Science.gov

Sample records for forced driven disk-ridging

  1. Casimir-force-driven ratchets.

    PubMed

    Emig, T

    2007-04-20

    We explore the nonlinear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are described by Langevin dynamics. Multiple velocity reversals occur as a function of driving, mean surface distance, and effective damping. These transport properties are shown to be stable against weak ambient noise. PMID:17501407

  2. Impact Forces from Tsunami-Driven Debris

    NASA Astrophysics Data System (ADS)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  3. MICROFLARE ACTIVITY DRIVEN BY FORCED MAGNETIC RECONNECTION

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Crockett, P. J.; Keenan, F. P.; Browning, P. K.

    2010-03-20

    High cadence, multiwavelength, optical observations of a solar active region, obtained with the Swedish Solar Telescope, are presented. Two magnetic bright points are seen to separate in opposite directions at a constant velocity of 2.8 km s{sup -1}. After a separation distance of {approx}4400 km is reached, multiple Ellerman bombs are observed in both H{alpha} and Ca-K images. As a result of the Ellerman bombs, periodic velocity perturbations in the vicinity of the magnetic neutral line, derived from simultaneous Michelson Doppler Imager data, are generated with amplitude {+-}6 km s{sup -1} and wavelength {approx}1000 km. The velocity oscillations are followed by an impulsive brightening visible in H{alpha} and Ca-K, with a peak intensity enhancement of 63%. We interpret these velocity perturbations as the magnetic field deformation necessary to trigger forced reconnection. A time delay of {approx}3 minutes between the H{alpha}-wing and Ca-K observations indicates that the observed magnetic reconnection occurs at a height of {approx}200 km above the solar surface. These observations are consistent with theoretical predictions and provide the first observational evidence of microflare activity driven by forced magnetic reconnection.

  4. Data Driven, Force Based Interaction for Quadrotors

    NASA Astrophysics Data System (ADS)

    McKinnon, Christopher D.

    Quadrotors are small and agile, and are becoming more capable for their compact size. They are expected perform a wide variety of tasks including inspection, physical interaction, and formation flight. In all of these tasks, the quadrotors can come into close proximity with infrastructure or other quadrotors, and may experience significant external forces and torques. Reacting properly in each case is essential to completing the task safely and effectively. In this thesis, we develop an algorithm, based on the Unscented Kalman Filter, to estimate such forces and torques without making assumptions about the source of the forces and torques. We then show in experiment how the proposed estimation algorithm can be used in conjunction with controls and machine learning to choose the appropriate actions in a wide variety of tasks including detecting downwash, tracking the wind induced by a fan, and detecting proximity to the wall.

  5. A measurable force driven by an excitonic condensate

    SciTech Connect

    Hakioğlu, T.; Özgün, Ege; Günay, Mehmet

    2014-04-21

    Free energy signatures related to the measurement of an emergent force (≈10{sup −9}N) due to the exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between two perfect metallic plates, but also distinctively different from it by its driving mechanism and dependence on the parameters of the condensate. The proposed experiments are based on a recent experimental work on a driven micromechanical oscillator. Conclusive observations of EC in recent experiments also provide a strong promise for the observation of the EC-force.

  6. Note: A novel piezoelectrically driven pipette using centrifugal force

    NASA Astrophysics Data System (ADS)

    Deng, Zhi Sen; Ma, Yu Ting; Feng, Zhi Hua

    2014-05-01

    This paper proposes a novel piezoelectrically driven pipette, which utilizes centrifugal force in swing motion of a vibrating tube as the driving force, to input and output liquid at first bending resonant frequency. Control circuit capable of frequency tracking is designed. Pulse volume changing with different driving voltage amplitude, driving frequency, tip size, and target reagents are studied in experiments. The output pulse volume of a prototype pipette driven by voltage of 560 Vpp at 175.9 Hz is 43.2 μl with a variation of ±3.5%. Minimum water spots of 3 μl can be deposited in this manner. This pipette represents an alternative to standard liquid transfer techniques in chemical or biological experiments.

  7. Note: A novel piezoelectrically driven pipette using centrifugal force.

    PubMed

    Deng, Zhi Sen; Ma, Yu Ting; Feng, Zhi Hua

    2014-05-01

    This paper proposes a novel piezoelectrically driven pipette, which utilizes centrifugal force in swing motion of a vibrating tube as the driving force, to input and output liquid at first bending resonant frequency. Control circuit capable of frequency tracking is designed. Pulse volume changing with different driving voltage amplitude, driving frequency, tip size, and target reagents are studied in experiments. The output pulse volume of a prototype pipette driven by voltage of 560 V(pp) at 175.9 Hz is 43.2 μl with a variation of ±3.5%. Minimum water spots of 3 μl can be deposited in this manner. This pipette represents an alternative to standard liquid transfer techniques in chemical or biological experiments. PMID:24880431

  8. Electron Force Balance in Steady Collisionless-Driven Reconnection

    SciTech Connect

    Li Bin; Horiuchi, Ritoku

    2008-11-21

    Steady collisionless-driven reconnection in an open system is investigated by means of full-particle simulations. A long thin electron current sheet extends towards the outflow direction when the system relaxes to a steady state. Although the pressure tensor term along the reconnection electric field contributes to the violation of the electron frozen-in condition, a new force balance in the inflow direction is realized between the Lorentz and electrostatic forces, which is quite different from that in Harris equilibrium. The strong electrostatic field is generated through the combined effect of the Hall term and a driving inflow. This new force balance is more evident in the three-dimensional case due to the growth of an instability along the reconnection electric field. It is also found that the normalized charge density is in proportion to the square of the electron Alfven velocity averaged over the electron dissipation region.

  9. Force-Driven Polymerization and Turgor-Induced Wall Expansion.

    PubMed

    Ali, Olivier; Traas, Jan

    2016-05-01

    While many molecular players involved in growth control have been identified in the past decades, it is often unknown how they mechanistically act to induce specific shape changes during development. Plant morphogenesis results from the turgor-induced yielding of the extracellular and load-bearing cell wall. Its mechanochemical equilibrium appears as a fundamental link between molecular growth regulation and the effective shape evolution of the tissue. We focus here on force-driven polymerization of the cell wall as a central process in growth control. We propose that mechanical forces facilitate the insertion of wall components, in particular pectins, a process that can be modulated through genetic regulation. We formalize this idea in a mathematical model, which we subsequently test with published experimental results. PMID:26895732

  10. Depletion force induced collective motion of microtubules driven by kinesin

    NASA Astrophysics Data System (ADS)

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-10-01

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being

  11. Depletion force induced collective motion of microtubules driven by kinesin.

    PubMed

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-11-21

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. PMID:26260025

  12. Kinetic theory of a confined polymer driven by an external force and pressure-driven flow

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Usta, O. Berk; Kekre, Rahul; Ladd, Anthony J. C.

    2007-11-01

    Kinetic theory is used to investigate the mechanisms causing cross-stream migration of confined polymers and polyelectrolytes under the influence of external forces and flow fields. Numerical simulations and experiments have demonstrated that confined polymers migrate towards the center of the channel in response to both external forces and uniaxial flows. Yet, migration towards the walls has been observed with combinations of external force and flow. In this paper, the kinetic theory for an elastic dumbbell developed by Ma and Graham [Phys. Fluids 17, 083103 (2005)] has been extended to account for the effects of an external force. Further modifications account for counterion screening within a Debye-Hückel approximation. This enables qualitative comparison with experimental results [Zheng and Yeung, Anal. Chem. 75, 3675 (2003)] on DNA migration under combined electric and pressure-driven flow fields. The comparison supports the contention [Long et al., Phys. Rev. Lett. 76, 3858 (1996)] that the hydrodynamic interactions in polyelectrolytes decay algebraically, as 1/r3, rather than exponentially. The theory qualitatively reproduces results of both simulations and experiments for the migration of neutral polymers and polyelectrolytes. Concentration profiles similar to those found in numerical simulations are observed, but the Peclet numbers differ by factors of 2-3.

  13. Proposal of interferometric display device driven by electrostatic force

    NASA Astrophysics Data System (ADS)

    Hatsuzawa, Takeshi; Hayase, Masanori; Oguchi, Toshiaki

    2001-10-01

    A new display device based on a micro-Fizeau interferometer (IDD: Interferometric Display Device) is proposed and trially manufactured. The mirror is suspended by leaf-springs so that it may move vertically when driven by a dc voltage - electrostatic force. The optical path difference between the half mirror and the bottom substrate is adjusted by the voltage, resulting in the optical interference. Contrast in the IDD can be changed by the voltage, and color can be displayed in the case of white light source. A 300micrometer-square half mirror made of SiO2 and Si substrate electrode/mirror is used for the construction of the IDD. A 4 by 4 array of the IDD is fabricated by using a bonding technique. An interferometric pattern in observed at a driving voltage of 200V dc. The frequency response of the device is confirmed more than 100Hz. The display quality is not sufficient at present because of the deformation of the half-mirror, however, it has a potential for lower driving energy and higher intensity of the pixels.

  14. An Antarctic Circumpolar Current driven by surface buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Hogg, Andrew McC.

    2010-12-01

    Simulations of an idealised, but eddy-resolving, channel model of the Antarctic Circumpolar Current (ACC) are used to investigate the sensitivity of ACC transport to wind and surface buoyancy forcing. The results are consistent with theoretical predictions of the eddy-saturated limit, where transport is independent of wind stress. In this parameter regime, buoyancy forcing provides the primary control over ACC transport.

  15. Control of force through feedback in small driven systems.

    PubMed

    Dieterich, E; Camunas-Soler, J; Ribezzi-Crivellari, M; Seifert, U; Ritort, F

    2016-07-01

    Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force. PMID:27575077

  16. Control of force through feedback in small driven systems

    NASA Astrophysics Data System (ADS)

    Dieterich, E.; Camunas-Soler, J.; Ribezzi-Crivellari, M.; Seifert, U.; Ritort, F.

    2016-07-01

    Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force.

  17. Force-Driven Separation of Short Double-Stranded DNA

    PubMed Central

    Ho, Dominik; Zimmermann, Julia L.; Dehmelt, Florian A.; Steinbach, Uta; Erdmann, Matthias; Severin, Philip; Falter, Katja; Gaub, Hermann E.

    2009-01-01

    Abstract Short double-stranded DNA is used in a variety of nanotechnological applications, and for many of them, it is important to know for which forces and which force loading rates the DNA duplex remains stable. In this work, we develop a theoretical model that describes the force-dependent dissociation rate for DNA duplexes tens of basepairs long under tension along their axes (“shear geometry”). Explicitly, we set up a three-state equilibrium model and apply the canonical transition state theory to calculate the kinetic rates for strand unpairing and the rupture-force distribution as a function of the separation velocity of the end-to-end distance. Theory is in excellent agreement with actual single-molecule force spectroscopy results and even allows for the prediction of the rupture-force distribution for a given DNA duplex sequence and separation velocity. We further show that for describing double-stranded DNA separation kinetics, our model is a significant refinement of the conventionally used Bell-Evans model. PMID:20006953

  18. Force Model for Control of Tendon Driven Hands

    NASA Technical Reports Server (NTRS)

    Pena, Edward; Thompson, David E.

    1997-01-01

    Knowing the tendon forces generated for a given task such as grasping via a model, an artificial hand can be controlled. A two-dimensional force model for the index finger was developed. This system is assumed to be in static equilibrium, therefore, the equations of equilibrium were applied at each joint. Constraint equations describing the tendon branch connectivity were used. Gaussian elimination was used to solve for the unknowns of the Linear system. Results from initial work on estimating tendon forces in post-operative hands during active motion therapy were discussed. The results are important for understanding the effects of hand position on tendon tension, elastic effects on tendon tension, and overall functional anatomy of the hand.

  19. CDW-Exciton Condensate Competition and a Condensate Driven Force

    NASA Astrophysics Data System (ADS)

    Özgün, Ege; Hakioğlu, Tuğrul

    2016-08-01

    We examine the competition between the charge-density wave (CDW) instability and the excitonic condensate (EC) in spatially separated layers of electrons and holes. The CDW and the EC order parameters (OPs), described by two different mechanisms and hence two different transition temperatures TcCDW and TcEC, are self-consistently coupled by a microscopic mean field theory. We discuss the results in our model specifically focusing on the transition-metal dichalcogenides which are considered as the most typical examples of strongly coupled CDW/EC systems with atomic layer separations where the electronic energy scales are large with the critical temperatures in the range TcEC ˜ TcCDW ˜ 100-200 K. An important consequence of this is that the excitonic energy gap, hence the condensed free energy, vary with the layer separation resulting in a new type of force FEC. We discuss the possibility of this force as the possible driver of the structural lattice deformation observed in some TMDCs with a particular attention on the 1T-TiSe2 below 200 K.

  20. Molecular Self-Assembly Driven by London Dispersion Forces

    SciTech Connect

    Li, Guo; Cooper, Valentino R; Cho, Jun-Hyung; Du, Shixuan; Gao, Hongjun; Zhang, Zhenyu

    2011-01-01

    The nature and strength of intermolecular interactions are crucial to a variety of kinetic and dynamic processes at surfaces. Whereas strong chemisorption bonds are known to facilitate molecular binding, the importance of the weaker yet ubiquitous van der Waals (vdW) interactions remains elusive in most cases. Here we use first-principles calculations combined with kinetic Monte Carlo simulations to unambiguously demonstrate the vital role that vdW interactions play in molecular self-assembly, using styrene nanowire growth on silicon as a prototypical example. We find that, only when the London dispersion forces are included, accounting for the attractive parts of vdW interactions, can the effective intermolecular interaction be reversed from being repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular structures. The present study represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.

  1. Cold ablation driven by localized forces in alkali halides.

    PubMed

    Hada, Masaki; Zhang, Dongfang; Pichugin, Kostyantyn; Hirscht, Julian; Kochman, Michał A; Hayes, Stuart A; Manz, Stephanie; Gengler, Regis Y N; Wann, Derek A; Seki, Toshio; Moriena, Gustavo; Morrison, Carole A; Matsuo, Jiro; Sciaini, Germán; Miller, R J Dwayne

    2014-01-01

    Laser ablation has been widely used for a variety of applications. Since the mechanisms for ablation are strongly dependent on the photoexcitation level, so called cold material processing has relied on the use of high-peak-power laser fluences for which nonthermal processes become dominant; often reaching the universal threshold for plasma formation of ~1 J cm(-2) in most solids. Here we show single-shot time-resolved femtosecond electron diffraction, femtosecond optical reflectivity and ion detection experiments to study the evolution of the ablation process that follows femtosecond 400 nm laser excitation in crystalline sodium chloride, caesium iodide and potassium iodide. The phenomenon in this class of materials occurs well below the threshold for plasma formation and even below the melting point. The results reveal fast electronic and localized structural changes that lead to the ejection of particulates and the formation of micron-deep craters, reflecting the very nature of the strong repulsive forces at play. PMID:24835317

  2. Parallel RF force driven by the inhomogeneity of power absorption in magnetized plasma.

    PubMed

    Gao, Zhe; Chen, Jiale; Fisch, Nathaniel J

    2013-06-01

    A nonlinear parallel force can be exerted through the inhomogeneity of rf resonant absorption in a magnetized plasma. While providing no integrated force over a plasma volume, this force can redistribute momentum parallel to the magnetic field. Because flows and currents parallel to the magnetic field encounter different resistances, this redistribution can play a large role, in addition to the role played by the direct absorption of parallel momentum. For nearly perpendicular propagating waves in a tokamak plasma, this additional force is expected to affect significantly the toroidal rf-driven current and the toroidal flow drive. PMID:25167505

  3. A silicon-nanowire memory driven by optical gradient force induced bistability

    NASA Astrophysics Data System (ADS)

    Dong, B.; Cai, H.; Chin, L. K.; Huang, J. G.; Yang, Z. C.; Gu, Y. D.; Ng, G. I.; Ser, W.; Kwong, D. L.; Liu, A. Q.

    2015-12-01

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states ("0" and "1") and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  4. A silicon-nanowire memory driven by optical gradient force induced bistability

    SciTech Connect

    Dong, B.; Cai, H. Gu, Y. D.; Kwong, D. L.; Chin, L. K.; Ng, G. I.; Ser, W.; Huang, J. G.; Yang, Z. C.; Liu, A. Q.

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  5. Tornado-like flows driven by magnetic body forces

    NASA Astrophysics Data System (ADS)

    Gerbeth, Gunter; Grants, Ilmars; Vogt, Tobias; Eckert, Sven

    2014-11-01

    Alternating magnetic fields produce well-defined flow-independent body forces in electrically conducting media. This property is used to construct a laboratory analogue of the Fiedler chamber with a room-temperature liquid metal as working fluid. A continuously applied rotating magnetic field (RMF) provides the source of the angular momentum. A pulse of a much stronger travelling magnetic field drives a converging flow at the metal surface, which focuses this angular momentum towards the axis of the container. The resulting vortex is studied experimentally and numerically. In a certain range of the ratio of both driving actions the axial velocity changes its direction in the vortex core, resembling the subsidence in an eye of a tropical cyclone or a large tornado. During the initial deterministic spin-up stage the vortex is well described by axisymmetric direct numerical simulation. Being strong enough the flow develops a funnel-shaped surface depression that enables visual observation of the vortex structure. As the RMF strength is increased the eyewall diameter grows until it breaks down to multiple vortices. A number of further observed similarities to tornado-like vortices will be discussed. The work is supported by the German Helmholtz Association in frame of the LIMTECH alliance.

  6. Microcontroller-driven fluid-injection system for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kasas, S.; Alonso, L.; Jacquet, P.; Adamcik, J.; Haeberli, C.; Dietler, G.

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  7. Minimum detectable change for knee joint contact force estimates using an EMG-driven model

    PubMed Central

    Gardinier, Emily S.; Manal, Kurt; Buchanan, Thomas S.; Snyder-Mackler, Lynn

    2013-01-01

    Adequate test–retest reliability of model estimates is a necessary precursor to examining treatment effects or longitudinal changes in individuals. Purpose The purpose of this study was to establish thresholds for minimal detectable change (MDC) for joint contact forces obtained using a patient specific EMG-driven musculoskeletal model of the knee. Design A sample of young, active individuals was selected for this study, and subjects were tested on 2 separate days. Three-dimensional motion analysis with electromyography (EMG) was used to obtain data from each subject during gait for model input. An EMG-driven modeling approach was used to estimate joint contact forces at each session. Results MDC’s for contact force variables ranged from 0.30 to 0.66 BW. The lowest MDC was for peak medial compartment force (0.30 BW) and the highest was for peak tibiofemoral contact force (0.66 BW). Test–retest reliability coefficients were also reported for comparison with previous work. Conclusions Using the present model, changes in joint contact forces between baseline and subsequent measurements that are greater than these MDCs are greater than typical day-to-day variation and can be identified as real change. PMID:23601782

  8. Long-Range Force Transmission in Fibrous Matrices Enabled by Tension-Driven Alignment of Fibers

    PubMed Central

    Wang, Hailong; Abhilash, A.S.; Chen, Christopher S.; Wells, Rebecca G.; Shenoy, Vivek B.

    2014-01-01

    Cells can sense and respond to mechanical signals over relatively long distances across fibrous extracellular matrices. Recently proposed models suggest that long-range force transmission can be attributed to the nonlinear elasticity or fibrous nature of collagen matrices, yet the mechanism whereby fibers align remains unknown. Moreover, cell shape and anisotropy of cellular contraction are not considered in existing models, although recent experiments have shown that they play crucial roles. Here, we explore all of the key factors that influence long-range force transmission in cell-populated collagen matrices: alignment of collagen fibers, responses to applied force, strain stiffening properties of the aligned fibers, aspect ratios of the cells, and the polarization of cellular contraction. A constitutive law accounting for mechanically driven collagen fiber reorientation is proposed. We systematically investigate the range of collagen-fiber alignment using both finite-element simulations and analytical calculations. Our results show that tension-driven collagen-fiber alignment plays a crucial role in force transmission. Small critical stretch for fiber alignment, large fiber stiffness and fiber strain-hardening behavior enable long-range interaction. Furthermore, the range of collagen-fiber alignment for elliptical cells with polarized contraction is much larger than that for spherical cells with diagonal contraction. A phase diagram showing the range of force transmission as a function of cell shape and polarization and matrix properties is presented. Our results are in good agreement with recent experiments, and highlight the factors that influence long-range force transmission, in particular tension-driven alignment of fibers. Our work has important relevance to biological processes including development, cancer metastasis, and wound healing, suggesting conditions whereby cells communicate over long distances. PMID:25468338

  9. Intense Flows Driven by Mechanical Forcing in Non-axisymmetric Containers

    NASA Astrophysics Data System (ADS)

    Grannan, A. M.; Le Bars, M.; Aurnou, J. M.

    2014-12-01

    Here we present laboratory experimental results that simulate two geophysically relevant mechanical forcings that can drive intense fluid motions in the interior fluid layer of non-axisymmetric containers; libration and tidal distortions. Longitudinal libration refers to the small periodic oscillations of a satellite's mean rotation rate as it orbits a primary body and is replicated using an oscillating hard acrylic ellipsoid. Tidal forcing refers to the rotating gravitational distortion of a body in orbit and is replicated using a deformable silicone sphere. We use a particle image velocimetry (PIV) technique to measure the 2D velocity field in the nearly equatorial plane over hundreds of librational and tidal cycles. First, while the theoretical base flow for each mechanism is nearly identical, we verify the base flow induced by the tidal distortion and a time-averaged zonal flow that scales as the square of the tidal forcing and is expected to be small in planets. Additionally, for a fixed tidal distortion, a polar vortex first identified by Suess (1970) is re-examined that may drive an intense vortex at planetary settings. Second, we investigate the characteristics of turbulence in the bulk fluid layer generated via an elliptical instability of librational and tidal forcing. An elliptic instability is the triadic resonance of two inertial modes whose non-dimensional frequencies are between [-2-2] with the mechanically induced base flow. This is called libration driven elliptical instability (LDEI) and tidal driven elliptical instability (TDEI) respectively. We characterize the evolution of the turbulent flow that displays either intermittent large cycles of growth and decay or smaller cycles of saturation while also investigating the cascade of energy inside the inertial mode frequency regime. The existence of these types of intense flows may play an important in understanding the thermal evolution and magnetic field generation in bodies subject to mechanical

  10. The response of subsurface oceans in icy satellites to tidally driven forcing

    NASA Astrophysics Data System (ADS)

    Chen, E. M.; Glatzmaier, G. A.; Nimmo, F.

    2009-12-01

    Observations from the Galileo and Cassini spacecraft suggest that subsurface global water oceans are likely present on multiple icy satellites of Jupiter and Saturn. However, the dynamics of these oceans, under the influence of a time-varying tidal potential and buoyancy and coriolis forces, have not been investigated in detail. We have investigated the large scale ocean flow in two ways. First, we simulate the 3-D global circulation of the subsurface oceans on Europa and Titan driven primarily by a time-varying tidal potential and secondarily by heating at the base of the ocean. Second, we analyze the behavior of tidally-forced subsurface oceans in two-dimensions using quasi-nonlinear shallow water theory. These approaches allow us to predict potentially observable effects, in particular non-synchronous rotation of the ice shell driven by ocean torques and spatial variations in the heat flow supplied to the base of the ice shell, and magnetic induction effects due to the ocean circulation. Time-series analyses suggest that the ocean responds primarily at the tidal frequency; however, there are responses at lower frequencies as well. Preliminary results of full 3-D simulations will be presented, and comparisons will be made to the forced shallow water model.

