, 2n+1/2)C reflections. Full linear polarization analysis of the incident and scattered light was conducted in order to explore the origins of the reflections. Through simulation of the resonant spectra we have confirmed that a degree of charge ordering takes place, while the anisotropic tensor of susceptibility scattering is responsible for the superlattice reflections below the Verwey transition. We also report the surprising result of the conversion of a significant proportion of the scattered light from linear to nonlinear polarization.

  13. Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule.

    PubMed

    You, Yang; Yang, Chuan-Lu; Zhang, Qing-Qing; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2016-07-20

    The spin-forbidden cooling of the LiRb molecule is investigated based on ab initio quantum chemistry calculations. The multireference configuration interaction method is used to generate the potential energy curves (PECs) of the ground state X(1)Σ(+) and the low-lying excited states a(3)Σ(+), B(1)Π, and b(3)Π. The spin-orbit coupling effects for the PECs and the transition dipole moments (TDMs) between the X(1)Σ(+), b(3)Π and a(3)Σ(+) states are also calculated. The analytical functions for the PECs are deduced. The rovibrational energy levels, the spectroscopic parameters and the Franck-Condon factors (FCF) are determined by solving the Schrödinger equation of nuclear movement with the obtained analytical functions. The b(3)Π0 ↔ X(1)Σ(+) and b(3)Π1 ↔ X(1)Σ(+) transitions have highly diagonal distributed FCFs and non-zero TDMs, demonstrating that the LiRb molecule could be a very promising candidate for laser cooling. Therefore, a three-cycle laser cooling scheme for the molecule has been proposed based on these two spin-forbidden transitions. Using the radiative lifetime and linewidth calculated from the obtained TDM functions, we present further analysis of the cooling of LiRb and the corresponding KRb molecule. The transition b(3)Π0 ↔ X(1)Σ(+) is found to be a practical transition to cool the LiRb molecule, and a sub-microkelvin cool temperature could be reached for the KRb molecule using a similar laser cooling scheme. PMID:27388722

  14. Forbidden nonunique β decays and effective values of weak coupling constants

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Srivastava, P. C.; Suhonen, J.

    2016-03-01

    Forbidden nonunique β decays feature shape functions that are complicated combinations of different nuclear matrix elements and phase-space factors. Furthermore, they depend in a very nontrivial way on the values of the weak coupling constants, gV for the vector part and gA for the axial-vector part. In this work we include also the usually omitted second-order terms in the shape functions to see their effect on the computed decay half-lives and electron spectra (β spectra). As examples we study the fourth-forbidden nonunique ground-state-to-ground-state β- decay branches of 113Cd and 115In using the microscopic quasiparticle-phonon model and the nuclear shell model. A striking new feature that is reported in this paper is that the calculated shape of the β spectrum is quite sensitive to the values of gV and gA and hence comparison of the calculated with the measured spectrum shape opens a way to determine the values of these coupling constants. This article is designed to show the power of this comparison, coined spectrum-shape method (SSM), by studying the two exemplary β transitions within two different nuclear-structure frameworks. While the SSM seems to confine the gV values close to the canonical value gV=1.0 , the values of gA extracted from the half-life data and by the SSM emerge contradictory in the present calculations. This calls for improved nuclear-structure calculations and more measured data to systematically employ SSM for determination of the effective value of gA in the future.

  15. Forbidden Transitions in the Microwave Rotational Spectrum of the Tt Conformer of the N-Propanol Molecule

    NASA Astrophysics Data System (ADS)

    Kazimova, S. B.

    2016-01-01

    A search for forbidden transitions was made in the microwave rotational spectrum of the Tt conformer of the propanol molecule (n-CH3CH2CH2OH) in the region of 37.0-78.0 GHz. The n-CH3CH2CH2OH molecule has a plane of symmetry containing μb and μa components of the dipole moment (μc = 0). On account of centrifugal distortion an induced component of the dipole moment μa, perpendicular to the symmetry plane of the molecule and leading to the appearance of previously forbidden rotational transitions, appears in such molecules. Forbidden "centrifugal transitions" of this type were found in the microwave rotational spectrum of the Tt conformer of the n-CH3CH2CH2OH molecule. The spectrum was analyzed by means of the Watson A-reduction rotational Hamiltonian. Sixty four forbidden μc transitions with rotational quantum numbers of up to J = 37 inclusive were identified.

  16. Devaluation of Forbidden Toys Among Lower Socioeconomic Children as a Function of Severity and Specificity of Threat.

    ERIC Educational Resources Information Center

    Dembroski, Theodore M.; And Others

    A prediction derived from cognitive dissonance theory is that children devalue an attractive but forbidden toy when mild rather than severe threat deters them from playing with it. One study found the opposite effect for lower socioeconomic class children, i.e., a harsh verbal threat produced more devaluation than a mild threat. Since the latter…

  17. Composition determination of quaternary GaAsPN layers from single X-ray diffraction measurement of quasi-forbidden (002) reflection

    SciTech Connect

    Tilli, J.-M. Jussila, H.; Huhtio, T.; Sopanen, M.; Yu, K. M.

    2014-05-28

    GaAsPN layers with a thickness of 30 nm were grown on GaP substrates with metalorganic vapor phase epitaxy to study the feasibility of a single X-ray diffraction (XRD) measurement for full composition determination of quaternary layer material. The method is based on the peak intensity of a quasi-forbidden (002) reflection, which is shown to vary with changing arsenic content for GaAsPN. The method works for thin films with a wide range of arsenic contents and shows a clear variation in the reflection intensity as a function of changing layer composition. The obtained thicknesses and compositions of the grown layers are compared with accurate reference values obtained by Rutherford backscattering spectroscopy combined with nuclear reaction analysis measurements. Based on the comparison, the error in the XRD defined material composition becomes larger with increasing nitrogen content and layer thickness. This suggests that the dominating error source is the deteriorated crystal quality due to the nonsubstitutional incorporation of nitrogen into the crystal lattice and strain relaxation. The results reveal that the method overestimates the arsenic and nitrogen content within error margins of about 0.12 and about 0.025, respectively.

  18. A spatially encoded dose difference maximal intensity projection map for patient dose evaluation: A new first line patient quality assurance tool

    SciTech Connect

    Hu Weigang; Graff, Pierre; Boettger, Thomas; Pouliot, Jean; and others

    2011-04-15

    Purpose: To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Methods: Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generated based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. Results: The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference >3% or {<=}3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. Conclusions: A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.

  19. Oxygen isotope fractionation during spin-forbidden photolysis of CO2: Relevance to the atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.; Stark, G.; Pack, A.; de Oliveira, N.; Nahon, L.

    2015-12-01

    The oxygen isotope composition of the Martian atmosphere is of interest for comparison with recent MSL SAM results, and to understand the origin of oxygen isotope anomalies (i.e., mass-independent fractionation or MIF) in secondary minerals in SNC meteorites. Our focus here is on spin-forbidden photolysis of CO2, CO2 + hv (>167 nm) → CO(X1S) + O(3P). The spin-forbidden photolysis of CO2 is unusual in the Martian atmosphere because of its high reaction rate from the upper atmosphere (80 km) all the way to the ground. This range of altitudes spans 4 orders of magnitude in atmospheric pressure, and occurs because of the gradual decrease in the CO2 cross sections from 167 to ~200 nm. Previous laboratory photolysis experiments on CO2 in the spin-allowed and spin-forbidden regions have yielded a remarkably large MIF signature (17O excess ~ 100 permil) in O2 product for photolysis at 185 nm. Recent theoretical cross sections for CO2 isotopologues argue for a much smaller MIF signature from spin-forbidden photolysis. Here, we report the results of photolysis experiments on CO2 at the Soleil synchrotron DESIRS beamline. High purity, natural isotope abundance CO2 was placed in a 20 cm photocell with MgF2 windows. Experiments were performed at 3 wavelengths (7% FWHM): 160 nm (spin-allowed), and at 175 nm and 185 nm (spin-forbidden). After VUV exposure, aliquots of the photolyzed CO2 were sent to the Department of Isotope Geology at the University of Goettingen for O isotope analysis. The isotope results show that the spin-allowed photolysis yields normal, mass-dependent fractionation in agreement with earlier work. Photolysis at 175 nm, which is mostly spin-forbidden, yields a small positive (or zero) MIF signature. Photolysis at 185 nm, which is entirely spin-forbidden, yields O2 with a negative MIF signature (D17O ~ -8 to -10 permil). The results at 185 nm disagree in magnitude and sign with the very large positive MIF signature previously reported, and provides support

  20. The ionization structure of the Orion Nebula - Infrared line observations and models

    NASA Technical Reports Server (NTRS)

    Simpson, J. P.; Rubin, R. H.; Erickson, E. F.; Haas, M. R.

    1986-01-01

    Observations of the forbidden O III 52 and 88 microns lines and the forbidden N III 57 microns line have been made at six positions and the forbidden Ne III 36 microns line at four positions in the Orion Nebula to probe its ionization structure. The wavelength of the forbidden Ne III line was measured to be 36.009-36.017 microns. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one-component and two-component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37,000-40,000 K and log g = 4.0 and 4.5. Both the new IR observations and the visible line measurements of oxygen and nitrogen require Teff of no more than 37,000 K. However, the doubly ionized neon requires a model with Teff of at least 39,000 K, which is more consistent with that inferred from the radio flux or spectral type. These differences in Teff are not due to effects of dust on the stellar radiation field but are probably due to inaccuracies in the assumed stellar spectrum. Neon and nitrogen are approximately solar, but oxygen is half-solar in abundance. From the IR O(++) lines, it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement.

  1. Ionization structure of the Orion Nebula - infrared line observations and models

    SciTech Connect

    Simpson, J.P.; Rubin, R.H.; Erickson, E.F.; Haas, M.R.

    1986-12-01

    Observations of the forbidden O III 52 and 88 microns lines and the forbidden N III 57 microns line have been made at six positions and the forbidden Ne III 36 microns line at four positions in the Orion Nebula to probe its ionization structure. The wavelength of the forbidden Ne III line was measured to be 36.009-36.017 microns. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one-component and two-component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37,000-40,000 K and log g = 4.0 and 4.5. Both the new IR observations and the visible line measurements of oxygen and nitrogen require Teff of no more than 37,000 K. However, the doubly ionized neon requires a model with Teff of at least 39,000 K, which is more consistent with that inferred from the radio flux or spectral type. These differences in Teff are not due to effects of dust on the stellar radiation field but are probably due to inaccuracies in the assumed stellar spectrum. Neon and nitrogen are approximately solar, but oxygen is half-solar in abundance. From the IR O(++) lines, it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement. 54 references.

  2. Influence of the Light Intensity on the layers electrophotographic intensity based on As and Sb chalkogenides

    NASA Astrophysics Data System (ADS)

    Andriesh, A. M.; Buzdugan, A. I.; Shutov, S. D.

    1988-10-01

    Based on dependence of the electrographic sensitivity from the intensity of illumination by an integral and monochromatic light one show that the law of intercompatibility in thin layers based on glasses As_2S_3, alloys of As_2S_3 and Sb_2S_3 and heterostructures Sb_2S_3 and As_2S_3 is not more valid. Underlinear dependences of the lux-ampere characteristics are interpreted based on the Rose model which supposes a great density of localized states of the quasicontinuous and an exponential distribution by energy in a forbidden zone of a semiconductor. Tables 1, Bibliography 5, Illustr. 2

  3. Atomic data from the Iron project. XIII. Electron excitation rates and emissivity ratios for forbidden transitions in NI II and Fe II.

    NASA Astrophysics Data System (ADS)

    Bautista, M. A.; Pradhan, A. K.

    1996-02-01

    Electron impact excitation rates and emissivity line ratios are reported for Optical and IR transitions in Ni II and Fe II arising from low-lying even parity levels. A total of 7 LS terms were included for Ni II, which result in 17 fine structure levels and 136 transitions. Coupling effects and resonance structures considered in the present calculations result in significant differences with the earlier distorted wave calculations by Nussbaumer & Storey (1982), although a reasonable agreement is found for the line diagnostics of some strong transitions in Ni II. Whereas an extensive set of collisional data has been presented earlier by Zhang & Pradhan for Fe II in the Iron Project series, in this paper we report collision strengths for some transitions missing from their dataset using an improved eigenfunction expansion for Fe II which includes the lowest 18 LS terms giving 52 fine structure levels and 1326 transitions. The present dataset provides a useful check on several forbidden transitions in Fe II and essentially confirms the diagnostics derived from the earlier work. The present calculations were carried out on the massively parallel processor Cray T3D with a parallelized version of the Iron Project R-matrix codes; to our knowledge these are the first such calculations.

  4. Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes.

