Science.gov

Sample records for forced rotating flows

  1. Tidally-forced flow in a rotating, stratified, shoaling basin

    NASA Astrophysics Data System (ADS)

    Winters, Kraig B.

    2015-06-01

    Baroclinic flow of a rotating, stratified fluid in a parabolic basin is computed in response to barotropic tidal forcing using the nonlinear, non-hydrostatic, Boussinesq equations of motion. The tidal forcing is derived from an imposed, boundary-enhanced free-surface deflection that advances cyclonically around a central amphidrome. The tidal forcing perturbs a shallow pycnocline, sloshing it up and down over the shoaling bottom. Nonlinearities in the near-shore internal tide produce an azimuthally independent 'set-up' of the isopycnals that in turn drives an approximately geostrophically balanced, cyclonic, near-shore, sub-surface jet. The sub-surface cyclonic jet is an example of a slowly evolving, nearly balanced flow that is excited and maintained solely by forcing in the fast, super-inertial frequency band. Baroclinic instability of the nearly balanced jet and subsequent interactions between eddies produce a weak transfer of energy back into the inertia-gravity band as swirling motions with super-inertial vorticity stir the stratified fluid and spontaneously emit waves. The sub-surface cyclonic jet is similar in many ways to the poleward flows observed along eastern ocean boundaries, particularly the California Undercurrent. It is conjectured that such currents may be driven by the surface tide rather than by winds and/or along-shore pressure gradients.

  2. Turbulent flow in rib-roughened channel under the effect of Coriolis and rotational buoyancy forces

    NASA Astrophysics Data System (ADS)

    Coletti, Filippo; Jacono, David Lo; Cresci, Irene; Arts, Tony

    2014-04-01

    The turbulent flow inside a rotating channel provided with transverse ribs along one wall is studied by means of two-dimensional time-resolved particle image velocimetry. The measurement set-up is mounted on the same rotating disk with the test section, allowing to obtain the same accuracy and resolution as in a non-rotating rig. The Reynolds number is 15 000, and the rotation number is 0.38. As the ribbed wall is heated, both the Coriolis force and the centrifugal force play a role in the fluid dynamics. The mean velocity fields highlight the major impact of the rotational buoyancy (characterized by a buoyancy number of 0.31) on the flow along the leading side of the duct. In particular, since the flow is directed radially outward, the near-wall layers experience significant centripetal buoyancy. The recirculation area behind the obstacles is enlarged to the point of spanning the whole inter-rib space. Also the turbulent fluctuations are significantly altered, and overall augmented, with respect to the non-buoyant case, resulting in higher turbulence levels far from the rib. On the other hand the centrifugal force has little or no impact on the flow along the trailing wall. Vortex identification, proper orthogonal decomposition, and two-point correlations are used to highlight rotational effects, and in particular to determine the dominant scales of the turbulent unsteady flow, the time-dependent behavior of the shear layer and of the recirculation bubble behind the wall-mounted obstacles, the lifetime and advection velocity of the coherent structures.

  3. Numerical and experimental study of flows in a rotating annulus with local convective forcing.

    NASA Astrophysics Data System (ADS)

    Scolan, Hélène; Su, Sylvie; Wright, Susie; Young, Roland M. B.; Read, Peter

    2016-04-01

    We present a numerical and experimental study of flows in a rotating annulus convectively forced by local thermal forcing via a heated annular ring at the bottom near the external wall and a cooled circular disk near the centre at the top surface of the annulus. This new configuration is a variant of the classical thermally-driven annulus analogue of the atmosphere circulation, where thermal forcing was previously applied uniformly on the sidewalls. Two vertically and horizontally displaced heat sources/sinks are arranged so that, in the absence of background rotation, statically unstable Rayleigh-Bénard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations to better mimic in fine local vigorous convection events in tropics and polar regions whilst also facilitating baroclinic motion in midlatitude regions in the Earth's atmosphere. By using the Met Office/ Oxford Rotating Annulus Laboratory (MORALS) code, we have investigated a series of equilibrated, 2D axisymmetric flows for a large range of dimensionless parameters and characterized them in terms of velocity and temperature fields. Several distinct and different flow regimes were identified, depending upon the rotation rate and strength of differential heating. These regimes will be presented with reference to variations of horizontal Ekman layer thickness versus the thermal boundary layer thickness and corresponding scalings for various quantities such as the azimuthal velocity or the heat transport. Experimental investigation of the same setup is carried out with a 1m diameter cylindrical container on a rotating platform: local heating is produced with an electrically heated annular ring at the bottom of the tank and cooling is imposed through a circular disk near the centre of the tank at the upper surface, cooled with circulating water. Different unstable circulation regimes

  4. Nonlinear and detuning effects of the nutation angle in precessionally forced rotating cylinder flow

    NASA Astrophysics Data System (ADS)

    Lopez, Juan M.; Marques, Francisco

    2016-06-01

    The flow in a rapidly rotating cylinder forced to precess through a nutation angle α is investigated numerically, keeping all parameters constant except α , and tuned to a triadic resonance at α =1∘ . When increasing α , the flow undergoes a sequence of well-characterized bifurcations associated with triadic resonance, involving heteroclinic and homoclinic cycles, for α up to about 4∘. For larger α , we identify two chaotic regimes. In the first regime, with α between about 4∘ and 27∘, the bulk flow retains remnants of the helical structures associated with the triadic resonance, but there are strong nonlinear interactions between the various azimuthal Fourier components of the flow. For the larger α regime, large detuning effects lead to the triadic resonance dynamics being completely swamped by boundary layer eruptions. The azimuthal mean flow at large angles results in a large mean deviation from solid-body rotation and the flow is characterized by strong shear at the boundary layers with temporally chaotic eruptions.

  5. The effect of power-law body forces on a thermally driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  6. The effect of power law body forces on a thermally-driven flow between concentric rotating spheres

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1985-01-01

    A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.

  7. Mean and fluctuating basal forces generated by granular flows: Laboratory observations in a large vertically rotating drum

    NASA Astrophysics Data System (ADS)

    Hsu, L.; Dietrich, W. E.; Sklar, L. S.

    2014-06-01

    A flowing granular mass generates forces on the boundary that drive near-bed grain dynamics, bed surface erosion, and energy dissipation. Few quantitative analyses exist of the controls on the dynamically fluctuating force caused by granular flows with wide-grain-size distributions and a liquid phase in the pores. To study the mechanisms controlling the boundary forces, we used a 225 cm2 load plate to measure the bed-normal force from a suite of granular flows in a 4 m diameter, 80 cm wide vertically rotating drum. We analyzed the time series of bed forces generated in flows composed of granular material for both narrow (gravel-water) and wide (muddy, sand-gravel-cobble) grain-size distributions. The tail of the force distribution was captured more closely by a generalized Pareto distribution than an exponential distribution, suggesting a way to predict empirically the force distribution. We show that the impulse on the bed, related to kinetic energy transferred to the bed from the granular collisions, is quantified by the standard deviation of the force. The mean bulk force equaled the static weight of the flow, whereas the force fluctuations, represented by the standard deviation and the averaged top 1% of force, were a near-linear function of effective grain diameter and flow velocity, and a ˜0.5 power function of an inertial stress scaling term. The force fluctuations depend on both Savage and Bagnold numbers. The correlations revealed in this study suggest that it may be possible to estimate dynamic forces on the bed from gross properties of the flows.

  8. The drift force on an object in an inviscid weakly-varying rotational flow

    SciTech Connect

    Wallis, G.B.

    1995-12-31

    The force on any stationary object in an inviscid incompressible extensive steady flow is derived in terms of the added mass tensor and gradient of velocity of the undisturbed fluid. Taylor`s theorem is extended to flows with weak vorticity. There are possible applications to constitutive equations for two-phase flow.

  9. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    SciTech Connect

    Huyer, S. )

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  10. Active media under rotational forcing.

    PubMed

    Pérez-Villar, Vicente; Porteiro, Jose L F; Muñuzuri, Alberto P

    2006-10-01

    The bubble-free Belousov-Zhabotinsky reaction has been used to study the effects of centrifugal forces on autowave propagation. The reaction parameters were chosen such that the system oscillates naturally creating target waves. In the present study, the system was forced to rotate with a constant velocity around a central axis. In studying the effects of such a forcing on the system, we focused on target dynamics. The system reacts to this forcing in different ways, the most spectacular being a dramatic increase in the period of the target, the effect growing stronger as we move away from the center of rotation. A numerical study was carried out using the two-variable Oregonator model, modified to include convective effects through the diffusion coefficient. The numerical results showed a good qualitative agreement with those of the experiments. PMID:17155149

  11. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

    NASA Astrophysics Data System (ADS)

    Timokhin, A. N.; Arons, J.

    2013-02-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/jGJ < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ < 0, the system develops similar bursts of pair creation

  12. On rotational conical flow

    NASA Technical Reports Server (NTRS)

    Ferrari, Carlo

    1952-01-01

    Some general properties of isoenergetic rotational conical fields are determined. For such fields, provided the physical parameters of the fluid flow are known on a conical reference surface, it being understood that they satisfy certain imposed conditions, it is shown how to construct the hodographs in the various meridional semiplanes, as the envelope of either the tangents to the hodographs or of the osculatory circles.

  13. Current Flow and Pair Creation at Low Altitude in Rotation-Powered Pulsars' Force-Free Magnetospheres: Space Charge Limited Flow

    NASA Technical Reports Server (NTRS)

    Timokhin, A. N.; Arons, J.

    2013-01-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(sub GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(sup 2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(sub GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) < 0, the system develops similar

  14. Rotating Bondi Accretion Flow

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Gu; Han, Du-Hwan

    2016-06-01

    The characteristics of accretion flow onto a black hole are determined by the physical condition of gas at large radius. When the gas has no angular momentum and is polytropic, the accretion flow becomes the classic Bondi flow. The mass accretion rate in such case is an eigenvalue and uniquely determined by the density and the temperature of the surrounding gas for a given black hole mass. When the gas has angular momentum above some critical value, the angular momentum of the gas should be removed by viscosity to reach the black hole horizon. We study, within the slim disk approximation, rotating polytropic accretion flow with alpha viscosity as an an extension of the Bondi flow. The characteristics of the accretion flow are now determined by the temperature, density, and angular momentum of the gas at the outer boundary. We explore the effects of the viscosity parameter and the outer boundary radius on the physical characteristic of the flow, especially on the mass accretion rate, and compare the result with previous works of Park (2009) and Narayan & Fabian (2011).

  15. Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Verscharen, Daniel; Chandran, Benjamin D. G.; Bourouaine, Sofiane; Hollweg, Joseph V.

    2015-06-01

    Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate {Q}{flow} at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We show that instabilities control the deceleration of alpha particles at r\\lt {r}{crit}, and the rotational force controls the deceleration of alpha particles at r\\gt {r}{crit}, where {r}{crit}≃ 2.5 {AU} in the fast solar wind in the ecliptic plane. We find that {Q}{flow} is positive at r\\lt {r}{crit} and {Q}{flow}=0 at r≥slant {r}{crit}, consistent with the previous finding that the rotational force does not lead to a release of energy. We compare the value of {Q}{flow} at r\\lt {r}{crit} with empirical heating rates for protons and alpha particles, denoted {Q}p and {Q}α , deduced from in situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that {Q}{flow} exceeds {Q}α at r\\lt 1 {AU}, and that {Q}{flow}/{Q}p decreases with increasing distance from the Sun from a value of about one at r = 0.29–0.42 AU to about 1/4 at 1 AU. We conclude that the continuous energy input from alpha-particle deceleration at r\\lt {r}{crit} makes an important contribution to the heating of the fast solar wind. We also discuss the implications of the alpha-particle drift for the azimuthal flow velocities of the ions and for the Parker spiral magnetic field.

  16. Numerical simulation of negative Magnus force on a rotating sphere

    NASA Astrophysics Data System (ADS)

    Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki

    2010-11-01

    Flow characteristics and fluid force on a sphere rotating along with axis perpendicular to mean air flow were investigated using Large Eddy Simulation at two different Reynolds numbers of 10,000 and 200,000. As a result of simulation, opposite flow characteristics around the sphere and displacement of the separation point were visualized depending on the Reynolds number even though the sphere rotates at the same rotation speed according to the Reynolds number. When Reynolds number is 10,000, flow characteristics agree with the flow field explained in the Magnus effect. However sphere rotates at the same rotation speed while increasing Reynolds number to 200,000, separation point moves in opposite direction and wake appears in the different direction. The reason of the negative Magnus force was discussed in terms of the boundary layer transition on the surface.

  17. On rotational forces in the solar wind

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.; Isenberg, P. A.

    1981-01-01

    Solar rotational forces affecting the flow of minor ions in the solar wind are considered as corotating with the sun. Cold, noninteracting charged particles in the magnetic and gravitational fields of the sun rotate with the angular velocity of the sun, and calculations of lowest bulk order velocities show that differences in particle velocities decrease with increasing distance from the sun. A centrifugal potential in the corotating frame implies that ion motion is independent of protons, with velocities determined by the potential, which monotonically decreases without limit. The potential dominates the initial kinetic energy of the particles, and the equality of velocities within the potential is not due to interactions between particles as claimed by Mackenzie et al. (1979).

  18. Instability and transition in rotating disk flow

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1981-01-01

    The stability of three dimensional rotating disk flow and the effects of Coriolis forces and streamline curvature were investigated. It was shown that this analysis gives better growth rates than Orr-Sommerfeld equation. Results support the numerical prediction that the number of stationary vortices varies directly with the Reynolds number.

  19. Axisymmetric supersonic flow in rotating impellers

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1952-01-01

    General equations are developed for isentropic, frictionless, axisymmetric flow in rotating impellers with blade thickness taken into account and with blade forces eliminated in favor of the blade-surface function. It is shown that the total energy of the gas relative to the rotating coordinate system is dependent on the stream function only, and that if the flow upstream of the impeller is vortex-free, a velocity potential exists which is a function of only the radial and axial distances in the impeller. The characteristic equations for supersonic flow are developed and used to investigate flows in several configurations in order to ascertain the effect of variations of the boundary conditions on the internal flow and the work input. Conditions varied are prerotation of the gas, blade turning rate, gas velocity at the blade tips, blade thickness, and sweep of the leading edge.

  20. Stochastically forced zonal flows

    NASA Astrophysics Data System (ADS)

    Srinivasan, Kaushik

    This thesis investigates the dynamics of multiple zonal jets, that spontaneously emerge on the barotropic beta-plane, driven by a homogenous and rapidly decorrelating forcing and damped by bottom drag. Decomposing the barotropic vorticity equation into the zonal-mean and eddy equations, and neglecting the eddy-eddy interactions, defines the quasi-linear (QL) system. Numerical solution of the QL system shows zonal jets with length scales comparable to jets obtained by solving the nonlinear (NL) system. Starting with the QL system, one can construct a deterministic equation for the evolution of the two-point single-time correlation function of the vorticity, from which one can obtain the Reynolds stress that drives the zonal mean flow. This deterministic system has an exact nonlinear solution, which is a homogenous eddy field with no jets. When the forcing is also isotropic in space, we characterize the linear stability of this jetless solution by calculating the critical stability curve in the parameter space and successfully comparing this analytic result with numerical solutions of the QL system. But the critical drag required for the onset of NL zonostrophic instability is up to a factor of six smaller than that for QL zonostrophic instability. The constraint of isotropic forcing is then relaxed and spatially anisotropic forcing is used to drive the jets. Meridionally drifting jets are observed whenever the forcing breaks an additional symmetry that we refer to as mirror, or reflexional symmetry. The magnitude of drift speed in our results shows a strong variation with both mu and beta: while the drift speed decreases almost linearly with decreasing mu, it actually increases as beta decreases. Similar drifting jets are also observed in QL, with the same direction (i.e. northward or southward) and similar magnitude as NL jet-drift. Starting from the laminar solution, and assuming a mean-flow that varies slowly with reference to the scale of the eddies, we obtain

  1. Turbulent Flow Between Rotating Cylinders

    NASA Technical Reports Server (NTRS)

    Shih-I, Pai

    1943-01-01

    The turbulent air flow between rotating cylinders was investigated. The distributions of mean speed and of turbulence were measured in the gap between a rotating inner and a stationary outer cylinder. The measurements led to the conclusion that the turbulent flow in the gap cannot be considered two dimensional, but that a particular type of secondary motion takes place. It is shown that the experimentally found velocity distribution can be fully understood under the assumption that this secondary motion consists of three-dimensional ring-shape vortices. The vortices occur only in pairs, and their number and size depend on the speed of the rotating cylinder; the number was found to decrease with increasing speed. The secondary motion has an essential part in the transmission of the moment of momentum. In regions where the secondary motion is negligible, the momentum transfer follows the laws known for homologous turbulence. Ring-shape vortices are known to occur in the laminar flow between rotating cylinders, but it was hitherto unknown that they exist even at speeds that are several hundred times the critical limit.

  2. Laboratory study of forced rotating shallow water turbulence

    NASA Astrophysics Data System (ADS)

    Espa, Stefania; Di Nitto, Gabriella; Cenedese, Antonio

    2011-12-01

    During the last three decades several authors have studied the appearance of multiple zonal jets in planetary atmospheres and in the Earths oceans. The appearance of zonal jets has been recovered in numerical simulations (Yoden & Yamada, 1993), laboratory experiments (Afanasyev & Wells, 2005; Espa et al., 2008, 2010) and in field measurements of the atmosphere of giant planets (Galperin et al., 2001). Recent studies have revealed the presence of zonation also in the Earths oceans, in fact zonal jets have been found in the outputs of Oceanic General Circulation Models-GCMs (Nakano & Hasumi, 2005) and from the analysis of satellite altimetry observations (Maximenko et al., 2005). In previous works (Espa et al., 2008, 2010) we have investigated the impact of the variation of the rotation rate and of the fluid depth on jets organization in decaying and forced regimes. In this work we show results from experiments performed in a bigger domain in which the fluid is forced continuously. The experimental set-up consists of a rotating tank (1m in diameter) where the initial distribution of vorticity has been generated via the Lorentz force in an electromagnetic cell. The latitudinal variation of the Coriolis parameter has been simulated by the parabolic profile assumed by the free surface of the rotating fluid. Flow measurements have been performed using an image analysis technique. Experiments have been performed changing the tank rotation rate and the fluid thickness. We have investigated the flow in terms of zonal and radial flow pattern, flow variability and jet scales.

  3. Forces and torques on rotating spirochete flagella.

    PubMed

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W

    2011-12-23

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm. PMID:22243185

  4. Forces and Torques on Rotating Spirochete Flagella

    PubMed Central

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W.

    2012-01-01

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm. PMID:22243185

  5. Forces and Torques on Rotating Spirochete Flagella

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W.

    2011-12-01

    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm.

  6. On the effect of inertia and history forces on the slow motion of a spherical solid or gaseous inclusion in a solid-body rotation flow

    NASA Astrophysics Data System (ADS)

    Candelier, Fabien; Angilella, Jean-Régis; Souhar, Mohamed

    2005-12-01

    The motion of a spherical inclusion released in a vertical solid-body rotation flow is investigated theoretically and experimentally. Solid spheres and bubbles are considered. The particle Reynolds number, the Taylor number, the Weber number and the capillary number are smaller than unity. The motion equations of the inclusion are obtained by revisiting the hydrodynamic equations. The axial (vertical) motion and the horizontal motion are uncoupled, even though they are sensitive to the rotation rate of the flow. Analytical solutions of the particle motion equation are compared to experimental results obtained by releasing a particle in a rotating tank filled with silicone oil. For solid spheres and bubbles, both the terminal velocity and the particle ejection rate (or trapping rate) predicted by the theory agree with experiments, without any empirical adjustment. In particular, the experimental device enables us to check the validity of various theories involving solid or gaseous inclusions with or without inertia or history effects. It is observed that the mobility tensor obtained by writing the fluid motion equations in the rotating frame accurately predicts the horizontal particle trajectory, like the Boussinesq-Basset equation obtained by writing the fluid motion equations in the non-rotating frame and neglecting the horizontal contribution of inertia effects.

  7. Flow-induced vibrations of a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Bourguet, Remi; Lo Jacono, David

    2013-11-01

    The flow-induced vibrations of a circular cylinder, free to oscillate in the cross-flow direction and subjected to a forced rotation about its axis, are studied by means of two- and three-dimensional numerical simulations, at a Reynolds number equal to 100. This problem serves as a paradigm to investigate the impact of symmetry breaking on the phenomenon of vortex-induced vibrations (VIV), previously described in the non-rotating case. The cylinder exhibits free oscillations up to a rotation rate close to 4. Under forced rotation, the vibration amplitude reaches 1.9 diameters, i.e. three times the maximum amplitude in the non-rotating case. Contrary to galloping responses, the free vibrations of the rotating cylinder are found to involve a condition of wake-body synchronization similar to the lock-in condition driving non-rotating cylinder VIV. A variety of flow patterns including novel asymmetric wake topologies is identified; it is shown that free oscillations may develop in the absence of vortex shedding. The symmetry breaking substantially alters the fluid force spectra and phasing mechanisms. The flow three-dimensional transition is found to occur at high rotation rates; its influence on the fluid-structure system behavior is analyzed.

  8. Effect of rotation rate on the forces of a rotating cylinder: Simulation and control

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Ou, Yuh-Roung

    1993-01-01

    In this paper we present numerical solutions to several optimal control problems for an unsteady viscous flow. The main thrust of this work is devoted to simulation and control of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating the rotation rate as a control variable, we can formulate two optimal control problems and use a central difference/pseudospectral transform method to numerically compute the optimal control rates. Several types of rotations are considered as potential controls, and we show that a proper synchronization of forcing frequency with the natural vortex shedding frequency can greatly influence the flow. The results here indicate that using moving boundary controls for such systems may provide a feasible mechanism for flow control.

  9. Microphotonic Forces from Superfluid Flow

    NASA Astrophysics Data System (ADS)

    McAuslan, D. L.; Harris, G. I.; Baker, C.; Sachkou, Y.; He, X.; Sheridan, E.; Bowen, W. P.

    2016-04-01

    In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly 1 order of magnitude larger than the radiation pressure force. We use this force to feedback cool the motion of a microtoroid mechanical mode to 137 mK. The photoconvective forces we demonstrate here provide a new tool for high bandwidth control of mechanical motion in cryogenic conditions, while the ability to apply forces remotely, combined with the persistence of flow in superfluids, offers the prospect for new applications.

  10. Acoustic streaming flows and sample rotation control

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene

    1998-11-01

    Levitated drops in a gas can be driven into rotation by altering their surrounding convective environment. When these drops are placed in an acoustic resonant chamber, the symmetry characteristics of the steady streaming flows in the vicinity of the drops determine the rotational motion of the freely suspended fluid particles. Using ultrasonic standing waves around 22 kHz and millimeter-size electrostatically levitated drops, we have investigated the correlation between the convective flow characteristics and their rotational behavior. The results show that accurate control of the drop rotation axis and rate can be obtained by carefully modifying the symmetry characteristics of the chamber, and that the dominant mechanism for rotation drive is the drag exerted by the air flow over the drop surface. In addition, we found that the rotational acceleration depends on the drop viscosity, suggesting that this torque is initially strongly influenced by differential flows within the drop itself. [Work sponsored by NASA].

  11. Rotatable non-circular forebody flow controller

    NASA Technical Reports Server (NTRS)

    Moskovitz, Cary A. (Inventor)

    1991-01-01

    The invention is a rotatable, non-circular forebody flow controller. The apparatus comprises a small geometric device located at a nose of a forebody of an aircraft and a non-circular cross-sectional area that extends toward the apex of the aircraft. The device is symmetrical about a reference plane and preferably attaches to an axle which in turn attaches to a rotating motor. The motor rotates the device about an axis of rotation. Preferably, a control unit connected to an aircraft flight control computer signals to the rotating motor the proper rotational positioning of the geometric device.

  12. Heat transfer in serpentine flow passages with rotation

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Takamura, J.; Yamawaki, S.; Yang, Wen-Jei

    1992-06-01

    Results are reported of an experimental study tracing heat transfer performance in a rotating serpentine flow passage of a square cross section. The test section is preceded by a hydrodynamic calming region. The test model is a blow-up (by seven times) of actual winding flow passages in rotor blades. It is concluded that the flow in the 180-deg bends exhibits strong 3D structure. The heat transfer coefficient in the bend is substantially higher than in the straight flow passages. The average heat transfer characteristics over the entire flow passage is greatly affected by flow at the 180-deg bends. Due to secondary flow induced by the Coriolis force, the heat transfer coefficient in the radially outward flow passages diminish on the leading surface, but increase on the trailing surface, with an increase in rotational speed. The trend is reversed in the radially inward flow passages.

  13. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  14. Theoretical study of fluid forces on a centrifugal impeller rotating and whirling in a volute

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Y.; Acosta, A. J.; Brennen, C. E.

    1988-01-01

    Fluid forces on a rotating and whirling centrifugal impeller in a volute are analyzed with the assumption of a two-dimensional rotational, inviscid flow. For simplicity, the flow is assumed to be perfectly guided by the impeller vanes. The theory predicts the tangential and the radial force on the whirling impeller as functions of impeller geometry, volute spacing, and whirl ratio. A good qualitative agreement with experiment is found.

  15. Rotation Invariant Vortices for Flow Visualization.

    PubMed

    Günther, Tobias; Schulze, Maik; Theisel, Holger

    2016-01-01

    We propose a new class of vortex definitions for flows that are induced by rotating mechanical parts, such as stirring devices, helicopters, hydrocyclones, centrifugal pumps, or ventilators. Instead of a Galilean invariance, we enforce a rotation invariance, i.e., the invariance of a vortex under a uniform-speed rotation of the underlying coordinate system around a fixed axis. We provide a general approach to transform a Galilean invariant vortex concept to a rotation invariant one by simply adding a closed form matrix to the Jacobian. In particular, we present rotation invariant versions of the well-known Sujudi-Haimes, Lambda-2, and Q vortex criteria. We apply them to a number of artificial and real rotating flows, showing that for these cases rotation invariant vortices give better results than their Galilean invariant counterparts. PMID:26390472

  16. Flow Split Venturi, Axially-Rotated Valve

    DOEpatents

    Walrath, David E.; Lindberg, William R.; Burgess, Robert K.; LaBelle, James

    2000-02-22

    The present invention provides an axially-rotated valve which permits increased flow rates and lower pressure drop (characterized by a lower loss coefficient) by using an axial eccentric split venturi with two portions where at least one portion is rotatable with respect to the other portion. The axially-rotated valve typically may be designed to avoid flow separation and/or cavitation at full flow under a variety of conditions. Similarly, the valve is designed, in some embodiments, to produce streamlined flow within the valve. An axially aligned outlet may also increase the flow efficiency. A typical cross section of the eccentric split venturi may be non-axisymmetric such as a semicircular cross section which may assist in both throttling capabilities and in maximum flow capacity using the design of the present invention. Such a design can include applications for freeze resistant axially-rotated valves and may be fully-opened and fully-closed in one-half of a complete rotation. An internal wide radius elbow typically connected to a rotatable portion of the eccentric venturi may assist in directing flow with lower friction losses. A valve actuator may actuate in an axial manner yet be uniquely located outside of the axial flow path to further reduce friction losses. A seal may be used between the two portions that may include a peripheral and diametrical seal in the same plane. A seal separator may increase the useful life of the seal between the fixed and rotatable portions.

  17. Stress analysis of rotating propellers subject to forced excitations

    NASA Astrophysics Data System (ADS)

    Akgun, Ulas

    Turbine blades experience vibrations due to the flow disturbances. These vibrations are the leading cause for fatigue failure in turbine blades. This thesis presents the finite element analysis methods to estimate the maximum vibrational stresses of rotating structures under forced excitation. The presentation included starts with the derived equations of motion for vibration of rotating beams using energy methods under the Euler Bernoulli beam assumptions. The nonlinear large displacement formulation captures the centrifugal stiffening and gyroscopic effects. The weak form of the equations and their finite element discretization are shown. The methods implemented were used for normal modes analyses and forced vibration analyses of rotating beam structures. The prediction of peak stresses under simultaneous multi-mode excitation show that the maximum vibrational stresses estimated using the linear superposition of the stresses can greatly overestimate the stresses if the phase information due to damping (physical and gyroscopic effects) are neglected. The last section of this thesis also presents the results of a practical study that involves finite element analysis and redesign of a composite propeller.

  18. Computation of forced laminar convection in rotating cavities

    NASA Astrophysics Data System (ADS)

    Chew, J. W.

    1985-05-01

    Finite difference solutions are presented for forced laminar convection in a rotating cylindrical cavity with radial outflow. This forms a simple model of the cooling flow between two compressor disks in a gas turbine engine. If the fluid enters the cavity from a uniform radial source, it is shown that the local Nusselt number changes from that of a 'free disk' near the center of the cavity to that for Ekman layer flow at larger radii. With an axial inlet, the flow, and consequently, the heat transfer, is more complex. If vortex breakdown occurs, then the results are very similar to those for the radial inlet case, but otherwise a wall jet forms on the downstream disk, and the heat transfer from this disk may be several times that for the upstream disk. Variation of mean Nusselt number with rotational speed is qualitatively similar to previously published experimental measurements in turbulent flow. The effect of Prandtl number on heat transfer has also been demonstrated.

  19. Simulation Of Unsteady, Inviscid, Rotational, Transonic Flow

    NASA Technical Reports Server (NTRS)

    Damodaran, Murali

    1992-01-01

    Report describes numerical simulation of two-dimensional, unsteady, inviscid rotational, transonic flow about rigid airfoil in such motions as pitching or plunging oscillations. Study demonstrates potential utility of computation in analyses of aeroelasticity of airfoils.

  20. Particle Rotation Effects in Rarefied Two-Phase Plume Flows

    NASA Astrophysics Data System (ADS)

    Burt, Jonathan M.; Boyd, Iain D.

    2005-05-01

    We evaluate the effects of solid particle rotation in high-altitude solid rocket exhaust plume flows, through the development and application of methods for the simulation of two phase flows involving small rotating particles and a nonequilibrium gas. Green's functions are derived for the force, moment, and heat transfer rate to a rotating solid sphere within a locally free-molecular gas, and integration over a Maxwellian gas velocity distribution is used to determine the influence of particle rotation on the heat transfer rate at the equilibrium limit. The use of these Green's functions for the determination of particle phase properties through the Direct Simulation Monte Carlo method is discussed, and a procedure is outlined for the stochastic modeling of interphase collisions. As a test case, we consider the nearfield plume flow for a Star-27 solid rocket motor exhausting into a vacuum, and vary particle angular velocities at the nozzle exit plane in order to evaluate the influence of particle rotation on various flow properties. Simulation results show that rotation may lead to slightly higher particle temperatures near the central axis, but for the case considered the effects of particle rotation are generally found to be negligible.

  1. The effect of radial pressure force on rotating double tearing mode in compressible plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Qu; Xiong, Guo-Zhen; Li, Xiao-Qing

    2016-05-01

    The role of radial pressure force in the interlocking dynamics of double tearing modes (DTMs) is investigated by force balance analysis based on the compressible magnetohydrodynamics (MHD) model. It is found that the stability of symmetric DTMs is dominated by the radial pressure force rather than the field line bending force. Owing to the compressibility of rotating plasmas, unbalanced radial forces can just result in the rotating islands drift toward each other in the radial direction but do not trigger the explosive growth of the mode in the interlocking process, which is different from that of antisymmetric DTM without flow.