  11. A fluctuation theorem for non-equilibrium relaxational systems driven by external forces

    NASA Astrophysics Data System (ADS)

    Zamponi, Francesco; Bonetto, Federico; Cugliandolo, Leticia F.; Kurchan, Jorge

    2005-09-01

    We discuss an extension of the fluctuation theorem to stochastic models that, in the limit of zero external drive, are not able to equilibrate with their environment, extending earlier results of Sellitto. We show that if the entropy production rate is suitably defined, its probability distribution function verifies the fluctuation relation with the ambient temperature replaced by a (frequency dependent) effective temperature. We derive modified Green-Kubo relations. We illustrate these results with the simple example of an oscillator coupled to a non-equilibrium bath driven by an external force. We discuss the relevance of our results for driven glasses and the diffusion of Brownian particles in out-of-equilibrium media and propose a concrete experimental strategy for measuring the low frequency value of the effective temperature using the fluctuations of the work done by an ac conservative field. We compare our results to related ones that appeared in the literature recently.

  12. Transmission of Force Sensations by Hand of Multi-DOF Master-Slave Robot Using Tendon-Driven Mechanism

    NASA Astrophysics Data System (ADS)

    Nozaki, Takahiro; Suzuki, Yusuke; Ohnishi, Kouhei

    In this study, a bilateral control system for tendon-driven robots is proposed. The rotation angle and torque of the robot joints are controlled by the proposed control system. In addition, a tendon-driven robot hand for haptic applications is developed. The proposed control system is employed by the robot hand to transmit force sensations.

  13. An opto-mechanical coupled-ring reflector driven by optical force for lasing wavelength control

    NASA Astrophysics Data System (ADS)

    Ren, M.; Cai, H.; Chin, L. K.; Huang, J. G.; Gu, Y. D.; Radhakrishnan, K.; Ser, W.; Liu, A. Q.

    2016-02-01

    In this paper, an opto-mechanical coupled-ring reflector driven by optical gradient force is applied in an external-cavity tunable laser. A pair of mutually coupled ring resonators with a free-standing arc serves as a movable reflector. It obtains a 13.3-nm wavelength tuning range based on an opto-mechanical lasing-wavelength tuning coefficient of 127 GHz/nm. The potential applications include optical network, on-chip optical trapping, sensing, and biology detection.

  14. The effect of power-law body forces on a thermally driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  15. The effect of power law body forces on a thermally-driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  16. Influence of radiation reaction force on ultraintense laser-driven ion acceleration.

    PubMed

    Capdessus, R; McKenna, P

    2015-05-01

    The role of the radiation reaction force in ultraintense laser-driven ion acceleration is investigated. For laser intensities ∼10(23)W/cm(2), the action of this force on electrons is demonstrated in relativistic particle-in-cell simulations to significantly enhance the energy transfer to ions in relativistically transparent targets, but strongly reduce the ion energy in dense plasma targets. An expression is derived for the revised piston velocity, and hence ion energy, taking account of energy loses to synchrotron radiation generated by electrons accelerated in the laser field. Ion mass is demonstrated to be important by comparing results obtained with proton and deuteron plasma. The results can be verified in experiments with cryogenic hydrogen and deuterium targets. PMID:26066270

  17. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  18. A radiation-driven stellar wind model with a line force cutoff

    NASA Technical Reports Server (NTRS)

    Abbott, Mark J.; Friend, David B.

    1989-01-01

    This paper presents a model for a radiation-driven stellar wind in which the driving force is abruptly cut off at an adjustable distance from the star. The model is intended to give a first approximation of the effects of ionizing shocks in a stellar wind on the terminal velocity and mass-loss rate. As expected, the wind velocity is found to decrease after the line force is cut off. The terminal velocity depends directly on the velocity of the wind at the point where the driving force is cut off. The mass-loss rate is found to be unaffected as long as the cutoff is outside the critical point of the flow. The model is applied to the star Tau Sco, a strong X-ray source with an anomalously low terminal velocity. It is shown that this low terminal velocity can be caused by a cutoff of the line force at a distance which is consistent with the idea that the observed X-rate emission is produced by shocks in the wind.

  19. Characterizing local forces and rearrangements inside a gravity-driven granular flow

    NASA Astrophysics Data System (ADS)

    Thackray, Emma; Nordstrom, Kerstin

    While the gravity-driven flow of a granular material in a silo geometry can be modeled by the Beverloo equation, the mesoscale-level particle rearrangements and interactions that drive this flow are not well-understood. We have constructed a quasi-two-dimensional system of bidisperse, millimeter-scale disks with photoelastic properties that make force networks within the material visible. The system is contained in an acrylic box with an adjustable bottom opening. We can approach the clogging transition by adjusting this opening and by adding external forcing to the top of the flowing pile. By placing the system between cross-polarizers, we can obtain high-speed video of this system during flow, and extract intensity signals that can be used to identify and quantify localized, otherwise indeterminate forces. We can simultaneously track individual particle motions, which can be used to identify shear transformation zones in the system. We are therefore able to correlate local forces with rearrangements within the system, and characterize the evolution of this interplay on the approach to the clogging transition.

  20. Modeling the mechanics of cells in the cell-spreading process driven by traction forces

    NASA Astrophysics Data System (ADS)

    Fang, Yuqiang; Lai, King W. C.

    2016-04-01

    Mechanical properties of cells and their mechanical interaction with the extracellular environments are main factors influencing cellular function, thus indicating the progression of cells in different disease states. By considering the mechanical interactions between cell adhesion molecules and the extracellular environment, we developed a cell mechanical model that can characterize the mechanical changes in cells during cell spreading. A cell model was established that consisted of various main subcellular components, including cortical cytoskeleton, nuclear envelope, actin filaments, intermediate filaments, and microtubules. We demonstrated the structural changes in subcellular components and the changes in spreading areas during cell spreading driven by traction forces. The simulation of nanoindentation tests was conducted by integrating the indenting force to the cell model. The force-indentation curve of the cells at different spreading states was simulated, and the results showed that cell stiffness increased with increasing traction forces, which were consistent with the experimental results. The proposed cell mechanical model provides a strategy to investigate the mechanical interactions of cells with the extracellular environments through the adhesion molecules and to reveal the cell mechanical properties at the subcellular level as cells shift from the suspended state to the adherent state.

  1. Forces and moments within layers of driven tearing modes with sheared rotation

    NASA Astrophysics Data System (ADS)

    Cole, A. J.; Finn, J. M.; Hegna, C. C.; Terry, P. W.

    2015-10-01

    For driven low amplitude tearing modes in a plasma with sheared rotation, forces on tearing layers due to Maxwell and Reynolds stresses are calculated. First moments about the center of the tearing layer, also due to Maxwell and Reynolds stresses, are also calculated. The forces tend to cause the tearing mode to lock to the phase of the driving perturbation, and the moments determine the evolution of the rotation shear within the layer. These forces and moments are calculated for two constant-ψ regimes of tearing modes, namely, the viscoresistive (VR) regime and the resistive-inertial (RI) regime, and an ordering in terms of the constant-ψ small parameter ɛ ˜δΔ is introduced, with the velocity shear ordered as ˜ɛ . Here, δ is the layer width and Δ the logarithmic jump in the derivative of the flux function across the layer. The forces and first moments are reported to the lowest nonvanishing order in ɛ. The Reynolds moment is analogous to the effect that can drive zonal flows in other contexts. The treatment of the tearing layers is by means of variational principles using Padé approximants (A. J. Cole and J. M. Finn, Phys. Plasmas 21, 032508 (2014)). The usual result for the Maxwell force without rotation shear is recovered for both regimes. That is, the correction due to velocity shear is small; also, the lowest order contribution to the Reynolds force is zero. In the VR regime, we find no first moments up to second order in the constant-ψ parameter. In the RI regime, we find Nm is zero to at least order ɛ3 /2 . In the RI regime, the Reynolds moment Nr is found to be of order ɛ3 /2 and is proportional to minus the rotation shear in the layer; it thus tends to damp out any velocity shear across the layer.

  2. Global mountain snow and ice loss driven by dust and black carbon radiative forcing

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2014-12-01

    Changes in mountain snow and glaciers have been our strongest indicators of the effects of changing climate. Earlier melt of snow and losses of glacier mass have perturbed regional water cycling, regional climate, and ecosystem dynamics, and contributed strongly to sea level rise. Recent studies however have revealed that in some regions, the reduction of albedo by light absorbing impurities in snow and ice such as dust and black carbon can be distinctly more powerful than regional warming at melting snow and ice. In the Rocky Mountains, dust deposition has increased 5 to 7 fold in the last 150 years, leading to ~3 weeks earlier loss of snow cover from forced melt. In absolute terms, in some years dust radiative forcing there can shorten snow cover duration by nearly two months. Remote sensing retrievals are beginning to reveal powerful dust and black carbon radiative forcing in the Hindu Kush through Himalaya. In light of recent ice cores that show pronounced increases in loading of dust and BC during the Anthropocene, these forcings may have contributed far more to glacier retreat than previously thought. For example, we have shown that the paradoxical end of the Little Ice Age in the European Alps beginning around 1850 (when glaciers began to retreat but temperatures continued to decline and precipitation was unchanged) very likely was driven by the massive increases in deposition to snow and ice of black carbon from industrialization in surrounding nations. A more robust understanding of changes in mountain snow and ice during the Anthropocene requires that we move past simplistic treatments (e.g. temperature-index modeling) to energy balance approaches that assess changes in the individual forcings such as the most powerful component for melt - net solar radiation. Remote sensing retrievals from imaging spectrometers and multispectral sensors are giving us more powerful insights into the time-space variation of snow and ice albedo.

  3. Turbulent Flows Driven by the Mechanical Forcing of an Ellipsoidal Container

    NASA Astrophysics Data System (ADS)

    Favier, Benjamin; Le Bars, Michael; Grannan, Alexander; Ribeiro, Adolfo; Aurnou, Jonathan; Irphe Team; Spinlab Team

    2015-11-01

    We present a combination of laboratory experiments and numerical simulations modelling geophysically relevant mechanical forcings. Libration and tides correspond to the periodic perturbation of a body's rotation rate and shape, and are both due to gravitational interactions with orbiting companions. Such mechanical forcings can convey a fraction of the rotational energy available and generate intense turbulence in the fluid interior of satellites and planets. We investigate the fluid motions inside a librating or tidally deformed triaxial ellipsoidal container filled with an incompressible fluid. In both cases, the turbulent flow is driven by the elliptic instability which is a triadic resonance between two inertial modes and the base flow. We characterize the transition to turbulence as triadic resonances develop while also investigating both intermittent and sustained regimes. It is shown that the flow is largely independent of the properties of the mechanical forcing, hinting at a possible universal behaviour of the saturated elliptical instability. The existence of such intense flows may play an important role in understanding the thermal and magnetic evolution of celestial bodies. This work was funded by the French Agence Nationale pour la Recherche and the National Science Foundation Geophysics Program.

  4. Robust Operation of Tendon-Driven Robot Fingers Using Force and Position-Based Control Laws

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E (Inventor); Platt, Jr., Robert J. (Inventor); Reiland, Matthew J (Inventor); Hargrave, Brian (Inventor); Diftler, Myron A (Inventor); Strawser, Philip A (Inventor); Ihrke, Chris A. (Inventor)

    2013-01-01

    A robotic system includes a tendon-driven finger and a control system. The system controls the finger via a force-based control law when a tension sensor is available, and via a position-based control law when a sensor is not available. Multiple tendons may each have a corresponding sensor. The system selectively injects a compliance value into the position-based control law when only some sensors are available. A control system includes a host machine and a non-transitory computer-readable medium having a control process, which is executed by the host machine to control the finger via the force- or position-based control law. A method for controlling the finger includes determining the availability of a tension sensor(s), and selectively controlling the finger, using the control system, via the force or position-based control law. The position control law allows the control system to resist disturbances while nominally maintaining the initial state of internal tendon tensions.

  5. Atomic-scale motor driven by the current-induced forces

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chang; Hsu, Bailey C.; Tseng, Allen

    2012-02-01

    From first-principles approaches, we investigate the current-induced forces in an asymmetric molecular junction using Hellmann-Feynman type theorem in the framework of density functional theory in scattering approaches. We observe that it is possible to construct atomic-scale systems where the current-induced forces can be used to rotate the atoms. As an example, we consider a junction formed by the benzene molecule which directly connected to the Pt electrodes, where the benzene molecule is highly tilted. The highly tilted benzene molecule causes the streamline flow of the current to curve considerably to one side of the benzene ring. This could cause a net torque due to the unbalanced current-induced forces, which tend to rotate the benzene molecule in a manner similar to a stream of water rotates a waterwheel. Thus, the highly asymmetric single molecule junctions offer the atomic-scale systems to explore the possibility of nano-motors driven by non-equilibrium electron transport. The authors thank National Science Council (Taiwan) for support under Grant NSC 100-2112-M-012-MY3

  6. Numerical investigations of the force experienced by a wall subject to granular lid-driven flows: regimes and scaling of the mean force

    NASA Astrophysics Data System (ADS)

    Kneib, François; Faug, Thierry; Dufour, Frédéric; Naaim, Mohamed

    2016-07-01

    Discrete element simulations are used to model a two-dimensional gravity-free granular sample, which is trapped between two smooth sidewalls and one bottom rough wall while being subject to a constant shearing velocity at the top under a given confinement pressure. This system, inspired by conventional fluid mechanics, is called a granular lid-driven cavity. Attention is firstly paid to the time-averaged dynamics of the grains once a steady-state is reached. Strong spatial heterogeneities associated with a large-scale vortex formed within the whole volume of the lid-driven cavity are observed. The mean steady force on the sidewall facing the shearing velocity is then investigated in detail for different cavity lengths, shearing velocities and confinement pressures at the top. The ratio of the force on the latter wall to the top confinement pressure force is not constant but depends on both the shearing velocity and the confinement pressure. Above a critical value of the cavity length relative to the wall height and over a wide range of both shearing velocity and top confinement pressure, all data merge into a one-to-one relation between the mean force scaled by the top pressure force and the macroscopic inertial number of the lid-driven cavity. This result reveals the key role played by the inertial rheology of the granular material in the granular force transmission.

  7. Stochastic Forcing of the North Atlantic Wind-Driven Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Chhak, K. C.; Moore, A. M.; Milliff, R. F.; Branstator, G.; Holland, W. R.; Fisher, M.

    2004-12-01

    At midlatitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that associated with the seasonal cycle. Stochastic forcing is therefore likely to have a significant influence on the ocean circulation. In this work, we examine the influence of the stochastic component of the wind stress forcing on the large-scale, wind-driven circulation of the North Atlantic Ocean. To this end a quasi-geostrophic model of the North Atlantic was forced with estimates of the stochastic component of wind stress curl obtained from the NCAR Community Climate Model. Analysis reveals that much of the stochastically-induced variability in the ocean circulation occurs in the vicinity of the western boundary and some major bathymetric features. Using the ideas of generalized stability theory (GST), we find that the patterns of wind stress curl that are most effective for inducing variability in the model have their largest projection on the most nonnormal eigenmodes of the system. These eigenmodes are confined primarily to the western boundary region and are composed of long Rossby wave packets that are Doppler shifted by the Gulf Stream to have eastward group velocity. Linear interference of these eigenmodes yields transient growth of stochastically-induced perturbations, and it is this process that maintains the variance of the stochastically-induced circulations. By examining the model pseudospectra, we find that the nonnormal nature of the system enhances the transient growth of perturbation enstrophy and therefore elevates and also maintains the variance of the stochastically-induced circulations in the aforementioned regions.

  8. Direct force wall shear measurements in pressure-driven three-dimensional turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Mcallister, J. E.; Tennant, M. H.; Pierce, F. J.

    1982-01-01

    Unique, simultaneous direct measurements of the magnitude and direction of the local wall shear stress in a pressure-driven three-dimensional turbulent boundary layer are presented. The flow is also described with an oil streak wall flow pattern, a map of the wall shear stress-wall pressure gradient orientations, a comparison of the wall shear stress directions relative to the directions of the nearest wall velocity as measured with a typical, small boundary layer directionally sensitive claw probe, as well as limiting wall streamline directions from the oil streak patterns, and a comparison of the freestream streamlines and the wall flow streamlines. A review of corrections for direct force sensing shear meters for two-dimensional flows is presented with a brief discussion of their applicability to three-dimensional devices.

  9. An EMG-driven Model to Estimate Muscle Forces and Joint Moments in Stroke Patients

    PubMed Central

    Shao, Qi; Bassett, Daniel N.; Manal, Kurt; Buchanan, Thomas S.

    2009-01-01

    Individuals following stroke exhibit altered muscle activation and movement patterns. Improving the efficiency of gait can be facilitated by knowing which muscles are affected and how they contribute to the pathological pattern. In this paper we present an electromyographically (EMG) driven musculoskeletal model to estimate muscle forces and joint moments. Subject specific EMG for the primary ankle plantar and dorsiflexor muscles, and joint kinematics during walking for four subjects following stroke were used as inputs to the model to predict ankle joint moments during stance. The model’s ability to predict the joint moment was evaluated by comparing the model output with the moment computed using inverse dynamics. The model did predict the ankle moment with acceptable accuracy, exhibiting an average R2 value ranging between 0.87 and 0.92, with RMS errors between 9.7% and 14.7%. The values are in line with previous results for healthy subjects, suggesting that EMG-driven modeling in this population of patients is feasible. It is our hope that such models can provide clinical insight into developing more effective rehabilitation therapies and to assess the effects of an intervention. PMID:19818436

  10. Capillary Force-Driven, Hierarchical Co-Assembly of Dandelion-Like Peptide Microstructures.

    PubMed

    Wang, Yuefei; Huang, Renliang; Qi, Wei; Xie, Yanyan; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2015-06-24

    The wetting and drying of drops on flexible fibers occurs ubiquitously in nature, and the capillary force underlying this phenomenon has motivated our great interest in learning how to direct supramolecular self-assembly. Here, the hierarchical co-assembly of two aromatic peptides, diphenylalanine (FF) and ferrocene-diphenylalanine (Fc-FF), is reported via sequential, combinatorial assembly. The resulting dandelion-like microstructures have highly complex architectures, where FF microtube arrays serve as the scapes and the Fc-FF nanofibers serve as the flower heads. Homogeneous FF microtubes with diameters tailored between 1 and 9 μm and wall thickness ranging from 70 to 950 nm are initially formed by controlling the degree of supersaturation of the FF and the water content. Once the FF microtubes are formed, the growth of the dandelion-like microstructures is then driven by the capillary force, derived from the wetting and drying of the Fc-FF solution on the FF microtubes. This simple and ingenious strategy offers many opportunities to develop new and creative methods for controlling the hierarchical self-assembly of peptides and thus building highly complex nano and microstructures. PMID:25759325

  11. A systematic review of resilience and mental health outcomes of conflict-driven adult forced migrants

    PubMed Central

    2014-01-01

    Background The rising global burden of forced migration due to armed conflict is increasingly recognised as an important issue in global health. Forced migrants are at a greater risk of developing mental disorders. However, resilience, defined as the ability of a person to successfully adapt to or recover from stressful and traumatic experiences, has been highlighted as a key potential protective factor. This study aimed to review systematically the global literature on the impact of resilience on the mental health of adult conflict-driven forced migrants. Methodology Both quantitative and qualitative studies that reported resilience and mental health outcomes among forcibly displaced persons (aged 18+) by way of exploring associations, links, pathways and causative mechanisms were included. Fourteen bibliographic databases and seven humanitarian study databases/websites were searched and a four stage screening process was followed. Results Twenty three studies were included in the final review. Ten qualitative studies identified highlighted family and community cohesion, family and community support, individual personal qualities, collective identity, supportive primary relationships and religion. Thirteen quantitative studies were identified, but only two attempted to link resilience with mental disorders, and three used a specific resilience measure. Over-reliance on cross-sectional designs was noted. Resilience was generally shown to be associated with better mental health in displaced populations, but the evidence on this and underlying mechanisms was limited. Discussion The review highlights the need for more epidemiological and qualitative evidence on resilience in forcibly displaced persons as a potential avenue for intervention development, particularly in resource-poor settings. PMID:25177360

  12. ACOUSTIC RADIATION FORCE-DRIVEN ASSESSMENT OF MYOCARDIAL ELASTICITY USING THE DISPLACEMENT RATIO RATE (DRR) METHOD

    PubMed Central

    Bouchard, Richard R.; Hsu, Stephen J.; Palmeri, Mark L.; Rouze, Ned C.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2011-01-01

    A noninvasive method of characterizing myocardial stiffness could have significant implications in diagnosing cardiac disease. Acoustic radiation force (ARF)–driven techniques have demonstrated their ability to discern elastic properties of soft tissue. For the purpose of myocardial elasticity imaging, a novel ARF-based imaging technique, the displacement ratio rate (DRR) method, was developed to rank the relative stiffnesses of dynamically varying tissue. The basis and performance of this technique was demonstrated through numerical and phantom imaging results. This new method requires a relatively small temporal (<1 ms) and spatial (tenths of mm2) sampling window and appears to be independent of applied ARF magnitude. The DRR method was implemented in two in vivo canine studies, during which data were acquired through the full cardiac cycle by imaging directly on the exposed epicardium. These data were then compared with results obtained by acoustic radiation force impulse (ARFI) imaging and shear wave velocimetry, with the latter being used as the gold standard. Through the cardiac cycle, velocimetry results portray a range of shear wave velocities from 0.76–1.97 m/s, with the highest velocities observed during systole and the lowest observed during diastole. If a basic shear wave elasticity model is assumed, such a velocity result would suggest a period of increased stiffness during systole (when compared with diastole). Despite drawbacks of the DRR method (i.e., sensitivity to noise and limited stiffness range), its results predicted a similar cyclic stiffness variation to that offered by velocimetry while being insensitive to variations in applied radiation force. PMID:21645966

  13. An accurate elasto-plastic frictional tangential force displacement model for granular-flow simulations: Displacement-driven formulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Vu-Quoc, Loc

    2007-07-01

    We present in this paper the displacement-driven version of a tangential force-displacement (TFD) model that accounts for both elastic and plastic deformations together with interfacial friction occurring in collisions of spherical particles. This elasto-plastic frictional TFD model, with its force-driven version presented in [L. Vu-Quoc, L. Lesburg, X. Zhang. An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation, Journal of Computational Physics 196(1) (2004) 298-326], is consistent with the elasto-plastic frictional normal force-displacement (NFD) model presented in [L. Vu-Quoc, X. Zhang. An elasto-plastic contact force-displacement model in the normal direction: displacement-driven version, Proceedings of the Royal Society of London, Series A 455 (1991) 4013-4044]. Both the NFD model and the present TFD model are based on the concept of additive decomposition of the radius of contact area into an elastic part and a plastic part. The effect of permanent indentation after impact is represented by a correction to the radius of curvature. The effect of material softening due to plastic flow is represented by a correction to the elastic moduli. The proposed TFD model is accurate, and is validated against nonlinear finite element analyses involving plastic flows in both the loading and unloading conditions. The proposed consistent displacement-driven, elasto-plastic NFD and TFD models are designed for implementation in computer codes using the discrete-element method (DEM) for granular-flow simulations. The model is shown to be accurate and is validated against nonlinear elasto-plastic finite-element analysis.