    PubMed

    Frost, Crystal L; Pollock, Steven W; Smith, Judith E; Hughes, William O H

    2014-01-01

    Symbionts can substantially affect the evolution and ecology of their hosts. The investigation of the tissue-specific distribution of symbionts (tissue tropism) can provide important insight into host-symbiont interactions. Among other things, it can help to discern the importance of specific transmission routes and potential phenotypic effects. The intracellular bacterial symbiont Wolbachia has been described as the greatest ever panzootic, due to the wide array of arthropods that it infects. Being primarily vertically transmitted, it is expected that the transmission of Wolbachia would be enhanced by focusing infection in the reproductive tissues. In social insect hosts, this tropism would logically extend to reproductive rather than sterile castes, since the latter constitute a dead-end for vertically transmission. Here, we show that Wolbachia are not focused on reproductive tissues of eusocial insects, and that non-reproductive tissues of queens and workers of the ant Acromyrmex echinatior, harbour substantial infections. In particular, the comparatively high intensities of Wolbachia in the haemolymph, fat body, and faeces, suggest potential for horizontal transmission via parasitoids and the faecal-oral route, or a role for Wolbachia modulating the immune response of this host. It may be that somatic tissues and castes are not the evolutionary dead-end for Wolbachia that is commonly thought. PMID:24988478

  5. VizieR Online Data Catalog: Collision Strengths for [Co III] Forbidden Lines - SS5 (Storey+, 2016)

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, T.

    2016-04-01

    The data set consists of 105 files which are labeled as 'OMEGAmn_CoIII.dat' where m=1,2,...,14 and n=2,3,...,15 with m

  6. VizieR Online Data Catalog: Collision Strengths for [Co II] Forbidden Lines - SS4 (Storey+, 2016)

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Zeippen, C. J.; Sochi, T.

    2016-02-01

    The data set consists of 105 files which are labeled as 'OMEGAmn_CoII.dat' where m=1,2,...,14 and n=2,3,...,15 with m

  7. VizieR Online Data Catalog: 3D model for fitting forbidden OI 6300 line (Socas-Navarro, 2015)

    NASA Astrophysics Data System (ADS)

    Socas-Navarro, H.

    2015-04-01

    modelin.mod and modelout.mod contain three-dimensional cubes each column represents the physical stratification of each pixel, with the in and the out suffix referring to the two atmospheric components coexisting with the filling factor. The code manual has details on the file format and the variables stored. (3 data files).

  8. Bright emission lines in new Seyfert galaxies

    SciTech Connect

    Afanasev, V.L.; Denisiuk, E.K.; Lipovetskii, V.A.; Shapovalova, A.I.

    1983-01-01

    Observational data are given on bright emission lines (H-alpha, H-beta, and forbidden N II, S II, and O III) for 14 recently discovered Seyfert galaxies. The investigated objects can be divided into three groups, which correspond approximately to the first (5 objects), the intermediate (4 objects), and the second (4 objects) Seyfert types. Attention is drawn to the properties of the galaxy Markaryan 1018, which has features of both the first and the second type and is distinguished by the weakness of its emission lines, which is probably due to a gas deficit. 7 references.

  9. Is it Possible to Use the Green Coronal Line Instead of X rays to Cancel an Effect of the Coronal Emissivity Deficit in Estimation of the Prominence Total Mass from Decrease of the EUV-corona Intensities?

    NASA Astrophysics Data System (ADS)

    Schwartz, P.; Heinzel, P.; Jejčič, S.; Rybák, J.; Kotrč, P.; Fárník, F.; Kupryakov, Yu. A.; Deluca, E. E.; Golub, L.; Jibben, P. R.; Anzer, U.; Tlatov, A. G..; Guseva, S. A.

    2016-04-01

    Total masses of six quiescent prominences observed from April through June 2011 were estimated using multi-spectral observations (in EUV, X-rays, Hα, and Ca II H). The method for the total mass estimation is based on the fact that the intensity of the EUV solar corona at wavelengths below 912 Å is reduced at a prominence by the absorption in resonance continua (photoionisation) of hydrogen and possibly by helium and subsequently an amount of absorbed radiation is proportional to the column density of hydrogen and helium plasma. Moreover, the deficit of the coronal emissivity in volume occupied by the cool prominence plasma also contributes to the intensity decrease. The observations in X-rays which are not absorbed by the prominence plasma, allow us to separate these two mechanisms from each other. The X-ray observations of XRT onboard the Hinode satellite made with the Al-mesh focal filter were used because the X-ray coronal radiation formed in plasma of temperatures of the order of 106 K was registered and EUV spectral lines occurring in the 193, 211 and 335 Å channels of the Atmospheric Imaging Assembly of the Solar Dynamics Observatory satellite are also formed at such temperatures. Unfortunately, the Al-mesh filter has a secondary peak of the transmittance at around 171 Å which causes a contribution from the EUV corona to the measured data of up to 11 % in the quiet corona. Thus, absorption in prominence plasma influences XRT X-ray data when using the Al-mesh filter. On the other hand, other X-ray XRT filters are more sensitive to plasma of much higher temperatures (log T of the order of 7), thus observations using these filters cannot be used together with the AIA observations in the method for mass estimations. This problem could be solved using observations in the green coronal line instead of X-rays. Absorption of the green coronal line by a prominence plasma is negligible and this line is formed at temperatures of the order of 106 K. We

  10. The origin of broad emission lines in the extragalactic giant H II region NGC 2363

    NASA Technical Reports Server (NTRS)

    Roy, Jean-Rene; Aube, Martin; Mccall, Marshall L.; Dufour, R. J.

    1992-01-01

    High signal-to-noise long-slit spectra have been obtained of the giant H II region NGC 2363 located in the dwarf SBm galaxy NGC 2366. A discovery of low-intensity broad spectral components (FWHM is approximately equal to 40 A or 2400 km/s) in the bright nebular lines H-alpha, H-beta, and forbidden O III is reported. The broad spectral components are detected over a large spatial extent (not less than 500 pc) centered on the nebula. Several mechanisms for broadening nebular lines are explored: stellar winds, Thomson scattering by hot gas, supernova remnants, and superbubble blowout. All mechanisms have problems. Superbubble blowout, which is the only known mechanism capable of accelerating interstellar gas over such a volume of space, does not appear consistent with the physical properties of the H II region NGC 2363 or with the nature of the host galaxy. It is concluded that the broad nebular lines are probably due to very high velocity gas whose origin is, at present, unknown.

  11. Gufa, a unique cultural ritual--a tale of forbidden sun and a girl

    NASA Astrophysics Data System (ADS)

    Shrestha, Pritisha

    2015-08-01

    Gufa, one of the traditional rituals has been performed in Nepal since time immemorial by an especial indigenous Newar people. Gufa, in its literal translation means cave. Just like in the cave where darkness seeps deep within its wall as the sun’s ray cannot penetrate, in the ritual of Gufa, a young girl who just had her first period is hidden in a dark room for twelve consecutive days. The girl, by strict custom and ritual performance stays in the room, protected from the sun’s light. From her female elders, she also receives informal education on family and societal values and norms.Sun, the reason behind our existence, is forbidden for the girl to observe. This very aspect of purely shunning away from the sun has become the crucial aspect for delving into the explanations offered by cultural astronomy. The present paper would argue that astronomy and astronomy education should not only focus on looking into the future, but also should go back to the ancient civilization to comprehend ritual performance our forefathers had learned from gazing the sky.After twelve days, the girl is carefully brought out to an open space where she sees the forbidden sun and symbolically marries the star via ritual. The logic behind the union after a pure restriction is to protect her sensitive young body and to ward off any harm to her reproductive parts from the sun’s harsh rays.From astronomical point, this logic behind protecting the girl from the effects of then deemed harmful rays should be studied. In ancient times, who with which instruments could have possibly fathom the life-giving sun could harness harmful solar rays. Although it looks like a primitive custom of hiding the girl immediately during her first period, there are logical social, cultural and scientific reasons for doing it even today in modern, urban and among the educated Newar households of Nepal and abroad.The paper would expound the importance of traditional ritual performance and its nexus with

  12. Second unique forbidden {beta} decay of {sup 115}In and neutrino mass

    SciTech Connect

    Dvornicky, R.; Simkovic, F.

    2011-12-16

    The measurement of the electron spectrum in {beta} decays close to the end point provides a robust direct determination of the values of neutrino masses. The most sensitive experiments use tritium and rhenium {beta} decays because these transitions have low Q value. Recent measurement with Penning traps established that the {beta} decay of {sup 115}In(9/2{sup +}) to the first excited state of {sup 115}Sn(3/2{sup +}) is a transition with the smallest Q value among {beta} decays. The decay is associated with a change of spin and parity {Delta}J{sup {pi}} = 3{sup +} ({Delta}L = 2, {Delta}S = 1) of nucleus, i.e., classified as unique second forbidden {beta} decay. Our investigation shows that in this transition electrons are predominantly emitted in d{sub 5/2} partial waves. In addition, it is found that the Kurie function associated with this transition near the end point within a good accuracy reflects a behavior the Kurie function of superallowed {beta} transitions.

  13. Ab initio calculations of the forbidden Bragg reflections energy spectra in wurtzites versus temperature.

    PubMed

    Oreshko, A P; Ovchinnikova, E N; Beutier, G; Collins, S P; Nisbet, G; Kolchinskaya, A M; Dmitrienko, V E

    2012-06-20

    Thermal-motion induced (TMI) scattering is caused by the influence of atomic displacements on electronic states in crystals and strongly depends on temperature. It corresponds to dipole-dipole resonant x-ray scattering, but is usually accompanied by dipole-quadrupole scattering. The phenomenological theory supposes the dipole-quadrupole term to be temperature independent (TI). As a result, the transformation of the energy spectra with temperature observed experimentally in ZnO and GaN corresponds to the interference between the TMI and TI terms. In the present paper the direct confirmation of this theoretical prediction is given. Ab initio molecular dynamics was used to simulate the sets of atomic sites at various temperatures followed by quantum mechanical calculation of resonant Bragg reflection energy spectra. The results of simulation are in excellent coincidence with experimental energy spectra of forbidden reflections and confirm the earlier phenomenological conjecture about the interference between the TI dipole-quadrupole and TMI dipole-dipole contributions to the resonant atomic factor. PMID:22627099

  14. Enabling forbidden processes: quantum and solvation enhancement of nitrate anion UV absorption.

    PubMed

    Svoboda, Ondřej; Kubelová, Lucie; Slavíček, Petr

    2013-12-01

    We present simulated electronic absorption spectra of isolated and solvated nitrate anion in the UV region, focusing primarily on the absorption into the first absorption band around 300 nm. This weak absorption band in this spectral region is responsible for the generation of NOx in the polar areas or OH(•) radicals in the hydrosphere. The 300 nm absorption band is symmetrically strongly forbidden and coupling of at least two vibrational modes is needed to allow the transition in the isolated nitrate anion. Further symmetry breaking is provided by solvation. In this study we model the absorption spectra of nitrate-water clusters using the combined reflection principle path integral molecular dynamics (RP-PIMD) method. Condensed phase UV spectra are modeled within a cluster-continuum model. The calculated spectra are compared with experimental bulk phase measurements and reasonable agreement is found. We also provide a benchmarking of the DFT functionals to be used for a description of the electronically excited states of solvated nitrate anion. PMID:24237180

  15. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network

    PubMed Central

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-01-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835

  16. Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network.

    PubMed

    Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies

    2014-04-01

    Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835

  17. The measurement of electron number density in helium micro hollow gas discharge using asymmetric He I lines

    NASA Astrophysics Data System (ADS)

    Jovović, J.; Šišović, N. M.

    2015-09-01

    The electron number density N e in helium micro hollow gas discharge (MHGD) is measured by means of optical emission spectroscopy (OES) techniques. The structure of MHGD is a gold-alumina-gold sandwich with 250 μm alumina thickness and 100 μm diameter hole. The electron temperature T e and gas temperature T g in the discharge is determined using the relative intensity of He I lines and {{\\text{N}}2}+≤ft({{\\text{B}}2}Σ\\text{u}+- {{X}2}Σ\\text{g}+\\right) R branch lines in the frame of BP technique, respectively. The simple procedure based on spectral line broadening theory was developed in MATLAB to generate synthetic neutral line asymmetric profiles. The synthetic profiles were compared with an experimental He I 447.1 nm and He I 492.2 nm line to obtain N e from the centre of a micro hollow gas discharge (MHGD) source in helium. The N e results were compared with N e values obtained from the forbidden-to-allowed (F/A) intensity ratio technique. The comparison confirmed higher N e determined using a F/A ratio due to large uncertainty of the method. Applying the fitting formula for a He I 492.2 nm line derived from computer simulation (CS) gives the same N e values as the one determined using the MATLAB procedure in this study. The dependence of N e on gas pressure and electric current is investigated as well.

  18. Quantum Cascade Laser Measurements of Line Intensities, N2-, O2- and Ar- Collisional Broadening Coefficients of N2O in the ν3 Band Near 4.5 µm.

