Sample records for force field ff

  1. ff14IDPs Force Field Improving the Conformation Sampling of Intrinsically Disordered Proteins

    PubMed Central

    Song, Dong; Wang, Wei; Ye, Wei; Ji, Dingjue; Luo, Ray; Chen, Hai-Feng

    2017-01-01

    Intrinsically disordered proteins (IDPs) are proteins which lack of specific tertiary structure and unable to fold spontaneously without the partner binding. These IDPs are found to associate with various diseases, such as diabetes, cancer, and neurodegenerative diseases. However, current widely used force fields, such as ff99SB, ff14SB, OPLS/AA, and Charmm27 are insufficient in sampling the conformational characters of IDPs. In this study, the CMAP method was used to correct the φ/ψ distributions of disorder-promoting amino acids. The simulation results show that the force filed parameters (ff14IDPs) can improve the φ/ψ distributions of the disorder-promoting amino acids, with RMSD less than 0.10% relative to the benchmark data of IDPs. Further test suggests that the calculated secondary chemical shifts under ff14IDPs force field are in quantitative agreement with the data of NMR experiment for five tested systems. In addition, the simulation results show that ff14IDPs can still be used to model structural proteins, such as tested lysozyme and ubiquitin, with better performance in coil regions than the original general Amber force field ff14SB. These findings confirm that the newly developed Amber ff14IDPs force field is a robust model for improving the conformation sampling of IDPs. PMID:27484738

  2. Validation and Application of the ReaxFF Reactive Force Field to Hydrocarbon Oxidation Kinetics

    DTIC Science & Technology

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0278 Validation and application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics Adrianus Van Duin...application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0355 5c.  PROGRAM...Chenoweth Dec14 Validation and application of the ReaxFF reactive force field to hydrocarbon oxidation kinetics DISTRIBUTION A: Distribution approved for

  3. Optimizing Protein-Protein van der Waals Interactions for the AMBER ff9x/ff12 Force Field.

    PubMed

    Chapman, Dail E; Steck, Jonathan K; Nerenberg, Paul S

    2014-01-14

    The quality of molecular dynamics (MD) simulations relies heavily on the accuracy of the underlying force field. In recent years, considerable effort has been put into developing more accurate dihedral angle potentials for MD force fields, but relatively little work has focused on the nonbonded parameters, many of which are two decades old. In this work, we assess the accuracy of protein-protein van der Waals interactions in the AMBER ff9x/ff12 force field. Across a test set of 44 neat organic liquids containing the moieties present in proteins, we find root-mean-square (RMS) errors of 1.26 kcal/mol in enthalpy of vaporization and 0.36 g/cm(3) in liquid densities. We then optimize the van der Waals radii and well depths for all of the relevant atom types using these observables, which lowers the RMS errors in enthalpy of vaporization and liquid density of our validation set to 0.59 kcal/mol (53% reduction) and 0.019 g/cm(3) (46% reduction), respectively. Limitations in our parameter optimization were evident for certain atom types, however, and we discuss the implications of these observations for future force field development.

  4. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  5. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing

    PubMed Central

    Vanommeslaeghe, K.; MacKerell, A. D.

    2012-01-01

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088

  6. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins

    PubMed Central

    2015-01-01

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard–Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields. PMID:25328495

  7. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    PubMed

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-06-12

    Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.

  8. Automated Training of ReaxFF Reactive Force Fields for Energetics of Enzymatic Reactions.

    PubMed

    Trnka, Tomáš; Tvaroška, Igor; Koča, Jaroslav

    2018-01-09

    Computational studies of the reaction mechanisms of various enzymes are nowadays based almost exclusively on hybrid QM/MM models. Unfortunately, the success of this approach strongly depends on the selection of the QM region, and computational cost is a crucial limiting factor. An interesting alternative is offered by empirical reactive molecular force fields, especially the ReaxFF potential developed by van Duin and co-workers. However, even though an initial parametrization of ReaxFF for biomolecules already exists, it does not provide the desired level of accuracy. We have conducted a thorough refitting of the ReaxFF force field to improve the description of reaction energetics. To minimize the human effort required, we propose a fully automated approach to generate an extensive training set comprised of thousands of different geometries and molecular fragments starting from a few model molecules. Electrostatic parameters were optimized with QM electrostatic potentials as the main target quantity, avoiding excessive dependence on the choice of reference atomic charges and improving robustness and transferability. The remaining force field parameters were optimized using the VD-CMA-ES variant of the CMA-ES optimization algorithm. This method is able to optimize hundreds of parameters simultaneously with unprecedented speed and reliability. The resulting force field was validated on a real enzymatic system, ppGalNAcT2 glycosyltransferase. The new force field offers excellent qualitative agreement with the reference QM/MM reaction energy profile, matches the relative energies of intermediate and product minima almost exactly, and reduces the overestimation of transition state energies by 27-48% compared with the previous parametrization.

  9. Benchmark of ReaxFF force field for subcritical and supercritical water.

    PubMed

    Manzano, Hegoi; Zhang, Weiwei; Raju, Muralikrishna; Dolado, Jorge S; López-Arbeloa, Iñigo; van Duin, Adri C T

    2018-06-21

    Water in the subcritical and supercritical states has remarkable properties that make it an excellent solvent for oxidation of hazardous chemicals, waste separation, and green synthesis. Molecular simulations are a valuable complement to experiments in order to understand and improve the relevant sub- and super-critical reaction mechanisms. Since water molecules under these conditions can act not only as a solvent but also as a reactant, dissociative force fields are especially interesting to investigate these processes. In this work, we evaluate the capacity of the ReaxFF force field to reproduce the microstructure, hydrogen bonding, dielectric constant, diffusion, and proton transfer of sub- and super-critical water. Our results indicate that ReaxFF is able to simulate water properties in these states in very good quantitative agreement with the existing experimental data, with the exception of the static dielectric constant that is reproduced only qualitatively.

  10. Improved side-chain torsion potentials for the Amber ff99SB protein force field

    PubMed Central

    Lindorff-Larsen, Kresten; Piana, Stefano; Palmo, Kim; Maragakis, Paul; Klepeis, John L; Dror, Ron O; Shaw, David E

    2010-01-01

    Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20408171

  11. The ReaxFF reactive force-field: Development, applications, and future directions

    DOE PAGES

    Senftle, Thomas; Hong, Sungwook; Islam, Md Mahbubul; ...

    2016-03-04

    The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFFmore » method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. As a result, this article provides an overview of the development, application, and future directions of the ReaxFF method.« less

  12. Evaluating the Performance of the ff99SB Force Field Based on NMR Scalar Coupling Data

    PubMed Central

    Wickstrom, Lauren; Okur, Asim; Simmerling, Carlos

    2009-01-01

    Abstract Force-field validation is essential for the identification of weaknesses in current models and the development of more accurate models of biomolecules. NMR coupling and relaxation methods have been used to effectively diagnose the strengths and weaknesses of many existing force fields. Studies using the ff99SB force field have shown excellent agreement between experimental and calculated order parameters and residual dipolar calculations. However, recent studies have suggested that ff99SB demonstrates poor agreement with J-coupling constants for short polyalanines. We performed extensive replica-exchange molecular-dynamics simulations on Ala3 and Ala5 in TIP3P and TIP4P-Ew solvent models. Our results suggest that the performance of ff99SB is among the best of currently available models. In addition, scalar coupling constants derived from simulations in the TIP4P-Ew model show a slight improvement over those obtained using the TIP3P model. Despite the overall excellent agreement, the data suggest areas for possible improvement. PMID:19651043

  13. QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input.

    PubMed

    Vanduyfhuys, Louis; Vandenbrande, Steven; Verstraelen, Toon; Schmid, Rochus; Waroquier, Michel; Van Speybroeck, Veronique

    2015-05-15

    QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.

    PubMed

    Zheng, Mo; Li, Xiaoxia; Guo, Li

    2013-04-01

    Reactive force field (ReaxFF), a recent and novel bond order potential, allows for reactive molecular dynamics (ReaxFF MD) simulations for modeling larger and more complex molecular systems involving chemical reactions when compared with computation intensive quantum mechanical methods. However, ReaxFF MD can be approximately 10-50 times slower than classical MD due to its explicit modeling of bond forming and breaking, the dynamic charge equilibration at each time-step, and its one order smaller time-step than the classical MD, all of which pose significant computational challenges in simulation capability to reach spatio-temporal scales of nanometers and nanoseconds. The very recent advances of graphics processing unit (GPU) provide not only highly favorable performance for GPU enabled MD programs compared with CPU implementations but also an opportunity to manage with the computing power and memory demanding nature imposed on computer hardware by ReaxFF MD. In this paper, we present the algorithms of GMD-Reax, the first GPU enabled ReaxFF MD program with significantly improved performance surpassing CPU implementations on desktop workstations. The performance of GMD-Reax has been benchmarked on a PC equipped with a NVIDIA C2050 GPU for coal pyrolysis simulation systems with atoms ranging from 1378 to 27,283. GMD-Reax achieved speedups as high as 12 times faster than Duin et al.'s FORTRAN codes in Lammps on 8 CPU cores and 6 times faster than the Lammps' C codes based on PuReMD in terms of the simulation time per time-step averaged over 100 steps. GMD-Reax could be used as a new and efficient computational tool for exploiting very complex molecular reactions via ReaxFF MD simulation on desktop workstations. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Thermodynamic properties of hydrogen dissociation reaction from the small system method and reactive force field ReaxFF

    NASA Astrophysics Data System (ADS)

    Trinh, Thuat T.; Meling, Nora; Bedeaux, Dick; Kjelstrup, Signe

    2017-03-01

    We present thermodynamic properties of the H2 dissociation reaction by means of the Small System Method (SSM) using Reactive Force Field (ReaxFF) simulations. Thermodynamic correction factors, partial molar enthalpies and heat capacities of the reactant and product were obtained in the high temperature range; up to 30,000 K. The results obtained from the ReaxFF potential agree well with previous results obtained with a three body potential (TBP). This indicates that the popular reactive force field method can be combined well with the newly developed SSM in realistic simulations of chemical reactions. The approach may be useful in the study of heat and mass transport in combination with chemical reactions.

  16. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    PubMed

    Müller, Julian; Hartke, Bernd

    2016-08-09

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach.

  17. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    PubMed Central

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  18. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    NASA Astrophysics Data System (ADS)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  19. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition.

    PubMed

    Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P

    2014-02-27

    We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.

  20. Transferable Reactive Force Fields: Extensions of ReaxFF-lg to Nitromethane.

    PubMed

    Larentzos, James P; Rice, Betsy M

    2017-03-09

    Transferable ReaxFF-lg models of nitromethane that predict a variety of material properties over a wide range of thermodynamic states are obtained by screening a library of ∼6600 potentials that were previously optimized through the Multiple Objective Evolutionary Strategies (MOES) approach using a training set that included information for other energetic materials composed of carbon, hydrogen, nitrogen, and oxygen. Models that best match experimental nitromethane lattice constants at 4.2 K and 1 atm are evaluated for transferability to high-pressure states at room temperature and are shown to better predict various liquid- and solid-phase structural, thermodynamic, and transport properties as compared to the existing ReaxFF and ReaxFF-lg parametrizations. Although demonstrated for an energetic material, the library of ReaxFF-lg models is supplied to the scientific community to enable new research explorations of complex reactive phenomena in a variety of materials research applications.

  1. Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field.

    PubMed

    Yun, Kang-Seop; Pai, Sung Jin; Yeo, Byung Chul; Lee, Kwang-Ryeol; Kim, Sun-Jae; Han, Sang Soo

    2017-07-06

    We propose the ReaxFF reactive force field as a simulation protocol for predicting the evolution of solid-electrolyte interphase (SEI) components such as gases (C 2 H 4 , CO, CO 2 , CH 4 , and C 2 H 6 ), and inorganic (Li 2 CO 3 , Li 2 O, and LiF) and organic (ROLi and ROCO 2 Li: R = -CH 3 or -C 2 H 5 ) products that are generated by the chemical reactions between the anodes and liquid electrolytes. ReaxFF was developed from ab initio results, and a molecular dynamics simulation with ReaxFF realized the prediction of SEI formation under real experimental conditions and with a reasonable computational cost. We report the effects on SEI formation of different kinds of Si anodes (pristine Si and SiO x ), of the different types and compositions of various carbonate electrolytes, and of the additives. From the results, we expect that ReaxFF will be very useful for the development of novel electrolytes or additives and for further advances in Li-ion battery technology.

  2. Rapid parameterization of small molecules using the Force Field Toolkit.

    PubMed

    Mayne, Christopher G; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C

    2013-12-15

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, for example, General Amber Force Field and CHARMM General Force Field, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, setup multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). Copyright © 2013 Wiley Periodicals, Inc.

  3. Links between the charge model and bonded parameter force constants in biomolecular force fields

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Debiec, Karl T.; Case, David A.; Chong, Lillian T.

    2017-10-01

    The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α -helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α -helices in simulations of a β -hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop

  4. Accurate van der Waals force field for gas adsorption in porous materials.

    PubMed

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Force field dependent solution properties of glycine oligomers

    PubMed Central

    Drake, Justin A.

    2015-01-01

    Molecular simulations can be used to study disordered polypeptide systems and to generate hypotheses on the underlying structural and thermodynamic mechanisms that govern their function. As the number of disordered protein systems investigated with simulations increase, it is important to understand how particular force fields affect the structural properties of disordered polypeptides in solution. To this end, we performed a comparative structural analysis of Gly3 and Gly10 in aqueous solution from all-atom, microsecond MD simulations using the CHARMM 27 (C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly3 and Gly10 were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety of structural metrics (e.g. end-to-end distance, radius of gyration, dihedral angle distributions), we characterize the distribution of oligoglycine conformers for each force field and show that each sample conformation space differently, yielding considerably different structural tendencies of the same oligoglycine model in solution. Notably, we find that C36 samples more extended oligoglycine structures than both C27 and ff12SB. PMID:25952623

  6. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.

    PubMed

    Cheng, Tao; Jaramillo-Botero, Andrés; Goddard, William A; Sun, Huai

    2014-07-02

    We develop here the methodology for dramatically accelerating the ReaxFF reactive force field based reactive molecular dynamics (RMD) simulations through use of the bond boost concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination, and overcoordination concepts of ReaxFF ensure that the BB correctly adapts to the instantaneous configurations in the reactive system to automatically identify the reactions appropriate to receive the bond boost. We refer to this as adaptive Accelerated ReaxFF Reactive Dynamics or aARRDyn. To validate the aARRDyn methodology, we determined the detailed sequence of reactions for hydrogen combustion with and without the BB. We validate that the kinetics and reaction mechanisms (that is the detailed sequences of reactive intermediates and their subsequent transformation to others) for H2 oxidation obtained from aARRDyn agrees well with the brute force reactive molecular dynamics (BF-RMD) at 2498 K. Using aARRDyn, we then extend our simulations to the whole range of combustion temperatures from ignition (798 K) to flame temperature (2998K), and demonstrate that, over this full temperature range, the reaction rates predicted by aARRDyn agree well with the BF-RMD values, extrapolated to lower temperatures. For the aARRDyn simulation at 798 K we find that the time period for half the H2 to form H2O product is ∼538 s, whereas the computational cost was just 1289 ps, a speed increase of ∼0.42 trillion (10(12)) over BF-RMD. In carrying out these RMD simulations we found that the ReaxFF-COH2008 version of the ReaxFF force field was not accurate for such intermediates as H3O. Consequently we reoptimized the fit to a quantum mechanics (QM) level, leading to the ReaxFF-OH2014 force field that was used in the simulations.

  7. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.

    PubMed

    Watts, Charles R; Gregory, Andrew; Frisbie, Cole; Lovas, Sándor

    2018-03-01

    The conformational space and structural ensembles of amyloid beta (Aβ) peptides and their oligomers in solution are inherently disordered and proven to be challenging to study. Optimum force field selection for molecular dynamics (MD) simulations and the biophysical relevance of results are still unknown. We compared the conformational space of the Aβ(1-40) dimers by 300 ns replica exchange MD simulations at physiological temperature (310 K) using: the AMBER-ff99sb-ILDN, AMBER-ff99sb*-ILDN, AMBER-ff99sb-NMR, and CHARMM22* force fields. Statistical comparisons of simulation results to experimental data and previously published simulations utilizing the CHARMM22* and CHARMM36 force fields were performed. All force fields yield sampled ensembles of conformations with collision cross sectional areas for the dimer that are statistically significantly larger than experimental results. All force fields, with the exception of AMBER-ff99sb-ILDN (8.8 ± 6.4%) and CHARMM36 (2.7 ± 4.2%), tend to overestimate the α-helical content compared to experimental CD (5.3 ± 5.2%). Using the AMBER-ff99sb-NMR force field resulted in the greatest degree of variance (41.3 ± 12.9%). Except for the AMBER-ff99sb-NMR force field, the others tended to under estimate the expected amount of β-sheet and over estimate the amount of turn/bend/random coil conformations. All force fields, with the exception AMBER-ff99sb-NMR, reproduce a theoretically expected β-sheet-turn-β-sheet conformational motif, however, only the CHARMM22* and CHARMM36 force fields yield results compatible with collapse of the central and C-terminal hydrophobic cores from residues 17-21 and 30-36. Although analyses of essential subspace sampling showed only minor variations between force fields, secondary structures of lowest energy conformers are different. © 2017 Wiley Periodicals, Inc.

  8. ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2).

    PubMed

    Ostadhossein, Alireza; Rahnamoun, Ali; Wang, Yuanxi; Zhao, Peng; Zhang, Sulin; Crespi, Vincent H; van Duin, Adri C T

    2017-02-02

    Two-dimensional layers of molybdenum disulfide, MoS 2 , have been recognized as promising materials for nanoelectronics due to their exceptional electronic and optical properties. Here we develop a new ReaxFF reactive potential that can accurately describe the thermodynamic and structural properties of MoS 2 sheets, guided by extensive density functional theory simulations. This potential is then applied to the formation energies of five different types of vacancies, various vacancy migration barriers, and the transition barrier between the semiconducting 2H and metallic 1T phases. The energetics of ripplocations, a recently observed defect in van der Waals layers, is examined, and the interplay between these defects and sulfur vacancies is studied. As strain engineering of MoS 2 sheets is an effective way to manipulate the sheets' electronic and optical properties, the new ReaxFF description can provide valuable insights into morphological changes that occur under various loading conditions and defect distributions, thus allowing one to tailor the electronic properties of these 2D crystals.

  9. Development of a united-atom force field for 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid

    NASA Astrophysics Data System (ADS)

    Koller, Thomas; Ramos, Javier; Garrido, Nuno M.; Fröba, Andreas P.; Economou, Ioannis G.

    2012-06-01

    Three united-atom (UA) force fields are presented for the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, abbreviated as [EMIM]+[B(CN)4]-. The atomistic charges were calculated based on the restrained electrostatic potential (RESP) of the isolated ions (abbreviated as force field 1, FF-1) and the ensemble averaged RESP (EA-RESP) method from the most stable ion pair configurations obtained by MP2/6-31G*+ calculations (abbreviated as FF-2 and FF-3). Non-electrostatic parameters for both ions were taken from the literature and Lennard-Jones parameters for the [B(CN)4]- anion were fitted in two different ways to reproduce the experimental liquid density. Molecular dynamics (MD) simulations were performed over a wide temperature range to identify the effect of the electrostatic and non-electrostatic potential on the liquid density and on transport properties such as self-diffusion coefficient and viscosity. Predicted liquid densities for the three parameter sets deviate less than 0.5% from experimental data. The molecular mobility with FF-2 and FF-3 using reduced charge sets is appreciably faster than that obtained with FF-1. FF-3 presents a refined non-electrostatic potential that leads to a notable improvement in both transport properties when compared to experimental data.

  10. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Vickie E.; Borreguero, Jose M.; Bhowmik, Debsindhu

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parametersmore » which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.« less

  11. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles

    PubMed Central

    2011-01-01

    We report a reparameterization of the glycosidic torsion χ of the Cornell et al. AMBER force field for RNA, χOL. The parameters remove destabilization of the anti region found in the ff99 force field and thus prevent formation of spurious ladder-like structural distortions in RNA simulations. They also improve the description of the syn region and the syn–anti balance as well as enhance MD simulations of various RNA structures. Although χOL can be combined with both ff99 and ff99bsc0, we recommend the latter. We do not recommend using χOL for B-DNA because it does not improve upon ff99bsc0 for canonical structures. However, it might be useful in simulations of DNA molecules containing syn nucleotides. Our parametrization is based on high-level QM calculations and differs from conventional parametrization approaches in that it incorporates some previously neglected solvation-related effects (which appear to be essential for obtaining correct anti/high-anti balance). Our χOL force field is compared with several previous glycosidic torsion parametrizations. PMID:21921995

  12. Tackling force-field bias in protein folding simulations: folding of Villin HP35 and Pin WW domains in explicit water.

    PubMed

    Mittal, Jeetain; Best, Robert B

    2010-08-04

    The ability to fold proteins on a computer has highlighted the fact that existing force fields tend to be biased toward a particular type of secondary structure. Consequently, force fields for folding simulations are often chosen according to the native structure, implying that they are not truly "transferable." Here we show that, while the AMBER ff03 potential is known to favor helical structures, a simple correction to the backbone potential (ff03( *)) results in an unbiased energy function. We take as examples the 35-residue alpha-helical Villin HP35 and 37 residue beta-sheet Pin WW domains, which had not previously been folded with the same force field. Starting from unfolded configurations, simulations of both proteins in Amber ff03( *) in explicit solvent fold to within 2.0 A RMSD of the experimental structures. This demonstrates that a simple backbone correction results in a more transferable force field, an important requirement if simulations are to be used to interpret folding mechanism. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Strike a Balance: Optimization of Backbone Torsion Parameters of AMBER Polarizable Force Field for Simulations of Proteins and Peptides

    PubMed Central

    WANG, ZHI-XIANG; ZHANG, WEI; WU, CHUN; LEI, HONGXING; CIEPLAK, PIOTR; DUAN, YONG

    2014-01-01

    Based on the AMBER polarizable model (ff02), we have reoptimized the parameters related to the main-chain (Φ, Ψ) torsion angles by fitting to the Boltzmann-weighted average quantum mechanical (QM) energies of the important regions (i.e., β, PII, αR, and αL regions). Following the naming convention of the AMBER force field series, this release will be called ff02pol.rl The force field has been assessed both by energetic comparison against the QM data and by the replica exchange molecular dynamics simulations of short alanine peptides in water. For Ace-Ala-Nme, the simulated populations in the β, PII and αR regions were approximately 30, 43, and 26%, respectively. For Ace-(Ala)7-Nme, the populations in these three regions were approximately 24, 49, and 26%. Both were in qualitative agreement with the NMR and CD experimental conclusions. In comparison with the previous force field, ff02pol.rl demonstrated good balance among these three important regions. The optimized torsion parameters, together with those in ff02, allow us to carry out simulations on proteins and peptides with the consideration of polarization. PMID:16526038

  14. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    PubMed Central

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  15. Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

    PubMed Central

    2014-01-01

    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157

  16. An Assessment of Molecular Dynamic Force Fields for Silica for Use in Simulating Laser Damage Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soules, T F; Gilmer, G H; Matthews, M J

    2010-10-21

    We compare force fields (FF's) that have been used in molecular dynamic (MD) simulations of silica in order to assess their applicability for use in simulating IR-laser damage mitigation. Although pairwise FF?s obtained by fitting quantum mechanical calculations such as the BKS and CHIK potentials have been shown to reproduce many of the properties of silica including the stability of silica polymorphs and the densification of the liquid, we show that melting temperatures and fictive temperatures are much too high. Softer empirical force fields give liquid and glass properties at experimental temperatures but may not predict all properties important tomore » laser mitigation experiments.« less

  17. Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics

    DTIC Science & Technology

    2011-05-04

    pubs.acs.org/JPCB Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics Si-ping Han,†,‡ Adri C. T. van...ABSTRACT: We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH3NO2) using molec- ular dynamics...with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000

  18. Structure of hydrated gibbsite and brucite edge surfaces: DFT results and further development of the ClayFF classical force field with metal–O–H angle bending terms

    DOE PAGES

    Pouvreau, Maxime; Greathouse, Jeffery A.; Cygan, Randall T.; ...

    2017-06-28

    Molecular scale understanding of the structure and properties of aqueous interfaces with clays, metal (oxy-) hydroxides, layered double hydroxides, and other inorganic phases is strongly affected by significant degrees of structural and compositional disorder of the interfaces. ClayFF was originally developed as a robust and flexible force field for classical molecular simulations of such systems. However, despite its success, multiple limitations have also become evident with its use. One of the most important limitations is the difficulty to accurately model the edges of finite size nanoparticles or pores rather than infinitely layered periodic structures. Here we propose a systematic approachmore » to solve this problem by developing specific metal–O–H (M–O–H) bending terms for ClayFF, E bend = k (θ – θ 0) 2 to better describe the structure and dynamics of singly protonated hydroxyl groups at mineral surfaces, particularly edge surfaces. On the basis of a series of DFT calculations, the optimal values of the Al–O–H and Mg–O–H parameters for Al and Mg in octahedral coordination are determined to be θ 0,AlOH = θ 0,MgOH = 110°, k AlOH = 15 kcal mol –1 rad –2 and k MgOH = 6 kcal mol –1 rad –2. Molecular dynamics simulations were performed for fully hydrated models of the basal and edge surfaces of gibbsite, Al(OH) 3, and brucite, Mg(OH) 2, at the DFT level of theory and at the classical level, using ClayFF with and without the M–O–H term. The addition of the new bending term leads to a much more accurate representation of the orientation of O–H groups at the basal and edge surfaces. Finally, the previously observed unrealistic desorption of OH 2 groups from the particle edges within the original ClayFF model is also strongly constrained by the new modification.« less

  19. Force-field prediction of materials properties in metal-organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  20. Force-field prediction of materials properties in metal-organic frameworks

    DOE PAGES

    Boyd, Peter G.; Moosavi, Seyed Mohamad; Witman, Matthew; ...

    2016-12-23

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can bemore » observed when looking at properties sensitive to framework vibrational modes. As a result, this observation is more pronounced upon the introduction of framework charges.« less

  1. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    PubMed Central

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle

  2. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    PubMed

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during

  3. The Effect of C-Terminal Helix on the Stability of FF Domain Studied by Molecular Dynamics Simulation

    PubMed Central

    Zhao, Liling; Cao, Zanxia; Wang, Jihua

    2012-01-01

    To investigate the effect of C-terminal helix on the stability of the FF domain, we studied the native domain FF3-71 from human HYPA/FBP11 and the truncated version FF3-60 with C-terminal helix being deleted by molecular dynamics simulations with GROMACS package and GROMOS 43A1 force field. The results indicated that the structures of truncated version FF3-60 were evident different from those of native partner FF3-71. Compared with FF3-71, the FF3-60 lost some native contacts and exhibited some similar structural characters to those of intermediate state. The C-terminal helix played a major role in stabilizing the FF3-71 domain. To a certain degree, the FF domain had a tendency to form an intermediate state without the C-terminal helix. In our knowledge, this was the first study to examine the role of C-terminal helix of FF domain in detail by molecular dynamics simulations, which was useful to understand the three-state folding mechanism of the small FF domain. PMID:22408419

  4. Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field

    NASA Astrophysics Data System (ADS)

    Liu, Junpeng; Wang, Mengjun; Liu, Pingan

    2018-06-01

    Molecular dynamics simulations were performed to study thermal properties and melting points of Al nanoparticles by using a reactive force field under canonical (NVT) ensembles. Al nanoparticles (particle size 2–4 nm) were considered in simulations. A combination of structural and thermodynamic parameters such as the Lindemann index, heat capacities, potential energy and radial-distribution functions was employed to decide melting points. We used annealing technique to obtain the initial Al nanoparticle model. Comparison was made between ReaxFF results and other simulation results. We found that ReaxFF force field is reasonable to describe Al cluster melting behavior. The linear relationship between particle size and melting points was found. After validating the ReaxFF force field, more attention was paid on thermal properties of Al nanoparticles with different defect concentrations. 4 nm Al nanoparticles with different defect concentrations (5%–20%) were considered in this paper. Our results revealed that: the melting points are irrelevant with defect concentration at a certain particle size. The extra storage energy of Al nanoparticles is proportional to nanoparticles’ defect concentration, when defect concentration is 5%–15%. While the particle with 20% defect concentration is similar to the cluster with 10% defect concentration. After melting, the extra energy of all nanoparticles decreases sharply, and the extra storage energy is nearly zero at 600 K. The centro-symmetry parameter analysis shows structure evolution of different models during melting processes.

  5. Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A.

    1998-01-01

    In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.

  6. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    PubMed

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the

  7. Establishment of performance standards and a cut-score for the Canadian Forces firefighter physical fitness maintenance evaluation (FF PFME).

    PubMed

    Todd Rogers, W; Docherty, David; Petersen, Stewart

    2014-01-01

    The bookmark method for setting cut-scores was used to re-set the cut-score for the Canadian Forces Firefighter Physical Fitness Maintenance Evaluation (FF PFME). The time required to complete 10 tasks that together simulate a first-response firefighting emergency was accepted as a measure of work capacity. A panel of 25 Canadian Forces firefighter supervisors set cut-scores in three rounds. Each round involved independent evaluation of nine video work samples, where the times systematically increased from 400 seconds to 560 seconds. Results for Round 1 were discussed before moving to Round 2 and results for Round 2 were discussed before moving to Round 3. Accounting for the variability among panel members at the end of Round 3, a cut-score of 481 seconds (mean Round 3 plus 2 SEM) was recommended. Firefighters who complete the FF PFME in 481 seconds or less have the physical capacity to complete first-response firefighting work.

  8. Reparametrization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations.

    PubMed

    Miller, Mark S; Lay, Wesley K; Li, Shuxiang; Hacker, William C; An, Jiadi; Ren, Jianlan; Elcock, Adrian H

    2017-04-11

    There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparametrize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications-some previously reported by others and some that are new to this study-are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parametrization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields' descriptions of solute-solute interactions and further demonstrates that modifications to van der Waals

  9. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method.

    PubMed

    Rahnamoun, A; van Duin, A C T

    2014-04-17

    Atomic oxygen (AO) is the most abundant element in the low Earth orbit (LEO). It is the result of the dissociation of molecular oxygen by ultraviolet radiation from the sun. In the LEO, it collides with the materials used on spacecraft surfaces and causes degradation of these materials. The degradation of the materials on the surface of spacecrafts at LEO has been a significant problem for a long time. Kapton polyimide, polyhedral oligomeric silsesquioxane (POSS), silica, and Teflon are the materials extensively used in spacecraft industry, and like many other materials used in spacecraft industry, AO collision degradation is an important issue in their applications on spacecrafts. To investigate the surface chemistry of these materials in exposure to space AO, a computational chemical evaluation of the Kapton polyimide, POSS, amorphous silica, and Teflon was performed in separate simulations under similar conditions. For performing these simulations, the ReaxFF reactive force-field program was used, which provides the computational speed required to perform molecular dynamics (MD) simulations on system sizes sufficiently large to describe the full chemistry of the reactions. Using these simulations, the effects of AO impact on different materials and the role of impact energies, the content of material, and temperature of material on the behavior of the materials are studied. The ReaxFF results indicate that Kapton is less resistant than Teflon toward AO damage. These results are in good agreement with experiment. These simulations indicate that the amorphous silica shows the highest stability among these materials before the start of the highly exothermic silicon oxidation. We have verified that adding silicon to the bulk of the Kapton structure enhances the stability of the Kapton against AO impact. Our canonical MD simulations demonstrate that an increase in the heat transfer in materials during AO impact can provide a considerable decrease in the

  10. Reparameterization of Protein Force Field Nonbonded Interactions Guided by Osmotic Coefficient Measurements from Molecular Dynamics Simulations

    PubMed Central

    Miller, Mark S.; Lay, Wesley K.; Li, Shuxiang; Hacker, William C.; An, Jiadi; Ren, Jianlan; Elcock, Adrian H.

    2017-01-01

    There is a small, but growing, body of literature describing the use of osmotic coefficient measurements to validate and reparameterize simulation force fields. Here we have investigated the ability of five very commonly used force field and water model combinations to reproduce the osmotic coefficients of seven neutral amino acids and five small molecules. The force fields tested include AMBER ff99SB-ILDN, CHARMM36, GROMOS54a7, and OPLS-AA, with the first of these tested in conjunction with the TIP3P and TIP4P-Ew water models. In general, for both the amino acids and the small molecules, the tested force fields produce computed osmotic coefficients that are lower than experiment; this is indicative of excessively favorable solute-solute interactions. The sole exception to this general trend is provided by GROMOS54a7 when applied to amino acids: in this case, the computed osmotic coefficients are consistently too high. Importantly, we show that all of the force fields tested can be made to accurately reproduce the experimental osmotic coefficients of the amino acids when minor modifications – some previously reported by others and some that are new to this study – are made to the van der Waals interactions of the charged terminal groups. Special care is required, however, when simulating Proline with a number of the force fields, and a hydroxyl-group specific modification is required in order to correct Serine and Threonine when simulated with AMBER ff99SB-ILDN. Interestingly, an alternative parameterization of the van der Waals interactions in the latter force field, proposed by the Nerenberg and Head-Gordon groups, is shown to immediately produce osmotic coefficients that are in excellent agreement with experiment. Overall, this study reinforces the idea that osmotic coefficient measurements can be used to identify general shortcomings in commonly used force fields’ descriptions of solute-solute interactions, and further demonstrates that modifications to

  11. Comparison of Flattening Filter (FF) and Flattening-Filter-Free (FFF) 6 MV photon beam characteristics for small field dosimetry using EGSnrc Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Sureka, C. S.

    2017-06-01

    The present study is focused to compare the characteristics of Varian Clinac 600 C/D flattened and unflattened 6 MV photon beams for small field dosimetry using EGSnrc Monte Carlo Simulation since the small field dosimetry is considered to be the most crucial and provoking task in the field of radiation dosimetry. A 6 MV photon beam of a Varian Clinac 600 C/D medical linear accelerator operates with Flattening Filter (FF) and Flattening-Filter-Free (FFF) mode for small field dosimetry were performed using EGSnrc Monte Carlo user codes (BEAMnrc and DOSXYZnrc) in order to calculate the beam characteristics using Educated-trial and error method. These includes: Percentage depth dose, lateral beam profile, dose rate delivery, photon energy spectra, photon beam uniformity, out-of-field dose, surface dose, penumbral dose and output factor for small field dosimetry (0.5×0.5 cm2 to 4×4 cm2) and are compared with magna-field sizes (5×5 cm2 to 40×40 cm2) at various depths. The results obtained showed that the optimized beam energy and Full-width-half maximum value for small field dosimetry and magna-field dosimetry was found to be 5.7 MeV and 0.13 cm for both FF and FFF beams. The depth of dose maxima for small field size deviates minimally for both FF and FFF beams similar to magna-fields. The depths greater than dmax depicts a steeper dose fall off in the exponential region for FFF beams comparing FF beams where its deviations gets increased with the increase in field size. The shape of the lateral beam profiles of FF and FFF beams varies remains similar for the small field sizes less than 4×4 cm2 whereas it varies in the case of magna-fields. Dose rate delivery for FFF beams shows an eminent increase with a two-fold factor for both small field dosimetry and magna-field sizes. The surface dose measurements of FFF beams for small field size were found to be higher whereas it gets lower for magna-fields than FF beam. The amount of out-of-field dose reduction gets

  12. Force Field Model of Periodic Trends in Biomolecular Halogen Bonds

    PubMed Central

    Scholfield, Matthew R.; Ford, Melissa Coates; Vander Zanden, Crystal M.; Billman, M. Marie; Ho, P. Shing; Rappé, Anthony K.

    2016-01-01

    The study of the noncovalent interaction now defined as a halogen bond (X-bond) has become one of the fastest growing areas in experimental and theoretical chemistry—its applications as a design tool are highly extensive. The significance of the interaction in biology has only recently been recognized, but has now become important in medicinal chemistry. We had previously derived a set of empirical potential energy functions to model the structure-energy relationships for bromines in biomolecular X-bonds (BXBs). Here, we have extended this force field for BXBs (ffBXB) to the halogens (Cl, Br, and I) that are commonly seen to form stable X-bonds. The ffBXB calculated energies show a remarkable one-to-one linear relationship to explicit BXB energies determined from an experimental DNA junction system, thereby validating the approach and the model. The resulting parameters allow us to interpret the stabilizing effects of BXBs in terms of well-defined physical properties of the halogen atoms, including their size, shape, and charge, showing periodic trends that are predictable along the Group VII column of elements. Consequently, we have established the ffBXB as accurate computational tool that can be applied to, for example, for the design of new therapeutic compounds against clinically important targets and new biomolecular based materials. PMID:25338128

  13. Comparison of force fields on the basis of various model approaches--how to design the best model for the [CnMIM][NTf2] family of ionic liquids.

    PubMed

    Köddermann, Thorsten; Reith, Dirk; Ludwig, Ralf

    2013-10-07

    In this contribution, we present two new united-atom force fields (UA-FFs) for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(n)MIM][NTf(2)] (n=1, 2, 4, 6, 8) ionic liquids (ILs). One is parametrized manually, and the other is developed with the gradient-based optimization workflow (GROW). By doing so, we wanted to perform a hard test to determine how researchers could benefit from semiautomated optimization procedures. As with our already published all-atom force field (AA-FF) for [C(n)MIM][NTf(2)] (T. Köddermann, D. Paschek, R. Ludwig, ChemPhysChem- 2007, 8, 2464), the new force fields were derived to fit experimental densities, self-diffusion coefficients, and NMR rotational correlation times for the IL cation and for water molecules dissolved in [C(2)MIM][NTf(2)]. In the manual force field, the alkyl chains of the cation and the CF3 groups of the anion were treated as united atoms. In the GROW force field, only the alkyl chains of the cation were united. All other parts of the structures of the ions remained unchanged to prevent any loss of physical information. Structural, dynamic, and thermodynamic properties such as viscosity, cation rotational correlation times, and heats of vaporization calculated with the new force fields were compared with values simulated with the previous AA-FF and the experimental data. All simulated properties were in excellent agreement with the experimental values. Altogether, the UA-FFs are slightly superior for speed-up reasons. The UA-FF speeds up the simulation by about 100 % and reduces the demanded disk space by about 78 %. More importantly, real time and efforts to generate force fields could be significantly reduced by utilizing GROW. The real time for the GROW parametrization in this work was 2 months. Manual parametrization, in contrast, may take up to 12 months, and this is, therefore, a significant increase in speed, though it is difficult to estimate the duration of manual parametrization

  14. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    NASA Astrophysics Data System (ADS)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  15. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.

    PubMed

    Small, Meagan C; Aytenfisu, Asaminew H; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  16. Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage

    PubMed Central

    Sattar, Sadia; Bennett, Nicholas J.; Wen, Wesley X.; Guthrie, Jenness M.; Blackwell, Len F.; Conway, James F.; Rakonjac, Jasna

    2015-01-01

    F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70∘C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative “dipstick” lateral flow diagnostic assay for human plasma fibronectin. PMID:25941520

  17. Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage.

    PubMed

    Sattar, Sadia; Bennett, Nicholas J; Wen, Wesley X; Guthrie, Jenness M; Blackwell, Len F; Conway, James F; Rakonjac, Jasna

    2015-01-01

    F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70(∘)C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative "dipstick" lateral flow diagnostic assay for human plasma fibronectin.

  18. Molecular simulation of caloric properties of fluids modelled by force fields with intramolecular contributions: Application to heat capacities

    NASA Astrophysics Data System (ADS)

    Smith, William R.; Jirsák, Jan; Nezbeda, Ivo; Qi, Weikai

    2017-07-01

    The calculation of caloric properties such as heat capacity, Joule-Thomson coefficients, and the speed of sound by classical force-field-based molecular simulation methodology has received scant attention in the literature, particularly for systems composed of complex molecules whose force fields (FFs) are characterized by a combination of intramolecular and intermolecular terms. The calculation of a thermodynamic property for a system whose molecules are described by such a FF involves the calculation of the residual property prior to its addition to the corresponding ideal-gas property, the latter of which is separately calculated, either using thermochemical compilations or nowadays accurate quantum mechanical calculations. Although the simulation of a volumetric residual property proceeds by simply replacing the intermolecular FF in the rigid molecule case by the total (intramolecular plus intermolecular) FF, this is not the case for a caloric property. We describe the correct methodology required to perform such calculations and illustrate it in this paper for the case of the internal energy and the enthalpy and their corresponding molar heat capacities. We provide numerical results for cP, one of the most important caloric properties. We also consider approximations to the correct calculation procedure previously used in the literature and illustrate their consequences for the examples of the relatively simple molecule 2-propanol, CH3CH(OH)CH3, and for the more complex molecule monoethanolamine, HO(CH2)2NH2, an important fluid used in carbon capture.