  14. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    NASA Astrophysics Data System (ADS)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in

  15. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces

    NASA Astrophysics Data System (ADS)

    Temprano, I.; Thomas, G.; Haq, S.; Dyer, M. S.; Latter, E. G.; Darling, G. R.; Uvdal, P.; Raval, R.

    2015-03-01

    Adsorption of thymine on a defined Cu(110) surface was studied using reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and scanning tunnelling microscopy (STM). In addition, density functional theory (DFT) calculations were undertaken in order to further understand the energetics of adsorption and self-assembly. The combination of RAIRS, TPD, and DFT results indicates that an upright, three-point-bonded adsorption configuration is adopted by the deprotonated thymine at room temperature. DFT calculations show that the upright configuration adopted by individual molecules arises as a direct result of strong O-Cu and N-Cu bonds between the molecule and the surface. STM data reveal that this upright thymine motif self-assembles into 1D chains, which are surprisingly oriented along the open-packed [001] direction of the metal surface and orthogonal to the alignment of the functional groups that are normally implicated in H-bonding interactions. DFT modelling of this system reveals that the molecular organisation is actually driven by dispersion interactions, which cause a slight tilt of the molecule and provide the major driving force for assembly into dimers and 1D chains. The relative orientations and distances of neighbouring molecules are amenable for π-π stacking, suggesting that this is an important contributor in the self-assembly process.

  16. 1D self-assembly of chemisorbed thymine on Cu(110) driven by dispersion forces.

    PubMed

    Temprano, I; Thomas, G; Haq, S; Dyer, M S; Latter, E G; Darling, G R; Uvdal, P; Raval, R

    2015-03-14

    Adsorption of thymine on a defined Cu(110) surface was studied using reflection-absorption infrared spectroscopy (RAIRS), temperature programmed desorption (TPD), and scanning tunnelling microscopy (STM). In addition, density functional theory (DFT) calculations were undertaken in order to further understand the energetics of adsorption and self-assembly. The combination of RAIRS, TPD, and DFT results indicates that an upright, three-point-bonded adsorption configuration is adopted by the deprotonated thymine at room temperature. DFT calculations show that the upright configuration adopted by individual molecules arises as a direct result of strong O-Cu and N-Cu bonds between the molecule and the surface. STM data reveal that this upright thymine motif self-assembles into 1D chains, which are surprisingly oriented along the open-packed [001] direction of the metal surface and orthogonal to the alignment of the functional groups that are normally implicated in H-bonding interactions. DFT modelling of this system reveals that the molecular organisation is actually driven by dispersion interactions, which cause a slight tilt of the molecule and provide the major driving force for assembly into dimers and 1D chains. The relative orientations and distances of neighbouring molecules are amenable for π-π stacking, suggesting that this is an important contributor in the self-assembly process. PMID:25770505

  17. Hydro-climatic fluctuations driven by natural and anthropogenic forcing in China

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Yang, D.

    2014-12-01

    Hydrological change is one of the most profound parts of global change which is associated with freshwater resources, food security and balance of ecosystem. Its driving factors in the past need to be understood and quantified for projection of future changes and management of water available. Here by applying the Budyko water-energy balance framework, we analyse the hydro-climatic fluctuations at annual scale and their natural and anthropogenic drivers during past fifty years in six major Chinese drainage basins, from south to north, and from natural basins to human-modified basins. Natural forcing here means the fluctuations in precipitation and temperature, and the shift of precipitation from snow towards rain. And we focus on the impact of change in vegetational coverage, agricultural irrigation and water division as anthropogenic effect. By cross-regional comparison and within-region comparison, we explore the spatial variability of the hydro-climatic change and the type and contribution of different driven factors, especially various human modifications, throughout China. This study shows how the complex coupled system of climate, human and eco-hydrology can be described and explored by an effective and simple model and how the water balance constraints of hydrological basins affect water available throughout China and their spatial variability in the past half century.

  18. The dynamics of capillary-driven two-phase flow: the role of nanofluid structural forces.

    PubMed

    Nikolov, Alex; Zhang, Hua

    2015-07-01

    Capillary-driven flows are fundamental phenomena and are involved in many key technological processes, such as oil recovery through porous rocks, ink-jet printing, the bubble dynamics in a capillary, microfluidic devices and labs on chips. Here, we discuss and propose a model for the oil displacement dynamics from the capillary by the nanofluid (which is composed of a liquid suspension of nanoparticles); we elucidate the physics of the novelty of the phenomenon and its application. The oil displacement by the nanofluid flow is a multi-stage phenomenon, first leading to the oil film formation on the capillary wall, its break-up, and retraction over the capillary wall; this lead to the formation of the oil double concave meniscus. With time, the process repeats itself, leading to the formation of a regular "necklace" of oil droplets inside the capillary. Finally, the oil droplets are separated by the nanofluid film from the capillary wall. The light reflected differential interferometry technique is applied to investigate the nanofluid interactions with the glass wall. We find nanoparticles tend to self-structure into multiple layers close to the solid wall, which cause the structural forces to arise that lead to the oil displacement from the capillary. This research is expected to benefit the understanding of nanofluid phenomena in a capillary and promote their use in technological applications. PMID:25465201

  19. Effect of Pressing Force Applied to a Rotor on Disk-Type Ultrasonic Motor Driven by Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Kusakabe, Chiharu; Tomikawa, Yoshiro; Takahashi, Sadayuki; Takano, Takehiro

    1998-05-01

    In this paper the relationship between the pressing force applied to a rotor and the rotation characteristic of an ultrasonic motor driven by self-oscillation are discussed.The motor used here is an in-phase drive-type ultrasonic motor using two degenerate bending vibration modes of a disk.The picking-up electrical signal caused by self-oscillation is positively fed back into the piezoelectric ceramics for driving through an operational amplifier and a step-up transformer. The pressing force applied to a rotor was measured using a force gauge coupled to the shaft of the ultrasonic motor. As a result, it was confirmed that the selection of the picking-up position for the feedback signal is important for a stable starting and running of the disk-type ultrasonic motor driven by self-oscillation.

  20. Delineating the Barotropic and Baroclinic Mechanisms in the Midlatitude Eddy-Driven Jet Response to Lower-Tropospheric Thermal Forcing

    NASA Astrophysics Data System (ADS)

    Nie, Yu; Zhang, Yang; Chen, Gang; Yang, Xiuqun

    2016-04-01

    Observations and climate models have shown that the midlatitude eddy-driven jet can exhibit an evident latitudinal shift in response to lower-tropospheric thermal forcing (e.g., the tropical SST warming during El Niño or extratropical SST anomalies associated with the atmosphere-ocean-sea ice coupling). In addition to the direct thermal wind response, the eddy feedbacks - including baroclinic mechanisms, such as lower-level baroclinic eddy generation, and barotropic mechanisms, such as upper-level wave propagation and breaking - can all contribute to the atmospheric circulation response to lower-level thermal forcing, but their individual roles have not been well explained. In this study, using a nonlinear beta-plane multilevel quasigeostrophic channel model, the mechanisms through which the lower-level thermal forcing induces the jet shift are investigated. By diagnosing the finite-amplitude wave activity (FAWA) budget, the baroclinic and barotropic eddy feedbacks to the lower-level thermal forcing are delineated. Particularly, by examining the transient circulation response after thermal forcing is switched on, it is shown that the lower-level thermal forcing affects the eddy-driven jet rapidly by modifying the upper-level zonal thermal wind distribution and the associated meridional wave propagation and breaking. The anomalous baroclinic eddy generation, however, acts to enhance the latitudinal shift of the eddy-driven jet only in the later stage of transient response. Furthermore, the barotropic mechanism is explicated by overriding exper- iments in which the barotropic flow in the vorticity advection is prescribed. Unlike the conventional baroclinic view, the barotropic eddy feedback, particularly the irreversible PV mixing through barotropic vorticity advection and deformation, plays a major role in the atmospheric circulation response to the lower-level thermal forcing.

  1. Irrelevance of the Power Stroke for the Directionality, Stopping Force, and Optimal Efficiency of Chemically Driven Molecular Machines

    PubMed Central

    Astumian, R. Dean

    2015-01-01

    A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition—the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine—is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters. PMID:25606678

  2. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines.

    PubMed

    Astumian, R Dean

    2015-01-20

    A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition--the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine--is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters. PMID:25606678

  3. A computational model of cerebrospinal fluid production and reabsorption driven by Starling forces.

    PubMed

    Buishas, Joel; Gould, Ian G; Linninger, Andreas A

    2014-10-01

    Experimental evidence has cast doubt on the classical model of river-like cerebrospinal fluid (CSF) flow from the choroid plexus to the arachnoid granulations. We propose a novel model of water transport through the parenchyma from the microcirculation as driven by Starling forces. This model investigates the effect of osmotic pressure on water transport between the cerebral vasculature, the extracellular space (ECS), the perivascular space (PVS), and the CSF. A rigorous literature search was conducted focusing on experiments which alter the osmolarity of blood or ventricles and measure the rate of CSF production. Investigations into the effect of osmotic pressure on the volume of ventricles and the flux of ions in the blood, choroid plexus epithelium, and CSF are reviewed. Increasing the osmolarity of the serum via a bolus injection completely inhibits nascent fluid flow production in the ventricles. A continuous injection of a hyperosmolar solution into the ventricles can increase the volume of the ventricle by up to 125%. CSF production is altered by 0.231 μL per mOsm in the ventricle and by 0.835 μL per mOsm in the serum. Water flux from the ECS to the CSF is identified as a key feature of intracranial dynamics. A complete mathematical model with all equations and scenarios is fully described, as well as a guide to constructing a computational model of intracranial water balance dynamics. The model proposed in this article predicts the effects the osmolarity of ECS, blood, and CSF on water flux in the brain, establishing a link between osmotic imbalances and pathological conditions such as hydrocephalus and edema. PMID:25358881

  4. A Three-Dimensional Shape-Based Force and Stiffness-Sensing Platform for Tendon-Driven Catheters

    PubMed Central

    Kouh Soltani, Minou; Khanmohammadi, Sohrab; Ghalichi, Farzan

    2016-01-01

    This paper presents an efficient shape-based three-axial force and stiffness estimator for active catheters commonly implemented in cardiac ablation. The force-sensing capability provides important feedback for catheterization procedures including real-time control and catheter steering in autonomous navigation systems. The proposed platform is based on the introduced accurate and computationally efficient Cosserat rod model for tendon-driven catheters. The proposed nonlinear Kalman filter formulation for contact force estimation along with the developed catheter model provides a real-time force observer robust to nonlinearities and noise covariance uncertainties. Furthermore, the proposed platform enables stiffness estimation in addition to tip contact force sensing in different operational circumstances. The approach incorporates pose measurements which can be achieved using currently developed pose-sensing systems or imaging techniques. The method makes the approach compatible with the range of forces applied in clinical applications. The simulation and experimental results verify the viability of the introduced force and stiffness-sensing technique. PMID:27367685

  5. A Three-Dimensional Shape-Based Force and Stiffness-Sensing Platform for Tendon-Driven Catheters.

    PubMed

    Kouh Soltani, Minou; Khanmohammadi, Sohrab; Ghalichi, Farzan

    2016-01-01

    This paper presents an efficient shape-based three-axial force and stiffness estimator for active catheters commonly implemented in cardiac ablation. The force-sensing capability provides important feedback for catheterization procedures including real-time control and catheter steering in autonomous navigation systems. The proposed platform is based on the introduced accurate and computationally efficient Cosserat rod model for tendon-driven catheters. The proposed nonlinear Kalman filter formulation for contact force estimation along with the developed catheter model provides a real-time force observer robust to nonlinearities and noise covariance uncertainties. Furthermore, the proposed platform enables stiffness estimation in addition to tip contact force sensing in different operational circumstances. The approach incorporates pose measurements which can be achieved using currently developed pose-sensing systems or imaging techniques. The method makes the approach compatible with the range of forces applied in clinical applications. The simulation and experimental results verify the viability of the introduced force and stiffness-sensing technique. PMID:27367685

  6. Viscoelastic properties of single polysaccharide molecules determined by analysis of thermally driven oscillations of an atomic force microscope cantilever.

    PubMed

    Kawakami, Masaru; Byrne, Katherine; Khatri, Bhavin; McLeish, Tom C B; Radford, Sheena E; Smith, D Alastair

    2004-10-12

    We report on single molecule measurements of the viscoelastic properties of the polysaccharide dextran using a new approach which involves acquiring the power spectral density of the thermal noise of an atomic force microscope cantilever while holding the single molecule of interest under force-clamp conditions. The attractiveness of this approach when compared with techniques which use forced oscillations under constant loading rate conditions is that it is a near-equilibrium measure of mechanical response which provides a more relevant probe of thermally driven biomolecular dynamics. Using a simple harmonic oscillator model of the cantilever-molecule system and by subtracting the response of the free cantilever taking into account hydrodynamic effects, the effective damping zetamol and elastic constant kmol of a single molecule are obtained. The molecular elasticity measured by this new technique shows a dependence on applied force that reflects the chair-boat conformational transition of the pyranose rings of the dextran molecule which is in good agreement with values obtained directly from the gradient of a conventional constant loading rate force-extension curve. The molecular damping is also seen to follow a nontrivial dependence on loading which we suggest indicates that it is internal friction and not work done on the solvent that is the dominant dissipative process. PMID:15461521

  7. Flow in complex domains simulated by Dissipative Particle Dynamics driven by geometry-specific body-forces

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Deng, Mingge; Caswell, Bruce; Karniadakis, George Em

    2016-01-01

    We demonstrate how the quality of simulations by Dissipative Particle Dynamics (DPD) of flows in complex geometries is greatly enhanced when driven by body forces suitably tailored to the geometry. In practice, the body force fields are most conveniently chosen to be the pressure gradient of the corresponding Navier-Stokes (N-S) flow. In the first of three examples, the driving-force required to yield a stagnation-point flow is derived from the pressure field of the potential flow for a lattice of counter-rotating line vortices. Such a lattice contains periodic squares bounded by streamlines with four vortices within them. Hence, the DPD simulation can be performed with periodic boundary conditions to demonstrate the value of a non-uniform driving-force without the need to model real boundaries. The second example is an irregular geometry consisting of a 2D rectangular cavity on one side of an otherwise uniform channel. The Navier-Stokes pressure field for the same geometry is obtained numerically, and its interpolated gradient is then employed as the driving-force for the DPD simulation. Finally, we present a third example, where the proposed method is applied to a complex 3D geometry of an asymmetric constriction. It is shown that in each case the DPD simulations closely reproduce the Navier-Stokes solutions. Convergence rates are found to be much superior to alternative methods; in addition, the range of convergence with respect to Reynolds number and Mach number is greatly extended.

  8. Tooth Eruption Results from Bone Remodelling Driven by Bite Forces Sensed by Soft Tissue Dental Follicles: A Finite Element Analysis

    PubMed Central

    Sarrafpour, Babak; Swain, Michael; Li, Qing; Zoellner, Hans

    2013-01-01

    Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of

  9. Force.

    ERIC Educational Resources Information Center

    Gamble, Reed

    1989-01-01

    Discusses pupil misconceptions concerning forces. Summarizes some of Assessment of Performance Unit's findings on meaning of (1) force, (2) force and motion in one dimension and two dimensions, and (3) Newton's second law. (YP)

  10. Motion of an atom in a weakly driven fiber-Bragg-grating cavity: Force, friction, and diffusion

    SciTech Connect

    Le Kien, Fam; Hakuta, K.

    2010-06-15

    We study the translational motion of an atom in the vicinity of a weakly driven nanofiber with two fiber-Bragg-grating mirrors. We calculate numerically and analytically the force, the friction coefficients, and the momentum diffusion. We find that the spatial dependences of the force, the friction coefficients, and the momentum diffusion are very complicated due to the evanescent-wave nature of the atom-field coupling as well as the effect of the van der Waals potential. We show that the time development of the mean number of photons in the cavity closely follows the translational motion of the atom through the nodes and antinodes of the fiber-guided cavity standing-wave field even though the cavity finesse is moderate, the cavity is long, and the probe field is weak.

  11. Vegetation and climate variability in East Asia driven by low-latitude oceanic forcing during the middle to late Holocene

    NASA Astrophysics Data System (ADS)

    Lim, Jaesoo; Fujiki, Toshiyuki

    2011-09-01

    At centennial to millennial timescales, little is known of C 3 and C 4 plant productivity's responses to past regional climate changes and the dominant forcing factors during the Holocene, although large-scale changes in glacial-interglacial periods have been attributed to changes in aridity, temperature, and CO 2 concentration. We investigated the δ 13C of TOC, C/N ratios, and pollen in samples from a wetland on Jeju Island, Korea. The bulk isotopic signal ranging from -17‰ to -29‰ was partitioned into C 3 and C 4 plant signals by using a binary mixing model and calculating separate organic carbon-accumulation rates for C 3 and C 4 plants (OCAR 3 and OCAR 4) during the last 6500 years. Pollen data indicated that the temperate deciduous broadleaved trees replaced grassland dominated by Artemisia, dry-tolerant grass, and further expanded in the maar. The long-term decreasing trend of Artemisia-dominated grassland was similar to those of δ 13C values and OCAR 4. The multi-centennial to millennial variability superimposed on the gradual increasing trend of OCAR 3 was inversely correlated with those of the sea surface temperature (SST) in the western tropical Pacific (WTP) and El Niño-Southern Oscillation (ENSO) activity, suggesting that C 3 plants have stronger sensitivity to regional climate change driven by oceanic forcing. Our data suggest that vegetation changes in a coastal area in East Asia were affected by monsoonal changes coupled with SST in WTP and ENSO activity. The vegetation change on Jeju Island varied quite differently from change in the westerly pathway, suggesting only a weak influence from high-latitude-driven atmospheric circulation changes. We conclude that centennial- to millennial-scale climate changes in coastal regions of East Asia during the mid- to late-Holocene may have been mainly controlled by low-latitudinal oceanic forcing, including forcing by SST and ENSO activity.

  12. Mapping of force fields in a capacitively driven radiofrequency plasma discharge

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Chen, M.; Sabo, H.; Laufer, R.; Herdrich, G.; Matthews, L. S.; Hyde, T. W.

    2016-08-01

    > In this paper a method is described that allows mapping of the forces acting on dust particles in a GEC reference cell. Monodisperse particles are dropped into the plasma environment and their trajectories are tracked using a high-speed camera system to determine local accelerations and respective forces. Collecting data from a large number of particle drops allows the identification of three-dimensional vector fields for the acting forces. The procedure is described and multiple examples in which the method has been applied are given. These examples include a simple plasma sheath, plasmas perturbed by a horizontal and vertical dipole magnet, an array of multiple magnets mimicking the fields found at a lunar swirl, and the fields inside a glass box used for particle confinement. Further applicability in other plasma environments will be discussed shortly.

  13. Spinmotive force due to motion of magnetic bubble arrays driven by magnetic field gradient

    PubMed Central

    Yamane, Yuta; Hemmatiyan, Shayan; Ieda, Jun'ichi; Maekawa, Sadamichi; Sinova, Jairo

    2014-01-01

    Interaction between local magnetization and conduction electrons is responsible for a variety of phenomena in magnetic materials. It has been recently shown that spin current and associated electric voltage can be induced by magnetization that depends on both time and space. This effect, called spinmotive force, provides for a powerful tool for exploring the dynamics and the nature of magnetic textures, as well as a new source for electromotive force. Here we theoretically demonstrate the generation of electric voltages in magnetic bubble array systems subjected to a magnetic field gradient. It is shown by deriving expressions for the electric voltages that the present system offers a direct measure of phenomenological parameter β that describes non-adiabaticity in the current induced magnetization dynamics. This spinmotive force opens a door for new types of spintronic devices that exploit the field-gradient. PMID:25365971

  14. Phase-locking of driven vortex lattices with transverse ac force and periodic pinning

    SciTech Connect

    Reichhardt, Charles; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels

    2001-10-01

    For a vortex lattice moving in a periodic array we show analytically and numerically that a new type of phase locking occurs in the presence of a longitudinal dc driving force and a transverse ac driving force. This phase locking is distinct from the Shapiro step phase locking found with longitudinal ac drives. We show that an increase in critical current and a fundamental phase-locked step width scale with the square of the driving ac amplitude. Our results should carry over to other systems such as vortex motion in Josephson-junction arrays.

  15. Forced desorption of semiflexible polymers, adsorbed and driven by molecular motors.

    PubMed

    Chaudhuri, Abhishek; Chaudhuri, Debasish

    2016-02-21

    We formulate and characterize a model to describe the dynamics of semiflexible polymers in the presence of activity due to motor proteins attached irreversibly to a substrate, and a transverse pulling force acting on one end of the filament. The stochastic binding-unbinding of the motor proteins and their ability to move along the polymer generate active forces. As the pulling force reaches a threshold value, the polymer eventually desorbs from the substrate. Performing underdamped Langevin dynamics simulation of the polymer, and with stochastic motor activity, we obtain desorption phase diagrams. The correlation time for fluctuations in the desorbed fraction increases as one approaches complete desorption, captured quantitatively by a power law spectral density. We present theoretical analysis of the phase diagram using mean field approximations in the weakly bending limit of the polymer and performing linear stability analysis. This predicts an increase in the desorption force with the polymer bending rigidity, active velocity and processivity of the motor proteins to capture the main features of the simulation results. PMID:26750537

  16. Macrophage motility is driven by frontal-towing with a force magnitude dependent on substrate stiffness.

    PubMed

    Hind, Laurel E; Dembo, Micah; Hammer, Daniel A

    2015-04-01

    The ability of macrophages to properly migrate is crucial to their success as early responders during the innate immune response. Furthermore, improper regulation of macrophage migration is known to contribute to several pathologies. The signaling mechanisms underlying macrophage migration have been previously studied but to date the mechanical mechanism of macrophage migration has not been determined. In this study, we have created the first traction maps of motile primary human macrophages by observing their migration on compliant polyacrylamide gels. We find that the force generated by migrating macrophages is concentrated in the leading edge of the cell - so-called frontal towing - and that the magnitude of this force is dependent on the stiffness of the underlying matrix. With the aid of chemical inhibitors, we show that signaling through the RhoA kinase ROCK, myosin II, and PI3K is essential for proper macrophage force generation. Finally, we show that Rac activation by its GEF Vav1 is crucial for macrophage force generation while activation through its GEF Tiam1 is unnecessary. PMID:25768202

  17. Rotordynamic effects driven by fluid forces from a geometrically imperfect labyrinth

    NASA Astrophysics Data System (ADS)

    Williston, William C., Jr.