    PubMed

    Es-Sebbar, Et-Touhami; Deli, Meriem; Farooq, Aamir

    2016-06-01

    This study deals with precise measurements of absolute line intensities, N2-, O2- and Ar- collisional broadening coefficients of N2O in the P-branch of the ν3 vibrational band near 4.5 µm. Collisional broadening coefficients of N2O-air are derived from the N2- and O2- broadening contributions by considering an ideal atmospheric composition. Studies are performed at room temperature for 10 rotational transitions over 2190-2202 cm(-1) spectral range using a distributed-feedback quantum cascade laser. To retrieve spectroscopic parameters for each individual transition, measured absorption line shape is simulated within Voigt and Galatry profiles. The obtained results compare well with previous experimental data available in the literature: the discrepancies being less than 4% for most of the probed transitions. The spectroscopic data reported here are very useful for the design of sensors used to monitor the abundance of N2O in earth's atmosphere. PMID:27091906

  19. Mechanism of biological effects observed in honey bees (Apis mellifera, L. ) hived under extra-high-voltage transmission lines: implications derived from bee exposure to simulated intense electric fields and shocks

    SciTech Connect

    Bindokas, V.P.; Gauger, J.R.; Greenberg, B.

    1988-01-01

    This work explores mechanisms for disturbance of honey bee colonies under a 765 kV, 60-Hz transmission line (electric (E) field = 7 kV/m) observed in previous studies. Proposed mechanisms fell into two categories: direct bee perception of enhanced in-hive E fields and perception of shock from induced currents. The adverse biological effects could be reproduced in simulations where only the worker bees were exposed to shock or to E field in elongated hive entranceways (= tunnels). We now report the results of full-scale experiments using the tunnel exposure scheme, which assesses the contribution of shock and intense E field to colony disturbance. Exposure of worker bees (1400 h) to 60-Hz E fields including 100 kV/m under moisture-free conditions within a nonconductive tunnel causes no deleterious affect on colony behavior. Exposure of bees in conductive (e.g., wet) tunnels produces bee disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. We propose that this substrate dependence of bee disturbance is the result of perception of shock from coupled body currents and enhanced current densities postulated to exist in the legs and thorax of bees on conductors. Similarly, disturbance occurs when bees are exposed to step-potential-induced currents. At 275-350 nA single bees are disturbed; at 600 nA bees begin abnormal propolization behavior; and stinging occurs at 900 nA. We conclude that biological effects seen in bee colonies under a transmission line are primarily the result of electric shock from induced hive currents. This evaluation is based on the limited effects of E-field exposure in tunnels, the observed disturbance thresholds caused by shocks in tunnels, and the ability of hives exposed under a transmission line to source currents 100-1,000 times the shock thresholds.

  20. Relaxed Intensity

    ERIC Educational Resources Information Center

    Ramey, Kyle

    2004-01-01

    Relaxed intensity refers to a professional philosophy, demeanor, and way of life. It is the key to being an effective educational leader. To be successful one must be relaxed, which means managing stress efficiently, having fun, and enjoying work. Intensity allows one to get the job done and accomplish certain tasks or goals. Educational leaders…

  1. Measurements of Band Intensities, Herman-Wallis Parameters, and Self-Broadening Line-Widths of the 30011 - 00001 and 30014 - 00001 Bands of CO2 at 6503 cm(exp -1) and 6076 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Brown, L. R.; Wattson, R. B.; Spencer, M. N.; Chackerian, C., Jr.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Rotationless band intensities and Herman-Wallis parameters are listed in HITRAN tabulations for several hundred CO2 overtone-combination bands. These parameters are based on laboratory measurements when available, and on DND calculations for the unmeasured bands. The DND calculations for the Fermi interacting nv(sub 1) + v(sub 3) polyads show the a(sub 2) Herman-Wallis parameter varying smoothly from a negative value for the first member of the polyad to a positive value for the final member. Measurements of the v(sub 1) + v(sub 3) dyad are consistent with the DND calculations for the a(sub 2) parameter, as are our recent measurements of the 4v(sub 1) + v(sub 3) pentad. However, the measurement-based values in the HITRAN tables for the 2v(sub 1) + v(sub 3) triad and the 3v(sub 1) + v(sub 3) tetrad do not support the DND calculated values for the a(sub 2) parameters. We therefore decided to make new measurements to improve some of these intensity parameters. With the McMath FTS at Kitt Peak National Observatory/National Solar Observatory we recorded several spectra of the. 4000 to 8000 cm(exp -1) region of pure CO2 at 0.011 cm(exp -1) resolution using the 6 meter White absorption cell. The signal/noise and absorbance of the first and fourth bands of the 3v(sub 1) + v(sub 3) tetrad of C-12O-16 were ideal on these spectra for measuring line intensities and broadening widths. Our selfbroadening results agree with the HITRAN parameterization, while our measurements of the rotationless band intensities are about 15% less than the HITRAN values. We find a negative value of a(sub 2) for the 30011-00001 band and a positive value for the 30014-00001 band, whereas the HITRAN values of a(sub 2) are positive for all four tetrad bands. Our a(sub 1) and a(sub 2) Herman-Wallis parameters are closer to DND calculated values than the 1992 HITRAN values for both the 30011-00001 and the 30014-00001 band.

  2. Forbidden Transitions in the Very Rich Pure Rotational Spectrum of TRANS-1-IODOPERFLUOROPROPANE

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S. Grubbs, II; Cooke, Stephen A.

    2009-06-01

    Using both chirped pulse-, and low frequency cavity-based Fourier transform spectroscopy over 700 transitions have been recorded for the title molecule for the first time. The C_1, C_2 and C_3 carbon-13 species have been observed in natural abundance allowing a substitution structure for the CCC backbone to be determined. Nearly all the transitions observed were either a-type R branches or b-type Q branches. No c-type transitions were observed. The χ_{aa}, χ_{bb}, χ_{cc} and χ_{ab} components of the iodine nuclear quadrupole coupling tensor have been determined. Of note, several forbidden transitions were also observed, such as J_{k_{-1},k_{+1}} F = 14_{4,10} 23/2 ← 12_{5,7} 21/2. In this particular case it seems that the upper energy level is nearly degenerate with a level connected to the lower energy level by a μ_a dipole component term, but the lower energy level is also nearly degenerate with a second level connected to the upper energy level, again by a μ_a dipole component term. The two intermediate energy levels are themselves connected by a μ_b dipole component term. Near degeneracies such as these, together with a large χ_{ab} value (≈ 1 GHz) mean that certain Δ J = 2 transitions become allowed. This phenomena has been previously observed for 1-iodopropane by Fujitake and Hayashi (J. Mol. Spect, 127, (1988), 112-124).

  3. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous

  4. Measurement of Oxygen A Band Line Parameters by Using Modulation Spectroscopy with Higher Harmonic Detection

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin

    1999-01-01

    Wavelength modulation spectroscopy is used to demonstrate that extremely weak absorption lines can be measured even when these lines suffer from interference from the wings of adjacent stronger lines. It is shown that the use of detection at several harmonics allows such interference to be examined clearly and conveniently. The results of experimental measurements on a weak magnetic dipole driven, spin-forbidden line in the oxygen A band, which experiences interference from the wings of a pair of adjacent lines towards the blue and red regions of line center, are presented. A comparison of the experimental results to theory is given.

  5. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  6. Identification of emission lines in the low-ionization strontium filament near Eta Carinae

    NASA Astrophysics Data System (ADS)

    Hartman, H.; Gull, T.; Johansson, S.; Smith, N.; HST Eta Carinae Treasury Project Team

    2004-05-01

    We have obtained deep spectra from 1640 to 10 100 Å with the Space Telescope Imaging Spectrograph (STIS) of the strontium filament, a largely neutral emission nebulosity lying close to the very luminous star Eta Carinae and showing an uncommon spectrum. Over 600 emission lines, both permitted and forbidden, have been identified. The majority originates from neutral or singly-ionized iron group elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Sr is the only neutron capture element detected. The presence of Sr II, numerous strong Ti II and V II lines and the dominance of Fe I over Fe II are notable discoveries. While emission lines of hydrogen, helium, and nitrogen are associable with other spatial structures at other velocities within the Homunculus, no emission lines from these elements correspond to the spatial structure or velocity of the \\ion{Sr} filament. Moreover, no identified \\ion{Sr} filament emission line requires an ionization or excitation energy above approximately 8 eV. Ionized gas extends spatially along the aperture, oriented along the polar axis of the Homunculus, and in velocity around the strontium filament. We suggest that the strontium filament is shielded from ultraviolet radiation at energies above 8 eV, but is intensely irradiated by the central star at wavelengths longward of 1500 Å. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Tables 2 and 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/419/215

  7. Central line infections - hospitals

    MedlinePlus

    ... risk is higher if you: Are in the intensive care unit (ICU) Have a weakened immune system or serious ... unless you have washed your hands. Tell your nurse if your central line: Gets dirty Is coming ...

  8. Nebular and auroral forbidden transitions of AR IV in some planetary nebulae

    NASA Astrophysics Data System (ADS)

    Czyzak, S. J.; Sonneborn, G.; Aller, L. H.; Shectman, S. A.

    1980-10-01

    Measurements of auroral and nebular type transitions in several planetary nebulae of high surface brightness show that currently available collisional cross sections and transition probabilities for 3p(3) configurations in Ar(3+) may be in error. The observed auroral/nebular line ratio is always larger than the predicted value, and the disagreement is further aggravated if auroral lines are weakened by telluric line absorption.

  9. Hyperfine Interactions of Narrow-line Trityl Radical with Solvent Molecules

    PubMed Central

    Trukhan, S.N.; Yudanov, V.F.; Tormyshev, V.M.; Rogozhnikova, O.Yu.; Trukhin, D.V.; Bowman, M.K.; Krzyaniak, M.D.; Chen, H.; Martyanov, O.N.

    2013-01-01

    The electron nuclear dipolar interactions responsible for some dynamic nuclear polarization (DNP) mechanisms also are responsible for the presence formally in CW EPR spectra of forbidden satellite lines in which both the electron spin and a nuclear spin flip. Such lines arising from 1H nuclei are easily resolved in CW EPR measurements of trityl radicals, a popular family of DNP reagents. The satellite lines overlap some of the hyperfine features from 13C in natural abundance in the trityl radical, but their intensity can be easily determined by simple simulations of the EPR spectra using the hyperfine parameters of the trityl radical. Isotopic substitution of 2H for 1H among the hydrogens of the trityl radical and/or the solvent allows the dipolar interactions from the 1H on the trityl radical and from the solvent to be determined. The intensity of the dipolar interactions, integrated over all the 1H in the system, is characterized by the traditional parameter called reff. For the so-called Finland trityl in methanol, the reff values indicate that collectively the 1H in the unlabeled solvent have a stronger integrated dipolar interaction with the unpaired electron spin of the Finland trityl than do the 1H in the radical and consequently will be a more important DNP route. Although reff has the dimensions of distance, it does not correspond to any simple physical dimension in the trityl radical because the details of the unpaired electron spin distribution and the hydrogen distribution are important in the case of trityls. PMID:23722184

  10. Theoretical insights into thermal cyclophanediene to dihydropyrene electrocyclic reactions; a comparative study of Woodward Hoffmann allowed and forbidden reactions.

    PubMed

    Saima, Bibi; Khan, Afsar; Nisa, Riffat Un; Mahmood, Tariq; Ayub, Khurshid

    2016-04-01

    The thermally allowed electrocyclic reaction syn-cyclophanediene (CPD) to dihydropyrene (DHP) was compared with the disallowed thermal electrocyclic reaction in anti CPD through density functional theory (DFT) calculations at the B3LYP/6-31 + G(d) level. Moreover, the results were also compared with the electrocyclization of 1,3,5 hexatriene to 1,3-cyclohexadiene . The Woodward-Hoffmann (W-H) allowed thermal reaction in syn CPD 11 has a calculated activation barrier of 6.23 kcal mol(-1), compared with 29 kcal mol(-1) for the electrocyclization of 1,3,5 hexatriene to 1,3-cyclohexadiene. The enhanced acceleration of electrocyclization is believed to arise from geometrically enforced spatially aligned termini of the hexatriene. Substituents at the electrocyclic terminus of cyclophanediene significantly affected (up to three fold) the activation barriers. Mono-substitution of CPD has substituent dependent acceleration or deceleration whereas di-substitution always increased the activation barrier. The activation barrier for electrocyclization in 33 is 4.44 kcal mol(-1), which is the lowest activation barrier for any thermal electrocyclic reaction. Cyclophanedienes (CPDs) substituted with electron-rich substituents cyclized with high activation barriers and vice versa, a phenomenon significantly different from electrocyclic reaction of 1,3,5-hexatriene where no such trend is traceable. Comparison of W-H allowed and forbidden electrocyclization in syn and anti CPDs, respectively, revealed quite similar electronic demand, although the transition states are different in nature. The transition state for a W-H forbidden reaction is biradicaloid, with most of the spin density at the electrocyclic termini; however, the transition state for a W-H allowed reaction has no such contribution. We also believe that this is the first study of its type, where W-H allowed and forbidden reactions are compared on a similar set of molecules, and compared for electronic effect

  11. Multidimensional effects in nonadiabatic statistical theories of spin- forbidden kinetics. A case study of 3O + CO → CO2

    DOE PAGESBeta

    Jasper, Ahren

    2015-04-14

    The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. We found that this coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin–orbit coupling, dynamicalmore » multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal(history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the 3O + CO → CO2 reaction are compared with the results of statistical theories employing one-dimensional (Landau–Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. Furthermore, the MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems

  12. Long-duration positive ionospheric storm during the December 2006 geomagnetic storm: Ionizing effect of forbidden electrons

    NASA Astrophysics Data System (ADS)

    Suvorova, A. V.; Huang, C.-M.; Tsai, L.-C.; Dmitriev, A. V.; Ratovsky, K. G.