  19. Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme

    NASA Astrophysics Data System (ADS)

    Tam, Nguyen Minh; Vu, Khanh B.; Vu, Van V.; Ngo, Son Tung

    2018-06-01

    Acetylcholinesterase (AChE) is considered as one of the most favored drug targets for Alzheimer's disease. The effects of different force fields (FFs) on ranking affinity of acetylcholinesterase inhibitors were obtained using the fast pulling of ligand (FPL) method in steered-molecular dynamics (SMD) simulations. GROMOS, AMBER, CHARMM, and OPLS-AA FFs were investigated in this work. The pulling work derived with GROMOS FF has the strongest correlation and smallest error compared with experimental binding affinity. Moreover, the CPU consumption in the calculations using GROMOS FF is the lowest, which could allow us to rank affinity of a large number of AChE ligands.

  20. Gas adsorption in Mg-porphyrin-based porous organic frameworks: A computational simulation by first-principles derived force field.

    PubMed

    Pang, Yujia; Li, Wenliang; Zhang, Jingping

    2017-09-15

    A novel type of porous organic frameworks, based on Mg-porphyrin, with diamond-like topology, named POF-Mgs is computationally designed, and the gas uptakes of CO 2 , H 2 , N 2 , and H 2 O in POF-Mgs are investigated by Grand canonical Monte Carlo simulations based on first-principles derived force fields (FF). The FF, which describes the interactions between POF-Mgs and gases, are fitted by dispersion corrected double-hybrid density functional theory, B2PLYP-D3. The good agreement between the obtained FF and the first-principle energies data confirms the reliability of the FF. Furthermore our simulation shows the presence of a small amount of H 2 O (≤ 0.01 kPa) does not much affect the adsorption quantity of CO 2 , but the presence of higher partial pressure of H 2 O (≥ 0.1 kPa) results in the CO 2 adsorption decrease significantly. The good performance of POF-Mgs in the simulation inspires us to design novel porous materials experimentally for gas adsorption and purification. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    PubMed

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  2. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.

    PubMed

    Kim, Seonghoon; Lee, Jumin; Jo, Sunhwan; Brooks, Charles L; Lee, Hui Sun; Im, Wonpil

    2017-06-05

    Reading ligand structures into any simulation program is often nontrivial and time consuming, especially when the force field parameters and/or structure files of the corresponding molecules are not available. To address this problem, we have developed Ligand Reader & Modeler in CHARMM-GUI. Users can upload ligand structure information in various forms (using PDB ID, ligand ID, SMILES, MOL/MOL2/SDF file, or PDB/mmCIF file), and the uploaded structure is displayed on a sketchpad for verification and further modification. Based on the displayed structure, Ligand Reader & Modeler generates the ligand force field parameters and necessary structure files by searching for the ligand in the CHARMM force field library or using the CHARMM general force field (CGenFF). In addition, users can define chemical substitution sites and draw substituents in each site on the sketchpad to generate a set of combinatorial structure files and corresponding force field parameters for throughput or alchemical free energy simulations. Finally, the output from Ligand Reader & Modeler can be used in other CHARMM-GUI modules to build a protein-ligand simulation system for all supported simulation programs, such as CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Ligand Reader & Modeler is available as a functional module of CHARMM-GUI at http://www.charmm-gui.org/input/ligandrm. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Drude Polarizable Force Field for Aliphatic Ketones and Aldehydes, and their Associated Acyclic Carbohydrates

    PubMed Central

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-01-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF. PMID:28190218

  4. Study of ice cluster impacts on amorphous silica using the ReaxFF reactive force field molecular dynamics simulation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnamoun, A.; Duin, A. C. T. van

    We study the dynamics of the collisions between amorphous silica structures and amorphous and crystal ice clusters with impact velocities of 1 km/s, 4 km/s, and 7 km/s using the ReaxFF reactive molecular dynamics simulation method. The initial ice clusters consist of 150 water molecules for the amorphous ice cluster and 128 water molecules for the crystal ice cluster. The ice clusters are collided on the surface of amorphous fully oxidized and suboxide silica. These simulations show that at 1 km/s impact velocities, all the ice clusters accumulate on the surface and at 4 km/s and 7 km/s impact velocities, some of the ice cluster moleculesmore » bounce back from the surface. At 4 km/s and 7 km/s impact velocities, few of the water molecules dissociations are observed. The effect of the second ice cluster impacts on the surfaces which are fully covered with ice, on the mass loss/accumulation is studied. These studies show that at 1 km/s impacts, the entire ice cluster accumulates on the surface at both first and second ice impacts. At higher impact velocities, some ice molecules which after the first ice impacts have been attached to the surface will separate from the surface after the second ice impacts at 7 km/s impact velocity. For the 4 km/s ice cluster impact, ice accumulation is observed for the crystal ice cluster impacts and ice separation is observed for the amorphous ice impacts. Observing the temperatures of the ice clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting ice clusters increase to about 2000 K, with individual molecules occasionally reaching temperatures of over 8000 K and thus it will be prudent to consider the concept of electron

  5. ReaxFF Grand Canonical Monte Carlo simulation of adsorption and dissociation of oxygen on platinum (111)

    NASA Astrophysics Data System (ADS)

    Valentini, Paolo; Schwartzentruber, Thomas E.; Cozmuta, Ioana

    2011-12-01

    Atomic-level Grand Canonical Monte Carlo (GCMC) simulations equipped with a reactive force field (ReaxFF) are used to study atomic oxygen adsorption on a Pt(111) surface. The off-lattice GCMC calculations presented here rely solely on the interatomic potential and do not necessitate the pre-computation of surface adlayer structures and their interpolation. As such, they provide a predictive description of adsorbate phases. In this study, validation is obtained with experimental evidence (steric heats of adsorption and isotherms) as well as DFT-based state diagrams available in the literature. The ReaxFF computed steric heats of adsorption agree well with experimental data, and this study clearly shows that indirect dissociative adsorption of O2 on Pt(111) is an activated process at non-zero coverages, with an activation energy that monotonically increases with coverage. At a coverage of 0.25 ML, a highly ordered p(2 × 2) adlayer is found, in agreement with several low-energy electron diffraction observations. Isotherms obtained from the GCMC simulations compare qualitatively and quantitatively well with previous DFT-based state diagrams, but are in disagreement with the experimental data sets available. ReaxFF GCMC simulations at very high coverages show that O atoms prefer to bind in fcc hollow sites, at least up to 0.8 ML considered in the present work. At moderate coverages, little to no disorder appears in the Pt lattice. At high coverages, some Pt atoms markedly protrude out of the surface plane. This observation is in qualitative agreement with recent STM images of an oxygen covered Pt surface. The use of the GCMC technique based on a transferable potential is particularly valuable to produce more realistic systems (adsorbent and adsorbate) to be used in subsequent dynamical simulations (Molecular Dynamics) to address recombination reactions (via either Eley-Rideal or Langmuir-Hinshelwood mechanisms) on variously covered surfaces. By using GCMC and Molecular

  6. Prediction of cyclohexane-water distribution coefficient for SAMPL5 drug-like compounds with the QMPFF3 and ARROW polarizable force fields.

    PubMed

    Kamath, Ganesh; Kurnikov, Igor; Fain, Boris; Leontyev, Igor; Illarionov, Alexey; Butin, Oleg; Olevanov, Michael; Pereyaslavets, Leonid

    2016-11-01

    We present the performance of blind predictions of water-cyclohexane distribution coefficients for 53 drug-like compounds in the SAMPL5 challenge by three methods currently in use within our group. Two of them utilize QMPFF3 and ARROW, polarizable force-fields of varying complexity, and the third uses the General Amber Force-Field (GAFF). The polarizable FF's are implemented in an in-house MD package, Arbalest. We find that when we had time to parametrize the functional groups with care (batch 0), the polarizable force-fields outperformed the non-polarizable one. Conversely, on the full set of 53 compounds, GAFF performed better than both QMPFF3 and ARROW. We also describe the torsion-restrain method we used to improve sampling of molecular conformational space and thus the overall accuracy of prediction. The SAMPL5 challenge highlighted several drawbacks of our force-fields, such as our significant systematic over-estimation of hydrophobic interactions, specifically for alkanes and aromatic rings.

  7. Secondary Structure of Rat and Human Amylin across Force Fields

    PubMed Central

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi-cheng; de Pablo, Juan J.

    2015-01-01

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable

  8. Secondary structure of rat and human amylin across force fields

    DOE PAGES

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; ...

    2015-07-29

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin wasmore » determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states

  9. ReaxFF Study of the Oxidation of Softwood Lignin in View of Carbon Fiber Production

    DOE PAGES

    Beste, Ariana

    2014-10-06

    We investigate the oxidative, thermal conversion of softwood lignin by performing molecular dynamics simulations based on a reactive force field (ReaxFF). The lignin samples are constructed from coniferyl alcohol units, which are connected through linkages that are randomly selected from a natural distribution of linkages in softwood. The goal of this work is to simulate the oxidative stabilization step during carbon fiber production from lignin precursor. We find that at simulation conditions where stabilization reactions occur, the lignin fragments have already undergone extensive degradation. The 5-5 linkage shows the highest reactivity towards cyclization and dehydrogenation.

  10. How well do force fields capture the strength of salt bridges in proteins?

    PubMed Central

    Ahmed, Mustapha Carab; Papaleo, Elena

    2018-01-01

    Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1) to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.

  11. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.

    PubMed

    Verbaro, Daniel; Ghosh, Indrajit; Nau, Werner M; Schweitzer-Stenner, Reinhard

    2010-12-30

    Structural preferences in the unfolded state of peptides determined by molecular dynamics still contradict experimental data. A remedy in this regard has been suggested by MD simulations with an optimized Amber force field ff03* ( Best, R. Hummer, G. J. Phys. Chem. B 2009 , 113 , 9004 - 9015 ). The simulations yielded a statistical coil distribution for alanine which is at variance with recent experimental results. To check the validity of this distribution, we investigated the peptide H-A(5)W-OH, which with the exception of the additional terminal tryptophan is analogous to the peptide used to optimize the force fields ff03*. Electronic circular dichroism, vibrational circular dichroism, and infrared spectroscopy as well as J-coupling constants obtained from NMR experiments were used to derive the peptide's conformational ensemble. Additionally, Förster resonance energy transfer between the terminal chromophores of the fluorescently labeled peptide analogue H-Dbo-A(5)W-OH was used to determine its average length, from which the end-to-end distance of the unlabeled peptide was estimated. Qualitatively, the experimental (3)J(H(N),C(α)), VCD, and ECD indicated a preference of alanine for polyproline II-like conformations. The experimental (3)J(H(N),C(α)) for A(5)W closely resembles the constants obtained for A(5). In order to quantitatively relate the conformational distribution of A(5) obtained with the optimized AMBER ff03* force field to experimental data, the former was used to derive a distribution function which expressed the conformational ensemble as a mixture of polyproline II, β-strand, helical, and turn conformations. This model was found to satisfactorily reproduce all experimental J-coupling constants. We employed the model to calculate the amide I' profiles of the IR and vibrational circular dichroism spectrum of A(5)W, as well as the distance between the two terminal peptide carbonyls. This led to an underestimated negative VCD couplet and an

  12. A reactive force field study of Li/C systems for electrical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raju, Muralikrishna; Ganesh, P.; Kent, Paul R. C.

    Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li–C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphitemore » with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. As a result, this is a key step toward modeling of realistic carbon materials for energy applications.« less

  13. A reactive force field study of Li/C systems for electrical energy storage

    DOE PAGES

    Raju, Muralikrishna; Ganesh, P.; Kent, Paul R. C.; ...

    2015-04-02

    Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li–C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphitemore » with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. As a result, this is a key step toward modeling of realistic carbon materials for energy applications.« less

  14. Analysis of the FF Aqr spectra

    NASA Astrophysics Data System (ADS)

    Shimanskaya, N. N.; Bikmaev, I. F.; Shimansky, V. V.

    2011-07-01

    We determine the atmospheric parameters of the secondary in the close binary system FF Aqr and analyze its chemical composition. A series of high-resolution spectra are taken at different orbital phases using the coude echelle spectrometer of the 1.5-m Russian-Turkish Telescope (RTT150). We show that the absorption line intensity of heavy elements varies with phase due to the spotty nature of the cool component. We determine the abundances of heavy elements in the star's atmosphere by modelling the synthetic spectra and performing a differential analysis of the chemical composition of FF Aqr relative to the solar composition. Our analysis of the averaged spectrum of FF Aqr yielded 539 abundance estimates for 21 chemical elements. We found the metallicity of the star ([ Fe/H] = -0.11 ± 0.08) to be close solar, in agreement with the hypothesis that FF Aqr should belong to the Galactic disk. The inferred chemical composition of the objects exhibits no anomalous abundances of the α-, r-, and s-process elements like those earlier found in other systems (IN Com, LW Hya, V471 Tau). The lack of such anomalies in FF Aqr must be due to the fact that the elements heavier than 16 O cannot be synthesized in the core of the primary during the last stages of its evolution.

  15. Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics.

    PubMed

    Han, Si-ping; van Duin, Adri C T; Goddard, William A; Strachan, Alejandro

    2011-05-26

    We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH(3)NO(2)) using molecular dynamics with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000-3000 K) and density 1.97 g/cm(3) for times up to 200 ps. At T = 3000 K the first reaction in the decomposition of nitromethane is an intermolecular proton transfer leading to CH(3)NOOH and CH(2)NO(2). For lower temperatures (T = 2500 and 2000 K) the first reaction during decomposition is often an isomerization reaction involving the scission of the C-N bond the formation of a C-O bond to form methyl nitrate (CH(3)ONO). Also at very early times we observe intramolecular proton transfer events. The main product of these reactions is H(2)O which starts forming following those initiation steps. The appearance of H(2)O marks the beginning of the exothermic chemistry. Recent quantum-mechanics-based molecular dynamics simulations on the chemical reactions and time scales for decomposition of a crystalline sample heated to T = 3000 K for a few picoseconds are in excellent agreement with our results, providing an important, direct validation of ReaxFF.

  16. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation.

    PubMed

    Kanchi, Subbarao; Gosika, Mounika; Ayappa, K G; Maiti, Prabal K

    2018-06-13

    The understanding of dendrimer interactions with cell membranes has great importance in drug/gene delivery based therapeutics. Although molecular simulations have been used to understand the nature of dendrimer interactions with lipid membranes, its dependency on available force field parameters is poorly understood. In this study, we have carried out fully atomistic molecular dynamics (MD) simulations of a protonated G3 poly(amido amine) (PAMAM) dendrimer-dimyristoylphosphatidylcholine (DMPC) lipid bilayer complex using three different force fields (FFs) namely, CHARMM, GAFF, and GROMOS in the presence of explicit water to understand the structure of the lipid-dendrimer complex and nature of their interaction. CHARMM and GAFF dendrimers initially in contact with the lipid head groups were found to move away from the lipid bilayer during the course of simulation; however, the dendrimer remained strongly bound to the lipid head groups with the GROMOS FF. Potential of the mean force (PMF) computations of the dendrimer along the bilayer normal showed a repulsive barrier (∼20 kcal/mol) between dendrimer and lipid bilayer in the case of CHARMM and GAFF force fields. In contrast, an attractive interaction (∼40 kcal/mol) is obtained with the GROMOS force field, consistent with experimental observations of membrane binding observed with lower generation G3 PAMAM dendrimers. This difference with the GROMOS dendrimer is attributed to the strong dendrimer-lipid interaction and lowered surface hydration of the dendrimer. Assessing the role of solvent, we find that the CHARMM and GAFF dendrimers strongly bind to the lipid bilayer with an implicit solvent (Generalized Born) model, whereas binding is not observed with explicit water (TIP3P). The opposing nature of dendrimer-membrane interactions in the presence of explicit and implicit solvents demonstrates that hydration effects play an important role in modulating the dendrimer-lipid interaction warranting a case for

  17. ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions.

    PubMed

    Ashraf, Chowdhury; Jain, Abhishek; Xuan, Yuan; van Duin, Adri C T

    2017-02-15

    In this paper, we present the first atomistic-scale based method for calculating ignition front propagation speed and hypothesize that this quantity is related to laminar flame speed. This method is based on atomistic-level molecular dynamics (MD) simulations with the ReaxFF reactive force field. Results reported in this study are for supercritical (P = 55 MPa and T u = 1800 K) combustion of hydrocarbons as elevated pressure and temperature are required to accelerate the dynamics for reactive MD simulations. These simulations are performed for different types of hydrocarbons, including alkyne, alkane, and aromatic, and are able to successfully reproduce the experimental trend of reactivity of these hydrocarbons. Moreover, our results indicate that the ignition front propagation speed under supercritical conditions has a strong dependence on equivalence ratio, similar to experimentally measured flame speeds at lower temperatures and pressures which supports our hypothesis that ignition front speed is a related quantity to laminar flame speed. In addition, comparisons between results obtained from ReaxFF simulation and continuum simulations performed under similar conditions show good qualitative, and reasonable quantitative agreement. This demonstrates that ReaxFF based MD-simulations are a promising tool to study flame speed/ignition front speed in supercritical hydrocarbon combustion.

  18. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    PubMed Central

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  19. Pulmonary Function in Flight (PuFF) Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In this International Space Station (ISS) onboard photo, Expedition Six Science Officer Donald R. Pettit works to set up the Pulmonary Function in Flight (PuFF) experiment hardware in the Destiny Laboratory. Expedition Six is the fourth and final crew to perform the PuFF experiment. The PuFF experiment was developed to better understand what effects long term exposure to microgravity may have on the lungs. The focus is on measuring changes in the everness of gas exchange in the lungs, and on detecting changes in respiratory muscle strength. It allows astronauts to measure blood flow through the lungs, the ability of the lung to take up oxygen, and lung volumes. Each PuFF session includes five lung function tests, which involve breathing only cabin air. For each planned extravehicular (EVA) activity, a crew member performs a PuFF test within one week prior to the EVA. Following the EVA, those crew members perform another test to document the effect of exposure of the lungs to the low-pressure environment of the space suits. This experiment utilizes the Gas Analyzer System for Metabolic Analysis Physiology, or GASMAP, located in the Human Research Facility (HRF), along with a variety of other Puff equipment including a manual breathing valve, flow meter, pressure-flow module, pressure and volume calibration syringes, and disposable mouth pieces.

  20. Surface structure and stability of partially hydroxylated silica surfaces

    DOE PAGES

    Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.

    2017-04-04

    Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimsza, J. M.; Jones, R. E.; Criscenti, L. J.

    Surface energies of silicates influence crack propagation during brittle fracture and decrease with surface relaxation caused by annealing and hydroxylation. Molecular-level simulations are particularly suited for the investigation of surface processes. In this work, classical MD simulations of silica surfaces are performed with two force fields (ClayFF and ReaxFF) to investigate the effect of force field reactivity on surface structure and energy as a function of surface hydroxylation. An unhydroxylated fracture surface energy of 5.1 J/m 2 is calculated with the ClayFF force field, and 2.0 J/m 2 is calculated for the ReaxFF force field. The ClayFF surface energies aremore » consistent with the experimental results from double cantilever beam fracture tests (4.5 J/m 2), whereas ReaxFF underestimated these surface energies. Surface relaxation via annealing and hydroxylation was performed by creating a low-energy equilibrium surface. Annealing condensed neighboring siloxane bonds increased the surface connectivity, and decreased the surface energies by 0.2 J/m 2 for ClayFF and 0.8 J/m 2 for ReaxFF. Posthydroxylation surface energies decreased further to 4.6 J/m 2 with the ClayFF force field and to 0.2 J/m 2 with the ReaxFF force field. Experimental equilibrium surface energies are ~0.35 J/m 2, consistent with the ReaxFF force field. Although neither force field was capable of replicating both the fracture and equilibrium surface energies reported from experiment, each was consistent with one of these conditions. Furthermore, future computational investigations that rely on accurate surface energy values should consider the surface state of the system and select the appropriate force field.« less

  2. Reduced yield stress for zirconium exposed to iodine: Reactive force field simulation

    DOE PAGES

    Rossi, Matthew L.; Taylor, Christopher D.; van Duin, Adri C. T.

    2014-11-04

    Iodine-induced stress-corrosion cracking (ISCC), a known failure mode for nuclear fuel cladding, occurs when iodine generated during the irradiation of a nuclear fuel pellet escapes the pellet through diffusion or thermal cracking and chemically interacts with the inner surface of the clad material, inducing a subsequent effect on the cladding’s resistance to mechanical stress. To complement experimental investigations of ISCC, a reactive force field (ReaxFF) compatible with the Zr-I chemical and materials systems has been developed and applied to simulate the impact of iodine exposure on the mechanical strength of the material. The study shows that the material’s resistance tomore » stress (as captured by the yield stress of a high-energy grain boundary) is related to the surface coverage of iodine, with the implication that ISCC is the result of adsorption-enhanced decohesion.« less

  3. Forced synchronization of thermoacoustic oscillations in a ducted flame

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.

    2016-11-01

    Forced synchronization is a process in which a self-excited system subjected to external forcing starts to oscillate at the forcing frequency ff in place of its own natural frequency fn. There are two motivations for studying this in thermoacoustics: (i) to determine how external forcing could be used to control thermoacoustic oscillations, which are harmful to many combustors; and (ii) to better understand the nonlinear interactions between self-excited hydrodynamic and thermoacoustic oscillations. In this experimental study, we examine the response of a ducted premixed flame to harmonic acoustic forcing, for two natural states of the system: (1) a state with periodic oscillations at f1 and a marginally stable mode at f2; and (2) a state with quasiperiodic oscillations at two incommensurate frequencies f1 and f2. When forcing the periodic state, we find that the forcing amplitude required for lock-in increases linearly with | ff -f1 | and that the marginally stable mode becomes excited when ff f2 . When forcing the quasiperiodic state, we find that the system locks into the forcing when ff f1 or f2 or 1 / 2 (f1 +f2) . These findings should lead to improved control of periodic and aperiodic thermoacoustic oscillations in combustors. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  4. NANOGOLD decorated by pHLIP peptide: comparative force field study.

    PubMed

    Kyrychenko, A

    2015-05-21

    The potential of gold nanoparticles (AuNPs) in therapeutic and diagnostic cancer applications is becoming increasingly recognized, which focuses on their efficient and specific delivery from passive accumulation in tumour tissue to directly targeting tumor-specific biomarkers. AuNPs functionalized by pH low insertion peptide (pHLIP) have recently revealed the capability of targeting acidic tissues and inserting into cell membranes. However, the structure of AuNP-pHLIP conjugates and fundamental gold-peptide interactions still remain unknown. In this study, we have developed a series of molecular dynamics (MD) models reproducing a small gold nanoparticle coupled to pHLIP. We focus on Au135 nanoparticles that comprise a nearly spherical Au core (diameter ∼ 1.4 nm) functionalized with a monomaleimide moiety, mimicking a commercially available monomaleimido NANOGOLD® labelling agent. To probe the structure and folding of pHLIP, which is attached covalently to the maleimide NANOGOLD particle, we have benchmarked the performances of a series of popular, all-atom force fields (FF), including those of OPLS-AA, AMBER03, three variations of CHARMM FFs, as well as united-atom GROMOS G53A6 FF. We found that CHARMMs and OPLSAA FFs predict that in an aqueous salt solution at a neutral pH, pHLIP is partially bound onto the gold surface through some short hydrophobic peptide stretches, while at the same time, a large portion of peptide remains in solution. In contrast, AMBER03 and G53A6 FFs revealed the formation of compact, tightly bound peptide configurations adsorbed onto the nanoparticle core. To reproduce the experimental physical picture of the peptide adsorption onto gold in unfolded and unstructured conformations, our study suggests CHARMM36 and OPLS-AA FFs as a tool of choice for the computational studies of NANOGOLD decorated by pHLIP.

  5. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.

    PubMed

    Zhang, Luzheng; Zybin, Sergey V; van Duin, Adri C T; Dasgupta, Siddharth; Goddard, William A; Kober, Edward M

    2009-10-08

    We report molecular dynamics (MD) simulations using the first-principles-based ReaxFF reactive force field to study the thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at various densities and temperatures. TATB is known to produce a large amount (15-30%) of high-molecular-weight carbon clusters, whereas detonation of nitramines such as HMX and RDX (1,3,5-trinitroperhydro-1,3,5-triazine) generate predominantly low-molecular-weight products. In agreement with experimental observation, these simulations predict that TATB decomposition quickly (by 30 ps) initiates the formation of large carbonaceous clusters (more than 4000 amu, or approximately 15-30% of the total system mass), and HMX decomposition leads almost exclusively to small-molecule products. We find that HMX decomposes readily on this time scale at lower temperatures, for which the decomposition rate of TATB is about an order of magnitude slower. Analyzing the ReaxFF MD results leads to the detailed atomistic structure of this carbon-rich phase of TATB and allows characterization of the kinetics and chemistry related to this phase and their dependence on system density and temperature. The carbon-rich phase formed from TATB contains mainly polyaromatic rings with large oxygen content, leading to graphitic regions. We use these results to describe the initial reaction steps of thermal decomposition of HMX and TATB in terms of the rates for forming primary and secondary products, allowing comparison to experimentally derived models. These studies show that MD using the ReaxFF reactive force field provides detailed atomistic information that explains such macroscopic observations as the dramatic difference in carbon cluster formation between TATB and HMX. This shows that ReaxFF MD captures the fundamental differences in the mechanisms of such systems and illustrates how the ReaxFF may be applied to model complex chemical phenomena

  6. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    DOE PAGES

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; ...

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find themore » optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.« less

  7. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.

    PubMed

    Lee, Jumin; Cheng, Xi; Swails, Jason M; Yeom, Min Sun; Eastman, Peter K; Lemkul, Justin A; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S; Case, David A; Brooks, Charles L; MacKerell, Alexander D; Klauda, Jeffery B; Im, Wonpil

    2016-01-12

    Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  8. Combination Rules for Morse-Based van der Waals Force Fields.

    PubMed

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  9. Nespoli performs periodic maintenance on the PuFF Experiment

    NASA Image and Video Library

    2011-02-14

    ISS026-E-027009 (14 Feb. 2011) --- European Space Agency (ESA) astronaut Paolo Nespoli, Expedition 26 flight engineer, performs periodic maintenance on the Pulmonary Function in Flight (PuFF) experiment by re-greasing the PuFF calibration syringe in the Columbus laboratory of the International Space Station.

  10. Developing the Pulsed Fission-Fusion (PuFF) Engine

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey

    2014-01-01

    In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.

  11. Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF

    DOE PAGES

    Ostadhossein, Alireza; Cubuk, Ekin D.; Tritsaris, Georgios A.; ...

    2014-12-18

    Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. In this research, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations showmore » that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si–Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous–crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of the reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ~4.2:1. In conclusion, our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation.« less

  12. π -Stacking interactions in YFP, quantum mechanics and force field evaluations in the S0 and S1 states

    NASA Astrophysics Data System (ADS)

    Merabti, Karim Elhadj; Azizi, Sihem; Ridard, Jacqueline; Lévy, Bernard; Demachy, Isabelle

    2017-08-01

    We study the π -stacking interaction between the chromophore and Tyr203 in the Yellow Fluorescent Protein (YFP) in order to (i) evaluate the contribution of the internal interaction energy of the isolated Chromophore-Tyrosine complex (Eint) to the 26 nm red shift observed from GFP to YFP, (ii) compare the effects of Eint and of the proteic environment. To that end, we perform quantum mechanical and force field (ff) calculations of the isolated complex in S0 and S1 states on a large sample of geometries, together with molecular dynamics simulations and potential of mean force analysis. The calculated absorption wavelengths are found red shifted with respect to the isolated chromophore by 12-19 nm, that represents a large part of the GFP-YFP shift. We find that the effect of the protein is determinant on the dynamics of the complex while the error that results from using a classicalff is of limited effect.

  13. 6. FF coal pulverizer (ball mill inside). GG building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FF coal pulverizer (ball mill inside). GG building in background did preliminary crushing; pulverizer to left, coal conveyor and air cleaning towers to right; conveyor on left brought crushed coal to FF. Looking north/northeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  14. "Atypical" chronic wasting disease in PRNP genotype 225FF mule deer.

    PubMed

    Wolfe, Lisa L; Fox, Karen A; Miller, Michael W

    2014-07-01

    We compared mule deer (Odocoileus hemionus) of two different PRNP genotypes (225SS, 225FF) for susceptibility to chronic wasting disease (CWD) in the face of environmental exposure to infectivity. All three 225SS deer had immunohistochemistry (IHC)-positive tonsil biopsies by 710 days postexposure (dpe), developed classic clinical signs by 723-1,200 dpe, and showed gross and microscopic pathology, enzyme-linked immunosorbent assay (ELISA) results, and IHC staining typical of prion disease in mule deer. In contrast, although all three 225FF deer also became infected, the two individuals surviving >720 dpe had consistently negative biopsies, developed more-subtle clinical signs of CWD, and died 924 or 1,783 dpe. The 225FF deer were "suspect" by ELISA postmortem but showed negative or equivocal IHC staining of lymphoid tissues; both clinically affected 225FF deer had spongiform encephalopathy in the absence of IHC staining in the brain tissue. The experimental cases resembled three cases encountered among five additional captive 225FF deer that were not part of our experiment but also died from CWD. Aside from differences in clinical disease presentation and detection, 225FF mule deer also showed other, more-subtle, atypical traits that may help to explain the rarity of this genotype in natural populations, even in the presence of enzootic CWD.

  15. Liquid Adsorption of Organic Compounds on Hematite α-Fe2O3 Using ReaxFF.

    PubMed

    Chia, Chung-Lim; Avendaño, Carlos; Siperstein, Flor R; Filip, Sorin

    2017-10-24

    ReaxFF-based molecular dynamics simulations are used in this work to study the effect of the polarity of adsorbed molecules in the liquid phase on the structure and polarization of hematite (α-Fe 2 O 3 ). We compared the adsorption of organic molecules with different polarities on a rigid hematite surface and on a flexible and polarizable surface. We show that the displacements of surface atoms and surface polarization in a flexible hematite model are proportional to the adsorbed molecule's polarity. The increase in electrostatic interactions resulting from charge transfer in the outermost solid atoms in a flexible hematite model results in better-defined adsorbed layers that are less ordered than those obtained assuming a rigid solid. These results suggest that care must be taken when parametrizing empirical transferable force fields because the calculated charges on a solid slab in vacuum may not be representative of a real system, especially when the solid is in contact with a polar liquid.

  16. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    DOE PAGES

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    2016-10-04

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study.more » Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2/H 2O binary mixtures are computationally studied here for the first time and their critical parameters are reported.« less

  17. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study.more » Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2/H 2O binary mixtures are computationally studied here for the first time and their critical parameters are reported.« less

  18. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    PubMed

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    , treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields.

  19. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant

    PubMed Central

    2011-01-01

    , treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields. PMID:22241968

  20. Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF.

    PubMed

    Rom, Naomi; Zybin, Sergey V; van Duin, Adri C T; Goddard, William A; Zeiri, Yehuda; Katz, Gil; Kosloff, Ronnie

    2011-09-15

    The decomposition mechanism of hot liquid nitromethane at various compressions was studied using reactive force field (ReaxFF) molecular dynamics simulations. A competition between two different initial thermal decomposition schemes is observed, depending on compression. At low densities, unimolecular C-N bond cleavage is the dominant route, producing CH(3) and NO(2) fragments. As density and pressure rise approaching the Chapman-Jouget detonation conditions (∼30% compression, >2500 K) the dominant mechanism switches to the formation of the CH(3)NO fragment via H-transfer and/or N-O bond rupture. The change in the decomposition mechanism of hot liquid NM leads to a different kinetic and energetic behavior, as well as products distribution. The calculated density dependence of the enthalpy change correlates with the change in initial decomposition reaction mechanism. It can be used as a convenient and useful global parameter for the detection of reaction dynamics. Atomic averaged local diffusion coefficients are shown to be sensitive to the reactions dynamics, and can be used to distinguish between time periods where chemical reactions occur and diffusion-dominated, nonreactive time periods. © 2011 American Chemical Society

  1. Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA

    PubMed Central

    2015-01-01

    Molecular mechanics with all-atom models was used to understand the conformational preference of tandem guanine-adenine (GA) noncanonical pairs in RNA. These tandem GA pairs play important roles in determining stability, flexibility, and structural dynamics of RNA tertiary structures. Previous solution structures showed that these tandem GA pairs adopt either imino (cis Watson–Crick/Watson–Crick A-G) or sheared (trans Hoogsteen/sugar edge A-G) conformations depending on the sequence and orientation of the adjacent closing base pairs. The solution structures (GCGGACGC)2 [Biochemistry, 1996, 35, 9677–9689] and (GCGGAUGC)2 [Biochemistry, 2007, 46, 1511–1522] demonstrate imino and sheared conformations for the two central GA pairs, respectively. These systems were studied using molecular dynamics and free energy change calculations for conformational changes, using umbrella sampling. For the structures to maintain their native conformations during molecular dynamics simulations, a modification to the standard Amber ff10 force field was required, which allowed the amino group of guanine to leave the plane of the base [J. Chem. Theory Comput., 2009, 5, 2088–2100] and form out-of-plane hydrogen bonds with a cross-strand cytosine or uracil. The requirement for this modification suggests the importance of out-of-plane hydrogen bonds in stabilizing the native structures. Free energy change calculations for each sequence demonstrated the correct conformational preference when the force field modification was used, but the extent of the preference is underestimated. PMID:24803859

  2. Interchain hydrophobic clustering promotes rigidity in HIV-1 protease flap dynamics: new insights from molecular dynamics.

    PubMed

    Meher, Biswa Ranjan; Kumar, Mattaparthi Venkata Satish; Bandyopadhyay, Pradipta

    2014-01-01

    The dynamics of HIV-1 protease (HIV-pr), a drug target for HIV infection, has been studied extensively by both computational and experimental methods. The flap dynamics of HIV-pr is considered to be more important for better ligand binding and enzymatic actions. Moreover, it has been demonstrated that the drug-induced mutations can change the flap dynamics of HIV-pr affecting the binding affinity of the ligands. Therefore, detailed understanding of flap dynamics is essential for designing better inhibitors. Previous computational investigations observed significant variation in the flap opening in nanosecond time scale indicating that the dynamics is highly sensitive to the simulation protocols. To understand the sensitivity of the flap dynamics on the force field and simulation protocol, molecular dynamics simulations of HIV-pr have been performed with two different AMBER force fields, ff99 and ff02. Two different trajectories (20 ns each) were obtained using the ff99 and ff02 force field. The results showed polarizable force field (ff02) make the flap tighter than the nonpolarizable force field (ff99). Some polar interactions and hydrogen bonds involving flap residues were found to be stronger with ff02 force field. The formation of interchain hydrophobic cluster (between flap tip of one chain and active site wall of another chain) was found to be dominant in the semi-open structures obtained from the simulations irrespective of the force field. It is proposed that an inhibitor, which will promote this interchain hydrophobic clustering, may make the flaps more rigid, and presumably the effect of mutation would be small on ligand binding.

  3. Digital fundus image grading with the non-mydriatic Visucam(PRO NM) versus the FF450(plus) camera in diabetic retinopathy.

    PubMed

    Neubauer, Aljoscha S; Rothschuh, Antje; Ulbig, Michael W; Blum, Marcus

    2008-03-01

    Grading diabetic retinopathy in clinical trials is frequently based on 7-field stereo photography of the fundus in diagnostic mydriasis. In terms of image quality, the FF450(plus) camera (Carl Zeiss Meditec AG, Jena, Germany) defines a high-quality reference. The aim of the study was to investigate if the fully digital fundus camera Visucam(PRO NM) could serve as an alternative in clinical trials requiring 7-field stereo photography. A total of 128 eyes of diabetes patients were enrolled in the randomized, controlled, prospective trial. Seven-field stereo photography was performed with the Visucam(PRO NM) and the FF450(plus) camera, in random order, both in diagnostic mydriasis. The resulting 256 image sets from the two camera systems were graded for retinopathy levels and image quality (on a scale of 1-5); both were anonymized and blinded to the image source. On FF450(plus) stereoscopic imaging, 20% of the patients had no or mild diabetic retinopathy (ETDRS level < or = 20) and 29% had no macular oedema. No patient had to be excluded as a result of image quality. Retinopathy level did not influence the quality of grading or of images. Excellent overall correspondence was obtained between the two fundus cameras regarding retinopathy levels (kappa 0.87) and macular oedema (kappa 0.80). In diagnostic mydriasis the image quality of the Visucam was graded slightly as better than that of the FF450(plus) (2.20 versus 2.41; p < 0.001), especially for pupils < 7 mm in mydriasis. The non-mydriatic Visucam(PRO NM) offers good image quality and is suitable as a more cost-efficient and easy-to-operate camera for applications and clinical trials requiring 7-field stereo photography.

  4. Current Status of Protein Force Fields for Molecular Dynamics

    PubMed Central

    Lopes, Pedro E.M.; Guvench, Olgun

    2015-01-01

    Summary The current status of classical force fields for proteins is reviewed. These include additive force fields as well as the latest developments in the Drude and AMOEBA polarizable force fields. Parametrization strategies developed specifically for the Drude force field are described and compared with the additive CHARMM36 force field. Results from molecular simulations of proteins and small peptides are summarized to illustrate the performance of the Drude and AMOEBA force fields. PMID:25330958

  5. FF12MC: A revised AMBER forcefield and new protein simulation protocol

    PubMed Central

    2016-01-01

    ABSTRACT Specialized to simulate proteins in molecular dynamics (MD) simulations with explicit solvation, FF12MC is a combination of a new protein simulation protocol employing uniformly reduced atomic masses by tenfold and a revised AMBER forcefield FF99 with (i) shortened C—H bonds, (ii) removal of torsions involving a nonperipheral sp3 atom, and (iii) reduced 1–4 interaction scaling factors of torsions ϕ and ψ. This article reports that in multiple, distinct, independent, unrestricted, unbiased, isobaric–isothermal, and classical MD simulations FF12MC can (i) simulate the experimentally observed flipping between left‐ and right‐handed configurations for C14–C38 of BPTI in solution, (ii) autonomously fold chignolin, CLN025, and Trp‐cage with folding times that agree with the experimental values, (iii) simulate subsequent unfolding and refolding of these miniproteins, and (iv) achieve a robust Z score of 1.33 for refining protein models TMR01, TMR04, and TMR07. By comparison, the latest general‐purpose AMBER forcefield FF14SB locks the C14–C38 bond to the right‐handed configuration in solution under the same protein simulation conditions. Statistical survival analysis shows that FF12MC folds chignolin and CLN025 in isobaric–isothermal MD simulations 2–4 times faster than FF14SB under the same protein simulation conditions. These results suggest that FF12MC may be used for protein simulations to study kinetics and thermodynamics of miniprotein folding as well as protein structure and dynamics. Proteins 2016; 84:1490–1516. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27348292

  6. Lipid14: The Amber Lipid Force Field

    PubMed Central

    2015-01-01

    The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields. PMID:24803855

  7. Force Field for Water Based on Neural Network.

    PubMed

    Wang, Hao; Yang, Weitao

    2018-05-18

    We developed a novel neural network based force field for water based on training with high level ab initio theory. The force field was built based on electrostatically embedded many-body expansion method truncated at binary interactions. Many-body expansion method is a common strategy to partition the total Hamiltonian of large systems into a hierarchy of few-body terms. Neural networks were trained to represent electrostatically embedded one-body and two-body interactions, which require as input only one and two water molecule calculations at the level of ab initio electronic structure method CCSD/aug-cc-pVDZ embedded in the molecular mechanics water environment, making it efficient as a general force field construction approach. Structural and dynamic properties of liquid water calculated with our force field show good agreement with experimental results. We constructed two sets of neural network based force fields: non-polarizable and polarizable force fields. Simulation results show that the non-polarizable force field using fixed TIP3P charges has already behaved well, since polarization effects and many-body effects are implicitly included due to the electrostatic embedding scheme. Our results demonstrate that the electrostatically embedded many-body expansion combined with neural network provides a promising and systematic way to build the next generation force fields at high accuracy and low computational costs, especially for large systems.

  8. Competition among Li+, Na+, K+ and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations using the Additive CHARMM36 and Drude Polarizable Force Fields

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions. The optimized ionic parameters are validated against counterion condensation theory and buffer exchange-atomic emission spectroscopy measurements providing quantitative data on the competitive association of different monovalent ions with DNA. Comparison between experimental and MD simulation results demonstrates that, compared to the additive CHARMM36 model, the Drude FF provides an improved description of the general features of the ionic atmosphere around DNA and leads to closer agreement with experiment on the ionic competition within the ion atmosphere. Results indicate the importance of extended simulation systems on the order of 25 Å beyond the DNA surface to obtain proper convergence of ion distributions. PMID:25751286

  9. Recent Developments and Applications of the CHARMM force fields

    PubMed Central

    Zhu, Xiao; Lopes, Pedro E.M.; MacKerell, Alexander D.