    1993-12-01

    The forces on a rotor due to asymmetric pressure distributions resulting from a single gland non-circular labyrinth seal in a circular outer casing are analyzed for the purpose of understanding the possible causes of synchronous vibration due to seal intolerance. A lumped parameter model is developed for flow in the azimuthal direction inside the seal gland. The sealing knife imperfections causing the non-circularity may be due to manufacturing defects or in service ware. The resulting continuity and momentum equations are solved using a regular linear perturbation technique. Results from this model indicate under what conditions seal imperfections can generate forces of the same order of magnitude as rotor mass unbalance.

  18. Observation of the saturation of Langmuir waves driven by ponderomotive force in a large scale plasma

    SciTech Connect

    Kirkwood, R. K.; Moody, J. D.; MacGowan, B. J.; Glenzer, S. H.; Kruer, W. L.; Estabrook, K. G.; Wharton, K. B.; Williams, E. A.; Berger, R. L.

    1997-06-22

    We report the observation of amplification of a probe laser beam (I {le} 1 {times} 10{sup 14} W/cm{sup 2}) in a large scale ({approximately} 1 mm) plasma by interaction with a pumping laser beam (I = 2 {times} 10{sup 15} W/cm{sup 2}) and a stimulated Langmuir wave. When the plasma density is adjusted to allow the Langmuir wave dispersion to match the difference frequency and wave number of the two beams, amplification factors as high as {times} 2.5 result. Interpretation of this amplification as scattering of pump beam energy by the Langmuir wave that is produced by the ponderomotive force of the two beams, allows the dependence of Langmuir wave amplitude on ponderomotive force to be measured. It is found that the Langmuir wave amplitude saturates at a level that depends on ion wave damping, and is generally consistent with secondary ion wave instabilities limiting its growth. 20 refs., 4 figs.

  19. Approach and Coalescence of Gold Nanoparticles Driven by Surface Thermodynamic Fluctuations and Atomic Interaction Forces.

    PubMed

    Wang, Jiadao; Chen, Shuai; Cui, Kai; Li, Dangguo; Chen, Darong

    2016-02-23

    The approach and coalescence behavior of gold nanoparticles on a silicon surface were investigated by experiments and molecular dynamics simulations. By analyzing the behavior of the atoms in the nanoparticles in the simulations, it was found that the atoms in a single isolated nanoparticle randomly fluctuated and that the surface atoms showed greater fluctuation. The fluctuation increased as the temperature increased. When there were two or more neighboring nanoparticles, the fluctuating surface atoms of the nanoparticles "flowed" toward the neighboring nanoparticle because of atomic interaction forces between the nanoparticles. With the surface atoms "flowing", the gold nanoparticles approached and finally coalesced. The simulation results were in good agreement with the experimental results. It can be concluded that surface thermodynamic fluctuations and atomic interaction forces are the causes of the approach and coalescence behavior of the gold nanoparticles. PMID:26756675

  20. Heinrich events driven by feedback between ocean forcing and glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Petersen, S. V.; Cathles, L. M. M., IV

    2015-12-01

    One of the most puzzling glaciological features of the past ice age is the episodic discharge of large volumes of icebergs from the Laurentide Ice Sheet, known as Heinrich events. It has been suggested that Heinrich events are caused by internal instabilities in the ice sheet (e.g. the binge-purge oscillation). A purely ice dynamic cycle, however, is at odds with the fact that every Heinrich event occurs during the cold phase of a DO cycle, implying some regional climate connection. Recent work has pointed to subsurface water warming as a trigger for Heinrich events through increased basal melting of an ice shelf extending across the Hudson Strait and connecting with the Greenland Ice Sheet. Such a large ice shelf, spanning the deepest part of the Labrador Sea, has no modern analog and limited proxy evidence. Here we use a width averaged "flowline" model of the Hudson Strait ice stream to show that Heinrich events can be triggered by ocean forcing of a grounded terminus without the need for an ice shelf. At maximum ice extent, bed topography is depressed and the terminus is more sensitive to a subsurface thermal forcing. Once triggered, the retreat is rapid, and continues until isostatic rebound of the bed causes local sea level to drop sufficiently to arrest retreat. Topography slowly rebounds, decreasing the sensitivity to ocean forcing and the ice stream re-advances at a rate that is an order of magnitude slower than collapse. This simple feedback cycle between a short-lived ocean trigger and slower isostatic adjustment can reproduce the periodicity and timing of observed Heinrich events under a range of glaciological and solid earth parameters. Our results suggest that not only does the solid Earth play an important role in regulating ice sheet stability, but that grounded marine terminating portions of ice sheets may be more sensitive to ocean forcing than previously thought.

  1. Numerics of surface acoustic wave (SAW) driven acoustic streaming and radiation force

    NASA Astrophysics Data System (ADS)

    Nama, Nitesh; Barnkob, Rune; Kahler, Christian; Costanzo, Francesco; Jun Huang, Tony

    2015-11-01

    Recently, surface acoustic wave (SAW) based systems have shown great potential for various lab-on-a-chip applications. However, the physical understanding of the precise acoustic fields and associated acoustophoresis is rather limited. In this work, we present a numerical study of the acoustophoretic particle motion inside a SAW-actuated, liquid-filled polydimethylsiloxane (PDMS) microchannel. We utilize a perturbation approach to divide the flow variables into first- and second-order components. The first-order fields result in a time-averaged acoustic radiation force on suspended particles, as well as the time-averaged body force terms that drive the second-order fields. We model the SAW actuation by a displacement function while we utilize impedance boundary conditions to model the PDMS walls. We identify the precise acoustic fields generated inside the microchannel and investigate a range of particle sizes to characterize the transition from streaming-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Lastly, we demonstrate the ability of SAW devices to tune the position of vertical pressure node inside the microchannel by tuning the phase difference between the two incoming surface acoustic waves.

  2. Finite element-based force/moment-driven simulation of orthodontic tooth movement.

    PubMed

    Geiger, M

    2013-01-01

    The objectives of this study were to develop a numerically controlled experimental set-up to predict the movement caused by the force systems of orthodontic devices and to experimentally verify this system. The presented experimental set-up incorporated an artificial tooth fixed via a 3D force/moment sensor to a parallel kinematics robot. An algorithm determining the initial movement of the tooth in its elastic embedding controlled the set-up. The initial tooth movement was described by constant compliances. The constants were obtained prior to the experiment in a parameterised finite element (FE) study on the basis of a validated FE model of a human molar. The long-term tooth movement was assembled by adding up a multiple of incremental steps of initial tooth movements. A pure translational movement of the tooth of about 8 mm resulted for a moment to force ratio of - 8.85 mm, corresponding to the distance between the bracket and the centre of resistance. The correct behaviour of this linear elastic model in its symmetry plane allows for simulating single tooth movement induced by orthodontic devices. PMID:22292517

  3. Field-driven crossover from attractive-to-repulsive Casimir-like force in smectic films.

    PubMed

    de Oliveira, I N; Lyra, M L

    2004-11-01

    External fields have a profound effect on the fluctuations of strongly correlated fluids, such as a liquid crystal. Within a harmonic functional integral approach, we compute the fluctuation-induced force between the surfaces of a smectic liquid-crystal film under the presence of an ordering field. In particular, we show that for asymmetrically anchored films, the thermal Casimir interaction energy can be collapsed into a universal form crossing over from a repulsive to an attractive interaction as the film thickness is increased. We discuss the possible relevance of this field effect in nematic-smectic wetting transitions. PMID:15600581

  4. Numerical Study of Electrolytic Flow Instabilities Driven by an Azimuthal Lorentz Force in a Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Pérez-Barrera, James; Pérez-Espinoza, José Enrique; Ortíz, Alejandro; Cuevas, Sergio; Ramos, Eduardo

    2014-11-01

    We present numerical simulations of the flow produced by an azimuthal Lorentz force in an electromagnetic stirrer. The stirrer consists of a cylindrical cavity with two copper concentric cylindrical electrodes, filled with an electrolytic solution. Underneath the cavity, a permanent magnet creates an almost uniform magnetic field, perpendicular to the circular section of the stirrer. An electric potential difference between the electrodes produces a radial D.C. current that passes through the fluid and interacts with the axial magnetic field, generating an azimuthal Lorentz force that drives the fluid. Experiments have shown the appearance of a flow instability that gives rise to a varying number of anticyclonic vortices for given values of the current intensity and fluid layer thickness. The MHD governing equations are expressed in terms of the velocity, pressure and electric potential. Numerical simulations are carried out using a hybrid Finite volume-Fourier method to ensure periodicity in the azimuthal direction. Numerical results show the formation of different modes of perturbation in the velocity field, which give rise to a varying number of traveling vortical structures. Work supported by CONACYT, Mexico under Project 131399. JPB acknowledges a Grant from CONACYT.

  5. Onset of deglacial warming in West Antarctica driven by local orbital forcing

    USGS Publications Warehouse

    WAIS Divide Project Members; Steig, Eric J.; Markle, Bradley R.; Schoenemann, Spruce W.; Ding, Qinghua; Taylor, Kendrick C.; McConnell, Joseph R.; Brook, Edward J.; Sowers, Todd; White, James W. C.; Alley, Richard B.; Chen, Hai; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Fitzpatrick, Joan J.; Hargreaves, Geoffrey; and others

    2013-01-01

    The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

  6. Dehydration-Driven Solvent Exposure of Hydrophobic Surfaces as a Driving Force in Peptide Folding

    SciTech Connect

    Daidone, Isabella; Ulmschneider, Martin; DiNola, Alfredo; Amadei, Andrea; Smith, Jeremy C

    2007-09-01

    Recent work has shown that the nature of hydration of pure hydrophobic surfaces changes with the length scale considered: water hydrogen-bonding networks adapt to small exposed hydrophobic species, hydrating or 'wetting' them at relatively high densities, whereas larger hydrophobic areas are 'dewetted' [Chandler D (2005), Nature 29:640-647]. Here we determine whether this effect is also present in peptides by examining the folding of a {beta}-hairpin (the 14-residue amyloidogenic prion protein H1 peptide), using microsecond time-scale molecular dynamics simulations. Two simulation models are compared, one explicitly including the water molecules, which may thus adapt locally to peptide configurations, and the other using a popular continuum approximation, the generalized Born/surface area implicit solvent model. The results obtained show that, in explicit solvent, peptide conformers with high solvent-accessible hydrophobic surface area indeed also have low hydration density around hydrophobic residues, whereas a concomitant higher hydration density around hydrophilic residues is observed. This dewetting effect stabilizes the fully folded {beta}-hairpin state found experimentally. In contrast, the implicit solvent model destabilizes the fully folded hairpin, tending to cluster hydrophobic residues regardless of the size of the exposed hydrophobic surface. Furthermore, the rate of the conformational transitions in the implicit solvent simulation is almost doubled with respect to that of the explicit solvent. The results suggest that dehydration-driven solvent exposure of hydrophobic surfaces may be a significant factor determining peptide conformational equilibria.

  7. Onset of deglacial warming in West Antarctica driven by local orbital forcing.

    PubMed

    2013-08-22

    The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes. PMID:23945585

  8. Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy

    SciTech Connect

    Boubekri, R.; Cambril, E.; Couraud, L.; Bernardi, L.; Madouri, A.; Portail, M.; Chassagne, T.; Moisson, C.; Zielinski, M.; Jiao, S.; Michaud, J.-F.; Alquier, D.; Bouloc, J.; Nony, L.; Bocquet, F.; Loppacher, C.

    2014-08-07

    Cantilevers with resonance frequency ranging from 1 MHz to 100 MHz have been developed for dynamic atomic force microscopy. These sensors are fabricated from 3C-SiC epilayers grown on Si(100) substrates by low pressure chemical vapor deposition. They use an on-chip method both for driving and sensing the displacement of the cantilever. A first gold metallic loop deposited on top of the cantilever is used to drive its oscillation by electrothermal actuation. The sensing of this oscillation is performed by monitoring the resistance of a second Au loop. This metallic piezoresistive detection method has distinct advantages relative to more common semiconductor-based schemes. The optimization, design, fabrication, and characteristics of these cantilevers are discussed.

  9. Interfacial force-driven pattern formation during drying of Aβ (25-35) fibrils.

    PubMed

    Sett, Ayantika; Bag, Sudipta; Dasgupta, Swagata; DasGupta, Sunando

    2015-08-01

    Pattern formation during evaporation of biofluids finds significant applications in the biomedical field for disease identification. Aβ (25-35) is the smallest peptide in the amyloid peptide family that retains the toxicity of a full length peptide responsible for Alzheimer's disease and is chosen here as the model solute. Drying experiments on substrates of varying wettability exhibit unique drying patterns of Aβ (25-35) fibrils visualized through fluorescence microscopy and transmission electron microscopy. The unique pattern formations can be interpreted as manifestations of the changes in the self-pinning mechanism with changes in wettability, which in some cases resembles the well-known coffee ring effect. Additionally, the delicate balance between the drag and capillary forces has been perturbed by initiating controlled rates of evaporation and probing their effects on the fibril patterning. PMID:25964177

  10. Variability in a mixed layer ocean model driven by stochastic atmospheric forcing

    SciTech Connect

    Alexander, M.A.; Penland, C.

    1996-10-01

    A stochastic model of atmospheric surface conditions, developed from 30 years of data at Ocean Weather Station P in the northeast Pacific, is used to drive a mixed layer model of the upper ocean. The spectral characteristics of anomalies in the four atmospheric variables: air and dewpoint temperature, wind speed and solar radiation, and many ocean features, including the seasonal cycle are reasonably well reproduced in a 500-year model simulation. However, the ocean model slightly underestimates the range of the mean and standard deviation of both temperature and mixed layer depth over the course of the year. The spectrum of the monthly SST anomalies from the model simulation are in close agreement with observations, especially when atmospheric forcing associated with El Nino is included. The spectral characteristics of the midlatitude SST anomalies is consistent with stochastic climate theory proposed by Frankignoul and Hasselmann (1977) for periods up to {approximately}6 months. 72 refs., 10 figs., 2 tabs.

  11. Viscoelastic measurements of single molecules on a millisecond time scale by magnetically driven oscillation of an atomic force microscope cantilever.

    PubMed

    Kawakami, Masaru; Byrne, Katherine; Khatri, Bhavin S; Mcleish, Tom C B; Radford, Sheena E; Smith, D Alastair

    2005-05-10

    The dynamical nature of biomolecular systems means that knowledge of their viscoelastic behavior is important in fully understanding function. The linear viscoelastic response can be derived from an analysis of Brownian motion. However, this is a slow measurement and technically demanding for many molecular systems of interest. To address this issue, we have developed a simple method for measuring the full linear viscoelastic response of single molecules based on magnetically driven oscillations of an atomic force microscope cantilever. The cantilever oscillation frequency is periodically swept through the system resonance in less than 200 ms allowing the power spectrum to be obtained rapidly and analyzed with a suitable model. The technique has been evaluated using dextran, a polysaccharide commonly used as a test system for single molecule mechanical manipulation experiments. The monomer stiffness and friction constants were compared with those derived from other methods. Excellent agreement is obtained indicating that the new method accurately and, most importantly, rapidly provides the viscoelastic response of a single molecule between the tip and substrate. The method will be a useful tool for studying systems that change their structure and dynamic response on a time scale of 100-200 ms, such as protein folding and unfolding under applied force. PMID:16032901

  12. Indian and African plate motions driven by the push force of the Réunion plume head.

    PubMed

    Cande, Steven C; Stegman, Dave R

    2011-07-01

    Mantle plumes are thought to play an important part in the Earth's tectonics, yet it has been difficult to isolate the effect that plumes have on plate motions. Here we analyse the plate motions involved in two apparently disparate events--the unusually rapid motion of India between 67 and 52 million years ago and a contemporaneous, transitory slowing of Africa's motion--and show that the events are coupled, with the common element being the position of the Indian and African plates relative to the location of the Réunion plume head. The synchroneity of these events suggests that they were both driven by the force of the Réunion plume head. The recognition of this plume force has substantial tectonic implications: the speed-up and slowdown of India, the possible cessation of convergence between Africa and Eurasia in the Palaeocene epoch and the enigmatic bends of the fracture zones on the Southwest Indian Ridge can all be attributed to the Réunion plume. PMID:21734702

  13. LES simulation of synoptic, mechanic-forcing, and thermally-driven flow interaction of Granite Mountain, UT

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Knievel, J. C.; Pace, J.; Zajic, D.; De Wekker, S.

    2013-12-01

    The NCAR-ATEC (National Center for Atmospheric Research and Army test and Evaluation Command) RTFDDA-LES (real-time four-dimensional data assimilation and LES simulation) model was employed to study multi-scale flow interactions at Granite Mountain and its surrounding areas. Granite Mountain is a locally erected mountain peak with an area of ~6x10 km2 located in the US Army Dugway Providing Ground, UT. The mountain sits in the midwest inter-mountains, but is surrounded by relatively flat terrain nearby. The Granite Peak is about 700m above the surrounding flat terrain. It significantly affects the flows in the DPG test area and often greatly impacts on the DPG test activities. The area has been selected by mountain terrain atmospheric modeling and observations (MATERHORN) program as a test bed for improving Meteorological Modeling in Mountain Terrain. In this paper, RTFDDA-LES was employed to study the multiple-scale flow interaction of synoptic, mechanic forcing, and thermally driven flows of Granite Mountain. Six nested-grid domains with grid sizes of 8100, 2700, 900, 300, 100, and 33m, respectively, were configured and a 48h simulation was carried out simultaneously on the six nested grids for a two-day period during Spring 2012. The data assimilation of RTFDDA was turned on for the mesoscale domains (1, 2 and 3), while the LES domains (4, 5 and 6) were run with 'free forecasting'. The mesoscale data assimilation on the coarse meshes provide realistic mesoscale forcing for the LES simulation, so that the model outputs of the LES domains can be reasonably verified using high-resolution (every 1 - 5 minutes) measurements of DPG surface stations and multi-level met-tower in the vicinity of Granite Mountain. The model successfully simulates the overall flow evolutions during the two-day period and also many features of microscale flows for different time periods of the day (with different thermally-forcing and boundary layer stability) and under varying larger

  14. A self-stabilized coherent phonon source driven by optical forces

    PubMed Central

    Navarro-Urrios, D.; Capuj, N. E.; Gomis-Bresco, J.; Alzina, F.; Pitanti, A.; Griol, A.; Martínez, A.; Sotomayor Torres, C. M.

    2015-01-01

    We report a novel injection scheme that allows for “phonon lasing” in a one-dimensional opto-mechanical photonic crystal, in a sideband unresolved regime and with cooperativity values as low as 10−2. It extracts energy from a cw infrared laser source and is based on the triggering of a thermo-optical/free-carrier-dispersion self-pulsing limit-cycle, which anharmonically modulates the radiation pressure force. The large amplitude of the coherent mechanical motion acts as a feedback that stabilizes and entrains the self-pulsing oscillations to simple fractions of the mechanical frequency. A manifold of frequency-entrained regions with two different mechanical modes (at 54 and 122 MHz) are observed as a result of the wide tuneability of the natural frequency of the self-pulsing. The system operates at ambient conditions of pressure and temperature in a silicon platform, which enables its exploitation in sensing, intra-chip metrology or time-keeping applications. PMID:26503448

  15. In Vivo Cardiac, Acoustic-Radiation-Force-Driven, Shear Wave Velocimetry

    PubMed Central

    Hsu, Stephen J.; Wolf, Patrick D.; Trahey, Gregg E.

    2009-01-01

    Shear wave elasticity imaging (SWEI) was employed to track acoustic radiation force impulse (ARFI) -induced shear waves in the mid-myocardium of the left ventricular free wall (LVFW) of a beating canine heart. Shear waves were generated and tracked with a linear ultrasound transducer that was placed directly on the exposed epicardium. Acquinsition was ECG-gated arid coincided with the mid-diastolic portion of the cardiac cycle. Axial displacement profiles consistent with shear wave propagation were clearly evident in all SWEI acquisitions (i.e., those including an ARFI excitation); displacement data from control cases (i.e., sequences lacking an ARFI excitation) offered no evidence of shear wave propagation and yielded a peak absolute mean displacement below 0.31 μm after motion filtering. Shear wave velocity estimates ranged from 0.82 to 2.65 m/s and were stable across multiple heartbeats for the same interrogation region, with coefficients of variation less than 19% for all matched acquisitions. Variations in velocity estimates suggest a spatial dependence of shear wave velocity through the mid-myocardium of the LVFW, with velocity estimates changing, in limited cases, through depth and lateral position. PMID:19771962

  16. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles. PMID:24205624

  17. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.

    PubMed

    Destgeer, Ghulam; Ha, Byunghang; Park, Jinsoo; Sung, Hyung Jin

    2016-04-01

    We demonstrate an acoustofluidic device using Lamb waves (LWs) to manipulate polystyrene (PS) microparticles suspended in a sessile droplet of water. The LW-based acoustofluidic platform used in this study is advantageous in that the device is actuated over a range of frequencies without changing the device structure or electrode pattern. In addition, the device is simple to operate and cheap to fabricate. The LWs, produced on a piezoelectric substrate, attenuate inside the fluid and create acoustic streaming flow (ASF) in the form of a poloidal flow with toroidal vortices. The PS particles experience direct acoustic radiation force (ARF) in addition to being influenced by the ASF, which drive the concentration of particles to form a ring. This phenomenon was previously attributed to the ASF alone, but the present experimental results confirm that the ARF plays an important role in forming the particle ring, which would not be possible in the presence of only the ASF. We used a range of actuation frequencies (45-280 MHz), PS particle diameters (1-10 μm), and droplet volumes (5, 7.5, and 10 μL) to experimentally demonstrate this phenomenon. PMID:26937678

  18. A new model for biological effects of radiation and the driven force of molecular evolution

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako

    We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.

  19. Influence of pressure driven secondary flows on the behavior of turbofan forced mixers

    NASA Technical Reports Server (NTRS)

    Anderson, B.; Povinelli, L.; Gerstenmaier, W.

    1980-01-01

    A finite difference procedure was developed to analyze the three dimensional subsonic turbulent flows in turbofan forced mixer nozzles. The method is based on a decomposition of the velocity field into primary and secondary flow components which are determined by solution of the equations governing primary momentum, secondary vorticity, thermal energy, and continuity. Experimentally, a strong secondary flow pattern was identified which is associated with the radial inflow and outflow characteristics of the core and fan streams and forms a very strong vortex system aligned with the radial interface between the core and fan regions. A procedure was developed to generate a similar generic secondary flow pattern in terms of two constants representing the average radial outflow or inflow in the core and fan streams as a percentage of the local streamwise velocity. This description of the initial secondary flow gave excellent agreement with experimental data. By identifying the nature of large scale secondary flow structure and associating it with characteristic mixer nozzle behavior, it is felt that the cause and effect relationship between lobe design and nozzle performance can be understood.