  2. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  3. Separation of polymers by length in rotational flow

    NASA Astrophysics Data System (ADS)

    Alfahani, Faihan; Kreft Pearce, Jennifer

    2014-11-01

    We use a lattice-Boltzmann based Brownian dynamics simulation to determine if polymers of different lengths can be separated by a combination of a trapping force and fluid flow. We produce two counter-rotating vortices in the simulation, similar to the work of HIlgenfeldt, et al., that used rotational flow to separate colloids of different size. We can achieve separation of polymers that differ in length by as little as 30%. We expect that this technique could be used in a microfluidic device to analyze the size of long DNA fragments produced in common molecular biological tests.

  4. Low volume fraction rimming flow in a rotating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Chen, Po-Ju; Tsai, Yu-Te; Liu, Ta-Jo; Wu, Ping-Yao

    2007-12-01

    An experimental study was carried out to examine how uniform rimming flow is established for a very small volume fraction of aqueous Newtonian solutions in a partially filled rotating horizontal cylinder. There exists a certain critical volume fraction (Vc) for each solution, where the rotational speed required to achieve uniform rimming flow takes a minimum value. Counterintuitively, it takes greater rotation speeds for both larger and smaller volume fractions than this. Axial instabilities are observed for liquid volume fractions above or below this critical value. For V >Vc the defects are mainly of shark-teeth and turbulent types, while for V rotational speed for V >Vc, but has very little effect for V flow found in the present study is 0.25%. The dimensionless minimum rotational speed Ω to achieve rimming flow is presented as a function of the dimensionless liquid volume fraction ϕ. The competing effects of fluid inertia and viscous force on rimming flow are demonstrated from a dimensionless plot of Ω versus ϕ.

  5. Instabilities In The Flow Between Rotating Disks

    NASA Astrophysics Data System (ADS)

    Moisy, F.; Gauthier, G.; Gondret, P.; Rabaud, M.

    Instabilities in the flow between two close rotating disks enclosed by a cylinder are investigated experimentally. This flow undergoes a large gallery of instability patterns, presented in the plane of parameters (Reb, Ret) of the Reynolds numbers based on the velocity of each disk and the distance between them. The corotation case and the counter-rotation case with low counter-rotation ratio are very similar to the rotor-stator case: instabilities of the Bödewadt type boundary layer leads to axisymmetric vortices and positive spirals. The counter-rotation case with higher counter-rotation ratio is more complex: above a given rotation ratio, the radial recirculation flow gets organized in a two-cell structure with the apparition of a stagnation circle on the slower disk. A new kind of instability pattern is observed, called negative spirals, that may coexist with the positive spirals (Gauthier et al, subm. J. Fluid Mech. 2001). This new spiral pattern seems to arise from an azimuthal shear layer instability, rather than a boundary layer instability as for the two other patterns. Negative spirals are characterized for different aspect ratios (azimuthal mode, phase velocity), allowing comparisons with recent numerical simulations (Lopez et al, to appear in J. Fluid Mech. 2002).

  6. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions

    PubMed Central

    Ting, Lucas H.; Jahn, Jessica R.; Jung, Joon I.; Shuman, Benjamin R.; Feghhi, Shirin; Han, Sangyoon J.; Rodriguez, Marita L.

    2012-01-01

    Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions. PMID:22447948

  7. Analysis of rotation-driven electrokinetic flow in microscale gap regions of rotating disk systems.

    PubMed

    Soong, C Y; Wang, S H

    2004-01-15

    In the present study, a novel theoretical model is developed for the analysis of rotating thermal-fluid flow characteristics in the presence of electrokinetic effects in the microscale gap region between two parallel disks under specified electrostatic, rotational, and thermal boundary conditions. The major flow configuration considered is a rotor-stator disk system. Axisymmetric Navier-Stokes equations with consideration of electric body force stemming from streaming potential are employed in the momentum balance. Variations of the fluid viscosity and permittivity with the local fluid temperature are considered. Between two disks, the axial distribution of the electric potential is determined by the Poisson equation with the concentration distributions of positive and negative ions obtained from Nernst-Planck equations for convection-diffusion of the ions in the flow field. Effects of disk rotation and electrostatic and thermal conditions on the electrokinetic flow and thermal characteristics are investigated. The electrohydrodynamic mechanisms are addressed with an interpretation of the coupling nature of the electric and flow fields. Finally, solutions with electric potential determined by employing nonlinear or linearized Poisson-Boltzmann equation and/or invoking assumptions of constant properties are compared with the predictions of the present model for justification of various levels of approximation in solution of the electrothermal flow behaviors in rotating microfluidic systems. PMID:14654411

  8. Flow generated around particle clusters in a rotating ultrasonic waveguide.

    PubMed

    Whitworth, G

    1998-09-01

    A chamber cavity, which has a square cross section and pressure-release walls, is used to produce a well-defined, 160-kHz standing ultrasonic field. A suspension of latex microspheres in aqueous metrizamide fills the chamber. The chamber rotates about a horizontal axis producing the centripetal force necessary to contain the buoyant spheres in the axial region. At low particle concentrations, clusters of microspheres form at half-wavelength intervals near the axial positions of acoustic pressure amplitude (p0) minima, as expected because of rotational and acoustic radiation forces. At higher concentrations, additional particle distributions are often seen that suggest the presence of flow. When high concentrations of larger particles are used, small clusters also form at axial positions of p0 maxima. Theory for acoustic streaming in a rotating fluid predicts flow speeds that are too small to account for the observed flow. Reasonable agreement with observations is obtained using a theory for flow generated by the buoyant gravitational force acting on the clusters. PMID:9745732

  9. Turbulent Compressible Convection with Rotation. II. Mean Flows and Differential Rotation

    NASA Astrophysics Data System (ADS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1998-01-01

    The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence

  10. Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation

    NASA Technical Reports Server (NTRS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1998-01-01

    The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence

  11. Finite element forced vibration analysis of rotating cyclic structures

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.

    1981-01-01

    A capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axes of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical development of this capability is presented.

  12. Single point modeling of rotating turbulent flows

    NASA Technical Reports Server (NTRS)

    Hadid, A. H.; Mansour, N. N.; Zeman, O.

    1994-01-01

    A model for the effects of rotation on turbulence is proposed and tested. These effects which influence mainly the rate of turbulence decay are modeled in a modified turbulent energy dissipation rate equation that has explicit dependence on the mean rotation rate. An appropriate definition of the rotation rate derived from critical point theory and based on the invariants of the deformation tensor is proposed. The modeled dissipation rate equation is numerically well behaved and can be used in conjunction with any level of turbulence closure. The model is applied to the two-equation kappa-epsilon turbulence model and is used to compute separated flows in a backward-facing step and an axisymmetric swirling coaxial jets into a sudden expansion. In general, the rotation modified dissipation rate model shows some improvements over the standard kappa-epsilon model.

  13. Single point modeling of rotating turbulent flows

    NASA Astrophysics Data System (ADS)

    Hadid, A. H.; Mansour, N. N.; Zeman, O.

    1994-12-01

    A model for the effects of rotation on turbulence is proposed and tested. These effects which influence mainly the rate of turbulence decay are modeled in a modified turbulent energy dissipation rate equation that has explicit dependence on the mean rotation rate. An appropriate definition of the rotation rate derived from critical point theory and based on the invariants of the deformation tensor is proposed. The modeled dissipation rate equation is numerically well behaved and can be used in conjunction with any level of turbulence closure. The model is applied to the two-equation kappa-epsilon turbulence model and is used to compute separated flows in a backward-facing step and an axisymmetric swirling coaxial jets into a sudden expansion. In general, the rotation modified dissipation rate model shows some improvements over the standard kappa-epsilon model.

  14. Rotation-driven Shear Flow Instabilities

    NASA Astrophysics Data System (ADS)

    Chiueh, Tzihong

    1996-10-01

    A general treatment of stability is considered for an isentropic flow equilibrium against three-dimensional incompressible perturbations by taking into account the difference in the orientations of the system rotation and flow vorticity. It is shown that the aforementioned orientation difference can indeed generate a coupling that drives instabilities at the expense of the rotational energy. Two types of instability are identified, with one growing algebraically and the other growing exponentially; the parameter regimes for both instabilities are also located. The algebraically growing modes are destabilized more easily than the exponentially growing modes; for example, the former can be unstable when the angle between the rotation axis and the vorticity is beyond 70°.5, whereas the latter becomes unstable when this angle is greater than 90°. In addition, we find that even in the limit of small vorticity, the system may still be unstable algebraically at a considerable strength, in contrast to the case of exact zero vorticity, which is absolutely stable. This finding indicates the existence of structural instability for a rotating fluid. The present analysis is applied also to examination of the problem of shear mixing interior of an accreting white dwarf in the context of nova explosions. In order for the nuclear fuels to be blended deep inside the star and make the explosion, the high angular momentum accreted materials combined with the stellar materials should undergo shear flow instabilities. We find that the shear flow instabilities happen when the disk rotation axis is off by more than 900 from the star rotation axis. The instability has in general an exponential growth, on a timescale much shorter than that of the runaway nuclear burning.

  15. Rimming flows and pattern formation inside rapidly rotating cylinder

    NASA Astrophysics Data System (ADS)

    Polezhaev, Denis; Dyakova, Veronika; Kozlov, Victor

    2014-11-01

    The dynamics of fluid and granular medium in a rotating horizontal cylinder is experimentally studied. In a rapidly rotating cylinder liquid and granular medium coat the cylindrical wall under centrifugal force. In the cavity frame gravity field performs rotation and produces oscillatory fluid flow which is responsible for the series of novel effects of pattern formation, namely, axial segregation of heavy particles and pattern formation in the form of sand regular hills extended along the axis of rotation. At least two types of axial segregation are found: a) patterns of spatial period of the same order of magnitude as fluid layer thickness which induced by steady flows generated by inertial waves; b) fine patterns which manifests Gortler - Taylor vortices developing as a consequence of centrifugal instability of viscous boundary layer near the cylindrical wall. Under gravity, intensive fluid shear flow induces partial fluidization of annular layer of granular medium. The oscillatory motion is followed by onset of regular ripples extended along the axis of rotation. The work is supported by Russian Scientific Foundation (project 14-11-00476).

  16. Probe-rotating atomic force microscopy for determining material properties

    SciTech Connect

    Lee, Sang Heon

    2014-03-15

    In this paper, we propose a probe-rotating atomic force microscope that enables scan in an arbitrary direction in the contact imaging mode, which is difficult to achieve using a conventional atomic force microscope owing to the orientation-dependent probe and the inability to rotate the probe head. To enable rotation of the probe about its vertical axis, we employed a compact and light probe head, the sensor of which is made of an optical disk drive pickup unit. Our proposed mechanical configuration, operating principle, and control system enables axial and lateral scan in various directions.

  17. Calculations of rotational flows using stream function

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Yam, C.; Tang, K.; Dwyer, H.

    1989-01-01

    The stream function equation is solved for steady two-dimensional (and axisymmetric) rotational flows. Both finite differences and finite volumes discretization techniques are studied, using generalized body fitted coordinates and unstructured staggered grids, respectively. For inviscid transonic flows, a new artificial viscosity scheme which does not produce any artificial vorticity is introduced, for the stability of the mixed flow calculations and for capturing shocks. The solution of Euler equations, in primitive variables, are also considered. The effects of the artificial viscosity and numerical boundary conditions on the total enthalpy and the vorticity distributions are demonstrated.

  18. Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips

    NASA Technical Reports Server (NTRS)

    Tse, David G.N.; Steuber, Gary

    1996-01-01

    Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.

  19. Fluid flow through packings of rotating obstacles

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafael S.; Andrade, José S.; Andrade, Roberto F. S.

    2015-03-01

    We investigate through numerical simulation the nonstationary flow of a Newtonian fluid through a two-dimensional channel filled with an array of circular obstacles of distinct sizes. The disks may rotate around their respective centers, modeling a nonstationary, inhomogeneous porous medium. Obstacle sizes and positions are defined by the geometry of an Apollonian packing (AP). To allow for fluid flow, the radii of the disks are uniformly reduced by a factor 0.6 ≤s ≤0.8 for assemblies corresponding to the four first AP generations. The investigation is targeted to elucidate the main features of the rotating regime as compared to the fixed disk condition. It comprises the evaluation of the region of validity of Darcy's law as well as the study of the nonlinear hydraulic resistance as a function of the channel Reynolds number, the reduction factor s , and the AP generation. Depending on a combination of these factors, the resistance of rotating disks may be larger or smaller than that of the corresponding static case. We also analyze the flow redistribution in the interdisk channels as a result of the rotation pattern and characterize the angular velocity of the disks. Here, the striking feature is the emergence of a stable oscillatory behavior of the angular velocity for almost all disks that are inserted into the assemblies after the second generation.

  20. Numerical investigation of droplet motion in rotating viscous liquid flow

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. A.; Tkachenko, A. S.; Usanina, A. S.

    2013-05-01

    The results of numerical investigation of the motion of a single droplet in a twisted flow of immiscible viscous liquid are presented. The motion trajectories of a droplet depending on its size, angular velocity of liquid rotation, and the physical parameters of the liquid and droplet have been determined. The values of the Reynolds, Bond, and Weber numbers along the droplet trajectory have been calculated. The effect of the Coriolis forces on the trajectory, velocity, and acceleration of the droplet in flow have been analyzed. The effect of the acceleration components of the droplet on the parameters of its motion is estimated. The numerical results are compared with experimental data.

  1. Turbulent rotating plane Couette flow: Reynolds and rotation number dependency of flow structure and momentum transport

    NASA Astrophysics Data System (ADS)

    Kawata, Takuya; Alfredsson, P. Henrik

    2016-07-01

    Plane Couette flow under spanwise, anticyclonic system rotation [rotating plane Couette flow (RPCF)] is studied experimentally using stereoscopic particle image velocimetry for different Reynolds and rotation numbers in the fully turbulent regime. Similar to the laminar regime, the turbulent flow in RPCF is characterized by roll cells, however both instantaneous snapshots of the velocity field and space correlations show that the roll cell structure varies with the rotation number. All three velocity components are measured and both the mean flow and all four nonzero Reynolds stresses are obtained across the central parts of the channel. This also allows us to determine the wall shear stress from the viscous stress and the Reynolds stress in the center of the channel, and for low rotation rates the wall shear stress increases with increasing rotation rate as expected. The results show that zero absolute vorticity is established in the central parts of the channel of turbulent RPCF for high enough rotation rates, but also that the mean velocity profile for certain parameter ranges shows an S shape giving rise to a negative velocity gradient in the center of the channel. We find that from an analysis of the Reynolds stress transport equation using the present data there is a transport of the Reynolds shear stress towards the center of the channel, which may then result in a negative mean velocity gradient there.

  2. Experimental studies of rotating exchange flow

    NASA Astrophysics Data System (ADS)

    Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

    2007-02-01

    Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also ] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu<1 are only limited by the Rossby radius. We also show

  3. Forced vibration analysis of rotating cyclic structures in NASTRAN

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Gallo, A. M.; Skalski, S. C.

    1981-01-01

    A new capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical, user's, programmer's and demonstration manuals for this new capability are presented.

  4. Flow structure on a rotating plate

    NASA Astrophysics Data System (ADS)

    Ozen, C. A.; Rockwell, D.

    2012-01-01

    The flow structure on a rotating plate of low aspect ratio is characterized well after the onset of motion, such that transient effects are not significant, and only centripetal and Coriolis accelerations are present. Patterns of vorticity, velocity contours, and streamline topology are determined via quantitative imaging, in order to characterize the leading-edge vortex in relation to the overall flow structure. A stable leading-edge vortex is maintained over effective angles of attack from 30° to 75°, and at each angle of attack, its sectional structure at midspan is relatively insensitive to Reynolds number over the range from 3,600 to 14,500. The streamline topology, vorticity distribution, and circulation of the leading-edge vortex are determined as a function of angle of attack, and related to the velocity field oriented toward, and extending along, the leeward surface of the plate. The structure of the leading-edge vortex is classified into basic regimes along the span of the plate. Images of these regimes are complemented by patterns on crossflow planes, which indicate the influence of root and tip swirl, and spanwise flow along the leeward surface of the plate. Comparison with the equivalent of the purely translating plate, which does not induce the foregoing flow structure, further clarifies the effects of rotation.

  5. Flow induced force of labyrinth seal

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Motooka, N.; Kawai, R.

    1982-01-01

    Flow induced instability force due to a labyrinth seal is analyzed. An approximate solution is given for the partial differential equation representing the flow in labyrinth seal and it is compared with the finite difference method in order to verify the accuracy of both methods. The effects of difference of inlet and outlet pressures of the seal, deflection of pressure and mass flow from the steady state, rotor diameter, seal clearance, seal interval and seal number on the flow induced force of the seal are investigated and it is known that some of these factors are very influential on the flow induced force.

  6. Flow Behavior Around Coupled, Rotating Turbines in Steady Flow

    NASA Astrophysics Data System (ADS)

    Fu, Matthew; Dabiri, John

    2012-11-01

    Counter-rotating vertical axis turbines (VATs) have been shown to yield increased power density in wind farms as compared to typical horizontal axis wind turbine (HAWT) farms. However, the governing physical mechanisms remain poorly understood. Scale model experiments in a free-surface water tunnel were conducted to characterize the effect of parameters such as turbine separation, tip speed ratio, and flow speed on the downstream flow field and the resulting vortex shedding from VATs. The flow field was visualized using particle image velocimetry (PIV) and planar laser induced fluorescence. The results are compared and contrasted with recent studies of counter-rotating circular cylinders to determine if suppression of vortex shedding plays a similarly important role in dictating the overall wake dynamics. This research was made possible through the generosity of Gordon and Betty Moore Foundation and the Caltech SURF Program.

  7. Dynamo action in dissipative, forced, rotating MHD turbulence

    NASA Astrophysics Data System (ADS)

    Shebalin, John V.

    2016-06-01

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  8. Rotational flow in tapered slab rocket motors

    NASA Astrophysics Data System (ADS)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  9. Turbulent plane Couette flow subject to strong system rotation

    NASA Astrophysics Data System (ADS)

    Bech, Knut H.; Andersson, Helge I.

    1997-09-01

    System rotation is known to substantially affect the mean flow pattern as well as the turbulence structure in rotating channel flows. In a numerical study of plane Couette flow rotating slowly about an axis aligned with the mean vorticity, Bech & Andersson (1996a) found that the turbulence level was damped in the presence of anticyclonic system rotation, in spite of the occurrence of longitudinal counter-rotating roll cells. Moreover, the turbulence anisotropy was practically unaffected by the weak rotation, for which the rotation number Ro, defined as the ratio of twice the imposed angular vorticity [Omega] to the shear rate of the corresponding laminar flow, was ±0.01. The aim of the present paper is to explore the effects of stronger anticyclonic system rotation on directly simulated turbulent plane Couette flow. Turbulence statistics like energy, enstrophy and Taylor lengthscales, both componental and directional, were computed from the statistically steady flow fields and supplemented by structural information obtained by conditional sampling.

  10. Precessing rotating flows with additional shear: Stability analysis

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Ω0 ) and the additional “precessing” Coriolis force (with angular velocity -ɛΩ0 ), normal to it. A “weak” shear flow, with rate 2ɛ of the same order of the Poincaré “small” ratio ɛ , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler’s equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov’s [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré’s [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small ɛ . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet’s theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small ɛ , but significant differences are obtained regarding growth rates and widths of instability bands, if larger ɛ values, up to 0.2, are considered. Finally, both flow cases

  11. Fluid forces on rotating centrifugal impeller with whirling motion

    NASA Technical Reports Server (NTRS)

    Shoji, H.; Ohashi, H.

    1980-01-01

    Fluid forces on a centrifugal impeller, whose rotating axis whirls with a constant speed, were calculated by using unsteady potential theory. Calculations were performed for various values of whirl speed, number of impeller blades and angle of blades. Specific examples as well as significant results are given.

  12. The flow external to a rotating torus

    NASA Astrophysics Data System (ADS)

    Calabretto, Sophie A. W.; Denier, James P.; Mattner, Trent W.

    2015-12-01

    Imparting a sudden rotation to a torus (or other symmetric smooth object) in an otherwise quiescent, viscous fluid serves to generate boundary layers at the object's surface. These boundary layers are known to exhibit a finite-time singularity at the equator which manifests in a thickening of the boundary layer and subsequent development of an equatorial jet. Here we consider the post-collision flow dynamics, demonstrating that the equatorial jet serves to shed a finite amplitude toroidal vortex pair. The radial jet is also shown to develop an absolute instability at suitably high Reynolds numbers.

  13. The flow external to a rotating torus

    NASA Astrophysics Data System (ADS)

    Calabretto, Sophie A. W.; Denier, James P.; Mattner, Trent W.

    2016-08-01

    Imparting a sudden rotation to a torus (or other symmetric smooth object) in an otherwise quiescent, viscous fluid serves to generate boundary layers at the object's surface. These boundary layers are known to exhibit a finite-time singularity at the equator which manifests in a thickening of the boundary layer and subsequent development of an equatorial jet. Here we consider the post-collision flow dynamics, demonstrating that the equatorial jet serves to shed a finite amplitude toroidal vortex pair. The radial jet is also shown to develop an absolute instability at suitably high Reynolds numbers.

  14. On the Behavior of Velocity Fluctuations in Rapidly Rotating Flows

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.; Ristorcelli, J. R.

    1997-01-01

    The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-Proudman theorem is not pertinent to I his class flows and a new result appropriate to this second category of fluctuations is derived. The present development demonstrates that the fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.

  15. Simulation of flow around rotating Savonius rotors

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Katsuya; Shinohara, Toshio

    1993-09-01

    Flow around Savonius rotors was simulated by solving 2-D (two-dimensional) Navier-Stokes equations. The equations were discretized by finite volume method for space and fractional step method for time. Convection terms were specially discretized by an upwinding scheme for unstructured grid. Only rotating rotors were simulated in this report. The values of parameters were as follows: Reynolds number, 10(exp 5); overlap ratio, zero and 0.16; and tip speed ratio, 0.25 to 1.75. Results showed good agreement with experimental data for the following points: optimum tip speed ratio is 0.75 to 1.0; overlapping is effective to increase power coefficient. Moreover, simulated flow fields showed that vortex shedding occur at not only tips of bucket but back of bucket and the shed vortex decrease torque.

  16. Analytical and Numerical Modeling of Strongly Rotating Rarefied Gas Flows

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev; Kumaran, Viswanathan

    2015-11-01

    Centrifugal gas separation processes effect separation by utilizing the difference in the mole fraction in a high speed rotating cylinder caused by the difference in molecular mass, and consequently the centrifugal force density. These have been widely used in isotope separation because chemical separation methods cannot be used to separate isotopes of the same chemical species. More recently, centrifugal separation has also been explored for the separation of gases such as carbon dioxide and methane. The efficiency of separation is critically dependent on the secondary flow generated due to temperature gradients at the cylinder wall or due to inserts, and it is important to formulate accurate models for this secondary flow. The widely used Onsager model for secondary flow is restricted to very long cylinders where the length is large compared to the diameter, the limit of high stratification parameter, where the gas is restricted to a thin layer near the wall of the cylinder, and it assumes that there is no mass difference in the two species while calculating the secondary flow. There are two objectives of the present analysis of the rarefied gas flow in a rotating cylinder. The first is to remove the restriction of high stratification parameter, and to generalize the solutions to low rotation speeds where the stratification parameter may be O(1), and to apply for dissimilar gases considering the difference in molecular mass of the two species. Secondly, we would like to compare the predictions with molecular simulations based on the direct simulation Monte Carlo (DSMC) method for rarefied gas flows, in order to quantify the errors resulting from the approximations at different aspect ratios, Reynolds number and stratification parameter.

  17. Energetics of geostrophic adjustment in rotating flow

    NASA Astrophysics Data System (ADS)

    Juan, Fang; Rongsheng, Wu

    2002-09-01

    Energetics of geostrophic adjustment in rotating flow is examined in detail with a linear shallow water model. The initial unbalanced flow considered first falls tinder two classes. The first is similar to that adopted by Gill and is here referred to as a mass imbalance model, for the flow is initially motionless but with a sea surface displacement. The other is the same as that considered by Rossby and is referred to as a momentum imbalance model since there is only a velocity perturbation in the initial field. The significant feature of the energetics of geostrophic adjustment for the above two extreme models is that although the energy conversion ratio has a large case-to-case variability for different initial conditions, its value is bounded below by 0 and above by 1 / 2. Based on the discussion of the above extreme models, the energetics of adjustment for an arbitrary initial condition is investigated. It is found that the characteristics of the energetics of geostrophic adjustment mentioned above are also applicable to adjustment of the general unbalanced flow under the condition that the energy conversion ratio is redefined as the conversion ratio between the change of kinetic energy and potential energy of the deviational fields.

  18. Bubble pinch-off in a rotating flow.

    PubMed

    Bergmann, Raymond; Andersen, Anders; van der Meer, Devaraj; Bohr, Tomas

    2009-05-22

    We create air bubbles at the tip of a "bathtub vortex" which reaches to a finite depth. The bathtub vortex is formed by letting water drain through a small hole at the bottom of a rotating cylindrical container. The tip of the needlelike surface dip is unstable at high rotation rates and releases bubbles which are carried down by the flow. Using high-speed imaging we find that the minimal neck radius of the unstable tip decreases in time as a power law with an exponent close to 1/3. This exponent was found by Gordillo et al. [Phys. Rev. Lett. 95, 194501 (2005)10.1103/PhysRevLett.95.194501] to govern gas flow driven pinch-off, and indeed we find that the volume oscillations of the tip creates a considerable air flow through the neck. We argue that the Bernoulli pressure reduction caused by this air flow can become sufficient to overcome the centrifugal forces and cause the final pinch-off. PMID:19519033

  19. Applications of sweep frequency rotating force perturbation methodology in rotating machinery for dynamic stiffness identification

    NASA Astrophysics Data System (ADS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Grant, John W.; Goldman, Paul

    1992-06-01

    This paper outlines the sweep frequency rotating force perturbation method for identifying the dynamic stiffness characteristics of rotor/bearing/seal systems. Emphasis is placed on nonsynchronous perturbation of rotating shafts in a sequence of constant rotative speeds. In particular, results of the identification of flexible rotor multi-mode parameters and identification of fluid forces in seals and bearings are given. These results, presented in the direct and quadrature dynamic stiffness formats, permit the separation of components for easy identification. Another example of the perturbation method application is the identification of the lateral-torsional coupling due to shaft anisotropy. Results of laboratory rig experiments, the identification algorithm, and data processing techniques are discussed.

  20. Forced-Flow Evaporative Cooler

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.; Niggemann, Richard E.

    1987-01-01

    Evaporative cooler absorbs heat efficiently under unusual gravitational conditions by using centrifugal force and vapor vortexes to maintain good thermal contact between heat-transfer surface and vaporizable coolant. System useful for cooling electronic or other equipment under low gravity encountered in spacecraft or under multiple-gravity conditions frequently experienced in high-performance airplanes.

  1. NASTRAN forced vibration analysis of rotating cyclic structures

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.; Gallo, A. M.

    1983-01-01

    Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.

  2. Particle image velocimetry measurements of massively separated turbulent flows with rotation

    NASA Astrophysics Data System (ADS)

    Visscher, Jan; Andersson, Helge I.

    2011-07-01

    Measurements of instantaneous velocity fields in the separated flow downstream of a backward-facing step in a rotating channel are presented for the first time. Particle image velocimetry (PIV) measurements were made for 13 different rotation numbers Ro at a bulk flow Reynolds number of about 5600. The expansion ratio 2:1 was the same as in the flow visualization study by Rothe and Johnston [ASME J. Fluids Eng. 101, 117 (1979)] which covered about the same range of Ro. The measured mean flow pattern exhibited substantial variations with the rate of system rotation. In particular, the length of the primary separation bubble decreased monotonically with increasing anti-cyclonic rotation and increased with increasing rate of cyclonic rotation, in keeping with the earlier observations. At the highest anti-cyclonic rotation rate, the flow field also separated from the planar wall where the shear layer flow was subjected to cyclonic rotation. The PIV data for the in-plane components of the Reynolds stress tensor were severely affected by the imposed system rotation. Almost all the striking affects of the Coriolis force observed herein could be explained by means of the exact production terms in the transport equation for the second-moments of the velocity fluctuations. These changes were in turn consistent with the observed alterations of the mean flow field.

  3. Effects of rotating flows on combustion and jet noise.

    NASA Technical Reports Server (NTRS)

    Schwartz, I. R.

    1972-01-01

    Experimental investigations of combustion in rotating (swirling) flow have shown that the mixing and combustion processes were accelerated, flame length and noise levels significantly decreased, and flame stability increased relative to that obtained without rotation. Unsteady burning accompanied by a pulsating flame, violent fluctuating jet, and intense noise present in straight flow burning were not present in rotating flow burning. Correlations between theory and experiment show good agreement. Such effects due to rotating flows could lead to suppressing jet noise, improving combustion, reducing pollution, and decreasing aircraft engine size. Quantitative analysis of the aero-acoustic relationship and noise source characteristics are needed.-

  4. Internal flows and force matrices in axial flow inducers

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Abhijit

    1994-01-01

    Axial flow inducers such as those used in high speed rocket engine turbopumps are subject to complex internal flows and fluid-induced lateral and rotordynamic forces. An investigation of these internal flows was conducted using boundary layer flow visualization on the blades, hub and housing of unshrouded and shrouded inducers. Results showed that the blade boundary layer flows have strong radial components at off-design conditions and remain attached to the blade surface at all flow coefficients tested. The origin of upstream swirling backflow was found to be at the discharge plane of the inducer. In addition, flow reversal was observed at the suction side blade tip near the leading edge in a shrouded inducer. Re-entry of the hub boundary layer flow, a downstream backflow, into the blade passage area was observed at flow coefficients below design. For unshrouded inducers the radially outward flow near the blade tip mixed with the leakage flow to form the upstream backflow. The lateral and rotordynamic forces acting on an inducer due to an imposed whirl motion was also investigated at various flow coefficients. It was found that the rotordynamic force data at various whirl frequency ratios does not allow a normal quadratic fit; consequently the conventional inertial, stiffness and damping coefficients cannot be obtained and a definite whirl ratio describing the instability region does not result. Application of an actuator disk theory proved to be inaccurate in estimating the rotordynamic tangential force in a non-whirling inducer. The effect of upstream and downstream flow distortions on the rotordynamic and lateral forces on an inducer were studied. It was found that at flow coefficients below design, large lateral forces occurred in the presence of a downstream asymmetry. Results of inlet distortion experiments show that a strong inlet shear causes a significant increase in the lateral force. Cavitation was found to have important consequences for fluid

  5. Zonal flow regimes in rotating anelastic spherical shells (Invited)

    NASA Astrophysics Data System (ADS)

    Gastine, T.; Wicht, J.; Aurnou, J. M.; Heimpel, M. H.