    2011-01-01

    Empirical force fields commonly used to describe the condensed phase properties of complex systems such as biological macromolecules are continuously being updated. Improvements in quantum mechanical (QM) methods used to generate target data, availability of new experimental target data, incorporation of new classes of compounds and new theoretical developments (eg. polarizable methods) make force-field development a dynamic domain of research. Accordingly, a number of improvements and extensions of the CHARMM force fields have occurred over the years. The objective of the present review is to provide an up-to-date overview of the CHARMM force fields. A limited presentation on the historical aspects of force fields will be given, including underlying methodologies and principles, along with a brief description of the strategies used for parameter development. This is followed by information on the CHARMM additive and polarizable force fields, including examples of recent applications of those force fields. PMID:23066428

  10. 78 FR 60306 - Aquatic Nuisance Species Task Force Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...-FF09F14000-134] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife Service, Interior... the Aquatic Nuisance Species (ANS) Task Force. The ANS Task Force's purpose is to develop and... Task Force will meet from 8 a.m. to 4:30 p.m. on Wednesday, November 6, through Thursday, November 7...

  11. Development of a Charge-Implicit ReaxFF Potential for Hydrocarbon Systems.

    PubMed

    Kański, Michał; Maciążek, Dawid; Postawa, Zbigniew; Ashraf, Chowdhury M; van Duin, Adri C T; Garrison, Barbara J

    2018-01-18

    Molecular dynamics (MD) simulations continue to make important contributions to understanding chemical and physical processes. Concomitant with the growth of MD simulations is the need to have interaction potentials that both represent the chemistry of the system and are computationally efficient. We propose a modification to the ReaxFF potential for carbon and hydrogen that eliminates the time-consuming charge equilibration, eliminates the acknowledged flaws of the electronegativity equalization method, includes an expanded training set for condensed phases, has a repulsive wall for simulations of energetic particle bombardment, and is compatible with the LAMMPS code. This charge-implicit ReaxFF potential is five times faster than the conventional ReaxFF potential for a simulation of keV particle bombardment with a sample size of over 800 000 atoms.

  12. AdaFF: Adaptive Failure-Handling Framework for Composite Web Services

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Lee, Wan Yeon; Kim, Kyong Hoon; Kim, Jong

    In this paper, we propose a novel Web service composition framework which dynamically accommodates various failure recovery requirements. In the proposed framework called Adaptive Failure-handling Framework (AdaFF), failure-handling submodules are prepared during the design of a composite service, and some of them are systematically selected and automatically combined with the composite Web service at service instantiation in accordance with the requirement of individual users. In contrast, existing frameworks cannot adapt the failure-handling behaviors to user's requirements. AdaFF rapidly delivers a composite service supporting the requirement-matched failure handling without manual development, and contributes to a flexible composite Web service design in that service architects never care about failure handling or variable requirements of users. For proof of concept, we implement a prototype system of the AdaFF, which automatically generates a composite service instance with Web Services Business Process Execution Language (WS-BPEL) according to the users' requirement specified in XML format and executes the generated instance on the ActiveBPEL engine.

  13. TRANSMISSION OF COMPOSITE POLYMERIZATION CONTRACTION FORCE THROUGH A FLOWABLE COMPOSITE AND A RESIN-MODIFIED GLASS IONOMER CEMENT

    PubMed Central

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-01-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  14. 78 FR 29378 - Aquatic Nuisance Species Task Force; Public Teleconference/Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...-FF09F14000-134] Aquatic Nuisance Species Task Force; Public Teleconference/ Webinar AGENCY: Fish and Wildlife... teleconference/webinar of the Aquatic Nuisance Species Task Force (ANS Task Force). The ANS Task Force's purpose... aquatic nuisance species; to monitor, control, and study such species; and to disseminate related...

  15. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields

    PubMed Central

    Karniel, Amir; Nisky, Ilana

    2015-01-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. PMID:25717155

  16. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    PubMed

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  17. 77 FR 61019 - Aquatic Nuisance Species Task Force Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ..., Cost Center: FF09F14000, Fund: 134] Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and... Aquatic Nuisance Species (ANS) Task Force. The ANS Task Force's purpose is to develop and implement a.... DATES: The ANS Task Force will meet from 8:30 a.m. to 5:00 p.m. Wednesday November 14, and from 8:30 a.m...

  18. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: a molecular dynamics simulation study using the ReaxFF.

    PubMed

    Bedrov, Dmitry; Smith, Grant D; van Duin, Adri C T

    2012-03-22

    We have conducted quantum chemistry calculations and gas- and solution-phase reactive molecular dynamics simulation studies of reactions involving the ethylene carbonate (EC) radical anion EC(-) using the reactive force field ReaxFF. Our studies reveal that the substantial barrier for transition from the closed (cyclic) form, denoted c-EC(-), of the radical anion to the linear (open) form, denoted o-EC(-), results in a relatively long lifetime of the c-EC(-) allowing this compound to react with other singly reduced alkyl carbonates. Using ReaxFF, we systematically investigate the fate of both c-EC(-) and o-EC(-) in the gas phase and EC solution. In the gas phase and EC solutions with a relatively low concentration of Li(+)/x-EC(-) (where x = o or c), radical termination reactions between radical pairs to form either dilithium butylene dicarbonate (CH(2)CH(2)OCO(2)Li)(2) (by reacting two Li(+)/o-EC(-)) or ester-carbonate compound (by reacting Li(+)/o-EC(-) with Li(+)/c-EC(-)) are observed. At higher concentrations of Li(+)/x-EC(-) in solution, we observe the formation of diradicals which subsequently lead to formation of longer alkyl carbonates oligomers through reaction with other radicals or, in some cases, formation of (CH(2)OCO(2)Li)(2) through elimination of C(2)H(4). We conclude that the local ionic concentration is important in determining the fate of x-EC(-) and that the reaction of c-EC(-) with o-EC(-) may compete with the formation of various alkyl carbonates from o-EC(-)/o-EC(-) reactions. © 2012 American Chemical Society

  19. Radiation Characterization Summary: ACRR Central Cavity Free-Field Environment with the 32-Inch Pedestal at the Core Centerline (ACRR-FF-CC-32-cl).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, Richard Manuel; Parma, Edward J.; Naranjo, Gerald E.

    2015-08-01

    This document presents the facilit y - recommended characteri zation o f the neutron, prompt gamma - ray, and delayed gamma - ray radiation fields in the Annular Core Research Reactor ( ACRR ) for the cen tral cavity free - field environment with the 32 - inch pedestal at the core centerline. The designation for this environmen t is ACRR - FF - CC - 32 - cl. The neutron, prompt gamma - ray , and delayed gamma - ray energy spectra , uncertainties, and covariance matrices are presented as well as radial and axial neutron and gamma -more » ray fluence profiles within the experiment area of the cavity . Recommended constants are given to facilitate the conversion of various dosimetry readings into radiation metrics desired by experimenters. Representative pulse operations are presented with conversion examples . Acknowledgements The authors wish to th ank the Annular Core Research Reactor staff and the Radiation Metrology Laboratory staff for their support of this work . Also thanks to David Ames for his assistance in running MCNP on the Sandia parallel machines.« less

  20. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: V. Complicated effects of counterions.

    PubMed

    Liu, Na; Yu, Linling; Sun, Yan

    2015-07-24

    In the previous studies on protein adsorption to poly(ethylenimine) (PEI)-grafted Sepharose FF resins, a critical ionic capacity (600mmol/L) of PEI-Sepharose resins was found for the adsorption of bovine serum albumin (BSA), above which both protein capacity and uptake rate increased drastically. In this work, the influence of counterions on the PEI-Sepharose resin with an ionic capacity of 683mmol/L (FF-PEI-L680) was investigated with sodium salts of SCN(-), Cl(-), HPO4(2-) and SO4(2-). Linear gradient elution, batch adsorption and breakthrough experiments showed that counterion preference, effective pore diffusion coefficient (De) and dynamic binding capacity (DBC) values increased in the order of SCN(-), Cl(-), HPO4(2-) and SO4(2-), while static adsorption capacity decreased in this order. It is considered that higher counterion preference of the ion exchange groups resulted in lower protein binding strength and adsorption capacity, while the De value increased due to the enhanced "chain delivery" effect (a kind of surface diffusion). Besides, the DBC value was mainly dependent on De value. In particular, SO4(2-) was the most favorable counterion for the PEI-Sepharose resin, which gave rise to the highest De value (De/D0=1.17, D0 is protein diffusivity in free solution) and DBC value (118mg/mL at a residence time of 2min). Moreover, the effects of counterions on BSA adsorption to DEAE Sepharose FF and Q Sepharose FF, which were non-grafted resins, were also studied for comparisons. It was found that the counterion preferences of the two non-grafted resins were different from each other and also different from that of FF-PEI-L680. The different counterion preferences were attributed to the differences in the ion-exchange ligand chemistries. In addition, the De values for DEAE Sepharose FF and Q Sepharose FF kept unchanged. The low counterion sensitivity of De values could be interpreted as the lack of "chain delivery" effect for the non-grafted resins. The

  1. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  2. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  3. Intrinsically Disordered Protein Specific Force Field CHARMM36IDPSFF.

    PubMed

    Liu, Hao; Song, Dong; Lu, Hui; Luo, Ray; Chen, Hai-Feng

    2018-05-28

    Intrinsically disordered proteins (IDPs) are closely related to various human diseases. Because IDPs lack certain tertiary structure, it is difficult to use X-ray and NMR methods to measure their structures. Therefore, molecular dynamics simulation is a useful tool to study the conformer distribution of IDPs. However, most generic protein force fields were found to be insufficient in simulations of IDPs. Here we report our development for the CHARMM community. Our residue-specific IDP force field (CHARMM36IDPSFF) was developed based on the base generic force field with CMAP corrections of for all 20 naturally occurring amino acids. Multiple tests show that the simulated chemical shifts with the newly developed force field are in quantitative agreement with NMR experiment and are more accurate than the base generic force field. Comparison of J-couplings with previous work shows that CHARMM36IDPSFF and its corresponding base generic force field have their own advantages. In addition, CHARMM36IDPSFF simulations also agree with experiment for SAXS profiles and radii of gyration of IDPs. Detailed analysis shows that CHARMM36IDPSFF can sample more diverse and disordered conformers. These findings confirm that the newly developed force field can improve the balance of accuracy and efficiency for the conformer sampling of IDPs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Controlling Casimir force via coherent driving field

    NASA Astrophysics Data System (ADS)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  5. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  6. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  7. Hierarchical atom type definitions and extensible all-atom force fields.

    PubMed

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. A force field for dynamic Cu-BTC metal-organic framework.

    PubMed

    Zhao, Lei; Yang, Qingyuan; Ma, Qintian; Zhong, Chongli; Mi, Jianguo; Liu, Dahuan

    2011-02-01

    A new force field that can describe the flexibility of Cu-BTC metal-organic framework (MOF) was developed in this work. Part of the parameters were obtained using density functional theory calculations, and the others were taken from other force fields. The new force field could reproduce well the experimental crystal structure, negative thermal expansion, vibrational properties as well as adsorption behavior in Cu-BTC. In addition, the bulk modulus of Cu-BTC was predicted using the new force field. We believe the new force field is useful in understanding the structure-property relationships for MOFs, and the approach can be extended to other MOFs.

  9. Ponderomotive Force in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  10. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    PubMed

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  11. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  12. Comparing Molecular Dynamics Force Fields in the Essential Subspace

    PubMed Central

    Gomez-Puertas, Paulino; Boomsma, Wouter; Lindorff-Larsen, Kresten

    2015-01-01

    The continued development and utility of molecular dynamics simulations requires improvements in both the physical models used (force fields) and in our ability to sample the Boltzmann distribution of these models. Recent developments in both areas have made available multi-microsecond simulations of two proteins, ubiquitin and Protein G, using a number of different force fields. Although these force fields mostly share a common mathematical form, they differ in their parameters and in the philosophy by which these were derived, and previous analyses showed varying levels of agreement with experimental NMR data. To complement the comparison to experiments, we have performed a structural analysis of and comparison between these simulations, thereby providing insight into the relationship between force-field parameterization, the resulting ensemble of conformations and the agreement with experiments. In particular, our results show that, at a coarse level, many of the motional properties are preserved across several, though not all, force fields. At a finer level of detail, however, there are distinct differences in both the structure and dynamics of the two proteins, which can, together with comparison with experimental data, help to select force fields for simulations of proteins. A noteworthy observation is that force fields that have been reparameterized and improved to provide a more accurate energetic description of the balance between helical and coil structures are difficult to distinguish from their “unbalanced” counterparts in these simulations. This observation implies that simulations of stable, folded proteins, even those reaching 10 microseconds in length, may provide relatively little information that can be used to modify torsion parameters to achieve an accurate balance between different secondary structural elements. PMID:25811178

  13. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    PubMed Central

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  14. ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal-organic framework.

    PubMed

    Huang, Liangliang; Joshi, Kaushik L; van Duin, Adri C T; Bandosz, Teresa J; Gubbins, Keith E

    2012-08-28

    The thermal stability of a dehydrated Cu(3)(BTC)(2) (copper(II) benzene 1,3,5-tricarboxylate) metal-organic framework was studied by molecular dynamics simulation with a ReaxFF reactive force field. The results show that Cu(3)(BTC)(2) is thermally stable up to 565 K. When the temperature increases between 600 K and 700 K, the framework starts to partially collapse. The RDF analysis shows that the long range correlations between Cu dimers disappear, indicating the loss of the main channels of Cu(3)(BTC)(2). When the temperature is above 800 K, we find the decomposition of the Cu(3)(BTC)(2) framework. CO is the major product, and we also observe the release of CO(2), O(2), 1,3,5-benzenetricarboxylate (C(6)H(3)(CO(2))(3), BTC) and glassy carbon. The Cu dimer is stable up to 1100 K, but we find the formation of new copper oxide clusters at 1100 K. These results are consistent with experimental findings, and provide valuable information for future theoretical investigations of Cu(3)(BTC)(2) and its application in adsorption, separation and catalytic processes.

  15. Final report of the APMP water flow key comparison: APMP.M.FF-K1

    NASA Astrophysics Data System (ADS)

    Lee, Kwang-Bock; Chun, Sejong; Terao, Yoshiya; Thai, Nguyen Hong; Tsair Yang, Cheng; Tao, Meng; Gutkin, Mikhail B.

    2011-01-01

    The key comparison, APMP.M.FF-K1, was undertaken by APMP/TCFF, the Technical Committee for Fluid Flow (TCFF) under the Asia Pacific Metrology Program (APMP). One objective of the key comparison was to demonstrate the degree of equivalence among six participating laboratories (KRISS, NMIJ, VMI, CMS, NIM and VNIIM) in water flow rate metrology by comparing the results with the key comparison reference value (KCRV) determined from the CCM.FF-K1 key comparison. The other objective of this key comparison was to provide supporting evidence for the calibration and measurement capabilities (CMCs), which had been declared by the participating laboratories during this key comparison. The Transfer Standard Package (TSP) was a Coriolis mass flowmeter, which had been used in the CCM.FF-K1 key comparison. Because the K-factors in the APMP.M.FF-K1 key comparison were slightly lower than the K-factors of the CCM.FF-K1 key comparison due to long-term drifts of the TSP, a correction value D was introduced. The value of D was given by a weighted sum between two link laboratories (NMIJ and KRISS), which participated in both the CCM.FF-K1 and the APMP.M.FF-K1 key comparisons. By this correction, the K-factors were laid between 12.004 and 12.017 at either low (Re = 254 000) or high (Re = 561 000) flow rates. Most of the calibration data were within expected uncertainty bounds. However, some data showed undulations, which gave large fluctuations of the metering factor at Re = 561 000. Calculation of degrees of equivalence showed that all the participating laboratories had deviations between -0.009 and 0.007 pulses/kg from the CCM.FF-K1 KCRV at either the low or the high flow rates. In case of En calculation, all the participating laboratories showed values less than 1, indicating that the corrected K-factors of all the laboratories were equivalent with the KCRV at both Re = 254 000 and 561 000. When the corrected K-factors from two participating laboratories were compared, all the

  16. Preface: Special Topic: From Quantum Mechanics to Force Fields.

    PubMed

    Piquemal, Jean-Philip; Jordan, Kenneth D

    2017-10-28

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  17. Preface: Special Topic: From Quantum Mechanics to Force Fields

    NASA Astrophysics Data System (ADS)

    Piquemal, Jean-Philip; Jordan, Kenneth D.

    2017-10-01

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  18. Systematic Validation of Protein Force Fields against Experimental Data

    PubMed Central

    Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2012-01-01

    Molecular dynamics simulations provide a vehicle for capturing the structures, motions, and interactions of biological macromolecules in full atomic detail. The accuracy of such simulations, however, is critically dependent on the force field—the mathematical model used to approximate the atomic-level forces acting on the simulated molecular system. Here we present a systematic and extensive evaluation of eight different protein force fields based on comparisons of experimental data with molecular dynamics simulations that reach a previously inaccessible timescale. First, through extensive comparisons with experimental NMR data, we examined the force fields' abilities to describe the structure and fluctuations of folded proteins. Second, we quantified potential biases towards different secondary structure types by comparing experimental and simulation data for small peptides that preferentially populate either helical or sheet-like structures. Third, we tested the force fields' abilities to fold two small proteins—one α-helical, the other with β-sheet structure. The results suggest that force fields have improved over time, and that the most recent versions, while not perfect, provide an accurate description of many structural and dynamical properties of proteins. PMID:22384157

  19. Validating empirical force fields for molecular-level simulation of cellulose dissolution

    USDA-ARS?s Scientific Manuscript database

    The calculations presented here, which include dynamics simulations using analytical force fields and first principles studies, indicate that the COMPASS force field is preferred over the Dreiding and Universal force fields for studying dissolution of large cellulose structures. The validity of thes...

  20. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.

    2015-05-19

    A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  1. Alternating Magnetic Field Forces for Satellite Formation Flying

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stnaley O.

    2012-01-01

    Selected future space missions, such as large aperture telescopes and multi-component interferometers, will require the precise positioning of a number of isolated satellites, yet many of the suggested approaches for providing satellites positioning forces have serious limitations. In this paper we propose a new approach, capable of providing both position and orientation forces, that resolves or alleviates many of these problems. We show that by using alternating fields and currents that finely-controlled forces can be induced on the satellites, which can be individually selected through frequency allocation. We also show, through analysis and experiment, that near field operation is feasible and can provide sufficient force and the necessary degrees of freedom to accurately position and orient small satellites relative to one another. In particular, the case of a telescope with a large number of free mirrors is developed to provide an example of the concept. We. also discuss the far field extension of this concept.

  2. How accurately do force fields represent protein side chain ensembles?

    PubMed

    Petrović, Dušan; Wang, Xue; Strodel, Birgit

    2018-05-23

    Although the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  3. Descriptions and Implementations of DL_F Notation: A Natural Chemical Expression System of Atom Types for Molecular Simulations.

    PubMed

    Yong, Chin W

    2016-08-22

    DL_F Notation is an easy-to-understand, standardized atom typesetting expression for molecular simulations for a range of organic force field (FF) schemes such as OPLSAA, PCFF, and CVFF. It is implemented within DL_FIELD, a software program that facilitates the setting up of molecular FF models for DL_POLY molecular dynamics simulation software. By making use of the Notation, a single core conversion module (the DL_F conversion Engine) implemented within DL_FIELD can be used to analyze a molecular structure and determine the types of atoms for a given FF scheme. Users only need to provide the molecular input structure in a simple xyz format and DL_FIELD can produce the necessary force field file for DL_POLY automatically. In commensurate with the development concept of DL_FIELD, which placed emphasis on robustness and user friendliness, the Engine provides a single-step solution to setup complex FF models. This allows users to switch from one of the above-mentioned FF seamlessly to another while at the same time provides a consistent atom typing that is expressed in a natural chemical sense.

  4. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    PubMed

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement

  5. DNA Polymorphism: A Comparison of Force Fields for Nucleic Acids

    PubMed Central

    Reddy, Swarnalatha Y.; Leclerc, Fabrice; Karplus, Martin

    2003-01-01

    The improvements of the force fields and the more accurate treatment of long-range interactions are providing more reliable molecular dynamics simulations of nucleic acids. The abilities of certain nucleic acid force fields to represent the structural and conformational properties of nucleic acids in solution are compared. The force fields are AMBER 4.1, BMS, CHARMM22, and CHARMM27; the comparison of the latter two is the primary focus of this paper. The performance of each force field is evaluated first on its ability to reproduce the B-DNA decamer d(CGATTAATCG)2 in solution with simulations in which the long-range electrostatics were treated by the particle mesh Ewald method; the crystal structure determined by Quintana et al. (1992) is used as the starting point for all simulations. A detailed analysis of the structural and solvation properties shows how well the different force fields can reproduce sequence-specific features. The results are compared with data from experimental and previous theoretical studies. PMID:12609851

  6. Hydrogen bonding and pi-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions.

    PubMed

    Paton, Robert S; Goodman, Jonathan M

    2009-04-01

    We have evaluated the performance of a set of widely used force fields by calculating the geometries and stabilization energies for a large collection of intermolecular complexes. These complexes are representative of a range of chemical and biological systems for which hydrogen bonding, electrostatic, and van der Waals interactions play important roles. Benchmark energies are taken from the high-level ab initio values in the JSCH-2005 and S22 data sets. All of the force fields underestimate stabilization resulting from hydrogen bonding, but the energetics of electrostatic and van der Waals interactions are described more accurately. OPLSAA gave a mean unsigned error of 2 kcal mol(-1) for all 165 complexes studied, and outperforms DFT calculations employing very large basis sets for the S22 complexes. The magnitude of hydrogen bonding interactions are severely underestimated by all of the force fields tested, which contributes significantly to the overall mean error; if complexes which are predominantly bound by hydrogen bonding interactions are discounted, the mean unsigned error of OPLSAA is reduced to 1 kcal mol(-1). For added clarity, web-based interactive displays of the results have been developed which allow comparisons of force field and ab initio geometries to be performed and the structures viewed and rotated in three dimensions.

  7. Evaluation of DNA Force Fields in Implicit Solvation

    PubMed Central

    Gaillard, Thomas; Case, David A.

    2011-01-01

    DNA structural deformations and dynamics are crucial to its interactions in the cell. Theoretical simulations are essential tools to explore the structure, dynamics, and thermodynamics of biomolecules in a systematic way. Molecular mechanics force fields for DNA have benefited from constant improvements during the last decades. Several studies have evaluated and compared available force fields when the solvent is modeled by explicit molecules. On the other hand, few systematic studies have assessed the quality of duplex DNA models when implicit solvation is employed. The interest of an implicit modeling of the solvent consists in the important gain in the simulation performance and conformational sampling speed. In this study, respective influences of the force field and the implicit solvation model choice on DNA simulation quality are evaluated. To this end, extensive implicit solvent duplex DNA simulations are performed, attempting to reach both conformational and sequence diversity convergence. Structural parameters are extracted from simulations and statistically compared to available experimental and explicit solvation simulation data. Our results quantitatively expose the respective strengths and weaknesses of the different DNA force fields and implicit solvation models studied. This work can lead to the suggestion of improvements to current DNA theoretical models. PMID:22043178

  8. Machine Learning Force Field Parameters from Ab Initio Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Li, Hui; Pickard, Frank C.

    Machine learning (ML) techniques with the genetic algorithm (GA) have been applied to determine a polarizable force field parameters using only ab initio data from quantum mechanics (QM) calculations of molecular clusters at the MP2/6-31G(d,p), DFMP2(fc)/jul-cc-pVDZ, and DFMP2(fc)/jul-cc-pVTZ levels to predict experimental condensed phase properties (i.e., density and heat of vaporization). The performance of this ML/GA approach is demonstrated on 4943 dimer electrostatic potentials and 1250 cluster interaction energies for methanol. Excellent agreement between the training data set from QM calculations and the optimized force field model was achieved. The results were further improved by introducing an offset factor duringmore » the machine learning process to compensate for the discrepancy between the QM calculated energy and the energy reproduced by optimized force field, while maintaining the local “shape” of the QM energy surface. Throughout the machine learning process, experimental observables were not involved in the objective function, but were only used for model validation. The best model, optimized from the QM data at the DFMP2(fc)/jul-cc-pVTZ level, appears to perform even better than the original AMOEBA force field (amoeba09.prm), which was optimized empirically to match liquid properties. The present effort shows the possibility of using machine learning techniques to develop descriptive polarizable force field using only QM data. The ML/GA strategy to optimize force fields parameters described here could easily be extended to other molecular systems.« less

  9. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field.

    PubMed

    Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S

    2013-02-12

    The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and

  10. Force-free magnetic fields - The magneto-frictional method

    NASA Technical Reports Server (NTRS)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  11. Force fields and scoring functions for carbohydrate simulation.

    PubMed

    Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye

    2015-01-12

    Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Nanomaterials for in vivo imaging of mechanical forces and electrical fields

    NASA Astrophysics Data System (ADS)

    Mehlenbacher, Randy D.; Kolbl, Rea; Lay, Alice; Dionne, Jennifer A.

    2018-02-01

    Cellular signalling is governed in large part by mechanical forces and electromagnetic fields. Mechanical forces play a critical role in cell differentiation, tissue organization and diseases such as cancer and heart disease; electrical fields are essential for intercellular communication, muscle contraction, neural signalling and sensory perception. Therefore, quantifying a biological system's forces and fields is crucial for understanding physiology and disease pathology and for developing medical tools for repair and recovery. This Review highlights advances in sensing mechanical forces and electrical fields in vivo, focusing on optical probes. The emergence of biocompatible optical probes, such as genetically encoded voltage indicators, molecular rotors, fluorescent dyes, semiconducting nanoparticles, plasmonic nanoparticles and lanthanide-doped upconverting nanoparticles, offers exciting opportunities to push the limits of spatial and temporal resolution, stability, multi-modality and stimuli sensitivity in bioimaging. We further discuss the materials design principles behind these probes and compare them across various metrics to facilitate sensor selection. Finally, we examine which advances are necessary to fully unravel the role of mechanical forces and electrical fields in vivo, such as the ability to probe the vectorial nature of forces, the development of combined force and field sensors, and the design of efficient optical actuators.

  13. Molecular Dynamics Modeling of Carbon Nanotube Composite Fracture Using ReaxFF

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2016-01-01

    Carbon nanotube (CNT) fiber reinforced composites with specific tensile strengths and moduli approaching those of aerospace grade carbon fiber composites have recently been reported. This achievement was enabled by the emerging availability of high N/tex yarns in kilometer-scale quantities. While the production of this yarn is an impressive advance, its strength is still much lower than that of the individual CNTs comprising the yarn. Closing this gap requires understanding load transfer between CNTs at the nanometer dimensional scale. This work uses reactive molecular dynamics simulations to gain an understanding at the nanometer scale of the key factors that determine CNT nanocomposite mechanical performance, and to place more realistic upper bounds on the target properties. While molecular dynamics simulations using conventional force fields can predict elastic properties, the ReaxFF reactive forcefield can also model fracture behavior because of its ability to accurately describe bond breaking and formation during a simulation. The upper and lower bounds of CNT composite properties are investigated by comparing systems composed of CNTs continuously connected across the periodic boundary with systems composed of finite length CNTs. These lengths, effectively infinite for the continuous tubes and an aspect ratio of 13 for the finite length case, result from practical limitations on the number of atoms that can be included in a simulation. Experimentally measured aspect ratios are typically on the order of 100,000, so the calculated results should represent upper and lower limits on experimental mechanical properties. Finally, the effect of various degrees of covalent crosslinking between the CNTs and amorphous carbon matrix is considered to identify the amount of CNT-matrix covalent bonding that maximizes overall composite properties.

  14. Scrutinizing Molecular Mechanics Force Fields on the Submicrosecond Timescale with NMR Data

    PubMed Central

    Lange, Oliver F.; van der Spoel, David; de Groot, Bert L.

    2010-01-01

    Abstract Protein dynamics on the atomic level and on the microsecond timescale has recently become accessible from both computation and experiment. To validate molecular dynamics (MD) at the submicrosecond timescale against experiment we present microsecond MD simulations in 10 different force-field configurations for two globular proteins, ubiquitin and the gb3 domain of protein G, for which extensive NMR data is available. We find that the reproduction of the measured NMR data strongly depends on the chosen force field and electrostatics treatment. Generally, particle-mesh Ewald outperforms cut-off and reaction-field approaches. A comparison to measured J-couplings across hydrogen bonds suggests that there is room for improvement in the force-field description of hydrogen bonds in most modern force fields. Our results show that with current force fields, simulations beyond hundreds of nanoseconds run an increased risk of undergoing transitions to nonnative conformational states or will persist within states of high free energy for too long, thus skewing the obtained population frequencies. Only for the AMBER99sb force field have such transitions not been observed. Thus, our results have significance for the interpretation of data obtained with long MD simulations, for the selection of force fields for MD studies and for force-field development. We hope that this comprehensive benchmark based on NMR data applied to many popular MD force fields will serve as a useful resource to the MD community. Finally, we find that for gb3, the force-field AMBER99sb reaches comparable accuracy in back-calculated residual dipolar couplings and J-couplings across hydrogen bonds to ensembles obtained by refinement against NMR data. PMID:20643085

  15. Error analysis regarding the calculation of nonlinear force-free field

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, H. Q.; Su, J. T.

    2012-02-01

    Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96-1.19, 0.63-1.07 and 0.43-0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80-1.02, 0.67-1.34 and 0.33-0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of <| RSD|> is about 0.1˜0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.

  16. From supersonic shear wave imaging to full-field optical coherence shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.

    2013-12-01

    Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.

  17. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    NASA Astrophysics Data System (ADS)

    Hoang Viet, Man; Derreumaux, Philippe; Nguyen, Phuong H.

    2015-07-01

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  18. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design

    PubMed Central

    Vanommeslaeghe, K.

    2014-01-01

    Background Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. Scope of Review As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular bimolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields’ parametrization philosophy and methodology. Major Conclusions Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1 microsecond on proteins, DNA, lipids and carbohydrates. General Significance Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers a model that is an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. PMID:25149274

  19. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2015-05-01

    Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics". Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The Introduction of Fields in Relation to Force

    ERIC Educational Resources Information Center

    Brunt, Marjorie; Brunt, Geoff

    2012-01-01

    The introduction of force at age 14-16 years is considered, starting with elementary student experiments using magnetic force fields. The meaningless use of terms such as "action" and "reaction", or "agent" and "receiver" is discussed. (Contains 6 figures.)

  1. Flows, Fields, and Forces in the Mars-Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Brain, D. A.; Luhmann, J. G.; DiBraccio, G. A.; Ruhunusiri, S.; Harada, Y.; Fowler, C. M.; Mitchell, D. L.; Connerney, J. E. P.; Espley, J. R.; Mazelle, C.; Jakosky, B. M.

    2017-11-01

    We utilize suprathermal ion and magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, organized by the upstream magnetic field, to investigate the morphology and variability of flows, fields, and forces in the Mars-solar wind interaction. We employ a combination of case studies and statistical investigations to characterize the interaction in both quasi-parallel and quasi-perpendicular regions and under high and low solar wind Mach number conditions. For the first time, we include a detailed investigation of suprathermal ion temperature and anisotropy. We find that the observed magnetic fields and suprathermal ion moments in the magnetosheath, bow shock, and upstream regions have observable asymmetries controlled by the interplanetary magnetic field, with particularly large asymmetries found in the ion parallel temperature and anisotropy. The greatest temperature anisotropies occur in quasi-perpendicular regions of the magnetosheath and under low Mach number conditions. These results have implications for the growth and evolution of wave-particle instabilities and their role in energy transport and dissipation. We utilize the measured parameters to estimate the average ion pressure gradient, J × B, and v × B macroscopic force terms. The pressure gradient force maintains nearly cylindrical symmetry, while the J × B force has larger asymmetries and varies in magnitude in comparison to the pressure gradient force. The v × B force felt by newly produced planetary ions exceeds the other forces in magnitude in the magnetosheath and upstream regions for all solar wind conditions.

  2. Perspective: Ab initio force field methods derived from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  3. Unorthodox theoretical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedd, Sean

    2012-01-01

    The use of the ReaxFF force field to correlate with NMR mobilities of amine catalytic substituents on a mesoporous silica nanosphere surface is considered. The interfacing of the ReaxFF force field within the Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM) method, in order to replicate earlier SIMOMM published data and to compare with the ReaxFF data, is discussed. The development of a new correlation consistent Composite Approach (ccCA) is presented, which incorporates the completely renormalized coupled cluster method with singles, doubles and non-iterative triples corrections towards the determination of heats of formations and reaction pathways which contain biradical species.

  4. The Energetics of Motivated Cognition: A Force-Field Analysis

    ERIC Educational Resources Information Center

    Kruglanski, Arie W.; Belanger, Jocelyn J.; Chen, Xiaoyan; Kopetz, Catalina; Pierro, Antonio; Mannetti, Lucia

    2012-01-01

    A force-field theory of motivated cognition is presented and applied to a broad variety of phenomena in social judgment and self-regulation. Purposeful cognitive activity is assumed to be propelled by a "driving force" and opposed by a "restraining force". "Potential" driving force represents the maximal amount of energy an individual is prepared…

  5. Mitigated-force carriage for high magnetic field environments

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

    2014-05-20

    A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

  6. Three Dimensional Distribution of Sensitive Field and Stress Field Inversion of Force Sensitive Materials under Constant Current Excitation.

    PubMed

    Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei

    2018-02-28

    Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.

  7. Self-enhanced catalytic activities of functionalized graphene sheets in the combustion of nitromethane: molecular dynamic simulations by molecular reactive force field.

    PubMed

    Zhang, Chaoyang; Wen, Yushi; Xue, Xianggui

    2014-08-13

    Functionalized graphene sheet (FGS) is a promising additive that enhances fuel/propellant combustion, and the determination of its mechanism has attracted much interest. In the present study, a series of molecular dynamic simulations based on a reactive force field (ReaxFF) are performed to explore the catalytic activity (CA) of FGS in the thermal decay of nitromethane (NM, CH3NO2). FGSs and pristine graphene sheets (GSs) are oxidized in hot NM liquid to increase their functionalities and subsequently show self-enhanced CAs during the decay. The CAs result from the interatomic exchanges between the functional groups on the sheets and the NM liquid, i.e., mainly between H and O atoms. CA is dependent on the density of NM, functionalities of sheets, and temperature. The GSs and FGSs that originally exhibit different functionalities tend to possess similar functionalities and consequently similar CAs as temperature increases. Other carbon materials and their oxides can accelerate combustion of other fuels/propellants similar to NM, provided that they can be dispersed and their key reaction steps in combustion are similar to NM.

  8. Interaction Forces Between Multiple Bodies in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Joffe, Benjamin

    1996-01-01

    Some of the results from experiments to determine the interaction forces between multiple bodies in a magnetic field are presented in this paper. It is shown how the force values and the force directions depend on the configuration of the bodies, their relative positions to each other, and the vector of the primary magnetic field. A number of efficient new automatic loading and assembly machines, as well as manipulators and robots, have been created based on the relationship between bodies and magnetic fields. A few of these patented magnetic devices are presented. The concepts involved open a new way to design universal grippers for robot and other kinds of mechanisms for the manipulation of objects. Some of these concepts can be used for space applications.

  9. Molecular dynamics simulations of methane hydrate using polarizable force fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-06-14

    Molecular dynamics simulations of methane hydrate have been carried out using the polarizable AMOEBA and COS/G2 force fields. Properties calculated include the temperature dependence of the lattice constant, the OC and OO radial distribution functions, and the vibrational spectra. Both the AMOEBA and COS/G2 force fields are found to successfully account for the available experimental data, with overall somewhat better agreement with experiment being found for the AMOEBA model. Comparison is made with previous results obtained using TIP4P and SPC/E effective two-body force fields and the polarizable TIP4P-FQ force field, which allows for in-plane polarization only. Significant differences are foundmore » between the properties calculated using the TIP4P-FQ model and those obtained using the other models, indicating an inadequacy of restricting explicit polarization to in-plane onl« less

  10. Thermodynamic properties for applications in chemical industry via classical force fields.

    PubMed

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  11. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants

    PubMed Central

    Ewen, James P.; Gattinoni, Chiara; Thakkar, Foram M.; Morgan, Neal; Spikes, Hugh A.; Dini, Daniele

    2016-01-01

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n-hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n-hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n-hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently

  12. A Comparison of Classical Force-Fields for Molecular Dynamics Simulations of Lubricants.

    PubMed

    Ewen, James P; Gattinoni, Chiara; Thakkar, Foram M; Morgan, Neal; Spikes, Hugh A; Dini, Daniele

    2016-08-02

    For the successful development and application of lubricants, a full understanding of their complex nanoscale behavior under a wide range of external conditions is required, but this is difficult to obtain experimentally. Nonequilibrium molecular dynamics (NEMD) simulations can be used to yield unique insights into the atomic-scale structure and friction of lubricants and additives; however, the accuracy of the results depend on the chosen force-field. In this study, we demonstrate that the use of an accurate, all-atom force-field is critical in order to; (i) accurately predict important properties of long-chain, linear molecules; and (ii) reproduce experimental friction behavior of multi-component tribological systems. In particular, we focus on n -hexadecane, an important model lubricant with a wide range of industrial applications. Moreover, simulating conditions common in tribological systems, i.e., high temperatures and pressures (HTHP), allows the limits of the selected force-fields to be tested. In the first section, a large number of united-atom and all-atom force-fields are benchmarked in terms of their density and viscosity prediction accuracy of n -hexadecane using equilibrium molecular dynamics (EMD) simulations at ambient and HTHP conditions. Whilst united-atom force-fields accurately reproduce experimental density, the viscosity is significantly under-predicted compared to all-atom force-fields and experiments. Moreover, some all-atom force-fields yield elevated melting points, leading to significant overestimation of both the density and viscosity. In the second section, the most accurate united-atom and all-atom force-field are compared in confined NEMD simulations which probe the structure and friction of stearic acid adsorbed on iron oxide and separated by a thin layer of n -hexadecane. The united-atom force-field provides an accurate representation of the structure of the confined stearic acid film; however, friction coefficients are consistently

  13. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  14. Energy buildup in sheared force-free magnetic fields

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  15. Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein.

    PubMed

    Shao, Qiang; Shi, Jiye; Zhu, Weiliang

    2012-09-28

    The ability of molecular dynamics simulation to capturing the transient states within the folding pathway of protein is important to the understanding of protein folding mechanism. In the present study, the integrated-tempering-sampling molecular dynamics (ITS-MD) simulation was performed to investigate the transient states including intermediate and unfolded ones in the folding pathway of a miniprotein, Trp-cage. Three force fields (FF03, FF99SB, and FF96) were tested, and both intermediate and unfolded states with their characteristics in good agreement with experiments were observed during the simulations, which supports the hypothesis that observable intermediates might present in the folding pathway of small polypeptides. In addition, it was demonstrated that FF03 force field as combined with ITS-MD is in overall a more proper force field than the others in reproducing experimentally recorded properties in UVRS, ECD, and NMR, Photo-CIDNP NMR, and IR T-jump experiments, and the folding∕unfolding thermodynamics parameters, such as ΔG(U), ΔC(p), and ΔH(U) (T(m)). In summary, the present study showed that using suitable force field and energy sampling method, molecular dynamics simulation could capture the transient states within the folding pathway of protein which are consistent with the experimental measurements, and thus provide information of protein folding mechanism and thermodynamics.

  16. A Maximum-Likelihood Approach to Force-Field Calibration.

    PubMed

    Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam

    2015-09-28

    A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2

  17. Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1.

    PubMed

    Do, Hackwon; Lee, Jun Hyuck; Lee, Sung Gu; Kim, Hak Jun

    2012-07-01

    Ice growth in a cold environment is fatal for polar organisms, not only because of the physical destruction of inner cell organelles but also because of the resulting chemical damage owing to processes such as osmotic shock. The properties of ice-binding proteins (IBPs), which include antifreeze proteins (AFPs), have been characterized and IBPs exhibit the ability to inhibit ice growth by binding to specific ice planes and lowering the freezing point. An ice-binding protein (FfIBP) from the Gram-negative bacterium Flavobacterium frigoris PS1, which was isolated from the Antarctic, has recently been overexpressed. Interestingly, the thermal hysteresis activity of FfIBP was approximately 2.5 K at 50 µM, which is ten times higher than that of the moderately active IBP from Arctic yeast (LeIBP). Although FfIBP closely resembles LeIBP in its amino-acid sequence, the antifreeze activity of FfIBP appears to be much greater than that of LeIBP. In an effort to understand the reason for this difference, an attempt was made to solve the crystal structure of FfIBP. Here, the crystallization and X-ray diffraction data of FfIBP are reported. FfIBP was crystallized using the hanging-drop vapour-diffusion method with 0.1 M sodium acetate pH 4.4 and 3 M sodium chloride as precipitant. A complete diffraction data set was collected to a resolution of 2.9 Å. The crystal belonged to space group P4(1)22, with unit-cell parameters a = b = 69.4, c = 178.2 Å. The asymmetric unit contained one monomer.