  20. EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment about Multiple Degrees of Freedom in the Human Lower Extremity

    PubMed Central

    Sartori, Massimo; Reggiani, Monica; Farina, Dario; Lloyd, David G.

    2012-01-01

    This work examined if currently available electromyography (EMG) driven models, that are calibrated to satisfy joint moments about one single degree of freedom (DOF), could provide the same musculotendon unit (MTU) force solution, when driven by the same input data, but calibrated about a different DOF. We then developed a novel and comprehensive EMG-driven model of the human lower extremity that used EMG signals from 16 muscle groups to drive 34 MTUs and satisfy the resulting joint moments simultaneously produced about four DOFs during different motor tasks. This also led to the development of a calibration procedure that allowed identifying a set of subject-specific parameters that ensured physiological behavior for the 34 MTUs. Results showed that currently available single-DOF models did not provide the same unique MTU force solution for the same input data. On the other hand, the MTU force solution predicted by our proposed multi-DOF model satisfied joint moments about multiple DOFs without loss of accuracy compared to single-DOF models corresponding to each of the four DOFs. The predicted MTU force solution was (1) a function of experimentally measured EMGs, (2) the result of physiological MTU excitation, (3) reflected different MTU contraction strategies associated to different motor tasks, (4) coordinated a greater number of MTUs with respect to currently available single-DOF models, and (5) was not specific to an individual DOF dynamics. Therefore, our proposed methodology has the potential of producing a more dynamically consistent and generalizable MTU force solution than was possible using single-DOF EMG-driven models. This will help better address the important scientific questions previously approached using single-DOF EMG-driven modeling. Furthermore, it might have applications in the development of human-machine interfaces for assistive devices. PMID:23300725

  1. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  2. Generation of Nonlinear Force Driven Blocks from Skin Layer Interaction of Petawatt-Picosecond Laser Pulses for ICF

    NASA Astrophysics Data System (ADS)

    Heinrich, Hora; Cang, Yu; He, Xiantu; Zhang, Jie; F, Osman; J, Badziak; F, P. Boody; S, Gammino; R, Höpfl; K, Jungwirth; B, Kralikova; J, Kraska; L, Laska; Liu, Hong; G, H. Miley; P, Parys; Peng, Hansheng; M, Pfeifer; K, Rohlena; J, Skala; Z, Skladanowski; L, Torrisi; J, Ullschmied; J, Wolowski; Zhang, Weiyan

    2004-02-01

    The discovery of the essential difference of maximum ion energy for TW - ps laser plasma interaction compared with the 100 ns laser pulses [1] led to the theory of a skin layer model [2] where the control of prepulses suppressed the usual relativistic self-focusing. The subsequent generation of two nonlinear force driven blocks has been demonstrated experimentally and in extensive numerical studies where one block moves against the laser light and the other block into the irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beam current densities [3] exceeding 1010 A/cm2 where the ion velocity can be chosen up to highly relativistic values. Using the results of the expected ignition of DT fuel by light ion beams, a self-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similar to the Nuckolls-Wood [4] scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new and simplified scheme of laser-ICF needs and optimisation of the involved parameters.

  3. Towards all-optical quantification of force- and power-based performance metrics in cilia-driven fluid flow physiology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Brendan K.; Khokha, Mustafa K.; Loewenberg, Michael; Choma, Michael A.

    2016-03-01

    In pulmonary ciliary physiology, most tissue-level measures of performance focus on flow velocity. However, as with the heart, fluid transport performance requires an understanding of force and power generation under various loading conditions. Here, we present our initial work in quantifying shearing force and net power dissipation from OCT-based cilia-driven fluid flow velocimetry. Typical measurements of force require invasive contact with the ciliated surface, while measurements of power rely on metabolic consumption that reflect energy consumption not just from cilia, but from the entirety of cellular processes. We will present two different approaches to non-contact, all-optical shear force and power dissipation physiology. First, we developed a lumped-parameter model of flow driven by a ciliated surface. The lumped-parameter model yields semi-quantitative, Ohm's law-type relationships (F=U*R and P=U*F) between flow velocity (U), shear force (F), viscous resistance (R), and power dissipation (P). This model allows a lumped (spatially averaged) approach to evaluate force and power performance under viscous loading, an approach we demonstrated using ciliated Xenopus embryos. Second, we numerically estimate shear force and power dissipation using flow velocity fields acquired using OCT. Specifically, the velocity gradient tensor estimated from the flow velocity field contains the required information to estimate both shear force and net power dissipation. We have preliminary data using this numerical approach in Xenopus. Our results support the feasibility of an all-optical approach to estimating mesoscopic measures of force and power in ciliary physiology.

  4. Direction detectable static magnetic field imaging by frequency-modulated magnetic force microscopy with an AC magnetic field driven soft magnetic tip

    NASA Astrophysics Data System (ADS)

    Saito, Hitoshi; Ito, Ryoichi; Egawa, Genta; Li, Zhenghua; Yoshimura, Satoru

    2011-04-01

    Direction detectable static magnetic field imaging, which directly distinguishes the up and down direction of static perpendicular magnetic field from a sample surface and the polarity of magnetic charges on the surface, was demonstrated for CoCrPt-SiO2 perpendicular magnetic recording media based on a frequency-modulated magnetic force microscopy (FM-MFM), which uses a frequency modulation of the cantilever oscillation induced by an alternating force from the tip-sample magnetic interaction. In this study, to generate the alternating force, we used a NiFe soft magnetic tip driven by the ac magnetic field of a soft ferrite core and imaged the direction and the amplitude of the static magnetic field from the recorded bits. This method enables measurement of the static magnetic field near a sample surface, which is masked by short range forces of the surface. The present method will be effective in analyzing the microscopic magnetic domain structure of hard magnetic samples.

  5. Eddy permitting simulation of the global ocean model COCO4.3 driven by the CORE inter- annual forcing

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Hasumi, H.; Komuro, Y.; Sakamoto, T. T.

    2008-12-01

    We are developing ocean component of the CCSR/NIES/FRCGC climate model to conduct high-resolution global warming simulations under IPCC scenarios. This presentation focuses on the performance and the behavior and role of eddies in the global ocean. The Ocean model is CCSR Ocean Component Model (COCO) version 4.3, which is a z-coordinate, free-surface primitive equation ocean model with multi-category sea ice model. The geographical North Pole is moved to 40W, 77N on Greenland and the geographical South Pole is moved to 40E, 77S. The computational domain covers global ocean, with zonal grid spacing of 0.28125 degree and meridional grid spacing of 0.1875 degree. There are 50 vertical levels excluding the bottom boundary layer, and 7 of which are within the sigma-coordinate (~42m). The model employs the momentum advection algorithm of Ishizaki and Motoi (1991), which is a pseudo-enstrophy preserving scheme with a consideration for up-/down-sloping advection. The model's tracer advection is based on the second-order moment (SOM) advection scheme of Prather, M. J. (1986). The vertical mixing of momentum and tracers is represented by a harmonic form. The coefficients are calculated by the parameterization of Noh and Kim (1999), but the formulation is slightly modified (see K1-developers, 2004). As background diffusivity, a minimum value is set for each level, suggested by Tsujino et al. (2000). The Smagorinsky's (1963) biharmonic viscosity is applied for the lateral momentum mixing, and its coefficient is dependent on the grid width and the strain rate, and its controlled by a single non- dimensional parameter whose values is taken to be 2.5. The constant coefficient biharmonic diffusion is applied with the coefficient value of 1.0E9 m4/s. The model is driven by the inter-annual forcing data set adopted by common ocean-ice reference experiments (CORE). The results are reported by focusing on heat transport in strong eddy activity regions, such as the Kuroshio

  6. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model

    PubMed Central

    2014-01-01

    Background This paper describes the “EMG Driven Force Estimator (EMGD-FE)”, a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. Results An example of the application’s functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. Conclusions The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues. PMID:24708668

  7. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase*

    PubMed Central

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.

    2015-01-01

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  8. Convective flow patterns in an eight-box cube driven by combined wind stress, thermal and saline forcing. (Reannouncement with new availability information). Technical report

    SciTech Connect

    Huang, R.X.; Stommel, H.M.

    1992-02-15

    An eight-box cube model ocean, simulating the subpolar gyre in the North Atlantic, is formulated in order to understand how the wind-induced horizontal gyre affects the thermohaline circulation and its catastrophe. The model is forced from above by thermal conduction and freshwater flux. The structure of the thermohaline circulation and its catastrophe during the process of gradually increasing or reducing the evaporation/precipitation are examined. The results indicate that, although adding the third dimension and a wind-driven horizontal gyre of medium strength splits the catastrophe into several separate ones, only some of these catastrophes remain of significant amplitude. With choice of parameters appropriate for the North Atlantic, the model predicts a single stable state, circulating in the thermal sense (sinking at the pole). This can be driven smoothly to a reversed saline sense (sinking at the equator), without catastrophe, by increasing the precipitation/evaporation rate beyond 3 times the present-day value.

  9. Effects of eddy viscosity and thermal conduction and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    The chemical-dynamical model of Walterscheid et al. (1987), which describes wave-driven fluctuations in OH nightglow, was modified to include the effects of both eddy thermal conduction and viscosity, as well as the Coriolis force (with the shallow atmosphere approximation). Using the new model, calculations were performed for the same nominal case as used by Walterscheid et al. but with only wave periods considered. For this case, the Coriolis force was found to be unimportant at any wave period. For wave periods greater than 2 or 3 hours, the inclusion of thermal conduction alone greatly modified the results (in terms of a complex ratio 'eta' which expresses the relationship between the intensity oscillation about the time-averaged intensity and the temperature oscillation about the time-averaged temperature); this effect was reduced with the further inclusion of the eddy viscosity.

  10. Wavelength dependence of eddy dissipation and Coriolis force in the dynamics of gravity wave driven fluctuations in the OH nightglow

    NASA Technical Reports Server (NTRS)

    Hickey, M. P.

    1988-01-01

    This paper examines the effect of inclusion of Coriolis force and eddy dissipation in the gravity wave dynamics theory of Walterscheid et al. (1987). It was found that the values of the ratio 'eta' (where eta is a complex quantity describing the ralationship between the intensity oscillation about the time-averaged intensity, and the temperature oscillation about the time-averaged temperature) strongly depend on the wave period and the horizontal wavelength; thus, if comparisons are to be made between observations and theory, horizontal wavelengths will need to be measured in conjunction with the OH nightglow measurements. For the waves with horizontal wavelengths up to 1000 km, the eddy dissipation was found to dominate over the Coriolis force in the gravity wave dynamics and also in the associated values of eta. However, for waves with horizontal wavelengths of 10,000 km or more, the Coriolis force cannot be neglected; it has to be taken into account along with the eddy dissipation.

  11. Anomalous pinch of turbulent plasmas driven by the magnetic-drift-induced Lorentz force through the Stokes-Einstein relation

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    2016-07-01

    It is found that the Lorentz force generated by the magnetic drift drives a generic plasma pinch flux of particle, energy and momentum through the Stokes-Einstein relation. The proposed theoretical model applies for both electrons and ions, trapped particles, and passing particles. An anomalous parallel current pinch due to the electrostatic turbulence with long parallel wave-length is predicted.

  12. Laser-optical path to nuclear energy without radioactivity: Fusion of hydrogen-boron by nonlinear force driven plasma blocks

    NASA Astrophysics Data System (ADS)

    Hora, H.; Miley, G. H.; Ghoranneviss, M.; Malekynia, B.; Azizi, N.

    2009-10-01

    Anomalous interaction of terawatt-picosecond laser pulses allows side-on ignition of solid state density fusion fuel with the unexpected possibility of igniting uncompressed hydrogen-boron p- 11B. Suppression of relativistic self-focusing by using very clean laser pulses with an extremely high contrast ratio is essential to achieve ignition thresholds only ten times more difficult than fusion of deuterium-tritium (DT). This opens the possibility for laser driven fusion energy without neutrons and less radioactivity than from burning coal. The complex nonlinear optical properties involved are elaborated.

  13. Floating Chip Mounting System Driven by Repulsive Force of Permanent Magnets for Multiple On-Site SPR Immunoassay Measurements

    PubMed Central

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-01-01

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030

  14. Forces driven by morphogenesis modulate Twist Expression to determine Anterior Mid-gut Differentiation in Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Farge, Emmanuel

    2008-03-01

    By combining magnetic tweezers to in vivo laser ablation, we locally manipulate Drosophila embryonic tissues with physiologically relevant forces. We demonstrate that high level of Twist expression in the stomodeal primordium is mechanically induced in response to compression by the 60±20 nN force developed during germ-band extension (GBE). We find that this force triggers the junctional release and nuclear translocation of Armadillo involved in Twist mechanical induction in the stomodeum in a Src42A dependent way. Finally, stomodeal-specific RNAi-mediated silencing of Twist during compression impairs the differentiation of midgut cells, as revealed by strong defects in Dve expression and abnormal larval lethality. Thus, mechanical induction of Twist overexpression in stomodeal cells is necessary for subsequent midgut differentiation. In collaboration with Nicolas Desprat, Willy Supatto, and Philippe-Alexandre Pouille, MGDET, UMR168 CNRS, Institut Curie11 rue Pierre et Marie Curie, F-75005, Paris, France; and Emmanuel Beaurepaire, LOB, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France.

  15. Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor

    SciTech Connect

    Kim, Yongdae; Park, Kyihwan; Kim, Sangyoo

    2009-04-15

    A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

  16. Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force

    PubMed Central

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices. PMID:23251426

  17. Near-wall measurements of the bubble- and Lorentz-force-driven convection at gas-evolving electrodes

    NASA Astrophysics Data System (ADS)

    Baczyzmalski, Dominik; Weier, Tom; Kähler, Christian J.; Cierpka, Christian

    2015-08-01

    Chemical energy storage systems, e.g., in the form of hydrogen or methanol, have a great potential for the establishment of volatile renewable energy sources due to the large energy density. The efficiency of hydrogen production through water electrolysis is, however, limited by gas bubbles evolving at the electrode's surface and can be enhanced by an accelerated bubble detachment. In order to characterize the complex multi-phase flow near the electrode, simultaneous measurements of the fluid velocities and the size and trajectories of hydrogen bubbles were performed in a water electrolyzer. The liquid phase velocity was measured by PIV/PTV, while shadowgraphy was used to determine the bubble trajectories. Special measurement and evaluation techniques had to be applied as the measurement uncertainty is strongly affected by the high void fraction close to the wall. In particular, the application of an advanced PTV scheme allowed for more precise fluid velocity measurements closer to electrode. Based on these data, stability characteristics of the near-wall flow were evaluated and compared to that of a wall jet. PTV was used as well to investigate the effect of Lorentz forces on the near-wall fluid velocities. The results show a significantly increased wall parallel liquid phase velocity with increasing Lorentz forces. It is presumed that this enhances the detachment of hydrogen bubbles from the electrode surface and, consequently, decreases the fractional bubble coverage and improves the efficiency. In addition, the effect of large rising bubbles with path oscillations on the near-wall flow was investigated. These bubbles can have a strong impact on the mass transfer near the electrode and thus affect the performance of the process.

  18. Effect of including land-use driven radiative forcing of the surface albedo of land on climate response in the 16th-21st centuries

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Mokhov, I. I.

    2011-02-01

    A change in ecosystem types, such as through natural-vegetation-agriculture conversion, alters the surface albedo and triggers attendant shortwave radiative forcing (RF). This paper describes numerical experiments performed using the climate model (CM) of the Institute of Atmospheric Physics (IAP), Russian Academy of Sciences, for the 16th-21st centuries; this model simulated the response to a change in the contents of greenhouse gases (tropospheric and stratospheric), sulfate aerosols, solar constant, as well as the response to change in surface albedo of land due to natural-vegetation-agriculture conversion. These forcing estimates relied on actual data until the late 20th century. In the 21st century, the agricultural area was specified according to scenarios of the Land Use Harmonization project and other anthropogenic impacts were specified using SRES scenarios. The change in the surface vegetation during conversion from natural vegetation to agriculture triggers a cooling RF in most regions except for those of natural semiarid vegetation. The global and annual average RF derived from the IAP RAS CM in late 20th century is -0.11 W m-2. Including the land-use driven RF in IAP RAS CM appreciably reconciled the model calculations to observations in this historical period. For instance, in addition to the net climate warming, IAP RAS CM predicted an annually average cooling and reduction in precipitation in the subtropics of Eurasia and North America and in Amazonia and central Africa, as well as a local maximum in annually average and summertime warming in East China. The land-use driven RF alters the sign in the dependence that the amplitude of the annual cycle of the near-surface atmospheric temperature has on the annually averaged temperature. One reason for the decrease in precipitation as a result of a change in albedo due to land use may be the suppression of the convective activity in the atmosphere in the warm period (throughout the year in the tropics

  19. A comparison of mesial molar root canal preparations using two engine-driven instruments and the balanced-force technique.

    PubMed

    Imura, N; Kato, A S; Novo, N F; Hata, G; Uemura, M; Toda, T

    2001-10-01

    The purpose of this study was to compare the effects of two engine-driven, nickel-titanium instrument systems with hand files in the final shape of slight and moderately curved canals. A total of 72 mesial roots of extracted human mandibular molars were divided into three groups: ProFile .04 taper, Pow-R rotary systems, and Flex-R hand-filing technique. The roots were mounted and cross-sectioned at two different horizontal levels using a modified Bramante technique. Pre- and postinstrumented cross-sectional roots were imaged, recorded, and computer analyzed. Results showed that, at the middle third, in almost all groups, there was a tendency of cutting more toward the mesial side with only one exception: Pow-R cut more to the distal side (danger zone) (p < 0.02). At the apical third, Flex-R (p < 0.03) and ProFile (0.001) transported to the mesial side (danger zone) when the curvature increased. When the three techniques were compared analyzing each side and considering the two groups of curvature, at the middle third in the moderately curved-canal group, Flex-R cut statistically more than Pow-R toward the lingual side. The other comparisons showed no statistically significant difference. When the techniques were compared in relation with the degree of curvature, in the apical third, ProFile .04 cut statistically more toward the mesial side in the moderately curved canal group than in the slightly curved canal group. The other comparisons showed no statistically significant difference. Canal preparation time was shorter with hand instrumentation (p < .05) in a few instances. PMID:11592493

  20. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  1. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  2. Dynamics driven by lipophilic force in Langmuir monolayers: In-plane and out-of-plane growth

    NASA Astrophysics Data System (ADS)

    Basak, Uttam Kumar; Datta, Alokmay

    2015-04-01

    While monolayer area fraction versus time (An-t ) curves obtained from surface pressure-area (π -A ) isotherms for desorption-dominated (DD) processes in Langmuir monolayers of fatty acids represent continuous loss, those from Brewster angle microscopy (BAM) also show a two-dimensional (2D) coalescence. For nucleation-dominated (ND) processes both techniques suggest competing processes, with BAM showing 2D coalescence alongside multilayer formation. π enhances both DD and ND processes with a lower cutoff for ND processes, while temperature has a lower cutoff for DD but negligible effect on ND processes. Hydrocarbon chain length has the strongest effect, causing a crossover from DD to ND dynamics. Imaging ellipsometry of horizontally transferred films onto Si(100) shows Stranski-Krastanov-like growth for ND process in an arachidic acid monolayer resulting in successive stages of monolayer, trilayer, and multilayer islands, ridges from lateral island coalescence, and shallow wavelike structures from ridge coalescence on the film surface. These studies show that lipophilic attraction between hydrocarbon chains is the driving force at all stages of long-term monolayer dynamics.

  3. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.

    PubMed

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  4. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  5. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  6. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2014-10-01

    and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a~largely overlooked and important anthropogenic aerosol effect on regional climates.

  7. Tectonically driven late Paleocene (57.9-54.7 Ma) transgression and climatically forced latest middle Eocene (41.3-38.0 Ma) regression on the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Singh, Y. Raghumani; Andotra, D. S.; Patra, A.; Srivastava, V. K.; Guruaribam, Venus; Sijagurumayum, Umarani; Singh, G. P.

    2016-01-01

    Cenozoic era was the turning point in the geological history of the Indian subcontinent when India experienced maximum isolation before it collided with Asia and there occurred a great mountain building activity shaping the Himalaya. In the Cenozoic era, the sedimentation commenced in the late Paleocene (∼57.9 Ma) in the pericratonic basins of the western India as well as the foreland basins of the Himalaya that marks the beginning of a major transgression on the Indian subcontinent. Till now, it is not sure whether this transgression was forced by tectonics or climate. We have interpreted that the primary driver for this transgression was the tectonics that marks the beginning of the India-Asia convergence. A major regression of similar magnitude occurred during latest middle Eocene (41.3-38.0 Ma) that corresponds to global sea-level fall. This regression is global and can be identified even in the Cenozoic basins developed within the African plate. It is interpreted that this regression was driven by the global cooling during latest middle Eocene/late Eocene possibly associated with the nucleation of the Antarctica ice-sheets coupled with the uplift of the Himalaya.

  8. Testing the validity of the Ehrenfest theorem beyond simple static systems: Caldirola–Kanai oscillator driven by a time-dependent force

    NASA Astrophysics Data System (ADS)

    Medjber, Salim; Bekkar, Hacene; Menouar, Salah; Ryeol Choi, Jeong

    2016-08-01

    The relationship between quantum mechanics and classical mechanics is investigated by taking a Gaussian-type wave packet as a solution of the Schrödinger equation for the Caldirola–Kanai oscillator driven by a sinusoidal force. For this time-dependent system, quantum properties are studied by using the invariant theory of Lewis and Riesenfeld. In particular, we analyze time behaviors of quantum expectation values of position and momentum variables and compare them to those of the counterpart classical ones. Based on this, we check whether the Ehrenfest theorem which was originally developed in static quantum systems can be extended to such time-varying systems without problems. Project supported by Fund from the Algerian Ministry of Higher Education and Scientific Research (Grant No. CNEPRU/ D01220120010) and the Basic Science Research Program of the year 2015 through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2013R1A1A2062907).

  9. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  10. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    SciTech Connect

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  11. Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859-present

    NASA Astrophysics Data System (ADS)

    Lea, J. M.; Mair, D. W. F.; Nick, F. M.; Rea, B. R.; van As, D.; Morlighem, M.; Nienow, P. W.; Weidick, A.

    2014-11-01

    Many tidewater glaciers in Greenland are known to have undergone significant retreat during the last century following their Little Ice Age maxima. Where it is possible to reconstruct glacier change over this period, they provide excellent records for comparison to climate records, as well as calibration/validation for numerical models. These glacier change records therefore allow for tests of numerical models that seek to simulate tidewater glacier behaviour over multi-decadal to centennial timescales. Here we present a detailed record of behaviour from Kangiata Nunaata Sermia (KNS), SW Greenland, between 1859 and 2012, and compare it against available oceanographic and atmospheric temperature data between 1871 and 2012. We also use these records to evaluate the ability of a well-established one-dimensional flow-band model to replicate behaviour for the observation period. The record of terminus change demonstrates that KNS has advanced/retreated in phase with atmosphere and ocean climate anomalies averaged over multi-annual to decadal timescales. Results from an ensemble of model runs demonstrate that observed dynamics can be replicated. Model runs that provide a reasonable match to observations always require a significant atmospheric forcing component, but do not necessarily require an oceanic forcing component. Although the importance of oceanic forcing cannot be discounted, these results demonstrate that changes in atmospheric forcing are likely to be a primary driver of the terminus fluctuations of KNS from 1859 to 2012. We propose that the detail and length of the record presented makes KNS an ideal site for model validation exercises investigating links between climate, calving rates, and tidewater glacier dynamics.