    2013-12-01

    The surface zonal winds observed in the giant planets form a complex jet pattern with alternating prograde and retrograde direction. While the main equatorial band is prograde on the gas giants, both ice giants have a pronounced retrograde equatorial jet. The depth of these jets is however poorly known and highly debated. Theoretical scenarios range from "shallow models", that assume that these zonal flows are restricted to the outer stably stratified layer; to "deep models" that hypothesise that the surface winds are the signature of deep-seated convection. Most of the numerical models supporting the latter idea employed the Boussinesq approximation where compressibility effects are ignored. While this approximation is suitable for modelling the liquid iron core of terrestrial planets, this becomes questionable in the gas giants interiors, where density increases by several orders of magnitude. To tackle this problem, several numerical models using the "anelastic approximation" have been recently developed to study the compressibility effects while filtering out the fast acoustic waves. Here, we consider such anelastic models of rapidly-rotating spherical shells to explore the properties of the zonal winds in different regimes where either rotation or buoyancy dominates the force balance. We conduct several parameter studies to quantify the dependence of zonal flows on the background density stratification and the driving of convection. We find that the direction of the equatorial wind is controlled by the ratio of buoyancy and Coriolis force. The prograde equatorial band maintained by Reynolds stresses is found in the rotation-dominated regime. At low Ekman numbers, several alternating jets form at high latitude in a similar way to some previous Boussinesq calculations. In cases where buoyancy dominates Coriolis force, the angular momentum per unit mass is homogenised and the equatorial band is retrograde, reminiscent to those observed in the ice giants

  6. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  7. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    DOE PAGESBeta

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less

  8. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-11-01

    This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other. PMID:26651796

  9. NASTRAN forced vibration analysis of rotating cyclic structures

    NASA Technical Reports Server (NTRS)

    Elchuri, V.; Smith, G. C. C.; Gallo, A. M.

    1983-01-01

    Theoretical aspects of a new capability, developed and added to the general purpose finite element program NASTRAN Level 17.7, to conduct forced vibration analysis of turned cyclic structures rotating about their axis of symmetry, are presented. The effects of Coriolis and centripetal accelerations as well as those due to the translational acceleration of the axis of rotation, are included. The equations of motion are first derived for an arbitrary grid point of the cyclic sector finite element model and then extended for the complete model. The equations are solved by four principal steps: (1) transformation of applied loads at frequency-dependent circumferential harmonic components; (2) application of circumferential harmonic-dependent intersegment compatibility constraints; (3) solution of frequency-dependent circumferential harmonic components of displacements; and (4) recovery of frequency-dependent response in various segments of the total structure. Five interrelated examples are presented to illustrate the various features of the development.

  10. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-11-01

    This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  11. Hybrid RANS/LES of turbulent flow in a rotating rib-roughened channel

    NASA Astrophysics Data System (ADS)

    Xun, Qian-Qiu; Wang, Bing-Chen

    2016-07-01

    In this paper, we investigate the effect of the Coriolis force on the flow field in a rib-roughened channel subjected to either clockwise or counter-clockwise system rotation using hybrid RANS/LES based on wall modelling. A simplified dynamic forcing scheme incorporating backscatter is proposed for the hybrid simulation approach. The flow is characterized by a Reynolds number of Re = 1.5 × 104 and a rotation number Ro ranging from -0.6 to 0.6. The mean flow speed and turbulence level near the roughened wall are enhanced under counter-clockwise rotation and suppressed under clockwise rotation. The Coriolis force significantly influences the stability of the wall shear layer and the free shear layers generated by the ribs. Consequently, it is interesting to observe that the classification of the roughness type relies not only on the pitch ratio, but also on the rotation number in the context of rotating rib-roughened flows. In order to validate the present hybrid approach, the first- and second-order statistical moments of the velocity field obtained from the simulations are thoroughly compared with the available laboratory measurement data.

  12. Comments on Frequency Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/bearing/seal Systems and Fluid Handling Machines

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.

    1991-01-01

    Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.

  13. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Fan, Liang-Shih

    2015-07-01

    Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.

  14. Potential flow and forces for incompressible viscous flow

    NASA Astrophysics Data System (ADS)

    Chang, Chien-Cheng

    1992-06-01

    Forces on a finite body in an incompressible viscous flow are shown to be contributed by a potential flow and fluid elements of nonzero vorticity in a revealing formulation. The present study indicates that the potential flow pay also a geometric role in determining the contribution of the fluid elements. Consideration is given to a solid body moving through a fluid, fluid accelerating past a solid body and a solid body which oscillates in a uniform stream. The effects of induced-mass and inertial forces appear naturally in the formulation and are separated from the contribution due to the surface vorticity and that due to the vorticity within the flow. Physical significance of the present analysis for vortical flows about a finite body is illustrated by examples, e.g., flow past a circular cylinder or an ellipsoid of revolution.

  15. Forces and moments within layers of driven tearing modes with sheared rotation

    NASA Astrophysics Data System (ADS)

    Cole, A. J.; Finn, J. M.; Hegna, C. C.; Terry, P. W.

    2015-10-01

    For driven low amplitude tearing modes in a plasma with sheared rotation, forces on tearing layers due to Maxwell and Reynolds stresses are calculated. First moments about the center of the tearing layer, also due to Maxwell and Reynolds stresses, are also calculated. The forces tend to cause the tearing mode to lock to the phase of the driving perturbation, and the moments determine the evolution of the rotation shear within the layer. These forces and moments are calculated for two constant-ψ regimes of tearing modes, namely, the viscoresistive (VR) regime and the resistive-inertial (RI) regime, and an ordering in terms of the constant-ψ small parameter ɛ ˜δΔ is introduced, with the velocity shear ordered as ˜ɛ . Here, δ is the layer width and Δ the logarithmic jump in the derivative of the flux function across the layer. The forces and first moments are reported to the lowest nonvanishing order in ɛ. The Reynolds moment is analogous to the effect that can drive zonal flows in other contexts. The treatment of the tearing layers is by means of variational principles using Padé approximants (A. J. Cole and J. M. Finn, Phys. Plasmas 21, 032508 (2014)). The usual result for the Maxwell force without rotation shear is recovered for both regimes. That is, the correction due to velocity shear is small; also, the lowest order contribution to the Reynolds force is zero. In the VR regime, we find no first moments up to second order in the constant-ψ parameter. In the RI regime, we find Nm is zero to at least order ɛ3 /2 . In the RI regime, the Reynolds moment Nr is found to be of order ɛ3 /2 and is proportional to minus the rotation shear in the layer; it thus tends to damp out any velocity shear across the layer.

  16. Effects of secondary flow on heat transfer in rotating passages

    NASA Astrophysics Data System (ADS)

    Moore, Joan G.; Moore, John

    1990-02-01

    Secondary flow in rotating cooling passages of jet engine turbine rotors is considered. A Navier-Stokes calculation procedure for turbulent flow is used to compute flow development in a radially outward flow channel, round a sharp 180 degree bend, and in the radially inward flow channel downstream. Areas of high and low heat transfer are explained by secondary flow development and quantitative results show regions of design interest.

  17. A Microfluidic Approach for Inducing Cell Rotation by Means of Hydrodynamic Forces.

    PubMed

    Torino, Stefania; Iodice, Mario; Rendina, Ivo; Coppola, Giuseppe; Schonbrun, Ethan

    2016-01-01

    Microfluidic technology allows to realize devices in which cells can be imaged in their three-dimensional shape. However, there are still some limitations in the method, due to the fact that cells follow a straight path while they are flowing in a channel. This can result in a loss in information, since only one side of the cell will be visible. Our work has started from the consideration that if a cell rotates, it is possible to overcome this problem. Several approaches have been proposed for cell manipulation in microfluidics. In our approach, cells are controlled by only taking advantages of hydrodynamic forces. Two different devices have been designed, realized, and tested. The first device induces cell rotation in a plane that is parallel (in-plane) to the observation plane, while the second one induce rotation in a plane perpendicular (out-of-plane) to the observation plane. PMID:27548187

  18. Efficient forced vibration reanalysis method for rotating electric machines

    NASA Astrophysics Data System (ADS)

    Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo

    2015-01-01

    Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.

  19. Biomechanics of Forearm Rotation: Force and Efficiency of Pronator Teres

    PubMed Central

    Ibáñez-Gimeno, Pere; Galtés, Ignasi; Jordana, Xavier; Malgosa, Assumpció; Manyosa, Joan

    2014-01-01

    Biomechanical models are useful to assess the effect of muscular forces on bone structure. Using skeletal remains, we analyze pronator teres rotational efficiency and its force components throughout the entire flexion-extension and pronation-supination ranges by means of a new biomechanical model and 3D imaging techniques, and we explore the relationship between these parameters and skeletal structure. The results show that maximal efficiency is the highest in full elbow flexion and is close to forearm neutral position for each elbow angle. The vertical component of pronator teres force is the highest among all components and is greater in pronation and elbow extension. The radial component becomes negative in pronation and reaches lower values as the elbow flexes. Both components could enhance radial curvature, especially in pronation. The model also enables to calculate efficiency and force components simulating changes in osteometric parameters. An increase of radial curvature improves efficiency and displaces the position where the radial component becomes negative towards the end of pronation. A more proximal location of pronator teres radial enthesis and a larger humeral medial epicondyle increase efficiency and displace the position where this component becomes negative towards forearm neutral position, which enhances radial curvature. Efficiency is also affected by medial epicondylar orientation and carrying angle. Moreover, reaching an object and bringing it close to the face in a close-to-neutral position improve efficiency and entail an equilibrium between the forces affecting the elbow joint stability. When the upper-limb skeleton is used in positions of low efficiency, implying unbalanced force components, it undergoes plastic changes, which improve these parameters. These findings are useful for studies on ergonomics and orthopaedics, and the model could also be applied to fossil primates in order to infer their locomotor form. Moreover, activity

  20. Vortex merger in rotating stratified flows

    NASA Astrophysics Data System (ADS)

    Dritschel, David G.

    2002-03-01

    This paper describes the interaction of symmetric vortices in a three-dimensional quasi-geostrophic fluid. The initial vortices are taken to be uniform-potential-vorticity ellipsoids, of height 2h and width 2R, and with centres at (±d/2; 0, 0), embedded within a background flow having constant background rotational and buoyancy frequencies, f/2 and N respectively. This problem was previously studied by von Hardenburg et al. (2000), who determined the dimensionless critical merger distance d/R as a function of the height-to-width aspect ratio h/R (scaled by f/N). Their study, however, was limited to small to moderate values of h/R, as it was anticipated that merger at large h/R would reduce to that for two columnar two-dimensional vortices, i.e. d/R [approximate] 3.31. Here, it is shown that no such two-dimensional limit exists; merger is found to occur at any aspect ratio, with d [similar] h for h/R [dbl greater-than sign] 1.New results are also found for small to moderate values of h/R. In particular, our numerical simulations reveal that asymmetric merger is predominant, despite the initial conditions, if one includes a small amount of random noise. For small to moderate h/R, decreasing the initial separation distance d first results in a weak exchange of material, with one vortex growing at the expense of the other. As d decreases further, this exchange increases and leads to two dominant but strongly asymmetric vortices. Finally, for yet smaller d, rapid merger into a single dominant vortex occurs in effect the initial vortices exchange nearly all of their material with one another in a nearly symmetrical fashion.

  1. MASS TRANSFER TO ROTATING DISKS AND ROTATING RINGS IN LAMINAR, TRANSITION, AND FULLY DEVELOPED TURBULENT FLOW

    SciTech Connect

    Law Jr., C.G.; Pierini, P.; Newman, J.

    1980-07-01

    Experimental data and theoretical calculations are presented for the mass-transfer rate to rotating disks and rotating rings when laminar, transition, and fully developed turbulent flow exist upon different portions of the surface. Good agreement of data and the model is obtained for rotating disks and relatively thick rotating rings. Results of the calculations for thin rings generally exceed the experimental data measured in transition and turbulent flow. A y{sup +{sup 3}} form for the eddy diffusivity is used to fit the data. No improvement is noticed with a form involving both y{sup +{sup 3}} and y{sup +{sup 3}}.

  2. Laser velocimeter measurements of the flow fields around single- and counter-rotation propeller models

    NASA Technical Reports Server (NTRS)

    Dunham, D. M.; Sellers, W. L., III; Elliott, J. W.

    1985-01-01

    A two-component LV system was used to make detailed measurements of the flow field around both a single-rotation and a counter-rotation propeller/nacelle. The conditions measured for the single-rotation tractor configuration include two different blade angles and two propeller advance ratios, and for the counter-rotation propeller configuration include both pusher and tractor mounts. The measurements show the increasing slipstream velocities and contraction with increasing blade angle and with decreasing advance ratios. Data for the counter-rotation system show that the aft propeller turns the flow in the opposite direction from the front propeller. Additionally, the LV system was used as a diagnostic tool to provide data to explain the large side force measured on the propeller/nacelle at angle-of-attack.

  3. Non-isothermal flow through a rotating straight duct with wide range of rotational and pressure driven parameters

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman, Mohammad; Alam, Md. Mahmud; Ferdows, M.; Sivasankaran, S.

    2013-10-01

    Numerical study is performed to investigate the Non-isothermal flow in a rotating straight duct under various flow conditions. Spectral method is applied as a main tool for the numerical technique, where the Chebyshev polynomial, the Collocation methods, the Arc-length method and the Newton-Raphson method are also used as secondary tools. The characteristics of the flow mentioned above are described here. The incompressible viscous steady Non-isothermal flow through a straight duct of rectangular cross-section rotating at a constant angular velocity about the center of the duct cross-section is investigated numerically to examine the combined effects of Rotation parameter (Coriolis force), Grashof number (parameter which is used in heat, transfer studies involving free, forced or natural convection and is equql to , where L is the characteristic length, ρ the density, g the acceleration due to gravity, β the thermal expansion coefficient, Δ T the temperature difference, μ the viscosity and ν the kinematic viscosity of the fluid. The expansion coefficient β is a measure of the rate at which the volume V of the fluid changes with temperature at a given pressure P), Prandtl number, aspect ratio and Pressure-driven parameter (centrifugal force) on the flow. We examine the structures in case of rotation of the duct axis and the Pressure-driven parameter with large aspect ratio where other parameters are fixed. The calculations are carried out for 0 ≤ T r ≤ 300, 2 ≤ γ ≤ 6, G r = 100, P r = 7.0 and 0 ≤ P r ≤ 800 by applying the Spectral method. When Ω > 0 and the rotation is in the same direction as the Coriolis force enforces the centrifugal force, multiple solutions of Non-symmetric the secondary flow patterns with 10-vortex (maximum) are obtained in case of T r = 100 and 150 with large aspect ratio. The intense of the temperature field is very strong near the heated wall in all cases. Finally, the overall solutions of the problems considered in

  4. Forces on particles in microstreaming flows

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Thameem, Raqeeb

    2015-11-01

    In various microfluidic applications, vortical steady streaming from ultrasonically driven microbubbles is used in concert with a pressure-driven channel flow to manipulate objects. While a quantitative theory of this boundary-induced streaming is available, little work has been devoted to a fundamental understanding of the forces exerted on microparticles in boundary streaming flows, even though the differential action of such forces is central to applications like size-sensitive sorting. Contrary to other microfluidic sorting devices, the forces in bubble microstreaming act over millisecond times and micron length scales, without the need for accumulated deflections over long distances. Accordingly, we develop a theory of hydrodynamic forces on the fast time scale of bubble oscillation using the lubrication approximation, showing for the first time how particle displacements are rectified near moving boundaries over multiple oscillations in parallel with the generation of the steady streaming flow. The dependence of particle migration on particle size and the flow parameters is compared with experimental data. The theory is applicable to boundary streaming phenomena in general and demonstrates how particles can be sorted very quickly and without compromising device throughput. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  5. Subsychronous vibration of multistage centrifugal compressors forced by rotating stall

    NASA Technical Reports Server (NTRS)

    Fulton, J. W.

    1987-01-01

    A multistage centrifugal compressor, in natural gas re-injection service on an offshore petroleum production platform, experienced subsynchronous vibrations which caused excessive bearing wear. Field performance testing correlated the subsynchronous amplitude with the discharge flow coefficient, demonstrating the excitation to be aerodynamic. Adding two impellers allowed an increase in the diffuser flow angle (with respect to tangential) to meet the diffuser stability criteria based on factory and field tests correlated using the theory of Senoo (for rotating stall in a vaneless diffuser). This modification eliminated all significant subsynchronous vibrations in field service, thus confirming the correctness of the solution. Other possible sources of aerodynamically induced vibrations were considered, but the judgment that those are unlikely has been confirmed by subsequent experience with other similar compressors.

  6. Turbulent flow and heat transfer in rotating channels and tubes

    NASA Astrophysics Data System (ADS)

    Mitiakov, V. Y.; Petropavlovskii, R. R.; Ris, V. V.; Smirnov, E. M.; Smirnov, S. A.

    This document is a reduction of the author's experimental results on turbulent flow characteristics and heat transfer in rotating channels whose axes are parallel to the plane of rotation. Substantial dissimilarities of longitudinal velocity field profile and pulsational characteristics are caused by effects of stabilization and destabilization and secondary flow production. Local heat transfer coefficients vary over the perimeter of the tube section connecting detected flow peculiarities. It is shown that the increase in rotational intensity caused an increase in the relative dissimilarity of the local heat transfer coefficients and increased their mean value.

  7. Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study

    NASA Astrophysics Data System (ADS)

    Alhendal, Yousuf; Turan, A.; Al-mazidi, M.

    2015-12-01

    The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.

  8. Navier-Stokes solutions for rotating 3-D duct flows

    NASA Astrophysics Data System (ADS)

    Srivastava, B. N.

    1988-07-01

    This paper deals with the computation of three-dimensional viscous turbulent flow in a rotating rectangular duct of low aspect ratio using thin-layer Navier-Stokes equations. Scalar form of an approximate factorization implicit scheme along with a modified q-omega turbulence model has been utilized for mean flow predictions. The predicted mean flow behavior has been favorably compared with the experimental data for mean axial velocity, channel pressure and cross-flow velocities at a flow Mach number of 0.05 and a rotational speed of 300 rpm.

  9. Flow and heat transfer characteristics of orthogonally rotating channel

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroshi; Ishigaki, Hiroshi

    1991-12-01

    Numerical analysis was conducted to predict the centripetal buoyant effect on flow and heat transfer characteristics in a channel rotating about a perpendicular axis. The conditions were assumed to be laminar, fully developed, and uniform heat flux. Calculation were conducted both for radially outward flow from the rotating axis and radially inward flow. The calculated results indicated that for radially outward flow buoyancy decreases the suction side friction and heat transfer while increasing pressure side friction and heat transfer. This trends were reversed for radially inward flow.

  10. Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates

    NASA Astrophysics Data System (ADS)

    Gu, F.; Wang, J. S.; Qiao, X. Q.; Huang, Z.

    2012-01-01

    Previous studies on the flow around a circular cylinder with fixed splitter plates have shown that the drag and lift can be reduced, and the primary vortex shedding can be suppressed obviously. In this study, a wind tunnel experiment on the flow around a circular cylinder with diameter D (40 mm) attached with ten splitter plates freely rotatable around the cylinder axis has been carried out with different ratios of length to cylinder diameter (L/D) from 0.5 to 6.0, in a range of Reynolds number from 3×104 to 6×104. The influences of the attachment of these rotatable splitter plates on the pressure distribution, fluctuating drag and lift forces and vortex shedding behavior were investigated. It is found that the splitter plates rotate to an off-axis equilibrium angle δ (on either side of the wake with equal probability) rather than align themselves with free stream due to the integrated effect of the pressure difference along the sides of the splitter plates. The plate length L/D is crucial in determining the equilibrium angle δ. Longer splitter plate causes smaller angle; δ remains zero, i.e., parallel to the flow direction, for L/D≥4. The mean pressures in the wake near the cylinder are higher than that of a bare cylinder. Further, the mean drag coefficients and the root-mean-square fluctuating lift coefficients, which are also largely determined by δ, are less than those of the corresponding bare cylinder, with a reduction up to about 30% and 90%, respectively. However, freely rotatable splitter plate develops a mean lift force towards the side the plate has deflected. In addition, the Strouhal number of fluctuating forces and correlation analysis are presented. The visualized flow structures show that the freely rotatable splitter plates elongate the vortex formation region, and the communication between the two shear layers on either side of the body is inhibited. For comparison, experiments of attaching fixed splitter plates with the same size were

  11. Flow and heat transfer model for a rotating cryogenic motor

    NASA Astrophysics Data System (ADS)

    Dykhuizen, R. C.; Baca, R. G.; Bickel, T. C.

    1993-08-01

    Development of a high-temperature, superconducting, synchronous motor for large applications (greater than 1000 HP) could offer significant electrical power savings for industrial users. Presently 60% of all electric power generated in the United States is converted by electric motors. A large part of this power is utilized by motors 1000 HP or larger. The use of high-temperature superconducting materials with critical temperatures above that of liquid nitrogen (77 K) in the field winding would reduce the losses in these motors significantly, and therefore, would have a definite impact on the electrical power usage in the U.S. These motors will be 1/3 to 1/2 the size of conventional motors of similar power and, thus, offer potential savings in materials and floor space. The cooling of the superconducting materials in the field windings of the rotor presents a unique application of cryogenic engineering. The rotational velocity results in significant radial pressure gradients that affect the flow distribution of the cryogen. The internal pressure fields can result in significant nonuniformities in the two-phase flow of the coolant. Due to the variable speed design, the flow distribution has the potential to change during operation. A multiphase-flow computer model of the cryogenic cooling is developed to calculate the boiling heat transfer and phase distribution of the nitrogen coolant in the motor. The model accounts for unequal phase velocities and nonuniform cooling requirements of the rotor. The unequal radial pressure gradients in the inlet and outlet headers result in a larger driving force for flow in the outer cooling channels. The effect of this must be accounted for in the design of the motor. Continuing improvements of the model will allow the investigation of the transient thermal issues associated with localized quenching of the superconducting components of the motor.

  12. Flow and heat transfer model for a rotating cryogenic motor

    SciTech Connect

    Dykhuizen, R.C.; Baca, R.G.; Bickel, T.C.

    1993-08-01

    Development of a high-temperature, superconducting, synchronous motor for large applications (>1000 HP) could offer significant electrical power savings for industrial users. Presently 60% of all electric power generated in the United States is converted by electric motors. A large part of two power is utilized by motors 1000 HP or larger. The use of high-temperature superconducting materials with critical temperatures above that of liquid nitrogen (77 K) in the field winding would reduce the losses in these motors significantly, and therefore, would have a definite impact on the electrical power usage in the US. These motors will be 1/3 to 1/2 the size of conventional motors of similar power and, thus, offer potential savings in materials and floor space. The cooling of the superconducting materials in the field windings of the rotor presents a unique application of cryogenic engineering. The rotational velocity results in significant radial pressure gradients that affect the flow distribution of the cryogen. The internal pressure fields can result in significant nonuniformities in the two-phase flow of the coolant. Due to the variable speed design, the flow distribution has the potential to change during operation. A multiphase-flow computer model of the cryogenic cooling is developed to calculate the boiling heat transfer and phase distribution of the nitrogen coolant in the motor. The model accounts for unequal phase velocities and nonuniform cooling requirements of the rotor. The unequal radial pressure gradients in the inlet and outlet headers result in a larger driving force for flow in the outer cooling channels. The effect of this must be accounted for in the design of the motor. Continuing improvements of the model will allow the investigation of the transient thermal issues associated with localized quenching of the superconducting components of the motor.

  13. Forced generation of solitary waves in a rotating fluid and their stability

    NASA Astrophysics Data System (ADS)

    Choi, Wooyoung

    The primary objective of this graduate research is to study forced generation of solitary waves in a rotating fluid and their stability properties. For axisymmetric flow of a non-uniformly rotating fluid within a long cylindrical tube, an analysis is presented to predict the periodic generation of upstream-advancing vortex solitons by axisymmetric disturbance steadily moving with a transcritical velocity as a forcing agent. The phenomenon is simulated using the forced Korteweg-de Vries (fKdV) equation to model the amplitude function of the Stokes stream function for describing this family of rotating flows of an inviscid and incompressible fluid. The numerical results for the weakly nonlinear and weakly dispersive wave motion show that a sequence of well-defined axisymmetrical recirculating eddies is periodically produced and emitted to radiate upstream of the disturbance, soon becoming permanent in the form as a procession of vortex solitons, which we call vortons. Two primary flows, the Rankine vortex and the Burgers vortex, are adopted to exhibit in detail the process of producing the upstream vortons by the critical motion of a slender body moving along the central axis, with the Burgers vortex being found the more effective of the two in the generation of vortons. To investigate the evolution of free or forced waves within a tube of non-uniform radius, a new forced KdV equation is derived which models the variable geometry with variable coefficients. A set of section-mean conservation laws is derived specially for this class of rotational tube flows of an inviscid and incompressible fluid, in both differential and integral forms. A new aspect of stability theory is analyzed for possible instabilities of the axisymmetric solitary waves subject to non-axisymmetric disturbances. The present linear analysis based on the model equation involving the bending mode shows that the axisymmetric solitary wave is neutrally stable with respect to small bending mode

  14. Rotation of melting ice disks due to melt fluid flow

    NASA Astrophysics Data System (ADS)

    Dorbolo, S.; Adami, N.; Dubois, C.; Caps, H.; Vandewalle, N.; Darbois-Texier, B.

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4°C for which the water density is maximum. The 4°C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  15. Zonal flow regimes in rotating anelastic spherical shells: An application to giant planets

    NASA Astrophysics Data System (ADS)

    Gastine, T.; Wicht, J.; Aurnou, J. M.

    2013-07-01

    The surface zonal winds observed in the giant planets form a complex jet pattern with alternating prograde and retrograde direction. While the main equatorial band is prograde on the gas giants, both ice giants have a pronounced retrograde equatorial jet. We use three-dimensional numerical models of compressible convection in rotating spherical shells to explore the properties of zonal flows in different regimes where either rotation or buoyancy dominates the force balance. We conduct a systematic parameter study to quantify the dependence of zonal flows on the background density stratification and the driving of convection. In our numerical models, we find that the direction of the equatorial zonal wind is controlled by the ratio of the global-scale buoyancy force and the Coriolis force. The prograde equatorial band maintained by Reynolds stresses is found in the rotation-dominated regime. In cases where buoyancy dominates Coriolis force, the angular momentum per unit mass is homogenized and the equatorial band is retrograde, reminiscent to those observed in the ice giants. In this regime, the amplitude of the zonal jets depends on the background density contrast with strongly stratified models producing stronger jets than comparable weakly stratified cases. Furthermore, our results can help to explain the transition between solar-like (i.e. prograde at the equator) and the "anti-solar" differential rotations (i.e. retrograde at the equator) found in anelastic models of stellar convection zones. In the strongly stratified cases, we find that the leading order force balance can significantly vary with depth. While the flow in the deep interior is dominated by rotation, buoyancy can indeed become larger than Coriolis force in a thin region close to the surface. This so-called "transitional regime" has a visible signature in the main equatorial jet which shows a pronounced dimple where flow amplitudes notably decay towards the equator. A similar dimple is observed on

  16. Combined effects of rotation and rib-roughness - a dns study of turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Andersson, Helge I.; Narasimhamurthy, Vagesh D.

    2014-11-01

    The combined effects of system rotation and rib-roughness on turbulent channel flow have been investigated by means of direct numerical simulations. Square ribs were placed on both walls in a non-staggered arrangement and the channel was subjected to steady rotation about a spanwise axis for a series of rotation numbers up to Ro = 24. A pressure-loss reduction of about 20 per cent resulted from the imposed rotation at Ro = 6. In spite of the 10 per cent blockage due to the wall-mounted ribs, the flow field exhibited statistical streamwise homogeneity in the core region. The mean velocity varied linearly with a slope such that the mean fluid rotation exactly outweighed the imposed system rotation. The flow field in the vicinity of the ribs was affected differently at the two sides of the rotating channel. The separated flow region behind the ribs on the anti-cyclonic pressure side shrinked with increasing Ro due to the enhanced turbulent mixing caused by the Coriolis force. The original d-type roughness was thus turned into a k-type roughness.

  17. Magnetohydrodynamic flow excited by rotating permanent magnets in an orthogonal container

    NASA Astrophysics Data System (ADS)

    Ben-David, O.; Levy, A.; Mikhailovich, B.; Azulay, A.

    2014-09-01

    Liquid metal magnetohydrodynamic flow driven by a system of rotating permanent magnets in a container of orthogonal cross-section has been studied. The main objective of the work is to research the impact of magnetic forcing parameters (magnetic field value, magnets arrangement, and angular velocity of their rotation) on the generated hydrodynamic structures and flow modes. On this basis, we contemplate realizing required flow features by setting certain parameters of the driving magnetic system. A numerical study of the problem in the induction-free approximation without taking into account the effect of the variable component of electromagnetic force is presented. The parameters of spin-up modes and steady-state flow regimes have been calculated by three-dimensional direct numerical simulation based on COMSOL Multiphysics 4.3a software and experimentally verified on a specially designed setup using noninvasive Doppler ultrasound technique.

  18. Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  19. Wall forces on a sphere in a rotating liquid-filled cylinder

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; van der Molen, Jarich; van Wijngaarden, Leen; Sun, Chao

    2013-06-01

    We experimentally study the behavior of a particle slightly denser than the surrounding liquid in solid body rotating flow. Earlier work revealed that a heavy particle has an unstable equilibrium point in unbounded rotating flows [G. O. Roberts, D. M Kornfeld, and W. W Fowlis, J. Fluid Mech. 229, 555-567 (1991), 10.1017/S0022112091003166]. In the confinement of the rotational flow by a cylindrical wall a heavy sphere with density 1.05 g/cm3 describes an orbital motion in our experiments. This is due to the effect of the wall near the sphere, i.e., a repulsive force (FW). We model FW on the sphere as a function of the distance from the wall (L): FW∝L-4 as proposed by Takemura et al. [J. Fluid Mech. 495, 235-253 (2003), 10.1017/S0022112003006232]. Remarkably, the path evaluated from the model including FW reproduces the experimentally measured trajectory. In addition during an orbital motion the particle does not spin around its axis, and we provide a possible explanation for this phenomenon.

  20. Heat transfer in rotating serpentine passages with trips normal to the flow

    NASA Technical Reports Server (NTRS)

    Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.

    1991-01-01

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.

  1. Heat transfer in rotating serpentine passages with trips normal to the flow

    NASA Astrophysics Data System (ADS)

    Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.

    1991-06-01

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.

  2. Axisymmetric rotational stagnation-point flow impinging on a rotating disk

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick

    2015-12-01

    Agrawal's (Q J Mech Appl Math, 10:42-44, 1957) stagnation-point flow problem is extended to flow impingement normal to a uniformly rotating disk. This is the analog of the extension of Homann's (Z Angew Math Mech (ZAMM), 16:153-164, 1936) stagnation flow when impinging on a rotating disk as reported by Hannah (Rep Mem Aerosp Res Coun Lond 2772, 1947). While both oncoming stagnation flows are axisymmetric, in the far field Homann's stagnation flow is irrotational while Agrawal's is rotational. A similarity reduction of the Navier-Stokes equations yields a pair of coupled ordinary differential equations governed by a dimensionless rotation rate σ. Integrations were carried out up to σ = 30 beyond which the equations become stiff and solution independence of integration length cannot be ensured. Results for the radial and azimuthal shear stresses are presented along with the strength of the flow induced into the boundary layer and the thickness of the azimuthal flow boundary layer. Analytic results found at σ = 0 are shown to be in excellent agreement with the numerical calculations. Sample velocity profiles for the radial and azimuthal flows are presented.