  18. Machine learning of accurate energy-conserving molecular force fields.

    PubMed

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof T; Müller, Klaus-Robert

    2017-05-01

    Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol -1 for energies and 1 kcal mol -1 Å̊ -1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  19. Machine learning of accurate energy-conserving molecular force fields

    PubMed Central

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  20. Universal dimer–dimer scattering in lattice effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  1. Universal dimer–dimer scattering in lattice effective field theory

    DOE PAGES

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean; ...

    2017-03-14

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  2. Potassium bromide, KBr/ ε: New Force Field

    NASA Astrophysics Data System (ADS)

    Fuentes-Azcatl, Raúl; Barbosa, Marcia C.

    2018-02-01

    We propose a new force field for the Potassium Bromide, the KBr/ ε. The crystal density and structure, as well as, the density, the viscosity and the dielectric constant of the solution in water were computed and compared with the experiments and other atomistic models. Next, the transferability of the KBr/ ε and of the NaCl/ ε models is verified by creating the KCl/ ε and the NaBr/ ε models. The strategy was to employ the same parameters obtained for the NaCl/ ε and for the KBr/ ε force fields for the building up of the KCl/ ε and the NaBr/ ε models . The thermodynamic and dynamic properties of these two new models were compared with the experimental

  3. Operational Art in I Field Force, 1965 to 1967

    DTIC Science & Technology

    2012-10-17

    Approved for Public Release; Distribution is Unlimited Operational Art in I Field Force, 1965 to 1967 A Monograph by MAJ John E. Turner...Monograph 3. DATES COVERED (From - To) JAN 2012 – DEC 2012 4. TITLE AND SUBTITLE Operational Art in I Field Force, 1965-1967 5a. CONTRACT NUMBER...operational art from 1965 through 1967 under the leadership of LTG Stanley Larsen in the II Corps Tactical Zone (II CORPS). This accomplishment is

  4. The harmonic force field of benzene. A local density functional study

    NASA Astrophysics Data System (ADS)

    Bérces, Attila; Ziegler, Tom

    1993-03-01

    The harmonic force field of benzene has been calculated by a method based on local density functional theory (LDF). The calculations were carried out employing a triple zeta basis set with triple polarization on hydrogen and double polarization on carbon. The LDF force field was compared to the empirical field due to Ozkabak, Goodman, and Thakur [A. G. Ozkabak, L. Goodman, and S. N. Thakur, J. Phys. Chem. 95, 9044 (1991)], which has served as a benchmark for theoretical calculations as well as the theoretical field based on scaled Hartree-Fock ab initio calculation due to Pulay, Fogarasi, and Boggs [P. Pulay, G. Fogarasi, and J. E. Boggs, J. Chem. Phys. 74, 3999 (1981)]. The calculated LDF force field is in excellent qualitative and very good quantitative agreement with the theoretical field proposed by Pulay, Fogarasi, and Boggs as well as the empirical field due to Ozkabak, Goodman, and Thakur. The LDF field is closest to the values of Pulay and co-workers in those cases where the force constants due to Pulay, Fogarasi, and Boggs and to Ozkabak, Goodman, and Thakur differ in sign or magnitude. The accuracy of the LDF force field was investigated by evaluating a number of eigenvalue and eigenfunction dependent quantities from the the LDF force constants. The quantities under investigation include vibrational frequencies of seven isotopomers, isotopic shifts, as well as absorption intensities. The calculations were performed at both theoretical optimized and approximate equilibrium reference geometries. The predicted frequencies are usually within 1%-2% compared to the empirical harmonic frequencies. The least accurate frequency deviates by 5% from the experimental value. The average deviations from the empirical harmonic frequencies of C6H6 and C6D6 are 16.7 cm-1 (1.5%) and 15.2 cm-1 (1.7%), respectively, not including CH stretching frequencies, in the case where a theoretical reference geometry was used. The accuracy of the out-of-plane force field is especially

  5. Spinmotive force due to domain wall motion in high field regime

    NASA Astrophysics Data System (ADS)

    Ieda, Jun'ichi; Yamane, Yuta; Maekawa, Sadamichi

    2012-02-01

    Spinmotive force associated with a moving vortex domain wall is investigated numerically. Dynamics of magnetization textures such as a domain wall exerts a non-conservative spin-force on conduction electrons [1], offering a new concept of magnetic devices [2]. This spinmotive force in permalloy nanowires has been detected by voltage measurement [3] where magnitude of the signal is limited less than 500 nV. Theoretically it is suggested that the spinmotive force signal increases as a function of external magnetic fields. At higher magnetic fields, however, the wall propagation mode becomes rather chaotic involving transformations of the wall structure and it remains to be seen how the spinmotive force appears. Numerical simulations show that the spinmotive force scales with the field even in a field range where the wall motion is no longer associated coherent precession. This feature has been tested in a recent experiment [4]. Further enhancement of the spinmotive force is explored by designing ferromagnetic nanostructures [5] and materials. [1] S. Barnes and S. Maekawa, PRL (2007). [2] S. Barnes, J. Ieda, and S. Maekawa, APL (2006). [3] S. A. Yang et al., PRL (2009). [4] M. Hayashi, J. Ieda et al., submitted. [5] Y. Yamane, J. Ieda et al., APEX (2011).

  6. Force field development with GOMC, a fast new Monte Carlo molecular simulation code

    NASA Astrophysics Data System (ADS)

    Mick, Jason Richard

    In this work GOMC (GPU Optimized Monte Carlo) a new fast, flexible, and free molecular Monte Carlo code for the simulation atomistic chemical systems is presented. The results of a large Lennard-Jonesium simulation in the Gibbs ensemble is presented. Force fields developed using the code are also presented. To fit the models a quantitative fitting process is outlined using a scoring function and heat maps. The presented n-6 force fields include force fields for noble gases and branched alkanes. These force fields are shown to be the most accurate LJ or n-6 force fields to date for these compounds, capable of reproducing pure fluid behavior and binary mixture behavior to a high degree of accuracy.

  7. Combining configurational energies and forces for molecular force field optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.

    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. We propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information ismore » used to optimize a molecular force field by minimizing the statistical distance similarity metric. We also illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.« less

  8. Combining configurational energies and forces for molecular force field optimization

    DOE PAGES

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.

    2017-07-21

    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. We propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information ismore » used to optimize a molecular force field by minimizing the statistical distance similarity metric. We also illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.« less

  9. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.

    PubMed

    Best, Robert B; Hummer, Gerhard

    2009-07-02

    Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly in their alpha-helical propensities, a correction to match experimental results would be highly desirable. We have determined simple backbone energy corrections for two force fields to reproduce the fraction of helix measured in short peptides at 300 K. As validation, we show that the optimized force fields produce results in excellent agreement with nuclear magnetic resonance experiments for folded proteins and short peptides not used in the optimization. However, despite the agreement at ambient conditions, the dependence of the helix content on temperature is too weak, a problem shared with other force fields. A fit of the Lifson-Roig helix-coil theory shows that both the enthalpy and entropy of helix formation are too small: the helix extension parameter w agrees well with experiment, but its entropic and enthalpic components are both only about half the respective experimental estimates. Our structural and thermodynamic analyses point toward the physical origins of these shortcomings in current force fields, and suggest ways to address them in future force-field development.

  10. Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Xiong, Yijia; Straatsma, TP

    2012-05-09

    Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexiblemore » in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.« less

  11. Machine Learning of Accurate Energy-Conserving Molecular Force Fields

    NASA Astrophysics Data System (ADS)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel; Poltavsky, Igor; Schütt, Kristof; Müller, Klaus-Robert; GDML Collaboration

    Efficient and accurate access to the Born-Oppenheimer potential energy surface (PES) is essential for long time scale molecular dynamics (MD) simulations. Using conservation of energy - a fundamental property of closed classical and quantum mechanical systems - we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio MD trajectories (AIMD). The GDML implementation is able to reproduce global potential-energy surfaces of intermediate-size molecules with an accuracy of 0.3 kcal/mol for energies and 1 kcal/mol/Å for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, malonaldehyde, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative MD simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  12. JC2Sat-FF : An International Collaboration Nano-Sat Project Overview of the System Analyses and Design

    NASA Astrophysics Data System (ADS)

    Yoshihara, K.; van Mierlo, M.; Ng, A.; Shankar Kumar, B.; De Ruiter, A.; Komatsu, Y.; Horiguchi, H.; Hashimoto, H.

    2008-08-01

    This paper introduces the Japan Canada Joint Collaboration Satellites - Formation Flying (JC2Sat-FF) project. JC2Sat-FF is a joint project between the Canadian Space Agency (CSA) and the Japan Aerospace Exploration Agency (JAXA) with the end goal of building, launching and operating two 20kg- class nanosatellites for technical demonstration of formation flight (FF) using differential drag technique, relative navigation using commercial off-the-shelf (COTS) dual band GPS receivers and far infra-red radiance measurement. A unique aspect of this project is that the two JC2Sats are developed by a united small team consisting of engineers and researchers from both agencies. Technical exchange in this international team gives stimulation to the members and generates a synergistic effect for the project.

  13. Adaptation of a RAS pathway activation signature from FF to FFPE tissues in colorectal cancer.

    PubMed

    Omolo, Bernard; Yang, Mingli; Lo, Fang Yin; Schell, Michael J; Austin, Sharon; Howard, Kellie; Madan, Anup; Yeatman, Timothy J

    2016-10-19

    The KRAS gene is mutated in about 40 % of colorectal cancer (CRC) cases, which has been clinically validated as a predictive mutational marker of intrinsic resistance to anti-EGFR inhibitor (EGFRi) therapy. Since nearly 60 % of patients with a wild type KRAS fail to respond to EGFRi combination therapies, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE) tissues. In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in 54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included the Affymetrix GeneChip (Affy), NanoString nCounter™ (NanoS), Illumina whole genome RNASeq (RNA-Acc), Illumina targeted RNASeq (t-RNA), and Illumina stranded Total RNA-rRNA-depletion (rRNA). Using Affy_FF as the "gold" standard, initial analysis of the 18-gene RAS scores on all 54 samples shows varying pairwise Spearman correlations, with (1) Affy_FFPE (r = 0.233, p = 0.090); (2) NanoS_FFPE (r = 0.608, p < 0.0001); (3) RNA-Acc_FFPE (r = 0.175, p = 0.21); (4) t-RNA_FFPE (r = -0.237, p = 0.085); (5) and t-RNA (r = -0.012, p = 0.93). These results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified "problematic" samples (n = 15) and genes (n = 2) further improves the correlations of Affy_FF with three of the five technologies: Affy_FFPE (r = 0.672, p < 0.0001); NanoS_FFPE (r = 0.738, p < 0.0001); and RNA-Acc_FFPE (r = 0.483, p = 0.002). Of the five technology platforms tested, NanoString technology provides a more faithful translation of the RAS pathway gene expression signature from FF to FFPE than the Affymetrix

  14. Improved Peptide and Protein Torsional Energetics with the OPLSAA Force Field.

    PubMed

    Robertson, Michael J; Tirado-Rives, Julian; Jorgensen, William L

    2015-07-14

    The development and validation of new peptide dihedral parameters are reported for the OPLS-AA force field. High accuracy quantum chemical methods were used to scan φ, ψ, χ1, and χ2 potential energy surfaces for blocked dipeptides. New Fourier coefficients for the dihedral angle terms of the OPLS-AA force field were fit to these surfaces, utilizing a Boltzmann-weighted error function and systematically examining the effects of weighting temperature. To prevent overfitting to the available data, a minimal number of new residue-specific and peptide-specific torsion terms were developed. Extensive experimental solution-phase and quantum chemical gas-phase benchmarks were used to assess the quality of the new parameters, named OPLS-AA/M, demonstrating significant improvement over previous OPLS-AA force fields. A Boltzmann weighting temperature of 2000 K was determined to be optimal for fitting the new Fourier coefficients for dihedral angle parameters. Conclusions are drawn from the results for best practices for developing new torsion parameters for protein force fields.

  15. Optimization of classical nonpolarizable force fields for OH(-) and H3O(+).

    PubMed

    Bonthuis, Douwe Jan; Mamatkulov, Shavkat I; Netz, Roland R

    2016-03-14

    We optimize force fields for H3O(+) and OH(-) that reproduce the experimental solvation free energies and the activities of H3O(+) Cl(-) and Na(+) OH(-) solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H3O(+) force field is 0.8 ± 0.1|e|--significantly higher than the value typically used for nonpolarizable water models and H3O(+) force fields. In contrast, the optimal partial charge on the hydrogen atom of OH(-) turns out to be zero. Standard combination rules can be used for H3O(+) Cl(-) solutions, while for Na(+) OH(-) solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.

  16. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    PubMed

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  17. Mapping the force field of a hydrogen-bonded assembly

    NASA Astrophysics Data System (ADS)

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2014-05-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  18. Upper Limb Evaluation in Duchenne Muscular Dystrophy: Fat-Water Quantification by MRI, Muscle Force and Function Define Endpoints for Clinical Trials.

    PubMed

    Ricotti, Valeria; Evans, Matthew R B; Sinclair, Christopher D J; Butler, Jordan W; Ridout, Deborah A; Hogrel, Jean-Yves; Emira, Ahmed; Morrow, Jasper M; Reilly, Mary M; Hanna, Michael G; Janiczek, Robert L; Matthews, Paul M; Yousry, Tarek A; Muntoni, Francesco; Thornton, John S

    2016-01-01

    A number of promising experimental therapies for Duchenne muscular dystrophy (DMD) are emerging. Clinical trials currently rely on invasive biopsies or motivation-dependent functional tests to assess outcome. Quantitative muscle magnetic resonance imaging (MRI) could offer a valuable alternative and permit inclusion of non-ambulant DMD subjects. The aims of our study were to explore the responsiveness of upper-limb MRI muscle-fat measurement as a non-invasive objective endpoint for clinical trials in non-ambulant DMD, and to investigate the relationship of these MRI measures to those of muscle force and function. 15 non-ambulant DMD boys (mean age 13.3 y) and 10 age-gender matched healthy controls (mean age 14.6 y) were recruited. 3-Tesla MRI fat-water quantification was used to measure forearm muscle fat transformation in non-ambulant DMD boys compared with healthy controls. DMD boys were assessed at 4 time-points over 12 months, using 3-point Dixon MRI to measure muscle fat-fraction (f.f.). Images from ten forearm muscles were segmented and mean f.f. and cross-sectional area recorded. DMD subjects also underwent comprehensive upper limb function and force evaluation. Overall mean baseline forearm f.f. was higher in DMD than in healthy controls (p<0.001). A progressive f.f. increase was observed in DMD over 12 months, reaching significance from 6 months (p<0.001, n = 7), accompanied by a significant loss in pinch strength at 6 months (p<0.001, n = 9) and a loss of upper limb function and grip force observed over 12 months (p<0.001, n = 8). These results support the use of MRI muscle f.f. as a biomarker to monitor disease progression in the upper limb in non-ambulant DMD, with sensitivity adequate to detect group-level change over time intervals practical for use in clinical trials. Clinical validity is supported by the association of the progressive fat transformation of muscle with loss of muscle force and function.

  19. The general ventilation multipliers calculated by using a standard Near-Field/Far-Field model.

    PubMed

    Koivisto, Antti J; Jensen, Alexander C Ø; Koponen, Ismo K

    2018-05-01

    In conceptual exposure models, the transmission of pollutants in an imperfectly mixed room is usually described with general ventilation multipliers. This is the approach used in the Advanced REACH Tool (ART) and Stoffenmanager® exposure assessment tools. The multipliers used in these tools were reported by Cherrie (1999; http://dx.doi.org/10.1080/104732299302530 ) and Cherrie et al. (2011; http://dx.doi.org/10.1093/annhyg/mer092 ) who developed them by positing input values for a standard Near-Field/Far-Field (NF/FF) model and then calculating concentration ratios between NF and FF concentrations. This study revisited the calculations that produce the multipliers used in ART and Stoffenmanager and found that the recalculated general ventilation multipliers were up to 2.8 times (280%) higher than the values reported by Cherrie (1999) and the recalculated NF and FF multipliers for 1-hr exposure were up to 1.2 times (17%) smaller and for 8-hr exposure up to 1.7 times (41%) smaller than the values reported by Cherrie et al. (2011). Considering that Stoffenmanager and the ART are classified as higher-tier regulatory exposure assessment tools, the errors is general ventilation multipliers should not be ignored. We recommend revising the general ventilation multipliers. A better solution is to integrate the NF/FF model to Stoffenmanager and the ART.

  20. Developing a molecular dynamics force field for both folded and disordered protein states.

    PubMed

    Robustelli, Paul; Piana, Stefano; Shaw, David E

    2018-05-07

    Molecular dynamics (MD) simulation is a valuable tool for characterizing the structural dynamics of folded proteins and should be similarly applicable to disordered proteins and proteins with both folded and disordered regions. It has been unclear, however, whether any physical model (force field) used in MD simulations accurately describes both folded and disordered proteins. Here, we select a benchmark set of 21 systems, including folded and disordered proteins, simulate these systems with six state-of-the-art force fields, and compare the results to over 9,000 available experimental data points. We find that none of the tested force fields simultaneously provided accurate descriptions of folded proteins, of the dimensions of disordered proteins, and of the secondary structure propensities of disordered proteins. Guided by simulation results on a subset of our benchmark, however, we modified parameters of one force field, achieving excellent agreement with experiment for disordered proteins, while maintaining state-of-the-art accuracy for folded proteins. The resulting force field, a99SB- disp , should thus greatly expand the range of biological systems amenable to MD simulation. A similar approach could be taken to improve other force fields. Copyright © 2018 the Author(s). Published by PNAS.

  1. Order-disorder transition of intrinsically disordered kinase inducible transactivation domain of CREB

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Guo, Xiang; Han, Jingcheng; Luo, Ray; Chen, Hai-Feng

    2018-06-01

    Transcription factor cyclic Adenosine monophosphate response-element binding protein plays a critical role in the cyclic AMP response pathway via its intrinsically disordered kinase inducible transactivation domain (KID). KID is one of the most studied intrinsically disordered proteins (IDPs), although most previous studies focus on characterizing its disordered state structures. An interesting question that remains to be answered is how the order-disorder transition occurs at experimental conditions. Thanks to the newly developed IDP-specific force field ff14IDPSFF, the quality of conformer sampling for IDPs has been dramatically improved. In this study, molecular dynamics (MD) simulations were used to study the order-to-disorder transition kinetics of KID based on the good agreement with the experiment on its disordered-state properties. Specifically, we tested four force fields, ff99SBildn, ff99IDPs, ff14IDPSFF, and ff14IDPs in the simulations of KID and found that ff14IDPSFF can generate more diversified disordered conformers and also reproduce more accurate experimental secondary chemical shifts. Kinetics analysis of MD simulations demonstrates that the order-disorder transition of KID obeys the first-order kinetics, and the transition nucleus is I127/L128/L141. The possible transition pathways from the nucleus to the last folded residues were identified as I127-R125-L138-L141-S143-A145 and L128-R125-L138-L141-S143-A145 based on a residue-level dynamical network analysis. These computational studies not only provide testable prediction/hypothesis on the order-disorder transition of KID but also confirm that the ff14IDPSFF force field can be used to explore the correlation between the structure and function of IDPs.

  2. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Anne Myers

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies formore » the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.« less

  3. Magnetodynamic stability of a fluid cylinder under the Lundquist force-free magnetic field

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed E.; Halawa, Mohamed A.

    1990-04-01

    The magnetodynamic (in)stability of a conducting fluid cylinder subject to the capillarity and electromagnetic forces has been developed. The cylinder is pervaded by a uniform magnetic field but embedded in the Lundquist force-free varying field that allows for flowing a current surrounding the fluid. A general eigenvalue relation is derived based on a study of the equilibrium and perturbed states. The stability criterion is discussed analytically in general terms. The surface tension is destabilizing for small axisymmetric mode and stable for all others. The principle of the exchange of stability is allowed for the present problem due to the non-uniform behavior of the force-free field. Each of the axial and transverse force-free fields separately exerts a stabilizing influence in the most dangerous mode but the combined contribution of them is strongly destabilizing. Whether the model is acted upon the electromagnetic force (with the Lundquist field) the stability restrictions or/and the capillarity force are identified. Several reported works can be recovered as limiting cases with appropriate simplifications.

  4. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.

    PubMed

    Kührová, Petra; Best, Robert B; Bottaro, Sandro; Bussi, Giovanni; Šponer, Jiří; Otyepka, Michal; Banáš, Pavel

    2016-09-13

    The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.

  5. Catch trials in force field learning influence adaptation and consolidation of human motor memory

    PubMed Central

    Stockinger, Christian; Focke, Anne; Stein, Thorsten

    2014-01-01

    Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance. PMID:24795598

  6. Topological and statistical properties of nonlinear force-free fields

    NASA Astrophysics Data System (ADS)

    Mangalam, A.; Prasad, A.

    2018-01-01

    We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.

  7. Real time relationship between individual finger force and grip exertion on distal phalanges in linear force following tasks.

    PubMed

    Luo, Shi-Jian; Shu, Ge; Gong, Yan

    2018-05-01

    Individual finger force (FF) in a grip task is a vital concern in rehabilitation engineering and precise control of manipulators because disorders in any of the fingers will affect the stability or accuracy of the grip force (GF). To understand the functions of each finger in a dynamic grip exertion task, a GF following experiment with four individual fingers without thumb was designed. This study obtained four individual FFs from the distal phalanges with a cylindrical handle in dynamic GF following tasks. Ten healthy male subjects with similar hand sizes participated in the four-finger linear GF following tasks at different submaximal voluntary contraction (SMVC) levels. The total GF, individual FF, finger force contribution, and following error were subsequently calculated and analyzed. The statistics indicated the following: 1) the accuracy and stability of GF at low %MVC were significantly higher than those at high SMVC; 2) at low SMVC, the ability of the fingers to increase the GF was better than the ability to reduce it, but it was contrary at high SMVC; 3) when the target wave (TW) was changing, all four fingers strongly participated in the force exertion, but the participation of the little finger decreased significantly when TW remained stable; 4) the index finger and ring finger had a complementary relationship and played a vital role in the adjustment and control of GF. The middle finger and little finger had a minor influence on the force control and adjustment. In conclusion, each of the fingers had different functions in a GF following task. These findings can be used in the assessment of finger injury rehabilitation and for algorithms of precise control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

    PubMed

    Riniker, Sereina

    2018-03-26

    In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.

  9. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment: Molecular dynamics simulations using ReaxFF reactive force field

    NASA Astrophysics Data System (ADS)

    Wen, Jialin; Ma, Tianbao; Zhang, Weiwei; Psofogiannakis, George; van Duin, Adri C. T.; Chen, Lei; Qian, Linmao; Hu, Yuanzhong; Lu, Xinchun

    2016-12-01

    In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO2 interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si-O-Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si-Si bonds in the stretched Si-Si-O-Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si-O-Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si-O-Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.

  10. Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene

    DOE PAGES

    Srinivasan, Sriram Goverapet; Adri C. T. van Duin; Ganesh, Panchapakesan

    2015-01-06

    In this paper, we report the development of a ReaxFF reactive potential that can accurately describe the chemistry and dynamics of carbon condensed phases. Density functional theory (DFT)-based calculations were performed to obtain the equation of state for graphite and diamond and the formation energies of defects in graphene and amorphous phases from fullerenes. The DFT data were used to reparametrize ReaxFF CHO, resulting in a new potential called ReaxFF C-2013. ReaxFF C-2013 accurately predicts the atomization energy of graphite and closely reproduces the DFT-based energy difference between graphite and diamond, and the barrier for transition from graphite to diamond.more » ReaxFF C-2013 also accurately predicts the DFT-based energy barrier for Stone–Wales transformation in a C 60(I h) fullerene through the concerted rotation of a C 2 unit. Later, MD simulations of a C 180 fullerene using ReaxFF C-2013 suggested that the thermal fragmentation of these giant fullerenes is an exponential function of time. An Arrhenius-type equation was fit to the decay rate, giving an activation energy of 7.66 eV for the loss of carbon atoms from the fullerene. Although the decay of the molecule occurs primarily via the loss of C 2 units, we observed that, with an increase in temperature, the probability of loss of larger fragments increases. Finally, the ReaxFF C-2013 potential developed in this work, and the results obtained on fullerene fragmentation, provide an important step toward the full computational chemical modeling of coal pyrolysis, soot incandescence, high temperature erosion of graphitic rocket nozzles, and ablation of carbon-based spacecraft materials during atmospheric reentry.« less

  11. Force fields for describing the solution-phase synthesis of shape-selective metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Ya; Al-Saidi, Wissam; Fichthorn, Kristen

    2013-03-01

    Polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) are structure-directing agents that exhibit different performance in the polyol synthesis of Ag nanostructures. The success of these structure-directing agents in selective nanostructure synthesis is often attributed to their selective binding to Ag(100) facets. We use first-principles, density-functional theory (DFT) calculations in a vacuum environment to show that PVP has a stronger preference to bind to Ag(100) than to Ag(111), whereas PEO exhibits much weaker selectivity. To understand the role of solvent in the surface-sensitive binding, we develop classical force fields to describe the interactions of the structure-directing (PVP and PEO) and solvent (ethylene glycol) molecules with various Ag substrates. We parameterize the force fields through force-and-energy matching to DFT results using simulated annealing. We validate the force fields by comparisons to DFT and experimental binding energies. Our force fields reproduce the surface-sensitive binding predicted by DFT calculations. Molecular dynamics simulations based on these force fields can be used to reveal the role of solvent, polymer chain length, and polymer concentration in the selective synthesis of Ag nanostructures.

  12. Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface.

    PubMed

    Sandoval-Perez, Angelica; Pluhackova, Kristyna; Böckmann, Rainer A

    2017-05-09

    Molecular dynamics (MD) simulations offer the possibility to study biological processes at high spatial and temporal resolution often not reachable by experiments. Corresponding biomolecular force field parameters have been developed for a wide variety of molecules ranging from inorganic ligands and small organic molecules over proteins and lipids to nucleic acids. Force fields have typically been parametrized and validated on thermodynamic observables and structural characteristics of individual compounds, e.g. of soluble proteins or lipid bilayers. Less strictly, due to the added complexity and missing experimental data to compare to, force fields have hardly been tested on the properties of mixed systems, e.g. on protein-lipid systems. Their selection and combination for mixed systems is further complicated by the partially differing parametrization strategies. Additionally, the presence of other compounds in the system may shift the subtle balance of force field parameters. Here, we assessed the protein-lipid interactions as described in the four atomistic force fields GROMOS54a7, CHARMM36 and the two force field combinations Amber14sb/Slipids and Amber14sb/Lipid14. Four observables were compared, focusing on the membrane-water interface: the conservation of the secondary structure of transmembrane proteins, the positioning of transmembrane peptides relative to the lipid bilayer, the insertion depth of side chains of unfolded peptides absorbed at the membrane interface, and the ability to reproduce experimental insertion energies of Wimley-White peptides at the membrane interface. Significant differences between the force fields were observed that affect e.g. membrane insertion depths and tilting of transmembrane peptides.

  13. Development of the ReaxFFCBN reactive force field for the improved design of liquid CBN hydrogen storage materials.

    PubMed

    Pai, Sung Jin; Yeo, Byung Chul; Han, Sang Soo

    2016-01-21

    Liquid CBN (carbon-boron-nitrogen) hydrogen-storage materials such as 3-methyl-1,2-BN-cyclopentane have the advantage of being easily accessible for use in current liquid-fuel infrastructure. To develop practical liquid CBN hydrogen-storage materials, it is of great importance to understand the reaction pathways of hydrogenation/dehydrogenation in the liquid phase, which are difficult to discover by experimental methods. Herein, we developed a reactive force field (ReaxFFCBN) from quantum mechanical (QM) calculations based on density functional theory for the storage of hydrogen in BN-substituted cyclic hydrocarbon materials. The developed ReaxFFCBN provides similar dehydrogenation pathways and energetics to those predicted by QM calculations. Moreover, molecular dynamics (MD) simulations with the developed ReaxFFCBN can predict the stability and dehydrogenation behavior of various liquid CBN hydrogen-storage materials. Our simulations reveal that a unimolecular dehydrogenation mechanism is preferred in liquid CBN hydrogen-storage materials. However, as the temperature in the simulation increases, the contribution of a bimolecular dehydrogenation mechanism also increases. Moreover, our ReaxFF MD simulations show that in terms of thermal stability and dehydrogenation kinetics, liquid CBN materials with a hexagonal structure are more suitable materials than those with a pentagonal structure. We expect that the developed ReaxFFCBN could be a useful protocol in developing novel liquid CBN hydrogen-storage materials.

  14. New force field for molecular simulation of guanidinium-based ionic liquids.

    PubMed

    Liu, Xiaomin; Zhang, Suojiang; Zhou, Guohui; Wu, Guangwen; Yuan, Xiaoliang; Yao, Xiaoqian

    2006-06-22

    An all-atom force field was proposed for a new class of room temperature ionic liquids (RTILs), N,N,N',N'-tetramethylguanidinium (TMG) RTILs. The model is based on the AMBER force field with modifications on several parameters. The refinements include (1) fitting the vibration frequencies for obtaining force coefficients of bonds and angles against the data obtained by ab initio calculations and/or by experiments and (2) fitting the torsion energy profiles of dihedral angles for obtaining torsion parameters against the data obtained by ab initio calculations. To validate the force field, molecular dynamics (MD) simulations at different temperatures were performed for five kinds of RTILs, where TMG acts as a cation and formate, lactate, perchlorate, trifluoroacetate, and trifluoromethylsulfonate act as anions. The predicted densities were in good agreement with the experimental data. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) were investigated to depict the microscopic structures of the RTILs.

  15. Calibration of the pressure sensitivity of microphones by a free-field method at frequencies up to 80 khz.

    PubMed

    Zuckerwar, Allan J; Herring, G C; Elbing, Brian R

    2006-01-01

    A free-field (FF) substitution method for calibrating the pressure sensitivity of microphones at frequencies up to 80 kHz is demonstrated with both grazing and normal-incidence geometries. The substitution-based method, as opposed to a simultaneous method, avoids problems associated with the nonuniformity of the sound field and, as applied here, uses a 1/4-in. air-condenser pressure microphone as a known reference. Best results were obtained with a centrifugal fan, which is used as a random, broadband sound source. A broadband source minimizes reflection-related interferences that can plague FF measurements. Calibrations were performed on 1/4-in. FF air-condenser, electret, and microelectromechanical systems (MEMS) microphones in an anechoic chamber. The uncertainty of this FF method is estimated by comparing the pressure sensitivity of an air-condenser FF microphone, as derived from the FF measurement, with that of an electrostatic actuator calibration. The root-mean-square difference is found to be +/- 0.3 dB over the range 1-80 kHz, and the combined standard uncertainty of the FF method, including other significant contributions, is +/- 0.41 dB.

  16. Exploring the parameter space of the coarse-grained UNRES force field by random search: selecting a transferable medium-resolution force field.

    PubMed

    He, Yi; Xiao, Yi; Liwo, Adam; Scheraga, Harold A

    2009-10-01

    We explored the energy-parameter space of our coarse-grained UNRES force field for large-scale ab initio simulations of protein folding, to obtain good initial approximations for hierarchical optimization of the force field with new virtual-bond-angle bending and side-chain-rotamer potentials which we recently introduced to replace the statistical potentials. 100 sets of energy-term weights were generated randomly, and good sets were selected by carrying out replica-exchange molecular dynamics simulations of two peptides with a minimal alpha-helical and a minimal beta-hairpin fold, respectively: the tryptophan cage (PDB code: 1L2Y) and tryptophan zipper (PDB code: 1LE1). Eight sets of parameters produced native-like structures of these two peptides. These eight sets were tested on two larger proteins: the engrailed homeodomain (PDB code: 1ENH) and FBP WW domain (PDB code: 1E0L); two sets were found to produce native-like conformations of these proteins. These two sets were tested further on a larger set of nine proteins with alpha or alpha + beta structure and found to locate native-like structures of most of them. These results demonstrate that, in addition to finding reasonable initial starting points for optimization, an extensive search of parameter space is a powerful method to produce a transferable force field. Copyright 2009 Wiley Periodicals, Inc.

  17. A new force field including charge directionality for TMAO in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usui, Kota; Nagata, Yuki, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de; Hunger, Johannes

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O{sub TMAO}) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O{sub TMAO} to mimic the O{sub TMAO} lone pairs and we migrate the negative charge on the O{sub TMAO} to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasingmore » TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.« less

  18. An implicit divalent counterion force field for RNA molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henke, Paul S.; Mak, Chi H., E-mail: cmak@usc.edu; Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg{sup 2+} screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grainedmore » models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.« less

  19. Free-field Calibration of the Pressure Sensitivity of Microphones at Frequencies up to 80 kHz

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Zuckerwar, Allan J.; Elbing, Brian R.

    2006-01-01

    A free-field (FF) substitution method for calibrating the pressure sensitivity of microphones at frequencies up to 80 kHz is demonstrated with both grazing and normal incidence geometries. The substitution-based method, as opposed to a simultaneous method, avoids problems associated with the non-uniformity of the sound field and, as applied here, uses a 1/2 -inch air-condenser pressure microphone as a known reference. Best results were obtained with a centrifugal fan, which is used as a random, broadband sound source. A broadband source minimizes reflection-related interferences that often plague FF measurements. Calibrations were performed on 1/4-inch FF air-condenser, electret, and micro-electromechanical systems (MEMS) microphones in an anechoic chamber. The accuracy of this FF method is estimated by comparing the pressure sensitivity of an air-condenser microphone, as derived from the FF measurement, with that of an electrostatic actuator calibration and is typically 0.3 dB (95% confidence), over the range 2-80 kHz.

  20. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general

  1. Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor

    PubMed Central

    2017-01-01

    Constructing functional forms and their corresponding force field parameters for the metal–linker interface of metal–organic frameworks is challenging. We propose fitting these parameters on the elastic tensor, computed from ab initio density functional theory calculations. The advantage of this top-down approach is that it becomes evident if functional forms are missing when components of the elastic tensor are off. As a proof-of-concept, a new flexible force field for MIL-47(V) is derived. Negative thermal expansion is observed and framework flexibility has a negligible effect on adsorption and transport properties for small guest molecules. We believe that this force field parametrization approach can serve as a useful tool for developing accurate flexible force field models that capture the correct mechanical behavior of the full periodic structure. PMID:28661672

  2. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    PubMed

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  3. TET Offensive II Field Force Vietnam After Action Report 31 January - 18 February 1968

    DTIC Science & Technology

    1968-03-01

    and the 5th VC Division. V During this same period of time there were no majur shifts in ARVN forces . However III Corps shifted three...8217-".•: ’ ’SSIFJED U.S. ARMY. VIETNAM. II FIELD FORCE . TET OFFENSIVE II FIELD FORCE VIETNAM AFTER ACTION REPORT, 31 JANUARY-18 FEB- RUARY 1968...H FIELD FORCE VIETNAM AFTER ACTION REPORT 31 January-18 February 1968 RECORD K0- ! FlSjl fi-.-A-,>-•: it tT*\\ : *si h s» -wP Mr-, £< St

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DEVILBISS JGHV-531-46FF HVLP SPRAY GUN

    EPA Science Inventory

    This report presents the results of the verification test of the DeVilbiss JGHV-531-46FF high-volume, low-pressure pressure-feed spray gun, hereafter referred to as the DeVilbiss JGHV, which is designed for use in industrial finishing. The test coating chosen by ITW Industrial Fi...

  5. All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer.

    PubMed

    Deng, Ming; Huang, Can; Liu, Danhui; Jin, Wei; Zhu, Tao

    2015-08-10

    An ultra-compact optical fiber magnetic field sensor based on a microstructured optical fiber (MOF) modal interference and ferrofluid (FF) has been proposed and experimentally demonstrated. The magnetic field sensor was fabricated by splicing a tapered germanium-doped index guided MOF with six big holes injected with FF to two conventional single-mode fibers. The transmission spectra of the proposed sensor under different magnetic field intensities have been measured and theoretically analyzed. Due to an efficient interaction between the magnetic nanoparticles in FF and the excited cladding mode, the magnetic field sensitivity reaches up to117.9pm/mT with a linear range from 0mT to 30mT. Moreover, the fabrication process of the proposed sensor is simple, easy and cost-effective. Therefore, it will be a promising candidate for military, aviation industry, and biomedical applications, especially, for the applications where the space is limited.

  6. Effect of ageing on the force development in tetanic contractions of motor units in rat medial gastrocnemius muscle.

    PubMed

    Łochyński, Dawid; Kaczmarek, Dominik; Krutki, Piotr; Celichowski, Jan

    2010-09-01

    The purpose of this study was to determine the effect of ageing on the rate of force generation of motor units, and the mechanical efficiency of contraction produced by a doublet discharge. The study was carried out on isolated motor units of rat medial gastrocnemius muscle of young (5-10 mo) and two groups of old (24-25 and 28-30 mo) Wistar rats. Motor units were classified into the fast fatigable (FF), fast resistant (FR) and slow (S) ones. The force output and rate of force development were determined for non-doublet unfused tetanic contractions evoked by a series of a constant-rate trains of pulses and corresponding doublet contractions starting with an initial brief interpulse interval of 5 ms, and for maximal tetanic contraction. In FF motor units the rate of force development and the force produced by the doublet discharge increased transiently at the age of 24-25 mo, while in S and FR motor units this increase was observed at the age of 28-30 mo. Age-related decrease in the rate of force development of skeletal muscle cannot be attributed to a decline in efficiency of force production by functioning motor units. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    PubMed

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  8. Systematic Parameterization of Lignin for the CHARMM Force Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg

    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization formore » emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ

  9. 40 CFR 63.1092 - What are the major differences between the requirements of 40 CFR part 61, subpart FF, and the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the requirements of 40 CFR part 61, subpart FF, and the waste requirements for ethylene production... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements of 40 CFR part 61, subpart FF, and the waste requirements for ethylene production sources? The...

  10. Protein adsorption to poly(ethylenimine)-modified Sepharose FF: VI. Partial charge neutralization drastically increases uptake rate.

    PubMed

    Zhao, Yangyang; Dong, Xiaoyan; Yu, Linling; Sun, Yan

    2016-01-04

    The adsorption and elution behaviors of bovine serum albumin (BSA) on poly(ethylenimine) (PEI)-grafted Sepharose FF resins were recently studied and a critical ionic capacity (cIC; 600 mmol/L) was found, above which the uptake rate increased drastically due to the occurrence of significant "chain delivery" effect. Moreover, above the cIC value, higher salt concentrations were required for protein elution due to the high charge density of the resins. In this work, we have reduced the charge density on the PEI chains of a PEI-grafted resin by neutralization of the amine groups with sodium acetate. PEI-modified resin with IC of 740 mmol/L (FF-PEI-L740, IC>cIC) was chosen as the starting material, and three resins with residual IC values of 660, 560 and 440 mmol/L (FF-PEI-R440) were obtained. The adsorption and chromatographic behaviors of these resins for BSA were investigated. It was found that, with IC decreasing from 740 to 440 mmol/L, the adsorption capacity kept almost unchanged; the effective protein diffusivity (De) also showed negligible variations as IC decreased from 740 to 560 mmol/L (De/D0=0.38 ± 0.04). However, it was interesting to observe a three-fold increase of the De value for FF-PEI-R440 (De/D0=1.23 ± 0.08). It is considered that the occurrence of the drastic uptake rate increase in FF-PEI-R440 was attributed to the decreased available binding sites for protein molecule, which led to the decrease of binding strength, thus facilitated the happenings of "chain delivery" effect of bound proteins. Besides, a study on the effect of ionic strength clarified that the lower the IC value, the higher the sensitivity of protein binding to salt concentration due to the easily screened electrostatic interactions at low surface charge densities. The ionic strength at the elution peak also decreased with decreasing IC in accordance with the salt sensitivity order. Column breakthrough studies demonstrated that the dynamic adsorption capacity of FF-PEI-R440 was

  11. Hamiltonian of Mean Force and Dissipative Scalar Field Theory

    NASA Astrophysics Data System (ADS)

    Jafari, Marjan; Kheirandish, Fardin

    2018-04-01

    Quantum dynamics of a dissipative scalar field is investigated. Using the Hamiltonian of mean force, internal energy, free energy and entropy of a dissipative scalar field are obtained. It is shown that a dissipative massive scalar field can be considered as a free massive scalar field described by an effective mass and dispersion relation. Internal energy of the scalar field, as the subsystem, is found in the limit of low temperature and weak and strong couplings to an Ohimc heat bath. Correlation functions for thermal and coherent states are derived.

  12. Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field

    NASA Astrophysics Data System (ADS)

    Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa

    2015-07-01

    Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.