    2015-11-01

    The magnetosphere-ionosphere coupling at low latitudes was studied during the major geomagnetic storm on 14-16 December 2006. Data from NOAA/POES satellites were used to identify the enhancements of forbidden energetic electrons (FEE). Global Ionospheric Maps and COSMIC/FORMOSAT-3 radio occultation measurements were used for studying positive ionospheric storm phases. We found that long-lasting positive ionospheric storms were concomitant with FEE enhancements. We discussed relative contributions of the FEE ionizing effect as well as other general mechanisms to the positive ionospheric storm at different phases of the geomagnetic storm.

  13. Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions

    NASA Astrophysics Data System (ADS)

    Marketin, T.; Huther, L.; Martínez-Pinedo, G.

    2016-02-01

    Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be

  14. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  15. Signatures of the non-Maxwellian κ-distributions in optically thin line spectra. I. Theory and synthetic Fe IX-XIII spectra

    NASA Astrophysics Data System (ADS)

    Dudík, J.; Del Zanna, G.; Mason, H. E.; Dzifčáková, E.

    2014-10-01

    Aims: We investigate the possibility of diagnosing the degree of departure from the Maxwellian distribution using single-ion spectra originating in astrophysical plasmas in collisional ionization equilibrium. Methods: New atomic data for excitation of Fe ix - Fe xiii are integrated under the assumption of a κ-distribution of electron energies. Diagnostic methods using lines of a single ion formed at any wavelength are explored. Such methods minimize uncertainties from the ionization and recombination rates, as well as the possible presence of non-equilibrium ionization. Approximations to the collision strengths are also investigated. Results: The calculated intensities of most of the Fe ix - Fe xiii EUV lines show consistent behaviour with κ at constant temperature. Intensities of these lines decrease with κ, with the vast majority of ratios of strong lines showing little or no sensitivity to κ. Several of the line ratios, especially involving temperature-sensitive lines, show a sensitivity to κ that is of the order of several tens of per cent, or, in the case of Fe ix, up to a factor of two. Forbidden lines in the near-ultraviolet, visible, or infrared parts of the spectrum are an exception, with smaller intensity changes or even a reverse behaviour with κ. The most conspicuous example is the Fe x 6378.26 Å red line, whose intensity incerases with κ. This line is a potentially strong indicator of departures from the Maxwellian distribution. We find that it is possible to perform density diagnostics independently of κ, with many Fe xi, Fe xii, and Fe xiii line ratios showing strong density-sensitivity and negligible sensitivity to κ and temperature. We also tested different averaging of the collision strengths. It is found that averaging over 0.01 interval in log(E [ Ryd ]) is sufficient to produce accurate distribution-averaged collision strengths Υ(T,κ) at temperatures of the ion formation in ionization equilibrium. Appendices are available in

  16. Intensive chemotherapy of metastatic colorectal cancer: weighing between safety and clinical efficacy: Evaluation of Masi G, Loupakis F, Salvatore L, et al. Bevacizumab with FOLFOXIRI (irinotecan, oxaliplatin, fluorouracil, and folinate) as first-line treatment for metastatic colorectal cancer: a phase 2 trial. Lancet Oncol 2010;11:845-52.

    PubMed

    Bruera, Gemma; Ricevuto, Enrico

    2011-06-01

    This paper evaluates a recent study whereby a four-drug combination regimen adding bevacizumab to triplet fluorouracil, oxaliplatin and irinotecan chemotherapy is described for the first-line treatment of metastatic colorectal cancer. It extends the use of intensive medical treatments combining chemotherapy and the VEGF inhibitor bevacizumab, opening new perspectives for the design of four-drug intensive regimen-associating chemotherapy and targeted agents. In the future, these four-drug intensive regimens should be further improved for efficacy:toxicity ratio and verification in randomized trials. PMID:21545334

  17. Non-Born-Oppenheimer molecular dynamics of the spin-forbidden reaction O(3P) + CO(X(1)Σ+) → CO2(X̃(1)Σg(+)).

    PubMed

    Jasper, Ahren W; Dawes, Richard

    2013-10-21

    The lowest-energy singlet (1 (1)A') and two lowest-energy triplet (1 (3)A' and 1 (3)A") electronic states of CO2 are characterized using dynamically weighted multireference configuration interaction (dw-MRCI+Q) electronic structure theory calculations extrapolated to the complete basis set (CBS) limit. Global analytic representations of the dw-MRCI+Q∕CBS singlet and triplet surfaces and of their CASSCF∕aug-cc-pVQZ spin-orbit coupling surfaces are obtained via the interpolated moving least squares (IMLS) semiautomated surface fitting method. The spin-forbidden kinetics of the title reaction is calculated using the coupled IMLS surfaces and coherent switches with decay of mixing non-Born-Oppenheimer molecular dynamics. The calculated spin-forbidden association rate coefficient (corresponding to the high pressure limit of the rate coefficient) is 7-35 times larger at 1000-5000 K than the rate coefficient used in many detailed chemical models of combustion. A dynamical analysis of the multistate trajectories is presented. The trajectory calculations reveal direct (nonstatistical) and indirect (statistical) spin-forbidden reaction mechanisms and may be used to test the suitability of transition-state-theory-like statistical methods for spin-forbidden kinetics. Specifically, we consider the appropriateness of the "double passage" approximation, of assuming statistical distributions of seam crossings, and of applications of the unified statistical model for spin-forbidden reactions. PMID:24160519

  18. EC Transmission Line Materials

    SciTech Connect

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  19. Ice lubrication for moving heavy stones to the Forbidden City in 15th- and 16th-century China

    PubMed Central

    Li, Jiang; Chen, Haosheng; Stone, Howard A.

    2013-01-01

    Lubrication plays a crucial role in reducing friction for transporting heavy objects, from moving a 60-ton statue in ancient Egypt to relocating a 15,000-ton building in modern society. Although in China spoked wheels appeared ca. 1500 B.C., in the 15th and 16th centuries sliding sledges were still used in transporting huge stones to the Forbidden City in Beijing. We show that an ice lubrication technique of water-lubricated wood-on-ice sliding was used instead of the common ancient approaches, such as wood-on-wood sliding or the use of log rollers. The technique took full advantage of the natural properties of ice, such as sufficient hardness, flatness, and low friction with a water film. This ice-assisted movement is more efficient for such heavy-load and low-speed transportation necessary for the stones of the Forbidden City. The transportation of the huge stones provides an early example of ice lubrication and complements current studies of the high-speed regime relevant to competitive ice sports. PMID:24191029

  20. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek. PMID:25961937

  1. Ne IX line G-ratio in a non-Maxwellian and anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Ferouani, A. K.; Inal, M. K.; Csanak, G.

    2013-04-01

    We have theoretically studied how the presence of a small proportion of energetic beam electrons mixed to a bulk of Maxwellian electrons in a hot plasma affects the temperature-dependent intensity ratio G = (x + y + z)/w of the helium-like triplet intercombination (x, y) and forbidden (z) lines to the singlet resonance line (w). By modelling the electron distribution function as a combination of a Maxwellian isotropic component and a monoenergetic beam component, detailed calculations of the G ratio of the Ne8 + lines have been performed for temperatures Te of the Maxwellian component and kinetic energies e0 of the beam component in the ranges 106-107 K and 1.5-25 keV, respectively. A magnetic sublevel-to-magnetic sublevel collisional-radiative model has been used for determining the populations of the upper magnetic sublevels of the four lines at an electron density below 1013 cm-3. Excitations from the ground 1s2 1S0 and metastable 1s2s 3S1 magnetic sublevels to the 1snl (n = 2-4) magnetic sublevels as well as the inner-shell ionization of the lithium-like ion in its ground level were taken into account. All basic atomic data, including the radiative transition probabilities and the collisional excitation and ionization cross sections, were computed using the flexible atomic code. It is found that the contribution of a 5% fraction of the beam component can reduce the G ratio by a factor of 30 at Te = 106 K and of 2.4 at Te = 3 × 106 K. Our calculations also indicate that the effect of directionality of the beam component on G is negligible for e0 above ˜10 keV and that for a given Te, G is practically insensitive to variations in e0 above ˜7 keV.

  2. Infrared Dual-line Hanle diagnostic of the Coronal Vector Magnetic Field

    NASA Astrophysics Data System (ADS)

    Dima, Gabriel; Kuhn, Jeffrey; Berdyugina, Svetlana

    2016-04-01

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g. ~4G at a height of 0.1Rsun above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 um line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 Rsun. Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 um forbidden line with linear polarization observations of the HeI 1.0830 um permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step towards interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.

  3. Asymptotic behavior of apparent generalized oscillator strengths for optically forbidden transitions in rare-gas atoms

    SciTech Connect

    Suzuki, T. Y.; Suzuki, H.; Ohtani, S.; Takayanagi, T.; Okada, K.

    2007-03-15

    Apparent generalized oscillator strengths (apparent GOS's) have been measured for three types of optically forbidden transitions in rare-gas atoms as functions of the squared momentum transfer K{sup 2} at small K{sup 2} range ({<=}0.4 a.u.). The apparent GOS's were deduced from the differential cross sections for excitation, which were measured by means of the electron energy-loss spectroscopy. Electron impact energies were 100, 300, and 500 eV, and the scattering angles were from 0.8 degree sign to 10 degree sign . In the case where the first Born approximation does not hold, the apparent GOS as a function of K{sup 2} (the apparent GOS function) shows characteristic dependence on the electron collision energy according to the character of the transition. In the present observation, for the np{sup 6} {sup 1}S{sub 0}{yields}np{sup 5}(n+1)p{sup '}[1/2]{sub 0} transitions, the specific behavior has been observed in the apparent GOS functions characteristic of that for the {sup 1}S{sub 0}{yields}{sup 1}S{sub 0} type transition, in which the term symbols of the initial and the final states do not change. For the np{sup 6} {sup 1}S{sub 0}{yields}np{sup 5}(n+1)p[5/2]{sub 2,3}; [3/2]{sub 1,2} transitions, a certain new type of deviations from the first Born approximation, which is interpreted to be characteristic of the {sup 1}S{sub 0}{yields}{sup 1}D{sub 2} type transition, have been observed in the apparent GOS functions with some modifications depending on respective atomic species. For the 5p{sup 6} {sup 1}S{sub 0}{yields}5p{sup 5}5d [7/2]{sub 3}; [5/2]{sub 3} transitions in Xe, it is observed that the apparent GOS curves have no impact energy dependence for impact energies from 100 eV to 500 eV, which suggests that the first Born approximation is valid for such low impact energies and the curves agree with the Bethe-GOS. It is found that the GOS's varies in proportional to K{sup 4} at small K{sup 2} region ({<=}0.1 a.u.), which suggests that the octupole moment is

  4. Spectroscopic survey of emission-line stars - I. B[e] stars

    NASA Astrophysics Data System (ADS)

    Aret, A.; Kraus, M.; Šlechta, M.

    2016-02-01

    Emission-line stars are typically surrounded by dense circumstellar material, often in form of rings or disc-like structures. Line emission from forbidden transitions trace a diversity of density and temperature regimes. Of particular interest are the forbidden lines of [O I] λλ6300, 6364 and [Ca II] λλ7291, 7324. They arise in complementary, high-density environments, such as the inner-disc regions around B[e] supergiants. To study physical conditions traced by these lines and to investigate how common they are, we initiated a survey of emission-line stars. Here, we focus on a sample of nine B[e] stars in different evolutionary phases. Emission of the [O I] lines is one of the characteristics of B[e] stars. We find that four of the objects display [Ca II] line emission: for the B[e] supergiants V1478 Cyg and 3 Pup, the kinematics obtained from the [O I] and [Ca II] line profiles agrees with a Keplerian rotating disc scenario; the forbidden lines of the compact planetary nebula OY Gem display no kinematical broadening beyond spectral resolution; the luminous blue variable candidate V1429 Aql shows no [O I] lines, but the profile of its [Ca II] lines suggests that the emission originates in its hot, ionized circumbinary disc. As none of the B[e] stars of lower mass displays [Ca II] line emission, we conclude that these lines are more likely observable in massive stars with dense discs, supporting and strengthening the suggestion that their appearance requires high-density environments.