  3. Patterns of 3D flow in a rotating cylinder array

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2015-11-01

    Experimental data are presented for large arrays of rotating, finite-height cylinders, which show that the three-dimensional flows are strongly dependent on the geometric and rotational configurations of the array. Two geometric configurations of the cylinders, each with two rotational configurations, were examined for a total of four arrays. 2D PIV was conducted in multiple intersecting horizontal and vertical sheets at a location far downstream of the leading edge of the array in order to build up a picture of the 3D developed flow patterns. It was found that the rotation of the cylinders drives the formation of streamwise and transverse flow patterns between cylinders. These horizontal flow patterns, by conservation of mass, drive vertical flows through the top of the array. As the array of rotating cylinders may provide insight into the flow kinematics of an array of vertical axis wind turbines, this planform flux is of particular interest as it would bring down into the array high kinetic energy fluid from above the array, thus increasing the energy resource available to turbines far downstream of the leading edge of the array.

  4. Alignment of dust particles by ion drag forces in subsonic flows

    SciTech Connect

    Piel, Alexander

    2011-07-15

    The role of ion drag forces for the alignment of dust particles is studied for subsonic flows. While alignment by wake-field attraction is a well known mechanism for supersonic flows, it is argued here that ion-scattering forces become more important in subsonic ion flows. A model of non-overlapping collisions is introduced and numerical results are discussed. For typical conditions of dusty plasma experiments, alignment by drag forces is found strong enough to overcome the destabilizing force from Coulomb repulsion between dust particles. It turns out that the major contribution to the horizontal restoring force originates from the transverse momentum transfer, which is usually neglected in ion drag force calculations because of an assumed rotational symmetry of the flow.

  5. 'Coriolis resonance' within a rotating duct. [flow induced vibrations in centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Kurosaka, M.; Caruthers, J. E.

    1982-01-01

    An investigation of the unsteady disturbances of a fixed frequency within a radial duct rotating at a set speed is presented. The flow is assumed to be compressible, inviscid, and of a fluid which is a perfect gas. Equations are developed for the steady and the unsteady parts of the flow in cylindrical coordinates. The unsteady disturbances are expressed by Fourier decomposition in angular position, distance into the duct, and in time. It is found that a resonance is possible when the frequency of flow disturbances is twice the shaft-rotation frequency, considering only the radial and tangential disturbances and not the radial and circumferential disturbances. The particular point at which the resonance occurs indicates the occurrence is due to the Coriolis force, which is only present in the radial and tangential directions. It is noted that the Coriolis force can only be present in open-ended ducts, such as those found in centrifugal compressors.

  6. Large eddy simulation of compressible turbulent channel and annular pipe flows with system and wall rotations

    NASA Astrophysics Data System (ADS)

    Lee, Joon Sang

    The compressible filtered Navier-Stokes equations were solved using a second order accurate finite volume method with low Mach number preconditioning. A dynamic subgrid-scale stress model accounted for the subgrid-scale turbulence. The study focused on the effects of buoyancy and rotation on the structure of turbulence and transport processes including heat transfer. Several different physical arrangements were studied as outlined below. The effects of buoyancy were first studied in a vertical channel using large eddy simulation (LES). The walls were maintained at constant temperatures, one heated and the other cooled. Results showed that aiding and opposing buoyancy forces emerge near the heated and cooled walls, respectively. In the aiding flow, the turbulent intensities and heat transfer were suppressed at large values of Grashof number. In the opposing flow, however, turbulence was enhanced with increased velocity fluctuations. Another buoyancy study considered turbulent flow in a vertically oriented annulus. Isoflux wall boundary conditions with low and high heating were imposed on the inner wall while the outer wall was adiabatic. The results showed that the strong heating and buoyancy force caused distortions of the flow structure resulting in reduction of turbulent intensities, shear stress, and turbulent heat flux, particularly near the heated wall. Flow in an annular pipe with and without an outer wall rotation about its axis was first investigated at moderate Reynolds numbers. When the outer pipe wall was rotated, a significant reduction of turbulent kinetic energy was realized near the rotating wall. Secondly, a large eddy simulation has been performed to investigate the effect of swirl on the heat and momentum transfer in an annular pipe flow with a rotating inner wall. The simulations indicated that the Nusselt number and the wall friction coefficient increased with increasing rotation speed of the wall. It was also observed that the axial velocity

  7. Influence of an external force field on the dynamics of a free core and fluid in a rotating spherical cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Kozlov, N. V.; Subbotin, S. V.

    2015-07-01

    This research involves experimental studies of the dynamics of a free spherical core and fluid motion in a spherical cavity rotating around the horizontal axis. The gravity field causes circular oscillations of the core in the reference frame of the cavity creating an averaged force in the Stokes boundary layer which makes the core rotate relative to the cavity (vibrational hydrodynamic top). The core rotates in the direction opposite to that of the cavity (lagging differential rotation). The research shows that the differential rotation intensity is determined by the ratio between the gravitational and centrifugal acceleration, as well as the ratio of the core size to the thickness of the Stokes layer. Various regimes of the fluid flow have been studied. The shape of subcritical flow is a circular-section column extended along the geometric continuation of the sphere. Increasing the differential rotation rate of the core results in various independent modes of instability of the column. One of such modes involves development of an azimuthal wave on the column boundary. The second mode is a system of two-dimensional vortices extended along the axis and rotating inside the column. It has been discovered that the development of supercritical structures causes changes in the differential rotation rate of the core.

  8. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  9. Sultan - forced flow, high field test facility

    SciTech Connect

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-09-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs.

  10. Computational studies of lobed forced mixer flows

    NASA Astrophysics Data System (ADS)

    Hu, H.; Wu, S. S.; Yu, S. C. M.

    1998-03-01

    Full Navier-Stokes Analyses have been conducted for the flows behind the trailing edge of a lobed forced mixer. The governing equations are derived from the time-dependent compressible Navier-Stokes equations and discretized in the finite-difference form. A simple two-layer eddy viscosity model has also been used to account for the turbulence. Computed results are compared with some of the velocity measurements using a laser-Doppler anemometer (Yu and Yip (1997)). In general, good agreement can be obtained in the streamwise mean velocity distribution but the decay of the streamwise circulation is underpredicted. Some suggestions to the discrepancy are proposed.

  11. Modeling the dissipation rate in rotating turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Raj, Rishi; Gatski, Thomas B.

    1990-01-01

    A variety of modifications to the modeled dissipation rate transport equation that have been proposed during the past two decades to account for rotational strains are examined. The models are subjected to two crucial test cases: the decay of isotropic turbulence in a rotating frame and homogeneous shear flow in a rotating frame. It is demonstrated that these modifications do not yield substantially improved predictions for these two test cases and in many instances give rise to unphysical behavior. An alternative proposal, based on the use of the tensor dissipation rate, is made for the development of improved models.

  12. Stability of unsteady flow in a rotating torus

    NASA Astrophysics Data System (ADS)

    Hewitt, Richard; Hazel, Andrew; Clarke, Richard; Denier, James

    2011-11-01

    We consider the temporal evolution of a viscous incompressible fluid in a torus of finite curvature; a problem first investigated experimentally by Madden and Mullin (1994), herein referred to as MM. The system is initially in a state of rigid-body rotation (about the axis of rotational symmetry) and the container's rotation rate is then changed impulsively. We describe the transient flow that is induced at small values of the Ekman number, over a time scale that is comparable to one complete rotation of the container. We show that (rotationally symmetric) eruptive singularities (of the boundary layer) occur at the inner or outer bend of the pipe for a decrease or an increase in rotation rate respectively. Moreover, there is a ratio of initial-to-final rotation frequencies for which eruptive singularities can occur at both the inner and outer bend simultaneously. We also demonstrate that the flow is susceptible to non-axisymmetric inflectional instabilities. The inflectional instability arises as a consequence of the developing eruption and is shown to be in qualitative agreement with the experimental observations of MM. Detailed quantitative comparisons are made between asymptotic predictions and finite (but small) Ekman number Navier-Stokes computations using a finite-element method.

  13. Asymptotically reduced equations for rapidly rotating and stably stratified flow

    NASA Astrophysics Data System (ADS)

    Nieves, David; Julien, Keith

    2015-11-01

    Observations by van Haren & Millot (2005) of the deep Western Mediterranean Sea and by Timmermans et al. (2006) of the deep Canadian Basin find vertical fluid motions to be as significant as horizontal motions for ocean dynamics. Since the classical quasi-geostrophic equations do not allow for such vertical motions reduced equations for geostrophically balanced flow with O(1) vertical motions are presented alongside their numerical solutions and results. The reduced equations describe flow constrained by rapid rotation and stable stratification and, in fact, are the stably stratified counterpart to the reduced equations used by Julien et al. in successful studies of rapidly rotating Rayleigh-Bénard convection. Specifically, the equations are valid in the small Rossby number (Ro 1) and O(1) Froude number limit. The focus here is a comparison to similar studies of rotating and stratified flow by Smith & Waleffe (2002), Wingate et al. (2011), and Marino et al. (2013) among others.

  14. Boundary Layer Flow over a Rotating Permeable Plane

    NASA Astrophysics Data System (ADS)

    Mehta, K.; Rao, K.

    1994-06-01

    This paper examines the effect of permeability on boundary layerflow over an infinite permeable bed rotatingin a mass of still fluid occupying the upper half space.The slip boundar condition proposed by Beavers and Joseph1) isemployed to analyse the dynamic coupling of boundary layer flowwith the Darcy flow induced in the bed due to transfer of momentumby seepage into the porous medium,occupying the lower half space below the fluid.The effect of permeability and rotation on the componentsof slip velocity and shear stress in the radialand transverse directions is examined.Rotation and tangential slip are found to cause axial flow reversalin the boundary layer.Dependence of the location of point of flow reversalon rotation and permeability has been also studied.

  15. Drag Force Anemometer Used in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  16. Effect of advanced and delayed rotation on the dominant flow pattern and its temporal evolution

    NASA Astrophysics Data System (ADS)

    Uksul, Esra; Krishna, Swathi; Mulleners, Karen

    2015-11-01

    During a flapping cycle of an insect, complex time dependent flows are produced as the wing reciprocates, producing a maximum lift at the stroke reversals. By flipping the wing rapidly at the end of each stroke, the insect modulates the flow around the wing and hence the aerodynamic forces necessary to hover. The duration and starting point of the flip play an important role in determining the amount of lift produced. To understand and tailor the effect of wing kinematics on the aerodynamic performance we focussed on the vortex dynamics of the flow field. Phase-averaged data from particle image velocimetry was used to evaluate the flow features inherent to changes in rotation during a stroke of a flat plate, which is modelled based on hoverfly characteristics. The period of rotation is one-third of the total time period. A +10% phase shift is used for delayed rotation, a -10% phase shift for advanced rotation. Vortex detection methods like the λ2 and Γ2 criteria are used to determine the effect of a delay or early rotation on the trajectories, size, shape and location of the prominent vortical structures. Proper orthogonal decomposition is used to study the influence of the phase-shifts on the dominant mode structure and the related time-scales.

  17. A theoretical study of fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Yoshinobu; Acosta, Allan J.; Yoshida, Yoshiki

    1989-01-01

    The fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser are analyzed on the assumption that the number of impeller and diffuser vanes is so large that the flows are perfectly guided by the vanes. The flow is taken to be two dimensional, inviscid, and incompressible, but the effects of impeller and diffuser losses are taken into account. It is shown that the interaction with the vaned diffuser may cause destabilizing fluid forces. From these discussions, it is found that the whirling forces are closely related to the steady head-capacity characteristics of the impeller. This physical understanding of the whirling forces can be applied also to the cases with volute casings. At partial capacities, it is shown that the impeller forces change greatly when the flow rate and whirl velocity are near to the impeller or vaned diffuser attributed rotating stall onset capacity, and the stall propagation velocity, respectively. In such cases the impeller forces may become destabilizing for impeller whirl.

  18. Flow regimes in model viscoelastic fluids in a circular couette system with independently rotating cylinders

    NASA Astrophysics Data System (ADS)

    Baumert, Brandon Max; Muller, Susan J.

    1997-03-01

    Flow visualization of two highly elastic, nonshear-thinning polyisobutylene/polybutene fluids in the gap between concentric cylinders was performed over a range of shear rates and choices of relative cylinder rotations. The observed secondary flows are discussed in terms of destabilizing elastic and centrifugal forces. In the more viscous, more elastic fluid, instabilities are found to be independent of the choice of rotating cylinder and due entirely to elasticity. At the lowest shear rates examined, the first detectable secondary flows are steady counter-rotating vortices forming after a shearing time more than five orders of magnitude greater than the characteristic relaxation time of the fluid. At somewhat higher shear rates, a much more rapidly appearing oscillatory flow is observed to evolve into the steady vortex structure. In the less elastic fluid, the structure first detectable at the lowest shear rates is again steady vortices regardless of the choice of driving cylinder. At all shear rates examined, only elastic stationary vortices are observed in the absence of centrifugal destabilization (outer cylinder rotating). Secondary flows are significantly stronger in the presence of the centrifugal destabilization due to a rotating inner cylinder. Interaction of elasticity and centrifugal forces is found to generate a number of axially translating vortex structures, many of which are described here for the first time. At a shear rate more than five times the critical, another family of instability is observed which closely resembles a purely elastic instability observed by Baumert and Muller (1995). These experimental results are expected to provide a challenging test of numerical simulations of these viscoelastic flows.

  19. Flow regimes in model viscoelastic fluids in a circular couette system with independently rotating cylinders

    SciTech Connect

    Baumert, B.M.; Muller, S.J.

    1997-03-01

    Flow visualization of two highly elastic, nonshear-thinning polyisobutylene/polybutene fluids in the gap between concentric cylinders was performed over a range of shear rates and choices of relative cylinder rotations. The observed secondary flows are discussed in terms of destabilizing elastic and centrifugal forces. In the more viscous, more elastic fluid, instabilities are found to be independent of the choice of rotating cylinder and due entirely to elasticity. At the lowest shear rates examined, the first detectable secondary flows are steady counter-rotating vortices forming after a shearing time more than five orders of magnitude greater than the characteristic relaxation time of the fluid. At somewhat higher shear rates, a much more rapidly appearing oscillatory flow is observed to evolve into the steady vortex structure. In the less elastic fluid, the structure first detectable at the lowest shear rates is again steady vortices regardless of the choice of driving cylinder. At all shear rates examined, only elastic stationary vortices are observed in the absence of centrifugal destabilization (outer cylinder rotating). Secondary flows are significantly stronger in the presence of the centrifugal destabilization due to a rotating inner cylinder. Interaction of elasticity and centrifugal forces is found to generate a number of axially translating vortex structures, many of which are described here for the first time. At a shear rate more than five times the critical, another family of instability is observed which closely resembles a purely elastic instability observed by Baumert and Muller (1995). These experimental results are expected to provide a challenging test of numerical simulations of these viscoelastic flows. {copyright} {ital 1997 American Institute of Physics.}

  20. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a rotating disk

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.

    1992-01-01

    The results of a numerical simulation of the flow field and associated heat transfer coefficient are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation has been performed for different flow rates and rotational velocities using a three-dimensional boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an interative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow was dominated by inertia near the entrance and close to the free surface, and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhanced the heat transfer coefficient by a significant amount.

  1. Heat transfer in rotating serpentine passages with trips skewed to the flow

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.

    1992-01-01

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, heat transfer model with both radially inward and outward flow. Trip strips, skewed at 45 deg to the flow direction, were machined on the leading and trailing surfaces of the radial coolant passages. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation and buoyancy, decreased to as low as 40 percent of the value without rotation. However, the maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels previously obtained with the smooth wall models. It was concluded that (1) both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer in models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design information.

  2. Heat transfer in rotating serpentine passages with trips skewed to the flow

    NASA Astrophysics Data System (ADS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass, heat transfer model with both radially inward and outward flow. Trip strips, skewed at 45 deg to the flow direction, were machined on the leading and trailing surfaces of the radial coolant passages. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation and buoyancy, decreased to as low as 40 percent of the value without rotation. However, the maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels previously obtained with the smooth wall models. It was concluded that (1) both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer in models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design information.

  3. Influence of Flow Rotation Within a Cooling Tower on the Aerodynamic Interaction with Crosswind Flow

    NASA Astrophysics Data System (ADS)

    Kashani, M. M. Hemmasian; Dobrego, K. V.

    2014-03-01

    Environmental crosswind changes the aerodynamic pattern inside a cooling tower, destroys uniform and axisymmetric distribution of flow at its inlet and outlet, and may degrade fill zone performance. In this paper, the effect of flow rotation in the over-shower zone of a natural draft cooling tower (NDCT) on the aerodynamic interaction with crosswind is studied numerically. The 3D geometry of an actual NDCT and three models of induced rotation velocity fields are utilized for simulation. It is demonstrated that flow rotation results in homogenization of the aerodynamic field in the over-shower zone. The inhomogeneity of the velocity field in the outlet cross section decreases linearly with rotation intensification. The effect of main stream switching under strong wind conditions is found. It is shown that even moderate flow rotation eliminates this effect.

  4. Flow instabilities behind rotating bluff bodies for moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Goujon-Durand, Sophie; Gibi?Ski, Kornel; Skarysz, Maciej; Wesfreid, Jose Eduardo

    2015-11-01

    We present experiments to study the flow behind 3D bodies (spheres, disks and propellers) rotating about an axis aligned with the streamwise direction. The experiments has been performed in a water channel using LIF visualizations and PIV measurements. We study the flow evolution and the different flow regimes as a function of two control parameters: the Reynolds number Re and the dimensionless rotation or swirl rate Ω which is the ratio of the maximum azimuthal velocity of the body to the free stream velocity. In the present investigation, we covers the range of Re smaller than 400 and Ω from 0 to 4 in some cases. Different wakes regimes such as an axisymmetric base flow (or n-symmetric in the case of propellers), low frequency helicoidal states and higher frequency state are observed. The transitions between states are studied measuring the amplitude of the azimuthal modes components of the streamwise vorticity obtained by Fourier decomposition.

  5. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  6. One-dimensional analysis of the hydrodynamic and thermal characteristics of thin film flows including the hydraulic jump and rotation

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

    1990-01-01

    The flow of a thin liquid film with a free surface along a horizontal plane that emanates from a pressurized vessel is examined numerically. In one g, a hydraulic jump was predicted in both plane and radial flow, which could be forced away from the inlet by increasing the inlet Froude number or Reynolds number. In zero g, the hydraulic jump was not predicted. The effect of solid-body rotation for radial flow in one g was to 'wash out' the hydraulic jump and to decrease the film height on the disk. The liquid film heights under one g and zero g were equal under solid-body rotation because the effect of centrifugal force was much greater than that of the gravitational force. The heat transfer to a film on a rotating disk was predicted to be greater than that of a stationary disk because the liquid film is extremely thin and is moving with a very high velocity.

  7. External forcing modulates Pine Island Glacier flow

    NASA Astrophysics Data System (ADS)

    Christianson, K. A.; Bushuk, M.; Holland, D.; Dutrieux, P.; Joughin, I.; Parizek, B. R.; Alley, R. B.; Anandakrishnan, S.; Heywood, K. J.; Jenkins, A.; Nicholls, K. W.; Webber, B.; Muto, A.; Stanton, T. P.

    2015-12-01

    Nearly 50 years ago, Mercer first suggested the Eemian sea-level high stand was a result of a collapse of the marine portions of the West Antarctic ice sheet. Recently, special attention has been paid to West Antarctica's Amundsen Sea Embayment due to its steeply sloping retrograde beds that are well below sea level, and observations of rapid grounding-line retreat, high ice-shelf basal-melt rates, and basin-wide glacier thinning and acceleration. Despite this focus, accurate assessments of the past and future behavior of this embayment remain elusive due to a lack of understanding of calving processes and ice-ocean interactions. Here we present a continuous two-year (2012-2014) time series of oceanographic, borehole, glaciological, and seismological observations of Pine Island Glacier ice shelf, its sub-ice ocean cavity, and the adjacent Amundsen Sea. With these data, we captured the ice shelf's response to a large fluctuation in the temperature of the water (~1 °C) entering the sub-ice-ocean cavity. Initially, the ice shelf slowed by 5%, but, by the end of 2014, it had nearly recovered its earlier speed. The generally smooth changes in ice flow were punctuated by rapid (2-3 week), high-amplitude (~2.5% of the background speed) speedups and slowdowns. Satellite and seismological observations indicate that rapid speedups are caused by reduction of lateral drag along the ice stream's shear margins as a large iceberg calves and that rapid slowdowns may be due to periodic regrounding on bed highs at low tide. Coupled ice-stream/ice-shelf/ocean-plume flowband modeling informed by these new data indicates that the more-gradual changes in speed are related to ocean temperature, ice-front position, and past ice-flow history. Our observations highlight an ice shelf's rapid response to external forcings and that past ice-flow behavior affects subsequent ice response to external forcing. Thus, long-term, multifaceted investigations are necessary to determine whether a

  8. Multiple solutions in a rotating annulus flow model

    NASA Technical Reports Server (NTRS)

    Lu, Huei-Iin; Miller, Timothy L.; Butler, Karen A.

    1993-01-01

    A series of numerical experiments is conducted for rotating annulus flow using Miller et al.'s (1992) Geophysical Flow Simulation (GFS) model; a mixture of 25-percent upwind-differencing and 75-percent center-differencing is employed to approximate the temperature advective terms. Attention is given to the wavenumber selection time and wavenumber regimes, the sensitivity in the wavenumber transition regions, and hysteresis and irregular wavenumber selections.

  9. Numerical and experimental study of rotating jet flows

    NASA Astrophysics Data System (ADS)

    Shin, Seungwon; Che, Zhizhao; Kahouadji, Lyes; Matar, Omar; Chergui, Jalel; Juric, Damir

    2015-11-01

    Rotating jets are investigated through experimental measurements and numerical simulations. The experiments are performed on a rotating jet rig and the effects of a range of parameters controlling the liquid jet are investigated, e.g. jet flow rate, rotation speed, jet diameter, etc. Different regimes of the jet morphology are identified, and the dependence on several dimensionless numbers is studied, e.g. Reynolds number, Weber number, etc. The breakup process of droplets is visualized through high speed imaging. Full three-dimensional direct numerical simulations are performed using BLUE, a massively parallel two-phase flow code. The novel interface algorithms in BLUE track the gas-liquid interface through a wide dynamic range including ligament formation, break up and rupture. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  10. Large-scale behavior and statistical equilibria in rotating flows

    NASA Astrophysics Data System (ADS)

    Mininni, P. D.; Dmitruk, P.; Matthaeus, W. H.; Pouquet, A.

    2011-01-01

    We examine long-time properties of the ideal dynamics of three-dimensional flows, in the presence or not of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases, the results agree with the isotropic predictions stemming from statistical mechanics. No accumulation of excitation occurs in the large scales, although, in the dissipative rotating case, anisotropy and accumulation, in the form of an inverse cascade of energy, are known to occur. We attribute this latter discrepancy to the linearity of the term responsible for the emergence of inertial waves. At intermediate times, inertial energy spectra emerge that differ somewhat from classical wave-turbulence expectations and with a trace of large-scale excitation that goes away for long times. These results are discussed in the context of partial two dimensionalization of the flow undergoing strong rotation as advocated by several authors.

  11. Experimental Study of the Flow in a Rotating CVD Reactor

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Meng, Jiandong; Jaluria, Yogesh

    2013-11-01

    An experimental model is developed to study the rotating, vertical, impinging chemical vapor deposition reactor. Deposition occurs only when the system has enough thermal energy. Therefore, understanding the fluid flow and thermal characteristics of the system would provide a good basis to model the thin film deposition process. The growth rate and the uniformity of the film are the two most important factors in the CVD process and these depend strongly on the flow and the thermal transport within the system. Operating parameters, such as inflow velocity, susceptor temperature and rotational speed, are used to create different design simulations. Fluid velocities and temperature distributions are recorded to obtain the effects of different operating parameters. Velocities are recorded by using a rotameter and a hot wire anemometer. The temperatures are recorded by using thermocouples and an infrared thermometer. The effects of buoyancy and rotation are examined. The expermental study is also coupled with a numerical study for validation of the numerical model and to expand the domain. Comparisons between the two models are presented, indicating fair agreement. The numerical model also includes simulation of Gallium Nitride (GaN) thin film deposition. This simulation thus includes mass transport and gas kinetics, along with the flow and heat transfer within the system. A three dimensional simulation is needed due to the rotation of the susceptor. The results obtained as well as the underlying fluid flow phenomena are discussed.

  12. Energetic dynamics of a rotating horizontal convection model with wind forcing

    NASA Astrophysics Data System (ADS)

    Zemskova, Varvara; White, Brian; Scotti, Alberto

    2015-11-01

    We present a new test case for rotating horizontal convection, where the flow is driven by differential buoyancy forcing along a horizontal surface. This simple model is used to understand and quantify the influence of surface heating and cooling and wind stress on the Meridional Overturning Circulation. The domain is a rectangular basin with surface cooling at both ends (the poles) and surface warming in the middle (equatorial) region. To model the effect of the Antarctic Circumpolar Current, reentrant channel is placed near the Southern pole. Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the channel. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The relative contributions of surface buoyancy and wind forcing and the energetic balance are analyzed at a Rayleigh number of 108 and a relatively high aspect ratio of [5, 10, 1] in zonal, meridional and vertical directions, respectively. The overall dynamics, including large-scale overturning, baroclinic eddying, and turbulent mixing are investigated using the local Available Potential Energy framework introduced in [Scotti and White, J. Fluid Mech., 2014]. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.

  13. Turbulent Compressible Convection with Rotation. Part 1; Flow Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1996-01-01

    The effects of Coriolis forces on compressible convection are studied using three-dimensional numerical simulations carried out within a local modified f-plane model. The physics is simplified by considering a perfect gas occupying a rectilinear domain placed tangentially to a rotating sphere at various latitudes, through which a destabilizing heat flux is driven. The resulting convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers, evaluating conditions where the influence of rotation is both weak and strong. Given the computational demands of these high-resolution simulations, the parameter space is explored sparsely to ascertain the differences between laminar and turbulent rotating convection. The first paper in this series examines the effects of rotation on the flow structure within the convection, its evolution, and some consequences for mixing. Subsequent papers consider the large-scale mean shear flows that are generated by the convection, and the effects of rotation on the convective energetics and transport properties. It is found here that the structure of rotating turbulent convection is similar to earlier nonrotating studies, with a laminar, cellular surface network disguising a fully turbulent interior punctuated by vertically coherent structures. However, the temporal signature of the surface flows is modified by inertial motions to yield new cellular evolution patterns and an overall increase in the mobility of the network. The turbulent convection contains vortex tubes of many scales, including large-scale coherent structures spanning the full vertical extent of the domain involving multiple density scale heights. Remarkably, such structures align with the rotation vector via the influence of Coriolis forces on turbulent motions, in contrast with the zonal tilting of streamlines found in laminar flows. Such novel turbulent mechanisms alter the correlations which drive mean shearing flows and affect the

  14. Network flow model of force transmission in unbonded and bonded granular media.

    PubMed

    Tordesillas, Antoinette; Tobin, Steven T; Cil, Mehmet; Alshibli, Khalid; Behringer, Robert P

    2015-06-01

    An established aspect of force transmission in quasistatic deformation of granular media is the existence of a dual network of strongly versus weakly loaded particles. Despite significant interest, the regulation of strong and weak forces through the contact network remains poorly understood. We examine this aspect of force transmission using data on microstructural fabric from: (I) three-dimensional discrete element models of grain agglomerates of bonded subspheres constructed from in situ synchrotron microtomography images of silica sand grains under unconfined compression and (II) two-dimensional assemblies of unbonded photoelastic circular disks submitted to biaxial compression under constant volume. We model force transmission as a network flow and solve the maximum flow-minimum cost (MFMC) problem, the solution to which yields a percolating subnetwork of contacts that transmits the "maximum flow" (i.e., the highest units of force) at "least cost" (i.e., the dissipated energy from such transmission). We find the MFMC describes a two-tier hierarchical architecture. At the local level, it encapsulates intraconnections between particles in individual force chains and in their conjoined 3-cycles, with the most common configuration having at least one force chain contact experiencing frustrated rotation. At the global level, the MFMC encapsulates interconnections between force chains. The MFMC can be used to predict most of the force chain particles without need for any information on contact forces, thereby suggesting the network flow framework may have potential broad utility in the modeling of force transmission in unbonded and bonded granular media. PMID:26172702

  15. Network flow model of force transmission in unbonded and bonded granular media

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Tobin, Steven T.; Cil, Mehmet; Alshibli, Khalid; Behringer, Robert P.

    2015-06-01

    An established aspect of force transmission in quasistatic deformation of granular media is the existence of a dual network of strongly versus weakly loaded particles. Despite significant interest, the regulation of strong and weak forces through the contact network remains poorly understood. We examine this aspect of force transmission using data on microstructural fabric from: (I) three-dimensional discrete element models of grain agglomerates of bonded subspheres constructed from in situ synchrotron microtomography images of silica sand grains under unconfined compression and (II) two-dimensional assemblies of unbonded photoelastic circular disks submitted to biaxial compression under constant volume. We model force transmission as a network flow and solve the maximum flow-minimum cost (MFMC) problem, the solution to which yields a percolating subnetwork of contacts that transmits the "maximum flow" (i.e., the highest units of force) at "least cost" (i.e., the dissipated energy from such transmission). We find the MFMC describes a two-tier hierarchical architecture. At the local level, it encapsulates intraconnections between particles in individual force chains and in their conjoined 3-cycles, with the most common configuration having at least one force chain contact experiencing frustrated rotation. At the global level, the MFMC encapsulates interconnections between force chains. The MFMC can be used to predict most of the force chain particles without need for any information on contact forces, thereby suggesting the network flow framework may have potential broad utility in the modeling of force transmission in unbonded and bonded granular media.

  16. Computation of flow and heat transfer in rotating cavities with peripheral flow of cooling air.

    PubMed

    Kiliç, M

    2001-05-01

    Numerical solutions of the Navier-Stokes equations have been used to model the flow and the heat transfer that occurs in the internal cooling-air systems of gas turbines. Computations are performed to study the effect of gap ratio, Reynolds number and the mass flow rate on the flow and the heat transfer structure inside isothermal and heated rotating cavities with peripheral flow of cooling air. Computations are compared with some of the recent experimental work on flow and heat transfer in rotating-cavities. The agreement between the computed and the available experimental data is reasonably good. PMID:11460668

  17. Toward a Turbulence Constitutive Relation for Rotating Flows

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1996-01-01

    In rapidly rotating turbulent flows the largest scales of the motion are in approximate geostrophic balance. Single-point turbulence closures, in general, cannot attain a geostrophic balance. This article addresses and resolves the possibility of constitutive relation procedures for single-point second order closures for a specific class of rotating or stratified flows. Physical situations in which the geostrophic balance is attained are described. Closely related issues of frame-indifference, horizontal nondivergence, Taylor-Proudman theorem and two-dimensionality are, in the context of both the instantaneous and averaged equations, discussed. It is shown, in the absence of vortex stretching along the axis of rotation, that turbulence is frame-indifferent. A derivation and discussion of a geostrophic constraint which the prognostic equations for second-order statistics must satisfy for turbulence approaching a frame-indifferent limit is given. These flow situations, which include rotating and nonrotating stratified flows, are slowly evolving flows in which the constitutive relation procedures are useful. A nonlinear non-constant coefficient representation for the rapid-pressure strain covariance appearing in the Reynolds stress and heat flux equations consistent with the geostrophic balance is described. The rapid-pressure strain model coefficients are not constants determined by numerical optimization but are functions of the state of the turbulence as parameterized by the Reynolds stresses and the turbulent heat fluxes. The functions are valid for all states of the turbulence attaining their limiting values only when a limit state is achieved. These issues are relevant to strongly vortical flows as well as flows such as the planetary boundary layers, in which there is a transition from a three-dimensional shear driven turbulence to a geostrophic or horizontal turbulence.