  13. Extension of coarse-grained UNRES force field to treat carbon nanotubes.

    PubMed

    Sieradzan, Adam K; Mozolewska, Magdalena A

    2018-04-26

    Carbon nanotubes (CNTs) have recently received considerable attention because of their possible applications in various branches of nanotechnology. For their cogent application, knowledge of their interactions with biological macromolecules, especially proteins, is essential and computer simulations are very useful for such studies. Classical all-atom force fields limit simulation time scale and size of the systems significantly. Therefore, in this work, we implemented CNTs into the coarse-grained UNited RESidue (UNRES) force field. A CNT is represented as a rigid infinite-length cylinder which interacts with a protein through the Kihara potential. Energy conservation in microcanonical coarse-grained molecular dynamics simulations and temperature conservation in canonical simulations with UNRES containing the CNT component have been verified. Subsequently, studies of three proteins, bovine serum albumin (BSA), soybean peroxidase (SBP), and α-chymotrypsin (CT), with and without CNTs, were performed to examine the influence of CNTs on the structure and dynamics of these proteins. It was found that nanotubes bind to these proteins and influence their structure. Our results show that the UNRES force field can be used for further studies of CNT-protein systems with 3-4 order of magnitude larger timescale than using regular all-atom force fields. Graphical abstract Bovine serum albumin (BSA), soybean peroxidase (SBP), and α-chymotrypsin (CT), with and without CNTsᅟ.

  14. Dissolution study of active pharmaceutical ingredients using molecular dynamics simulations with classical force fields

    NASA Astrophysics Data System (ADS)

    Greiner, Maximilian; Elts, Ekaterina; Schneider, Julian; Reuter, Karsten; Briesen, Heiko

    2014-11-01

    The CHARMM, general Amber and OPLS force fields are evaluated for their suitability in simulating the molecular dynamics of the dissolution of the hydrophobic, small-molecule active pharmaceutical ingredients aspirin, ibuprofen, and paracetamol in aqueous media. The force fields are evaluated by comparison with quantum chemical simulations or experimental references on the basis of the following capabilities: accurately representing intra- and intermolecular interactions, appropriately reproducing crystal lattice parameters, adequately describing thermodynamic properties, and the qualitative description of the dissolution behavior. To make this approach easily accessible for evaluating the dissolution properties of novel drug candidates in the early stage of drug development, the force field parameter files are generated using online resources such as the SWISS PARAM servers, and the software packages ACPYPE and Maestro. All force fields are found to reproduce the intermolecular interactions with a reasonable degree of accuracy, with the general Amber and CHARMM force fields showing the best agreement with quantum mechanical calculations. A stable crystal bulk structure is obtained for all model substances, except for ibuprofen, where the reproductions of the lattice parameters and observed crystal stability are considerably poor for all force fields. The heat of solution used to evaluate the solid-to-solution phase transitions is found to be in qualitative agreement with the experimental data for all combinations tested, with the results being quantitatively optimum for the general Amber and CHARMM force fields. For aspirin and paracetamol, stable crystal-water interfaces were obtained. The (100), (110), (011) and (001) interfaces of aspirin or paracetamol and water were simulated for each force field for 30 ns. Although generally expected as a rare event, in some of the simulations, dissolution is observed at 310 K and ambient pressure conditions.

  15. Einstein's osmotic equilibrium of colloidal suspensions in conservative force fields

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Ou-Yang, H. Daniel

    2014-09-01

    Predicted by Einstein in his 1905 paper on Brownian motion, colloidal particles in suspension reach osmotic equilibrium under gravity. The idea was demonstrated by J.B. Perrin to win Nobel Prize in Physics in 1926. We show Einstein's equation for osmotic equilibrium can be applied to colloids in a conservative force field generated by optical gradient forces. We measure the osmotic equation of state of 100nm Polystyrene latex particles in the presence of KCl salt and PEG polymer. We also obtain the osmotic compressibility, which is important for determining colloidal stability and the internal chemical potential, which is useful for predicting the phase transition of colloidal systems. This generalization allows for the use of any conservative force fields for systems ranging from colloidal systems to macromolecular solutions.

  16. 40 CFR 63.1092 - What are the major differences between the requirements of 40 CFR part 61, subpart FF, and the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the requirements of 40 CFR part 61, subpart FF, and the waste requirements for ethylene production... Waste Operations Background for Waste Requirements § 63.1092 What are the major differences between the requirements of 40 CFR part 61, subpart FF, and the waste requirements for ethylene production sources? The...

  17. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    NASA Astrophysics Data System (ADS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-07-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables—the medium, the quantum field, and the atom’s internal degrees of freedom, in that order—to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom’s internal degrees of freedom results in an equation of motion for the atom’s center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom’s motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  18. Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in themore » neutron field are reported.« less

  19. U.S. Field Artillery after World War I: Modernizing the Force While Downsizing

    DTIC Science & Technology

    2014-06-13

    weapons, and tactics. It convened several boards to assess the requirements for an effective field artillery force, studying the materiel and......weapons, and tactics. It convened several boards to assess the requirements for an effective field artillery force, studying the materiel and

  20. Polarizable Multipole-Based Force Field for Dimethyl and Trimethyl Phosphate

    PubMed Central

    2015-01-01

    Phosphate groups are commonly observed in biomolecules such as nucleic acids and lipids. Due to their highly charged and polarizable nature, modeling these compounds with classical force fields is challenging. Using quantum mechanical studies and liquid-phase simulations, the AMOEBA force field for dimethyl phosphate (DMP) ion and trimethyl phosphate (TMP) has been developed. On the basis of ab initio calculations, it was found that ion binding and the solution environment significantly impact both the molecular geometry and the energy differences between conformations. Atomic multipole moments are derived from MP2/cc-pVQZ calculations of methyl phosphates at several conformations with their chemical environments taken into account. Many-body polarization is handled via a Thole-style induction model using distributed atomic polarizabilities. van der Waals parameters of phosphate and oxygen atoms are determined by fitting to the quantum mechanical interaction energy curves for water with DMP or TMP. Additional stretch-torsion and angle-torsion coupling terms were introduced in order to capture asymmetry in P–O bond lengths and angles due to the generalized anomeric effect. The resulting force field for DMP and TMP is able to accurately describe both the molecular structure and conformational energy surface, including bond and angle variations with conformation, as well as interaction of both species with water and metal ions. The force field was further validated for TMP in the condensed phase by computing hydration free energy, liquid density, and heat of vaporization. The polarization behavior between liquid TMP and TMP in water is drastically different. PMID:26574325

  1. A universal strategy for the creation of machine learning-based atomistic force fields

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Batra, Rohit; Chapman, James; Krishnan, Sridevi; Chen, Lihua; Ramprasad, Rampi

    2017-09-01

    Emerging machine learning (ML)-based approaches provide powerful and novel tools to study a variety of physical and chemical problems. In this contribution, we outline a universal strategy to create ML-based atomistic force fields, which can be used to perform high-fidelity molecular dynamics simulations. This scheme involves (1) preparing a big reference dataset of atomic environments and forces with sufficiently low noise, e.g., using density functional theory or higher-level methods, (2) utilizing a generalizable class of structural fingerprints for representing atomic environments, (3) optimally selecting diverse and non-redundant training datasets from the reference data, and (4) proposing various learning approaches to predict atomic forces directly (and rapidly) from atomic configurations. From the atomistic forces, accurate potential energies can then be obtained by appropriate integration along a reaction coordinate or along a molecular dynamics trajectory. Based on this strategy, we have created model ML force fields for six elemental bulk solids, including Al, Cu, Ti, W, Si, and C, and show that all of them can reach chemical accuracy. The proposed procedure is general and universal, in that it can potentially be used to generate ML force fields for any material using the same unified workflow with little human intervention. Moreover, the force fields can be systematically improved by adding new training data progressively to represent atomic environments not encountered previously.

  2. Mapping the Drude polarizable force field onto a multipole and induced dipole model

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Simmonett, Andrew C.; Pickard, Frank C.; MacKerell, Alexander D.; Brooks, Bernard R.

    2017-10-01

    The induced dipole and the classical Drude oscillator represent two major approaches for the explicit inclusion of electronic polarizability into force field-based molecular modeling and simulations. In this work, we explore the equivalency of these two models by comparing condensed phase properties computed using the Drude force field and a multipole and induced dipole (MPID) model. Presented is an approach to map the electrostatic model optimized in the context of the Drude force field onto the MPID model. Condensed phase simulations on water and 15 small model compounds show that without any reparametrization, the MPID model yields properties similar to the Drude force field with both models yielding satisfactory reproduction of a range of experimental values and quantum mechanical data. Our results illustrate that the Drude oscillator model and the point induced dipole model are different representations of essentially the same physical model. However, results indicate the presence of small differences between the use of atomic multipoles and off-center charge sites. Additionally, results on the use of dispersion particle mesh Ewald further support its utility for treating long-range Lennard Jones dispersion contributions in the context of polarizable force fields. The main motivation in demonstrating the transferability of parameters between the Drude and MPID models is that the more than 15 years of development of the Drude polarizable force field can now be used with MPID formalism without the need for dual-thermostat integrators nor self-consistent iterations. This opens up a wide range of new methodological opportunities for polarizable models.

  3. Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.

    PubMed

    Soo, Heino; Dean, David S; Krüger, Matthias

    2017-01-01

    We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.

  4. SU-E-T-215: Comparison of VMAT-SABR Treatment Plans with Flattened Filter (FF) Beam and Flattening Filter-Free (FFF) Beam for Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J; Kim, J; Kang, S

    2015-06-15

    Purpose: The purpose of this study is to access VMAT-SABR plan using flattening filter (FF) and flattening filter-free (FFF) beam, and compare the verification results for all pretreatment plans. Methods: SABR plans for 20 prostate patients were optimized in the Eclipse treatment planning system. A prescription dose was 42.7 Gy/7 fractions. Four SABR plans for each patient were calculated using Acuros XB algorithm with both FF and FFF beams of 6- and 10-MV. The dose-volume histograms (DVH) and technical parameters were recorded and compared. A pretreatment verification was performed and the gamma analysis was used to quantify the agreement betweenmore » calculations and measurements. Results: For each patient, the DVHs are closely similar for plans of four different beams. There are small differences showed in dose distributions and corresponding DVHs when comparing the each plan related to the same patient. Sparing on bladder and rectum was slightly better on plans with 10-MV FF and FFF than with 6-MV FF and FFF, but this difference was negligible. However, there was no significance in the other OARs. The mean agreement of 3%/3mm criteria was higher than 97% in all plans. The mean MUs and deliver time employed was 1701±101 and 3.02±0.17 min for 6-MV FF, 1870±116 and 1.69±0.08 min for 6-MV FFF, 1471±86 and 2.68±0.14 min for 10-MV FF, and 1619±101 and 0.98±0.04 min for 10-MV FFF, respectively. Conclusion: Dose distributions on prostate SABR plans using FFF beams were similar to those generated by FF beams. However, the use of FFF beam offers a clear benefit in delivery time when compared to FF beam. Verification of pretreatment also represented the acceptable and comparable results in all plans using FF beam as well as FFF beam. Therefore, this study suggests that the use of FFF beam is feasible and efficient technique for prostate SABR.« less

  5. Methane Adsorption in Zr-Based MOFs: Comparison and Critical Evaluation of Force Fields

    PubMed Central

    2017-01-01

    The search for nanoporous materials that are highly performing for gas storage and separation is one of the contemporary challenges in material design. The computational tools to aid these experimental efforts are widely available, and adsorption isotherms are routinely computed for huge sets of (hypothetical) frameworks. Clearly the computational results depend on the interactions between the adsorbed species and the adsorbent, which are commonly described using force fields. In this paper, an extensive comparison and in-depth investigation of several force fields from literature is reported for the case of methane adsorption in the Zr-based Metal–Organic Frameworks UiO-66, UiO-67, DUT-52, NU-1000, and MOF-808. Significant quantitative differences in the computed uptake are observed when comparing different force fields, but most qualitative features are common which suggests some predictive power of the simulations when it comes to these properties. More insight into the host–guest interactions is obtained by benchmarking the force fields with an extensive number of ab initio computed single molecule interaction energies. This analysis at the molecular level reveals that especially ab initio derived force fields perform well in reproducing the ab initio interaction energies. Finally, the high sensitivity of uptake predictions on the underlying potential energy surface is explored. PMID:29170687

  6. The calculation of force-free fields from discrete flux distributions. [for chromospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Harvey, J. W.

    1975-01-01

    This paper presents particularly simple mathematical formulas for the calculation of force-free fields of constant alpha from the distribution of discrete sources on a flat surface. The advantage of these formulas lies in their physical simplicity and the fact that they can be easily used in practice to calculate the fields. The disadvantage is that they are limited to fields of 'sufficiently small alpha'. These formulas may be useful in the study of chromospheric magnetic fields by the comparison of high-resolution H-alpha photographs and photospheric magnetograms.

  7. Weber's gravitational force as static weak field approximation

    NASA Astrophysics Data System (ADS)

    Tiandho, Yuant

    2016-02-01

    Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.

  8. Building machine learning force fields for nanoclusters

    NASA Astrophysics Data System (ADS)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  9. The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner

    PubMed Central

    Pfannmüller, Andreas; Wagner, Dominik; Sieber, Christian; Schönig, Birgit; Boeckstaens, Mélanie; Marini, Anna Maria; Tudzynski, Bettina

    2015-01-01

    The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to

  10. Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livermore, P. W.; Hughes, D. W.; Tobias, S. M.

    2010-03-15

    In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via themore » Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient {alpha} and thus discuss our results within the context of mean field electrodynamics.« less

  11. Simultaneous negative refraction and focusing of fundamental frequency and second-harmonic fields by two-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan; Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn

    2015-09-28

    Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed outmore » in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.« less

  12. Small field detector correction factors: effects of the flattening filter for Elekta and Varian linear accelerators

    PubMed Central

    Liu, Paul Z.Y.; Lee, Christopher; McKenzie, David R.; Suchowerska, Natalka

    2016-01-01

    Flattening filter‐free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization chambers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ±0.9% across all field sizes measured. Solid‐state detectors showed an increased dependence on the flattening filter of up to ±1.6%. Measured diode response was within ±1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ±1.6% is accepted. PACS number(s): 87.55.km, 87.56.bd, 87.56.Da PMID:27167280

  13. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.

    PubMed

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L

    2017-01-01

    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  14. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    PubMed

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  15. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    NASA Astrophysics Data System (ADS)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  16. Development of magnet configurations for magnetic immunostaining

    NASA Astrophysics Data System (ADS)

    Kaneko, Miki; Chikaki, Shinichi; Matsuda, Sachiko; Kuwahata, Akihiro; Namita, Masayuki; Saito, Itsuro; Sakamoto, Satoshi; Kusakabe, Moriaki; Sekino, Masaki

    2018-05-01

    Magnetic immunostaining using a magnet and antibody-labeled fluorescent ferrite (FF) beads is established as a rapid immunostaining. In this study, we proposed the novel configuration of magnets with the large magnetic field gradient and the strong magnetic force for magnetic immunostaining. To confirm the usefulness of the proposed magnet configuration, we performed numerical analysis of the magnetic characteristics of the proposed magnets, and the magnetic immunostaining with FF beads. It was revealed that the proposed magnets generated the strong magnetic force and promoted the immunoreaction rapidly.

  17. Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Weimin; Niu, Haitao; Lin, Tong

    2014-01-28

    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform externalmore » electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.« less

  18. Apparatus having reduced mechanical forces for supporting high magnetic fields

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of supporting extremely high magnetic fields suitable for plasma confinement, wherein forces experienced by the conducting elements are significantly reduced over those which are present as a result of the generation of such high fields by conventional techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  19. Deep eutectic solvent formation: a structural view using molecular dynamics simulations with classical force fields

    NASA Astrophysics Data System (ADS)

    Mainberger, Sebastian; Kindlein, Moritz; Bezold, Franziska; Elts, Ekaterina; Minceva, Mirjana; Briesen, Heiko

    2017-06-01

    Deep eutectic solvents (DES) have gained a reputation as inexpensive and easy to handle ionic liquid analogues. This work employs molecular dynamics (MD) to simulate a variety of DES. The hydrogen bond acceptor (HBA) choline chloride was paired with the hydrogen bond donors (HBD) glycerol, 1,4-butanediol, and levulinic acid. Levulinic acid was also paired with the zwitterionic HBA betaine. In order to evaluate the reliability of data MD simulations can provide for DES, two force fields were compared: the Merck Molecular Force Field and the General Amber Force Field with two different sets of partial charges for the latter. The force fields were evaluated by comparing available experimental thermodynamic and transport properties against simulated values. Structural analysis was performed on the eutectic systems and compared to non-eutectic compositions. All force fields could be validated against certain experimental properties, but performance varied depending on the system and property in question. While extensive hydrogen bonding was found for all systems, details about the contribution of individual groups strongly varied among force fields. Interaction potentials revealed that HBA-HBA interactions weaken linearly with increasing HBD ratio, while HBD-HBD interactions grew disproportionally in magnitude, which might hint at the eutectic composition of a system.

  20. An improved DNA force field for ssDNA interactions with gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiankai; Huai, Ping; Fan, Chunhai

    The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones “protecting” hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thusmore » the “protection” by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.« less

  1. An improved DNA force field for ssDNA interactions with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Xiankai; Gao, Jun; Huynh, Tien; Huai, Ping; Fan, Chunhai; Zhou, Ruhong; Song, Bo

    2014-06-01

    The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones "protecting" hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thus the "protection" by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.

  2. An improved DNA force field for ssDNA interactions with gold nanoparticles.

    PubMed

    Jiang, Xiankai; Gao, Jun; Huynh, Tien; Huai, Ping; Fan, Chunhai; Zhou, Ruhong; Song, Bo

    2014-06-21

    The widespread applications of single-stranded DNA (ssDNA) conjugated gold nanoparticles (AuNPs) have spurred an increasing interest in the interactions between ssDNA and AuNPs. Despite extensive studies using the most sophisticated experimental techniques, the detailed molecular mechanisms still remain largely unknown. Large scale molecular dynamics (MD) simulations can thus be used to supplement experiments by providing complementary information about ssDNA-AuNP interactions. However, up to now, all modern force fields for DNA were developed based on the properties of double-stranded DNA (dsDNA) molecules, which have hydrophilic outer backbones "protecting" hydrophobic inner nucleobases from water. Without the double-helix structure of dsDNA and thus the "protection" by the outer backbone, the nucleobases of ssDNA are directly exposed to solvent, and their behavior in water is very different from that of dsDNA, especially at the interface with nanoparticles. In this work, we have improved the force field of ssDNA for use with nanoparticles, such as AuNPs, based on recent experimental results and quantum mechanics calculations. With the new improved force field, we demonstrated that a poly(A) sequence adsorbed on a AuNP surface is much more stable than a poly(T) sequence, which is consistent with recent experimental observations. On the contrary, the current standard force fields, including AMBER03, CHARMM27, and OPLSAA, all gave erroneous results as compared to experiments. The current improved force field is expected to have wide applications in the study of ssDNA with nanomaterials including AuNPs, which might help promote the development of ssDNA-based biosensors and other bionano-devices.

  3. Direct folding simulation of helical proteins using an effective polarizable bond force field.

    PubMed

    Duan, Lili; Zhu, Tong; Ji, Changge; Zhang, Qinggang; Zhang, John Z H

    2017-06-14

    We report a direct folding study of seven helical proteins (, Trpcage, , C34, N36, , ) ranging from 17 to 53 amino acids through standard molecular dynamics simulations using a recently developed polarizable force field-Effective Polarizable Bond (EPB) method. The backbone RMSDs, radius of gyrations, native contacts and native helix content are in good agreement with the experimental results. Cluster analysis has also verified that these folded structures with the highest population are in good agreement with their corresponding native structures for these proteins. In addition, the free energy landscape of seven proteins in the two dimensional space comprised of RMSD and radius of gyration proved that these folded structures are indeed of the lowest energy conformations. However, when the corresponding simulations were performed using the standard (nonpolarizable) AMBER force fields, no stable folded structures were observed for these proteins. Comparison of the simulation results based on a polarizable EPB force field and a nonpolarizable AMBER force field clearly demonstrates the importance of polarization in the folding of stable helical structures.

  4. Hydration Free Energy from Orthogonal Space Random Walk and Polarizable Force Field.

    PubMed

    Abella, Jayvee R; Cheng, Sara Y; Wang, Qiantao; Yang, Wei; Ren, Pengyu

    2014-07-08

    The orthogonal space random walk (OSRW) method has shown enhanced sampling efficiency in free energy calculations from previous studies. In this study, the implementation of OSRW in accordance with the polarizable AMOEBA force field in TINKER molecular modeling software package is discussed and subsequently applied to the hydration free energy calculation of 20 small organic molecules, among which 15 are positively charged and five are neutral. The calculated hydration free energies of these molecules are compared with the results obtained from the Bennett acceptance ratio method using the same force field, and overall an excellent agreement is obtained. The convergence and the efficiency of the OSRW are also discussed and compared with BAR. Combining enhanced sampling techniques such as OSRW with polarizable force fields is very promising for achieving both accuracy and efficiency in general free energy calculations.

  5. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de; Kibies, Patrick

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatmentmore » of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.« less

  6. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  7. Quantum mechanical force field for water with explicit electronic polarization.

    PubMed

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  8. Development and Validation of the Family Feedback on Child Welfare Services (FF-CWS)

    ERIC Educational Resources Information Center

    Ayala-Nunes, Lara; Jiménez, Lucía; Hidalgo, Victoria; Dekovic, Maja; Jesus, Saul

    2018-01-01

    Objective: The measurement of Family Feedback on Child Welfare Services (FF-CWS) is gaining prominence as an efficacy indicator and is coherent with concerns about family-centered practice and empowerment. The aim of this study was to develop and validate an instrument that would overcome the scarcity of psychometrically sound measures in this…

  9. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation.

    PubMed

    Zhou, Tingting; Song, Huajie; Liu, Yi; Huang, Fenglei

    2014-07-21

    To gain an atomistic-level understanding of the thermal and chemical responses of condensed energetic materials under thermal shock, we developed a thermal shock reactive dynamics (TS-RD) computational protocol using molecular dynamics simulation coupled with ReaxFF force field. β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) was selected as a a target explosive due to its wide usage in the military and industry. The results show that a thermal shock initiated by a large temperature gradient between the "hot" region and the "cold" region results in thermal expansion of the particles and induces a thermal-mechanical wave propagating back and forth in the system with an averaged velocity of 3.32 km s(-1). Heat propagating along the direction of thermal shock leads to a temperature increment of the system and thus chemical reaction initiation. Applying a continuum reactive heat conduction model combined with the temperature distribution obtained from the RD simulation, a heat conduction coefficient is derived as 0.80 W m(-1) K(-1). The chemical reaction mechanisms during thermal shock were analyzed, showing that the reaction is triggered by N-NO2 bond breaking followed by HONO elimination and ring fission. The propagation rates of the reaction front and reaction center are obtained to be 0.069 and 0.038 km s(-1), based on the time and spatial distribution of NO2. The pressure effect on the thermal shock was also investigated by employing uniaxial compression before the thermal shock. We find that compression significantly accelerates thermal-mechanical wave propagation and heat conduction, resulting in higher temperature and more excited molecules and thus earlier initiation and faster propagation of chemical reactions.

  10. Magnetic Field, Force, and Inductance Computations for an Axially Symmetric Solenoid

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Youngquist, Robert C.; Immer, Christopher D.; Simpson, James C.

    2001-01-01

    The pumping of liquid oxygen (LOX) by magnetic fields (B field), using an array of electromagnets, is a current topic of research and development at Kennedy Space Center, FL. Oxygen is paramagnetic so that LOX, like a ferrofluid, can be forced in the direction of a B field gradient. It is well known that liquid oxygen has a sufficient magnetic susceptibility that a strong magnetic gradient can lift it in the earth's gravitational field. It has been proposed that this phenomenon can be utilized in transporting (i.e., pumping) LOX not only on earth, but on Mars and in the weightlessness of space. In order to design and evaluate such a magnetic pumping system, it is essential to compute the magnetic and force fields, as well as inductance, of various types of electromagnets (solenoids). In this application, it is assumed that the solenoids are air wrapped, and that the current is essentially time independent.

  11. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study.

    PubMed

    Aral, Gurcan; Islam, Md Mahbubul; van Duin, Adri C T

    2017-12-20

    Highly reactive metallic nickel (Ni) is readily oxidized by oxygen (O 2 ) molecules even at low temperatures. The presence of the naturally resulting pre-oxide shell layer on metallic Ni nano materials such as Ni nanowires (NW) is responsible for degrading the deformation mechanisms and related mechanical properties. However, the role of the pre-oxide shell layer on the metallic Ni NW coupled with the complicated mechanical deformation mechanism and related properties have not yet been fully and independently understood. For this reason, the ReaxFF reactive force field for Ni/O interactions was used to investigate the effect of surface oxide layers and the size-dependent mechanical properties of Ni NWs under precisely controlled tensile loading conditions. To directly quantify the size dependent surface oxidation effect on the tensile mechanical deformation behaviour and related properties for Ni NWs, first, ReaxFF-molecular dynamics (MD) simulations were carried out to study the oxidation kinetics on the free surface of Ni NWs in a molecular O 2 environment as a function of various diameters (D = 5.0, 6.5, and 8.0 nm) of the NWs, but at the same length. Single crystalline, pure metallic Ni NWs were also studied as a reference. The results of the oxidation simulations indicate that a surface oxide shell layer with limiting thickness of ∼1.0 nm was formed on the free surface of the bare Ni NW, typically via dissociation of the O-O bonds and the subsequent formation of Ni-O bonds. Furthermore, we investigated the evolution of the size-dependent intrinsic mechanical elastic properties of the core-oxide shell (Ni/Ni x O y ) NWs by comparing them with their un-oxidized counterparts under constant uniaxial tensile loading. We found that the oxide shell layer significantly decreases the mechanical properties of metallic Ni NW as well as facilitates the initiation of plastic deformation as a function of decreasing diameter. The disordered oxide shell layer on the Ni NW

  12. The thermal near-field: Coherence, spectroscopy, heat-transfer, and optical forces

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.; O'Callahan, Brian T.; Yang, Honghua U.; Raschke, Markus B.

    2013-12-01

    One of the most universal physical processes shared by all matter at finite temperature is the emission of thermal radiation. The experimental characterization and theoretical description of far-field black-body radiation was a cornerstone in the development of modern physics with the groundbreaking contributions from Gustav Kirchhoff and Max Planck. With its origin in thermally driven fluctuations of the charge carriers, thermal radiation reflects the resonant and non-resonant dielectric properties of media, which is the basis for far-field thermal emission spectroscopy. However, associated with the underlying fluctuating optical source polarization are fundamentally distinct spectral, spatial, resonant, and coherence properties of the evanescent thermal near-field. These properties have been recently predicted theoretically and characterized experimentally for systems with thermally excited molecular, surface plasmon polariton (SPP), and surface phonon polariton (SPhP) resonances. We review, starting with the early historical developments, the emergence of theoretical models, and the description of the thermal near-field based on the fluctuation-dissipation theory and in terms of the electromagnetic local density of states (EM-LDOS). We discuss the optical and spectroscopic characterization of distance dependence, magnitude, spectral distribution, and coherence of evanescent thermal fields. Scattering scanning near-field microscopy proved instrumental as an enabling technique for the investigations of several of these fundamental thermal near-field properties. We then discuss the role of thermal fields in nano-scale heat transfer and optical forces, and the correlation to the van der Waals, Casimir, and Casimir-Polder forces. We conclude with an outlook on the possibility of intrinsic and extrinsic resonant manipulation of optical forces, control of nano-scale radiative heat transfer with optical antennas and metamaterials, and the use of thermal infrared near-field

  13. The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule.

    PubMed

    Martín Pendás, A; Hernández-Trujillo, J

    2012-10-07

    The Ehrenfest force is the force acting on the electrons in a molecule due to the presence of the other electrons and the nuclei. There is an associated force field in three-dimensional space that is obtained by the integration of the corresponding Hermitian quantum force operator over the spin coordinates of all of the electrons and the space coordinates of all of the electrons but one. This paper analyzes the topology induced by this vector field and its consequences for the definition of molecular structure and of an atom in a molecule. Its phase portrait reveals: that the nuclei are attractors of the Ehrenfest force, the existence of separatrices yielding a dense partitioning of three-dimensional space into disjoint regions, and field lines connecting the attractors through these separatrices. From the numerical point of view, when the Ehrenfest force field is obtained as minus the divergence of the kinetic stress tensor, the induced topology was found to be highly sensitive to choice of gaussian basis sets at long range. Even the use of large split valence and highly uncontracted basis sets can yield spurious critical points that may alter the number of attraction basins. Nevertheless, at short distances from the nuclei, in general, the partitioning of three-dimensional space with the Ehrenfest force field coincides with that induced by the gradient field of the electron density. However, exceptions are found in molecules where the electron density yields results in conflict with chemical intuition. In these cases, the molecular graphs of the Ehrenfest force field reveal the expected atomic connectivities. This discrepancy between the definition of an atom in a molecule between the two vector fields casts some doubts on the physical meaning of the integration of Ehrenfest forces over the basins of the electron density.

  14. Variation in predicting pantograph-catenary interaction contact forces, numerical simulations and field measurements

    NASA Astrophysics Data System (ADS)

    Nåvik, Petter; Rønnquist, Anders; Stichel, Sebastian

    2017-09-01

    The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph-catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.

  15. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    NASA Astrophysics Data System (ADS)

    Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.

    2014-12-01

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  16. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters.

    PubMed

    Jasiński, Maciej; Feig, Michael; Trylska, Joanna

    2018-06-06

    Peptide nucleic acids are promising nucleic acid analogs for antisense therapies as they can form stable duplex and triplex structures with DNA and RNA. Computational studies of PNA-containing duplexes and triplexes are an important component for guiding their design, yet existing force fields have not been well validated and parametrized with modern computational capabilities. We present updated CHARMM and Amber force fields for PNA that greatly improve the stability of simulated PNA-containing duplexes and triplexes in comparison with experimental structures and allow such systems to be studied on microsecond time scales. The force field modifications focus on reparametrized PNA backbone torsion angles to match high-level quantum mechanics reference energies for a model compound. The microsecond simulations of PNA-PNA, PNA-DNA, PNA-RNA, and PNA-DNA-PNA complexes also allowed a comprehensive analysis of hydration and ion interactions with such systems.

  17. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    PubMed Central

    2015-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems. PMID:24874104

  18. Management of change through force field analysis.

    PubMed

    Baulcomb, Jean Sandra

    2003-07-01

    Today's NHS is rapidly changing, placing more emphasis on the managerial responsibilities of ward managers. Managing change is seen as being skilled at creating, acquiring and transferring knowledge to reflect new knowledge and insights. Defining core concepts is often difficult and requires the drawing on models/theories of change for guidance. Guidance from Lewin's (1951) force field analysis demonstrates the complexities of the change process and how driving and resisting forces were incorporated within the planning and implementation phases. Findings outline the benefits of a small scale change for staff, patients and the organization when successfully used to introduce a change of shift pattern within a progressively busy haematology day unit, in order to meet service demands without additional funding. Conclusions have been drawn in relation to the process and recommendations for practice made to further enhance care delivery within the unit.

  19. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerche, I.; Low, B. C.

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship betweenmore » the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  20. Performance of Axial-Flow Supersonic Compressor of XJ55-FF-1 Turbojet Engine. III; Over-All Performance of Compressor

    NASA Technical Reports Server (NTRS)

    Hartmann, Melvin J.; Tysl, Edward R.

    1949-01-01

    An investigation was conducted to determine the performance characteristics of the rotor and inlet guide vanes used in the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. Outlet stators used in the engine were omitted to facilitate study of the supersonic rotor. The extent of the deviation from design performance indicates that the design-shock configuration was not obtained. A maximum pressure ratio of 2.26 was obtained at an equivalent tip speed of 1614 feet per second and an adiabatic efficiency of 0.61. The maximum efficiency obtained was 0.79 at an equivalent tip speed of 801 feet per second and a pressure ratio of 1.29. The performance obtained was considerably below design performance. The effective aerodynamic forces encountered appeared to be large enough to cause considerable damage to the thin aluminum leading edges of the rotor blades.

  1. Force fields of charged particles in micro-nanofluidic preconcentration systems

    NASA Astrophysics Data System (ADS)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  2. Sensitivity of Force Fields on Mechanical Properties of Metals Predicted by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    Increasing number of micro/nanoscale studies for scientific and engineering applications, leads to huge deployment of atomistic simulations such as molecular dynamics and Monte-Carlo simulation. Many complains from users in the simulation community arises for obtaining wrong results notwithstanding of correct simulation procedure and conditions. Improper choice of force field, known as interatomic potential is the likely causes. For the sake of users' assurance, convenience and time saving, several interatomic potentials are evaluated by molecular dynamics. Elastic properties of multiple FCC and BCC pure metallic species are obtained by LAMMPS, using different interatomic potentials designed for pure species and their alloys at different temperatures. The potentials created based on the Embedded Atom Method (EAM), Modified EAM (MEAM) and ReaX force fields, adopted from available open databases. Independent elastic stiffness constants of cubic single crystals for different metals are obtained. The results are compared with the experimental ones available in the literature and deviations for each force field are provided at each temperature. Using current work, users of these force fields can easily judge on the one they are going to designate for their problem.

  3. Far-field detection of sub-wavelength Tetris without extra near-field metal parts based on phase prints of time-reversed fields with intensive background interference.

    PubMed

    Chen, Yingming; Wang, Bing-Zhong

    2014-07-14

    Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.

  4. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.

    We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less

  5. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    NASA Astrophysics Data System (ADS)

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.

    2017-02-01

    A new modified embedded-atom method (MEAM) force field is developed for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997), 10.1103/PhysRevLett.79.2482], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquid density, self-diffusivity, viscosity, and vapor-liquid surface tension. It is shown that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.

  6. Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field

    DOE PAGES

    Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; ...

    2017-02-01

    We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less

  7. Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids

    NASA Astrophysics Data System (ADS)

    Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Min, Hanyi; Li, Guohui

    2018-04-01

    A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values.

  8. Controlling dispersion forces between small particles with artificially created random light fields

    PubMed Central

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622

  9. Molecular dynamics simulations of AP/HMX composite with a modified force field.

    PubMed

    Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming

    2009-08-15

    An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.

  10. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    PubMed

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  11. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    PubMed Central

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  12. Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields.

    PubMed

    Eleftheriou, Maria; Germain, Robert S; Royyuru, Ajay K; Zhou, Ruhong

    2006-10-18

    Biomolecular simulations enabled by massively parallel supercomputers such as BlueGene/L promise to bridge the gap between the currently accessible simulation time scale and the experimental time scale for many important protein folding processes. In this study, molecular dynamics simulations were carried out for both the wild-type and the mutant hen lysozyme (TRP62GLY) to study the single mutation effect on lysozyme stability and misfolding. Our thermal denaturing simulations at 400-500 K with both the OPLSAA and the CHARMM force fields show that the mutant structure is indeed much less stable than the wild-type, which is consistent with the recent urea denaturing experiment (Dobson et al. Science 2002, 295, 1719-1722; Nature 2003, 424, 783-788). Detailed results also reveal that the single mutation TRP62GLY first induces the loss of native contacts in the beta-domain region of the lysozyme protein at high temperatures, and then the unfolding process spreads into the alpha-domain region through Helix C. Even though the OPLSAA force field in general shows a more stable protein structure than does the CHARMM force field at high temperatures, the two force fields examined here display qualitatively similar results for the misfolding process, indicating that the thermal denaturing of the single mutation is robust and reproducible with various modern force fields.

  13. The stability properties of cylindrical force-free fields - Effect of an external potential field

    NASA Technical Reports Server (NTRS)

    Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.

    1980-01-01

    A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.

  14. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  15. Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks

    DOE PAGES

    Mercado, Rocio; Vlaisavljevich, Bess; Lin, Li -Chiang; ...

    2016-05-25

    We present accurate force fields developed from density functional theory (DFT) calculations with periodic boundary conditions for use in molecular simulations involving M 2(dobdc) (M-MOF-74; dobdc 4– = 2,5-dioxidobenzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Zn) and frameworks of similar topology. In these systems, conventional force fields fail to accurately model gas adsorption due to the strongly binding open-metal sites. The DFT-derived force fields predict the adsorption of CO 2, H 2O, and CH 4 inside these frameworks much more accurately than other common force fields. We show that these force fields can also be used for M 2(dobpdc)more » (dobpdc 4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an extended version of MOF-74, and thus are a promising alternative to common force fields for studying materials similar to MOF-74 for carbon capture applications. Furthermore, it is anticipated that the approach can be applied to other metal–organic framework topologies to obtain force fields for different systems. We have used this force field to study the effect of contaminants such as H 2O and N 2 upon these materials’ performance for the separation of CO 2 from the emissions of natural gas reservoirs and coal-fired power plants. Specifically, mixture adsorption isotherms calculated with these DFT-derived force fields showed a significant reduction in the uptake of many gas components in the presence of even trace amounts of H 2O vapor. The extent to which the various gases are affected by the concentration of H 2O in the reservoir is quantitatively different for the different frameworks and is related to their heats of adsorption. Additionally, significant increases in CO 2 selectivities over CH 4 and N 2 are observed as the temperature of the systems is lowered.« less

  16. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  17. Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion.

    PubMed

    Sekhar, Ashok; Vallurupalli, Pramodh; Kay, Lewis E

    2012-11-20

    Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in protein folding remains poorly understood because, with the exception of the native conformer, there generally is little detailed structural information on the other states participating in the folding process. Here, we study the folding of the four-helix bundle FF domain that proceeds via a transiently formed, sparsely populated compact on-pathway folding intermediate whose structure was elucidated previously. Because the intermediate is stabilized by both native and nonnative interactions, friction in the folding transition between intermediate and folded states is expected to arise from intrachain reorganization in the protein. However, the viscosity dependencies of rates of folding from or unfolding to the intermediate, as established by relaxation dispersion NMR spectroscopy, clearly indicate that contributions from internal friction are small relative to those from solvent, so solvent frictional forces drive the folding process. Our results emphasize the importance of solvent dynamics in mediating the interconversion between protein configurations, even those that are highly compact, and in equilibrium folding/unfolding fluctuations in general.

  18. Design of Feedforward Controller to Reduce Force Ripple for Linear Motor using Halbach Magnet Array with T Shape Magnet

    NASA Astrophysics Data System (ADS)

    Kim, Moojong; Kim, Jinyoung; Lee, Moon G.

    Recently, in micro/nano fabrication equipments, linear motors are widely used as an actuator to position workpiece, machining tool and measurement head. To control them faster and more precise, the motor should have high actuating force and small force ripple. High actuating force enable us to more workpiece with high acceleration. Eventually, it may provide higher throughput. Force ripple gives detrimental effect on the precision and tracking performance of the equipments. In order to accomplish more precise motion, it is important to make lower the force ripple. Force ripple is categorized into cogging and mutual ripple. First is dependent on the shape of magnets and/or core. The second is not dependent on them but dependent on current commutation. In this work, coreless mover i.e. coil winding is applied to the linear motor to avoid the cogging ripple. Therefore, the mutual ripple is only considered to be minimized. Ideal Halbach magnet array has continuously varying magnetization. The THMA (Halbach magnet array with T shape magnets) is proposed to approximate the ideal one. The THMA can not produce ideal sinusoidal flux, therefore, the linear motor with THMA and sinusoidal commutation of current generates the mutual force ripple. In this paper, in order to compensate mutual force ripple by feedforward(FF) controller, we calculate the optimized commutation of input current. The ripple is lower than 1.17% of actuating force if the commutation current agree with the magnetic flux from THMA. The performance of feedforward(FF) controller is verified by experiment.

  19. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  20. ATK-ForceField: a new generation molecular dynamics software package

    NASA Astrophysics Data System (ADS)

    Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt

    2017-12-01

    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.

  1. The influence of centrifugal forces on the B field structure of an axially symmetric equilibrium magnetosphere

    NASA Technical Reports Server (NTRS)

    Ye, Gang; Voigt, Gerd-Hannes

    1989-01-01

    A model is presented of an axially symmetric pole-on magnetosphere in MHD force balance, in which both plasma thermal pressure gradients and centrifugal force are taken into account. Assuming that planetary rotation leads to differentially rotating magnetotail field lines, the deformation of magnetotail field lines under the influence of both thermal plasma pressure and centrifugal forces was calculated. Analytic solutions to the Grad-Shafranov equation are presented, which include the centrifugal force term. It is shown that the nonrotational magnetosphere with hot thermal plasma leads to a field configuration without a toroidal B(phi) component and without field-aligned Birkeland currents. The other extreme, a rapidly rotating magnetosphere with cold plasma, leads to a configuration in which plasma must be confined within a thin disk in a plane where the radial magnetic field component B(r) vanishes locally.

  2. On the numerical computation of nonlinear force-free magnetic fields. [from solar photosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Sun, M. T.; Chang, H. M.; Hagyard, M. J.; Gary, G. A.