  5. Resonance Scattering of Fe XVII X-Ray and EUV Lines

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Saba, J. L. R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    still persists, even though the agreement of the presently calculated optically thin F(15.02)/F(15.26) ratio with the experimental results of Brown et al. and Laming et al. has improved. Some of the remaining discrepancy is still thought to be the effect of opacity, which is consistent with expected physical conditions for solar sources. EUV intensity ratios are also calculated and compared with observations. Level populations and intensity ratios are calculated, as a function of column density of Fe XVII, in the slab and cylindrical geometries. As found previously, the predicted intensities for the resonance lines at 15.02 and 15.26 Angstroms exhibit initial increases in flux relative to the forbidden line at 17.10 Angstroms and the resonance line at 16.78 Angstroms as optical thickness increases. The same behavior is predicted for the lines at 12.262 and 12.122 Angstroms. Predicted intensities for some of the allowed EUV lines are also affected by opacity.

  6. A study of diagnostic x-ray lines in heliumlike neon using an electron beam ion trap

    SciTech Connect

    Wargelin, B.J.

    1993-10-01

    Heliumlike ions play an extremely important role in X-ray astrophysics because of their emissivity and because the relative intensities of their emission lines can be used to infer physical characteristics of X-ray emitting plasmas, including temperature, electron density, and ionization balance. In order to properly apply these diagnostics, accurate atomic data are required, including cross sections for collisional excitation and ionization, radiative rates, and the wavelengths and strengths of satellite lines. Although theoretical atomic models have been created to estimate many of the rates and cross sections involved, very few experimental results are available for comparison with theoretical predictions. This thesis describes an experimental study of heliumlike neon using an electron beam ion trap, a device specifically designed to study X-ray emission from highly charged ions. Using a low-energy X-ray spectrometer designed and built for this experiment, electron impact excitation cross sections and dielectronic satellite strengths were measured for all significant n = 2{yields}1 emission lines in He-like and Li-like Ne over a range of energy extending from well below the direct excitation threshold of the lines to over fourteen times the threshold energy. The cross section for innershell ionization of Li-like Ne, which excites the He-like forbidden line, was also measured. In addition, the radiative and collisional depopulation rates of the metastable ls2s {sup 3}S{sub 1}, state, which form the basis of the He-like Ne density diagnostic, were determined. Experimental results were generally in agreement with theoretical predictions, although some significant differences were noted, particularly for the wavelengths and resonance strengths of dielectronic satellites.

  7. Relative intensity calculations for nitrous oxide.

    NASA Technical Reports Server (NTRS)

    Young, L. D. G.

    1972-01-01

    A tabulation of calculated rotational line intensities, relative to the integrated intensity of a vibration-rotation band, is given for Sigma-Sigma, Pi-Sigma, Sigma-Pi, Pi-Pi, and Delta-Pi transitions of nitrous oxide. These calculations were made for temperatures of 250 K and 300 K. A summary of band-intensity measurements is also presented.

  8. The forbidden S II electron density distribution over the planetary nebula NGC 7009

    NASA Astrophysics Data System (ADS)

    Meaburn, J.; Walsh, J. R.

    1981-08-01

    Electron densities have been measured from [S ii] 6716/6731 A line ratios for a grid of points over the surface of the planetary nebula NGC 7009 using a photon counting detector. The radial dependence of the electron density has been modelled, and the relationship provides possible evidence that the planetary nebula shell is driven by a strong stellar wind

  9. Bottom Line, Bottom Line

    ERIC Educational Resources Information Center

    Trachtenberg, Stephen Joel

    2008-01-01

    Unlike most businesses, universities are both capital-and labor-intensive; yet contrary to standard business practice, they wring the most use and value out of their plants and payrolls for fewer than seven months a year. University presidents may appear to be very much like chief executive officers, but their powers to change course--or even a…

  10. Spectroscopically Accurate Line Lists for Application in Sulphur Chemistry

    NASA Astrophysics Data System (ADS)

    Underwood, D. S.; Azzam, A. A. A.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    Monitoring sulphur chemistry is thought to be of great importance for exoplanets. Doing this requires detailed knowledge of the spectroscopic properties of sulphur containing molecules such as hydrogen sulphide (H2S) [1], sulphur dioxide (SO2), and sulphur trioxide (SO3). Each of these molecules can be found in terrestrial environments, produced in volcano emissions on Earth, and analysis of their spectroscopic data can prove useful to the characterisation of exoplanets, as well as the study of planets in our own solar system, with both having a possible presence on Venus. A complete, high temperature list of line positions and intensities for H32 2 S is presented. The DVR3D program suite is used to calculate the bound ro-vibration energy levels, wavefunctions, and dipole transition intensities using Radau coordinates. The calculations are based on a newly determined, spectroscopically refined potential energy surface (PES) and a new, high accuracy, ab initio dipole moment surface (DMS). Tests show that the PES enables us to calculate the line positions accurately and the DMS gives satisfactory results for line intensities. Comparisons with experiment as well as with previous theoretical spectra will be presented. The results of this study will form an important addition to the databases which are considered as sources of information for space applications; especially, in analysing the spectra of extrasolar planets, and remote sensing studies for Venus and Earth, as well as laboratory investigations and pollution studies. An ab initio line list for SO3 was previously computed using the variational nuclear motion program TROVE [2], and was suitable for modelling room temperature SO3 spectra. The calculations considered transitions in the region of 0-4000 cm-1 with rotational states up to J = 85, and includes 174,674,257 transitions. A list of 10,878 experimental transitions had relative intensities placed on an absolute scale, and were provided in a form suitable

  11. Forbidden Band Gaps in the Spin-Wave Spectrum of a Two-Dimensional Bicomponent Magnonic Crystal

    NASA Astrophysics Data System (ADS)

    Tacchi, S.; Duerr, G.; Klos, J. W.; Madami, M.; Neusser, S.; Gubbiotti, G.; Carlotti, G.; Krawczyk, M.; Grundler, D.

    2012-09-01

    The spin-wave band structure of a two-dimensional bicomponent magnonic crystal, consisting of Co nanodisks partially embedded in a Permalloy thin film, is experimentally investigated along a high-symmetry direction by Brillouin light scattering. The eigenfrequencies and scattering cross sections are interpreted using plane wave method calculations and micromagnetic simulations. At the boundary of both the first and the second Brillouin zones, we measure a forbidden frequency gap whose width depends on the magnetic contrast between the constituent materials. The modes above and below the gap exhibit resonant spin-precession amplitudes in the complementary regions of periodically varying magnetic parameters. Our findings are key to advance both the physics and the technology of band gap engineering in magnonics.

  12. Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal.

    PubMed

    Tacchi, S; Duerr, G; Klos, J W; Madami, M; Neusser, S; Gubbiotti, G; Carlotti, G; Krawczyk, M; Grundler, D

    2012-09-28

    The spin-wave band structure of a two-dimensional bicomponent magnonic crystal, consisting of Co nanodisks partially embedded in a Permalloy thin film, is experimentally investigated along a high-symmetry direction by Brillouin light scattering. The eigenfrequencies and scattering cross sections are interpreted using plane wave method calculations and micromagnetic simulations. At the boundary of both the first and the second Brillouin zones, we measure a forbidden frequency gap whose width depends on the magnetic contrast between the constituent materials. The modes above and below the gap exhibit resonant spin-precession amplitudes in the complementary regions of periodically varying magnetic parameters. Our findings are key to advance both the physics and the technology of band gap engineering in magnonics. PMID:23030117

  13. Ab initio calculations of forbidden transition amplitudes and lifetimes of the low-lying states in V{sup 4+}

    SciTech Connect

    Dixit, Gopal; Majumder, Sonjoy; Sahoo, Bijaya K.; Chaudhuri, Rajat K.

    2007-10-15

    We report electric quadrupole (E2) and magnetic dipole (M1) transition amplitudes of the first few low-lying states of quadruply ionized vanadium (V{sup 4+}), which are important in various experimental applications and astrophysics. To our knowledge, most of these presented results are determined for the first time in the literature. A relativistic multireference Fock-space coupled-cluster theory with single (S), double (D), and partial triple (T) excitations is employed to compute the forbidden transition probabilities and lifetimes of the low-lying states in V{sup 4+}. Estimations of different correlation effects arising through the above formalism have been highlighted by investigating core and valence electron excitations. A long lifetime is found for the first excited 3d {sup 2}D{sub 5/2} state, which suggests that V{sup 4+} may be one of the useful candidates for many important studies.

  14. Shell-model study of the 4th- and 6th-forbidden β-decay branches of Ca48

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Horoi, M.; Suhonen, J.

    2014-03-01

    The highly forbidden β- decay of Ca48 is reexamined by performing shell-model calculations with the GXPF1A effective interaction. We examine the three available decay branches to the lowest 6+, 5+, and 4+ states of 48Sc, and extract a theoretical half-life of T1/2β=5.2-1.3+1.7×1020gA-2 yr for the β- decay, where gA is the value of the axial-vector coupling constant. The current half-life estimate suggests stronger competition between the single-β-decay and double-β-decay branches of Ca48 than previously expected on theoretical grounds.

  15. Impact of the first-forbidden β decay on the production of A ∼ 195 r-process peak

    NASA Astrophysics Data System (ADS)

    Nishimura, Nobuya; Podolyák, Zsolt; Fang, Dong-Liang; Suzuki, Toshio

    2016-05-01

    We investigated the effects of first-forbidden transitions in β decays on the production of the r-process A ∼ 195 peak. The theoretical calculated β-decay rates with β-delayed neutron emission were examined using several astrophysical conditions. As the FF decay is dominant in N ∼ 126 neutron-rich nuclei, their inclusion shortens β-decay lifetimes and shifts the abundance peak towards higher masses. Additionally, the inclusion of the β-delayed neutron emission results in a wider abundance peak, and smoothens the mass distribution by removing the odd-even mass staggering. The effects are commonly seen in the results of all adopted astrophysical models. Nevertheless there are quantitative differences, indicating that remaining uncertainty in the determination of half-lives for N = 126 nuclei is still significant in order to determine the production of the r-process peak.

  16. CORONAL EMISSION LINES AS THERMOMETERS

    SciTech Connect

    Judge, Philip G.

    2010-01-10

    Coronal emission-line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

  17. Kbeta satellite and forbidden transitions in elements with 12 <=<= Z <=<= 30 induced by electron impact

    SciTech Connect

    Limandri, Silvina P.; Trincavelli, Jorge C.; Carreras, Alejo C.; Bonetto, Rita D.

    2010-01-15

    The emission of x rays in the Kbeta region of Mg, Al, Si, Sc, Ti, Cr, Fe, Ni, and Zn induced by electron bombardment was studied by means of wavelength dispersive spectroscopy. The lines studied were: the Kbeta{sup III} and Kbeta{sup IV} spectator hole transitions, the 1s->3s quadrupole decay, the Kbeta{sub 2} and Kbeta{sub 5} diagram transitions, the structures related to radiative Auger processes, and the Kbeta{sup '} and Kbeta{sup ''} lines. Relative energies and probabilities were determined through a careful spectral processing based on a parameter refinement method. The results obtained were compared with other experimental and theoretical determinations when available.

  18. Dipole-forbidden atomic transitions induced by superintense x-ray laser fields

    NASA Astrophysics Data System (ADS)

    Simonsen, Aleksander Skjerlie; Førre, Morten

    2016-06-01

    A hydrogen atom, initially prepared in the 2 s and/or 2 p (m =±1 ) states, is assumed irradiated by 0.8 keV (1.5 nm) photons in pulses of 1 -250 fs duration and intensities in the range 1020 to 1023W /cm2 . Solving the corresponding time-dependent Schrödinger equation from first principles, we show that the ionization and excitation dynamics of the laser-atom system is strongly influenced by interactions beyond the electric dipole approximation. A beyond-dipole two-photon Raman-like transition between the 2 s and 2 p (m =±1 ) states is found to completely dominate the underlying laser-matter interaction. It turns out that the large difference in the ionization rates of the 2 s and 2 p (m =±1 ) states is important in this context, effectively leading to a symmetry breaking in the corresponding (beyond-dipole) bound-bound dynamics with the result that a net population transfer between the states occurs throughout the laser-matter interaction period. Varying the x-ray exposure time as well as the laser intensity, we probe the phenomenon as the bound wave packet oscillates between having 2 s and 2 p (m =±1 ) character, eventually giving rise to a Rabi-like oscillation pattern in the populations.