  18. Forced-flow planar chromatography in the rear view mirror.

    PubMed

    Kalász, Huba

    2015-03-01

    Mobile phase progress in planar stationary phase can be evoked by either external or internal forces. An internal force is capillarity, while gravity, electric field, a pump and centrifugal forces belong to external forces. Overpressured layer chromatography gives a widely used special chapter of forced-flow planar chromatography, a special bridge between high-performance liquid column chromatography and thin-layer chromatography (TLC). A simple and special rule characterizes the progress of mobile phase. Optimal efficiency is composed by the doubled effect of flow resulting from the pump-forced mobile phase (convex profile of laminar flow) and capillary forces on the dry stationary phase (concave laminar flow). This review describes the most important aspects of forced-flow TLC, including how the set-ups are developed and also the progress of detection methods used. PMID:25681205

  19. The effect of oscillating force field on the dynamics of free inner core in a rotating fluid-filled spherical cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Kozlov, N. V.; Subbotin, S. V.

    2015-12-01

    This research involves experimental studies of the dynamics of a free spherical core in a fluid-filled spherical cavity rotating around the horizontal axis and subject to vibration perpendicular to the rotation axis. The core stays in the center of the cavity under the action of a centrifugal force (the core density is less than the fluid density). The vibration manifests itself in resonance regions when the vibration frequency coincides with one of the core's natural frequencies. The amplitude of the core oscillations and generation of its intensive differential rotation rise steeply, with the differential rotation lagging or leading, depending on the frequency of the core oscillations. Excitation of leading rotation is accompanied by the core shift from the cavity center to one of the poles with the core rotation axis deviated from the cavity rotation axis. The research shows that the superposition of different force fields, oscillating vibrational field, and static gravitational force field determines the differential rotation rate of the core. The gravity field causes the lagging circular oscillations of the core with respect to the cavity, and consequently its steady lagging differential rotation, which decreases as the cavity rotation rate increases. The research shows that 2D steady flow in the form of a Taylor-Proudman column accompanies the differential rotation of the core. The resulting flow is a linear superposition of flows excited independently by gravity and vibration. The instability of the flow manifests itself, as an azimuthal two-dimensional wave is propagating on the Taylor-Proudman column boundary, and depends on the flow structure.

  20. On the rotation of dust particulates in the ion flow*

    NASA Astrophysics Data System (ADS)

    Ishihara, Osamu

    2000-10-01

    Finite size effect of dust particulates floating in the ion flow was studied in connection to the wake formation [1]. Now we study rotational motion of finite size dust particulates placed in the sheath region of low temperature discharge plasma. The potential drop in the sheath region produces a flow of ions toward a boundary or an electrode. The presence of neighboring dust particulates will produce necessarily an inhomogeneous flow structure around a test dust particulate [2]. In our simplified model, a flow with velocity shear is assumed to be present. A test dust particulate placed in a shear flow is shown to start its rotation. Because of its negative charge, the rotating dust particulate will carry a magnetic moment. Spinning motion of dust particulates in the presence of external magnetic field is also discussed. *Supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science. [1] O. Ishihara, S.V. Vladimirov, and N. Cramer, Phys. Rev. E 61, 7246 (2000). [2] O. Ishihara, Phys. Plasmas 5 357 (1998).

  1. Observation of turbulent flow with three zones in a rotating annulus

    NASA Astrophysics Data System (ADS)

    Swinney, Harry L.; Aubert, Julien; Jung, Sunghwan

    2002-11-01

    We have conducted experiments on turbulent flow in a rapidly rotating annulus (outer radius r=43 cm) that was forced by pumping water through a ring of 120 holes (0.25 cm diameter, r_f=27 cm)(J. Aubert, S. Jung, and H.L. Swinney, Geophys. Res. Lett., to appear). The water was pumped in through a semi-circle of 60 holes and out through a semi-circle of 60 holes on the other side of the annulus. Although the net vorticity injected was zero, a zonal flow developed with a co-rotating jet between two counter-rotating jets. Such zonal jets arise similarly from small scale forcing in planetary flows. The annulus has a sloping bottom (β-plane), which provides a reservoir of potential vorticity, q=ω + β (r-r_f), where ω is the vorticity and β is the β-plane parameter. Our study indicates that the potential vorticity is well-mixed, and that the strength of the zonal flow has an upper bound imposed by complete depletion of the β-plane potential vorticity reservoir.

  2. Flow of magnetized grains in a rotating drum.

    PubMed

    Lumay, G; Vandewalle, N

    2010-10-01

    We have experimentally investigated the influence of a magnetic interaction between the grains on the flow of a granular material in a rotating drum. The magnetic cohesion is induced by applying a homogeneous external magnetic field B oriented either parallel or perpendicular to the gravity g. The drum rotating speed has been selected to obtain a continuous flow when the magnetic field is switched off. We show that, for both magnetic field orientations, the cohesion is able to induce a transition between the continuous flow regime to the discrete avalanche regime. The avalanche dynamics is periodic when B⊥g and irregular when B∥g. Moreover, the maximal angle of stability θ(m) increases strongly with the cohesion strength and could be higher than 90° when B⊥g. A toy model based on the stability of a magnetic block on a magnetic inclined plane is proposed to explain this behavior. PMID:21230228

  3. The Lorenz energy cycle in simulated rotating annulus flows

    NASA Astrophysics Data System (ADS)

    Young, R. M. B.

    2014-05-01

    Lorenz energy cycles are presented for a series of simulated differentially heated rotating annulus flows, in the axisymmetric, steady, amplitude vacillating, and structurally vacillating flow regimes. The simulation allows contributions to the energy diagnostics to be identified in parts of the fluid that cannot be measured in experiments. These energy diagnostics are compared with laboratory experiments studying amplitude vacillation, and agree well with experimental time series of kinetic and potential energy, as well as conversions between them. Two of the three major energy transfer paradigms of the Lorenz energy cycle are identified—a Hadley-cell overturning circulation, and baroclinic instability. The third, barotropic instability, was never dominant, but increased in strength as rotation rate increased. For structurally vacillating flow, which matches the Earth's thermal Rossby number well, the ratio between energy conversions associated with baroclinic and barotropic instabilities was similar to the measured ratio in the Earth's mid-latitudes.

  4. Structure parameters in rotating Couette-Poiseuille channel flow

    NASA Technical Reports Server (NTRS)

    Knightly, George H.; Sather, D.

    1986-01-01

    It is well-known that a number of steady state problems in fluid mechanics involving systems of nonlinear partial differential equations can be reduced to the problem of solving a single operator equation of the form: v + lambda Av + lambda B(v) = 0, v is the summation of H, lambda is the summation of one-dimensional Euclid space, where H is an appropriate (real or complex) Hilbert space. Here lambda is a typical load parameter, e.g., the Reynolds number, A is a linear operator, and B is a quadratic operator generated by a bilinear form. In this setting many bifurcation and stability results for problems were obtained. A rotating Couette-Poiseuille channel flow was studied, and it showed that, in general, the superposition of a Poiseuille flow on a rotating Couette channel flow is destabilizing.

  5. Transitional and weakly turbulent flow in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Stiller, J.; Fraňa, K.; Cramer, A.

    2006-07-01

    The early stage of turbulent flow driven by a rotating magnetic field is studied via direct numerical simulations and electric potential measurements for the case of a cylindrical geometry. The numerical results show that the undisturbed flow remains stable up to the linear stability limit (Tac), whereas small perturbations may initiate a nonlinear transition at subcritical Taylor numbers. The observed instabilities occur randomly as isolated pairs of Taylor-Görtler vortices, which grow from spots to long tubes until they are dissipated in the lid boundary layers. At 7.5Tac, the flow is governed by large-scale three-dimensional fluctuations and may be characterized as weakly turbulent. Taylor-Görtler vortices provide the major turbulence mechanism, apart from oscillations of the rotation axis. As the vortices tend to align with the azimuthal direction, they result in a locally two-dimensional turbulence pattern.

  6. Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows

    SciTech Connect

    Lim, Chjan

    2013-12-18

    Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-body flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.

  7. Heat transfer in rotating serpentine passages with trips skewed to the flow

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.

    1992-01-01

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass heat transfer model with both radially inward and outward flow. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. It was concluded that (1) both Coriolis and buoyancy must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design.

  8. Heat transfer in rotating serpentine passages with trips skewed to the flow

    NASA Astrophysics Data System (ADS)

    Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.

    1992-06-01

    Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multi-pass heat transfer model with both radially inward and outward flow. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature, rotation number, Reynolds number, and radius-to-passage hydraulic diameter ratio. Results were correlated and compared to previous results from similar stationary and rotating models with smooth walls and with trip strips normal to the flow direction. It was concluded that (1) both Coriolis and buoyancy must be considered in turbine blade cooling designs with trip strips, (2) the effects of rotation are markedly different depending upon the flow direction, and (3) the heat transfer with skewed trip strips is less sensitive to buoyancy than the heat transfer models with either smooth or normal trips. Therefore, skewed trip strips rather than normal trip strips are recommended and geometry-specific tests are required for accurate design.

  9. Tornado-like flows driven by magnetic body forces

    NASA Astrophysics Data System (ADS)

    Gerbeth, Gunter; Grants, Ilmars; Vogt, Tobias; Eckert, Sven

    2014-11-01

    Alternating magnetic fields produce well-defined flow-independent body forces in electrically conducting media. This property is used to construct a laboratory analogue of the Fiedler chamber with a room-temperature liquid metal as working fluid. A continuously applied rotating magnetic field (RMF) provides the source of the angular momentum. A pulse of a much stronger travelling magnetic field drives a converging flow at the metal surface, which focuses this angular momentum towards the axis of the container. The resulting vortex is studied experimentally and numerically. In a certain range of the ratio of both driving actions the axial velocity changes its direction in the vortex core, resembling the subsidence in an eye of a tropical cyclone or a large tornado. During the initial deterministic spin-up stage the vortex is well described by axisymmetric direct numerical simulation. Being strong enough the flow develops a funnel-shaped surface depression that enables visual observation of the vortex structure. As the RMF strength is increased the eyewall diameter grows until it breaks down to multiple vortices. A number of further observed similarities to tornado-like vortices will be discussed. The work is supported by the German Helmholtz Association in frame of the LIMTECH alliance.

  10. Eulerian and Lagrangian statistics in fully developed rotating turbulent flows.

    NASA Astrophysics Data System (ADS)

    Biferale, Luca; Bonaccorso, Fabio; Mazzitelli, Irene; Lanotte, Alessandra; Perlekar, Prasad; Musacchio, Stefano; Hinsberg, Michel; Toschi, Federico

    2015-11-01

    We present results concerning both Eulerian and Lagrangian statistics for turbulent under rotation at small and large Rossby numbers. Concerning the Eulerian statistics we discuss the effects of the presence of strong coherent large-scale vortical structures on the small-scale statistics. Concerning Lagrangian properties, we discuss the effects of preferential sampling at changing the inertial properties of the particles also due to the centrifugal and Coriolis forces. Supported by the ERC AdG NewTURB num. 339032.

  11. On the flow generated by rotating flat plates of low aspect ratio

    NASA Astrophysics Data System (ADS)

    DeVoria, Adam C.

    Low-aspect-ratio propulsors typically allow for high maneuverability at low-to-moderate speeds. This has made them the subject of much recent research aimed at employing such appendages on autonomous vehicles which are required to navigate tumultuous environments. This experimental investigation focuses on the fluid dynamic aspects associated with overly-simplified versions of such biologically-inspired propulsors. In doing so, fundamental contributions are made to the research area. The unsteady, three-dimensional flow of a low-aspect-ratio, trapezoidal flat plate undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103) is investigated experimentally. The objectives are to develop a straightforward protocol for vortex saturation, and to understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a glass-walled tank, and digital particle image velocimetry is used to obtain planar velocity measurements. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. The flow in the region near the tip is relatively insensitive to Reynolds number over the range studied. The component normal to the plate is unaffected by total rotational amplitude while the tangential component has dependence on this angle. Also, an estimate of the first tip-vortex pinch-off time is obtained from the near-tip velocity data and agrees very well with values estimated using circulation. The angle of incidence of the bulk root-to-tip flow relative to the plate normal becomes more oblique with increasing rotational amplitude. Accordingly, the peak magnitude of the tangential velocity is also increased and as a result advects fluid momentum away from the plate at a higher rate. The more oblique impingement of the root-to-tip flow for increasing rotational amplitude is shown to have a

  12. Flow past tandem cylinders under forced vibration

    NASA Astrophysics Data System (ADS)

    Yang, Yingchen; Aydin, Tayfun B.; Ekmekci, Alis

    2014-01-01

    Flow past two cylinders in tandem arrangement under forced vibration has been studied experimentally employing the hydrogen bubble visualization technique. The Reynolds number, based on the cylinder diameter, is fixed at Re=250. In stationary state of the two cylinders with P/D=2.0, dual vortex shedding frequencies fL (St=0.14) and fH (St=0.18) are identified. fL is associated with the shear layer reattachment behavior and fH is related to the single bluff body behavior. Under a variety of forced vibrations of the two cylinders at a fixed vibration amplitude A/D=0.25, diverse and highly-repetitive vortex patterns are yielded. They are classified into two typical modes—a low-frequency mode and a high-frequency mode. The two modes are represented by two vortex patterns yielded from in-phase vibration of the two cylinders with P/D=2.0 and at vibration frequencies fe≈fL and fe≈fH. The difference between the two modes is on the number of vortices formed per vibration cycle. For the low-frequency mode, the number is four; for the high-frequency model, it is two. In both modes, the vortex formation is phase-locked to the cylinder motion. For a specified mode with a fixed vortex number per cycle, the way the vortices evolve in the wake can be somewhat different by changing the vibration frequency, pitch ratio, as well as the vibration type. These affecting factors have been examined in this work, and the associated vortex patterns have been characterized and compared.

  13. Mesoscopic simulation of single DNA dynamics in rotational flows.

    PubMed

    Ranjith, S Kumar

    2015-08-01

    In this numerical study, the transport and dynamics of an isolated DNA in rotational flow generated in a microchannel have been investigated using dissipative particle dynamics. Often, inertial flow through microchannels with a sudden change in surface structure facilitates a re-circulation or vortex region. The conformation and mobility of the bio-polymer under the influence of such rotating fluid inside a square cavity of the microchannel is analyzed. The flexible polymer chain is found to migrate towards the rotating region and follows the vortex streamline. The orientation, size and tumbling period of polymer strands are affected by the strength of the microvortex. At elevated flow rates, the macromolecule prefers to remain inside the vortex and a hydrodynamic trap is formed. Moreover, residence time of the single molecule in the microcavity is significantly influenced by the chain length and flow strength. Further, it has been demonstrated that, such entrapment duration can be strategically altered by modifying the hydrophobicity of the microchannel. PMID:26314257

  14. Equations for Adiabatic but Rotational Steady Gas Flows without Friction

    NASA Technical Reports Server (NTRS)

    Schaefer, Manfred

    1947-01-01

    This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.

  15. The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO

    NASA Technical Reports Server (NTRS)

    Muller, Holger S. P.; Sorensen, G.; Birk, Manfred; Friedl, Randy R.

    1997-01-01

    The ground state rotational and quartic centrifugal distortion constants, their vibrational changes, and the sextic centrifugal distortion constants were used in a calculation of the quartic force field together with data from infrared studies.

  16. The effect of the Coriolis force on the stability of rotating magnetic stars

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.

  17. The effect of the Coriolis force on the stability of rotating magnetic stars.

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.

  18. Granular flow along the interior surface of rotating cones

    SciTech Connect

    Pitts, J.H.; Walton, O.R.

    1984-04-26

    Relationships are developed between the effective cone half-angle, ..cap alpha../sub eff/, and the actual cone half-angle, ..cap alpha.., for subcritical flow of granular material along the inside surface of a rotating cone. Rotational speed must be high enough to keep the granular material against the wall. If ..cap alpha../sub eff/ is between the wall friction angle, phi/sub w/ and the angle of repose, phi/sub r/, the flowrate may be controlled at the exit and depends on the exit aperture area and the rotational speed. Laboratory experiments show that exit control is possible over the entire range of effective cone half-angles from phi/sub w/ < ..cap alpha../sub eff/ < phi/sub r/ and even beyond these limits. The most uniform thickness of granular material is obtained when the cone half-angle is close to phi/sub r/.

  19. Measuring Photospheric Rotational and Meridional Flows Using Magnetic Feature Tracking

    NASA Astrophysics Data System (ADS)

    Lamb, Derek

    2016-05-01

    Long-lived rotational and meridional flows are important ingredients of the solar cycle. Using magnetic field images to measure these flows on the solar surface has typically been performed by cross-correlating thin longitudinal strips or square patches across sufficiently long time gaps. Here, I use one month of SDO/HMI line-of-sight magnetic field observations, combined with the SWAMIS magnetic feature tracking algorithm to measure the motion of individual features in these magnetograms. By controlling for perturbations due to short-lived flows and due to false motions from feature interactions, I effectively isolate the long-lived flows traced by the magnetic features. This allows me to produce high-fidelity differential rotation measurements with well-characterized variances and covariances of the fit parameters. I also produce medium-fidelity measurements of the much weaker meridional flow that is broadly consistent with previous results, showing a peak flow of 16.7 m/s at 45 degrees latitude. This work shows that measuring the motions of individual features in photospheric magnetograms can produce high precision results in relatively short time spans, which suggests that high resolution non-longitudinally averaged photospheric velocity residual measurements could be produced to compare with coronal results, and to provide other diagnostics of the solar dynamo. This work has been partially supported by NASA Grants NNX11AP03G and NNX14AJ67G.

  20. Confinement of Plasma along Shaped Open Magnetic Fields from the Centrifugal Force of Supersonic Plasma Rotation

    SciTech Connect

    Teodorescu, C.; Young, W. C.; Swan, G. W. S.; Ellis, R. F.; Hassam, A. B.; Romero-Talamas, C. A.

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic ExB rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  1. The flow of interpretation. The collateral interpretation, force and flow.

    PubMed

    Duncan, D

    1989-01-01

    This paper was presented to a Conference on the theme 'The Formulation of Interpretations in Clinical Practice'. It suggests that, impressionistically in line with the identification of psychoanalysis with natural science, an unconscious metaphor which sees interpretation as something like a force inserted on a physical particle has been more influential conceptually than the unconscious metaphor naturally complementary to it, that of interpretation as something like a liquid in flow. The concept of 'the collateral interpretation' is introduced. Loosely speaking, this is what an analyst thinks he would interpret at any given moment. It is tentative, unformed, and changes kaleidoscopically. It accommodates psychoanalytic concepts. It is suggested that examination of the mode of operation of 'the collateral interpretation' is important in understanding the formulation of interpretations. A single session is used for clinical illustration. PMID:2606603

  2. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  3. Experiments on Thermal Convection in Rotating Spherical Shells With Radial Gravity: The Geophysical Fluid Flow Cell

    NASA Technical Reports Server (NTRS)

    Hart, John E.

    1996-01-01

    Experiments designed to study the fluid dynamics of buoyancy driven circulations in rotating spherical shells were conducted on the United States Microgravity Laboratory 2 spacelab mission. These experiments address several aspects of prototypical global convection relevant to large scale motions on the Sun, Earth, and on the giant planets. The key feature is the consistent modeling of radially directed gravity in spherical geometry by using dielectric polarization forces. Imagery of the planforms of thermally driven flows for rapidly-rotating regimes shows an initial separation and eventual merger of equatorial and polar convection as the heating (i.e. the Rayleigh number) is increased. At low rotation rates, multiple-states of motion for the same external parameters were observed.

  4. Steady particulate flows in a horizontal rotating cylinder

    SciTech Connect

    Yamane, K.; Nakagawa, M.; Altobelli, S.A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio {approximately}7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit. {copyright} {ital 1998 American Institute of Physics.}

  5. Steady particulate flows in a horizontal rotating cylinder

    NASA Astrophysics Data System (ADS)

    Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.

  6. Retinal flow is sufficient for steering during observer rotation

    NASA Technical Reports Server (NTRS)

    Li, Li; Warren, William H Jr

    2002-01-01

    How do people control locomotion while their eyes are simultaneously rotating? A previous study found that during simulated rotation, they can perceive a straight path of self-motion from the retinal flow pattern, despite conflicting extraretinal information, on the basis of dense motion parallax and reference objects. Here we report that the same information is sufficient for active control ofjoystick steering. Participants steered toward a target in displays that simulated a pursuit eye movement. Steering was highly inaccurate with a textured ground plane (motion parallax alone), but quite accurate when an array of posts was added (motion parallax plus reference objects). This result is consistent with the theory that instantaneous heading is determined from motion parallax, and the path of self-motion is determined by updating heading relative to environmental objects. Retinal flow is thus sufficient for both perceiving self-motion and controlling self-motion with a joystick; extraretinal and positional information can also contribute, but are not necessary.

  7. Finite-amplitude solutions in rotating Hagen-Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Pier, Benoît; Kumar, Abhishek; Govindarajan, Rama

    2015-11-01

    While the pipe Poiseuille base flow is linearly stable at all Reynolds numbers, a small amount of rotation of the pipe around its axis induces linear instability beyond a low critical Reynolds number Rc ~= 83 [Pedley, J. Fluid Mech. 1969]. More recently [Fernandez-Feria and del Pino, Phys. Fluids 2002], this configuration has been shown to become absolutely unstable at Reynolds numbers of the same order of magnitude. Using direct numerical simulations, we investigate here finite-amplitude solutions resulting from saturation of exponentially growing small-amplitude initial perturbations. The base flow depends on two dynamical parameters (axial Reynolds number and rotation rate) and the initial perturbation is characterized by its axial wavenumber and its azimuthal mode number. The range of nonlinear waves prevailing in this configuration, the associated nonlinear dispersion relation and the spatial structure of these solutions are systematically obtained by exploring the parameter space. Funding from CEFIPRA is gratefully acknowledged.

  8. Precession of a rapidly rotating cylinder flow: traverse through resonance

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Marques, Francisco

    2014-11-01

    The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.

  9. 3D imaging of particle-scale rotational motion in cyclically driven granular flows

    NASA Astrophysics Data System (ADS)

    Harrington, Matt; Powers, Dylan; Cooper, Eric; Losert, Wolfgang

    Recent experimental advances have enabled three-dimensional (3D) imaging of motion, structure, and failure within granular systems. 3D imaging allows researchers to directly characterize bulk behaviors that arise from particle- and meso-scale features. For instance, segregation of a bidisperse system of spheres under cyclic shear can originate from microscopic irreversibilities and the development of convective secondary flows. Rotational motion and frictional rotational coupling, meanwhile, have been less explored in such experimental 3D systems, especially under cyclic forcing. In particular, relative amounts of sliding and/or rolling between pairs of contacting grains could influence the reversibility of both trajectories, in terms of both position and orientation. In this work, we apply the Refractive Index Matched Scanning technique to a granular system that is cyclically driven and measure both translational and rotational motion of individual grains. We relate measured rotational motion to resulting shear bands and convective flows, further indicating the degree to which pairs and neighborhoods of grains collectively rotate.

  10. Flow of an electrorheological fluid between eccentric rotating cylinders

    NASA Astrophysics Data System (ADS)

    Průša, Vít; Rajagopal, K. R.

    2012-01-01

    Electrorheological fluids have numerous potential applications in vibration dampers, brakes, valves, clutches, exercise equipment, etc. The flows in such applications are complex three-dimensional flows. Most models that have been developed to describe the flows of electrorheological fluids are one-dimensional models. Here, we discuss the behavior of two fully three-dimensional models for electrorheological fluids. The models are such that they reduce, in the case of simple shear flows with the intensity of the electric field perpendicular to the streamlines, to the same constitutive relation, but they would not be identical in more complicated three-dimensional settings. In order to show the difference between the two models, we study the flow of these fluids between eccentrically placed rotating cylinders kept at different potentials, in the setting that corresponds to technologically relevant problem of flow of electrorheological fluid in journal bearing. Even though the two models have quite a different constitutive structure, due to the assumed forms for the velocity and pressure fields, the models lead to the same velocity field but to different pressure fields. This finding illustrates the need for considering the flows of fluids described by three-dimensional constitutive models in complex geometries, and not restricting ourselves to flows of fluids described by one-dimensional models or simple shear flows of fluids characterized by three-dimensional models.

  11. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    PubMed

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force. PMID:23764175

  12. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    NASA Astrophysics Data System (ADS)

    Mondal, Rabindra Nath; Roy, Titob; Shaha, Poly Rani; Yanase, Shinichiro

    2016-07-01

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number -300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario `multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic', if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario `multi-periodic → periodic → steady-state', if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  13. Flow interaction and noise from a counter rotating propeller

    NASA Technical Reports Server (NTRS)

    Chung, Jin-Deog; Walls, James L.; Nagel, Robert T.

    1991-01-01

    The aerodynamic interaction between the forward and rear rotors in a counter rotating propeller (CRP) system, has been examined using a conditional sampling technique applied to three-dimensional thermal anemometer data. The technique effectively freezes the rotors in any desired relative position and provides the inter-rotor flow field. Axial, radial and circumferential mean flow between rotors is shown relative to the 'fixed' forward rotor for various 'fixed' aft rotor positions. Acoustic far field noise data have also been collected for the same operating conditions. The acoustic results are presented with emphasis on the blade passing frequencies and interaction tone of the CRP.

  14. Flow between a stationary and a rotating disk shrouded by a co-rotating cylinder

    NASA Astrophysics Data System (ADS)

    Lopez, J. M.

    1996-10-01

    Boundary layers on stationary and rotating disks have received much attention since von Kármán's [Z. Angew. Math. Mech. 1, 233 (1921)] and Bödewadt's [Z. Angew. Math. Mech. 20, 241 (1940)] studies of the cases with disks of infinite radius. Theoretical treatments have focused on similarity treatments leading to conflicting ideas about existence and uniqueness, and where self-similar solutions exist, whether they are physically realizable. The coupling between the boundary layer flows and the interior flow between them, while being of practical importance in a variety of situations such as turbomachinery and ocean circulations, is not well understood. Here, a numerical treatment of the axisymmetric Navier-Stokes equations, together with some experiments for the case of finite stationary and rotating disks bounded by a co-rotating sidewall is presented. We show that in the long time limit, solutions are steady and essentially self-similar. Yet the transients are not. In particular, axisymmetric waves propagate in the stationary disk boundary layer when the vortex lines entering the boundary layer develop inflection points, and there are subsequent eruptions of vortical flow out of the boundary layer deep into the interior at large Reynolds numbers.

  15. Pressure change and transport process on flames formed in a stretched, rotating flow

    SciTech Connect

    Yamamoto, Kazuhiro

    1999-08-01

    Flame characteristics in a stretched, rotating flow have been investigated by numerical simulation of tubular laminar flames for lean hydrogen, methane, and propane/air mixtures. Twin planar flames in counterflow have been also simulated for comparison. A fixed inlet velocity at the porous wall of the burner was assumed in all cases, and the cylindrical containing tube (radius R = 9.5 mm) was either maintained stationary or rotated. Results showed that, within the range studied, the flame temperatures always increase monotonically with increasing fuel concentration, and at the same time the reaction zones move outwards. However, while the introduction of rotation also causes a monotonic temperature increase of hydrogen and methane air mixtures, that of a propane/air mixture decreases. The temperature change with rotation becomes smaller with an increase of the fuel concentration. As a consequence of the centrifugal force, {rho}{nu}{sub {theta}}{sup 2}/r, induced by the rotation, a pressure gradient is formed in the cylindrical containing tube, with low pressure along the axis. The pressure gradient at the outer, unburnt edge of the flame reaction zone becomes smaller as the fuel concentration increases. The resultant decreased mass transport by pressure diffusion provides an explanation for part of the above-mentioned temperature change associated with rotation. The remainder of the effect is associated with changed stretch characteristics of the flames.

  16. Modeling turbulence in flows with a strong rotational component

    SciTech Connect

    Burgess, D.E.; O`Rourke, P.J.

    1993-11-01

    We consider the effectiveness of various turbulence models in flows with a strong rotational component. To evaluate the models, we implement them into a one-dimensional test code and make comparisons with experimental data for swirling flow in a cylinder. The K - {epsilon} type turbulence models do poorly in predicting the experimental results. However, we find that the incorporation of a Reynolds stress evolution equation gives good agreement with the experimentally measured mean flow. Modeling the pressure-strain correlation tensor correctly is the key for obtaining good results. A combination of Launder`s basic model together with Yakhot`s dissipation rate equation {sup 3} works best in predicting both the mean flow and the turbulence intensity.

  17. Large-scale anisotropy in stably stratified rotating flows

    SciTech Connect

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A.

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $\\sim k_\\perp^{-5/3}$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.

  18. Large-scale anisotropy in stably stratified rotating flows

    DOE PAGESBeta

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A.

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up tomore » $1024^3$ grid points and Reynolds numbers of $$\\approx 1000$$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $$\\sim k_\\perp^{-5/3}$$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.« less

  19. Granular flow in a rotating drum: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Li, L.; Smith, B.; Grinspun, E.