    1990-01-01

    An algorithm has been developed to extrapolate nonlinear force-free magnetic fields from the photosphere, given the proper boundary conditions. This paper presents the results of this work, describing the mathematical formalism that was developed, the numerical techniques employed, and comments on the stability criteria and accuracy developed for these numerical schemes. An analytical solution is used for a benchmark test; the results show that the computational accuracy for the case of a nonlinear force-free magnetic field was on the order of a few percent (less than 5 percent). This newly developed scheme was applied to analyze a solar vector magnetogram, and the results were compared with the results deduced from the classical potential field method. The comparison shows that additional physical features of the vector magnetogram were revealed in the nonlinear force-free case.

  3. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  4. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging.

    PubMed

    Lemoine, Laëtitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Le Bars, Didier; Newman-Tancredi, Adrian; Zimmer, Luc

    2010-03-01

    The serotonin-1A (5-HT(1A)) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT(1A) receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT(1A) receptors. Since all clinical PET 5-HT(1A) radiopharmaceuticals are antagonists, it is of great interest to develop a( 18)F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT(1A) receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT(1A) receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [(18)F]MPPF, a validated 5-HT(1A) antagonist radiopharmaceutical. The chemical and radiochemical purities of [(18)F]F15599 were >98%. In vitro [(18)F]F15599 binding was consistent with the known 5-HT(1A) receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [(18)F]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [(18)F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT(1A) antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain

  5. Representation of Ion–Protein Interactions Using the Drude Polarizable Force-Field

    PubMed Central

    2016-01-01

    Small metal ions play critical roles in numerous biological processes. Of particular interest is how metalloenzymes are allosterically regulated by the binding of specific ions. Understanding how ion binding affects these biological processes requires atomic models that accurately treat the microscopic interactions with the protein ligands. Theoretical approaches at different levels of sophistication can contribute to a deeper understanding of these systems, although computational models must strike a balance between accuracy and efficiency in order to enable long molecular dynamics simulations. In this study, we present a systematic effort to optimize the parameters of a polarizable force field based on classical Drude oscillators to accurately represent the interactions between ions (K+, Na+, Ca2+, and Cl–) and coordinating amino-acid residues for a set of 30 biologically important proteins. By combining ab initio calculations and experimental thermodynamic data, we derive a polarizable force field that is consistent with a wide range of properties, including the geometries and interaction energies of gas-phase ion/protein-like model compound clusters, and the experimental solvation free-energies of the cations in liquids. The resulting models display significant improvements relative to the fixed-atomic-charge additive CHARMM C36 force field, particularly in their ability to reproduce the many-body electrostatic nonadditivity effects estimated from ab initio calculations. The analysis clarifies the fundamental limitations of the pairwise additivity assumption inherent in classical fixed-charge force fields, and shows its dramatic failures in the case of Ca2+ binding sites. These optimized polarizable models, amenable to computationally efficient large-scale MD simulations, set a firm foundation and offer a powerful avenue to study the roles of the ions in soluble and membrane transport proteins. PMID:25578354

  6. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for themore » 300-FF-2 Burial Grounds Remediation Project.« less

  7. Phase I and II feasibility study report for the 300-FF-5 operable unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    The purpose of this Phase I/II feasibility study is to assemble and screen a list of alternatives for remediation of the 300-FF-5 operable site on the Hanford Reservation. This screening is based on information gathered in the Phase I Remedial Investigation (RI) and on currently available information on remediation technologies. The alternatives remaining after screening provide a range of response actions for remediation. In addition, key data needs are identified for collection during a Phase II RI (if necessary). This Phase I/II FS represents a primary document as defined by the Tri-Party Agreement, but will be followed by a Phasemore » III FS that will further develop the alternatives and provide a detailed evaluation of them. The following remedial action objectives were identified for the 300-FF-5 operable unit: Limit current human exposure to contaminated groundwater in the unit; Limit discharge of contaminated groundwater to the Columbia River; Reduce contaminant concentrations in groundwater below acceptable levels by the year 2018.« less

  8. Molecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength.

    PubMed

    Zhang, Chao; Raugei, Simone; Eisenberg, Bob; Carloni, Paolo

    2010-07-13

    The monovalent ions Na(+) and K(+) and Cl(-) are present in any living organism. The fundamental thermodynamic properties of solutions containing such ions is given as the excess (electro-)chemical potential differences of single ions at finite ionic strength. This quantity is key for many biological processes, including ion permeation in membrane ion channels and DNA-protein interaction. It is given by a chemical contribution, related to the ion activity, and an electric contribution, related to the Galvani potential of the water/air interface. Here we investigate molecular dynamics based predictions of these quantities by using a variety of ion/water force fields commonly used in biological simulation, namely the AMBER (the newly developed), CHARMM, OPLS, Dang95 with TIP3P, and SPC/E water. Comparison with experiment is made with the corresponding values for salts, for which data are available. The calculations based on the newly developed AMBER force field with TIP3P water agrees well with experiment for both KCl and NaCl electrolytes in water solutions, as previously reported. The simulations based on the CHARMM-TIP3P and Dang95-SPC/E force fields agree well for the KCl and NaCl solutions, respectively. The other models are not as accurate. Single cations excess (electro-)chemical potential differences turn out to be similar for all the force fields considered here. In the case of KCl, the calculated electric contribution is consistent with higher level calculations. Instead, such agreement is not found with NaCl. Finally, we found that the calculated activities for single Cl(-) ions turn out to depend clearly on the type of counterion used, with all the force fields investigated. The implications of these findings for biomolecular systems are discussed.

  9. Observation of force-detected nuclear magnetic resonance in a homogeneous field

    PubMed Central

    Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P.

    2004-01-01

    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a 1H-19F J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to μm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the μm and nm scales. PMID:15326302

  10. A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields

    PubMed Central

    Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano

    2014-01-01

    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393

  11. Calculating binding free energies of host-guest systems using the AMOEBA polarizable force field.

    PubMed

    Bell, David R; Qi, Rui; Jing, Zhifeng; Xiang, Jin Yu; Mejias, Christopher; Schnieders, Michael J; Ponder, Jay W; Ren, Pengyu

    2016-11-09

    Molecular recognition is of paramount interest in many applications. Here we investigate a series of host-guest systems previously used in the SAMPL4 blind challenge by using molecular simulations and the AMOEBA polarizable force field. The free energy results computed by Bennett's acceptance ratio (BAR) method using the AMOEBA polarizable force field ranked favorably among the entries submitted to the SAMPL4 host-guest competition [Muddana, et al., J. Comput.-Aided Mol. Des., 2014, 28, 305-317]. In this work we conduct an in-depth analysis of the AMOEBA force field host-guest binding thermodynamics by using both BAR and the orthogonal space random walk (OSRW) methods. The binding entropy-enthalpy contributions are analyzed for each host-guest system. For systems of inordinate binding entropy-enthalpy values, we further examine the hydrogen bonding patterns and configurational entropy contribution. The binding mechanism of this series of host-guest systems varies from ligand to ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and OSRW binding free energy methods is discussed. Ultimately, this work illustrates the value of molecular modelling and advanced force fields for the exploration and interpretation of binding thermodynamics.

  12. A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate

    NASA Astrophysics Data System (ADS)

    Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian

    2017-12-01

    We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.

  13. Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds

    NASA Astrophysics Data System (ADS)

    Pietropolli Charmet, Andrea; Cornaton, Yann

    2018-05-01

    This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.

  14. Toward polarizable AMOEBA thermodynamics at fixed charge efficiency using a dual force field approach: application to organic crystals.

    PubMed

    Nessler, Ian J; Litman, Jacob M; Schnieders, Michael J

    2016-11-09

    First principles prediction of the structure, thermodynamics and solubility of organic molecular crystals, which play a central role in chemical, material, pharmaceutical and engineering sciences, challenges both potential energy functions and sampling methodologies. Here we calculate absolute crystal deposition thermodynamics using a novel dual force field approach whose goal is to maintain the accuracy of advanced multipole force fields (e.g. the polarizable AMOEBA model) while performing more than 95% of the sampling in an inexpensive fixed charge (FC) force field (e.g. OPLS-AA). Absolute crystal sublimation/deposition phase transition free energies were determined using an alchemical path that grows the crystalline state from a vapor reference state based on sampling with the OPLS-AA force field, followed by dual force field thermodynamic corrections to change between FC and AMOEBA resolutions at both end states (we denote the three step path as AMOEBA/FC). Importantly, whereas the phase transition requires on the order of 200 ns of sampling per compound, only 5 ns of sampling was needed for the dual force field thermodynamic corrections to reach a mean statistical uncertainty of 0.05 kcal mol -1 . For five organic compounds, the mean unsigned error between direct use of AMOEBA and the AMOEBA/FC dual force field path was only 0.2 kcal mol -1 and not statistically significant. Compared to experimental deposition thermodynamics, the mean unsigned error for AMOEBA/FC (1.4 kcal mol -1 ) was more than a factor of two smaller than uncorrected OPLS-AA (3.2 kcal mol -1 ). Overall, the dual force field thermodynamic corrections reduced condensed phase sampling in the expensive force field by a factor of 40, and may prove useful for protein stability or binding thermodynamics in the future.

  15. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE PAGES

    Zhang, Rudong; Wang, Hailong; Qian, Yun; ...

    2015-06-08

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about

  16. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rudong; Wang, Hailong; Qian, Yun

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about

  17. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  18. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections atmore » the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.« less

  19. Reparameterization of RNA chi Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine.

    PubMed

    Yildirim, Ilyas; Stern, Harry A; Kennedy, Scott D; Tubbs, Jason D; Turner, Douglas H

    2010-05-11

    A reparameterization of the torsional parameters for the glycosidic dihedral angle, chi, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99chi. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99chi force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99chi force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) (1)H, steady-state 1D (1)H nuclear Overhauser effect (NOE), and transient 1D (1)H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2'-endo sugar puckering of the pyrimidines, while the AMBER99chi force field's predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310 degrees for the base orientation of purines. The AMBER99chi force field prefers anti conformations around 185 degrees , which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99chi force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures.

  20. Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iâ

    Treesearch

    Fernando L. Dri; Xiawa Wu; Robert J. Moon; Ashlie Martini; Pablo D. Zavattieri

    2015-01-01

    Molecular dynamics simulation is commonly used to study the properties of nanocellulose-based materials at the atomic scale. It is well known that the accuracy of these simulations strongly depends on the force field that describes energetic interactions. However, since there is no force field developed specifically for cellulose, researchers utilize models...

  1. Molecular dynamics simulations of a DMSO/water mixture using the AMBER force field.

    PubMed

    Stachura, Slawomir S; Malajczuk, Chris J; Mancera, Ricardo L

    2018-06-25

    Due to its protective properties of biological samples at low temperatures and under desiccation, dimethyl sulfoxide (DMSO) in aqueous solutions has been studied widely by many experimental approaches and molecular dynamics (MD) simulations. In the case of the latter, AMBER is among the most commonly used force fields for simulations of biomolecular systems; however, the parameters for DMSO published by Fox and Kollman in 1998 have only been tested for pure liquid DMSO. We have conducted an MD simulation study of DMSO in a water mixture and computed several structural and dynamical properties such as of the mean density, self-diffusion coefficient, hydrogen bonding and DMSO and water ordering. The AMBER force field of DMSO is seen to reproduce well most of the experimental properties of DMSO in water, with the mixture displaying strong and specific water ordering, as observed in experiments and multiple other MD simulations with other non-polarizable force fields. Graphical abstract Hydration structure within hydrogen-bonding distance around a DMSOmolecule.

  2. Efficient nonparametric n -body force fields from machine learning

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  3. Electromagnetic unification of matter and force fields

    NASA Astrophysics Data System (ADS)

    John, Sarah

    2004-05-01

    Special relativity and quantum mechanics are descriptive of electromagnetic propagation in waveguides, with mass analogous to the cutoff frequency of a waveguide mode [S.John, Bull.Am.Phys.Soc. vol.39,no.2,1254 (1994)]. It is further postulated herein that all spin 1/2 matter (necessarily massive) and spin 1 force fields have their origin in the electromagnetic fields E and B. This concept is not new. Majorana, among others have obtained electromagnetic representations of Dirac-like equations valid for the zero-mass case. Here, the spinor representation of the Maxwell equations, as given by Sallhofer, is extended to oscillatory fields with propagation constant m to obtain, in the absence of charge and current densities, the coupled equation (M. hatp + β E)ψ = 0 , where M = diag[ M σ, M^* σ ] , β = offdiag[I,I] , ψ ^ = i ^dag ( σ. B0 ( p), σ. E_0(p)), and M=m+ip, with the energy-mass relation given by E^2 = M M . Further, it is shown that the interaction term of QED is a direct consequence of including the sources and currents of Maxwell equations. Qualitative field patterns for spin 1/2 and spin 1 states, such as the electron, neutrino, magnetic monopole, quarks, photon, and massive gauge bosons are suggested.

  4. Shortcuts to adiabaticity using flow fields

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti; Jarzynski, Christopher

    2017-12-01

    A shortcut to adiabaticity is a recipe for generating adiabatic evolution at an arbitrary pace. Shortcuts have been developed for quantum, classical and (most recently) stochastic dynamics. A shortcut might involve a counterdiabatic (CD) Hamiltonian that causes a system to follow the adiabatic evolution at all times, or it might utilize a fast-forward (FF) potential, which returns the system to the adiabatic path at the end of the process. We develop a general framework for constructing shortcuts to adiabaticity from flow fields that describe the desired adiabatic evolution. Our approach encompasses quantum, classical and stochastic dynamics, and provides surprisingly compact expressions for both CD Hamiltonians and FF potentials. We illustrate our method with numerical simulations of a model system, and we compare our shortcuts with previously obtained results. We also consider the semiclassical connections between our quantum and classical shortcuts. Our method, like the FF approach developed by previous authors, is susceptible to singularities when applied to excited states of quantum systems; we propose a simple, intuitive criterion for determining whether these singularities will arise, for a given excited state.

  5. Force field inside the void in complex plasmas under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Khrapak, S. A.; Zhdanov, S. K.; Thomas, H. M.; Morfill, G. E.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the “trampoline effect”). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  6. Nonlinear gravitational self-force: Field outside a small body

    NASA Astrophysics Data System (ADS)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  7. A Generic Force Field for Protein Coarse-Grained Molecular Dynamics Simulation

    PubMed Central

    Gu, Junfeng; Bai, Fang; Li, Honglin; Wang, Xicheng

    2012-01-01

    Coarse-grained (CG) force fields have become promising tools for studies of protein behavior, but the balance of speed and accuracy is still a challenge in the research of protein coarse graining methodology. In this work, 20 CG beads have been designed based on the structures of amino acid residues, with which an amino acid can be represented by one or two beads, and a CG solvent model with five water molecules was adopted to ensure the consistence with the protein CG beads. The internal interactions in protein were classified according to the types of the interacting CG beads, and adequate potential functions were chosen and systematically parameterized to fit the energy distributions. The proposed CG force field has been tested on eight proteins, and each protein was simulated for 1000 ns. Even without any extra structure knowledge of the simulated proteins, the Cα root mean square deviations (RMSDs) with respect to their experimental structures are close to those of relatively short time all atom molecular dynamics simulations. However, our coarse grained force field will require further refinement to improve agreement with and persistence of native-like structures. In addition, the root mean square fluctuations (RMSFs) relative to the average structures derived from the simulations show that the conformational fluctuations of the proteins can be sampled. PMID:23203075

  8. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units

    PubMed Central

    2013-01-01

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling. PMID:24634618

  9. Far-Field High-Energy Diffraction Microscopy: A Non-Destructive Tool for Characterizing the Microstructure and Micromechanical State of Polycrystalline Materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Kenesei, Peter; ...

    2017-08-31

    A suite of non-destructive, three-dimensional X-ray microscopy techniques have recently been developed and used to characterize the microstructures of polycrystalline materials. These techniques utilize high-energy synchrotron radiation and include near-field and far-field diffraction microscopy (NF- and FF-HEDM, respectively) and absorption tomography. Several compatible sample environments have also been developed, enabling a wide range of 3D studies of material evolution. In this article, the FF-HEDM technique is described in detail, including its implementation at the 1-ID beamline of the Advanced Photon Source. Examples of how the information obtained from FF-HEDM can be used to deepen our understanding of structure-property-processing relationships inmore » selected materials are presented.« less

  10. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2017-01-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  11. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    PubMed

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  12. Is the Conformational Ensemble of Alzheimer’s Aβ10-40 Peptide Force Field Dependent?

    PubMed Central

    Siwy, Christopher M.

    2017-01-01

    By applying REMD simulations we have performed comparative analysis of the conformational ensembles of amino-truncated Aβ10-40 peptide produced with five force fields, which combine four protein parameterizations (CHARMM36, CHARMM22*, CHARMM22/cmap, and OPLS-AA) and two water models (standard and modified TIP3P). Aβ10-40 conformations were analyzed by computing secondary structure, backbone fluctuations, tertiary interactions, and radius of gyration. We have also calculated Aβ10-40 3JHNHα-coupling and RDC constants and compared them with their experimental counterparts obtained for the full-length Aβ1-40 peptide. Our study led us to several conclusions. First, all force fields predict that Aβ adopts unfolded structure dominated by turn and random coil conformations. Second, specific TIP3P water model does not dramatically affect secondary or tertiary Aβ10-40 structure, albeit standard TIP3P model favors slightly more compact states. Third, although the secondary structures observed in CHARMM36 and CHARMM22/cmap simulations are qualitatively similar, their tertiary interactions show little consistency. Fourth, two force fields, OPLS-AA and CHARMM22* have unique features setting them apart from CHARMM36 or CHARMM22/cmap. OPLS-AA reveals moderate β-structure propensity coupled with extensive, but weak long-range tertiary interactions leading to Aβ collapsed conformations. CHARMM22* exhibits moderate helix propensity and generates multiple exceptionally stable long- and short-range interactions. Our investigation suggests that among all force fields CHARMM22* differs the most from CHARMM36. Fifth, the analysis of 3JHNHα-coupling and RDC constants based on CHARMM36 force field with standard TIP3P model led us to an unexpected finding that in silico Aβ10-40 and experimental Aβ1-40 constants are generally in better agreement than these quantities computed and measured for identical peptides, such as Aβ1-40 or Aβ1-42. This observation suggests that the

  13. Comparison of different force fields for the study of disaccharides

    USDA-ARS?s Scientific Manuscript database

    Eighteen empirical force fields and the semi-empirical quantum method PM3CARB-1 were compared for studying ß-cellobiose, a-maltose, and a-galabiose [a-D-Galp-(1'4)-a-D-Galp]. For each disaccharide, the energies of 54 conformers with differing hydroxymethyl, hydroxyl and glycosidic linkage orientatio...

  14. Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with PAC-MAC

    PubMed Central

    2017-01-01

    We have calculated the excess free energy of mixing of 1053 binary mixtures with the OPLS-AA force field using two different methods: thermodynamic integration (TI) of molecular dynamics simulations and the Pair Configuration to Molecular Activity Coefficient (PAC-MAC) method. PAC-MAC is a force field based quasi-chemical method for predicting miscibility properties of various binary mixtures. The TI calculations yield a root mean squared error (RMSE) compared to experimental data of 0.132 kBT (0.37 kJ/mol). PAC-MAC shows a RMSE of 0.151 kBT with a calculation speed being potentially 1.0 × 104 times greater than TI. OPLS-AA force field parameters are optimized using PAC-MAC based on vapor–liquid equilibrium data, instead of enthalpies of vaporization or densities. The RMSE of PAC-MAC is reduced to 0.099 kBT by optimizing 50 force field parameters. The resulting OPLS-PM force field has a comparable accuracy as the OPLS-AA force field in the calculation of mixing free energies using TI. PMID:28418655

  15. Implementation of a Serial Replica Exchange Method in a Physics-Based United-Residue (UNRES) Force Field

    PubMed Central

    Shen, Hujun; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    The kinetic-trapping problem in simulating protein folding can be overcome by using a Replica Exchange Method (REM). However, in implementing REM in molecular dynamics simulations, synchronization between processors on parallel computers is required, and communication between processors limits its ability to sample conformational space in a complex system efficiently. To minimize communication between processors during the simulation, a Serial Replica Exchange Method (SREM) has been proposed recently by Hagan et al. (J. Phys. Chem. B 2007, 111, 1416–1423). Here, we report the implementation of this new SREM algorithm with our physics-based united-residue (UNRES) force field. The method has been tested on the protein 1E0L with a temperature-independent UNRES force field and on terminally blocked deca-alanine (Ala10) and 1GAB with the recently introduced temperature-dependent UNRES force field. With the temperature-independent force field, SREM reproduces the results of REM but is more efficient in terms of wall-clock time and scales better on distributed-memory machines. However, exact application of SREM to the temperature-dependent UNRES algorithm requires the determination of a four-dimensional distribution of UNRES energy components instead of a one-dimensional energy distribution for each temperature, which is prohibitively expensive. Hence, we assumed that the temperature dependence of the force field can be ignored for neighboring temperatures. This version of SREM worked for Ala10 which is a simple system but failed to reproduce the thermodynamic results as well as regular REM on the more complex 1GAB protein. Hence, SREM can be applied to the temperature-independent but not to the temperature-dependent UNRES force field. PMID:20011673

  16. Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions

    PubMed Central

    2015-01-01

    We parametrize a linear-scaling quantum mechanical force field called mDC for the accurate reproduction of nonbonded interactions. We provide a new benchmark database of accurate ab initio interactions between sulfur-containing molecules. A variety of nonbond databases are used to compare the new mDC method with other semiempirical, molecular mechanical, ab initio, and combined semiempirical quantum mechanical/molecular mechanical methods. It is shown that the molecular mechanical force field significantly and consistently reproduces the benchmark results with greater accuracy than the semiempirical models and our mDC model produces errors twice as small as the molecular mechanical force field. The comparisons between the methods are extended to the docking of drug candidates to the Cyclin-Dependent Kinase 2 protein receptor. We correlate the protein–ligand binding energies to their experimental inhibition constants and find that the mDC produces the best correlation. Condensed phase simulation of mDC water is performed and shown to produce O–O radial distribution functions similar to TIP4P-EW. PMID:24803856

  17. NONLINEAR FORCE-FREE FIELD MODELING OF A SOLAR ACTIVE REGION USING SDO/HMI AND SOLIS/VSM DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalmann, J. K.; Wiegelmann, T.; Pietarila, A.

    2012-08-15

    We use SDO/HMI and SOLIS/VSM photospheric magnetic field measurements to model the force-free coronal field above a solar active region, assuming magnetic forces dominate. We take measurement uncertainties caused by, e.g., noise and the particular inversion technique, into account. After searching for the optimum modeling parameters for the particular data sets, we compare the resulting nonlinear force-free model fields. We show the degree of agreement of the coronal field reconstructions from the different data sources by comparing the relative free energy content, the vertical distribution of the magnetic pressure, and the vertically integrated current density. Though the longitudinal and transversemore » magnetic flux measured by the VSM and HMI is clearly different, we find considerable similarities in the modeled fields. This indicates the robustness of the algorithm we use to calculate the nonlinear force-free fields against differences and deficiencies of the photospheric vector maps used as an input. We also depict how much the absolute values of the total force-free, virial, and the free magnetic energy differ and how the orientation of the longitudinal and transverse components of the HMI- and VSM-based model volumes compare to each other.« less

  18. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    PubMed

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    NASA Astrophysics Data System (ADS)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  20. BIOREMEDIATION FIELD EVALUATION: EIELSON AIR FORCE BASE, ALASKA (EPA/540/R-95/533)

    EPA Science Inventory

    This publication, one of a series presenting the findings of the Bioremediation Field Initiatives bioremediation field evaluations, provides a detailed summary of the evaluation conducted at the Eielson Air Force Base (AFB) Superfund site in Fairbanks, Alaska. At this site, the ...

  1. TMFF-A Two-Bead Multipole Force Field for Coarse-Grained Molecular Dynamics Simulation of Protein.

    PubMed

    Li, Min; Liu, Fengjiao; Zhang, John Z H

    2016-12-13

    Coarse-grained (CG) models are desirable for studying large and complex biological systems. In this paper, we propose a new two-bead multipole force field (TMFF) in which electric multipoles up to the quadrupole are included in the CG force field. The inclusion of electric multipoles in the proposed CG force field enables a more realistic description of the anisotropic electrostatic interactions in the protein system and, thus, provides an improvement over the standard isotropic two-bead CG models. In order to test the accuracy of the new CG force field model, extensive molecular dynamics simulations were carried out for a series of benchmark protein systems. These simulation studies showed that the TMFF model can realistically reproduce the structural and dynamical properties of proteins, as demonstrated by the close agreement of the CG results with those from the corresponding all-atom simulations in terms of root-mean-square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) of the protein backbones. The current two-bead model is highly coarse-grained and is 50-fold more efficient than all-atom method in MD simulation of proteins in explicit water.

  2. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibaev, M.; Crittenden, D. L., E-mail: deborah.crittenden@canterbury.ac.nz

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm{sup −1} in fundamental frequencies, on average, across a sizable testmore » set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/.« less

  3. Commensurability effects in the critical forces of a superconducting film with Kagomé pinning array at submatching fields

    NASA Astrophysics Data System (ADS)

    Vizarim, Nicolas P.; Carlone, Maicon; Verga, Lucas G.; Venegas, Pablo A.

    2017-09-01

    Using molecular dynamics simulations, we find the commensurability force peaks in a two-dimensional superconducting thin-film with a Kagomé pinning array. A transport force is applied in two mutually perpendicular directions, and the magnetic field is increased up to the first matching field. Usually the condition to have pronounced force peaks in systems with periodic pinning is associated to the rate between the applied magnetic field and the first matching field, it must be an integer or a rational fraction. Here, we show that another condition must be satisfied, the vortex ground state must be ordered. Our calculations show that the pinning size and strength may dramatically change the vortex ground state. Small pinning radius and high values of pinning strength may lead to disordered vortex configurations, which fade the critical force peaks. The critical forces show anisotropic behavior, but the same dependence on pinning strength and radius is observed for both driven force directions. Different to cases where the applied magnetic field is higher than the first matching field, here the depinning process begins with vortices weakly trapped on top of a pinning site and not with interstitial vortices. Our results are in good agreement with recent experimental results.

  4. Accurate interatomic force fields via machine learning with covariant kernels

    NASA Astrophysics Data System (ADS)

    Glielmo, Aldo; Sollich, Peter; De Vita, Alessandro

    2017-06-01

    We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we impose the requirements that the predicted force rotates with the target configuration and is independent of any rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained by integration over the elements of the rotation group SO (d ) for the relevant dimensionality d . Remarkably, in specific cases the integration can be carried out analytically and yields a conservative force field that can be recast into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective Ni, Fe, and Si crystalline systems.

  5. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM

    PubMed Central

    Guan, Dongshi; Hang, Zhi Hong; Marcet, Zsolt; Liu, Hui; Kravchenko, I. I.; Chan, C. T.; Chan, H. B.; Tong, Penger

    2015-01-01

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength gold disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. The experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures. PMID:26586455

  6. Direct measurement of optical force induced by near-field plasmonic cavity using dynamic mode AFM

    DOE PAGES

    Guan, Dongshi; Hang, Zhi Hong; Marset, Zsolt; ...

    2015-11-20

    Plasmonic nanostructures have attracted much attention in recent years because of their potential applications in optical manipulation through near-field enhancement. Continuing experimental efforts have been made to develop accurate techniques to directly measure the near-field optical force induced by the plasmonic nanostructures in the visible frequency range. In this work, we report a new application of dynamic mode atomic force microscopy (DM-AFM) in the measurement of the enhanced optical force acting on a nano-structured plasmonic resonant cavity. The plasmonic cavity is made of an upper gold-coated glass sphere and a lower quartz substrate patterned with an array of subwavelength goldmore » disks. In the near-field when the sphere is positioned close to the disk array, plasmonic resonance is excited in the cavity and the induced force by a 1550 nm infrared laser is found to be increased by an order of magnitude compared with the photon pressure generated by the same laser light. Lastly, the experiment demonstrates that DM-AFM is a powerful tool for the study of light induced forces and their enhancement in plasmonic nanostructures.« less

  7. Dissolved organic carbon--contaminant interaction descriptors found by 3D force field calculations.

    PubMed

    Govers, H A J; Krop, H B; Parsons, J R; Tambach, T; Kubicki, J D

    2002-03-01

    Enthalpies of transfer at 300 K of various partitioning processes were calculated in order to study the suitability of 3D force fields for the calculation of partitioning constants. A 3D fulvic acid (FA) model of dissolved organic carbon (DOC) was built in a MM+ force field using AMI atomic charges and geometrical optimization (GO). 3,5-Dichlorobiphenyl (PCB14), 4,4'-dichlorobiphenyl (PCB15), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane (PPDDT) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (Atrazine) were inserted into different sites and their interaction energies with FA were calculated. Energies of hydration were calculated and subtracted from FA-contaminant interactions of selected sites. The resulting values for the enthalpies of transfer from water to DOC were 2.8, -1.4, -6.4 and 0.0 kcal/mol for PCB 14, PCB15, PPDDT and Atrazine, respectively. The value of PPDDT compared favorably with the experimental value of -5.0 kcal/mol. Prior to this, the method was studied by the calculation of the enthalpies of vaporization and aqueous solution using various force fields. In the MM + force field GO predicted enthalpies of vaporization deviated by +0.7 (PCB14), +3.6 (PCB15) and -0.7 (PPDDT)kcal/mol from experimental data, whereas enthalpies of aqueous solution deviated by -3.6 (PCB14), +5.8 (PCB15) and +3.7 (PPDDT) kcal/mol. Only for PCB14 the wrong sign of this enthalpy value was predicted. Potential advantages and limitations of the approach were discussed.

  8. The rate of separation of magnetic lines of force in a random magnetic field.

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1973-01-01

    The mixing of magnetic lines of force, as represented by their rate of separation, as a function of distance along the magnetic field, is considered with emphasis on neighboring lines of force. This effect is particularly important in understanding the transport of charged particles perpendicular to the average magnetic field. The calculation is carried out in the approximation that the separation changes by an amount small compared with the correlation scale normal to the field, in a distance along the field of a few correlation scales. It is found that the rate of separation is very sensitive to the precise form of the power spectrum. Application to the interplanetary and interstellar magnetic fields is discussed, and it is shown that in some cases field lines, much closer together than the correlation scale, separate at a rate which is effectively as rapid as if they were many correlation lengths apart.

  9. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment.

    PubMed

    Henriques, João; Cragnell, Carolina; Skepö, Marie

    2015-07-14

    An increasing number of studies using molecular dynamics (MD) simulations of unfolded and intrinsically disordered proteins (IDPs) suggest that current force fields sample conformations that are overly collapsed. Here, we study the applicability of several state-of-the-art MD force fields, of the AMBER and GROMOS variety, for the simulation of Histatin 5, a short (24 residues) cationic salivary IDP with antimicrobial and antifungal properties. The quality of the simulations is assessed in three complementary analyses: (i) protein shape and size comparison with recent experimental small-angle X-ray scattering data; (ii) secondary structure prediction; (iii) energy landscape exploration and conformational class analysis. Our results show that, indeed, standard force fields sample conformations that are too compact, being systematically unable to reproduce experimental evidence such as the scattering function, the shape of the protein as compared with the Kratky plot, and intrapeptide distances obtained through the pair distance distribution function, p(r). The consistency of this deviation suggests that the problem is not mainly due to protein-protein or water-water interactions, whose parametrization varies the most between force fields and water models. In fact, as originally proposed in [ Best et al. J. Chem. Theory Comput. 2014, 10, 5113 - 5124.], balanced protein-water interactions may be the key to solving this problem. Our simulations using this approach produce results in very good agreement with experiment.

  10. On the far-field computation of acoustic radiation forces.

    PubMed

    Martin, P A

    2017-10-01

    It is known that the steady acoustic radiation force on a scatterer due to incident time-harmonic waves can be calculated by evaluating certain integrals of velocity potentials over a sphere surrounding the scatterer. The goal is to evaluate these integrals using far-field approximations and appropriate limits. Previous derivations are corrected, clarified, and generalized. Similar corrections are made to textbook derivations of optical theorems.

  11. Technologies for Developing Predictive Atomistic and Coarse-Grained Force Fields for Ionic Liquid Property Prediction

    DTIC Science & Technology

    2008-07-29

    minimization is performed. It is critical that all other force field parameters (for bonds, angles, charges, and Lennard-Jones interactions) be pre...and tailoring the parameterization accordingly may be critical . For Phase I, the above described procedure was performed manually to obtain dihedral... critical that a reliable approach is available to guide experimental efforts and design. In addition, the automation of force field development will

  12. A Kirkwood-Buff derived force field for alkaline earth halide salts

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  13. A Kirkwood-Buff derived force field for alkaline earth halide salts.

    PubMed

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E

    2018-06-14

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX 2 ), where M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and X = Cl - , Br - , I - , which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  14. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  15. Release of neuropeptide FF (FLFQPQRF-NH2) from rat spinal cord.

    PubMed

    Zhu, J; Jhamandas, K; Yang, H Y

    1992-10-02

    Neuropeptide FF (FLFQPQRF-NH2), originally isolated from bovine brain, is an FMRF-NH2-like peptide with morphine-modulating activity. Neuropeptide FF (NPFF) is highly localized in the dorsal spinal cords where there are also specific NPFF binding sites. Furthermore, there have been studies indicating that NPFF may participate in the regulation of pain threshold in the spinal cord. However, whether NPFF can be released from the spinal cord is not known. The present experiments, using an in vitro superfusion of an isolated whole rat spinal cord, demonstrated that high concentrations of KCl or substance P caused a release of NPFF immunoreactive material (IR) from the spinal cord into the perfusion medium in a calcium-dependent manner. Substance P (1-11) also produced a detectable release of NPFF-IR in vivo although the response was quite variable. The released NPFF-IR was analyzed by an HPLC study and found to consist of NPFF and other minor immunoreactive peptides. Further studies with substance P-related peptides showed that the in vitro release of NPFF-IR could also be induced by substance P (1-7) but not by [pGlu5,Me-Phe8,Sar9]-substance P (5-11) or substance K. These results suggest that the specific substance P receptor (SP-N), which is recognized by both substance P (1-11) and substance P (1-7) rather than the tachykinin receptor, is involved in NPFF secretion from the spinal cord. In view of the role of substance P (1-11) and substance P (1-7) in sensory transmission, the results of this study further support the role of NPFF in the modulation of antinociception in the spinal cord.

  16. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie

    2015-08-01

    Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.

  17. A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation

    NASA Astrophysics Data System (ADS)

    Saez, David Adrian; Vöhringer-Martinez, Esteban

    2015-10-01

    S-Adenosylmethionine (AdoMet) is involved in many biological processes as cofactor in enzymes transferring its sulfonium methyl group to various substrates. Additionally, it is used as drug and nutritional supplement to reduce the pain in osteoarthritis and against depression. Due to the biological relevance of AdoMet it has been part of various computational simulation studies and will also be in the future. However, to our knowledge no rigorous force field parameter development for its simulation in biological systems has been reported. Here, we use electronic structure calculations combined with molecular dynamics simulations in explicit solvent to develop force field parameters compatible with the AMBER99 force field. Additionally, we propose new dynamic Hirshfeld-I atomic charges which are derived from the polarized electron density of AdoMet in aqueous solution to describe its electrostatic interactions in biological systems. The validation of the force field parameters and the atomic charges is performed against experimental interproton NOE distances of AdoMet in aqueous solution and crystal structures of AdoMet in the cavity of three representative proteins.

  18. Probing the Importance of Charge Flux in Force Field Modeling.

    PubMed

    Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank

    2017-08-08

    We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.

  19. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  20. Simplified TiO2 force fields for studies of its interaction with biomolecules

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  1. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    PubMed

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  2. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 μm under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.

  3. Parallel alignment of bacteria using near-field optical force array for cell sorting

    NASA Astrophysics Data System (ADS)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.

  4. Host and adsorbate dynamics in silicates with flexible frameworks: Empirical force field simulation of water in silicalite

    NASA Astrophysics Data System (ADS)

    Bordat, Patrice; Cazade, Pierre-André; Baraille, Isabelle; Brown, Ross

    2010-03-01

    Molecular dynamics simulations are performed on the pure silica zeolite silicalite (MFI framework code), maintaining via a new force field both framework flexibility and realistic account of electrostatic interactions with adsorbed water. The force field is similar to the well-known "BKS" model [B. W. H. van Beest et al., Phys. Rev. Lett. 64, 1955 (1990)], but with reduced partial atomic charges and reoptimized covalent bond potential wells. The present force field reproduces the monoclinic to orthorhombic transition of silicalite. The force field correctly represents the hydrophobicity of pure silica silicalite, both the adsorption energy, and the molecular diffusion constants of water. Two types of adsorption, specific and weak unspecific, are predicted on the channel walls and at the channel intersection. We discuss molecular diffusion of water in silicalite, deducing a barrier to crossing between the straight and the zigzag channels. Analysis of the thermal motion shows that at room temperature, framework oxygen atoms incurring into the zeolite channels significantly influence the dynamics of adsorbed water.

  5. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    PubMed

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Design and test of a hybrid foot force sensing and GPS system for richer user mobility activity recognition.

    PubMed

    Zhang, Zelun; Poslad, Stefan

    2013-11-01

    Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals.

  7. Design and Test of a Hybrid Foot Force Sensing and GPS System for Richer User Mobility Activity Recognition

    PubMed Central

    Zhang, Zelun; Poslad, Stefan

    2013-01-01

    Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals. PMID:24189333

  8. Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2.

    PubMed

    Bishop, A; Satyamurthy, N; Bida, G; Hendry, G; Phelps, M; Barrio, J R

    1996-04-01

    The production of 18F electrophilic reagents via the 18O(p,n)18F reaction has been investigated in small-volume target bodies made of aluminum, copper, gold-plated copper and nickel, having straight or conical bore shapes. Three irradiation protocols-single-step, two-step and modified two-step-were used for the recovery of the 18F activity. The single-step irradiation protocol was tested in all the target bodies. Based on the single-step performance, aluminum targets were utilized extensively in the investigation of the two-step and modified two-step irradiation protocols. With an 11-MeV cyclotron and using the two-step irradiation protocol, > 1Ci [18F]F2 was recovered reproducibly from an aluminum target body. Probable radical mechanisms for the formation of OF2 and FONO2 (fluorine nitrate) in the single-step and modified two-step targets are proposed based on the amount of ozone generated and the nitrogen impurity present in the target gases, respectively.

  9. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  10. Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field.

    PubMed

    García-Pérez, E; Serra-Crespo, P; Hamad, S; Kapteijn, F; Gascon, J

    2014-08-14

    Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations of gas adsorption and diffusion of carbon dioxide and methane in NH2-MIL-53(Al) are carried out using a linear combination of two crystallographic structures with rigid force fields. Once the interactions of carbon dioxide molecules and the bridging hydroxyls groups of the framework are optimized, an excellent match is found for simulations and experimental data for the adsorption of methane and carbon dioxide, including the stepwise uptake due to the breathing effect. In addition, diffusivities of pure components are calculated. The pore expansion by the breathing effect influences the self-diffusion mechanism and much higher diffusivities are observed at relatively high adsorbate loadings. This work demonstrates that using a rigid force field combined with a minimum number of experiments, reproduces adsorption and simulates diffusion of carbon dioxide and methane in the flexible metal-organic framework NH2-MIL-53(Al).

  11. Calculating forces on thin flat plates with incomplete vorticity-field data

    NASA Astrophysics Data System (ADS)

    Limacher, Eric; Morton, Chris; Wood, David

    2016-11-01

    Optical experimental techniques such as particle image velocimetry (PIV) permit detailed quantification of velocities in the wakes of bluff bodies. Patterns in the wake development are significant to force generation, but it is not trivial to quantitatively relate changes in the wake to changes in measured forces. Key difficulties in this regard include: (i) accurate quantification of velocities close to the body, and (ii) the effect of missing velocity or vorticity data in regions where optical access is obscured. In the present work, we consider force formulations based on the vorticity field, wherein mathematical manipulation eliminates the need for accurate near-body velocity information. Attention is restricted to nominally two dimensional problems, namely (i) a linearly accelerating flat plate, investigated using PIV in a water tunnel, and (ii) a pitching plate in a freestream flow, as investigated numerically by Wang & Eldredge (2013). The effect of missing vorticity data on the pressure side of the plate has a significant impact on the calculation of force for the pitching plate test case. Fortunately, if the vorticity on the pressure side remains confined to a thin boundary layer, simple corrections can be applied to recover a force estimate.

  12. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanas'ev, A A; Rubinov, A N; Gaida, L S

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  13. Evaluating Parametrization Protocols for Hydration Free Energy Calculations with the AMOEBA Polarizable Force Field.