  19. Emission Lines and the High Energy Continuum

    NASA Technical Reports Server (NTRS)

    Green, Paul

    1998-01-01

    Quasars show many striking relationships between line and continuum radiation whose origins remain a mystery. FeII, [OIII], Hbeta, and HeII emission line properties correlate with high energy continuum properties such as the relative strength of X-ray emission, and X-ray continuum slope. At the same time, the shape of the high energy continuum may vary with luminosity. An important tool for studying global properties of Quasi Stellar Objects (QSOs) is the co-addition of data for samples of QSOS. We use this to show that X-ray bright (XB) QSOs show stronger emission lines in general, but particularly from the narrow line region. The difference in the [OIII]/Hbeta ratio is particularly striking, and even more so when blended FeII emission is properly subtracted. Weaker narrow forbidden lines ([OII] and NeV) are enhanced by factors of 2 to 3 in both UV and optical XB composite spectra. The physical origin of these diverse and interrelated correlations has yet to be determined. Unfortunately, many physically informative trends intrinsic to QSOs may be masked by dispersion in the data due to either low signal-to-noise or variability. An important tool for studying global properties of QSOs is the co-addition of data for samples of QSOS. We use this to show that X-ray bright (XB) QSOs show stronger emission lines in general, but particularly from the narrow line region. The difference in the [OIII]/Hbeta ratio is particularly striking, and even more so when blended Fell emission is properly subtracted. Weaker narrow forbidden lines ([OII] and NeV) are enhanced by factors of 2 to 3 in both UV and optical XB composite spectra. We describe a large-scale effort now underway to probe these effects in large samples, using both data and analysis as homogeneous as possible. Using an HST FOS Atlas of QSO spectra, with primary comparison to ROSAT PSPC spectral constraints, we will model the Big Blue Bump, its relationship to luminosity and QSO type, and we will analyze and

  20. Characterization of solar cells for space applications. Volume 12: Electrical characteristics of Solarex BSF, 2-ohm-cm, 50-micron solar cells (1978 pilot line) as a function of intensity, temperature, and irradiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1980-01-01

    Electrical characteristics of Solarex back-surface-field, 2-ohm-cm, 50-micron N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity, temperature, and irradiation.

  1. Fully relativistic study of forbidden transitions of OII : Electron density diagnosis for planetary nebulas

    NASA Astrophysics Data System (ADS)

    Chen, Shaohao; Qing, Bo; Li, Jiaming

    2007-10-01

    Using the multiconfiguration Dirac-Fock method, including the quantum electrodynamics corrections, especially with the Breit interactions, we calculate the electric quadrupole (E2) and magnetic dipole (M1) transition rates for the two transitions D5/2,3/2o2→S3/2o4 of OII . We show systematically that the correlation effects owing to core electron excitations and the Breit interactions are vitally important for the transition rates. We present a benchmark for the intensity ratio between the two transitions in the limit of high electron density in planetary nebulas, i.e., r(∞)=0.345-0.014+0.028 , which is in good agreement with modern astronomical observations.

  2. Fully relativistic study of forbidden transitions of O II: Electron density diagnosis for planetary nebulas

    SciTech Connect

    Chen Shaohao; Qing Bo; Li Jiaming

    2007-10-15

    Using the multiconfiguration Dirac-Fock method, including the quantum electrodynamics corrections, especially with the Breit interactions, we calculate the electric quadrupole (E2) and magnetic dipole (M1) transition rates for the two transitions {sup 2}D{sub 5/2,3/2}{sup o}{yields}{sup 4}S{sub 3/2}{sup o} of O II. We show systematically that the correlation effects owing to core electron excitations and the Breit interactions are vitally important for the transition rates. We present a benchmark for the intensity ratio between the two transitions in the limit of high electron density in planetary nebulas, i.e., r({infinity})=0.345{sub -0.014}{sup +0.028}, which is in good agreement with modern astronomical observations.

  3. Recent results at the N = Z line with GASP and EUROBALL

    SciTech Connect

    Farnea, E.

    2004-02-27

    Valuable information on the validity of the isospin symmetry was obtained by studying nuclei close to the N = Z line with the GASP and EUROBALL {gamma}-ray spectrometres coupled to ancillary devices. Here a few selected results on the study of mirror nuclei are presented, together with an estimate of the isospin mixing probability through the measurement of a forbidden E1 transition in 64Ge.

  4. Line identification and lifetime measurements in the XUV and soft X-ray regions

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1979-01-01

    A summary of the data acquired concerning line identification and lifetime measurements in the xuv and soft X-ray regions for a variety of both resonance transitions and forbidden transitions in ions of astrophysical interest is provided. Particular attention is called to a few papers which appeared in the Astrophysical Journal. These are of special relevance to specific astrophysical data needs. The many experiments completed in areas related to but somewhat outside the confines of the project title are mentioned.

  5. Absolute intensities and foreign gas broadening coefficients of the 11(sub 1,10) from 11(sub 2,10) and 18(sub 0,18) from 18(sub 1,18) lines in the nu(sub 7) band of C2H4

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; Sirota, J. Marcos

    1993-01-01

    Absolute intensities and foreign gas broadening coefficients of the 18(sub 0,18) from 18(sub 1,18) and 11(sub 1,10) from 11(sub 2,10) transitions in the nu(sub 7) band of C2H4 near 948/cm have been measured at a spectral resolution of approximately 5 x 10(exp -4)/cm using tunable diode laser spectrometry. Ar, He, N2, O2 were used as the broadening gases. In order to determine the temperature dependence of the broadening coefficient, data were obtained at temperatures ranging from 150 to 296 K. The absolute intensity of the 5(sub 0,5) from 5(sub 1,5) transition was also found at 296 K. A band strength of 330 +/- 10/sq cm/atm was obtained from weighted averages of the individual line intensities and a rigid asymmetric top calculation.

  6. Forbidden games: the construction of sexuality and sexual pleasure by BDSM 'players'.

    PubMed

    Faccio, Elena; Casini, Claudia; Cipolletta, Sabrina

    2014-01-01

    This study aims to explore personal meanings related to the constructs 'sexuality' and 'sexual pleasure' in people who choose to write in forums and blogs about their own experience with Bondage and Discipline, dominance and submission, and Sadism and Masochism (BDSM). We carried out semi-structured online interviews with 343 people, of whom 50 (24 women and 26 men) claimed to practise or to have practised BDSM, in order to investigate participants' definitions of their sexual experiences and the construction of sexuality and sexual pleasure from their personal point of view and from the perspective of the opposite sex. Data were analysed according to Grounded Theory methodology. Questions concerning the 'normality' or the 'deviance' of participants' sexual practices were reflected in the answers of the majority of BDSM practitioners. Sexuality was construed as a 'game' with specific rules, and 'pleasure' was associated with extremely intense experiences. The relationship between the partners was considered fundamental, as it gave meaning to the sexual practice. Both dominant and dominated roles were found to be tightly linked to the possession and management of power between partners, which either confirms or reverses the social construction of traditional male and female roles. PMID:24828811

  7. THE PREVALENCE OF NARROW OPTICAL Fe II EMISSION LINES IN TYPE 1 ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Dong Xiaobo; Wang Jianguo; Wang Tinggui; Wang Huiyuan; Zhou Hongyan; Ho, Luis C.; Fan Xiaohui

    2010-10-01

    From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate-statistically for the first time-that narrow optical Fe II emission lines, both permitted and forbidden, are prevalent in type 1 AGNs. Remarkably, these optical lines are completely absent in type 2 AGNs, across a wide luminosity range, from Seyfert 2 galaxies to type 2 quasars. We suggest that the narrow Fe II-emitting gas is confined to a disk-like geometry in the innermost regions of the narrow-line region on physical scales smaller than the obscuring torus.

  8. Collision strengths for nebular [O III] optical and infrared lines

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, Taha; Badnell, N. R.

    2014-07-01

    We present electron collision strengths and their thermally averaged values for the nebular forbidden lines of the astronomically abundant doubly ionized oxygen ion, O2+, in an intermediate coupling scheme using the Breit-Pauli relativistic terms as implemented in an R-matrix atomic scattering code. We use several atomic targets for the R-matrix scattering calculations including one with 72 atomic terms. We also compare with new results obtained using the intermediate coupling frame transformation method. We find spectroscopically significant differences against a recent Breit-Pauli calculation for the excitation of the [O III] λ4363 transition but confirm the results of earlier calculations.

  9. Excitation of knotted vortex lines in matter waves

    NASA Astrophysics Data System (ADS)

    Maucher, F.; Gardiner, S. A.; Hughes, I. G.

    2016-06-01

    We study the creation of knotted ultracold matter waves in Bose–Einstein condensates via coherent two-photon Raman transitions with a Λ level configuration. The Raman transition allows an indirect transfer of atoms from the internal state | a> to the target state | b> via an excited state | e> , that would be otherwise dipole-forbidden. This setup enables us to imprint three-dimensional knotted vortex lines embedded in the probe field to the density in the target state. We elaborate on experimental feasibility as well as on subsequent dynamics of the matter wave.

  10. Microwave spectral line listing

    NASA Technical Reports Server (NTRS)

    White, W. F., Jr.

    1975-01-01

    The frequency, intensity, and identification of 9615 spectral lines belonging to 75 molecules are tabulated in order of increasing frequency. Measurements for all 75 molecules were made in the frequency range from 26500 to 40000 MHz by a computer controlled spectrometer. Measurements were also made in the 18000 to 26500 MHz range for some of the molecules.

  11. Analysis of the variability of the luminous emission line star MWC 314

    NASA Astrophysics Data System (ADS)

    Muratorio, G.; Rossi, C.; Friedjung, M.

    2008-08-01

    Context: We investigated the surroundings of MWC 314 in the framework of the study of hot emission line star environments using the SAC method. This star is either a B[e] supergiant or a luminous blue variable and appears to be extremely luminous and massive. Aims: We determine the structure and physical conditions of the emitting region and study the possible variations. Methods: We measured the absorption and emission line radial velocities and the emission line fluxes on high-resolution spectra obtained with Aurelie at the 1.52 m OHP telescope in July 1998, with Elodie at the 1.93 m OHP telescope at various epochs, and with echelle spectrographs of the Asiago and Loiano observatories (Italy) in 2006. We used the statistical approach of the self-absorption curve method (SAC) to derive physical parameters of the line-emitting region. Results: We detected drastic variations of the photospheric absorption line radial velocities with time, while the emission line velocities appear to be stable. The Cr II, Ti II, and Fe II emission lines have a complex structure. They are double-peaked, and each of these two 60 km s-1 separated components, is composed of a narrow and a broad component, while the [Fe II] line components are narrower. The fit of the various components of the Fe II lines to a SAC curve indicates that their intensities are affected by some self absorption. We obtained a Boltzmann-type population law whose mean excitation temperature is 6500-1000+1500 K for the narrow component lower and upper levels. We obtained a higher Boltzmann-type population law of 10 500-2000+3000 K for the forbidden transition upper levels. Conclusions: From the absorption lines we confirm the binarity for MWC 314. The periodicity has nevertheless to be improved with a higher sampling frequency. Our results from the emission lines are consistent with line formation in a rotating disk around a star. The typical minimum radius of the line emitting region obtained from the SAC study

  12. Cell Lines

    PubMed Central

    Cherbas, Lucy; Gong, Lei

    2014-01-01

    We review the properties and uses of cell lines in Drosophila research, emphasizing the variety of lines, the large body of genomic and transcriptional data available for many of the lines, and the variety of ways the lines have been used to provide tools for and insights into the developmental, molecular, and cell biology of Drosophila and mammals. PMID:24434506

  13. The photophysics of pyranthione: a theoretical investigation focussing on spin-forbidden transitions

    NASA Astrophysics Data System (ADS)

    Tatchen, Jörg; Waletzke, Mirko; Marian, Christel M.; Grimme, Stefan

    2001-03-01

    In this paper we present the results of a theoretical study on the electronic structure and the photophysics of low-lying singlet and triplet states of 4H-pyran-4-thione. In a first step, Russel-Saunders coupled wavefunctions and spin-independent properties were determined by means of a recently proposed combination of density functional theory and multi-reference configuration interaction methods. Spin-orbit (SO) coupling was subsequently included at the level of quasi-degenerate perturbation theory. For the evaluation of spin-dependent properties a non-empirical effective one-electron SO mean-field Hamiltonian was employed. Calculated excitation energies, dipole moments, fine-structure splittings, and transition moments compare very well with experimental data. For the T 1 state we find that phosphorescence and non-radiative decay via intersystem crossing to the S 0 state are concurrent processes occurring at approximately equal rates of the order of 10 4 s-1. The T z→S 0 radiative transition gains its intensity from two sources: (1) Direct SO coupling of the S 0 and T 1 levels combined with the large dipole moment difference between these states and (2) the strong S 2→S 0 spin-allowed transition. The computed SO splitting in the T 1 state of D=-18 cm-1 is mainly due to interaction with the closeby T 2 state. A rapid depletion of the S 1 state via intersystem crossing to the T 1 state can be mediated by the T 2 state, if spin relaxation is fast within the triplet levels.

  14. Near-threshold search for the isospin-forbidden d+darrow^4He+π^0 reaction.

    NASA Astrophysics Data System (ADS)

    Stephenson, E. J.; Allgower, C.; Bacher, A. D.; Doskow, J.; Lavelle, C.; Nann, H.; Olmsted, J.; Rinckel, T.; Pickar, M. A.; Pancella, P. V.; Smith, A.; Spinka, H. M.; Rapaport, J.