    2015-12-01

    Erosion at the base of a debris flow fundamentally controls how large the flow will become and how far it will travel. Experimental observations of this important phenomenon are rather limited, and this lack has led theoretical treatments to making ad hoc assumptions about the basal process. In light of this, we carried out a combination of laboratory experiments and theoretical analysis of granular flow in a rotating drum, a canonical example of steady grain motion in which entrainment rates can be precisely controlled. Our main result is that basal sediment is entrained as the velocity profile adjusts to imbalance in the flow of kinetic energy.Our experimental apparatus consisted of a 40cm-diameter drum, 4cm-deep, half-filled with 2.3mm grains. Rotation rates varied from 1-70 rpm. We varied the effective scale by varying effective gravity from 1g to 70g on a geotechnical centrifuge. The field of grain motion was recorded using high-speed video and mapped using particle tracking velocimetry. In tandem we developed a depth-averaged theory using balance equations for mass, momentum and kinetic energy. We assumed a linearized GDR Midi granular rheology [da Cruz, 2005] and a Coulomb friction law along the sidewalls [Jop et al., 2005]. A scaling analysis of our equations yields a dimensionless "entrainment number" En, which neatly parametrizes the flow geometry in the drum for a wide range of variables, e.g., rotation rate and effective gravity. At low En, the flow profile is planar and kinetic energy is balanced locally in the flow layer. At high En, the flow profile is sigmoidal (yin-yang shaped) and the kinetic energy is dominated by longitudinal, streamwise transfer. We observe different scaling behavior under each of these flow regimes, e.g., between En and kinetic energy, surface slope and flow depth. Our theory correctly predicts their scaling exponents and the value of En at which the regime transition takes place. We are also able to make corrections for

  20. An experimental study of flow past a rotationally oscillating cylinder.

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Lopez, Carlos; Probst, Oliver; Askari, Davood; Yang, Yingchen

    2012-11-01

    Flow past a circular cylinder executing sinusoidal rotary oscillations about its own axis is studied experimentally. The experiments are carried out at Re = 185, oscillation amplitudes varying from π/8 to π, and forcing frequency ratios varying from 0 to 5. It is found that the phenomenon of lock-on occurs in a forcing frequency range which depends not only on the oscillation amplitude but also the downstream location from the cylinder. The experimentally measured lock-on diagram in the forcing amplitude and frequency plane is presented at various downstream locations ranging from 2 to 23 diameters. The upper limit of the lock-on forcing frequency band depends strongly on the downstream location whereas the lower limit is fairly insensitive. The far field wake decouples, after the lock-on at higher forcing frequencies and behaves more like a regular Karman vortex street from a stationary cylinder with a vortex shedding frequency mostly lower than the one from a stationary cylinder. The dependence of circulation values of shed vortices on the forcing frequency revealed a universal decay curve independent of forcing amplitude beyond forcing frequency of ~ 1.0.

  1. Structural dynamic modeling and stability of a rotating blade under gravitational force

    NASA Astrophysics Data System (ADS)

    Kwon, Seungmin; Chung, Jintai; Hee Yoo, Hong

    2013-05-01

    Turbine blade lengths have been increasing in recent wind energy system designs in order to enhance power generation capacity. A longer blade length makes the structural system more flexible and often results in an undesirable, large dynamic response, which should be avoided in the design of the system. In the present study, the equations of motion of a rotating wind turbine blade undergoing gravitational force are derived, while considering tilt and pitch angles. Since the gravitational force acting on the rotating blade creates an oscillating axial force, this results in oscillating stiffness terms in the governing equations. The validity of the derived rotating blade model is evaluated by comparing its transient responses to those obtained by using a commercial finite element code. Effects of rotating speed, tilt angle, and pitch angle of the wind turbine blade on its dynamic stability characteristics are investigated.

  2. Two-fluid confined flow in a cylinder driven by a rotating end wall.

    PubMed

    Brady, P T; Herrmann, M; Lopez, J M

    2012-01-01

    The flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom end wall is studied numerically. The simulations are in parameter regimes where there is significant advection of angular momentum, i.e., the disk rotation rate is fast compared to the viscous diffusion time. We consider two classes of scenarios. The first consists of cases that are straightforward to reproduce in physical experiments where only the rotation rate and the viscosity ratio of the fluids are varied. Then we isolate different forces acting on the system such as inertia, surface tension, and gravity by studying variations in individual governing parameters. The viscosity ratio determines how quickly the upper fluid equilibriates dynamically to the flow in the lower fluid and plays a major role in determining how vortex lines are bent in the neighborhood of the interface between the two fluids. This in turn determines the structure of the interfacial layer between the two swirling fluids, which is responsible for the flow in the upper fluid. The simulations show that even when there is significant interfacial deformation, both the dynamics and the equilibrium flow are dominated by vortex bending rather than vortex stretching. The simulations show that for the range of immiscible fluids considered, surface tension effects are significant. Increased surface tension reduces the degree to which the interface is deformed and the limit of zero surface tension is not an appropriate approximation. PMID:22400659

  3. Dynamics of a tightly coupled mechanism for flagellar rotation. Bacterial motility, chemiosmotic coupling, protonmotive force.

    PubMed

    Meister, M; Caplan, S R; Berg, H C

    1989-05-01

    The bacterial flagellar motor is a molecular engine that couples the flow of protons across the cytoplasmic membrane to rotation of the flagellar filament. We analyze the steady-state behavior of an explicit mechanical model in which a fixed number of protons carries the filament through one revolution. Predictions of this model are compared with experimentally determined relationships between protonmotive force, proton flux, torque, and speed. All such tightly coupled mechanisms produce the same torque when the motor is stalled but vary greatly in their behavior at high speed. The speed at zero load predicted by our model is limited by the rates of association and dissociation of protons at binding sites on the rotor and by the mobility of force generators containing transmembrane channels that interact with these sites. Our analysis suggests that more could be learned about the motor if it were driven by an externally applied torque backwards (at negative speed) or forwards at speeds greater than the zero-load speed. PMID:2720081

  4. Effects of surface thermal forcing on stratified flow past an isolated obstacle

    NASA Astrophysics Data System (ADS)

    Reisner, Jon

    1992-02-01

    The present study investigates basic aspects of the flow of a density-stratified fluid past three-dimensional obstacles for Froude number is approximately O(1) and isolated surface thermal forcing representative of diurnally varying mesoscale flows past mountainous islands such as Hawaii. In order to minimize parameter space, we have excluded the effects of friction, rotation, nonuniform ambient flow, and the complexities of realistic surface boundary layer and terrain. Through simple scaling arguments, we deduce that the parameter eta* controls thermally forced flows for a given Froude number, and we provide crude estimates of a flow response for a range of eta*. The principal question addressed is for what values of eta* will a transition occur from the low-Froude-number flow regime, characterized by the stagnation and splitting of the lower upwind flow, to the regime in which flow passes over rather than around the obstacle. We show that the linear theory captures such a tendency consistently with simple scaling arguments. To provide quantitative measures of flow variability with the Froude number and eta*, we employ an efficient isentropic numerical code and summarize the results of numerous simulations in the form of a regime diagram. The principal result is a simple criterion for the transition of a heated flow from the blocked to unblocked flow regime. We illustrate the relevance of the idealized study to natural flows with an example of applications to a flow past the Hawaiian Archipelago.

  5. Interplay between toroidal rotation and flow shear in turbulence stabilisation

    NASA Astrophysics Data System (ADS)

    Camenen, Y.; Casson, F. J.; Manas, P.; Peeters, A. G.

    2016-02-01

    The interplay between toroidal rotation u, parallel flow shear u', and perpendicular flow shear γE in the stabilisation of tokamak turbulence is investigated in non-linear flux-tube gyrokinetic simulations. The simulations are performed for a reference L-mode DIII-D plasma (the so-called shortfall case) at r /a =0.8 , varying the flow parameters around their nominal values. Depending on the respective signs of u, u', and γE, turbulence is found to be enhanced, reduced, or unchanged. When the coupling is favorable, the overall effect on the non-linear heat fluxes can be very large, even at moderate flow values. The ion heat flux is, for instance, decreased by a factor of 3 when the direction of the parallel flow shear is reversed with respect to its nominal value. Even more surprising, keeping u' and γE at their nominal values, the ion heat flux decreases by more than 50% when the toroidal flow is reversed. The relevance of this mechanism in the experiments which depends on the ability to decouple u, u', and γE is discussed. The interplay between u and u' observed in the non-linear simulations qualitatively follows the linear stability results and is interpreted in the frame of a simple fluid model.

  6. Stratified Rotating Flow over and around Isolated Three-Dimensional Topography

    NASA Astrophysics Data System (ADS)

    Boyer, D. L.; Davies, P. A.; Holland, W. R.; Biolley, F.; Honji, H.

    1987-06-01

    Laboratory and numerical experiments have been conducted on the flow of a linearly stratified rotating fluid past isolated obstacles of revolution (conical and cosine-squared profiles). Laboratory experiments are considered for a range of Rossby, Ekman and Burger numbers, the pertinent dynamical parameters of the system. In these experiments, inertial, Coriolis, pressure, viscous and buoyancy forces all play a significant role. Emphasis is given to examining the nature of the time development of the flow fields as well as its long-time behaviour, including eddy shedding. It is shown, for example, that increased stratification tends to diminish the steering effect of the obstacle, other parameters being fixed, at elevation levels above the topography. At levels below the top of the obstacle, increased stratification tends to force the fluid around rather than over the body and this, in turn, tends to develop vortex shedding at smaller Reynolds numbers than would occur in corresponding lower stratification cases. Data for the cone reveal that the Strouhal number for the eddy-shedding regime is relatively insensitive to the values of Ro, Ek and S for the range of parameters investigated. Stratification tends to induce lee waves in the topography wake, and the nature of this lee-wave pattern is modified by the presence of rotation. For example, it is demonstrated that for vertically upward rotation, the lee waves on the right, facing downstream, have a larger amplitude than their counterparts at the same location on the left. The steering effects, as predicted by a three-level quasigeostrophic numerical model, are shown to be in good agreement with the laboratory results for a narrow range of parameter space. The numerical model is used to examine the effects of rotation, friction and stratification in modifying the flow. The quasigeostrophic numerical simulations do not produce eddy shedding, and it is concluded that a full, primitive equation numerical model would be

  7. Qualitative Changes in Flow Pattern in the Coating Flow inside a Rotating Cylinder.

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.

    1996-11-01

    We describe experimental work on the flow patterns in coating flow inside a partially-filled circular cylinder, which is rotated about its horizontally placed axis of symmetry. A prominent front forms at the bottom of the cylinder, associated with a recirculating region. This front is initially straight along the span. For a limited range of parameters, the front develops robust spanwise undulations, named shark teeth (S. T. Thoroddsen & L. Mahadevan, ``Experimental study of coating flows in a partially-filled horizontally rotating cylinder''), Experiments in Fluids (in press).. An intricate three-dimensional flow field is associated with these patterns. We study here the qualitative changes in the flow field associated with the transition of these shark teeth into waves traveling spanwise along the front. The wavelength and speed of these waves is investigated.

  8. Flow and heat simultaneously induced by two stretchable rotating disks

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, Mustafa

    2016-04-01

    An exact solution for the steady state Navier-Stokes equations in cylindrical coordinates is presented in this work. It serves to investigate the fluid flow and heat transfer occurring between two stretchable disks rotating co-axially at constant distance apart. The governing equations of motion and energy are first transformed into a set of nonlinear differential equation system by the use of von Karman similarity transformations, which are later solved numerically. The small Reynolds number case allows us to extract closed-form solutions for the physical phenomenon. The effects of the same or opposite direction rotation, as well as the stretching parameter and the Reynolds number, are discussed on the flow and heat characteristics. The main physical implication of the results is that stretching action of a disk surface alters considerably the classical flow behavior occurring between two disks and the physically interesting quantities like the torque and heat transfer are elucidated in the presence of a new physical mechanism; that is the surface stretching in the current research.

  9. Rotating polygon instability of a swirling free surface flow.

    PubMed

    Tophøj, L; Mougel, J; Bohr, T; Fabre, D

    2013-05-10

    We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990) and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)] in terms of resonant interactions between gravity waves on the outer part of the surface and centrifugal waves on the inner part. Our model is based on potential flow theory, linearized around a potential vortex flow with a free surface for which we show that unstable resonant states appear. Limiting our attention to the lowest order mode of each type of wave and their interaction, we obtain an analytically soluble model, which, together with estimates of the circulation based on angular momentum balance, reproduces the main features of the experimental phase diagram. The generality of our arguments implies that the instability should not be limited to flows with a rotating bottom (implying singular behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container. PMID:23705710

  10. Force-coupling method for flows with ellipsoidal particles

    NASA Astrophysics Data System (ADS)

    Liu, D.; Keaveny, E. E.; Maxey, M. R.; Karniadakis, G. E.

    2009-06-01

    The force-coupling method, previously developed for spherical particles suspended in a liquid flow, is extended to ellipsoidal particles. In the limit of Stokes flow, there is an exact correspondence with known analytical results for isolated particles. More generally, the method is shown to provide good approximate results for the particle motion and the flow field both in viscous Stokes flow and at finite Reynolds number. This is demonstrated through comparison between fully resolved direct numerical simulations and results from the numerical implementation of the force-coupling method with a spectral/hp element scheme. The motion of settling ellipsoidal particles and neutrally buoyant particles in a Poiseuille flow are discussed.

  11. Direct optical monitoring of flow generated by bacterial flagellar rotation

    SciTech Connect

    Kirchner, Silke R.; Nedev, Spas; Carretero-Palacios, Sol; Lohmüller, Theobald E-mail: feldmann@lmu.de; Feldmann, Jochen E-mail: feldmann@lmu.de; Mader, Andreas; Opitz, Madeleine

    2014-03-03

    We report on a highly sensitive approach to measure and quantify the time dependent changes of the flow generated by the flagella bundle rotation of single bacterial cells. This is achieved by observing the interactions between a silica particle and a bacterium, which are both trapped next to each other in a dual beam optical tweezer. In this configuration, the particle serves as a sensitive detector where the fast-Fourier analysis of the particle trajectory renders, it possible to access information about changes of bacterial activity.

  12. Detailed Validation Assessment of Turbine Stage Disc Cavity Rotating Flows

    NASA Astrophysics Data System (ADS)

    Kanjiyani, Shezan

    The subject of this thesis is concerned with the amount of cooling air assigned to seal high pressure turbine rim cavities which is critical for performance as well as component life. Insufficient air leads to excessive hot annulus gas ingestion and its penetration deep into the cavity compromising disc life. Excessive purge air, adversely affects performance. Experiments on a rotating turbine stage rig which included a rotor-stator forward disc cavity were performed at Arizona State University. The turbine rig has 22 vanes and 28 blades, while the rim cavity is composed of a single-tooth rim lab seal and a rim platform overlap seal. Time-averaged static pressures were measured in the gas path and the cavity, while mainstream gas ingestion into the cavity was determined by measuring the concentration distribution of tracer gas (carbon dioxide). Additionally, particle image velocimetry (PIV) was used to measure fluid velocity inside the rim cavity between the lab seal and the overlap. The data from the experiments were compared to an 360-degree unsteady RANS (URANS) CFD simulations. Although not able to match the time-averaged test data satisfactorily, the CFD simulations brought to light the unsteadiness present in the flow during the experiment which the slower response data did not fully capture. To interrogate the validity of URANS simulations in capturing complex rotating flow physics, the scope of this work also included to validating the CFD tool by comparing its predictions against experimental LDV data in a closed rotor-stator cavity. The enclosed cavity has a stationary shroud, a rotating hub, and mass flow does not enter or exit the system. A full 360 degree numerical simulation was performed comparing Fluent LES, with URANS turbulence models. Results from these investigations point to URANS state of art under-predicting closed cavity tangential velocity by 32% to 43%, and open rim cavity effectiveness by 50% compared to test data. The goal of this thesis

  13. THE FORCE-FREE MAGNETOSPHERE OF A ROTATING BLACK HOLE

    SciTech Connect

    Contopoulos, Ioannis; Kazanas, Demosthenes

    2013-03-10

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity {omega} and the poloidal electric current I. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner ''light surface'' located inside the ergosphere and the outer ''light surface'' which is the generalization of the pulsar light cylinder. We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both ''light surfaces''.

  14. The Force-Free Magnetosphere of a Rotating Black Hole

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.

    2013-01-01

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."

  15. Intense Flows Driven by Mechanical Forcing in Non-axisymmetric Containers

    NASA Astrophysics Data System (ADS)

    Grannan, A. M.; Le Bars, M.; Aurnou, J. M.

    2014-12-01

    Here we present laboratory experimental results that simulate two geophysically relevant mechanical forcings that can drive intense fluid motions in the interior fluid layer of non-axisymmetric containers; libration and tidal distortions. Longitudinal libration refers to the small periodic oscillations of a satellite's mean rotation rate as it orbits a primary body and is replicated using an oscillating hard acrylic ellipsoid. Tidal forcing refers to the rotating gravitational distortion of a body in orbit and is replicated using a deformable silicone sphere. We use a particle image velocimetry (PIV) technique to measure the 2D velocity field in the nearly equatorial plane over hundreds of librational and tidal cycles. First, while the theoretical base flow for each mechanism is nearly identical, we verify the base flow induced by the tidal distortion and a time-averaged zonal flow that scales as the square of the tidal forcing and is expected to be small in planets. Additionally, for a fixed tidal distortion, a polar vortex first identified by Suess (1970) is re-examined that may drive an intense vortex at planetary settings. Second, we investigate the characteristics of turbulence in the bulk fluid layer generated via an elliptical instability of librational and tidal forcing. An elliptic instability is the triadic resonance of two inertial modes whose non-dimensional frequencies are between [-2-2] with the mechanically induced base flow. This is called libration driven elliptical instability (LDEI) and tidal driven elliptical instability (TDEI) respectively. We characterize the evolution of the turbulent flow that displays either intermittent large cycles of growth and decay or smaller cycles of saturation while also investigating the cascade of energy inside the inertial mode frequency regime. The existence of these types of intense flows may play an important in understanding the thermal evolution and magnetic field generation in bodies subject to mechanical

  16. MASS ACCRETION RATE OF ROTATING VISCOUS ACCRETION FLOW

    SciTech Connect

    Park, Myeong-Gu

    2009-11-20

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczynski-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate m-dotident toM-dot/M-dot{sub B}, where M-dot is the mass accretion rate and M-dot{sub B} is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05approx

  17. Reaching during virtual rotation: context specific compensations for expected coriolis forces

    NASA Technical Reports Server (NTRS)

    Cohn, J. V.; DiZio, P.; Lackner, J. R.

    2000-01-01

    Subjects who are in an enclosed chamber rotating at constant velocity feel physically stationary but make errors when pointing to targets. Reaching paths and endpoints are deviated in the direction of the transient inertial Coriolis forces generated by their arm movements. By contrast, reaching movements made during natural, voluntary torso rotation seem to be accurate, and subjects are unaware of the Coriolis forces generated by their movements. This pattern suggests that the motor plan for reaching movements uses a representation of body motion to prepare compensations for impending self-generated accelerative loads on the arm. If so, stationary subjects who are experiencing illusory self-rotation should make reaching errors when pointing to a target. These errors should be in the direction opposite the Coriolis accelerations their arm movements would generate if they were actually rotating. To determine whether such compensations exist, we had subjects in four experiments make visually open-loop reaches to targets while they were experiencing compelling illusory self-rotation and displacement induced by rotation of a complex, natural visual scene. The paths and endpoints of their initial reaching movements were significantly displaced leftward during counterclockwise illusory rotary displacement and rightward during clockwise illusory self-displacement. Subjects reached in a curvilinear path to the wrong place. These reaching errors were opposite in direction to the Coriolis forces that would have been generated by their arm movements during actual torso rotation. The magnitude of path curvature and endpoint errors increased as the speed of illusory self-rotation increased. In successive reaches, movement paths became straighter and endpoints more accurate despite the absence of visual error feedback or tactile feedback about target location. When subjects were again presented a stationary scene, their initial reaches were indistinguishable from pre

  18. Studies in Forced and Time Varying Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Grosch, Chester E.

    2005-01-01

    The reasearch focused on two areas; (a) the dynamics of forced turbulent flows and (b) time filtered Large Eddy Simulations (TLES). The dynamics of turbulent flows arising from external forcing of the turbulence are poorly understood. In particular, here are many unanswered questions relating the basic dynamical balances and the existence or nonexistence of statistical equilibrium of forced turbulent flows. This research used rapid distortion theory and direct numerical simulations to explore these questions. The properties of the temporally filtered Navier-Stokes equations were also studied.

  19. Force and torque on spherical particles in micro-channel flows using computational fluid dynamics.

    PubMed

    Suo, Jin; Edwards, Erin E; Anilkumar, Ananyaveena; Sulchek, Todd; Giddens, Don P; Thomas, Susan N

    2016-07-01

    To delineate the influence of hemodynamic force on cell adhesion processes, model in vitro fluidic assays that mimic physiological conditions are commonly employed. Herein, we offer a framework for solution of the three-dimensional Navier-Stokes equations using computational fluid dynamics (CFD) to estimate the forces resulting from fluid flow near a plane acting on a sphere that is either stationary or in free flow, and we compare these results to a widely used theoretical model that assumes Stokes flow with a constant shear rate. We find that while the full three-dimensional solutions using a parabolic velocity profile in CFD simulations yield similar translational velocities to those predicted by the theoretical method, the CFD approach results in approximately 50% larger rotational velocities over the wall shear stress range of 0.1-5.0 dynes cm(-2). This leads to an approximately 25% difference in force and torque calculations between the two methods. When compared with experimental measurements of translational and rotational velocities of microspheres or cells perfused in microfluidic channels, the CFD simulations yield significantly less error. We propose that CFD modelling can provide better estimations of hemodynamic force levels acting on perfused microspheres and cells in flow fields through microfluidic devices used for cell adhesion dynamics analysis. PMID:27493783

  20. Force and torque on spherical particles in micro-channel flows using computational fluid dynamics

    PubMed Central

    Suo, Jin; Edwards, Erin E.; Anilkumar, Ananyaveena; Sulchek, Todd; Giddens, Don P.

    2016-01-01

    To delineate the influence of hemodynamic force on cell adhesion processes, model in vitro fluidic assays that mimic physiological conditions are commonly employed. Herein, we offer a framework for solution of the three-dimensional Navier–Stokes equations using computational fluid dynamics (CFD) to estimate the forces resulting from fluid flow near a plane acting on a sphere that is either stationary or in free flow, and we compare these results to a widely used theoretical model that assumes Stokes flow with a constant shear rate. We find that while the full three-dimensional solutions using a parabolic velocity profile in CFD simulations yield similar translational velocities to those predicted by the theoretical method, the CFD approach results in approximately 50% larger rotational velocities over the wall shear stress range of 0.1–5.0 dynes cm−2. This leads to an approximately 25% difference in force and torque calculations between the two methods. When compared with experimental measurements of translational and rotational velocities of microspheres or cells perfused in microfluidic channels, the CFD simulations yield significantly less error. We propose that CFD modelling can provide better estimations of hemodynamic force levels acting on perfused microspheres and cells in flow fields through microfluidic devices used for cell adhesion dynamics analysis. PMID:27493783

  1. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

    SciTech Connect

    Paoletti, M. S.; Lathrop, D. P.

    2011-01-14

    We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the ({Omega}{sub 1}, {Omega}{sub 2}) parameter space at high Reynolds numbers, where {Omega}{sub 1} ({Omega}{sub 2}) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=({Omega}{sub 1}-{Omega}{sub 2})/{Omega}{sub 2} fully determines the state and torque G as compared to G(Ro={infinity}){identical_to}G{sub {infinity}.} The ratio G/G{sub {infinity}} is a linear function of Ro{sup -1} in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].

  2. SOLAR ROTATION EFFECTS ON THE HELIOSHEATH FLOW NEAR SOLAR MINIMA

    SciTech Connect

    Borovikov, Sergey N.; Pogorelov, Nikolai V.; Ebert, Robert W.

    2012-05-01

    The interaction between fast and slow solar wind (SW) due to the Sun's rotation creates corotating interaction regions (CIRs), which further interact with each other creating complex plasma structures at large heliospheric distances. We investigate the global influence of CIRs on the SW flow in the inner heliosheath between the heliospheric termination shock (TS) and the heliopause. The stream interaction model takes into account the major global effects due to slow-fast stream interaction near solar minima. The fast and slow wind parameters are derived from the Ulysses observations. We investigate the penetration of corotating structures through the TS and their further propagation through the heliosheath. It is shown that the heliosheath flow structure may experience substantial modifications, including local decreases in the radial velocity component observed by Voyager 1.

  3. The flow field in a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2011-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engine. They potentially provide further gains than an intermittent or pulsed detonation-wave engine (PDE). However, significantly less work has been on this concept when compared to the PDE. In this talk, we present the detailed flow field in an idealized RDE, primarily consisting of two concentric cylinders. A premixed detonable mixture is injected into the annulus between the two concentric cylinders. Once a detonation is initiated, it keeps travelling around in the annulus as long as there is fresh detonable mixture ahead of it. Hence, the injection process is critically important to the stability and performance of the RDE. Furthermore, we show that the flow field is quite complex consisting of multiple shock waves and the outflow is primarily axial, although the detonation-wave is travelling around circumferentially. Sponsored by the NRL 6.1 Computational Physics Task Area.

  4. Asymptotic and Numerical Methods for Rapidly Rotating Buoyant Flow

    NASA Astrophysics Data System (ADS)

    Grooms, Ian G.

    This thesis documents three investigations carried out in pursuance of a doctoral degree in applied mathematics at the University of Colorado (Boulder). The first investigation concerns the properties of rotating Rayleigh-Benard convection -- thermal convection in a rotating infinite plane layer between two constant-temperature boundaries. It is noted that in certain parameter regimes convective Taylor columns appear which dominate the dynamics, and a semi-analytical model of these is presented. Investigation of the columns and of various other properties of the flow is ongoing. The second investigation concerns the interactions between planetary-scale and mesoscale dynamics in the oceans. Using multiple-scale asymptotics the possible connections between planetary geostrophic and quasigeostrophic dynamics are investigated, and three different systems of coupled equations are derived. Possible use of these equations in conjunction with the method of superparameterization, and extension of the asymptotic methods to the interactions between mesoscale and submesoscale dynamics is ongoing. The third investigation concerns the linear stability properties of semi-implicit methods for the numerical integration of ordinary differential equations, focusing in particular on the linear stability of IMEX (Implicit-Explicit) methods and exponential integrators applied to systems of ordinary differential equations arising in the numerical solution of spatially discretized nonlinear partial differential equations containing both dispersive and dissipative linear terms. While these investigations may seem unrelated at first glance, some reflection shows that they are in fact closely linked. The investigation of rotating convection makes use of single-space, multiple-time-scale asymptotics to deal with dynamics strongly constrained by rotation. Although the context of thermal convection in an infinite layer seems somewhat removed from large-scale ocean dynamics, the asymptotic

  5. On the Inertial Force Experienced by a Solid Body Undergoing Rotation about Two Axes

    SciTech Connect

    Christov, I. C.; Christov, C. I.

    2009-10-29

    The theory of rigid body motion is used to derive the governing equations, in terms of the Eulerian angles, of a top rotating about two axes. Then, a formula for the 'lifting' component of the net inertial force (as function of the angle of inclination, the top's two angular velocities and its moments of inertia) is derived for a particular motion termed constrained nutation. In a distinguished limit, the critical value of the angle of inclination, i.e., the value for which the vertical component of the net inertial force acting on the top overcomes the weight of the rotating system, is calculated.

  6. Unsteady flow field in a mini VAWT with relative rotation blades: analysis of temporal results

    NASA Astrophysics Data System (ADS)

    Bayeul-Lainé, A. C.; Simonet, S.; Bois, G.

    2013-12-01

    The present wind turbine is a small one which can be used on roofs or in gardens. This turbine has a vertical axis. Each turbine blade combines a rotating movement around its own axis and around the main rotor axis. Due to this combination of movements, flow around this turbine is highly unsteady and needs to be modelled by unsteady calculation. The present work is an extended study starting in 2009. The benefits of combined rotating blades have been shown. The performance coefficient of this kind of turbine is very good for some blade stagger angles. Spectral analysis of unsteady results on specific points in the domain and temporal forces on blades was already presented for elliptic blades. The main aim here is to compare two kinds of blades in case of the best performances.

  7. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  8. Coupling of rotational cortical flow, asymmetric midbody positioning, and spindle rotation mediates dorsoventral axis formation in C. elegans.

    PubMed

    Singh, Deepika; Pohl, Christian

    2014-02-10

    Cortical flows mediate anteroposterior polarization in Caenorhabditis elegans by generating two mutually exclusive membrane domains. However, factors downstream of anteroposterior polarity that establish the dorsoventral axis remain elusive. Here, we show that rotational cortical flow orthogonal to the anteroposterior axis during the division of the AB blastomere in the two-cell embryo positions the cytokinetic midbody remnant of the previous division asymmetrically at the future ventral side of the embryo. In the neighboring P1 blastomere, astral microtubules contact a transient PAR-2-dependent actin coat that forms asymmetrically onto the midbody remnant-P1 interface. Ablation of the midbody remnant or perturbation of rotational cortical flow reveals that microtubule-midbody remnant contacts are crucial for P1 spindle rotation and dorsoventral axis formation. Thus, our findings suggest a mechanism for dorsoventral patterning that relies on coupling of anteroposterior polarity, rotational cortical flow, midbody remnant positioning, and spindle orientation. PMID:24525186

  9. Tool design in friction stir processing: dynamic forces and material flow

    SciTech Connect

    D. E. Clark; K. S. Miller; C. R. Tolle

    2006-08-01

    Friction stir processing involves severe plastic flow within the material; the nature of this flow determines the final morphology of the weld, the resulting microstructures, and the presence or absence of defects such as internal cavities or "wormholes." The forces causing this plastic flow are a function of process parameters, including spindle speed, travel speed, and tool design and angle. Some of these forces are directly applied or a result of the mechanical constraints and compliance of the apparatus, while others are resolved forces resulting from an interaction of these applied forces and tool forces governed by processing parameters, and can be diminished or even reversed in sign with appropriate choices of process parameters. The present investigation is concerned mostly with the friction stir processing of 6061-T6 aluminum plates in a low-cost apparatus built from a commercial milling machine. A rotating dynamometer allows in-process measurement of actual spindle speed, torque, and forces in the x-, y-, and z-directions, as well as force control on these axes. Two main types of tool, both unthreaded, were used. The first had a pin about 4 mm in diameter and 4 mm in length, with a shoulder about 10 mm in diameter, and produced wormhole defects; the second, with a tapered pin about 5 mm long, a base diameter of about 6 mm, a tip diameter of about 4 mm, and a shoulder diameter (flat or dished) of about 19 mm, produced sound welds over a wide range of parameters.

  10. Magnetic forces associated with bursty bulk flows in Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Karlsson, Tomas; Hamrin, Maria; Nilsson, Hans; Kullen, Anita; Pitkänen, Timo

    2015-05-01

    We present the first direct measurements of magnetic forces acting on bursty bulk flow plasma in the magnetotail. The magnetic forces are determined using Cluster multispacecraft measurements. We analyze 67 bursty bulk flow (BBF) events and show that the curvature part of the magnetic force is consistently positive, acting to accelerate the plasma toward Earth between approximately 10 and 20 RE geocentrical distances, while the magnetic field pressure gradient increasingly brakes the plasma as it moves toward Earth. The net result is that the magnetic force accelerates the plasma at distances greater than approximately 14 RE, while it acts to decelerate it within that distance. The magnetic force, together with the thermal pressure gradient force, will determine the dynamics of the BBFs as they propagate toward the near-Earth tail region. The determination of the former provides an important clue to the ultimate fate of BBFs in the inner magnetosphere.

  11. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  12. On the nonlinear interfacial instability of rotating core-annular flow

    NASA Technical Reports Server (NTRS)

    Coward, Aidrian V.; Hall, Philip

    1993-01-01

    The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.

  13. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

    SciTech Connect

    Adamovich, Igor V.

    2014-04-15

    A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes.

  14. Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.

    2016-01-01

    Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.