    PubMed

    Bradshaw, Richard T; Essex, Jonathan W

    2016-08-09

    Hydration free energy (HFE) calculations are often used to assess the performance of biomolecular force fields and the quality of assigned parameters. The AMOEBA polarizable force field moves beyond traditional pairwise additive models of electrostatics and may be expected to improve upon predictions of thermodynamic quantities such as HFEs over and above fixed-point-charge models. The recent SAMPL4 challenge evaluated the AMOEBA polarizable force field in this regard but showed substantially worse results than those using the fixed-point-charge GAFF model. Starting with a set of automatically generated AMOEBA parameters for the SAMPL4 data set, we evaluate the cumulative effects of a series of incremental improvements in parametrization protocol, including both solute and solvent model changes. Ultimately, the optimized AMOEBA parameters give a set of results that are not statistically significantly different from those of GAFF in terms of signed and unsigned error metrics. This allows us to propose a number of guidelines for new molecule parameter derivation with AMOEBA, which we expect to have benefits for a range of biomolecular simulation applications such as protein-ligand binding studies.

  14. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    PubMed

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.

  15. Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons.

    PubMed

    Prampolini, Giacomo; Campetella, Marco; De Mitri, Nicola; Livotto, Paolo Roberto; Cacelli, Ivo

    2016-11-08

    A robust and automated protocol for the derivation of sound force field parameters, suitable for condensed-phase classical simulations, is here tested and validated on several halogenated hydrocarbons, a class of compounds for which standard force fields have often been reported to deliver rather inaccurate performances. The major strength of the proposed protocol is that all of the parameters are derived only from first principles because all of the information required is retrieved from quantum mechanical data, purposely computed for the investigated molecule. This a priori parametrization is carried out separately for the intra- and intermolecular contributions to the force fields, respectively exploiting the Joyce and Picky programs, previously developed in our group. To avoid high computational costs, all quantum mechanical calculations were performed exploiting the density functional theory. Because the choice of the functional is known to be crucial for the description of the intermolecular interactions, a specific procedure is proposed, which allows for a reliable benchmark of different functionals against higher-level data. The intramolecular and intermolecular contribution are eventually joined together, and the resulting quantum mechanically derived force field is thereafter employed in lengthy molecular dynamics simulations to compute several thermodynamic properties that characterize the resulting bulk phase. The accuracy of the proposed parametrization protocol is finally validated by comparing the computed macroscopic observables with the available experimental counterparts. It is found that, on average, the proposed approach is capable of yielding a consistent description of the investigated set, often outperforming the literature standard force fields, or at least delivering results of similar accuracy.

  16. Quantitative Assessment of Force Fields on Both Low-Energy Conformational Basins and Transition-State Regions of the (ϕ-ψ) Space.

    PubMed

    Liu, Zhiwei; Ensing, Bernd; Moore, Preston B

    2011-02-08

    The free energy surfaces (FESs) of alanine dipeptide are studied to illustrate a new strategy to assess the performance of classical molecular mechanics force field on the full range of the (ϕ-ψ) conformational space. The FES is obtained from metadynamics simulations with five commonly used force fields and from ab initio density functional theory calculations in both gas phase and aqueous solution. The FESs obtained at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) level of theory are validated by comparison with previously reported MP2 and LMP2 results as well as with experimentally obtained probability distribution between the C5-β (or β-PPII) and αR states. A quantitative assessment is made for each force field in three conformational basins, LeRI (C5-β-C7eq), LeRII (β2-αR), and LeRIII(αL-C7ax-αD) as well as three transition-state regions linking the above conformational basins. The performance of each force field is evaluated in terms of the average free energy of each region in comparison with that of the ab initio results. We quantify how well a force field FES matches the ab initio FES through the calculation of the standard deviation of a free energy difference map between the two FESs. The results indicate that the performance varies largely from region to region or from force field to force field. Although not one force field is able to outperform all others in all conformational areas, the OPLSAA/L force field gives the best performance overall, followed by OPLSAA and AMBER03. For the three top performers, the average free energies differ from the corresponding ab initio values from within the error range (<0.4 kcal/mol) to ∼1.5 kcal/mol for the low-energy regions and up to ∼2.0 kcal/mol for the transition-state regions. The strategy presented and the results obtained here should be useful for improving the parametrization of force fields targeting both accuracy in the energies of conformers and the transition-state barriers.

  17. Reactive Force Fields via Explicit Valency

    NASA Astrophysics Data System (ADS)

    Kale, Seyit

    Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple

  18. Management of Social Incentives in Air Force Technical Training: A Field Experiment. Final Report.

    ERIC Educational Resources Information Center

    Hakel, Milton D.; And Others

    The report is a study of the utility of social reinforcement for improving Air Force training. It was conducted through a field evaluation of social incentive instructional systems which would serve to improve student motivation, classroom performance, and attitudes. The participants included a total of 300 trainees from two Air Force bases; 25…

  19. Interfacial force field characterization of a constrained vapor bubble thermosyphon using IAI

    NASA Technical Reports Server (NTRS)

    Dasgupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1994-01-01

    The isothermal profiles of the extended meniscus in a quartz cuvette were measured in a gravitational field using IAI (image analyzing interferometer) which is based on computer enhanced video microscopy of the naturally occurring interference fringes. The experimental results for heptane and pentane menisci were analyzed using the extended Young-Laplace Equation. These isothermal results characterized the interfacial force field in-situ at the start of the heat transfer experiments by quantifying the dispersion constant for the specific liquid-solid system. The experimentally obtained values of the disjoining pressures and the dispersion constants are compared to the subsequent non-isothermal experiments because one of the major variables in the heat sink capability of the CVBT is the dispersion constant. In all previous studies of micro heat pipes the value of the dispersion constant has been 'guesstimated'. The major advantages of the current glass cell is the ability to view the extended meniscus at all times. Experimentally, we find that the extended Young-Laplace Equation is an excellent model for for the force field at the solid-liquid vapor interfaces.

  20. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    2017-12-21

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  1. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  2. Force-field parametrization and molecular dynamics simulations of Congo red

    NASA Astrophysics Data System (ADS)

    Król, Marcin; Borowski, Tomasz; Roterman, Irena; Piekarska, Barbara; Stopa, Barbara; Rybarska, Joanna; Konieczny, Leszek

    2004-01-01

    Congo red, a diazo dye widely used in medical diagnosis, is known to form supramolecular systems in solution. Such a supramolecular system may interact with various proteins. In order to examine the nature of such complexes empirical force field parameters for the Congo red molecule were developed. The parametrization of bonding terms closely followed the methodology used in the development of the charmm22 force field, except for the calculation of charges. Point charges were calculated from a fit to a quantum mechanically derived electrostatic potential using the CHELP-BOW method. Obtained parameters were tested in a series of molecular dynamics simulations of both a single molecule and a micelle composed of Congo red molecules. It is shown that newly developed parameters define a stable minimum on the hypersurface of the potential energy and crystal and ab initio geometries and rotational barriers are well reproduced. Furthermore, rotations around C-N bonds are similar to torsional vibrations observed in crystals of diphenyl-diazene, which confirms that the flexibility of the molecule is correct. Comparison of results obtained from micelles molecular dynamics simulations with experimental data shows that the thermal dependence of micelle creation is well reproduced.

  3. Nanophotonic force microscopy: Characterizing particle–surface interactions using near-field photonics

    DOE PAGES

    Schein, Perry; Kang, Pilgyu; O’Dell, Dakota; ...

    2015-01-27

    Direct measurements of particle–surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. In this paper, we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scatteredmore » by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. Finally, as shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.« less

  4. High-resolution imaging of biological tissue with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Gao, Wanrong

    2015-03-01

    A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.

  5. Relating GRACE terrestrial water storage variations to global fields of atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia

    2015-04-01

    Synoptic, seasonal and inter-annual fluctuations in atmospheric dynamics all influence terrestrial water storage, with impacts on ecosystems functions, human activities and land-climate interactions. Here we explore to which degree atmospheric variables can explain GRACE estimates of terrestrial water storage on different time scales. Since 2012, the most recent GRACE gravity field solutions (Release 05) can be used to monitor global changes in terrestrial water storage with an unprecedented level of accuracy over more than a decade. In addition, the release of associated gridded and post-processed products facilitates comparisons with other global datasets such as land surface model outputs or satellite observations. We investigate how decadal trends, inter-annual fluctuations as well as monthly anomalies of the seasonal cycle of terrestrial water storage can be related to fields of atmospheric forcing, including e.g. precipitation and temperature as estimated in global reanalysis products using statistical techniques. In the majority of the locations with high signal to noise ratio, both short and long-term fluctuations of total terrestrial water storage can be reconstructed to a large degree based on available atmospheric forcing. However, in some locations atmospheric forcing alone is not sufficient to explain the total change in water storage, suggesting strong influence of other processes. Within that framework, the question of an amplification or attenuation of atmospheric forcing through land-surface feedbacks and changes in long term water storage is discussed, also with respect to uncertainties and potential systematic biases in the results.

  6. The fast multipole method and point dipole moment polarizable force fields.

    PubMed

    Coles, Jonathan P; Masella, Michel

    2015-01-14

    We present an implementation of the fast multipole method for computing Coulombic electrostatic and polarization forces from polarizable force-fields based on induced point dipole moments. We demonstrate the expected O(N) scaling of that approach by performing single energy point calculations on hexamer protein subunits of the mature HIV-1 capsid. We also show the long time energy conservation in molecular dynamics at the nanosecond scale by performing simulations of a protein complex embedded in a coarse-grained solvent using a standard integrator and a multiple time step integrator. Our tests show the applicability of fast multipole method combined with state-of-the-art chemical models in molecular dynamical systems.

  7. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  8. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamma, Venkata Ananth; Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol andmore » l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.« less

  9. A force field for 3,3,3-fluoro-1-propenes, including HFO-1234yf.

    PubMed

    Raabe, Gabriele; Maginn, Edward J

    2010-08-12

    The European Union (EU) legislation 2006/40/EC bans from January 2011 the cooperative marketing of new car types that use refrigerants in their heating, ventilation, and air conditioning (HVAC) systems with global warming potentials (GWP) higher than 150. Thus, the phase-out of the presently used tetrafluoroethane refrigerant R134a necessitates the adoption of alternative refrigerants. Fluoropropenes such as 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) are currently regarded as promising low GWP refrigerants, but the lack of experimental data on their thermophysical properties hampers independent studies on their performance in HVAC systems or in other technical applications. In principle, molecular modeling can be used to predict the relevant properties of refrigerants, but adequate intermolecular potential functions ("force fields") are lacking for fluoropropenes. Thus, we developed a transferable force field for fluoropropenes composed of CF(3)-, -CF=, -CH=, CF(2)=, and CH(2)= groups and applied the force field to study 3,3,3 trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). We performed Gibbs ensemble simulations on these three fluoropropenes to compute the vapor pressure, saturated densities, and heats of vaporization. In addition, molecular dynamics simulations were conducted to provide predictions for the density, thermal expansivity, isobaric heat capacity, and transport properties of liquid HFO-1234yf in the temperature range from 263.15 to 310 K and pressures up to 2 MPa. Agreement between simulation results and experimental data and/or correlations (when available) was good, thereby validating the predictive ability of the force field.

  10. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.

    PubMed

    Lemkul, Justin A; MacKerell, Alexander D

    2017-05-09

    Empirical force fields seek to relate the configuration of a set of atoms to its energy, thus yielding the forces governing its dynamics, using classical physics rather than more expensive quantum mechanical calculations that are computationally intractable for large systems. Most force fields used to simulate biomolecular systems use fixed atomic partial charges, neglecting the influence of electronic polarization, instead making use of a mean-field approximation that may not be transferable across environments. Recent hardware and software developments make polarizable simulations feasible, and to this end, polarizable force fields represent the next generation of molecular dynamics simulation technology. In this work, we describe the refinement of a polarizable force field for DNA based on the classical Drude oscillator model by targeting quantum mechanical interaction energies and conformational energy profiles of model compounds necessary to build a complete DNA force field. The parametrization strategy employed in the present work seeks to correct weak base stacking in A- and B-DNA and the unwinding of Z-DNA observed in the previous version of the force field, called Drude-2013. Refinement of base nonbonded terms and reparametrization of dihedral terms in the glycosidic linkage, deoxyribofuranose rings, and important backbone torsions resulted in improved agreement with quantum mechanical potential energy surfaces. Notably, we expand on previous efforts by explicitly including Z-DNA conformational energetics in the refinement.

  11. Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate.

    PubMed

    Wang, Hancheng; Wang, Jin; Li, Licui; Hsiang, Tom; Wang, Maosheng; Shang, Shenghua; Yu, Zhihe

    2016-08-05

    Tobacco grey mold caused by Botrytis cinerea is an important fungal disease worldwide. Boscalid, carbendazim, iprodione, pyrimethanil and propiconazole are representative botryticides for grey mold management. This research investigated the sensitivities of B. cinerea from tobacco to these chemicals using the Biolog FF Microplate. All five chemicals showed inhibitory activity, with average EC50 values of 0.94, 0.05, 0.50, 0.61 and 0.31 μg ml(-1), respectively. B. cinerea metabolized 96.8% of tested carbon sources, including 29 effectively and 33 moderately, but the metabolic fingerprints differed under pressures imposed by these botryticides. For boscalid, B. cinerea was unable to metabolize many substrates related to tricarboxylic acid cycle. For carbendazim, carbon sources related to glycolysis were not metabolized. For iprodione, use of most carbon substrates was weakly inhibited, and the metabolic profile was similar to that of the control. For propiconazole, no carbon substrates were metabolized and the physiological and biochemical functions of the pathogen were totally inhibited. These findings provide useful information on metabolic activities of these botryticides, and may lead to future applications of the Biolog FF Microplate for examining metabolic effects of other fungicides on other fungi, as well as providing a metabolic fingerprint of B. cinerea that could be useful for identification.

  12. Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate

    PubMed Central

    Wang, Hancheng; Wang, Jin; Li, Licui; Hsiang, Tom; Wang, Maosheng; Shang, Shenghua; Yu, Zhihe

    2016-01-01

    Tobacco grey mold caused by Botrytis cinerea is an important fungal disease worldwide. Boscalid, carbendazim, iprodione, pyrimethanil and propiconazole are representative botryticides for grey mold management. This research investigated the sensitivities of B. cinerea from tobacco to these chemicals using the Biolog FF Microplate. All five chemicals showed inhibitory activity, with average EC50 values of 0.94, 0.05, 0.50, 0.61 and 0.31 μg ml−1, respectively. B. cinerea metabolized 96.8% of tested carbon sources, including 29 effectively and 33 moderately, but the metabolic fingerprints differed under pressures imposed by these botryticides. For boscalid, B. cinerea was unable to metabolize many substrates related to tricarboxylic acid cycle. For carbendazim, carbon sources related to glycolysis were not metabolized. For iprodione, use of most carbon substrates was weakly inhibited, and the metabolic profile was similar to that of the control. For propiconazole, no carbon substrates were metabolized and the physiological and biochemical functions of the pathogen were totally inhibited. These findings provide useful information on metabolic activities of these botryticides, and may lead to future applications of the Biolog FF Microplate for examining metabolic effects of other fungicides on other fungi, as well as providing a metabolic fingerprint of B. cinerea that could be useful for identification. PMID:27491536

  13. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model

    NASA Astrophysics Data System (ADS)

    Hughes, Zak E.; Tomásio, Susana M.; Walsh, Tiffany R.

    2014-04-01

    To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter

  14. Indoor transformer stations as predictors of residential ELF magnetic field exposure.

    PubMed

    Ilonen, K; Markkanen, A; Mezei, G; Juutilainen, Jukka

    2008-04-01

    Transformer stations in apartment buildings may offer a possibility to conduct epidemiological studies that involve high exposure to extremely low frequency magnetic fields (MF), avoid selection bias and minimize confounding factors. To validate exposure assessment based on transformer stations, measurements were performed in thirty buildings in three Finnish cities. In each building, spot measurements in all rooms and a 24-h recording in a bedroom were performed in one apartment above a transformer station (AAT), in one first floor (FF) reference apartment, and one reference apartment on upper floors (UF). The apartment mean of spot measurements was 0.62 microT in the AATs, 0.21 microT in the FF and 0.11 microT in the UF reference apartments The 24-h apartment mean (estimated from the spot measurements and the bedroom 24-h recording) was 0.2 microT or higher in 29 (97%) AATs, in 7 (25%) FF and in 3 (10 %) UF reference apartments. The corresponding numbers for the 0.4 microT cut-off point were 19 (63%), 4 (14%), and 1 (3.3%). The higher MF level in the FF reference apartments indicates that they should not be considered "unexposed" in epidemiological studies. If such apartments are excluded, a transformer station under the floor predicts 24-h apartment mean MF with a sensitivity of 0.41 (or 0.58) and a specificity of 0.997 (or 0.97), depending on the MF cut-off point (0.2 or 0.4 microT). The results indicate that apartments can be reliably classified as high and low MF field categories based on the known location of transformer stations. (c) 2007 Wiley-Liss, Inc.

  15. The 'Arm Force Field' method to predict manual arm strength based on only hand location and force direction.

    PubMed

    La Delfa, Nicholas J; Potvin, Jim R

    2017-03-01

    This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r 2  = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r 2  = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A probabilistic approach of the Flash Flood Early Warning System (FF-EWS) in Catalonia based on radar ensemble generation

    NASA Astrophysics Data System (ADS)

    Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique

    2010-05-01

    Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the

  17. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    PubMed

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.

    PubMed

    Aliev, Abil E; Courtier-Murias, Denis

    2010-09-30

    Experimental NMR verification of MD simulations using 12 different force fields (AMBER, CHARMM, GROMOS, and OPLS-AA) and 5 different water models has been undertaken to identify reliable MD protocols for structure and dynamics elucidations of small open chain peptides containing Gly and Pro. A conformationally flexible tetrapeptide Gly-Pro-Gly-Gly was selected for NMR (3)J-coupling, chemical shift, and internuclear distance measurements, followed by their calculations using 2 μs long MD simulations in water. In addition, Ramachandran population maps for Pro-2 and Gly-3 residues of GPGG obtained from MD simulations were used for detailed comparisons with similar maps from the protein data bank (PDB) for large number of Gly and Pro residues in proteins. The MD simulations revealed strong dependence of the populations and geometries of preferred backbone and side chain conformations, as well as the time scales of the peptide torsional transitions on the force field used. On the basis of the analysis of the measured and calculated data, AMBER99SB is identified as the most reliable force field for reproducing NMR measured parameters, which are dependent on the peptide backbone and the Pro side chain geometries and dynamics. Ramachandran maps showing the dependence of conformational populations as a function of backbone ϕ/ψ angles for Pro-2 and Gly-3 residues of GPGG from MD simulations using AMBER99SB, AMBER03, and CHARMM were found to resemble similar maps for Gly and Pro residues from the PDB survey. Three force fields (AMBER99, AMBER99ϕ, and AMBER94) showed the least satisfactory agreement with both the solution NMR and the PDB survey data. The poor performance of these force fields is attributed to their propensity to overstabilize helical peptide backbone conformations at the Pro-2 and Gly-3 residues. On the basis of the similarity of the MD and PDB Ramachandran plots, the following sequence of transitions is suggested for the Gly backbone conformation: α(L)

  19. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  20. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    PubMed

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-08

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  1. Effects of different force fields on the structural character of α synuclein β-hairpin peptide (35-56) in aqueous environment.

    PubMed

    Kundu, Sangeeta

    2018-02-01

    The hallmark of Parkinson's disease (PD) is the intracellular protein aggregation forming Lewy Bodies (LB) and Lewy neuritis which comprise mostly of a protein, alpha synuclein (α-syn). Molecular dynamics (MD) simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution. The quality of MD simulations for proteins and peptides depends greatly on the accuracy of empirical force fields. The aim of this work is to investigate the effects of different force fields on the structural character of β hairpin fragment of α-syn (residues 35-56) peptide in aqueous solution. Six independent MD simulations are done in explicit solvent using, AMBER03, AMBER99SB, GROMOS96 43A1, GROMOS96 53A6, OPLS-AA, and CHARMM27 force fields with CMAP corrections. The performance of each force field is assessed from several structural parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), formation of β-turn, the stability of folded β-hairpin structure, and the favourable conformations obtained for different force fields. In this study, CMAP correction of CHARMM27 force field is found to overestimate the helical conformation, while GROMOS96 53A6 is found to most successfully capture the conformational dynamics of α-syn β-hairpin fragment as elicited from NMR.

  2. Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Pi, Long-Quan; Min, Gihyeon; Lee, Won-Soo; Lee, Byeong Ha

    2012-03-01

    We have investigated depth-resolved cellular structures of unmodified fresh human scalp hairs with ultrahigh-resolution full-field optical coherence tomography (FF-OCT). The Linnik-type white light interference microscope has been home-implemented to observe the micro-internal layers of human hairs in their natural environment. In hair shafts, FF-OCT has qualitatively revealed the cellular hair compartments of cuticle and cortex layers involved in keratin filaments and melanin granules. No significant difference between black and white hair shafts was observed except for absence of only the melanin granules in the white hair, reflecting that the density of the melanin granules directly affects the hair color. Anatomical description of plucked hair bulbs was also obtained with the FF-OCT in three-dimensions. We expect this approach will be useful for evaluating cellular alteration of natural hairs on cosmetic assessment or diagnosis of hair diseases.

  3. Effect of self-consistent magnetic field on plasma sheet penetration to the inner magnetosphere: Rice convection model simulations combined with modified Dungey force-balanced magnetic field solver

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Matina; Wang, Chih-Ping; Lyons, Larry R.

    2011-12-01

    Transport of plasma sheet particles into the inner magnetosphere is crucial to the development of the region 2 (R2) field-aligned current system (FAC), which results in the shielding of the penetration electric field and the formation of subauroral polarization streams (SAPS) and the Harang reversal, phenomena closely associated with storms and substorms. In addition to the electric field, this transport is also strongly affected by the magnetic field, which changes with plasma pressure and is distinctly different from the dipole field in the inner plasma sheet. To determine the feedback of force-balanced magnetic field to the transport, we have integrated the Rice convection model (RCM) with a modified Dungey magnetic field solver to obtain the required force balance in the equatorial plane. Comparing our results with those from a RCM run using a T96 magnetic field, we find that transport under a force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-Earth region and weaker shielding of the penetration electric field. As a result, plasma sheet protons and electrons penetrate farther earthward, and their inner edges become closer together and more azimuthally symmetric than in the T96 case. The Harang reversal extends farther dawnward, and the SAPS become more confined in radial and latitudinal extents. The magnitudes of azimuthal pressure gradient, the inner edges of thermal protons and electrons, the latitudinal range of the Harang reversal, and the radial and latitudinal widths of the SAPS from the force-balanced run are found to be more consistent with observations.

  4. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor

    PubMed Central

    Dennis, John Ojur; Ahmad, Farooq; Khir, M. Haris Bin Md; Hamid, Nor Hisham Bin

    2015-01-01

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT. PMID:26225972

  5. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    PubMed

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  6. Classical force field for hydrofluorocarbon molecular simulations. Application to the study of gas solubility in poly(vinylidene fluoride).

    PubMed

    Lachet, V; Teuler, J-M; Rousseau, B

    2015-01-08

    A classical all-atoms force field for molecular simulations of hydrofluorocarbons (HFCs) has been developed. Lennard-Jones force centers plus point charges are used to represent dispersion-repulsion and electrostatic interactions. Parametrization of this force field has been performed iteratively using three target properties of pentafluorobutane: the quantum energy of an isolated molecule, the dielectric constant in the liquid phase, and the compressed liquid density. The accuracy and transferability of this new force field has been demonstrated through the simulation of different thermophysical properties of several fluorinated compounds, showing significant improvements compared to existing models. This new force field has been applied to study solubilities of several gases in poly(vinylidene fluoride) (PVDF) above the melting temperature of this polymer. The solubility of CH4, CO2, H2S, H2, N2, O2, and H2O at infinite dilution has been computed using test particle insertions in the course of a NpT hybrid Monte Carlo simulation. For CH4, CO2, and their mixtures, some calculations beyond the Henry regime have also been performed using hybrid Monte Carlo simulations in the osmotic ensemble, allowing both swelling and solubility determination. An ideal mixing behavior is observed, with identical solubility coefficients in the mixtures and in pure gas systems.

  7. The influence of inhomogeneous magnetic field over a NdFeB guideway on levitation force of the HTS bulk maglev system

    NASA Astrophysics Data System (ADS)

    Zhao, Lifeng; Deng, Jiangtao; Li, Linbo; Feng, Ning; Wei, Pu; Lei, Wei; Jiang, Jing; Wang, Xiqin; Zhang, Yong; Zhao, Yong

    2018-04-01

    Dynamic responses of high temperature superconducting bulk to inhomogeneous magnetic field distribution of permanent magnet guideway, as well as enlarged amplitude of magnetic field obtained by partially covering the permanent magnet guideway (PMG) with iron sheets in different thickness, are investigated. Experiments show that the instantaneous levitation force increases with the increase of the variation rate of magnetic field (dB/dt). Meanwhile, inhomogeneous magnetic field from PMG causes the decay of levitation force. The decay of levitation force almost increases linearly with the increase of alternating magnetic field amplitude. It should be very important for the application of high-speed maglev system.

  8. Air Force Officer Accession Planning: Addressing Key Gaps in Meeting Career Field Academic Degree Requirements for Nonrated Officers

    DTIC Science & Technology

    2016-06-09

    C O R P O R A T I O N Research Report Air Force Officer Accession Planning Addressing Key Gaps in Meeting Career Field Academic Degree Requirements...various Air Force missions in particular career fields. Key to this goal for nonrated officers is establishing and enforcing academic degree...35 Developing Accession Targets by Academic Degree Type

  9. Predicting water-to-cyclohexane partitioning of the SAMPL5 molecules using dielectric balancing of force fields.

    PubMed

    Paranahewage, S Shanaka; Gierhart, Cassidy S; Fennell, Christopher J

    2016-11-01

    Alchemical transformation of solutes using classical fixed-charge force fields is a popular strategy for assessing the free energy of transfer in different environments. Accurate estimations of transfer between phases with significantly different polarities can be difficult because of the static nature of the force fields. Here, we report on an application of such calculations in the SAMPL5 experiment that also involves an effort in balancing solute and solvent interactions via their expected static dielectric constants. This strategy performs well with respect to predictive accuracy and correlation with unknown experimental values. We follow this by performing a series of retrospective investigations which highlight the potential importance of proper balancing in these systems, and we use a null hypothesis analysis to explore potential biases in the comparisons with experiment. The collective findings indicate that considerations of force field compatibility through dielectric behavior is a potential strategy for future improvements in transfer processes between disparate environments.

  10. R.E.DD.B.: A database for RESP and ESP atomic charges, and force field libraries

    PubMed Central

    Dupradeau, François-Yves; Cézard, Christine; Lelong, Rodolphe; Stanislawiak, Élodie; Pêcher, Julien; Delepine, Jean Charles; Cieplak, Piotr

    2008-01-01

    The web-based RESP ESP charge DataBase (R.E.DD.B., http://q4md-forcefieldtools.org/REDDB) is a free and new source of RESP and ESP atomic charge values and force field libraries for model systems and/or small molecules. R.E.DD.B. stores highly effective and reproducible charge values and molecular structures in the Tripos mol2 file format, information about the charge derivation procedure, scripts to integrate the charges and molecular topology in the most common molecular dynamics packages. Moreover, R.E.DD.B. allows users to freely store and distribute RESP or ESP charges and force field libraries to the scientific community, via a web interface. The first version of R.E.DD.B., released in January 2006, contains force field libraries for molecules as well as molecular fragments for standard residues and their analogs (amino acids, monosaccharides, nucleotides and ligands), hence covering a vast area of relevant biological applications. PMID:17962302

  11. Interfacial Force Field Characterization in a Constrained Vapor Bubble Thermosyphon

    NASA Technical Reports Server (NTRS)

    DasGupta, Sunando; Plawsky, Joel L.; Wayner, Peter C., Jr.

    1995-01-01

    Isothermal profiles of the extended meniscus in a quartz cuvette were measured in the earth's gravitational field using an image-analyzing interferometer that is based on computer-enhanced video microscopy of the naturally occurring interference fringes. These profiles are a function of the stress field. Experimentally, the augmented Young-Laplace equation is an excellent model for the force field at the solid-liquid-vapor interfaces for heptane and pentane menisci on quartz and tetradecane on SFL6. The effects of refractive indices of the solid and liquid on the measurement techniques were demonstrated. Experimentally obtained values of the disjoining pressure and dispersion constants were compared to those predicted from the Dzyaloshinskii - Lifshitz - Pilaevskii theory for an ideal surface and reasonable agreements were obtained. A parameter introduced gives a quantitative measurement of the closeness of the system to equilibrium. The nonequilibrium behavior of this parameter is also presented

  12. Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields.

    PubMed

    Mercadante, Davide; Milles, Sigrid; Fuertes, Gustavo; Svergun, Dmitri I; Lemke, Edward A; Gräter, Frauke

    2015-06-25

    Understanding the function of intrinsically disordered proteins is intimately related to our capacity to correctly sample their conformational dynamics. So far, a gap between experimentally and computationally derived ensembles exists, as simulations show overcompacted conformers. Increasing evidence suggests that the solvent plays a crucial role in shaping the ensembles of intrinsically disordered proteins and has led to several attempts to modify water parameters and thereby favor protein-water over protein-protein interactions. This study tackles the problem from a different perspective, which is the use of the Kirkwood-Buff theory of solutions to reproduce the correct conformational ensemble of intrinsically disordered proteins (IDPs). A protein force field recently developed on such a basis was found to be highly effective in reproducing ensembles for a fragment from the FG-rich nucleoporin 153, with dimensions matching experimental values obtained from small-angle X-ray scattering and single molecule FRET experiments. Kirkwood-Buff theory presents a complementary and fundamentally different approach to the recently developed four-site TIP4P-D water model, both of which can rescue the overcollapse observed in IDPs with canonical protein force fields. As such, our study provides a new route for tackling the deficiencies of current protein force fields in describing protein solvation.

  13. Forces on a current-carrying wire in a magnetic field: the macro-micro connection

    NASA Astrophysics Data System (ADS)

    Karam, R.; Kneubil, F. B.; Robilotta, M. R.

    2017-09-01

    The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge distributions, we show that the electrons are subject to both magnetic and electric forces, whereas the ionic lattice of the metal is dragged by an electric force. Furthermore, an analysis of the orders of magnitude involved in the problem gives counterintuitive results with valuable educational potential. We argue that this approach allows one to discuss different aspects of the physical knowledge, which are relevant in physics education.

  14. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

    PubMed Central

    2016-01-01

    Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602

  15. The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.

    PubMed

    Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas; Savineau, Corentin; Lelong, Rodolphe; Grivel, Nicolas; Lelong, Dimitri; Rosanski, Wilfried; Cieplak, Piotr

    2010-07-28

    Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.

  16. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    NASA Astrophysics Data System (ADS)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  17. Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans

    PubMed Central

    Tan, Huiling; Pogosyan, Alek; Ashkan, Keyoumars; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Brown, Peter

    2016-01-01

    The basal ganglia are known to be involved in the planning, execution and control of gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control signal for force and to decode gripping force based on local field potential (LFP) activities recorded from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We found that STN LFP activities in the gamma (55–90 Hz) and beta (13–30m Hz) bands were most informative about gripping force, and that a first order dynamic linear model with these STN LFP features as inputs can be used to decode the temporal profile of gripping force. Our results enhance the understanding of how the basal ganglia control gripping force, and also suggest that deep brain LFPs could potentially be used to decode movement parameters related to force and movement vigour for the development of advanced human-machine interfaces. DOI: http://dx.doi.org/10.7554/eLife.19089.001 PMID:27855780

  18. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.

    PubMed

    Zgarbová, Marie; Otyepka, Michal; Sponer, Jirí; Hobza, Pavel; Jurecka, Petr

    2010-09-21

    The intermolecular interaction energy components for several molecular complexes were calculated using force fields available in the AMBER suite of programs and compared with Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) values. The extent to which such comparison is meaningful is discussed. The comparability is shown to depend strongly on the intermolecular distance, which means that comparisons made at one distance only are of limited value. At large distances the coulombic and van der Waals 1/r(6) empirical terms correspond fairly well with the DFT-SAPT electrostatics and dispersion terms, respectively. At the onset of electronic overlap the empirical values deviate from the reference values considerably. However, the errors in the force fields tend to cancel out in a systematic manner at equilibrium distances. Thus, the overall performance of the force fields displays errors an order of magnitude smaller than those of the individual interaction energy components. The repulsive 1/r(12) component of the van der Waals expression seems to be responsible for a significant part of the deviation of the force field results from the reference values. We suggest that further improvement of the force fields for intermolecular interactions would require replacement of the nonphysical 1/r(12) term by an exponential function. Dispersion anisotropy and its effects are discussed. Our analysis is intended to show that although comparing the empirical and non-empirical interaction energy components is in general problematic, it might bring insights useful for the construction of new force fields. Our results are relevant to often performed force-field-based interaction energy decompositions.

  19. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandrasekaran, Suryanarayanan; Aghtar, Mortaza; Valleau, Stéphanie

    2015-08-06

    Studies on light-harvesting (LH) systems have attracted much attention after the finding of long-lived quantum coherences in the exciton dynamics of the Fenna–Matthews–Olson (FMO) complex. In this complex, excitation energy transfer occurs between the bacteriochlorophyll a (BChl a) pigments. Two quantum mechanics/molecular mechanics (QM/MM) studies, each with a different force-field and quantum chemistry approach, reported different excitation energy distributions for the FMO complex. To understand the reasons for these differences in the predicted excitation energies, we have carried out a comparative study between the simulations using the CHARMM and AMBER force field and the Zerner intermediate neglect of differential orbitalmore » (ZINDO)/S and time-dependent density functional theory (TDDFT) quantum chemistry methods. The calculations using the CHARMM force field together with ZINDO/S or TDDFT always show a wider spread in the energy distribution compared to those using the AMBER force field. High- or low-energy tails in these energy distributions result in larger values for the spectral density at low frequencies. A detailed study on individual BChl a molecules in solution shows that without the environment, the density of states is the same for both force field sets. Including the environmental point charges, however, the excitation energy distribution gets broader and, depending on the applied methods, also asymmetric. The excitation energy distribution predicted using TDDFT together with the AMBER force field shows a symmetric, Gaussian-like distribution.« less

  20. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.

    PubMed

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-28

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  1. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  2. Free-energy landscape of the villin headpiece in an all-atom force field.

    PubMed

    Herges, Thomas; Wenzel, Wolfgang

    2005-04-01

    We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement.

  3. Development of many-body polarizable force fields for Li-battery components: 1. Ether, alkane, and carbonate-based solvents.

    PubMed

    Borodin, Oleg; Smith, Grant D

    2006-03-30

    Classical many-body polarizable force fields were developed for n-alkanes, perflouroalkanes, polyethers, ketones, and linear and cyclic carbonates on the basis of quantum chemistry dimer energies of model compounds and empirical thermodynamic liquid-state properties. The dependence of the electron correlation contribution to the dimer binding energy on basis-set size and level of theory was investigated as a function of molecular separation for a number of alkane, ether, and ketone dimers. Molecular dynamics (MD) simulations of the force fields accurately predicted structural, dynamic, and transport properties of liquids and unentangled polymer melts. On average, gas-phase dimer binding energies predicted with the force field were between those from MP2/aug-cc-pvDz and MP2/aug-cc-pvTz quantum chemistry calculations.

  4. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    USGS Publications Warehouse

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  5. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    PubMed

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Image restoration method based on Hilbert transform for full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2008-01-01

    A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.

  7. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    PubMed

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  8. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations

    PubMed Central

    Dijkstra, Maurits J. J.; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-01-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a ‘tube model’ approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the ‘CamTube’ force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost. PMID:26505754

  9. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, Melvin L.; Mueller, Fred M.; Smith, James L.

    1991-01-01

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

  10. Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution

    DOEpatents

    Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

    1991-04-09

    The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

  11. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  12. Nucleon form factors in dispersively improved chiral effective field theory: Scalar form factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcon Soriano, Jose Manuel; Weiss, Christian

    We propose a method for calculating the nucleon form factors (FFs) ofmore » $G$-parity-even operators by combining Chiral Effective Field Theory ($$\\chi$$EFT) and dispersion analysis. The FFs are expressed as dispersive integrals over the two-pion cut at $$t > 4 M_\\pi^2$$. The spectral functions are obtained from the elastic unitarity condition and expressed as products of the complex $$\\pi\\pi \\rightarrow N\\bar N$$ partial-wave amplitudes and the timelike pion FF. $$\\chi$$EFT is used to calculate the ratio of the partial-wave amplitudes and the pion FF, which is real and free of $$\\pi\\pi$$ rescattering in the $t$-channel ($N/D$ method). The rescattering effects are then incorporated by multiplying with the squared modulus of the empirical pion FF. The procedure results in a marked improvement compared to conventional $$\\chi$$EFT calculations of the spectral functions. We apply the method to the nucleon scalar FF and compute the scalar spectral function, the scalar radius, the $t$-dependent FF, and the Cheng-Dashen discrepancy. Higher-order chiral corrections are estimated through the $$\\pi N$$ low-energy constants. Results are in excellent agreement with dispersion-theoretical calculations. We elaborate several other interesting aspects of our method. The results show proper scaling behavior in the large-$$N_c$$ limit of QCD because the $$\\chi$$EFT includes $N$ and $$\\Delta$$ intermediate states. The squared modulus of the timelike pion FF required by our method can be extracted from Lattice QCD calculations of vacuum correlation functions of the operator at large Euclidean distances. Our method can be applied to the nucleon FFs of other operators of interest, such as the isovector-vector current, the energy-momentum tensor, and twist-2 QCD operators (moments of generalized parton distributions).« less

  13. Nucleon form factors in dispersively improved chiral effective field theory: Scalar form factor

    DOE PAGES

    Alarcon Soriano, Jose Manuel; Weiss, Christian

    2017-11-20

    We propose a method for calculating the nucleon form factors (FFs) ofmore » $G$-parity-even operators by combining Chiral Effective Field Theory ($$\\chi$$EFT) and dispersion analysis. The FFs are expressed as dispersive integrals over the two-pion cut at $$t > 4 M_\\pi^2$$. The spectral functions are obtained from the elastic unitarity condition and expressed as products of the complex $$\\pi\\pi \\rightarrow N\\bar N$$ partial-wave amplitudes and the timelike pion FF. $$\\chi$$EFT is used to calculate the ratio of the partial-wave amplitudes and the pion FF, which is real and free of $$\\pi\\pi$$ rescattering in the $t$-channel ($N/D$ method). The rescattering effects are then incorporated by multiplying with the squared modulus of the empirical pion FF. The procedure results in a marked improvement compared to conventional $$\\chi$$EFT calculations of the spectral functions. We apply the method to the nucleon scalar FF and compute the scalar spectral function, the scalar radius, the $t$-dependent FF, and the Cheng-Dashen discrepancy. Higher-order chiral corrections are estimated through the $$\\pi N$$ low-energy constants. Results are in excellent agreement with dispersion-theoretical calculations. We elaborate several other interesting aspects of our method. The results show proper scaling behavior in the large-$$N_c$$ limit of QCD because the $$\\chi$$EFT includes $N$ and $$\\Delta$$ intermediate states. The squared modulus of the timelike pion FF required by our method can be extracted from Lattice QCD calculations of vacuum correlation functions of the operator at large Euclidean distances. Our method can be applied to the nucleon FFs of other operators of interest, such as the isovector-vector current, the energy-momentum tensor, and twist-2 QCD operators (moments of generalized parton distributions).« less

  14. Parameterization of an interfacial force field for accurate representation of peptide adsorption free energy on high-density polyethylene

    PubMed Central

    Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.

    2015-01-01

    Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122

  15. Rigorous force field optimization principles based on statistical distance minimization

    DOE PAGES

    Vlcek, Lukas; Chialvo, Ariel A.

    2015-10-12

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. Here we exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of themore » approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.« less

  16. ReaxFF molecular dynamics simulation of intermolecular structure formation in acetic acid-water mixtures at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Sengul, Mert Y.; Randall, Clive A.; van Duin, Adri C. T.

    2018-04-01

    The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ xHAc ≥ 0.2) at ambient and critical conditions were examined. The potential energy surface associated with the dissociation of acetic acid molecules was calculated using a metadynamics procedure to optimize the dissociation energy of ReaxFF potential. At ambient conditions, depending on the acetic acid concentration, either acetic acid clusters or water clusters are dominant in the liquid mixture. When acetic acid is dominant (0.4 ≤ xHAc), cyclic dimers and chain structures between acetic acid molecules are present in the mixture. Both structures disappear at increased water content of the mixture. It was found by simulations that the acetic acid molecules released from these dimer and chain structures tend to stay in a dipole-dipole interaction. These structural changes are in agreement with the experimental results. When switched to critical conditions, the long-range interactions (e.g., second or fourth neighbor) disappear and the water-water and acetic acid-acetic acid structural formations become disordered. The simulated radial distribution function for water-water interactions is in agreement with experimental and computational studies. The first neighbor interactions between acetic acid and water molecules are preserved at relatively lower temperatures of the critical region. As higher temperatures are reached in the critical region, these interactions were observed to weaken. These simulations indicate that ReaxFF molecular dynamics simulations are an appropriate tool for studying supercritical water/organic acid mixtures.