    2002-10-01

    We will discuss our search at 228.5 MeV for the isospin-forbidden ddarrow^4Heπ^0 reaction, which constrains charge symmetry breaking contributions from the down-up quark mass difference and electromagnetic effects. The forward-going ^4He nuclei, which lie inside a θ_lab=1.2^rc cone, are separated from the deuteron beam in a 6^rc bending magnet and captured and identified in a magnetic channel. Separation of ^4Heπ^0 events depends on a reconstruction of the pion missing mass from channel position and time of flight in order to distinquish them from double radiative capture ^4Heγγ events. Two detector systems observe d+d elastic scattering at θ_c.m.=9.1^rc and 90^rc as a monitor of the luminosity ( ˜ 2× 10^31 /cm^2/s) given by the circulating IUCF Cooler beam and a cold D2 jet target. The d+d cross sections are scaled from p+d elastic cross sections by observing both during a run with a molecular HD target. Following two d+d commissioning runs, production began in early June 2002 and is planned to continue in July.

  15. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition

    PubMed Central

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-01-01

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices. PMID:25758749

  16. Spectroscopy of the forbidden 1S0 -->3P0 transition on ultra-cold ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Dareau, Alexandre; Scholl, Matthias; Beaufils, Quentin; Döring, Daniel; Beugnon, Jérôme; Gerbier, Fabrice

    2015-05-01

    Cold atoms in optical lattices are often considered a rich playground for emulating condensed matter systems, since they make it possible to engineer many-body Hamiltonians with tunable parameters. However, one missing feature is the ability to emulate orbital magnetism. Recent proposals for simulating orbital magnetism with neutral atoms rely on a state-dependent optical lattice with laser-driven hopping. Ytterbium, with its long lived metastable state (3P0), is a well-suited candidate for the implementation of such schemes. Addressing the forbidden transition between ytterbium ground (1S0) and meta-stable (3P0) states is experimentally challenging, and requires the use of a laser with stability close to the standards of atomic clocks. I will report on the building of a ultra-narrow laser locked on a high-finesse low-expansion cavity. I will then show how the absolute frequency of the cavity modes can be calibrated by performing high-resolution spectroscopy on molecular iodine, allowing us perform Doppler spectroscopy on the 1S0 -->3P0 transition of an ytterbium BEC.

  17. Direct Excitation of the Forbidden Clock Transition in Neutral {sup 174}Yb Atoms Confined to an Optical Lattice

    SciTech Connect

    Barber, Z.W.; Hoyt, C.W.; Oates, C.W.; Hollberg, L.; Taichenachev, A.V.; Yudin, V.I.

    2006-03-03

    We report direct single-laser excitation of the strictly forbidden (6s{sup 2}){sup 1}S{sub 0}{r_reversible}(6s6p){sup 3}P{sub 0} clock transition in {sup 174}Yb atoms confined to a 1D optical lattice. A small ({approx}1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FWHM) with high contrast were observed, demonstrating a resonance quality factor of 2.6x10{sup 13}. The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35{+-}0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks and can create new clock possibilities in other alkaline-earth-like atoms such as Mg and Ca.

  18. Fast-timing study of the l -forbidden 1 /2+→3 /2+ M 1 transition in 129Sn

    NASA Astrophysics Data System (ADS)

    Licǎ, R.; Mach, H.; Fraile, L. M.; Gargano, A.; Borge, M. J. G.; Mǎrginean, N.; Sotty, C. O.; Vedia, V.; Andreyev, A. N.; Benzoni, G.; Bomans, P.; Borcea, R.; Coraggio, L.; Costache, C.; De Witte, H.; Flavigny, F.; Fynbo, H.; Gaffney, L. P.; Greenlees, P. T.; Harkness-Brennan, L. J.; Huyse, M.; Ibáñez, P.; Judson, D. S.; Konki, J.; Korgul, A.; Kröll, T.; Kurcewicz, J.; Lalkovski, S.; Lazarus, I.; Lund, M. V.; Madurga, M.; Mǎrginean, R.; Marroquín, I.; Mihai, C.; Mihai, R. E.; Morales, A. I.; Nácher, E.; Negret, A.; Page, R. D.; Pakarinen, J.; Pascu, S.; Paziy, V.; Perea, A.; Pérez-Liva, M.; Picado, E.; Pucknell, V.; Rapisarda, E.; Rahkila, P.; Rotaru, F.; Swartz, J. A.; Tengblad, O.; Van Duppen, P.; Vidal, M.; Wadsworth, R.; Walters, W. B.; Warr, N.; IDS Collaboration

    2016-04-01

    The levels in 129Sn populated from the β- decay of 129In isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1 /2+ state and the 3 /2+ ground state in 129Sn are expected to have configurations dominated by the neutron s1 /2 (l =0 ) and d3 /2 (l =2 ) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l -forbidden M 1 transition. Using fast-timing spectroscopy we have measured the half-life of the 1 /2+ 315.3-keV state, T1 /2= 19(10) ps, which corresponds to a moderately fast M 1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T1 /2 value by the renormalization of the M 1 effective operator for neutron holes.

  19. Biologically inspired band-edge laser action from semiconductor with dipole-forbidden band-gap transition

    NASA Astrophysics Data System (ADS)

    Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang

    2015-03-01

    A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices.

  20. Tracking defect type and strain relaxation in patterned Ge/Si(001) islands by x-ray forbidden reflection analysis

    SciTech Connect

    Richard, M.-I.; Malachias, A.; Rouviere, J.-L.; Renaud, G.; Yoon, T.-S.; Holmstroem, E.; Nordlund, K.; Xie, Y.-H.; Favre-Nicolin, V.; Holy, V.; Metzger, T.-H.

    2011-08-15

    Plastic relaxation and formation of defects are crucial issues in the epitaxial growth of nanoparticles and thin films. Indeed, defects generate local stress in the crystalline lattice, which affects their surroundings and may lead to undesired effects such as reduced charge-carrier lifetime or nonradiative recombinations. Here, we use a nondestructive method based on x-ray diffuse scattering close to forbidden reflections to identify the defect types with a high sensitivity and quantify their average size and strain field. Combined with transmission electron microscopy, it offers opportunities to track both ensemble average and single defects inside three-dimensional structures. These techniques have been applied to partially embedded and high-Ge-content (x{sub Ge}=0.87{+-}0.06) dots selectively grown in 20-nm-sized pits on Si(001) surfaces through openings in a SiO{sub 2} template. The stress in the 20-nm-wide Ge islands is relaxed not only by interfacial dislocations but also by microtwins and/or stacking faults located at the interface, proving the importance of {l_brace}111{r_brace} planes and twinning in the relaxation process of nanometer-size Ge dots.

  1. Spectroscopic Investigation of the Carotenoid Deoxyperidinin: Direct Observation of the Forbidden S0 → S1 Transition.

    PubMed

    Greco, Jordan A; LaFountain, Amy M; Kinashi, Naoto; Shinada, Tetsuro; Sakaguchi, Kazuhiko; Katsumura, Shigeo; Magdaong, Nikki Cecil M; Niedzwiedzki, Dariusz M; Birge, Robert R; Frank, Harry A

    2016-03-17

    This paper presents a spectroscopic investigation of deoxyperidinin, a synthetic peridinin analogue in which the carbonyl functional group in peridinin was replaced by a nonconjugated methylene group. Steady-state and ultrafast time-resolved absorption and fluorescence spectroscopic experiments are carried out on deoxyperidinin in n-hexane and acetonitrile at room temperature and in 2-methyltetrahydrofuran at 77 K. The spectra of deoxyperidinin have higher vibronic resolution compared to those of peridinin. The higher resolution is due to a substantial reduction in both molecular conformational disorder and inhomogeneous broadening of the spectra of deoxyperidinin compared to peridinin. Features in the steady-state absorption spectrum of deoxyperidinin that are not evident in the spectrum of peridinin are unambiguously assigned to the forbidden S0 (1(1)Ag(-)) → S1 (2(1)Ag(-)) absorption transition. The characteristics of both the steady-state and time-resolved spectra are interpreted using EOM-CCSD, SAC-CI, and MNDO-PSDCI quantum computational formalisms that provided a theoretical framework for understanding the photophysical properties of the molecules. PMID:26907520

  2. Half-life systematics across the N=126 shell closure: role of first-forbidden transitions in the β decay of heavy neutron-rich nuclei.

    PubMed

    Morales, A I; Benlliure, J; Kurtukián-Nieto, T; Schmidt, K-H; Verma, S; Regan, P H; Podolyák, Z; Górska, M; Pietri, S; Kumar, R; Casarejos, E; Al-Dahan, N; Algora, A; Alkhomashi, N; Álvarez-Pol, H; Benzoni, G; Blazhev, A; Boutachkov, P; Bruce, A M; Cáceres, L S; Cullen, I J; Denis Bacelar, A M; Doornenbal, P; Estévez-Aguado, M E; Farrelly, G; Fujita, Y; Garnsworthy, A B; Gelletly, W; Gerl, J; Grebosz, J; Hoischen, R; Kojouharov, I; Kurz, N; Lalkovski, S; Liu, Z; Mihai, C; Molina, F; Mücher, D; Rubio, B; Shaffner, H; Steer, S J; Tamii, A; Tashenov, S; Valiente-Dobón, J J; Walker, P M; Wollersheim, H J; Woods, P J

    2014-07-11

    This Letter reports on a systematic study of β-decay half-lives of neutron-rich nuclei around doubly magic (208)Pb. The lifetimes of the 126-neutron shell isotone (204)Pt and the neighboring (200-202)Ir, (203)Pt, (204)Au are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden β strength reveal significant deviations for most of the nuclei with N<126. In contrast, theories including a fully microscopic treatment of allowed and first-forbidden transitions reproduce more satisfactorily the trend in the measured half-lives for the nuclei in this region, where the r-process pathway passes through during β decay back to stability. PMID:25062171

  3. Characterization of a chiral phase in an achiral bent-core liquid crystal by polarization studies of resonant x-ray forbidden reflections

    SciTech Connect

    Ponsinet, V.; Pindak, R.; Barois, P.; Pan, L.; Wang, S.; Huang, C.C.; Wang, S.T.; Baumeister, U. and Weissflog, W.

    2011-07-15

    The chiral antiferroelectric structure of an achiral bent-core liquid crystal is characterized by resonant x-ray scattering at chlorine K edge. The 'forbidden' reflections resulting from the glide or screw symmetry elements are restored by the anisotropy of the tensor structure factor, which we calculate for two possible structural models. A careful analysis of the polarization states of the restored 'forbidden' reflections enables an unambiguous identification of a chiral structure (i.e., the so-called anticlinic, antiferroelectric smectic-C or Sm-C{sub A}P{sub A}) coexisting with the achiral synclinic antiferroelectric smectic-C or Sm-C{sub S}P{sub A}. The method proves to be quite powerful as it identifies the chiral structure within coexisting phases despite an imperfect orientation of the sample. The volume fraction of the chiral phase and the distribution of alignment are extracted from the data.

  4. Theoretical studies of nonadiabatic and spin-forbidden processes: Investigations of the reactions and spectroscopy of radical species relevant to combustion reactions and diagnostics

    SciTech Connect

    Yarkony, D.R.

    1993-12-01

    This research program focusses on studies of spin-forbidden and electronically nonadiabatic processes involving radical species relevant to combustion reactions and combustion diagnostics. To study the electronic structure aspects of these processes a unique and powerful system of electronic structure programs, developed over the past nine years, the BROOKLYN codes, is employed. These programs enable the authors to address questions basic to the understanding of elementary combustion processes not tractable using more standard quantum chemistry codes.

  5. Submillimeter and far-infrared line observations of M17 SW - A clumpy molecular cloud penetrated by ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Stutzki, J.; Genzel, R.; Harris, A. I.; Stacey, G. J.; Jaffe, D. T.

    1988-01-01

    Millimeter, submillimeter, and far-IR spectroscopic observations of the M17 SW star formation region are reported. Strong forbidden C II 158 micron and CO J = 7 - 6 line emission arises in an H II region/molecular cloud interface of several pc thickness. Weaker forbidden C II emission appears to be extended over 15 pc throughout the molecular cloud. CO J = 14 - 13 and forbidden O I 145 micron spectra indicate high temperatures and densities for both molecular and atomic gas in the interface. The results require the molecular cloud near the interface to be clumpy or filamentary. The extended forbidden C II emission throughout the molecular cloud has a level around 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. The high gas temperature of molecular material in the UV-illuminated interface region suggests that CO self-shielding and heating of CO by photoelectrons are important.

  6. Collinearity constraints for on-shell massless particle three-point functions, and implications for allowed-forbidden n +1 -point functions

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2016-03-01

    A simple collinearity argument implies that the massless particle three-point function of helicities h1,h2,h3 with corresponding real-valued four-momenta k1,k2,k3 taken as all incoming or all outgoing (i.e., k1+k2+k3=0 ) vanishes by helicity conservation unless h1+h2+h3=0 . When any one particle with four-momentum k is off mass shell, this constraint no longer applies; a forbidden amplitude with h1+h2+h3≠0 on shell can be nonzero off shell, but it vanishes proportionally to k2 as k approaches mass shell. When an on-shell forbidden amplitude is coupled to an allowed n -point amplitude to form an n +1 -point function, this k2 factor in the forbidden amplitude cancels the k2 in the propagator, leading to an n +1 -point function that has no pole at k2=0 . We relate our results for real-valued four-momenta to the corresponding selection rules that have been derived in the on-shell literature for complexified four-momenta.