  15. Statistical equilibria of the coupled barotropic flow and shallow water flow on a rotating sphere

    NASA Astrophysics Data System (ADS)

    Ding, Xueru

    The motivation of this research is to build equilibrium statistical models that can apply to explain two enigmatic phenomena in the atmospheres of the solar system's planets: (1) the super-rotation of the atmospheres of slowly-rotating terrestrial planets---namely Venus and Titan, and (2) the persistent anticyclonic large vortex storms on the gas giants, such as the Great Red Spot (GRS) on Jupiter. My thesis is composed of two main parts: the first part focuses on the statistical equilibrium of the coupled barotropic vorticity flow (non-divergent) on a rotating sphere; the other one has to do with the divergent shallow water flow rotating sphere system. The statistical equilibria of these two systems are simulated in a wide range of parameter space by Monte Carlo methods based on recent energy-relative enstrophy theory and extended energy-relative enstrophy theory. These kind of models remove the low temperatures defect in the old classical doubly canonical energy-enstrophy theory which cannot support any phase transitions. The other big difference of our research from previous work is that we work on the coupled fluid-sphere system, which consists of a rotating high density rigid sphere, enveloped by a thin shell of fluid. The sphere is considered to have infinite mass and angular momentum; therefore, it can serve as a reservoir of angular momentum. Unlike the fluid sphere system itself, the coupled fluid sphere system allows for the exchange of angular momentum between the atmosphere and the solid planet. This exchange is the key point in any model that is expected to capture coherent structures such as the super-rotation and GRS-like vortices problems in planetary atmospheres. We discovered that slowly-rotating planets can have super-rotation at high energy state. All known slowly-rotating cases in the solar system---Venus and Titan---have super-rotation. Moreover, we showed that the anticyclonicity in the GRS-like structures is closely associated with the

  16. Computation of turbulent rotating channel flow with an algebraic Reynolds stress model

    NASA Technical Reports Server (NTRS)

    Warfield, M. J.; Lakshminarayana, B.

    1986-01-01

    An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.

  17. A continuous-flow biodiesel production process using a rotating packed bed.

    PubMed

    Chen, Yi-Hung; Huang, Yu-Hang; Lin, Rong-Hsien; Shang, Neng-Chou

    2010-01-01

    The continuous-flow transesterification of soybean oil with methanol using a rotating packed bed (RPB) for the production of fatty acid methyl esters (biodiesel) is presented herein. The RPB, which provides high centrifugal force and has an adjustable rotational speed, is employed as a novel transesterification reactor. In this study, biodiesel is synthesized via the methanolysis of soybean oil using potassium hydroxide as the catalyst. The following variables were investigated for their effects on transesterification efficiency: the methanol-oil molar ratio, the estimated hydraulic retention time, the rotational speed of the packed-bed rotator, the reaction temperature, and the catalyst dosage. The yield of the fatty acid methyl esters (Y(FAME)) in the RPB system depends significantly on the experimental conditions, which influence the residence time distribution, the transesterification reaction rate, and the micromixing intensity. Due to its excellent micromixing characteristics, the RPB system shows satisfactory transesterification efficiency. The values of Y(FAME), productivity of FAMEs (P(FAME)), and P(FAME) per unit reactor volume (P(FAME)/V(R)) in the RPB are used to evaluate the performance for biodiesel production and allow for further comparison with other continuous transesterification reactors. Consequently, a RPB is considered a practical transesterification reactor with high transesterification efficiency. PMID:19751970

  18. Stability of rotating stratified shear flow: an analytical study.

    PubMed

    Salhi, A; Cambon, C

    2010-02-01

    We study the stability problem of unbounded shear flow, with velocity U(i)=Sx(3)delta(i1), subjected to a uniform vertical density stratification, with Brunt-Väisälä frequency N, and system rotation of rate Omega about an axis aligned with the spanwise (x(2)) direction. The evolution of plane-wave disturbances in this shear flow is governed by a nonhomogeneous second-order differential equation with time-dependent coefficients. An analytical solution is found to be described by Legendre functions in terms of the nondimensional parameter sigma(phi)(2)=R(R+1)sin(2) phi+R(i), where R=(2Omega/S) is the rotation number, phi is the angle between the horizontal wave vector and the streamwise axis, and R(i)=N(2)/S(2) is the Richardson number. The long-time behavior of the solution is analyzed using the asymptotic representations of the Legendre functions. On the one hand, linear stability is analyzed in terms of exponential growth, as in a normal-mode analysis: the rotating stratified shear flow is stable if R(i)>1/4, or if 00, or if R(R+1)<0

  19. Computed Tomography Analysis of Postsurgery Femoral Component Rotation Based on a Force Sensing Device Method versus Hypothetical Rotational Alignment Based on Anatomical Landmark Methods: A Pilot Study

    PubMed Central

    Kreuzer, Stefan W.; Pourmoghaddam, Amir; Leffers, Kevin J.; Johnson, Clint W.; Dettmer, Marius

    2016-01-01

    Rotation of the femoral component is an important aspect of knee arthroplasty, due to its effects on postsurgery knee kinematics and associated functional outcomes. It is still debated which method for establishing rotational alignment is preferable in orthopedic surgery. We compared force sensing based femoral component rotation with traditional anatomic landmark methods to investigate which method is more accurate in terms of alignment to the true transepicondylar axis. Thirty-one patients underwent computer-navigated total knee arthroplasty for osteoarthritis with femoral rotation established via a force sensor. During surgery, three alternative hypothetical femoral rotational alignments were assessed, based on transepicondylar axis, anterior-posterior axis, or the utilization of a posterior condyles referencing jig. Postoperative computed tomography scans were obtained to investigate rotation characteristics. Significant differences in rotation characteristics were found between rotation according to DKB and other methods (P < 0.05). Soft tissue balancing resulted in smaller deviation from anatomical epicondylar axis than any other method. 77% of operated knees were within a range of ±3° of rotation. Only between 48% and 52% of knees would have been rotated appropriately using the other methods. The current results indicate that force sensors may be valuable for establishing correct femoral rotation. PMID:26881086

  20. Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth

    ERIC Educational Resources Information Center

    Veto, B.

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…

  1. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  2. The Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed concurrent airflows, some materials are more flammable in microgravity than earth. 1.5 cm flame in microgravity that melts a polyethylene cylinder into a liquid ball.

  3. Turbulent Flows Driven by the Mechanical Forcing of an Ellipsoidal Container

    NASA Astrophysics Data System (ADS)

    Favier, Benjamin; Le Bars, Michael; Grannan, Alexander; Ribeiro, Adolfo; Aurnou, Jonathan; Irphe Team; Spinlab Team

    2015-11-01

    We present a combination of laboratory experiments and numerical simulations modelling geophysically relevant mechanical forcings. Libration and tides correspond to the periodic perturbation of a body's rotation rate and shape, and are both due to gravitational interactions with orbiting companions. Such mechanical forcings can convey a fraction of the rotational energy available and generate intense turbulence in the fluid interior of satellites and planets. We investigate the fluid motions inside a librating or tidally deformed triaxial ellipsoidal container filled with an incompressible fluid. In both cases, the turbulent flow is driven by the elliptic instability which is a triadic resonance between two inertial modes and the base flow. We characterize the transition to turbulence as triadic resonances develop while also investigating both intermittent and sustained regimes. It is shown that the flow is largely independent of the properties of the mechanical forcing, hinting at a possible universal behaviour of the saturated elliptical instability. The existence of such intense flows may play an important role in understanding the thermal and magnetic evolution of celestial bodies. This work was funded by the French Agence Nationale pour la Recherche and the National Science Foundation Geophysics Program.

  4. Flow of Fluid and Particle Assemblages in Rotating Systems

    NASA Technical Reports Server (NTRS)

    Kizito, John; Hiltner, David; Niederhaus, Charles; Kleis, Stanley; Hudson, Ed; Gonda, Steve

    2004-01-01

    NASA-designed bioreactors have been highly successful in growing three-dimensional tissue structures in a low shear environment both on earth and in space. The goal of the present study is to characterize the fluid flow environment within the HFB-S bioreactor and determine the spatial distribution of particles that mimic cellular tissue structures. The results will be used to obtain optimal operating conditions of rotation rates and media perfusehnfuse rates which are required for cell culture growth protocols. Two types of experiments have been performed so far. First, we have performed laser florescent dye visualization of the perfusion loop to determine the mixing times within the chamber. The second type of experiments involved particles which represent cellular tissue to determine the spatial distribution with the chamber. From these experiments we established that mixing times were largely dependant on the speed ratio and sign of the difference between the spinner and the dome. The shortest mixing times occurred when the spinner rotates faster than the dome and longest mixing times occurs with no relative motion between the dome and spinner. Also, we have determined the spatial and temporal distribution of particle assemblages within the chamber.

  5. Viscous boundary layers in rotating fluids driven by periodic flows

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Cogley, A. C.

    1976-01-01

    The paper analyzes the boundary layers formed in a rotating fluid by an oscillating flow over an infinite half plate, with particular attention paid to the effects of unsteadiness, the critical latitude effect and the structure of the solution to the boundary layer equations at resonance. The Navier-Stokes boundary layer equations are obtained through an asymptotic expansion with the incorporation of the Rossby and Ekman numbers and are analyzed as the sum of a nonlinear steady solution and a linearized unsteady solution. The solution is predominantly composed of two inertial wave vector components, one circularly polarized to the left and the other circularly polarized to the right. The problem considered here has relevance in oceanography and meteorology, with special reference to the unsteady atmospheric boundary layer.

  6. Tokamak Plasma Flows Induced by Local RF Forces

    NASA Astrophysics Data System (ADS)

    Chen, Jiale; Gao, Zhe

    2015-10-01

    The tokamak plasma flows induced by the local radio frequency (RF) forces in the core region are analyzed. The effective components of local RF forces are composed of the momentum absorption term and the resonant parallel momentum transport term (i.e. the parallel component of the resonant ponderomotive forces). Different momentum balance relations are employed to calculate the plasma flows depending on different assumptions of momentum transport. With the RF fields solved from RF simulation codes, the toroidal and poloidal flows by these forces under the lower hybrid current drive and the mode conversion ion cyclotron resonance heating on EAST-like plasmas are evaluated. supported by National Natural Science Foundation of China (Nos. 11405218, 11325524, 11375235 and 11261140327), in part by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB111002, 2013GB112001 and 2013GB112010), and the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning

  7. Controlled 3D rotation of biological cells using optical multiple-force clamps

    PubMed Central

    Tanaka, Yoshio; Wakida, Shin-ich

    2014-01-01

    Controlled three-dimensional (3D) rotation of arbitrarily shaped objects in the observation space of optical microscopes is essential for realizing tomographic microscope imaging and offers great flexibility as a noncontact micromanipulation tool for biomedical applications. Herein, we present 3D rotational control of inhomogeneous biological samples using 3D optical multiple-force clamps based on time-shared scanning with a fast focus-tunable lens. For inhomogeneous samples with shape and optical anisotropy, we choose diatoms and their fragments, and demonstrate interactive and controlled 3D rotation about arbitrary axes in 3D Cartesian coordinates. We also outline the hardware setup and 3D rotation method for our demonstrations. PMID:25071968

  8. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    SciTech Connect

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radius down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.

  9. Forced vibration analysis of rotating structures with application to vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Lobitz, D. W.

    Predictive methods for the dynamic analysis of wind turbine systems are important for assessing overall structural integrity and fatigue life. For the former, the identification of resonance points (spectral analysis) is of primary concern. For the latter forced vibration analysis is necessary. These analyses are complicated by the fact that, for a spinning turbine, the stress-producing deformations take place in both fixed and rotating reference systems simultaneously. As an example, the tower of a horizontal axis wind turbine (HAWT) must be analyzed in a fixed frame, and the rotor in a rotating one. Forced vibration analysis is further complicated in that accurate models need to be developed for aeroload prediction. Methods which are available for forced vibration analysis of both horizontal and vertical axis machines are identified and the method which was developed for vertical axis wind turbines is emphasized, with some comparisons of the predictions to experimental data.

  10. Laminar Flow About a Rotating Body of Revolution in an Axial Airstream

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1956-01-01

    We have set ourselves the problem of calculating the laminar flow on a body of revolution in an axial flow which simultaneously rotates about its axis. The problem mentioned above, the flow about a rotating disk in a flow, which we solved some time ago, represents the first step in the calculation of the flow on the rotating body of revolution in a flow insofar as, in the case of a round nose, a small region about the front stagnation point of the body of revolution may be replaced by its tangential plane. In our problem regarding the rotating body of revolution in a flow, for laminar flow, one of the limiting cases is known: that of the body which is in an axial approach flow but does not rotate. The other limiting case, namely the flow in the neighborhood of a body which rotates but is not subjected to a flow is known only for the rotating circular cylinder, aside from the rotating disk. In the case of the cylinder one deals with a distribution of the circumferential velocity according to the law v = omega R(exp 2)/r where R signifies the cylinder radius, r the distance from the center, and omega the angular velocity of the rotation. The velocity distribution as it is produced here by the friction effect is therefore the same as in the neighborhood of a potential vortex. When we treat, in what follows, the general case of the rotating body of revolution in a flow according to the calculation methods of Prandtl's boundary-layer theory, we must keep in mind that this solution cannot contain the limiting case of the body of revolution which only rotates but is not subjected to a flow. However, this is no essential limitation since this case is not of particular importance for practical purposes.

  11. Direct and inverse energy cascades in a forced rotating turbulence experiment

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Gallet, Basile; Moisy, Frédéric; Cortet, Pierre-Philippe

    2014-12-01

    We present experimental evidence for a double cascade of kinetic energy in a statistically stationary rotating turbulence experiment. Turbulence is generated by a set of vertical flaps, which continuously injects velocity fluctuations towards the center of a rotating water tank. The energy transfers are evaluated from two-point third-order three-component velocity structure functions, which we measure using stereoscopic particle image velocimetry in the rotating frame. Without global rotation, the energy is transferred from large to small scales, as in classical three-dimensional turbulence. For nonzero rotation rates, the horizontal kinetic energy presents a double cascade: a direct cascade at small horizontal scales and an inverse cascade at large horizontal scales. By contrast, the vertical kinetic energy is always transferred from large to small horizontal scales, a behavior reminiscent of the dynamics of a passive scalar in two-dimensional turbulence. At the largest rotation rate, the flow is nearly two-dimensional, and a pure inverse energy cascade is found for the horizontal energy. To describe the scale-by-scale energy budget, we consider a generalization of the Kármán-Howarth-Monin equation to inhomogeneous turbulent flows, in which the energy input is explicitly described as the advection of turbulent energy from the flaps through the surface of the control volume where the measurements are performed.

  12. Influence of the saffman force, lift force, and electric force on sand grain transport in a wind-sand flow

    NASA Astrophysics Data System (ADS)

    Gorchakov, G. I.; Karpov, A. V.; Kopeikin, V. M.; Sokolov, A. V.; Buntov, D. V.

    2016-03-01

    Quasi-horizontal trajectories of salting sand grains were found using high-speed video-recording in the desertified territory of the Astrakhan region. The sizes and displacement velocities of the saltating sand grains were determined. A piecewise logarithmic approximation of the wind profile in a quasi-stationary wind-sand flow is suggested, which is consistent with the data of observations and modeling. It was established that, in the regime of stationary saltation, the wind profile in the lower saltation layer of the wind-sand flow depends only slightly on the wind profile variations in the upper saltation layer. The vertical profiles of the horizontal wind component gradient in a quasi-stationary wind-sand flow were calculated and plotted. It was shown using high-speed video recording of the trajectory of a sand grain with an approximate diameter of 95 μm that the weightlessness condition in the desertified territory of the Astrakhan region in a stationary wind-sand flow is satisfied at a height of approximately 0.15 mm. The electric parameters of a wind-sand flow, which can provide for compensation of the force of gravity by the electric force, were estimated. In particular, if the specific charge of a sand grain is 100 μC/kg, the force of gravity applied to the sand grain can be compensated by the electric force if the vertical component of the electric field in a wind-sand flow reaches approximately 100 kV/m. It was shown that the quasi-horizontal transport of sand grains in the lower millimeter saltation layer observed in the desertified territory can be explained by the joint action of the aerodynamic drag, the force of gravity, the Saffman force, the lift force, and the electric force.

  13. On the nature of magnetic turbulence in rotating, shearing flows

    NASA Astrophysics Data System (ADS)

    Walker, Justin; Lesur, Geoffroy; Boldyrev, Stanislav

    2016-03-01

    The local properties of turbulence driven by the magnetorotational instability (MRI) in rotating, shearing flows are studied in the framework of a shearing-box model. Based on numerical simulations, we propose that the MRI-driven turbulence comprises two components: the large-scale shear-aligned strong magnetic field and the small-scale fluctuations resembling magnetohydrodynamic (MHD) turbulence. The energy spectrum of the large-scale component is close to k-2, whereas the spectrum of the small-scale component agrees with the spectrum of strong MHD turbulence k-3/2. While the spectrum of the fluctuations is universal, the outer-scale characteristics of the turbulence are not; they depend on the parameters of the system, such as the net magnetic flux. However, there is remarkable universality among the allowed turbulent states - their intensity v0 and their outer scale λ0 satisfy the balance condition v0/λ0 ˜ dΩ/dln r, where dΩ/dln r is the local orbital shearing rate of the flow. Finally, we find no sustained dynamo action in the Pm = 1 zero net-flux case for Reynolds numbers as high as 45 000, casting doubts on the existence of an MRI dynamo in the Pm ≤ 1 regime.

  14. Unsteady flow field under surge and rotating stall in a three-stage axial flow compressor

    NASA Astrophysics Data System (ADS)

    Hara, Takayuki; Morita, Daisuke; Ohta, Yutaka; Outa, Eisuke

    2011-03-01

    The unsteady flow structure between rotor blade-to-blade passages in a three-stage axial flow compressor is experimentally investigated by detailed measurements of unsteady performance characteristics, casing wall pressure fluctuations and their wavelet analyses. The main feature of the test compressor is a capacity tank facility connected in series to the compressor outlet in order to supply compression and/or expansion waves from downstream of the compressor. Research attention is focused on the post-stall characteristics of the surge and rotating stall which occur simultaneously. The influence of the compressor operating point on the unsteady performance curve shows that the surge cycle changes irregularly depending on the steady-state resistance characteristics, and the results of the wavelet analyses of the wall pressure fluctuations suggest that the surge cycle may selectively be determined by the rotating stall cell structure within the rotor cascade.

  15. Erosion and basal forces in granular flow experiments

    NASA Astrophysics Data System (ADS)

    Sanvitale, Nicoletta; Bowman, Elisabeth

    2016-04-01

    Extreme mass wasting avalanche events such as rock, snow and ice avalanches, debris flows, and pyroclastic flows are among the most hazardous geological phenomena. These events driven by gravity, can travel for long distance and high speed, increasing their volumes as they can entertain material along their path. The erosion of material and its entrainment can greatly affect the overall dynamics of transportation, either enhancing or impeding the avalanche mobility depending on flow dynamics and characteristics of the substrate. However, the mechanisms and processes acting at the base as they travel over deformable or erodible substrates are still poor understood. Experiments, simulations and field measurements indicate that large fluctuations can occur in basal forces and stresses, which may be the result of non-uniform load transfer within the mass, and rolling, bouncing and sliding of the particles along the bed. In dense granular materials, force distributions can propagate through filamentary chain structures that carry a large fraction of the forces within the system. Photoelastic experiments on two-dimensional, monodisperse, gravity-driven flows have shown that force chains can transmit high localized forces to the boundary of dense granular flows. Here we describe the preliminary setup and results of 2D experiments on polydisperse granular flows of photoelastic disks down a small flume designed to acquire the forces exerted at the boundaries of the flow and to analyze their effects on an erodible bed. The intended outcome of this research is to provide better information on the complex mechanism of erosion and its effects on avalanche behaviour.

  16. Nanoscale resolution microchannel flow velocimetry by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Piorek, Brian; Mechler, Ádám; Lal, Ratnesh; Freudenthal, Patrick; Meinhart, Carl; Banerjee, Sanjoy

    2006-10-01

    The velocity of a microchannel flow was determined by atomic force microscopy (AFM) using a 50nm wide "whisker," which was partially submerged and scanned transverse to the flow while drag was recorded. A peaked, near parabolic, flow velocity profile was found. Particle image velocity (PIV) measurements using 70nm diameter quantum-dot-coated polystyrene spheres confirmed the shape of the AFM-measured velocity profile. AFM-based nanometer resolution velocimetry confirms that the drag-velocity relationship for the whisker remains consistent over a wide range of shear values and appears to successfully resolve submicron scale flows, which are beyond the limits of conventional PIV measurements.

  17. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.

    PubMed

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature. PMID:26382497

  18. Comparative study of subsynchronous rotating flow patterns in centrifugal compressors with vaneless diffusers

    NASA Technical Reports Server (NTRS)

    Frigne, P.; Vandenbraembussche, R.

    1982-01-01

    A comparative experimental investigation of the unstable operating modes of a centrifugal compressor was made. Impeller and/or diffuser rotating stall was observed, depending on the flow conditions. The measured relative rotational speed of this perturbation is cross checked with other experimental data and it is shown that the rotational speed is strongly dependent on the type of rotating stall. The diffuser absolute inlet flow angle at the onset of diffuser rotating stall agrees well with the value predicted by an existing stability criterion.

  19. Green's formula and variational principles for cosmic-ray transport with application to rotating and shearing flows

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Jokipii, J. R.; Morfill, G. E.

    1994-01-01

    Green's theorem and Green's formula for the diffusive cosmic-ray transport equation in relativistic flows are derived. Green's formula gives the solution of the transport equation in terms of the Green's function of the adjoint transport equation, and in terms of distributed sources throughout the region R of interest, plus terms involving the particle intensity and streaming on the boundary. The adjoint transport equation describes the time-reversed particle transport. An Euler-Lagrange variational principle is then obtained for both the mean scattering frame distribution function f, and its adjoint f(dagger). Variations of the variational functional with respect to f(dagger) yield the transport equation, whereas variations of f yield the adjoint transport equation. The variational principle, when combined with Noether's theorem, yields the conservation law associated with Green's theorem. An investigation of the transport equation for steady, azimuthal, rotating flows suggests the introduction of a new independent variable H to replace the comoving frame momentum variable p'. For the case of rigid rotating flows, H is conserved and is shown to be analogous to the Hamiltonian for a bead on a rigidly rotating wire. The variable H corresponds to a balance between the centrifugal force and the particle inertia in the rotating frame. The physical interpretation of H includes a discussion of nonrelativistic and special relativistic rotating flows as well as the cases of aziuthal, differentially rotating flows about Schwarzs-child and Kerr black holes. Green's formula is then applied to the problem of the acceleration of ultra-high-energy cosmic rays by galactic rotation. The model for galactic rotation assumes an angular velocity law Omega = Omega(sub 0)(omega(sub 0)/omega), where omega denotes radial distance from the axis of rotation. Green's functions for the galactic rotation problem are used to investigate the spectrum of accelerated particles arising from

  20. Green's formula and variational principles for cosmic-ray transport with application to rotating and shearing flows

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Jokipii, J. R.; Morfill, G. E.

    1994-03-01

    Green's theorem and Green's formula for the diffusive cosmic-ray transport equation in relativistic flows are derived. Green's formula gives the solution of the transport equation in terms of the Green's function of the adjoint transport equation, and in terms of distributed sources throughout the region R of interest, plus terms involving the particle intensity and streaming on the boundary. The adjoint transport equation describes the time-reversed particle transport. An Euler-Lagrange variational principle is then obtained for both the mean scattering frame distribution function f, and its adjoint f(dagger). Variations of the variational functional with respect to f(dagger) yield the transport equation, whereas variations of f yield the adjoint transport equation. The variational principle, when combined with Noether's theorem, yields the conservation law associated with Green's theorem. An investigation of the transport equation for steady, azimuthal, rotating flows suggests the introduction of a new independent variable H to replace the comoving frame momentum variable p'. For the case of rigid rotating flows, H is conserved and is shown to be analogous to the Hamiltonian for a bead on a rigidly rotating wire. The variable H corresponds to a balance between the centrifugal force and the particle inertia in the rotating frame. The physical interpretation of H includes a discussion of nonrelativistic and special relativistic rotating flows as well as the cases of azimuthal, differentially rotating flows about Schwarzs-child and Kerr black holes. Green's formula is then applied to the problem of the acceleration of ultra-high-energy cosmic rays by galactic rotation. The model for galactic rotation assumes an angular velocity law Omega = Omega0(omega0/omega), where omega denotes radial distance from the axis of rotation. Green's functions for the galactic rotation problem are used to investigate the spectrum of accelerated particles arising from monoenergetic and

  1. Blade design loads on the flow exciting force in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Yang, A. L.; Langand, D. P.; Dai, R.

    2012-11-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%~2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  2. An L2F-measurement device with image rotator prism for flow velocity analysis in rotating coolant channels

    NASA Astrophysics Data System (ADS)

    Beversdorff, M.; Hein, O.; Schodl, R.

    1993-02-01

    For further improvement of the turbine blade cooling process, the knowledge concerning the heat transfer in radial coolant channels has to be deepened. Due to rotation, the velocity distribution, as well as the turbulence structure and therefore the heat transfer, will be influenced. To carry out experimental data of the flow field within a rotating duct a non-intrusive continuous measuring system (Laser-Two-Focus) with an image rotator prism is presented. The design of the system is explained in detail. Problems of application are discussed and results of the first successful measurements compared with numerical results are presented.

  3. Non-linear evolution of tidally forced inertial waves in rotating fluid bodies

    NASA Astrophysics Data System (ADS)

    Favier, B.; Barker, A. J.; Baruteau, C.; Ogilvie, G. I.

    2014-03-01

    We perform one of the first studies into the non-linear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the non-linear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of non-linearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially uniformly rotating fluid, i.e. the body does not evolve towards synchronism as a simple solid body rotator. This differential rotation modifies the properties of tidally excited inertial waves, changes the dissipative properties of the flow and eventually becomes unstable to a secondary shear instability provided that the Ekman number is sufficiently small. Our main result is that the inclusion of non-linearities eventually modifies the flow and the resulting dissipation from what linear calculations would predict, which has important implications for tidal dissipation in fluid bodies. We finally discuss some limitations of our simplified model, and propose avenues for future research to better understand the tidal evolution of rotating planets and stars.

  4. Application of Lorentz force techniques for flow rate measurement

    NASA Astrophysics Data System (ADS)

    Ebert, Reschad Johann; Resagk, Christian

    2014-11-01

    We report on the progress of the Lorentz force velocimetry (LFV): a contactless non-invasive flow velocity measurement technique. This method has been developed and demonstrated for various applications in our institute and in industry. At applications for weakly conducting fluids such as electrolytes with conductivities in the range of 1 - 10 S/m the challenging bottleneck is the detection of the tiny Lorentz forces in the noisy environment of the test channel. For the force measurement a state-of-the-art electromagnetic force compensation balance is used. Due to this device the mass of the Lorentz force generating magnets is limited. For enabling larger magnet systems and for higher force signals we have developed and tested a buoyancy based weight force compensation method which will be presented here. Additionally, results of LFV measurements at non-symmetric fluid profiles will be shown. By that an evaluation of the feasibility of this measurement principle for disturbed fluid profiles that are relevant for developing the LFV for weakly conducting fluids towards industrial applications can be made. Additionally a prospective setup for using the LFV for molten salt flows will be explained.

  5. Atmospheric pressure forced oceans and their effects on Earth's Rotation: a TOPEX data approach

    NASA Astrophysics Data System (ADS)

    Dey, N.; Dickman, S. R.

    2014-12-01

    Dey & Dickman [2010] showed (using a theoretical model) that the oceanic response to atmospheric pressure forcing depends on the frequency and spatial pattern of the forcing. We have developed an observational Green's function approach to determine the frequency- and spatially dependent sea-level response using satellite altimetric data. We applied it to 12 years of TOPEX sea-surface height (SSH) observations smoothed over a 4° × 8° grid at 3 day intervals and corrected for tides, winds, annual signals and secular trends. Wiener filtering, generalized for complex time series, was used to isolate pressure forced SSH within each gridbox. In most of the gridboxes, that SSH, after accounting for the forcing, showed a spatial and spectral dependence - a significant departure from the "inverted barometer" response. The oceanic currents associated with the response were calculated from a spherical harmonic relation between current velocities and SSH [Dickman 1991]. The rotational effects (polar motion and change in Earth's spin rate) of the pressure forced SSH & associated currents - with the pressure forcing accounted for, these are essentially Green's functions - were calculated at specific periods and interpolated to other periods. The rotational effects calculated here are dominated by the pressure-forced SSH and show a strong frequency dependence & significant departures from an inverted barometer excitation. The pressure forced SSH is effective in exciting both prograde & retrograde polar motion at periods of ~ 6 days, and prograde polar motion at periods of 10 - 15 days. Compared to the theoretical approach, our work finds that the prograde component shows higher amplitude and less spatial variability, whereas the other components are ~ similar in amplitude & spatial variability. When these Green's functions are combined with any time span of pressure data, they generate the total excitation for that time span. We will discuss the results for various spans of

  6. Generation of magnetoacoustic zonal flows by Alfven waves in a rotating plasma

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Tsypin, V. S.; Smolyakov, A. I.; Galvao, R. M. O.

    2007-08-15

    Analytical theory of nonlinear generation of magnetoacoustic zonal flows in a rotating plasma is developed. As the primary modes causing such a generation, a totality of the Alfven waves are considered, along with the kinetic, inertial, and rotational. It is shown that in all these cases of the Alfven waves the generation is possible if the double plasma rotation frequency exceeds the zonal flow frequency.

  7. Manipulation After Object Rotation Reveals Independent Sensorimotor Memory Representations of Digit Positions and Forces

    PubMed Central

    Zhang, Wei; Gordon, Andrew M.; Fu, Qiushi

    2010-01-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180° about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations. PMID:20357064

  8. Ferrofluid flow due to a rotating disk in the presence of a non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bhandari, A.; Kumar, V.

    2016-05-01

    The flow of a ferrofluid due to a rotating disk in the presence of a non-uniform magnetic field in the axial direction is studied through mathematical modeling of the problem. Contour and surface plots in the presence of 10 kilo-ampere/meter, 100 kilo-ampere/meter magnetization force are presented here for radial, tangential and axial velocity profiles, and results are also drawn for the magnetic field intensity. These results are compared with the ordinary case where magnetization force is absent.

  9. Stokes flow between eccentric rotating spheres with slip regime

    NASA Astrophysics Data System (ADS)

    Faltas, M. S.; Saad, E. I.

    2012-10-01

    The steady axisymmetric flow problem of a viscous fluid contained between two eccentric spheres that rotate about an axis joining their centers with different angular velocities is considered. A linear slip of Basset-type boundary condition at both surfaces of the spherical particle and the container is used. Under the Stokesian assumption, a general solution is constructed from the superposition of basic solutions in the spherical coordinate systems based on the inner solid particle and the spherical container. The boundary conditions on the particle's surface and spherical container are satisfied by a collocation technique. Numerical results for the coupling coefficient acting on the particle are obtained with good convergence for various values of the ratio of particle-to-container radii, the relative distance between the centers of the particle and container, the slip coefficients and the relative angular velocity. In the limiting cases, the numerical values of the coupling coefficient for the solid sphere in concentric position with the container and when the particle is near the inner surface of the container are obtained, and the results are in good agreement with the available values in the literature. The variation of the coupling coefficient with respect the parameters considered are tabulated and displayed graphically.