  12. Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles.

    PubMed

    Lao, Zhaoxin; Hu, Yanlei; Zhang, Chenchu; Yang, Liang; Li, Jiawen; Chu, Jiaru; Wu, Dong

    2015-12-22

    The hierarchical structures are the derivation of various functionalities in the natural world and have inspired broad practical applications in chemical systhesis and biological manipulation. However, traditional top-down fabrication approaches suffered from low complexity. We propose a laser printing capillary-assisted self-assembly (LPCS) strategy for fabricating regular periodic structures. Microscale pillars are first produced by the localized femtosecond laser polymerization and are subsequently self-assembled into periodic hierarchical architectures with the assistance of controlled capillary force. Moreover, based on anisotropic assemblies of micropillars, the LPCS method is further developed for the preparation of more complicated and advanced functional microstructures. Pillars cross section, height, and spatial arrangement can be tuned to guide capillary force, and diverse assemblies with different configurations are thus achieved. Finally, we developed a strategy for growing micro/nanoparticles in designed spatial locations through solution-evaporation self-assembly induced by morphology. Due to the high flexibility of LPCS method, the special arrangements, sizes, and distribution density of the micro/nanoparticles can be controlled readily. Our method will be employed not only to fabricate anisotropic hierarchical structures but also to design and manufacture organic/inorganic microparticles. PMID:26506428

  13. Experimental approach for selecting the excitation frequency for maximum compositional contrast in viscous environments for piezo-driven bimodal atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Eslami, Babak; Solares, Santiago D.

    2016-02-01

    We propose a method for guiding the selection of the microcantilever excitation frequencies in low-quality-factor (liquid) bimodal amplitude-modulation atomic force microscopy (AFM). Within the proposed method, the compositional contrast frequency is selected based on maximizing the derivative of the phase shift with respect to the drive frequency, observed during a tuning curve. This leads to different frequency choices and significant differences in the observables with respect to the customary practice of selecting the drive frequencies based on the amplitude peaks in the tuning curve. We illustrate the advantages and disadvantages of our approach by imaging an atomically flat calcite surface with single-eigenmode tapping-mode AFM in water, but driving a higher eigenmode instead of the fundamental eigenmode, and by imaging a polytetrafluoroethylene thin film with bimodal AFM, also in water.

  14. Short to long-term evolution of the shoreline and the subaerial sand beach driven by extreme forcings : Wan-Tzu-Liao, Taïwan

    NASA Astrophysics Data System (ADS)

    Campmas, Lucie; Bouchette, Frederic; Meulé, Samuel; Sous, Damien; Liou, Jiing-Yih; Leroux-Mallouf, Romain; Sabatier, François; Hwung, Hwung-Hweng

    2015-04-01

    This study aims at investigating the interactions between wave conditions, water level and morphology of a sand barrier driven by paroxysmal conditions over instantaneous swash event, storm event, monsoon/typhoons seasons and decadal time scales. In the framework of the KUN-SHEN project, 7 months of monitoring (2011-2012) provided 20 topobathymetric surveys (from the subtidal zone to the back-barrier) and acquisitions of offshore, nearshore and shallow water hydrodynamics including velocity profiling, free surface measurement and absolute pressure. Offshore waves were extracted at Cigu buoy (18 m of water depth). Nearshore waves were acquired from the current profiler deployed 400 m off the coast in 4 m of water depth and water level on the subaerial beach were acquired from pressure sensors deployed from the subtidal zone to the dune crest. Morphologic changes of the emerged beach were monitored using D-GPS each week during the winter monsoon season and just before and after each event during the summer typhoons season. The long-term shoreline changes (1993-2009) of the sand barrier is based on aerial photographs and satellites images. The short-term study focus on the sand bed elevation changes associated with individual swash events during the most energetic storm recorded. During this Talim tropical storm (offshore significant wave height up to 10.3 m with period about 14.6 s), pressure sensors deployed in the subaerial beach display a sand bed nourishment about +3.02 cm/h during the storm rising. The numerous swash-swash interactions during the falling period of the storm appear more erosive. Morphological changes of Talim storm in the whole emerged beach included 6.7 m of dunefoot retreat and a sand transfer from a dune breach to wash-over deposits in the lagoon. Additionally, the foreshore was nourished +2261 m3 +/-268 m3 as well as the whole sand barrier (+1920 m3 +/-1071 m3). The summer season of typhoons appears to be an accretive period (3556 m3 +/-1071

  15. Climate-driven increase in the variability and multi-year mean level of severe thunderstorm-related losses and thunderstorm forcing environments in the U.S. since 1970

    NASA Astrophysics Data System (ADS)

    Sander, Julia; Eichner, Jan; Faust, Eberhard; Steuer, Markus

    2013-04-01

    In the year 2011, direct losses from thunderstorms reached US 26 billion (insured) and US 47 billion (economic), thus equalling the dimension of losses caused by Hurricane Sandy in the New York area 2012. Beyond doubt the 2011 damages had outlier characteristics due to two cities hit by tornadoes. Nonetheless a substantial increase in the variability of normalised direct economic and insured severe thunderstorm-related losses in the U.S. east of the Rocky Mountains over the period 1970-2009 (March - September) has been detected. Besides the annual variability, also the multi-year mean level of losses has strongly increased. Our study focused on sizeable severe thunderstorm events causing at least US 250 million in normalized economic losses. The high threshold guarantees homogeneity over time, because those events regularly covered several states and thus are very unlikely to have been missed at any time due to reporting variability. To shed light on the question whether the strong increase was driven by an external climate driver, the time series of normalized losses (annual counts and annual loss aggregate) was correlated with the time series of thunderstorm forcing environments. The latter were inferred from NCEP/NCAR reanalysis data and comprise 6-hourly CAPE and vertical wind shear data combined to form a variable called Thunderstorm Severity Potential (TSP). From the notable correlation found between the time series of normalized thunderstorm-related losses and meteorologically registered thunderstorm forcing environments (TSP) it could be inferred that climate was the dominant driver for the increase in variability and average level of thunderstorm-related losses over the period 1970-2009. An important component in the rise of TSP over time could be identified in CAPE, as we found a substantial rise in the annual number of exceedances of a high CAPE threshold in the reanalysis data. Recent studies imply that the changes observed in our study, particularly

  16. Current-driven atomic waterwheels

    NASA Astrophysics Data System (ADS)

    Dundas, Daniel; McEniry, Eunan J.; Todorov, Tchavdar N.

    2009-02-01

    A current induces forces on atoms inside the conductor that carries it. It is now possible to compute these forces from scratch, and to perform dynamical simulations of the atomic motion under current. One reason for this interest is that current can be a destructive force-it can cause atoms to migrate, resulting in damage and in the eventual failure of the conductor. But one can also ask, can current be made to do useful work on atoms? In particular, can an atomic-scale motor be driven by electrical current, as it can be by other mechanisms? For this to be possible, the current-induced forces on a suitable rotor must be non-conservative, so that net work can be done per revolution. Here we show that current-induced forces in atomic wires are not conservative and that they can be used, in principle, to drive an atomic-scale waterwheel.

  17. Current-driven atomic waterwheels.

    PubMed

    Dundas, Daniel; McEniry, Eunan J; Todorov, Tchavdar N

    2009-02-01

    A current induces forces on atoms inside the conductor that carries it. It is now possible to compute these forces from scratch, and to perform dynamical simulations of the atomic motion under current. One reason for this interest is that current can be a destructive force--it can cause atoms to migrate, resulting in damage and in the eventual failure of the conductor. But one can also ask, can current be made to do useful work on atoms? In particular, can an atomic-scale motor be driven by electrical current, as it can be by other mechanisms? For this to be possible, the current-induced forces on a suitable rotor must be non-conservative, so that net work can be done per revolution. Here we show that current-induced forces in atomic wires are not conservative and that they can be used, in principle, to drive an atomic-scale waterwheel. PMID:19197311

  18. Water-driven micromotors.

    PubMed

    Gao, Wei; Pei, Allen; Wang, Joseph

    2012-09-25

    We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications. PMID:22891973

  19. Quantized Casimir force.

    PubMed

    Tse, Wang-Kong; MacDonald, A H

    2012-12-01

    We investigate the Casimir effect between two-dimensional electron systems driven to the quantum Hall regime by a strong perpendicular magnetic field. In the large-separation (d) limit where retardation effects are essential, we find (i) that the Casimir force is quantized in units of 3ħcα(2)/8π(2)d(4) and (ii) that the force is repulsive for mirrors with the same type of carrier and attractive for mirrors with opposite types of carrier. The sign of the Casimir force is therefore electrically tunable in ambipolar materials such as graphene. The Casimir force is suppressed when one mirror is a charge-neutral graphene system in a filling factor ν=0 quantum Hall state. PMID:23368242

  20. Active microrheology of driven granular particles.

    PubMed

    Wang, Ting; Grob, Matthias; Zippelius, Annette; Sperl, Matthias

    2014-04-01

    When pulling a particle in a driven granular fluid with constant force Fex, the probe particle approaches a steady-state average velocity v. This velocity and the corresponding friction coefficient of the probe ζ=Fex/v are obtained within a schematic model of mode-coupling theory and compared to results from event-driven simulations. For small and moderate drag forces, the model describes the simulation results successfully for both the linear as well as the nonlinear region: The linear response regime (constant friction) for small drag forces is followed by shear thinning (decreasing friction) for moderate forces. For large forces, the model demonstrates a subsequent increasing friction in qualitative agreement with the data. The square-root increase of the friction with force found in [Fiege et al., Granul. Matter 14, 247 (2012)] is explained by a simple kinetic theory. PMID:24827243

  1. MRI driven magnetic microswimmers.

    PubMed

    Kósa, Gábor; Jakab, Péter; Székely, Gábor; Hata, Nobuhiko

    2012-02-01

    Capsule endoscopy is a promising technique for diagnosing diseases in the digestive system. Here we design and characterize a miniature swimming mechanism that uses the magnetic fields of the MRI for both propulsion and wireless powering of the capsule. Our method uses both the static and the radio frequency (RF) magnetic fields inherently available in MRI to generate a propulsive force. Our study focuses on the evaluation of the propulsive force for different swimming tails and experimental estimation of the parameters that influence its magnitude. We have found that an approximately 20 mm long, 5 mm wide swimming tail is capable of producing 0.21 mN propulsive force in water when driven by a 20 Hz signal providing 0.85 mW power and the tail located within the homogeneous field of a 3 T MRI scanner. We also analyze the parallel operation of the swimming mechanism and the scanner imaging. We characterize the size of artifacts caused by the propulsion system. We show that while the magnetic micro swimmer is propelling the capsule endoscope, the operator can locate the capsule on the image of an interventional scene without being obscured by significant artifacts. Although this swimming method does not scale down favorably, the high magnetic field of the MRI allows self propulsion speed on the order of several millimeter per second and can propel an endoscopic capsule in the stomach. PMID:22037673

  2. A Micropump Driven by Marangoni Effect

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kenji; Iwamoto, Kaoru; Kawamura, Hiroshi

    A micropump driven by the thermocapillary convection is proposed. The purpose of this study is to examine the flow structure in liquid region and the effect of the geometry on the performance of the present micropump. There are two significant advantages in the thermocapillary-driven system. First, the surface forces become more dominant than the volume forces with decreasing scale. The present micropump driven by the surface forces shows an advantage in the micro scale over a diaphragm pump driven by the volume forces. Secondary, the thermocapillary driven system contains no movable parts; thus, it allows a very simple structure compared to the diaphragm one. In the present micropump system, a number of ribs are distributed along the flow circuit between a heater and a cooler. Since heat transfer from these ribs to the working liquid imposes temperature gradients along the gas-liquid interfaces, the flow from the hot to the cold side is induced by the Marangoni effect. Fundamental characteristics of the present micropump are studied on the basis of three-dimensional simulation conducted taking the gas, liquid and ribs into account. In this study, the flow structure corresponding to the temperature field was observed. The present calculation has revealed that the flow field exhibits a transition from steady flow to oscillatory flow when the Marangoni number exceeds a critical value of about 2,000-2,500. An experiment was also performed. The liquid flow driven by the present micropump system was confirmed through the experiment.

  3. Nuclear forces

    SciTech Connect

    Machleidt, R.

    2013-06-10

    These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

  4. Qplus AFM driven nanostencil.

    PubMed

    Grévin, B; Fakir, M; Hayton, J; Brun, M; Demadrille, R; Faure-Vincent, J

    2011-06-01

    We describe the development of a novel setup, in which large stencils with suspended silicon nitride membranes are combined with atomic force microscopy (AFM) regulation by using tuning forks. This system offers the possibility to perform separate AFM and nanostencil operations, as well as combined modes when using stencil chips with integrated tips. The flexibility and performances are demonstrated through a series of examples, including wide AFM scans in closed loop mode, probe positioning repeatability of a few tens of nanometer, simultaneous evaporation of large (several hundred of micron square) and nanoscopic metals and fullerene patterns in static, multistep, and dynamic modes. This approach paves the way for further developments, as it fully combines the advantages of conventional stenciling with the ones of an AFM driven shadow mask. PMID:21721701

  5. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  6. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  7. Glassy dynamics of driven elastic manifolds

    SciTech Connect

    Vinokur, V.M.

    1996-12-31

    We study the low-temperature dynamics of an elastic manifold driven through a random medium. For driving forces well below the zero- temperature depinning force, the manifold advances via thermally activated hops over the energy barriers separating favorable metastable states. We develop a scaling theory of the thermally activated dynamics (creep) and find a nonlinear glassy response for the driven manifold, {upsilon}{approximately}exp(-const{times}F{sup - {mu}}). We consider an exactly solvable 1-D model for random driven dynamics which exhibits a creep-like velocity-force characteristic. We discuss a microscopic mechanism for the creep motion and show that the distribution of waiting times for the hopping processes scales as a power law. This power-law distribution naturally yields an exponential response for the creep of the manifold.

  8. Smart friction driven systems

    NASA Astrophysics Data System (ADS)

    Nitsche, Rainer; Gaul, Lothar

    2005-02-01

    Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in a built-up structure and plays an important role in the vibratory response of the structure (Gaul and Nitsche 2001 Appl. Mech. Rev. 54 93-105). For improving the performance of systems, many studies have been carried out to predict, measure and/or enhance the energy dissipation of friction. To enhance the friction damping in joint connections a semi-active joint is investigated. A rotational joint connection is designed and manufactured such that the normal force in the friction interface can be influenced with a piezoelectric stack disc. With the piezoelectric device the normal force and thus the friction damping in the joint connection can be controlled. A control design method, namely semi-active control, is investigated. The recently developed LuGre friction model is used to describe the nonlinear transfer behavior of joints. This model is based on a bristle model and turns out to be highly suitable for systems assembled by such smart joints. Those systems can also be regarded as friction driven systems, since the energy flow is controlled by smart joints. The semi-active method is well suited for large space structures since the friction damping in joints turned out to be a major source of damping. To show the applicability of the proposed concept to large space structures a two-beam system representing a part of a large space structure is considered. Two flexible beams are connected with a semi-active joint connection. It can be shown that the damping of the system can be improved significantly by controlling the normal force in the semi-active joint connection. Experimental results validate the damping improvement due to the semi-active friction damping.

  9. One Force

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald R.

    2002-04-01

    There is only one entity that can extend force and couple through space; and it should be apparent that Electromagnetism is that entity. In the cases of the nuclear strong force and the nuclear weak force, this is the same fundamental Electromagnetism manifesting itself in two different ways in the nucleus. It remains the same basic Electromagnetism. On the other hand, General Relativity fails to produce force at a distance, fails the Cavendish experiment, and does not allow an apple to fall to the ground. The result shows there is only Electromagnetism that functions through physical nature providing gravity, actions in the nucleus, as well as all other physical actions universally, including Gravity and Gravitation. There are many direct proofs of this, the same proofs as in NUCLEAR QUANTUM GRAVITATION. In contrast, General Relativity plainly relies on fallacy abstract and incoherent proofs; proofs which have now been mostly disproved. In the past it was deemed necessary by some to have an "ether" to propagate Electromagnetic waves. The fallacy concept of time space needs "space distortions" in order to cause gravity. However, Electromagnetic gravity does not have this problem. Clearly there is only ONE FORCE that causes Gravity, Electromagnetism, the Nuclear Strong Force, and the Nuclear Weak Force, and that ONE FORCE is Electromagnetism.

  10. Labor Force

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  11. Active and driven hydrodynamic crystals.

    PubMed

    Desreumaux, N; Florent, N; Lauga, E; Bartolo, D

    2012-08-01

    Motivated by the experimental ability to produce monodisperse particles in microfluidic devices, we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theoretical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities. We exploit this feature to derive the equations of motion for the particle positions and orientations. After showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider separately the case where the particles are passively driven by an external force, and the situation where they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle positions and orientations depends not only on the symmetry of the crystals but also on the perturbation wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is independent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work provides a theoretical basis for future experimental work on flowing microfluidic crystals. PMID:22864543

  12. Entropic forces in Brownian motion

    NASA Astrophysics Data System (ADS)

    Roos, Nico

    2014-12-01

    Interest in the concept of entropic forces has risen considerably since Verlinde proposed in 2011 to interpret the force in Newton's second law and gravity as entropic forces. Brownian motion—the motion of a small particle (pollen) driven by random impulses from the surrounding molecules—may be the first example of a stochastic process in which such forces are expected to emerge. In this article, it is shown that at least two types of entropic force can be identified in three-dimensional Brownian motion. This analysis yields simple derivations of known results of Brownian motion, Hooke's law, and—applying an external (non-radial) force—Curie's law and the Langevin-Debye equation.

  13. Dynamic signatures of driven vortex motion.

    SciTech Connect

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  14. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  15. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  16. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  17. Inter-daily variability of a strong thermally-driven wind system over the Atacama Desert of South America: synoptic forcing and short-term predictability using the GFS global model

    NASA Astrophysics Data System (ADS)

    Jacques-Coper, Martín; Falvey, Mark; Muñoz, Ricardo C.

    2015-07-01

    Crucial aspects of a strong thermally-driven wind system in the Atacama Desert in northern Chile during the extended austral winter season (May-September) are studied using 2 years of measurement data from the Sierra Gorda 80-m meteorological mast (SGO, 22° 56' 24″ S; 69° 7' 58″ W, 2,069 m above sea level (a.s.l.)). Daily cycles of atmospheric variables reveal a diurnal (nocturnal) regime, with northwesterly (easterly) flow and maximum mean wind speed of 8 m/s (13 m/s) on average. These distinct regimes are caused by pronounced topographic conditions and the diurnal cycle of the local radiative balance. Wind speed extreme events of each regime are negatively correlated at the inter-daily time scale: High diurnal wind speed values are usually observed together with low nocturnal wind speed values and vice versa. The associated synoptic conditions indicate that upper-level troughs at the coastline of southwestern South America reinforce the diurnal northwesterly wind, whereas mean undisturbed upper-level conditions favor the development of the nocturnal easterly flow. We analyze the skill of the numerical weather model Global Forecast System (GFS) in predicting wind speed at SGO. Although forecasted wind speeds at 800 hPa do show the diurnal and nocturnal phases, observations at 80 m are strongly underestimated by the model. This causes a pronounced daily cycle of root-mean-squared error (RMSE) and bias in the forecasts. After applying a simple Model Output Statistics (MOS) post-processing, we achieve a good representation of the wind speed intra-daily and inter-daily variability, a first step toward reducing the uncertainties related to potential wind energy projects in the region.

  18. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  19. Impulse-driven Micromechanism Capsule

    NASA Astrophysics Data System (ADS)

    Ito, Takahiro; Ishimori, Shohei; Hayashi, Teru

    We have developed a traveling small capsule, which has a smooth outer surface and is driven by inertia force and friction force. Measuring only 7 mm in diameter and 12 mm in length, it is sufficiently small to be placed in the human gullet or intestines. The capsule contains a small magnet and a coil, and an electric pulse drives the magnet to move the capsule. We performed an experimental investigation on making our capsule travel on a plastic material, which has similar elasticity characteristics to the living body. We also showed that it can travel on the surface of a pig's intestine. Our capsule may be useful for medical treatments such as inspection, drug delivery and operation.

  20. Measurements in a pressure-driven and a shear-driven three-dimensional turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.; Mcallister, J. E.

    1982-01-01

    Results of mean velocity field, wall static pressure field and simultaneous, direct force measurements of the local wall shear stress magnitude and direction are reported for a pressure-driven and a shear-driven three-dimensional turbulent boundary layer. These data, particularly the direct force local wall shear data, were obtained to test the validity of several of the near-wall similarity models proposed in the literature for such flows.

  1. Quantitative measurement of tip sample forces by dynamic force spectroscopy in ambient conditions

    NASA Astrophysics Data System (ADS)

    Hölscher, H.; Anczykowski, B.

    2005-03-01

    We introduce a dynamic force spectroscopy technique enabling the quantitative measurement of conservative and dissipative tip-sample forces in ambient conditions. In difference to the commonly detected force-vs-distance curves dynamic force microscopy allows to measure the full range of tip-sample forces without hysteresis effects caused by a jump-to-contact. The approach is based on the specific behavior of a self-driven cantilever (frequency-modulation technique). Experimental applications on different samples (Fischer-sample, silicon wafer) are presented.

  2. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

    2010-06-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  3. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    SciTech Connect

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W. P.

    2010-11-04

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  4. Light-driven robotics for nanoscopy

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper; Palima, Darwin

    2013-03-01

    The science fiction inspired shrinking of macro-scale robotic manipulation and handling down to the micro- and nanoscale regime opens new doors for exploiting the forces and torques of light for micro- and nanoscopic probing, actuation and control. Advancing light-driven micro-robotics requires the optimization of optical forces and torques that, in turn, requires optimization of the underlying light-matter interaction. This report is two-fold desribing the new use of proprietary strongholds we currently are harnessing in the Programmable Phase Optics in Denmark on new means of sculpting of both light and matter for robotically probing at the smallest biological length scales.

  5. Nanomechanical sensing of gravitational wave-induced Casimir force perturbations

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2014-06-01

    It is shown by means of the optical medium analogy that the static Casimir force between two conducting plates is modulated by gravitational waves. The magnitude of the resulting force changes within the range of already existing small force metrology. It is suggested to enhance the effects on a Casimir force oscillator by mechanical parametric amplification driven by periodic illumination of interacting semiconducting boundaries. This represents a novel opportunity for the ground-based laboratory detection of gravitational waves on the nanoscale.