  7. Intensity correlation of ionizing background at high redshifts

    NASA Technical Reports Server (NTRS)

    Zuo, Lin

    1993-01-01

    Intensity correlation of ionizing background at high redshifts is discussed. The intensity correlation function xi(sub j) and the absorption line equivalent width correlation xi(sub 1/W) are discussed.

  8. A robust line extraction and matching algorithm

    NASA Technical Reports Server (NTRS)

    Hussien, B.; Sridhar, B.

    1993-01-01

    This paper presents an algorithm for extracting straight lines from intensity mages and describes a line matching algorithm for solving the line correspondence problem. The line extraction process begins by detecting edges in the intensity image. Next, line support regions are formed where image points (pixels) have similar gradient orientation. A line fitting algorithm is then used to fit a line to the points in the line support region based on a least means square fitting algorithm. Finally, line segments are linked together to form the final lines by using an adaptive line linking method; this results in much stronger lines and a smaller set of lines to be considered. Once the lines are detected in a sequence of images, a line matching algorithm is used to match lines in one image to the lines in the other image. The images are either from a motion or stereo sequence. The matched lines may then be used with the sensor position and orientation data to estimate range to objects corresponding to the lines. We present results based on applying the line extraction and line matching algorithms to a synthetic image and an outdoor scene captured by a camera on a helicopter.

  9. Measure Lines

    ERIC Educational Resources Information Center

    Crissman, Sally

    2011-01-01

    One tool for enhancing students' work with data in the science classroom is the measure line. As a coteacher and curriculum developer for The Inquiry Project, the author has seen how measure lines--a number line in which the numbers refer to units of measure--help students not only represent data but also analyze it in ways that generate…

  10. Catalytic mechanism of cofactor-free dioxygenases and how they circumvent spin-forbidden oxygenation of their substrates.

    PubMed

    Hernández-Ortega, Aitor; Quesne, Matthew G; Bui, Soi; Heyes, Derren J; Steiner, Roberto A; Scrutton, Nigel S; de Visser, Sam P

    2015-06-17

    Dioxygenases catalyze a diverse range of biological reactions by incorporating molecular oxygen into organic substrates. Typically, they use transition metals or organic cofactors for catalysis. Bacterial 1-H-3-hydroxy-4-oxoquinaldine-2,4-dioxygenase (HOD) catalyzes the spin-forbidden transfer of dioxygen to its N-heteroaromatic substrate in the absence of any cofactor. We combined kinetics, spectroscopic and computational approaches to establish a novel reaction mechanism. The present work gives insight into the rate limiting steps in the reaction mechanism, the effect of first-coordination sphere amino acids as well as electron-donating/electron-withdrawing substituents on the substrate. We highlight the role of active site residues Ser101/Trp160/His251 and their involvement in the reaction mechanism. The work shows, for the first time, that the reaction is initiated by triplet dioxygen and its binding to deprotonated substrate and only thereafter a spin state crossing to the singlet spin state occurs. As revealed by steady- and transient-state kinetics the oxygen-dependent steps are rate-limiting, whereas Trp160 and His251 are essential residues for catalysis and contribute to substrate positioning and activation, respectively. Computational modeling further confirms the experimental observations and rationalizes the electron transfer pathways, and the effect of substrate and substrate binding pocket residues. Finally, we make a direct comparison with iron-based dioxygenases and explain the mechanistic and electronic differences with cofactor-free dioxygenases. Our multidisciplinary study confirms that the oxygenation reaction can take place in absence of any cofactor by a unique mechanism in which the specially designed fit-for-purpose active-site architecture modulates substrate reactivity toward oxygen. PMID:25988744

  11. Effects of ion-neutral collisions on Alfven waves: The presence of forbidden zone and heavy damping zone

    SciTech Connect

    Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.

    2013-03-15

    Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.

  12. Effect of tin ions on enhancing the intensity of narrow luminescence line at 311 nm of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Gandhi, Y.; Rajanikanth, P.; Sundara Rao, M.; Ravi Kumar, V.; Veeraiah, N.; Piasecki, M.

    2016-07-01

    This study is mainly focused on enriching the UVB 311 narrow emission band of Gd3+ ions in Li2Osbnd PbOsbnd P2O5 glasses doped with 1.0 mol% of Gd2O3 and mixed with different concentrations of SnO2 (0-7.0 mol%). The emission spectra SnO2 free glasses exhibited intense narrow UVB band at 311 nm due to 6P7/2 → 8S7/2 transition of Gd3+ ions when excited at 273 nm. The intensity of this band is found to be enhanced nearly four times when the glasses are mixed with 3.0 mol% of SnO2. The reasons for this enhancement have been explored in the light of energy transfer from Sn4+ to Gd3+ ions with the help of rate equations. The declustering of Gd3+ ions (that reduce cross relaxation losses) by tin ions is also found to the other reason for such enrichment. The 311 nm radiation is an efficient in the treatment of various skin diseases and currently it is one of the most desirable and commonly utilised UVB in the construction of phototherapy devices.

  13. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    SciTech Connect

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R. E-mail: pastoriza@ufrgs.b

    2010-12-10

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at {lambda} = 23 {mu}m and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T {approx} 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 {mu}m) and the forbidden emission lines of [Si II] 34.8 {mu}m, [Ar II] 6.9 {mu}m, [S III] 18.7 and 33.4 {mu}m were detected in all the starbursts and in {approx}80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 {mu}m, 11.3 {mu}m, and 12.7 {mu}m, we find that they are present in {approx}80% of the Seyfert 1, while only half of this type of activity show the 6.2 {mu}m and 8.6 {mu}m PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 {mu}m/7.7 {mu}m x 11.3 {mu}m/7.7 {mu}m) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules ({>=}180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 {mu}m) and the neutral PAH bands (8.6 {mu}m and 11.3 {mu}m) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 {mu}m and 11.3 {mu}m bands is nearly constant with the increase of [Ne III]15.5 {mu}m/[Ne II] 12.8 {mu}m, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 {mu}m) or neutral (11.3 {mu}m) bands, may be destroyed

  14. Band gap control in a line-defect magnonic crystal waveguide

    SciTech Connect

    Morozova, M. A. Grishin, S. V.; Sadovnikov, A. V.; Romanenko, D. V.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2015-12-14

    We report on the experimental observation of the spin wave spectrum control in a line-defect magnonic crystal (MC) waveguide. We demonstrate the possibility to control the forbidden frequency band (band gap) for spin waves tuning the line-defect width. In particular, this frequency may be greater or lower than the one of 1D MC waveguide without line-defect. By means of space-resolved Brillouin light scattering technique, we study the localization of magnetization amplitude in the line-defect area. We show that the length of this localization region depends on the line-defect width. These results agree well with theoretical calculations of spin wave spectrum using the proposed model of two coupled magnonic crystal waveguides. The proposed simple geometry of MC with line-defect can be used as a logic and multiplexing block for application in the novel field of magnonic devices.

  15. Chimpanzees share forbidden fruit.

    PubMed

    Hockings, Kimberley J; Humle, Tatyana; Anderson, James R; Biro, Dora; Sousa, Claudia; Ohashi, Gaku; Matsuzawa, Tetsuro

    2007-01-01

    The sharing of wild plant foods is infrequent in chimpanzees, but in chimpanzee communities that engage in hunting, meat is frequently used as a 'social tool' for nurturing alliances and social bonds. Here we report the only recorded example of regular sharing of plant foods by unrelated, non-provisioned wild chimpanzees, and the contexts in which these sharing behaviours occur. From direct observations, adult chimpanzees at Bossou (Republic of Guinea, West Africa) very rarely transferred wild plant foods. In contrast, they shared cultivated plant foods much more frequently (58 out of 59 food sharing events). Sharing primarily consists of adult males allowing reproductively cycling females to take food that they possess. We propose that hypotheses focussing on 'food-for-sex and -grooming' and 'showing-off' strategies plausibly account for observed sharing behaviours. A changing human-dominated landscape presents chimpanzees with fresh challenges, and our observations suggest that crop-raiding provides adult male chimpanzees at Bossou with highly desirable food commodities that may be traded for other currencies. PMID:17849015

  16. Gaia-ESO Survey: Gas dynamics in the Carina nebula through optical emission lines

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Bonito, R.; Magrini, L.; Prisinzano, L.; Mapelli, M.; Micela, G.; Kalari, V.; Maíz Apellániz, J.; Gilmore, G.; Randich, S.; Alfaro, E.; Flaccomio, E.; Koposov, S.; Klutsch, A.; Lanzafame, A. C.; Pancino, E.; Sacco, G. G.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Worley, C.; Zaggia, S.; Zwitter, T.; Dorda, R.

    2016-06-01

    Aims: We present observations from the Gaia-ESO Survey in the lines of Hα, [N II], [S II], and He I of nebular emission in the central part of the Carina nebula. Methods: We investigate the properties of the two already known kinematic components (approaching and receding), which account for the bulk of emission. Moreover, we investigate the features of the much less known low-intensity high-velocity (absolute RV >50 km s-1) gas emission. Results: We show that gas giving rise to Hα and He I emission is dynamically well correlated with but not identical to gas seen through forbidden-line emission. Gas temperatures are derived from line-width ratios, and densities from [S II] doublet ratios. The spatial variation of N ionization is also studied, and found to differ between the approaching and receding components. The main result is that the bulk of the emission lines in the central part of Carina arise from several distinct shell-like expanding regions, the most evident found around η Car, the Trumpler 14 core, and the star WR25. These "shells" are non-spherical and show distortions probably caused by collisions with other shells or colder, higher-density gas. Some of them are also partially obscured by foreground dust lanes, while very little dust is found in their interior. Preferential directions, parallel to the dark dust lanes, are found in the shell geometries and physical properties, probably related to strong density gradients in the studied region. We also find evidence that the ionizing flux emerging from η Car and the surrounding Homunculus nebula varies with polar angle. The high-velocity components in the wings of Hα are found to arise from expanding dust reflecting the η Car spectrum. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey (program 188.B-3002).Full Tables 1-3 are only available at the CDS via anonymous ftp to http

  17. Multidimensional effects in nonadiabatic statistical theories of spin- forbidden kinetics. A case study of 3O + CO → CO2

    SciTech Connect

    Jasper, Ahren

    2015-04-14

    The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. We found that this coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin–orbit coupling, dynamical multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal(history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the 3O + CO → CO2 reaction are compared with the results of statistical theories employing one-dimensional (Landau–Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. Furthermore, the MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for

  18. Multidimensional Effects in Nonadiabatic Statistical Theories of Spin-Forbidden Kinetics: A Case Study of (3)O + CO → CO2.

    PubMed

    Jasper, Ahren W

    2015-07-16

    The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. This coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin-orbit coupling, dynamical multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal (history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the (3)O + CO → CO2 reaction are compared with the results of statistical theories employing one-dimensional (Landau-Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. The MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems. The error in statistical

  19. Theoretical study of N (4S, 2D)+CH3 (2A2″) reaction mechanisms revisited: The importance of spin-forbidden and roaming dynamics processes

    NASA Astrophysics Data System (ADS)

    Chiba, Sachie; Yoshida, Fuka; Takayanagi, Toshiyuki

    2014-03-01

    Extensive electronic structure calculations have been performed to understand the reaction mechanisms of the N(4S, 2D) + CH3 reaction using ab initio multi-configurational methods. We have located a total of seven structures for the minimum on the seam of singlet/triplet potential energy crossing. According to our computational results, we conclude that triplet/singlet spin-forbidden processes are playing an essential role in this reaction in high contrast with previous theoretical studies. In addition, it is likely that singlet HCN + H2 products are formed through so-called ‘roaming' dynamics.

  20. Gamma-ray lines and one-loop continuum from s-channel dark matter annihilations

    NASA Astrophysics Data System (ADS)

    Jackson, C. B.; Servant, Géraldine; Shaughnessy, Gabe; Tait, Tim M. P.; Taoso, Marco

    2013-07-01

    The era of indirect detection searches for dark matter has begun, with the sensitivities of gamma-ray detectors now approaching the parameter space relevant for weakly interacting massive particles. In particular, gamma ray lines would be smoking gun signatures of dark matter annihilation, although they are typically suppressed compared to the continuum. In this paper, we pay particular attention to the 1-loop continuum generated together with the gamma-ray lines and investigate under which conditions a dark matter model can naturally lead to a line signal that is relatively enhanced. We study generic classes of models in which DM is a fermion that annihilates through an s-channel mediator which is either a vector or scalar and identify the coupling and mass conditions under which large line signals occur. We focus on the ``forbidden channel mechanism" advocated a few years ago in the ``Higgs in space" scenario for which tree level annihilation is kinematically forbidden today. Detailed calculations of all 1-loop annihilation channels are provided. We single out very simple models with a large line over continuum ratio and present general predictions for a large range of WIMP masses that are relevant not only for Fermi and Hess II but also for the next generation of telescopes such as CTA and Gamma-400. Constraints from the relic abundance, direct detection and collider bounds are also discussed.