  17. Trial-by-trial adaptation of movements during mental practice under force field.

    PubMed

    Anwar, Muhammad Nabeel; Khan, Salman Hameed

    2013-01-01

    Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.

  18. The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine

    PubMed Central

    Neumann, Marcus A.

    2017-01-01

    Motional averaging has been proven to be significant in predicting the chemical shifts in ab initio solid-state NMR calculations, and the applicability of motional averaging with molecular dynamics has been shown to depend on the accuracy of the molecular mechanical force field. The performance of a fully automatically generated tailor-made force field (TMFF) for the dynamic aspects of NMR crystallography is evaluated and compared with existing benchmarks, including static dispersion-corrected density functional theory calculations and the COMPASS force field. The crystal structure of free base cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more attention to anisotropic chemical shifts and development of the method of solid-state NMR calculations. PMID:28250956

  19. DFT calculations for anharmonic force field and spectroscopic constants of YC2 and its 13C isotopologues

    NASA Astrophysics Data System (ADS)

    Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing

    2018-02-01

    The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.

  20. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  1. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.

    PubMed

    Vashishta, Priya; Kalia, Rajiv K; Nakano, Aiichiro

    2006-03-02

    We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates (1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and polarization, a nonreactive force field that employs dynamic atomic charges, and an effective force field (EFF), and (3) an atomistically informed continuum model to reach macroscopic length scales. For scalable hierarchical simulations, we have developed parallel linear-scaling algorithms for (1) DFT calculation based on a divide-and-conquer algorithm on adaptive multigrids, (2) chemically reactive MD based on a fast ReaxFF (F-ReaxFF) algorithm, and (3) EFF-MD based on a space-time multiresolution MD (MRMD) algorithm. On 1920 Intel Itanium2 processors, we have demonstrated 1.4 million atom (0.12 trillion grid points) DFT, 0.56 billion atom F-ReaxFF, and 18.9 billion atom MRMD calculations, with parallel efficiency as high as 0.953. Through the use of these algorithms, multimillion atom MD simulations have been performed to study the oxidation of an aluminum nanoparticle. Structural and dynamic correlations in the oxide region are calculated as well as the evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the microcanonical ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen environments, due to the enormous energy release associated with Al-O bonding. In the canonical ensemble, an amorphous oxide layer of a thickness of approximately 40 angstroms is formed after 466 ps, in good agreement with experiments. Simulations have been performed to study nanoindentation on crystalline, amorphous, and nanocrystalline silicon nitride and silicon carbide. Simulation on nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, due to

  2. Counterintelligence Screening Needed lo Reduce Security Threat That Unscreened Local National Linguists Pose to U.S. Forces (REDACTED)

    DTIC Science & Technology

    2012-12-07

    Commander, U.S. Forces- Afghanistan -- - ·--·- --· I A., B. l., and B.2. FOR OFFICl/rlJ BSE O:PflrlI ii F0R 0FFiCM-L HSE 0Nhi’ Table of...Our Response 13 Appendices A. Scope and Methodology 15 Use of Computer Processed Data 16 Prior Coverage 16 1 F0R 0FFiCIA±i HSE 0Nl-J’l F61t...security screening process for escorted entry while on U.S. Forces’ installations in Afghanistan. FOR 0ff’ICikb HSE 0"Pfb Y 5 F6:K 6FFl€1A:b ffl

  3. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Jiajia; Shi, Zongqian; Jia, Shenli; Zhang, Pengbo

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system.

  4. Metabolic effects of azoxystrobin and kresoxim-methyl against Fusarium kyushuense examined using the Biolog FF MicroPlate.

    PubMed

    Wang, Hancheng; Wang, Jin; Chen, Qingyuan; Wang, Maosheng; Hsiang, Tom; Shang, Shenghua; Yu, Zhihe

    2016-06-01

    Azoxystrobin and kresoxim-methyl are strobilurin fungicides, and are effective in controlling many plant diseases, including Fusarium wilt. The mode of action of this kind of chemical is inhibition of respiration. This research investigated the sensitivities of Fusarium kyushuense to azoxystrobin and kresoxim-methyl, and to the alternative oxidase inhibitor salicylhydroxamic acid (SHAM). The Biolog FF MicroPlate is designed to examine substrate utilization and metabolic profiling of micro-organisms, and was used here to study the activity of azoxystrobin, kresoxim-methyl and SHAM against F. kyushuense. Results presented that azoxystrobin and kresoxim-methyl strongly inhibited conidial germination and mycelial growth of F. kyushuense, with EC50 values of 1.60 and 1.79μgml(-1), and 6.25 and 11.43μgml(-1), respectively; while not for SHAM. In the absence of fungicide, F. kyushuense was able to metabolize 91.6% of the tested carbon substrates, including 69 effectively and 18 moderately. SHAM did not inhibit carbon substrate utilization. Under the selective pressure of azoxystrobin and kresoxim-methyl during mycelial growth (up to 100μgml(-1)) and conidial germination (up to 10μgml(-1)), F. kyushuense was unable to metabolize many substrates in the Biolog FF MicroPlate; while especially for carbon substrates in glycolysis and tricarboxylic acid cycle, with notable exceptions such as β-hydroxybutyric acid, y-hydroxybutyric acid, α-ketoglutaric acid, α-d-glucose-1-phosphate, d-saccharic acid and succinic acid in the mycelial growth stage, and β-hydroxybutyric acid, y-hydroxybutyric acid, α-ketoglutaric acid, tween-80, arbutin, dextrin, glycerol and glycogen in the conidial germination stage. This is a new finding for some effect of azoxystrobin and kresoxim-methyl on carbon substrate utilization related to glycolysis and tricarboxylic acid cycle and other carbons, and may lead to future applications of Biolog FF MicroPlate for metabolic effects of other

  5. Polarizable Force Fields for CO2 and CH4 Adsorption in M-MOF-74

    PubMed Central

    2017-01-01

    The family of M-MOF-74, with M = Co, Cr, Cu, Fe, Mg, Mn, Ni, Ti, V, and Zn, provides opportunities for numerous energy related gas separation applications. The pore structure of M-MOF-74 exhibits a high internal surface area and an exceptionally large adsorption capacity. The chemical environment of the adsorbate molecule in M-MOF-74 can be tuned by exchanging the metal ion incorporated in the structure. To optimize materials for a given separation process, insights into how the choice of the metal ion affects the interaction strength with adsorbate molecules and how to model these interactions are essential. Here, we quantitatively highlight the importance of polarization by comparing the proposed polarizable force field to orbital interaction energies from DFT calculations. Adsorption isotherms and heats of adsorption are computed for CO2, CH4, and their mixtures in M-MOF-74 with all 10 metal ions. The results are compared to experimental data, and to previous simulation results using nonpolarizable force fields derived from quantum mechanics. To the best of our knowledge, the developed polarizable force field is the only one so far trying to cover such a large set of possible metal ions. For the majority of metal ions, our simulations are in good agreement with experiments, demonstrating the effectiveness of our polarizable potential and the transferability of the adopted approach. PMID:28286598

  6. Comparison of k Q factors measured with a water calorimeter in flattening filter free (FFF) and conventional flattening filter (cFF) photon beams

    NASA Astrophysics Data System (ADS)

    de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Perik, Thijs; Wittkämper, Frits

    2018-02-01

    Recently flattening filter free (FFF) beams became available for application in modern radiotherapy. There are several advantages of FFF beams over conventional flattening filtered (cFF) beams, however differences in beam spectra at the point of interest in a phantom potentially affect the ion chamber response. Beams are also non-uniform over the length of a typical reference ion chamber and recombination is usually larger. Despite several studies describing FFF beam characteristics, only a limited number of studies investigated their effect on k Q factors. Some of those studies predicted significant discrepancies in k Q factors (0.4% up to 1.0%) if TPR20,10 based codes of practice (CoPs) were to be used. This study addresses the question to which extent k Q factors, based on a TPR20,10 CoP, can be applied in clinical reference dosimetry. It is the first study that compares k Q factors measured directly with an absorbed dose to water primary standard in FFF-cFF pairs of clinical photon beams. This was done with a transportable water calorimeter described elsewhere. The measurements corrected for recombination and beam radial non-uniformity were performed in FFF-cFF beam pairs at 6 MV and 10 MV of an Elekta Versa HD for a selection of three different Farmer-type ion chambers (eight serial numbers). The ratio of measured k Q factors of the FFF-cFF beam pairs were compared with the TPR20,10 CoPs of the NCS and IAEA and the %dd(10) x CoP of the AAPM. For the TPR20,10 based CoPs differences less than 0.23% were found in k Q factors between the corresponding FFF-cFF beams with standard uncertainties smaller than 0.35%, while for the %dd(10) x these differences were smaller than 0.46% and within the expanded uncertainty of the measurements. Based on the measurements made with the equipment described in this study the authors conclude that the k Q factors provided by the NCS-18 and IAEA TRS-398 codes of practice can be applied for flattening filter free beams without

  7. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system.

    PubMed

    Wang, Lilie; Ding, George X

    2018-06-12

    Therapeutic radiation to cancer patients is accompanied by unintended radiation to organs outside the treatment field. It is known that the model-based dose algorithm has limitation in calculating the out-of-field doses. This study evaluated the out-of-field dose calculated by the Varian Eclipse treatment planning system (v.11 with AAA algorithm) in realistic treatment plans with the goal of estimating the uncertainties of calculated organ doses. Photon beam phase-space files for TrueBeam linear accelerator were provided by Varian. These were used as incident sources in EGSnrc Monte Carlo simulations of radiation transport through the downstream jaws and MLC. Dynamic movements of the MLC leaves were fully modeled based on treatment plans using IMRT or VMAT techniques. The Monte Carlo calculated out-of-field doses were then compared with those calculated by Eclipse. The dose comparisons were performed for different beam energies and treatment sites, including head-and-neck, lung, and pelvis. For 6 MV (FF/FFF), 10 MV (FF/FFF), and 15 MV (FF) beams, Eclipse underestimated out-of-field local doses by 30%-50% compared with Monte Carlo calculations when the local dose was <1% of prescribed dose. The accuracy of out-of-field dose calculations using Eclipse is improved when collimator jaws were set at the smallest possible aperture for MLC openings. The Eclipse system consistently underestimates out-of-field dose by a factor of 2 for all beam energies studied at the local dose level of less than 1% of prescribed dose. These findings are useful in providing information on the uncertainties of out-of-field organ doses calculated by Eclipse treatment planning system. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  8. Force field refinement from NMR scalar couplings

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Meuwly, Markus

    2012-03-01

    NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants hJ reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined hJ couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed hJ couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  9. Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth

    ERIC Educational Resources Information Center

    Veto, B.

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…

  10. Double Donut Schmidt Camera, a wide-field, large-aperture, and lightweight space telescope for the detection of ultrahigh energy cosmic rays.

    PubMed

    Sandri, Paolo; Mazzinghi, Piero; Da Deppo, Vania

    2018-04-20

    A wide-field, large-aperture, and lightweight Schmidt configuration has been studied for a space mission proposal named Extreme Universe Space Observatory free flyer (EUSO-FF). EUSO-FF will be devoted to the study of ultrahigh energy cosmic rays, i.e., with energy >5×10 19   eV, through the detection of UV fluorescence light emitted by air showers in the Earth's atmosphere. The proposed telescope has a field of view of about 50° and an entrance pupil diameter of 4.2 m. The mirror is deployable and segmented to fit the diameter of the launcher fairing; the corrector is a lightweight annular corona.

  11. An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Taylor, Peter R.

    1995-01-01

    A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within +/- 6 cm(exp -1). It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 r(e), by 0.0015 A. Our best estimate for r, is 1.0862 +/- 0.0005 A.

  12. High harmonic interferometry of the Lorentz force in strong mid-infrared laser fields

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Hickstein, Daniel D.; Galloway, Benjamin R.; Durfee, Charles G.; Kapteyn, Henry C.; Murnane, Margaret M.; Ivanov, Misha

    2018-05-01

    The interaction of intense mid-infrared laser fields with atoms and molecules leads to a range of new opportunities, from the production of bright, coherent radiation in the soft x-ray range, to imaging molecular structures and dynamics with attosecond temporal and sub-angstrom spatial resolution. However, all these effects, which rely on laser-driven recollision of an electron removed by the strong laser field and its parent ion, suffer from the rapidly increasing role of the magnetic field component of the driving pulse: the associated Lorentz force pushes the electrons off course in their excursion and suppresses all recollision-based processes, including high harmonic generation as well as elastic and inelastic scattering. Here we show how the use of two non-collinear beams with opposite circular polarizations produces a forwards ellipticity which can be used to monitor, control, and cancel the effect of the Lorentz force. This arrangement can thus be used to re-enable recollision-based phenomena in regimes beyond the long-wavelength breakdown of the dipole approximation, and it can be used to observe this breakdown in high harmonic generation using currently available light sources.

  13. Perspectives on the simulation of protein–surface interactions using empirical force field methods

    PubMed Central

    Latour, Robert A.

    2014-01-01

    Protein–surface interactions are of fundamental importance for a broad range of applications in the fields of biomaterials and biotechnology. Present experimental methods are limited in their ability to provide a comprehensive depiction of these interactions at the atomistic level. In contrast, empirical force field based simulation methods inherently provide the ability to predict and visualize protein–surface interactions with full atomistic detail. These methods, however, must be carefully developed, validated, and properly applied before confidence can be placed in results from the simulations. In this perspectives paper, I provide an overview of the critical aspects that I consider being of greatest importance for the development of these methods, with a focus on the research that my combined experimental and molecular simulation groups have conducted over the past decade to address these issues. These critical issues include the tuning of interfacial force field parameters to accurately represent the thermodynamics of interfacial behavior, adequate sampling of these types of complex molecular systems to generate results that can be comparable with experimental data, and the generation of experimental data that can be used for simulation results evaluation and validation. PMID:25028242

  14. Little Blue Dots in the Hubble Space Telescope Frontier Fields: Precursors to Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2017-12-01

    Galaxies with stellar masses < {10}7.4 {M}ȯ and specific star formation rates {sSFR}> {10}-7.4 yr‑1 were examined on images of the Hubble Space Telescope Frontier Field Parallels for Abell 2744 and MACS J0416.1-02403. They appear as unresolved “Little Blue Dots” (LBDs). They are less massive and have higher specific star formation rates (sSFRs) than “blueberries” studied by Yang et al. and higher sSFRs than “Blue Nuggets” studied by Tacchella et al. We divided the LBDs into three redshift bins and, for each, stacked the B435, V606, and I814 images convolved to the same stellar point-spread function (PSF). Their radii were determined from PSF deconvolution to be ∼80 to ∼180 pc. The high sSFRs suggest that their entire stellar mass has formed in only 1% of the local age of the universe. The sSFRs at similar epochs in local dwarf galaxies are lower by a factor of ∼100. Assuming that the star formation rate is {ε }{ff}{M}{gas}/{t}{ff} for efficiency {ε }{ff}, gas mass M gas, and free-fall time, t ff, the gas mass and gas-to-star mass ratio are determined. This ratio exceeds 1 for reasonable efficiencies, and is likely to be ∼5 even with a high {ε }{ff} of 0.1. We consider whether these regions are forming today’s globular clusters. With their observed stellar masses, the maximum likely cluster mass is ∼ {10}5 {M}ȯ , but if star formation continues at the current rate for ∼ 10{t}{ff}∼ 50 {Myr} before feedback and gas exhaustion stop it, then the maximum cluster mass could become ∼ {10}6 {M}ȯ .

  15. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr; Schnell, Benoît

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining levelmore » on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.« less

  16. Dosimetric and efficiency comparison of high-dose radiotherapy for esophageal cancer: volumetric modulated arc therapy versus fixed-field intensity-modulated radiotherapy.

    PubMed

    Lin, C-Y; Huang, W-Y; Jen, Y-M; Chen, C-M; Su, Y-F; Chao, H-L; Lin, C-S

    2014-08-01

    The aim of this study was to compare high-dose volumetric modulated arc therapy (VMAT) and fixed-field intensity-modulated radiotherapy (ff-IMRT) plans for the treatment of patients with middle-thoracic esophageal cancer. Eight patients with cT2-3N0M0 middle-thoracic esophageal cancer were enrolled. The treatment planning system was the version 9 of the Pinnacle(3) with SmartArc (Philips Healthcare, Fitchburg, WI, USA). VMAT and ff-IMRT treatment plans were generated for each case, and both techniques were used to deliver 50 Gy to the planning target volume (PTV(50)) and then provided a 16-Gy boost (PTV(66)). The VMAT plans provided superior PTV(66) coverage compared with the ff-IMRT plans (P = 0.034), whereas the ff-IMRT plans provided more appropriate dose homogeneity to the PTV(50) (P = 0.017). In the lung, the V(5) and V(10) were lower for the ff-IMRT plans than for the VMAT plans, whereas the V(20) was lower for the VMAT plans. The delivery time was significantly shorter for the VMAT plans than for the ff-IMRT plans (P = 0.012). In addition, the VMAT plans delivered fewer monitor units. The VMAT technique required a shorter planning time than the ff-IMRT technique (3.8 ± 0.8 hours vs. 5.4 ± 0.6 hours, P = 0.011). The major advantages of VMAT plans are higher efficiency and an approximately 50% reduction in delivery time compared with the ff-IMRT plans, with comparable plan quality. Further clinical investigations to evaluate the use of high-dose VMAT for the treatment of esophageal cancer are warranted. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  17. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    PubMed

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  18. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  19. Tests and applications of nonlinear force-free field extrapolations in spherical geometry

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.

    2013-07-01

    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry with an analytical solution from Low and Lou. The potential field source surface (PFSS) model is served as the initial and boundary conditions where observed data are not available. The analytical solution can be well recovered if the boundary and initial conditions are properly handled. Next, we discuss the preprocessing procedure for the noisy bottom boundary data, and find that preprocessing is necessary for NLFFF extrapolations when we use the observed photospheric magnetic field as bottom boundaries. Finally, we apply the NLFFF model to a solar area where four active regions interacting with each other. An M8.7 flare occurred in one active region. NLFFF modeling in spherical geometry simultaneously constructs the small and large scale magnetic field configurations better than the PFSS model does.

  20. A cohesive-frictional force field (CFFF) for colloidal calcium-silicate-hydrates

    NASA Astrophysics Data System (ADS)

    Palkovic, Steven D.; Yip, Sidney; Büyüköztürk, Oral

    2017-12-01

    Calcium-silicate-hydrate (C-S-H) gel is a cohesive-frictional material that exhibits strength asymmetry in compression and tension and normal-stress dependency of the maximum shear strength. Experiments suggest the basic structural component of C-S-H is a colloidal particle with an internal layered structure. These colloids form heterogeneous assemblies with a complex pore network at the mesoscale. We propose a cohesive-frictional force field (CFFF) to describe the interactions in colloidal C-S-H materials that incorporates the strength anisotropy fundamental to the C-S-H molecular structure that has been omitted from recent mesoscale models. We parameterize the CFFF from reactive force field simulations of an internal interface that controls mechanical performance, describing the behavior of thousands of atoms through a single effective pair interaction. We apply the CFFF to study the mesoscale elastic and Mohr-Coulomb strength properties of C-S-H with varying polydispersity and packing density. Our results show that the consideration of cohesive-frictional interactions lead to an increase in stiffness, shear strength, and normal-stress dependency, while also changing the nature of local deformation processes. The CFFF and our coarse-graining approach provide an essential connection between nanoscale molecular interactions and macroscale continuum behavior for hydrated cementitious materials.

  1. A Lorentz force actuated magnetic field sensor with capacitive read-out

    NASA Astrophysics Data System (ADS)

    Stifter, M.; Steiner, H.; Kainz, A.; Keplinger, F.; Hortschitz, W.; Sauter, T.

    2013-05-01

    We present a novel design of a resonant magnetic field sensor with capacitive read-out permitting wafer level production. The device consists of a single-crystal silicon cantilever manufactured from the device layer of an SOI wafer. Cantilevers represent a very simple structure with respect to manufacturing and function. On the top of the structure, a gold lead carries AC currents that generate alternating Lorentz forces in an external magnetic field. The free end oscillation of the actuated cantilever depends on the eigenfrequencies of the structure. Particularly, the specific design of a U-shaped structure provides a larger force-to-stiffness-ratio than standard cantilevers. The electrodes for detecting cantilever deflections are separately fabricated on a Pyrex glass-wafer. They form the counterpart to the lead on the freely vibrating planar structure. Both wafers are mounted on top of each other. A custom SU-8 bonding process on wafer level creates a gap which defines the equilibrium distance between sensing electrodes and the vibrating structure. Additionally to the capacitive read-out, the cantilever oscillation was simultaneously measured with laser Doppler vibrometry through proper windows in the SOI handle wafer. Advantages and disadvantages of the asynchronous capacitive measurement configuration are discussed quantitatively and presented by a comprehensive experimental characterization of the device under test.

  2. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    PubMed

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  3. In Situ Biological Treatment Test at Kelly Air Force Base. Volume 2. Field Test Results and Cost Model

    DTIC Science & Technology

    1987-07-01

    Groundwater." Developments in Industrial Microbiology, Volume 24, pp. 225-234. Society of Industrial Microbiology, Arlington, Virginia. 18. Product ...ESL-TR-85-52 cv) VOLUME II CN IN SITU BIOLOGICAL TREATMENT TEST AT KELLY AIR FORCE BASE, VOLUME !1: FIELD TEST RESULTS AND COST MODEL R.S. WETZEL...Kelly Air Force Base, Volume II: Field Test Results and Cost Model (UNCLASSIFIED) 12 PERSONAL AUTHOR(S) Roger S. Wetzel, Connie M. Durst, Donald H

  4. Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology

    NASA Astrophysics Data System (ADS)

    Harms, F.; Dalimier, E.; Vermeulen, P.; Fragola, A.; Boccara, A. C.

    2012-03-01

    Optical Coherence Tomography (OCT) is an efficient technique for in-depth optical biopsy of biological tissues, relying on interferometric selection of ballistic photons. Full-Field Optical Coherence Tomography (FF-OCT) is an alternative approach to Fourier-domain OCT (spectral or swept-source), allowing parallel acquisition of en-face optical sections. Using medium numerical aperture objective, it is possible to reach an isotropic resolution of about 1x1x1 ìm. After stitching a grid of acquired images, FF-OCT gives access to the architecture of the tissue, for both macroscopic and microscopic structures, in a non-invasive process, which makes the technique particularly suitable for applications in pathology. Here we report a multimodal approach to FF-OCT, combining two Full-Field techniques for collecting a backscattered endogeneous OCT image and a fluorescence exogeneous image in parallel. Considering pathological diagnosis of cancer, visualization of cell nuclei is of paramount importance. OCT images, even for the highest resolution, usually fail to identify individual nuclei due to the nature of the optical contrast used. We have built a multimodal optical microscope based on the combination of FF-OCT and Structured Illumination Microscopy (SIM). We used x30 immersion objectives, with a numerical aperture of 1.05, allowing for sub-micron transverse resolution. Fluorescent staining of nuclei was obtained using specific fluorescent dyes such as acridine orange. We present multimodal images of healthy and pathological skin tissue at various scales. This instrumental development paves the way for improvements of standard pathology procedures, as a faster, non sacrificial, operator independent digital optical method compared to frozen sections.

  5. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  6. Calculations of the free energy of interaction of the c-Fos-c-Jun coiled coil: effects of the solvation model and the inclusion of polarization effects.

    PubMed

    Zuo, Zhili; Gandhi, Neha S; Mancera, Ricardo L

    2010-12-27

    The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.

  7. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    NASA Astrophysics Data System (ADS)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  8. Brief: Field measurements of casing tension forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigley, M.S.; Lewis, D.B.; Boswell, R.S.

    1995-02-01

    Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these testsmore » clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.« less

  9. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  10. Electric-field-induced forces between two surfaces filled with an insulating liquid: the role of adsorbed water

    NASA Astrophysics Data System (ADS)

    Wang, Yong Jian; Xu, Zuli; Sheng, Ping; Tong, Penger

    2014-06-01

    A systematic study of the electric-field-induced forces between a solid glass sphere and a flat gold-plated substrate filled with an insulating liquid has been carried out. Using atomic force microscopy, we measure the electrostatic force f(s, V) between the sphere and substrate as a function of the surface separation s and applied voltage V. The measured f(s, V) is found to be well described by an equation for a conducting sphere. Further force measurements for the "wet" porous glass spheres filled with an aqueous solution of urea and the dried porous glass spheres filled with (dry) air suggest that there is a water layer of a few nanometers in thickness adsorbed on the hydrophilic glass surface under ambient conditions. This adsorbed water layer is more conductive than the dielectric core of the glass sphere, making the sphere surface to be at a potential close to that of the cantilever electrode. As a result, the electric field is strongly concentrated in the gap region between the glass sphere and gold-plate substrate and thus their electrostatic attraction is enhanced. This surface conductivity effect is further supported by the thermal gravimetric analysis (TGA) and force response measurements to a time-dependent electric field. The experiment clearly demonstrates that the adsorption of a conductive water layer on a hydrophilic surface plays a dominant role in determining the electrostatic interaction between the dielectric sphere and substrate.

  11. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH.

    PubMed

    Tian, Ye; Schwieters, Charles D; Opella, Stanley J; Marassi, Francesca M

    2017-01-01

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  12. Lower extremity joint loads in habitual rearfoot and mid/forefoot strike runners with normal and shortened stride lengths.

    PubMed

    Boyer, Elizabeth R; Derrick, Timothy R

    2018-03-01

    Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2-14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: -9.9 ± 0.9, hFF-FFS: -9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one's SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.

  13. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    PubMed

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  14. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.

    PubMed

    Duan, Yong; Wu, Chun; Chowdhury, Shibasish; Lee, Mathew C; Xiong, Guoming; Zhang, Wei; Yang, Rong; Cieplak, Piotr; Luo, Ray; Lee, Taisung; Caldwell, James; Wang, Junmei; Kollman, Peter

    2003-12-01

    Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1999-2012, 2003

  15. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments.

    PubMed

    Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves

    2011-07-01

    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs.

  16. Magnetic domain structure imaging near sample surface with alternating magnetic force microscopy by using AC magnetic field modulated superparamagnetic tip.

    PubMed

    Cao, Yongze; Nakayama, Shota; Kumar, Pawan; Zhao, Yue; Kinoshita, Yukinori; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-03

    For magnetic domain imaging with a very high spatial resolution by magnetic force microscopy the tip-sample distance should be as small as possible. However, magnetic imaging near sample surface is very difficult with conventional MFM because the interactive forces between tip and sample includes van der Waals and electrostatic forces along with magnetic force. In this study, we proposed an alternating magnetic force microscopy (A-MFM) which extract only magnetic force near sample surface without any topographic and electrical crosstalk. In the present method, the magnetization of a FeCo-GdOx superparamagnetic tip is modulated by an external AC magnetic field in order to measure the magnetic domain structure without any perturbation from the other forces near the sample surface. Moreover, it is demonstrated that the proposed method can also measure the strength and identify the polarities of the second derivative of the perpendicular stray field from a thin-film permanent magnet with DC demagnetized state and remanent state. © 2018 IOP Publishing Ltd.

  17. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions

    PubMed Central

    Huang, Qian; Lee, Joon; Arce, Fernando Teran; Yoon, Ilsun; Angsantikul, Pavimol; Liu, Justin; Shi, Yuesong; Villanueva, Josh; Thamphiwatana, Soracha; Ma, Xuanyi; Zhang, Liangfang; Chen, Shaochen; Lal, Ratnesh; Sirbuly, Donald J.

    2018-01-01

    Ultrasensitive nanomechanical instruments, including the atomic force microscope (AFM)1–4 and optical and magnetic tweezers5–8, have helped shed new light on the complex mechanical environments of biological processes. However, it is difficult to scale down the size of these instruments due to their feedback mechanisms9, which, if overcome, would enable high-density nanomechanical probing inside materials. A variety of molecular force probes including mechanophores10, quantum dots11, fluorescent pairs12,13 and molecular rotors14–16 have been designed to measure intracellular stresses; however, fluorescence-based techniques can have short operating times due to photo-instability and it is still challenging to quantify the forces with high spatial and mechanical resolution. Here, we develop a compact nanofibre optic force transducer (NOFT) that utilizes strong near-field plasmon–dielectric interactions to measure local forces with a sensitivity of <200 fN. The NOFT system is tested by monitoring bacterial motion and heart-cell beating as well as detecting infrasound power in solution. PMID:29576804

  18. Digital Game-Based Learning (DGBL) in the L2 Classroom: The Impact of the UN's Off-the-Shelf Videogame, Food Force, on Learner Affect and Vocabulary Retention

    ERIC Educational Resources Information Center

    Hitosugi, Claire Ikumi; Schmidt, Matthew; Hayashi, Kentaro

    2014-01-01

    This mixed-method study explored the impact of "Food Force (FF)", a UN-sponsored off-the-shelf videogame, on learner affect and vocabulary learning and retention in a Japanese as a second/foreign language classroom. The videogame was integrated into an existing curriculum and two studies were performed. In Study 1 (n = 9), new vocabulary…

  19. Compatibility of the Chameleon-Field Model with Fifth-Force Experiments, Cosmology, and PVLAS and CAST Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-09-21

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V({phi}) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology.

  20. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-based Force Field

    PubMed Central

    Xu, Dong; Zhang, Yang

    2012-01-01

    Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565

  1. Consistent free energy landscapes and thermodynamic properties of small proteins based on a single all-atom force field employing an implicit solvation.

    PubMed

    Kim, Eunae; Jang, Soonmin; Pak, Youngshang

    2007-10-14

    We have attempted to improve the PARAM99 force field in conjunction with the generalized Born (GB) solvation model with a surface area correction for more consistent protein folding simulations. For this purpose, using an extended alphabeta training set of five well-studied molecules with various folds (alpha, beta, and betabetaalpha), a previously modified version of PARAM99/GBSA is further refined, such that all native states of the five training species correspond to their lowest free energy minimum states. The resulting modified force field (PARAM99MOD5/GBSA) clearly produces reasonably acceptable conformational free energy surfaces of the training set with correct identifications of their native states in the free energy minimum states. Moreover, due to its well-balanced nature, this new force field is expected to describe secondary structure propensities of diverse folds in a more consistent manner. Remarkably, temperature dependent behaviors simulated with the current force field are in good agreement with the experiment. This agreement is a significant improvement over the existing standard all-atom force fields. In addition, fundamentally important thermodynamic quantities, such as folding enthalpy (DeltaH) and entropy (DeltaS), agree reasonably well with the experimental data.

  2. On some properties of force-free magnetic fields in infinite regions of space

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1984-01-01

    Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.

  3. [Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].

    PubMed

    Xu, Chun; Chao, Yong-lie; Du, Li; Yang, Ling

    2004-05-01

    To measure and analyze the flux densities of static magnetic fields generated by two types of commonly used dental magnetic attachments and their retentive forces, and to provide guidance for the clinical application of magnetic attachments. A digital Gaussmeter was used to measure the flux densities of static magnetic fields generated by two types of magnetic attachments, under four circumstances: open-field circuit; closed-field circuit; keeper and magnet slid laterally for a certain distance; and existence of air gap between keeper and magnet. The retentive forces of the magnetic attachments in standard closed-field circuit, with the keeper and magnet sliding laterally for a certain distance or with a certain air gap between keeper and magnet were measured by a tensile testing machine. There were flux leakages under both the open-field circuit and closed-field circuit of the two types of magnetic attachments. The flux densities on the surfaces of MAGNEDISC 800 (MD800) and MAGFIT EX600W (EX600) magnetic attachments under open-field circuit were 275.0 mT and 147.0 mT respectively. The flux leakages under closed-field circuit were smaller than those under open-field circuit. The respective flux densities on the surfaces of MD800 and EX600 magnetic attachments decreased to 11.4 mT and 4.5 mT under closed-field circuit. The flux density around the magnetic attachment decreased as the distance from the surface of the attachment increased. When keeper and magnet slid laterally for a certain distance or when air gap existed between keeper and magnet, the flux leakage increased in comparison with that under closed-field circuit. Under the standard closed-field circuit, the two types of magnetic attachments achieved the largest retentive forces. The retentive forces of MD800 and EX600 magnetic attachments under the standard closed-field circuit were 6.20 N and 4.80 N respectively. The retentive forces decreased with the sliding distance or with the increase of air gap

  4. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms.

    PubMed

    Wu, Xiaojing; Clavaguera, Carine; Lagardère, Louis; Piquemal, Jean-Philip; de la Lande, Aurélien

    2018-05-08

    We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H 2 O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.

  5. Cluster evolution during the early stages of heating explosives and its relationship to sensitivity: a comparative study of TATB, β-HMX and PETN by molecular reactive force field simulations.

    PubMed

    Wen, Yushi; Zhang, Chaoyang; Xue, Xianggui; Long, Xinping

    2015-05-14

    Clustering is experimentally and theoretically verified during the complicated processes involved in heating high explosives, and has been thought to influence their detonation properties. However, a detailed description of the clustering that occurs has not been fully elucidated. We used molecular dynamic simulations with an improved reactive force field, ReaxFF_lg, to carry out a comparative study of cluster evolution during the early stages of heating for three representative explosives: 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), β-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and pentaerythritol tetranitrate (PETN). These representatives vary greatly in their oxygen balance (OB), molecular structure, stability and experimental sensitivity. We found that when heated, TATB, HMX and PETN differ in the size, amount, proportion and lifetime of their clusters. We also found that the clustering tendency of explosives decreases as their OB becomes less negative. We propose that the relationship between OB and clustering can be attributed to the role of clustering in detonation. That is, clusters can form more readily in a high explosive with a more negative OB, which retard its energy release, secondary decomposition, further decomposition to final small molecule products and widen its detonation reaction zone. Moreover, we found that the carbon content of the clusters increases during clustering, in accordance with the observed soot, which is mainly composed of carbon as the final product of detonation or deflagration.

  6. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  7. Comparison of the near field/far field model and the advanced reach tool (ART) model V1.5: exposure estimates to benzene during parts washing with mineral spirits.

    PubMed

    LeBlanc, Mallory; Allen, Joseph G; Herrick, Robert F; Stewart, James H

    2018-03-01

    The Advanced Reach Tool V1.5 (ART) is a mathematical model for occupational exposures conceptually based on, but implemented differently than, the "classic" Near Field/Far Field (NF/FF) exposure model. The NF/FF model conceptualizes two distinct exposure "zones"; the near field, within approximately 1m of the breathing zone, and the far field, consisting of the rest of the room in which the exposure occurs. ART has been reported to provide "realistic and reasonable worst case" estimates of the exposure distribution. In this study, benzene exposure during the use of a metal parts washer was modeled using ART V1.5, and compared to actual measured workers samples and to NF/FF model results from three previous studies. Next, the exposure concentrations expected to be exceeded 25%, 10% and 5% of the time for the exposure scenario were calculated using ART. Lastly, ART exposure estimates were compared with and without Bayesian adjustment. The modeled parts washing benzene exposure scenario included distinct tasks, e.g. spraying, brushing, rinsing and soaking/drying. Because ART can directly incorporate specific types of tasks that are part of the exposure scenario, the present analysis identified each task's determinants of exposure and performance time, thus extending the work of the previous three studies where the process of parts washing was modeled as one event. The ART 50th percentile exposure estimate for benzene (0.425ppm) more closely approximated the reported measured mean value of 0.50ppm than the NF/FF model estimates of 0.33ppm, 0.070ppm or 0.2ppm obtained from other modeling studies of this exposure scenario. The ART model with the Bayesian analysis provided the closest estimate to the measured value (0.50ppm). ART (with Bayesian adjustment) was then used to assess the 75th, the 90th and 95th percentile exposures, predicting that on randomly selected days during this parts washing exposure scenario, 25% of the benzene exposures would be above 0.70ppm; 10

  8. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    PubMed

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.

    PubMed

    Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David

    2015-07-14

    In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http

  10. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential

    PubMed Central

    Zhou, Yu-Ping; Jiang, Jin-Wu

    2017-01-01

    While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene. PMID:28349983

  11. Modulation of local field potential power of the subthalamic nucleus during isometric force generation in patients with Parkinson's disease.

    PubMed

    Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L

    2013-06-14

    Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  13. All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins.

    PubMed

    Arnautova, Yelena A; Abagyan, Ruben; Totrov, Maxim

    2015-05-12

    We present an extension of the all-atom internal-coordinate force field, ICMFF, that allows for simulation of heterogeneous systems including hexopyranose saccharides and glycan chains in addition to proteins. A library of standard glycan geometries containing α- and β-anomers of the most common hexapyranoses, i.e., d-galactose, d-glucose, d-mannose, d-xylose, l-fucose, N -acetylglucosamine, N -acetylgalactosamine, sialic, and glucuronic acids, is created based on the analysis of the saccharide structures reported in the Cambridge Structural Database. The new force field parameters include molecular electrostatic potential-derived partial atomic charges and the torsional parameters derived from quantum mechanical data for a collection of minimal molecular fragments and related molecules. The ϕ/ψ torsional parameters for different types of glycosidic linkages are developed using model compounds containing the key atoms in the full carbohydrates, i.e., glycosidic-linked tetrahydropyran-cyclohexane dimers. Target data for parameter optimization include two-dimensional energy surfaces corresponding to the ϕ/ψ glycosidic dihedral angles in the disaccharide analogues, as determined by quantum mechanical MP2/6-31G** single-point energies on HF/6-31G** optimized structures. To achieve better agreement with the observed geometries of glycosidic linkages, the bond angles at the O-linkage atoms are added to the internal variable set and the corresponding bond bending energy term is parametrized using quantum mechanical data. The resulting force field is validated on glycan chains of 1-12 residues from a set of high-resolution X-ray glycoprotein structures based on heavy atom root-mean-square deviations of the lowest-energy glycan conformations generated by the biased probability Monte Carlo (BPMC) molecular mechanics simulations from the native structures. The appropriate BPMC distributions for monosaccharide-monosaccharide and protein-glycan linkages are derived from

  14. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  15. Are Current Atomistic Force Fields Accurate Enough to Study Proteins in Crowded Environments?

    PubMed Central

    Petrov, Drazen; Zagrovic, Bojan

    2014-01-01

    The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD) simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded) and oxidatively damaged (unfolded) forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP) as well as indirectly shown for additional two (AMBER94, OPLS-AAL), and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields may distort the

  16. Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble.

    PubMed

    Gross, Markus; Gambassi, Andrea; Dietrich, S

    2017-08-01

    The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ε=4-d, where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ε and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two ensembles.

  17. Statistical field theory with constraints: Application to critical Casimir forces in the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Gross, Markus; Gambassi, Andrea; Dietrich, S.

    2017-08-01

    The effect of imposing a constraint on a fluctuating scalar order parameter field in a system of finite volume is studied within statistical field theory. The canonical ensemble, corresponding to a fixed total integrated order parameter (e.g., the total number of particles), is obtained as a special case of the theory. A perturbative expansion is developed which allows one to systematically determine the constraint-induced finite-volume corrections to the free energy and to correlation functions. In particular, we focus on the Landau-Ginzburg model in a film geometry (i.e., in a rectangular parallelepiped with a small aspect ratio) with periodic, Dirichlet, or Neumann boundary conditions in the transverse direction and periodic boundary conditions in the remaining, lateral directions. Within the expansion in terms of ɛ =4 -d , where d is the spatial dimension of the bulk, the finite-size contribution to the free energy of the confined system and the associated critical Casimir force are calculated to leading order in ɛ and are compared to the corresponding expressions for an unconstrained (grand canonical) system. The constraint restricts the fluctuations within the system and it accordingly modifies the residual finite-size free energy. The resulting critical Casimir force is shown to depend on whether it is defined by assuming a fixed transverse area or a fixed total volume. In the former case, the constraint is typically found to significantly enhance the attractive character of the force as compared to the grand canonical case. In contrast to the grand canonical Casimir force, which, for supercritical temperatures, vanishes in the limit of thick films, in the canonical case with fixed transverse area the critical Casimir force attains for thick films a negative value for all boundary conditions studied here. Typically, the dependence of the critical Casimir force both on the temperaturelike and on the fieldlike scaling variables is different in the two

  18. 76 FR 67736 - Implementation of Section 2695 (42 U.S.C. 300ff-131) of Public Law 111-87: Infectious Diseases...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... Treatment Extension Act of 2009 (Pub. L. 111-87) addresses notification procedures for medical facilities... describing the manner in which medical facilities should make determinations about exposures. On December 13... Which Medical Facilities Should Make Determinations for Purposes of Section 2695B(d) [42 U.S.C. 300ff...

  19. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  20. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    PubMed Central

    Lantada, Andres Diaz; Bris, Carlos González; Morgado, Pilar Lafont; Maudes, Jesús Sanz

    2012-01-01

    Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient's dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system's operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials. PMID:23112669