  6. Self-driven jamming in growing microbial populations

    NASA Astrophysics Data System (ADS)

    Delarue, Morgan; Hartung, Jörn; Schreck, Carl; Gniewek, Pawel; Hu, Lucy; Herminghaus, Stephan; Hallatschek, Oskar

    2016-08-01

    In natural settings, microbes tend to grow in dense populations where they need to push against their surroundings to accommodate space for new cells. The associated contact forces play a critical role in a variety of population-level processes, including biofilm formation, the colonization of porous media, and the invasion of biological tissues. Although mechanical forces have been characterized at the single-cell level, it remains elusive how collective pushing forces result from the combination of single-cell forces. Here, we reveal a collective mechanism of confinement, which we call self-driven jamming, that promotes the build-up of large mechanical pressures in microbial populations. Microfluidic experiments on budding yeast populations in space-limited environments show that self-driven jamming arises from the gradual formation and sudden collapse of force chains driven by microbial proliferation, extending the framework of driven granular matter. The resulting contact pressures can become large enough to slow down cell growth, to delay the cell cycle in the G1 phase, and to strain or even destroy the micro-environment through crack propagation. Our results suggest that self-driven jamming and build-up of large mechanical pressures is a natural tendency of microbes growing in confined spaces, contributing to microbial pathogenesis and biofouling.

  7. Planar latch-up microactuator driven by thermoelastic force

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Hyun; Lee, Myung-Lae; Jang, Won-Ick; Choi, Chang-Auck; Kim, Youn Tae

    2000-08-01

    We designed and fabricated a planar-type thermoelastic microactuator with a latch-up operation for optical switching. Latch-up actuation is prerequisite to implement an optical switch with low power consumption and high reliability. The proposed microactuator consists of four cantilever-shaped thermal actuators, four displacement linkages, two shallow arch-shaped leaf springs, a mobile shuttle mass with a micromirror, and four elastic boundaries. The planar microactuator consists of phosphorous-doped 12 micrometers -thick polysilicon as a structural layer and LTO (Low Temperature Oxide) of 3 micrometers thickness as a sacrificial layer on polysilicon substrate. The experimental displacement of the microactuator was more than 21 micrometers at 10V input voltage for the prototype of a thermoelastic microactuator. The frequency response for square wave input was measured up to 50Hz, which was the highest frequency we can detect using optical microscope for now. The proposed microactuators have advantages of easy assembly with other optical component by way of fiber alignment in the substrate plane, and its fabrication process features simplicity while retaining batch-fabrication economy.

  8. Model Driven Engineering

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  9. Forced motion near black holes

    SciTech Connect

    Gair, Jonathan R.; Flanagan, Eanna E.; Drasco, Steve; Hinderer, Tanja; Babak, Stanislav

    2011-02-15

    We present two methods for integrating forced geodesic equations in the Kerr spacetime. The methods can accommodate arbitrary forces. As a test case, we compute inspirals caused by a simple drag force, mimicking motion in the presence of gas. We verify that both methods give the same results for this simple force. We find that drag generally causes eccentricity to increase throughout the inspiral. This is a relativistic effect qualitatively opposite to what is seen in gravitational-radiation-driven inspirals, and similar to what others have observed in hydrodynamic simulations of gaseous binaries. We provide an analytic explanation by deriving the leading order relativistic correction to the Newtonian dynamics. If observed, an increasing eccentricity would thus provide clear evidence that the inspiral was occurring in a nonvacuum environment. Our two methods are especially useful for evolving orbits in the adiabatic regime. Both use the method of osculating orbits, in which each point on the orbit is characterized by the parameters of the geodesic with the same instantaneous position and velocity. Both methods describe the orbit in terms of the geodesic energy, axial angular momentum, Carter constant, azimuthal phase, and two angular variables that increase monotonically and are relativistic generalizations of the eccentric anomaly. The two methods differ in their treatment of the orbital phases and the representation of the force. In the first method, the geodesic phase and phase constant are evolved together as a single orbital phase parameter, and the force is expressed in terms of its components on the Kinnersley orthonormal tetrad. In the second method, the phase constants of the geodesic motion are evolved separately and the force is expressed in terms of its Boyer-Lindquist components. This second approach is a direct generalization of earlier work by Pound and Poisson [A. Pound and E. Poisson, Phys. Rev. D 77, 044013 (2008).] for planar forces in a

  10. Stochastically forced zonal flows

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kaushik

    This thesis investigates the dynamics of multiple zonal jets, that spontaneously emerge on the barotropic beta-plane, driven by a homogenous and rapidly decorrelating forcing and damped by bottom drag. Decomposing the barotropic vorticity equation into the zonal-mean and eddy equations, and neglecting the eddy-eddy interactions, defines the quasi-linear (QL) system. Numerical solution of the QL system shows zonal jets with length scales comparable to jets obtained by solving the nonlinear (NL) system. Starting with the QL system, one can construct a deterministic equation for the evolution of the two-point single-time correlation function of the vorticity, from which one can obtain the Reynolds stress that drives the zonal mean flow. This deterministic system has an exact nonlinear solution, which is a homogenous eddy field with no jets. When the forcing is also isotropic in space, we characterize the linear stability of this jetless solution by calculating the critical stability curve in the parameter space and successfully comparing this analytic result with numerical solutions of the QL system. But the critical drag required for the onset of NL zonostrophic instability is up to a factor of six smaller than that for QL zonostrophic instability. The constraint of isotropic forcing is then relaxed and spatially anisotropic forcing is used to drive the jets. Meridionally drifting jets are observed whenever the forcing breaks an additional symmetry that we refer to as mirror, or reflexional symmetry. The magnitude of drift speed in our results shows a strong variation with both mu and beta: while the drift speed decreases almost linearly with decreasing mu, it actually increases as beta decreases. Similar drifting jets are also observed in QL, with the same direction (i.e. northward or southward) and similar magnitude as NL jet-drift. Starting from the laminar solution, and assuming a mean-flow that varies slowly with reference to the scale of the eddies, we obtain

  11. ISOTROPICALLY DRIVEN VERSUS OUTFLOW DRIVEN TURBULENCE: OBSERVATIONAL CONSEQUENCES FOR MOLECULAR CLOUDS

    SciTech Connect

    Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.

    2010-10-10

    Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.

  12. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  13. Forces driving epithelial wound healing

    NASA Astrophysics Data System (ADS)

    Brugués, Agustí; Anon, Ester; Conte, Vito; Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2014-09-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and `purse-string’ contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate.

  14. Forces driving epithelial wound healing

    PubMed Central

    Veldhuis, Jim H.; Gupta, Mukund; Colombelli, Julien; Muñoz, José J.; Brodland, G. Wayne; Ladoux, Benoit; Trepat, Xavier

    2015-01-01

    A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and “purse-string” contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate. PMID:27340423

  15. A force-feedback control system for micro-assembly

    NASA Astrophysics Data System (ADS)

    Lu, Zhe; Chen, Peter C. Y.; Ganapathy, Anand; Zhao, Guoyong; Nam, Joohoo; Yang, Guilin; Burdet, Etienne; Teo, Cheeleong; Meng, Qingnian; Lin, Wei

    2006-09-01

    In this paper, we report the development of an explicit force-feedback control system for micro-assembly, focusing on the key issues of force transmission and control. The force-feedback system is incorporated with a compound flexure stage, which is driven by a voice-coil actuator and designed to provide frictionless translation motion along one axis. A force sensor measures the interaction force between the micromanipulator and its environment, while an explicit force controller controls the interaction force to follow a desired force trajectory. The effectiveness of this prototype force-control system has been demonstrated in an experimental application, where parts (with dimensions in microns) were picked up and assembled under explicit force-feedback control.

  16. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  17. Torque Control of Underactuated Tendon-driven Robotic Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Wampler, Charles W. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Bridgwater, Lyndon (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  18. Glacial cycles and astronomical forcing

    SciTech Connect

    Muller, R.A.; MacDonald, G.J.

    1997-07-11

    Narrow spectral features in ocean sediment records offer strong evidence that the cycles of glaciation were driven by astronomical forces. Two million years ago, the cycles match the 41,000-year period of Earth`s obliquity. This supports the Croll/Milankovitch theory, which attributes the cycles to variations in insolation. But for the past million years, the spectrum is dominated by a single 100,000-year feature and is a poor match to the predictions of insolation models. The spectrum can be accounted for by a theory that derives the cycles of glaciation from variations in the inclination of Earth`s orbital plane.

  19. Outflow Driven Turbulence in Star Forming Clouds

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    Setting young stellar object jets and outflows in their broadest context requires an understanding of outflows as “feedback” in the development of molecular cloud turbulence and the determination of star formation efficiencies. In this contribution I review our group’s recent studies exploring relationships between protostellar outflows and turbulence in molecular clouds. We first present studies of turbulence and fossil cavities driven by YSO outflows using numerical simulations which track the evolution of single transient jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. These studies demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Next we present simulations of multiple interacting jets. We show that turbulence can readily be sustained by these interactions and show that it is possible to broadly characterize an effective driving scale of the outflows. Comparing the velocity spectrum obtained in our studies to that of an isotropically forced control we show that in outflow driven turbulence a power law of the form E(k) ∝ k - β is indeed achieved. However we find a steeper spectrum β ˜ 3 is obtained in outflow driven turbulence models than in isotropically forced simulations β ˜ 2. 0. Taken together both studies provide broad support for the conclusion that fossil cavities driven by decaying jets can provide a source of turbulence and feedback which mediate star formation processes in molecular clouds. Whether this does obtain in real clouds remains a point which must be demonstrated

  20. Quantum thermodynamics of the driven resonant level model

    NASA Astrophysics Data System (ADS)

    Bruch, Anton; Thomas, Mark; Viola Kusminskiy, Silvia; von Oppen, Felix; Nitzan, Abraham

    2016-03-01

    We present a consistent thermodynamic theory for the resonant level model in the wide-band limit, whose level energy is driven slowly by an external force. The problem of defining "system" and "bath" in the strong-coupling regime is circumvented by considering as the system everything that is influenced by the externally driven level. The thermodynamic functions that are obtained to first order beyond the quasistatic limit fulfill the first and second law with a positive entropy production, successfully connect to the forces experienced by the external driving, and reproduce the correct weak-coupling limit of stochastic thermodynamics.

  1. Manipulating bubbles with secondary Bjerknes forces

    SciTech Connect

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  2. Driven Markovian Quantum Criticality.

    PubMed

    Marino, Jamir; Diehl, Sebastian

    2016-02-19

    We identify a new universality class in one-dimensional driven open quantum systems with a dark state. Salient features are the persistence of both the microscopic nonequilibrium conditions as well as the quantum coherence of dynamics close to criticality. This provides a nonequilibrium analogue of quantum criticality, and is sharply distinct from more generic driven systems, where both effective thermalization as well as asymptotic decoherence ensue, paralleling classical dynamical criticality. We quantify universality by computing the full set of independent critical exponents within a functional renormalization group approach. PMID:26943517

  3. The driven spinning top

    NASA Astrophysics Data System (ADS)

    Grosu, Ioan; Featonby, David

    2016-05-01

    This driven top is quite a novelty and can, with some trials, be made using the principles outlined here. This new top has many applications in developing both understanding and skills and these are detailed in the article. Depending on reader’s available time and motivation they may feel an urge to make one themselves, or simply invest a few pounds in the one that has been designed, tested and manufactured to a high standard. Either way the unique design of the driven top can provide several hours of interesting experimentation. Our aim here is simply to inform and inspire readers to further investigation and experimentation.

  4. Transport in driven plasmas

    SciTech Connect

    Fisch, N.J.

    1985-03-01

    A plasma in contact with an external source of power, especially a source that interacts specifically with high-velocity electrons, exhibits transport properties, such as conductivity, different from those of an isolated plasma near thermal equilibrium. This is true even when the bulk of the particles in the driven plasma are near thermal equilibrium. To describe the driven plasma we derive an adjoint equation to the inhomogeneous, linearized, dynamic Boltzmann equation. The Green's functions for a variety of plasma responses can then be generated. It is possible to modify the Chapman-Enskog expansion in order to incorporate the response functions derived here.

  5. Hands-on force spectroscopy: weird springs and protein folding

    NASA Astrophysics Data System (ADS)

    Euler, Manfred

    2008-05-01

    A force spectroscopy model experiment is presented using a low-cost tensile apparatus described earlier. Force-extension measurements of twisted rubber bands are obtained. They exhibit a complex nonlinear elastic behaviour that resembles atomic force spectroscopy investigations of molecules of titin, a muscle protein. The model experiments open up intriguing possibilities to stimulate insight into entropy-driven self-organization of soft biological matter at the nanometre scale and into protein folding by hands-on experience and analogical transfer.

  6. Atomic Force Microscope Mediated Chromatography

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  7. Data Driven Teachers

    ERIC Educational Resources Information Center

    Tech & Learning, 2009

    2009-01-01

    Data-driven decision-making (DDDM) is a system of teaching and management practices that gets better information about students into the hands of classroom teachers. This article discusses the five major elements: (1) good baseline data; (2) measurable instructional goals; (3) frequent formative assessment; (4) professional learning communities;…

  8. The Driven Spinning Top

    ERIC Educational Resources Information Center

    Grosu, Ioan; Featonby, David

    2016-01-01

    This driven top is quite a novelty and can, with some trials, be made using the principles outlined here. This new top has many applications in developing both understanding and skills and these are detailed in the article. Depending on reader's available time and motivation they may feel an urge to make one themselves, or simply invest a few…

  9. Plasma sheath driven targets

    NASA Astrophysics Data System (ADS)

    Brownell, J. H.; Freeman, B. L.

    1980-02-01

    Plasma focus driven target implosions are simulated using hydrodynamic-burn codes. Support is given to the idea that the use of a target in a plasma focus should allow 'impedance matching' between the fuel and gun, permitting larger fusion yields from a focus-target geometry than the scaling laws for a conventional plasma focus would predict.

  10. Argument-Driven Inquiry

    ERIC Educational Resources Information Center

    Sampson, Victor; Grooms, Jonathon; Walker, Joi

    2009-01-01

    Argument-Driven Inquiry (ADI) is an instructional model that enables science teachers to transform a traditional laboratory activity into a short integrated instructional unit. To illustrate how the ADI instructional model works, this article describes an ADI lesson developed for a 10th-grade chemistry class. This example lesson was designed to…

  11. Hydrodynamic synchronisation of optically driven rotors

    NASA Astrophysics Data System (ADS)

    Debono, Luke J.; Box, Stuart; Phillips, David B.; Simpson, Stephen H.; Hanna, Simon

    2015-08-01

    Hydrodynamic coupling is thought to play a role in the coordinated beating of cilia and flagella, and may inform the future design of artificial swimmers and pumps. In this study, optical tweezers are used to investigate the hydrodynamic coupling between a pair of driven oscillators. The theoretical model of Lenz and Ryskin [P. Lenz and A. Ryskin, Phys. Biol. 3, 285{294 (2006)] is experimentally recreated, in which each oscillator consists of a sphere driven in a circular trajectory. The optical trap position is maintained ahead of the sphere to provide a tangential driving force. The trap is also moved radially to harmonically constrain the sphere to the circular trajectory. Analytically, it has been shown that two oscillators of this type are able to synchronise or phase-lock under certain conditions. We explore the interplay between synchronisation mechanisms and find good agreement between experiment, theory and Brownian dynamics simulations.

  12. Position Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Hargrave, B.; Pementer, Frank

    2011-01-01

    Conventionally, tendon-driven manipulators implement some force control scheme based on tension feedback. This feedback allows the system to ensure that the tendons are maintained taut with proper levels of tensioning at all times. Occasionally, whether it is due to the lack of tension feedback or the inability to implement sufficiently high stiffnesses, a position control scheme is needed. This work compares three position controllers for tendon-driven manipulators. A new controller is introduced that achieves the best overall performance with regards to speed, accuracy, and transient behavior. To compensate for the lack of tension feedback, the controller nominally maintains the internal tension on the tendons by implementing a two-tier architecture with a range-space constraint. These control laws are validated experimentally on the Robonaut-2 humanoid hand. I

  13. Measurements of gravity driven granular channel flows

    NASA Astrophysics Data System (ADS)

    Facto, Kevin

    This dissertation presents experiments that studied two gravity driven granular channel flows. The first experiment used magnetic resonance imaging to measure the density and displacement distributions of poppy seeds flowing in a rough walled channel. Time-averaged measurements of normalized velocity and density showed little flow speed dependence. Instantaneous measurements, however, showed marked velocity dependence in the displacement distributions. There was evidence of aperiodic starting and stopping at lower flow speeds and the onset of density waves on a continuous flow at higher speeds. The second experiment measured forces in all three spatial directions at the boundary of a flow of steel balls. The relationship between the normal and the tangential forces were examined statistically and compared to the Coulomb friction model. For both large and small forces, the tangential and normal forces are unrelated, as there appears to be a strong tendency for the tangential force to maintain a value that will bear the weight the weight of the particles in flow.

  14. The swim force as a body force

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John

    2015-11-01

    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  15. Response to reflected-force feedback to fingers in teleoperations

    NASA Technical Reports Server (NTRS)

    Sutter, P. H.; Iatridis, J. C.; Thakor, N. V.

    1989-01-01

    Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues.

  16. Exponential Mixing of the 3D Stochastic Navier-Stokes Equations Driven by Mildly Degenerate Noises

    SciTech Connect

    Albeverio, Sergio; Debussche, Arnaud; Xu Lihu

    2012-10-15

    We prove the strong Feller property and exponential mixing for 3D stochastic Navier-Stokes equation driven by mildly degenerate noises (i.e. all but finitely many Fourier modes being forced) via a Kolmogorov equation approach.

  17. Parametric resonance induced chaos in magnetic damped driven pendulum

    NASA Astrophysics Data System (ADS)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  18. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  19. Stacking trilayers to increase force generation

    NASA Astrophysics Data System (ADS)

    Farajollahi, Meisam; Ebrahimi Takallo, Saeede; Woehling, Vincent; Fannir, Adelyne; Plesse, Cédric; Vidal, Frédéric; Sassani, Farrokh; Madden, John D. W.

    2015-04-01

    Trilayer actuators enable large mechanical amplification, but at the expense of force. Thicker trilayers can generate more force, but displacement drops. Ideally of course a combination of high force and large displacement is desirable. In this work we explore the stacking of trilayers driven by conducting polymers in order to combine large force and reasonable deflection. Trilayer actuators operating in air are simulated using the finite element method. Force generated and the maximum beam deflection of individual and multiple stacked trilayers are studied in terms of the interface condition of the neighboring layers and the length of the auxiliary trilayer. The best performance is obtained when trilayers are able to slide with respect to each other so forces can add without impeding displacement. This case will require low friction and uniformity among the trilayers. Bonding of stacked trilayers along their entire length increases force, but dramatically reduces displacement. An alternative which leads to moderate displacements with increased force is the use of a long and a short trilayer that are bonded.

  20. Test-driven programming

    NASA Astrophysics Data System (ADS)

    Georgiev, Bozhidar; Georgieva, Adriana

    2013-12-01

    In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.

  1. Electrically driven optical antennas

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Kullock, René; Prangsma, Jord; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-09-01

    Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light or indirectly via excited discrete states in active materials in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.

  2. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  3. Adiabatically driven Brownian pumps.

    PubMed

    Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2013-07-01

    We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411

  4. Gas-driven microturbine

    SciTech Connect

    Sniegowski, J.J.; Rodgers, M.S.; McWhorter, P.J.; Aeschliman, D.P.; Miller, W.M.

    1996-06-27

    This paper describes an invention which relates to microtechnology and the fabrication process for developing microelectrical systems. It describes a means for fabricating a gas-driven microturbine capable of providing autonomous propulsion in which the rapidly moving gases are directed through a micromachined turbine to power devices by direct linkage or turbo-electric generators components in a domain ranging from tenths of micrometers to thousands of micrometers.

  5. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  6. Data-Driven Objectness.

    PubMed

    Hongwen Kang; Hebert, Martial; Efros, Alexei A; Kanade, Takeo

    2015-01-01

    We propose a data-driven approach to estimate the likelihood that an image segment corresponds to a scene object (its "objectness") by comparing it to a large collection of example object regions. We demonstrate that when the application domain is known, for example, in our case activity of daily living (ADL), we can capture the regularity of the domain specific objects using millions of exemplar object regions. Our approach to estimating the objectness of an image region proceeds in two steps: 1) finding the exemplar regions that are the most similar to the input image segment; 2) calculating the objectness of the image segment by combining segment properties, mutual consistency across the nearest exemplar regions, and the prior probability of each exemplar region. In previous work, parametric objectness models were built from a small number of manually annotated objects regions, instead, our data-driven approach uses 5 million object regions along with their metadata information. Results on multiple data sets demonstrates our data-driven approach compared to the existing model based techniques. We also show the application of our approach in improving the performance of object discovery algorithms. PMID:26353218

  7. Trace anomaly driven inflation

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hertog, T.; Reall, H. S.

    2001-04-01

    This paper investigates Starobinsky's model of inflation driven by the trace anomaly of conformally coupled matter fields. This model does not suffer from the problem of contrived initial conditions that occurs in most models of inflation driven by a scalar field. The universe can be nucleated semiclassically by a cosmological instanton that is much larger than the Planck scale provided there are sufficiently many matter fields. There are two cosmological instantons: the four sphere and a new ``double bubble'' solution. This paper considers a universe nucleated by the four sphere. The AdS/CFT correspondence is used to calculate the correlation function for scalar and tensor metric perturbations during the ensuing de Sitter phase. The analytic structure of the scalar and tensor propagators is discussed in detail. Observational constraints on the model are discussed. Quantum loops of matter fields are shown to strongly suppress short scale metric perturbations, which implies that short distance modifications of gravity would probably not be observable in the cosmic microwave background. This is probably true for any model of inflation provided there are sufficiently many matter fields. This point is illustrated by a comparison of anomaly driven inflation in four dimensions and in a Randall-Sundrum brane-world model.

  8. Dissipation and oscillatory solvation forces in confined liquids studied by small-amplitude atomic force spectroscopy.

    PubMed

    de Beer, Sissi; van den Ende, Dirk; Mugele, Frieder

    2010-08-13

    We determine conservative and dissipative tip-sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat surfaces of highly ordered pyrolytic graphite. Taking into account the base motion and the frequency-dependent added mass and hydrodynamic damping on the AFM cantilever, we develop a reliable force inversion procedure that allows for extracting tip-sample interaction forces for a wide range of drive frequencies. We systematically eliminate the effect of finite drive amplitudes. Dissipative tip-sample forces are consistent with the bulk viscosity down to a thickness of 2-3 nm. Dissipation measurements far below resonance, which we argue to be the most reliable, indicate the presence of peaks in the damping, corresponding to an enhanced 'effective' viscosity, upon expelling the last and second-last molecular layer. PMID:20639584

  9. Coalescence cascade of dissipative solitons in parametrically driven systems.

    PubMed

    Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R

    2011-09-01

    Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473

  10. Nanonet Force Microscopy for Measuring Cell Forces.

    PubMed

    Sheets, Kevin; Wang, Ji; Zhao, Wei; Kapania, Rakesh; Nain, Amrinder S

    2016-07-12

    The influence of physical forces exerted by or felt by cells on cell shape, migration, and cytoskeleton arrangement is now widely acknowledged and hypothesized to occur due to modulation of cellular inside-out forces in response to changes in the external fibrous environment (outside-in). Our previous work using the non-electrospinning Spinneret-based Tunable Engineered Parameters' suspended fibers has revealed that cells are able to sense and respond to changes in fiber curvature and structural stiffness as evidenced by alterations to focal adhesion cluster lengths. Here, we present the development and application of a suspended nanonet platform for measuring C2C12 mouse myoblast forces attached to fibers of three diameters (250, 400, and 800 nm) representing a wide range of structural stiffness (3-50 nN/μm). The nanonet force microscopy platform measures cell adhesion forces in response to symmetric and asymmetric external perturbation in single and cyclic modes. We find that contractility-based, inside-out forces are evenly distributed at the edges of the cell, and that forces are dependent on fiber structural stiffness. Additionally, external perturbation in symmetric and asymmetric modes biases cell-fiber failure location without affecting the outside-in forces of cell-fiber adhesion. We then extend the platform to measure forces of (1) cell-cell junctions, (2) single cells undergoing cyclic perturbation in the presence of drugs, and (3) cancerous single-cells transitioning from a blebbing to a pseudopodial morphology. PMID:27410747

  11. Forcing it on: Cytoskeletal dynamics during lymphocyte activation

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Arpita

    2012-02-01

    Formation of the immune synapse during lymphocyte activation involves cell spreading driven by large scale physical rearrangements of the actin cytoskeleton and the cell membrane. Several recent observations suggest that mechanical forces are important for efficient T cell activation. How forces arise from the dynamics of the cytoskeleton and the membrane during contact formation, and their effect on signaling activation is not well understood. We have imaged membrane topography, actin dynamics and the spatiotemporal localization of signaling clusters during the very early stages of spreading. Formation of signaling clusters was closely correlated with the movement and topography of the membrane in contact with the activating surface. Further, we observed membrane waves driven by actin polymerization originating at these signaling clusters. Actin-driven membrane protrusions likely play an important role in force generation at the immune synapse. In order to study cytoskeletal forces during T-cell activation, we studied cell spreading on elastic gels. We found that gel stiffness influences cell morphology, actin dynamics and receptor activation. Efforts to determine the quantitative relationships between cellular forces and signaling are underway. Our results suggest a role for cytoskeleton driven forces during signaling activation in lymphocytes.

  12. Driven motion of vortices in superconductors

    SciTech Connect

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa{sub 2}CU{sub 3}O{sub 7}). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order.

  13. Micro-force sensing mobile microrobots

    NASA Astrophysics Data System (ADS)

    Jing, Wuming; Cappelleri, David J.

    2015-06-01

    This paper presents the first microscale micro force sensing mobile microrobot. The design consists of a planar, vision-based micro force sensor end-effector, while the microrobot body is made from photoresist mixed with nickel particles that is driven by an exterior magnetic field. With a known stiffness, the manipulation forces can be determined from observing the deformation of the end-effector through a camera attached to an optical microscope. After analyzing and calibrating the stiffness of a micromachined prototype, proof of concept tests are conducted to verify this microrobot prototype possessing the mobility and in-situ force sensing capabilities. This microscale micro-Force Sensing Mobile Microrobot (μFSMM) is able to translate with the speed up to 10 mm=s in a fluid environment. The calibrated stiffness of the micro force sensor end-effector of the μFSMM is on the order of 10-2 N=m. The force sensing resolution with the current vision system is approximately 100 nN.

  14. Dissipative adaptation in driven self-assembly.

    PubMed

    England, Jeremy L

    2015-11-01

    In a collection of assembling particles that is allowed to reach thermal equilibrium, the energy of a given microscopic arrangement and the probability of observing the system in that arrangement obey a simple exponential relationship known as the Boltzmann distribution. Once the same thermally fluctuating particles are driven away from equilibrium by forces that do work on the system over time, however, it becomes significantly more challenging to relate the likelihood of a given outcome to familiar thermodynamic quantities. Nonetheless, it has long been appreciated that developing a sound and general understanding of the thermodynamics of such non-equilibrium scenarios could ultimately enable us to control and imitate the marvellous successes that living things achieve in driven self-assembly. Here, I suggest that such a theoretical understanding may at last be emerging, and trace its development from historic first steps to more recent discoveries. Focusing on these newer results, I propose that they imply a general thermodynamic mechanism for self-organization via dissipation of absorbed work that may be applicable in a broad class of driven many-body systems. PMID:26530021

  15. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  16. Dissipative adaptation in driven self-assembly

    NASA Astrophysics Data System (ADS)

    England, Jeremy L.

    2015-11-01

    In a collection of assembling particles that is allowed to reach thermal equilibrium, the energy of a given microscopic arrangement and the probability of observing the system in that arrangement obey a simple exponential relationship known as the Boltzmann distribution. Once the same thermally fluctuating particles are driven away from equilibrium by forces that do work on the system over time, however, it becomes significantly more challenging to relate the likelihood of a given outcome to familiar thermodynamic quantities. Nonetheless, it has long been appreciated that developing a sound and general understanding of the thermodynamics of such non-equilibrium scenarios could ultimately enable us to control and imitate the marvellous successes that living things achieve in driven self-assembly. Here, I suggest that such a theoretical understanding may at last be emerging, and trace its development from historic first steps to more recent discoveries. Focusing on these newer results, I propose that they imply a general thermodynamic mechanism for self-organization via dissipation of absorbed work that may be applicable in a broad class of driven many-body systems.

  17. System Driven Workarounds

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegael Marie

    2013-01-01

    The Aviation Safety Reporting System (ASRS) in a partnership between the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), participating carriers, and labor organizations. It is designed to improve the National Airspace System by collecting and studying reports detailing unsafe conditions and events in the aviation industry. Employees are able to report safety issues or concerns with confidentiality and without fear of discipline. Safety reports highlighting system driven workarounds for the aviation community highlight the human workaround for the complex aviation system.

  18. Lorentz Body Force Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2003-01-01

    The Lorentz force induced by a traveling magnetic field (TMF) in a cylindrical container has been calculated. The force can be used to control flow in dectrically conducting melts and the direction of the magnetic field and resulting flow can be reversed. A TMF can be used to partially cancel flow driven by buoyancy. The penetration of the field into the cylinder decreases as the frequency increases, and there exists an optimal value of frequency for which the resulting force is a maximum. Expressions for the Lorentz force in the limiting cases of low frequency and infinite cylinder are also given and compared to the numerical calculations.

  19. Phase contrast and operation regimes in multifrequency atomic force microscopy

    SciTech Connect

    Santos, Sergio

    2014-04-07

    In amplitude modulation atomic force microscopy the attractive and the repulsive force regimes induce phase shifts above and below 90°, respectively. In the more recent multifrequency approach, however, multiple operation regimes have been reported and the theory should be revisited. Here, a theory of phase contrast in multifrequency atomic force microscopy is developed and discussed in terms of energy transfer between modes, energy dissipation and the kinetic energy and energy transfer associated with externally driven harmonics. The single frequency virial that controls the phase shift might undergo transitions in sign while the average force (modal virial) remains positive (negative)

  20. Forced wetting and hydrodynamic assist

    NASA Astrophysics Data System (ADS)

    Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël

    2015-11-01

    Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.

  1. Collisional effects on nonlinear ion drag force for small grains

    SciTech Connect

    Hutchinson, I. H.; Haakonsen, C. B.

    2013-08-15

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  2. Ultrasensitive hysteretic force sensing with parametric nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Papariello, Luca; Zilberberg, Oded; Eichler, Alexander; Chitra, R.

    2016-08-01

    We propose a method for linear detection of weak forces using parametrically driven nonlinear resonators. The method is based on a peculiar feature in the response of the resonator to a near resonant periodic external force. This feature stems from a complex interplay among the parametric drive, external force, and nonlinearities. For weak parametric drive, the response exhibits the standard Duffing-like single jump hysteresis. For stronger drive amplitudes, we find a qualitatively new double jump hysteresis which arises from stable solutions generated by the cubic Duffing nonlinearity. The additional jump exists only if the external force is present and the frequency at which it occurs depends linearly on the amplitude of the external force, permitting a straightforward ultrasensitive detection of weak forces. With state-of-the-art nanomechanical resonators, our scheme should permit force detection in the attonewton range.

  3. THERMALLY DRIVEN ATMOSPHERIC ESCAPE

    SciTech Connect

    Johnson, Robert E.

    2010-06-20

    Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

  4. Force propagation and force generation in cells.

    PubMed

    Jonas, Oliver; Duschl, Claus

    2010-09-01

    Determining how forces are produced by and propagated through the cytoskeleton (CSK) of the cell is of great interest as dynamic processes of the CSK are intimately correlated with many molecular signaling pathways. We are presenting a novel approach for integrating measurements on cell elasticity, transcellular force propagation, and cellular force generation to obtain a comprehensive description of dynamic and mechanical properties of the CSK under force loading. This approach uses a combination of scanning force microscopy (SFM) and Total Internal Reflection Fluorescence (TIRF) microscopy. We apply well-defined loading schemes onto the apical cell membrane of fibroblasts using the SFM and simultaneously use TIRF microscopy to image the topography of the basal cell membrane. The locally distinct changes of shape and depth of the cytoskeletal imprints onto the basal membrane are interpreted as results of force propagation through the cytoplasm. This observation provides evidence for the tensegrity model and demonstrates the usefulness of our approach that does not depend on potentially disturbing marker compounds. We confirm that the actin network greatly determines cell stiffness and represents the substrate that mediates force transduction through the cytoplasm of the cell. The latter is an essential feature of tensegrity. Most importantly, our new finding that, both intact actin and microtubule networks are required for enabling the cell to produce work, can only be understood within the framework of the tensegrity model. We also provide, for the first time, a direct measurement of the cell's mechanical power output under compression at two femtowatts. PMID:20607861

  5. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  6. Energizing porters by proton-motive force.

    PubMed

    Nelson, N

    1994-11-01

    It is generally accepted that the chemistry of water was the most crucial determinant in shaping life on earth. Among the more important chemical features of water is its dissociation into protons and hydroxyl ions. The presence of relatively high proton concentrations in the ambient solution resulted in the evolution of proton pumps during the dawn of life on earth. These proton pumps maintained neutral pH inside the cells and generated electrochemical gradients of protons (proton-motive force) across their membranes. The existence of proton-motive force enabled the evolution of porters driven by it that are most probably among the more primitive porters in the world. The directionality of the substrate transport by the porters could be to both sides of the membranes because they can serve as proton symporters or antiporters. One of the most important subjects of this meeting is the mechanism by which proton-motive and other ion-motive forces drive the transport processes through porters. Is there a common mechanism of action for all proton-driven porters? Is there some common partial reaction by which we can identify the way that porters are energized by proton-motive force? Is there a common coupling between proton movement and uptake or secretion of certain molecules? Even a partial answer to one of these questions would advance our knowledge... or confusion. As my mentor Efraim Racker used to say: 'If you are not totally confused you do not understand the issue'. PMID:7823046

  7. Forces on particles in microstreaming flows

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Thameem, Raqeeb

    2015-11-01

    In various microfluidic applications, vortical steady streaming from ultrasonically driven microbubbles is used in concert with a pressure-driven channel flow to manipulate objects. While a quantitative theory of this boundary-induced streaming is available, little work has been devoted to a fundamental understanding of the forces exerted on microparticles in boundary streaming flows, even though the differential action of such forces is central to applications like size-sensitive sorting. Contrary to other microfluidic sorting devices, the forces in bubble microstreaming act over millisecond times and micron length scales, without the need for accumulated deflections over long distances. Accordingly, we develop a theory of hydrodynamic forces on the fast time scale of bubble oscillation using the lubrication approximation, showing for the first time how particle displacements are rectified near moving boundaries over multiple oscillations in parallel with the generation of the steady streaming flow. The dependence of particle migration on particle size and the flow parameters is compared with experimental data. The theory is applicable to boundary streaming phenomena in general and demonstrates how particles can be sorted very quickly and without compromising device throughput. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  8. Six axis force feedback input device

    NASA Technical Reports Server (NTRS)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  9. Stochastic regimes in the driven oscillator with a step-like nonlinearity

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J. K.; Kondo, K.; Kando, M.; Yogo, A.; Bulanov, S. S.

    2015-06-15

    A nonlinear oscillator with an abruptly inhomogeneous restoring force driven by an uniform oscillating force exhibits stochastic properties under specific resonance conditions. This behaviour elucidates the elementary mechanism of the electron energization in the strong electromagnetic wave interaction with thin targets.

  10. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  11. Liquid mixing driven motions of floating macroscopic objects

    NASA Astrophysics Data System (ADS)

    Su, Ming

    2007-04-01

    Dropping miscible and low-density organic solvents into water generates translational and rotational motions of floating objects including oil droplets, polymer half spheres, and model boats. The moving speed of the boat at different loads and the force produced by solvent drops are measured. In contrast to motions driven by surface tension of monolayer, the liquid mixing driven motion can be dynamically steered without restriction and continued provided the supply is maintained and the amount of water is large enough. Such motions are the result of Marangoni instability in binary liquid-liquid systems with intentionally produced concentration gradients behind the floating objects.

  12. Surface tension driven flow in glass melts and model fluids

    NASA Technical Reports Server (NTRS)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  13. Climate-driven regime shift of a temperate marine ecosystem.

    PubMed

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-01

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. PMID:27387951

  14. Dynamo Driven By Inertial Instabilities, Application to the Moon

    NASA Astrophysics Data System (ADS)

    Cebron, D.; Hollerbach, R.; Vantieghem, S.; Noir, J.; Schaeffer, N.

    2014-12-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, large-scale, turbulent flows may also be driven by the combined action of boundary topography (i.e. departure from spherical geometry), and mechanical forcings (e.g. libration, tides). This has been previously proposed to explain the magnetic data we have on the star τ-boo, Mars, or the early Moon. In this work, we use theoretical analysis and global magneto-hydrodynamic simulations to show, for the first time, that: (i) the tidal forcing can generate a (dipole-dominated) large-scale magnetic field in global simulations, an hypothesis previously assumed by Le Bars et al. (2011) in their model of lunar magnetic history. (ii) latitudinal libration (i.e. an oscillation of the figure axis with respect to the mean rotation axis) can excite inertial instabilities, which may have driven dynamos in telluric bodies such as the Early Moon. We discuss our results in the light of magnetic observations. In particular, we propose here a new possible mechanism for the early Moon dynamo, based on latitudinal libration driven instabilities. This new scenario is evaluated by comparing the associated estimates of the surface magnetic field strength with the recent paleo-magnetic lunar measurements.

  15. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  16. Crossflow force transducer. [LMFBR

    SciTech Connect

    Mulcahy, T M

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related.

  17. Forces in General Relativity

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2010-01-01

    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  18. Debunking Coriolis Force Myths

    ERIC Educational Resources Information Center

    Shakur, Asif

    2014-01-01

    Much has been written and debated about the Coriolis force. Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without…

  19. Steady Capillary Driven Flow

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.

    1996-01-01

    A steady capillary driven flow is developed for a liquid index in a circular tube which is partially coated with a surface modifier to produce a discontinuous wetting condition from one side of the tube to the other. The bulk flow is novel in that it is truly steady, and controlled solely by the physics associated with dynamic wetting. The influence of gravity on the flow is minimized through the use of small diameter tubes approximately O(1 mm) tested horizontally in a laboratory and larger tubes approximately O(10 mm) tested in the low gravity environment of a drop tower. Average steady velocities are predicted and compared against a large experimental data set which includes the effects of tube dimensions and fluid properties. The sensitivity of the velocity to surface cleanliness is dramatic and the advantages of experimentation in a microgravity environment are discussed.

  20. Soliton driven angiogenesis.

    PubMed

    Bonilla, L L; Carretero, M; Terragni, F; Birnir, B

    2016-01-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process. PMID:27503562

  1. Muscle-driven nanogenerators

    DOEpatents

    Wang, Zhong L.; Yang, Rusen

    2011-03-01

    In a method of generating electricity, a plurality of living cells are grown on an array of piezoelectric nanowires so that the cells engage the piezoelectric nanowires. Induced static potentials are extracted from at least one of the piezoelectric nanowires when at least one of the cells deforms the at least one of the piezoelectric nanowires. A cell-driven electrical generator that includes a substrate and a plurality of spaced-apart piezoelectric nanowires disposed on the substrate. A plurality of spaced-apart conductive electrodes interact with the plurality of piezoelectric nanowires. A biological buffer layer that is configured to promote growth of cells is disposed on the substrate so that cells placed on the substrate will grow and engage the piezoelectric nanowires.

  2. Soliton driven angiogenesis

    PubMed Central

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-01-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process. PMID:27503562

  3. Soliton driven angiogenesis

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  4. Consistent model driven architecture

    NASA Astrophysics Data System (ADS)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  5. Multilane driven diffusive systems

    NASA Astrophysics Data System (ADS)

    Curatolo, A. I.; Evans, M. R.; Kafri, Y.; Tailleur, J.

    2016-03-01

    We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method for constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong ‘shear localization’ along the network.

  6. Fluid-driven metamorphism

    NASA Astrophysics Data System (ADS)

    Jamtveit, B.; Ulven, O. I.; Malthe-Sorenssen, A.

    2014-12-01

    Metamorphic processes in the Earth crust are almost invariably associated with fluid migration. Many lines of evidence suggest that fluid migration is intimately coupled both to the metamorphic reactions, and to associated deformation processes. Petrologic arguments suggest that all granulite facies and most amphibolite facies rocks are essentially dry (no free fluid phase) at normal geothermal gradients outside periods of heating-produced fluid generation. In addition, except at high pressure - low temperature condition, fluid-consuming reactions leads to an increase in solid volume and a potential clogging of any initial pore space. Hence, fluid migration in medium and high-grade metamorphic rocks is in general associated with some porosity producing process. Porosity generation may occur by either chemical or mechanical processes. In systems with high fluid fluxes, porosity may be produced by dissolution and transport of mass out of the system. Such fluxes can normally only be sustained over short length scales and limited time scales. In systems where the infiltrating fluid is far from equilibrium with the rock matrix, mechanical porosity generation can arise from local stresses generated by the volume change of volatilization reactions. Furthermore, it has become increasingly clear that crustal rocks may be under significant tectonic stress, even far from plate tectonic boundaries. In situations where the rocks are close to critically stressed, any stress perturbations caused by reaction driven changes in solid volume or fluid pressure gradients may lead to dilatant deformation and porosity production on a scale much larger than the characteristic length scales of the reacting rock units. Field observations, experimental studies and modeling results will be presented that focus on reaction driven porosity generation in systems subject to variable initial differential stresses.

  7. Does weightlifting increase residual force enhancement?

    PubMed

    Siebert, Tobias; Kurch, David; Blickhan, Reinhard; Stutzig, Norman

    2016-07-01

    The force maintained following stretching of an active muscle exceeds the isometric force at the same muscle length. This residual force enhancement (RFE) is different for various muscles. It is currently unknown whether training induces changes in RFE. Weightlifters perform a large number of eccentric contractions during training, and RFE might be functionally relevant. The aim of this study was to examine whether there is increased RFE in weightlifters versus a reference group. Therefore, we measured external reaction forces during a multi-joint leg extension in weightlifters (n=10) and a reference group (n=11) using a motor driven leg press dynamometer (ISOMED 2000). Steady state isometric forces after stretching were compared to the corresponding forces obtained during isometric reference contractions. Statistical analyses yielded a significant RFE for both groups (p<0.001), but there were no RFE differences between the groups (p=0.320). However, RFE tends to decrease slower in the weightlifting group versus the reference group. We conclude that long-term weightlifting has only a minor influence on RFE. We speculate that the specific training including a combination of eccentric and concentric exercises induced almost no changes in titin-isoform expression which may be responsible for generation of RFE after active muscle stretching. PMID:27234620

  8. Varying the effective buoyancy of cells using magnetic force

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Valles, James M.

    2004-06-01

    We introduce a magnetic force buoyancy variation (MFBV) technique that employs intense inhomogeneous magnetic fields to vary the effective buoyancy of cells and other diamagnetic systems in solution. Nonswimming Paramecia have been suspended, forced to sediment and driven to rise in solution using MFBV. Details of their response to MFBV have been used to determine the magnetic susceptibility of a single Paramecium. The use of MFBV as a means by which to suspend cell cultures indefinitely is also described.

  9. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  10. Efficacy of climate forcings

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G. A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; Bell, N.; Cairns, B.; Canuto, V.; Chandler, M.; Cheng, Y.; Del Genio, A.; Faluvegi, G.; Fleming, E.; Friend, A.; Hall, T.; Jackman, C.; Kelley, M.; Kiang, N.; Koch, D.; Lean, J.; Lerner, J.; Lo, K.; Menon, S.; Miller, R.; Minnis, P.; Novakov, T.; Oinas, V.; Perlwitz, Ja.; Perlwitz, Ju.; Rind, D.; Romanou, A.; Shindell, D.; Stone, P.; Sun, S.; Tausnev, N.; Thresher, D.; Wielicki, B.; Wong, T.; Yao, M.; Zhang, S.

    2005-09-01

    We use a global climate model to compare the effectiveness of many climate forcing agents for producing climate change. We find a substantial range in the "efficacy" of different forcings, where the efficacy is the global temperature response per unit forcing relative to the response to CO2 forcing. Anthropogenic CH4 has efficacy ˜110%, which increases to ˜145% when its indirect effects on stratospheric H2O and tropospheric O3 are included, yielding an effective climate forcing of ˜0.8 W/m2 for the period 1750-2000 and making CH4 the largest anthropogenic climate forcing other than CO2. Black carbon (BC) aerosols from biomass burning have a calculated efficacy ˜58%, while fossil fuel BC has an efficacy ˜78%. Accounting for forcing efficacies and for indirect effects via snow albedo and cloud changes, we find that fossil fuel soot, defined as BC + OC (organic carbon), has a net positive forcing while biomass burning BC + OC has a negative forcing. We show that replacement of the traditional instantaneous and adjusted forcings, Fi and Fa, with an easily computed alternative, Fs, yields a better predictor of climate change, i.e., its efficacies are closer to unity. Fs is inferred from flux and temperature changes in a fixed-ocean model run. There is remarkable congruence in the spatial distribution of climate change, normalized to the same forcing Fs, for most climate forcing agents, suggesting that the global forcing has more relevance to regional climate change than may have been anticipated. Increasing greenhouse gases intensify the Hadley circulation in our model, increasing rainfall in the Intertropical Convergence Zone (ITCZ), Eastern United States, and East Asia, while intensifying dry conditions in the subtropics including the Southwest United States, the Mediterranean region, the Middle East, and an expanding Sahel. These features survive in model simulations that use all estimated forcings for the period 1880-2000. Responses to localized forcings, such