  10. The residual zonal flow in tokamak plasmas toroidally rotating at arbitrary velocity

    SciTech Connect

    Zhou, Deng

    2014-08-15

    Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In our previous work [D. Zhou, Nucl. Fusion 54, 042002 (2014)], the residual zonal flow in a tokamak plasma rotating toroidally at sonic speed is found to have the same form as that of a static plasma. In the present work, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved for low speed rotation to give the expression of residual zonal flows, and the expression is then generalized for cases with arbitrary rotating velocity through interpolation. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the former simulation result for high aspect ratio tokamaks.

  11. Erosion by sliding wear in granular flows: Experiments with realistic contact forces

    NASA Astrophysics Data System (ADS)

    Stark, C. P.; Hung, C. Y.; Smith, B.; Li, L.; Grinspun, E.; Capart, H.

    2015-12-01

    Debris flow erosion is a powerful and sometimes dominant process in steep channels. Despite its importance, this phenomenon is relatively little studied in the lab. The large drum experiments of Hsu are a notable exception, in which almost-field-scale impact forces were generated at the head of a synthetic debris flow whose properties (grain size, proportion of fines, etc) were varied widely.A key challenge in these and similar experiments is to explore how erosion rate varies as a function of the scale of the flow (thereby varying inertial stresses, impact forces, etc). The geometrical limitations of most lab experiments, and their short run time, severely limit the scope of such explorations.We achieve this scale exploration in a set of drum erosion experiments by varying effective gravity across several orders of magnitude (1g, 10g, 100g) in a geotechnical centrifuge. By half-filling our 40cm-diameter drum with dry 2.3mm grains, placing a synthetic rock plate at the back and a glass plate at the front 3cm apart, and rotating the drum at 1-50rpm, we simulate wear in a channelized dry granular flow. In contrast to Hsu's experiments, we focus on sliding wear erosion at the flow boundary rather than impact/frictional wear at the flow head. By varying effective gravity from 1g-100g we can tune the pressure exerted by the grains at the boundary without having to change the scale of our apparatus. Using a recently developed depth-averaged, kinetic-energy closure theory for granular flow, we can simultaneously tune the drum rotation rate such that the flow dynamics remain invariant. We can thereby explore how changing the scale of a granular flow, and thus the contact forces of grains on the boundary, controls the rate of rock erosion. Using a small apparatus we can simulate the erosion generated by debris flows several meters deep involving grains up to 10cm in diameter.Our results suggest that sliding wear is the main erosion process, and are consistent with Archard

  12. Comments on the Rotational State and Non-Gravitational Forces of Comet 46/WIRTANEN. Revised

    NASA Technical Reports Server (NTRS)

    Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Belton, Michael J. S.

    1995-01-01

    We apply our experience of modeling the rotational state and non-gravitational forces of comet 1 P/Halley and other comets to comet 46P/Wirtanen. While the paucity of physical data on 46P/Wirtanen makes this process somewhat speculative, this comet's place as target for the important Rosetta mission gives significance to such a study. Our arguments are based on the summary of observational data provided by Jorda and Rickman (1995) and a comparative study of the behavior of other periodic comets. We find 46P/Wirtanen to have a level of surface activity relative to its mass that is dynamically more akin to that found in comet 1 P/Halley than in a typical periodic comet. We show through an illustrative numerical example that this apparent fact should likely lead to an excited spin state for this comet and that significant changes in the spin period could occur in a single pass through perihelion. We argue that the available observations are not sufficient to substantiate the claim of Jorda and Rickman (1995) that the nucleus is undergoing retrograde rotation and it is possible that the rotation is either prograde as well as retrograde. The substantial requirements that must be placed on any future observing program necessary to determine the precise rotational state are outlined. We advocate an extended (approx. two month) southern hemisphere observing campaign to determine the nuclear rotational state in 1996 if possible before activity turns on.

  13. On the flow processes in sharply inclined and stalled airfoils in parallel movement and rotation

    NASA Technical Reports Server (NTRS)

    Kohler, M.

    1984-01-01

    The purpose of this study is to obtain a deeper insight into the complicated flow processes on airfoils in the region of the buoyancy maxima. To this end calculated and experimental investigations are carried out on a straight stationary, a twisted stationary and a straight rotating rectangular wing. According to the available results the method gives results which can be applied sufficiently for flow applied firmly on all sides for all rotation values. The reliability of the method may be questioned for a flow undergoing transition from the attached to the separated state or for totally separated flow and higher rotation values.

  14. Linear stability of a circular Couette flow under a radial thermoelectric body force

    NASA Astrophysics Data System (ADS)

    Yoshikawa, H. N.; Meyer, A.; Crumeyrolle, O.; Mutabazi, I.

    2015-03-01

    The stability of the circular Couette flow of a dielectric fluid is analyzed by a linear perturbation theory. The fluid is confined between two concentric cylindrical electrodes of infinite length with only the inner one rotating. A temperature difference and an alternating electric tension are applied to the electrodes to produce a radial dielectrophoretic body force that can induce convection in the fluid. We examine the effects of superposition of this thermoelectric force with the centrifugal force including its thermal variation. The Earth's gravity is neglected to focus on the situations of a vanishing Grashof number such as microgravity conditions. Depending on the electric field strength and of the temperature difference, critical modes are either axisymmetric or nonaxisymmetric, occurring in either stationary or oscillatory states. An energetic analysis is performed to determine the dominant destabilizing mechanism. When the inner cylinder is hotter than the outer one, the circular Couette flow is destabilized by the centrifugal force for weak and moderate electric fields. The critical mode is steady axisymmetric, except for weak fields within a certain range of the Prandtl number and of the radius ratio of the cylinders, where the mode is oscillatory and axisymmetric. The frequency of this oscillatory mode is correlated with a Brunt-Väisälä frequency due to the stratification of both the density and the electric permittivity of the fluid. Under strong electric fields, the destabilization by the dielectrophoretic force is dominant, leading to oscillatory nonaxisymmetric critical modes with a frequency scaled by the frequency of the inner-cylinder rotation. When the outer cylinder is hotter than the inner one, the instability is again driven by the centrifugal force. The critical mode is axisymmetric and either steady under weak electric fields or oscillatory under strong electric fields. The frequency of the oscillatory mode is also correlated with the

  15. Aerodynamic force by Lamb vector integrals in compressible flow

    NASA Astrophysics Data System (ADS)

    Mele, Benedetto; Tognaccini, Renato

    2014-05-01

    A new exact expression of the aerodynamic force acting on a body in steady high Reynolds number (laminar and turbulent) compressible flow is proposed. The aerodynamic force is obtained by integration of the Lamb vector field given by the cross product of vorticity times velocity. The result is obtained extending a theory developed for the incompressible case. A decomposition in lift and drag contribution is obtained in the two-dimensional case. The theory links the force generation to local flow properties, in particular to the Lamb vector field and to the kinetic energy. The theoretical results are confirmed analyzing numerical solutions obtained by a standard Reynolds Averaged Navier-Stokes solver. Results are discussed for the case of a two-dimensional airfoil in subsonic, transonic, and supersonic free stream conditions.

  16. Forced expiratory flows' contribution to lung function interpretation in schoolchildren.

    PubMed

    Boutin, Bernard; Koskas, Marc; Guillo, Houda; Maingot, Lucia; La Rocca, Marie-Claude; Boulé, Michèle; Just, Jocelyne; Momas, Isabelle; Corinne, Alberti; Beydon, Nicole

    2015-01-01

    Forced expiratory flow (FEF) at low lung volumes are supposed to be better at detecting lung-function impairment in asthmatic children than a forced volume. The aim of this study was to examine whether FEF results could modify the interpretation of baseline and post-bronchodilator spirometry in asthmatic schoolchildren in whom forced expiratory volumes are within the normal range. Spirometry, with post-bronchodilator vital capacity within 10% of that of baseline in healthy and asthmatic children, was recorded prospectively. We defined abnormal baseline values expressed as z-scores <-1.645, forced expiratory volume in 1 s (FEV1) reversibility as a baseline increase >12%, FEF reversibility as an increase larger than the 2.5th percentile of post-bronchodilator changes in healthy children. Among 66 healthy and 50 asthmatic schoolchildren, only two (1.7%) children with normal vital capacity and no airways obstruction had abnormal baseline forced expiratory flow at 25-75% of forced vital capacity (FEF25-75%). After bronchodilation, among the 45 asthmatic children without FEV1 reversibility, 5 (11.1%) had an FEF25-75% increase that exceeded the reference interval. Isolated abnormal baseline values or significant post-bronchodilator changes in FEF are rare situations in asthmatic schoolchildren with good spirometry quality. PMID:25186269

  17. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.

    PubMed

    Rosén, T; Do-Quang, M; Aidun, C K; Lundell, F

    2015-05-01

    This work describes the inertial effects on the rotational behavior of an oblate spheroidal particle confined between two parallel opposite moving walls, which generate a linear shear flow. Numerical results are obtained using the lattice Boltzmann method with an external boundary force. The rotation of the particle depends on the particle Reynolds number, Re(p)=Gd(2)ν(-1) (G is the shear rate, d is the particle diameter, ν is the kinematic viscosity), and the Stokes number, St=αRe(p) (α is the solid-to-fluid density ratio), which are dimensionless quantities connected to fluid and particle inertia, respectively. The results show that two inertial effects give rise to different stable rotational states. For a neutrally buoyant particle (St=Re(p)) at low Re(p), particle inertia was found to dominate, eventually leading to a rotation about the particle's symmetry axis. The symmetry axis is in this case parallel to the vorticity direction; a rotational state called log-rolling. At high Re(p), fluid inertia will dominate and the particle will remain in a steady state, where the particle symmetry axis is perpendicular to the vorticity direction and has a constant angle ϕ(c) to the flow direction. The sequence of transitions between these dynamical states were found to be dependent on density ratio α, particle aspect ratio r(p), and domain size. More specifically, the present study reveals that an inclined rolling state (particle rotates around its symmetry axis, which is not aligned in the vorticity direction) appears through a pitchfork bifurcation due to the influence of periodic boundary conditions when simulated in a small domain. Furthermore, it is also found that a tumbling motion, where the particle symmetry axis rotates in the flow-gradient plane, can be a stable motion for particles with high r(p) and low α. PMID:26066258

  18. Profiles of flow discharged from vertical rotating pipes: A contrast between inviscid liquid and granular jets

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Kubitschek, J. P.; Medina, A.

    2008-11-01

    The stability of viscous rotating liquid columns and their application to rotating viscous liquid jets aligned under gravity is reviewed. Experiments on stable viscous fluid flow discharged from rotating vertical pipes exhibit very weak contraction. We present an elementary liquid jet analysis to understand this phenomenon. Indeed, our inviscid model of a slender rotating inviscid liquid jet shows that rotation suppresses contraction. Next we study the comparable problem for granular flow. Our model for noncohesive granular flow emanating from a vertical pipe rotating about its central axis, valid for sufficiently large rotation rate, shows that the granular profiles blossom rather than contract. The profiles of both the liquid and granular jets depend on the same dimensionless parameters—an exit Froude number Fr0 and an exit swirl parameter χ0. The limitations of both models are discussed. Experimental data for granular jet profiles compare well with the collision-free granular flow model in its range of applicability. A criterion for the rotation rate at which particles adjacent to the inner wall of the rotating pipe cease to flow is also given and compared to experiment.

  19. Simulation of Effects of the Saffman Force and the Magnus Force on Sand Saltation in Turbulent Flow

    SciTech Connect

    Zheng, Zhongquan C.; Zou, Xueyong; Yang, Xiaofan; Cheng, Hong

    2011-12-11

    The effects of both the Saffman force and Magnus force on sand saltation are investigated. Turbulent flows in a channel and over a barchans dune are considered with sand particles injected into the flow. The results show that both of the forces increase the height and skipping distance of sand saltation, with the Magnus force giving more significant effect on the height. These forces can also increase the sand settling at the lee side of the barchans dune.

  20. Dissipative Nonlinear Schrödinger Equation with External Forcing in Rotational Stratified Fluids and Its Solution

    NASA Astrophysics Data System (ADS)

    Shi, Yun-Long; Yang, Hong-Wei; Yin, Bao-Shu; Yang, De-Zhou; Xu, Zhen-Hua; Feng, Xing-Ru

    2015-10-01

    The dissipative nonlinear Schrödinger equation with a forcing item is derived by using of multiple scales analysis and perturbation method as a mathematical model of describing envelope solitary Rossby waves with dissipation effect and external forcing in rotational stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt-Vaisala frequency and β effect are important factors in forming the envelope solitary Rossby waves. By employing Jacobi elliptic function expansion method and Hirota's direct method, the analytic solutions of dissipative nonlinear Schrödinger equation and forced nonlinear Schrödinger equation are derived, respectively. With the help of these solutions, the effects of dissipation and external forcing on the evolution of envelope solitary Rossby wave are also discussed in detail. The results show that dissipation causes slowly decrease of amplitude of envelope solitary Rossby waves and slowly increase of width, while it has no effect on the propagation speed and different types of external forcing can excite the same envelope solitary Rossby waves. It is notable that dissipation and different types of external forcing have certain influence on the carrier frequency of envelope solitary Rossby waves. Supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No. 41421005, National Natural Science Foundation of China under Grant Nos. 41376030, 41376029, 41476019, NSFC-Shandong Joint Fund for Marine Science Research Centers Grant (U1406401), Special Funds for Theoretical Physics of the National Natural Science Foundation of China under Grant No. 11447205

  1. Flow structures in submarine channels affected by Coriolis forces: Experimental observations

    NASA Astrophysics Data System (ADS)

    Cossu, R.; Wells, M. G.

    2011-12-01

    In this talk we will show how Coriolis forces can control the flow dynamics of turbidity currents flowing in sinuous channels at high latitudes. We describe how the internal velocity structure changes with latitude, based on observations from rotating laboratory experiments. When these results are combined with existing conceptual facies and depositional models we can now describe the changes in sedimentation patterns that are observed at different latitudes. The experiments were conducted in a sinuous channel model placed in a tank that was rotated at various rates (reflected by the Coriolis parameters f) ranging from f = 0 (at the equator) to ± 0.5 rad s-1 (at higher latitudes). The dependence of the density interface of gravity currents on rotation is shown in Figure 1a. At the equator the interface slopes up to the outer bend due to the centrifugal forces. In the Northern Hemisphere (NH) the tilt of the interface increases as now the Coriolis forces reinforce the centrifugal acceleration. In contrast, in the Southern Hemisphere (SH) the current ramps up to the inner bend and Coriolis forces dominate over centrifugal forces. Figure 1b shows the corresponding position of the downstream velocity core in the bend apex. At the equator the core is predominantly close to the centerline, whilst in the NH the core is deflected to the inner bend and in the SH the velocity core is shifted to the outer bank. Based upon our experimental results, we hypothesize that Coriolis forces can affect the velocity structure and sedimentation regime. Lateral accretion packages (LAPs) are built only on one side in the channel and finer sediments will be deposited mainly on the levee bank to which the high velocity core is deflected. The Rossby number RoW = U/fW (where U is the mean downstream velocity and W the channel width) can be used to determine the influence of Coriolis forces. In channel systems at high-latitudes (with RoW << 1) we predict that channels exhibit a low sinuosity

  2. The effect of diamagnetic flows on turbulent driven ion toroidal rotation

    SciTech Connect

    Lee, J. P.; Barnes, M.; Parra, F. I.; Belli, E. A.; Candy, J.

    2014-05-15

    Turbulent momentum redistribution determines the radial profile of rotation in a tokamak. The momentum transport driven by diamagnetic flow effects is an important piece of the radial momentum transport for sub-sonic rotation, which is often observed in experiments. In a non-rotating state, the diamagnetic flow and the E × B flow must cancel. The diamagnetic flow and the E × B flow have different effects on the turbulent momentum flux, and this difference in behavior induces intrinsic rotation. The momentum flux is evaluated using gyrokinetic equations that are corrected to higher order in the ratio of the poloidal Larmor radius to the minor radius, which requires evaluation of the diamagnetic corrections to Maxwellian equilibria. To study the momentum transport due to diamagnetic flow effects, three experimental observations of ion rotation are examined. First, a strong pressure gradient at the plasma edge is shown to result in a significant inward momentum transport due to the diamagnetic effect, which may explain the observed peaking of rotation in a high confinement mode. Second, the direction of momentum transport is shown to change as collisionality increases, which is qualitatively consistent with the observed reversal of intrinsic rotation by varying plasma density and current. Last, the dependence of the intrinsic momentum flux on the magnetic shear is found, and it may explain the observed rotation changes in the presence of lower hybrid current drive.

  3. Direct numerical simulation of turbulent flow in a rotating square duct

    SciTech Connect

    Dai, Yi-Jun; Huang, Wei-Xi Xu, Chun-Xiao; Cui, Gui-Xiang

    2015-06-15

    A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub τ} = 300 and 0 ≤ Ro{sub τ} ≤ 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, and the underlying mechanism is explained according to the budget analysis of the mean momentum equations.

  4. Forces on stationary particles in near-bed turbulent flows

    USGS Publications Warehouse

    Schmeeckle, M.W.; Nelson, J.M.; Shreve, R.L.

    2007-01-01

    In natural flows, bed sediment particles are entrained and moved by the fluctuating forces, such as lift and drag, exerted by the overlying flow on the particles. To develop a better understanding of these forces and the relation of the forces to the local flow, the downstream and vertical components of force on near-bed fixed particles and of fluid velocity above or in front of them were measured synchronously at turbulence-resolving frequencies (200 or 500 Hz) in a laboratory flume. Measurements were made for a spherical test particle fixed at various heights above a smooth bed, above a smooth bed downstream of a downstream-facing step, and in a gravel bed of similarly sized particles as well as for a cubical test particle and 7 natural particles above a smooth bed. Horizontal force was well correlated with downstream velocity and not correlated with vertical velocity or vertical momentum flux. The standard drag formula worked well to predict the horizontal force, but the required value of the drag coefficient was significantly higher than generally used to model bed load motion. For the spheres, cubes, and natural particles, average drag coefficients were found to be 0.76, 1.36, and 0.91, respectively. For comparison, the drag coefficient for a sphere settling in still water at similar particle Reynolds numbers is only about 0.4. The variability of the horizontal force relative to its mean was strongly increased by the presence of the step and the gravel bed. Peak deviations were about 30% of the mean force for the sphere over the smooth bed, about twice the mean with the step, and 4 times it for the sphere protruding roughly half its diameter above the gravel bed. Vertical force correlated poorly with downstream velocity, vertical velocity, and vertical momentum flux whether measured over or ahead of the test particle. Typical formulas for shear-induced lift based on Bernoulli's principle poorly predict the vertical forces on near-bed particles. The

  5. Correlating Lagrangian structures with forcing in two-dimensional flow

    NASA Astrophysics Data System (ADS)

    Ouellette, Nicholas T.; Hogg, Charlie A. R.; Liao, Yang

    2016-01-01

    Lagrangian coherent structures (LCSs) are the dominant transport barriers in unsteady, aperiodic flows, and their role in organizing mixing and transport has been well documented. However, nearly all that is known about LCSs has been gleaned from passive observations: they are computed in a post-processing step after a flow has been observed and used to understand why the mixing and transport proceeded as it did. In many applications, the ability instead to control the presence or location of LCSs via imposed forcing would be valuable. With this goal in mind, we study the relationship between LCSs and external forcing in an experimental quasi-two-dimensional weakly turbulent flow. We find that the likelihood of finding a repelling LCS at a given location is positively correlated with the mean strain rate injected at that point and negatively correlated with the mean speed, and that it is not correlated with the vorticity. We also find that mean time between successive LCSs appearing at a fixed location is related to the structure of the forcing field. Finally, we demonstrate a surprising difference in our results between LCSs computed forward and backward in time, with forward-time (repelling) LCSs showing much more correlation with the forcing than backwards-time (attracting) LCSs.

  6. Effects of rotational side preferences on immobile behavior of normal mice in the forced swimming test.

    PubMed

    Krahe, Thomas E; Filgueiras, Claudio C; Schmidt, Sergio L

    2002-01-01

    It has been suggested that side preferences in spontaneous rotational behavior are determinant of differences in vulnerability to the effects of the learned helplessness paradigm. The purpose of the present study was to investigate the effects of side preferences of rotational behavior in another animal model of depression, the forced swimming test. Immobility was also investigated upon repeated testing sessions and in interaction with sex. Swiss mice (69 males and 73 females) were submitted to three sessions (test time = 5 min) of forced swimming. Immobile and turning behaviors were measured for each session and within each testing session. Consistency of laterality was defined considering the persistence of the same side turning preference in the three sessions. In general, there was an increase in immobility as test progressed and upon repeated testing sessions. Marked interindividual differences in mice immobile behavior were observed when consistency of laterality was considered. Consistent-right-turners presented greater immobility in the first session and better test-retest reliability, indicating that for this group, the adoption of immobile behavior was faster and more reliable over time. Immobility was higher for side-consistent males than for side-consistent females in the first session. This difference became even greater when consistent-right-turner males were compared to consistent-left-turner females. These results reinforce the idea that side preferences of spontaneous rotational behavior may account for interindividual differences in animal models of depression. PMID:11853109

  7. Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators

    SciTech Connect

    Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2006-04-10

    Magnetospheres of many astrophysical objects can be accurately described by the low-inertia (or ''force-free'') limit of MHD. We present a new numerical method for solution of equations of force-free relativistic MHD based on the finite-difference time-domain (FDTD) approach with a prescription for handling spontaneous formation of current sheets. We use this method to study the time-dependent evolution of pulsar magnetospheres in both aligned and oblique magnetic geometries. For the aligned rotator we confirm the general properties of the time-independent solution of Contopoulos et al. (1999). For the oblique rotator we present the 3D structure of the magnetosphere and compute, for the first time, the spindown power of pulsars as a function of inclination of the magnetic axis. We find the pulsar spindown luminosity to be L {approx} ({mu}{sup 2}{Omega}{sub *}{sup 4}/c{sup 3})(1 + sin{sup 2}{alpha}) for a star with the dipole moment {mu}, rotation frequency {Omega}{sub *}, and magnetic inclination angle {alpha}. We also discuss the effects of current sheet resistivity and reconnection on the structure and evolution of the magnetosphere.

  8. Investigations of Reduced Equations for Rotating, Stratified and Non-hydrostatic Flows

    NASA Astrophysics Data System (ADS)

    Nieves, David J.

    boundary conditions. These results imply that any horizontal thermal variation along the boundaries that varies on the scale of the convection has no leading order influence on the interior convection, thus providing insight into geophysical and astrophysical flows where stress-free mechanical boundary conditions are often assumed. The final study presented here contrasts the previous investigations. It presents an investigation of rapidly rotating and stably stratified turbulence where the stratification strength is varied from weak (large Froude number) to strong (small Froude number). The investigation is set in the context of the asymptotically reduced model which efficiently retains anisotropic inertia-gravity waves with order-one frequencies and highlights a regime of wave-eddy interactions. Numerical simulations of the reduced model are performed where energy is injected by a stochastic forcing of vertical velocity. The simulations reveal two regimes: one characterized by the presence of well-formed, persistent and thin turbulent layers of locally-weakened stratification: the other characterized by the absence of layers at large Froude numbers. Both regimes are characterized by a large-scale barotropic dipole in a sea of small-scale turbulence. When the Reynolds number is not too large a direct cascade of barotropic kinetic energy is observed and leads to an equilibration of total energy. We examine net energy exchanges that occur through vortex stretching and vertical buoyancy flux and diagnose the horizontal scales active in these exchanges. We find that baroclinic motions inject energy directly to the largest scales of the barotropic mode governed by the two-dimensional vorticity equation, and implies that the large-scale barotropic dipole is not the end result of an inverse cascade within the two-dimensional barotropic mode. An additional yet brief look into the linear vortical and wave modes is considered.

  9. Evolution of forced shear flows in polytropic atmospheres: A comparison of forcing methods and energetics

    NASA Astrophysics Data System (ADS)

    Witzke, V.; Silvers, L. J.; Favier, B.

    2016-08-01

    Shear flows are ubiquitous in astrophysical objects including planetary and stellar interiors, where their dynamics can have significant impact on thermo-chemical processes. Investigating the complex dynamics of shear flows requires numerical calculations that provide a long time evolution of the system. To achieve a sufficiently long lifetime in a local numerical model the system has to be forced externally. However, at present, there exist several different forcing methods to sustain large-scale shear flows in local models. In this paper we examine and compare various methods used in the literature in order to resolve their respective applicability and limitations. These techniques are compared during the exponential growth phase of a shear flow instability, such as the Kelvin-Helmholtz (KH) instability, and some are examined during the subsequent non-linear evolution. A linear stability analysis provides reference for the growth rate of the most unstable modes in the system and a detailed analysis of the energetics provides a comprehensive understanding of the energy exchange during the system's evolution. Finally, we discuss the pros and cons of each forcing method and their relation with natural mechanisms generating shear flows.

  10. Kutta-Joukowski force expression for viscous flow

    NASA Astrophysics Data System (ADS)

    Li, Juan; Xu, YiZhe; Wu, ZiNiu

    2015-02-01

    The Kutta Joukowski (KJ) theorem, relating the lift of an airfoil to circulation, was widely accepted for predicting the lift of viscous high Reynolds number flow without separation. However, this theorem was only proved for inviscid flow and it is thus of academic importance to see whether there is a viscous equivalent of this theorem. For lower Reynolds number flow around objects of small size, it is difficult to measure the lift force directly and it is thus convenient to measure the velocity flow field solely and then, if possible, relate the lift to the circulation in a similar way as for the inviscid KJ theorem. The purpose of this paper is to discuss the relevant conditions under which a viscous equivalent of the KJ theorem exists that reduces to the inviscid KJ theorem for high Reynolds number viscous flow and remains correct for low Reynolds number steady flow. It has been shown that if the lift is expressed as a linear function of the circulation as in the classical KJ theorem, then the freestream velocity must be corrected by a component called mean deficit velocity resulting from the wake. This correction is small only when the Reynolds number is relatively large. Moreover, the circulation, defined along a loop containing the boundary layer and a part of the wake, is generally smaller than that based on inviscid flow assumption. For unsteady viscous flow, there is an inevitable additional correction due to unsteadiness.

  11. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.

    PubMed

    Zia, Roseanna N; Swan, James W; Su, Yu

    2015-12-14

    and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes. PMID:26671398

  12. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation

    SciTech Connect

    Zia, Roseanna N. Su, Yu; Swan, James W.

    2015-12-14

    translation and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.

  13. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna N.; Swan, James W.; Su, Yu

    2015-12-01

    and rotation, for arbitrary colloid volume fraction ϕ. The pair mobilities (describing entrainment of one particle by the disturbance flow created by another) decay slowly with separation distance: as 1/r, for volume fractions 0.05 ≤ ϕ ≤ 0.5. For the relative mobility, we find an initially rapid growth as a pair separates, followed by a slow, 1/r growth. Up to ϕ ≤ 0.4, the relative mobility does not reached the far-field value even beyond separations of many particle sizes. In the case of ϕ = 0.5, the far-field asymptote is reached but only at a separation of eight radii and after a slow 1/r growth. At these higher concentrations, the coefficients also reveal liquid-like structural effects on pair mobility at close separations. These results confirm that long-range many-body hydrodynamic interactions are an essential part of the dynamics of concentrated systems and that care must be taken when applying renormalization schemes.

  14. Forced flow heat transfer of supercritical hydrogen for superconductor cooling

    NASA Astrophysics Data System (ADS)

    Shiotsu, M.; Shirai, Y.; Tatsumoto, H.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, H.

    2014-01-01

    Heat transfer from inner side of a vertical tube to forced flow of hydrogen was measured at the pressure of 1.5 MPa. The test tubes were made of stainless steel 316L with the inner diameters from 3 mm to 9 mm and lengths from 100 mm to 250 mm. Heat transfer curves were obtained by gradually increasing the heating current to the test tube and raising the surface temperature up to around 200 K. Inlet fluid temperature and flow velocity were varied from 21 to 30 K and 0.5 to 12 m/s, respectively. Effects of inlet temperature, flow velocity and tube dimension were clearly observed. The heat transfer curve for each flow velocity consists of a lower temperature region with a higher gradient and higher temperature region with a lower gradient. The experimental results were compared with the authors' correlation presented formerly. It was confirmed that this correlation can describe the experimental results obtained here.

  15. Instabilities in the flow between co- and counter-rotating disks

    NASA Astrophysics Data System (ADS)

    Gauthier, G.; Gondret, P.; Moisy, F.; Rabaud, M.

    2002-12-01

    The flow between two rotating disks (radius to heigh ratio of 20.9), enclosed by a rotating cylinder, is investigated experimentally in the cases of both co- and counter-rotation. This flow gives rise to a large gallery of instability patterns. A regime diagram of these patterns is presented in the (Reb,Ret)-plane, where Reb,t is the Reynolds number associated with each disk. The co-rotation case and the weak counter-rotation case are very similar to the rotor stator case, both for the basic flow and the instability patterns: the basic flow consists of two boundary layers near each disk and the instability patterns are the axisymmetric vortices and the positive spirals described in the rotor stator experiments of Gauthier, Gondret & Rabaud (1999), Schouveiler, Le Gal & Chauve (2001), and the numerical study of Serre, Crespo del Arco & Bontoux (2001). The counter-rotation case with higher rotation ratio is more complex: above a given rotation ratio, the recirculation flow becomes organized into a two-cell structure with the appearance of a stagnation circle on the slower disk. A new kind of instability pattern is observed, called negative spirals. Measurements of the main characteristics of this pattern are presented, including growth times, critical modes and phase velocities.

  16. Laminar flow between a stationary and a rotating disk with radial throughflow

    SciTech Connect

    Nesreddine, H.; Nguyen, C.T.; Vo-Ngoc, D.

    1995-05-01

    The problem of axisymmetric laminar flow of a viscous incompressible fluid that occurs between a stationary and a rotating disk subjected to a uniform radial throughflow has been numerically investigated for a large range of flow parameters. Results show that the basic flow structure is rather complex and depends strongly on both the rotational and the flow structure is rather complex and depends strongly on both the rotational and the throughflow Reynolds numbers. In general, the basic unicellular structure has been observed. With the increase of the throughflow Reynolds number, a multicellular flow structure may be found. The phenomenon of multiple solutions has been clearly observed for cases with sufficiently high rational Re and/or high throughflow Re. Among these solutions, stable as well as unstable solutions have been determined by applying Rayleigh`s stability criterion. The influence of the starting conditions on the stability of the flow has also been investigated for various ranges of flow parameters.

  17. The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO

    PubMed

    Müller; Sørensen; Birk; Friedl

    1997-11-01

    The rotational spectra of O35ClO and O37ClO in their (000), (100), (010), (001), and (020) states have been reinvestigated in selected regions between 130 and 526 GHz. About 800 newly measured lines spanning the quantum numbers 2 rotational and quartic centrifugal distortion constants, their vibrational changes, and the sextic centrifugal distortion constants were used together with data from infrared studies in a calculation of the quartic force field. Copyright 1997 Academic Press. Copyright 1997Academic Press PMID:9417962

  18. Atmospheric forcing of debris flows in the southern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Toreti, A.; Schneuwly-Bollschweiler, M.; Stoffel, M.; Luterbacher, J.

    2013-12-01

    Debris flows are mass movements involving a rapidly flowing mixture of rock debris and water occurring in steep, confined channels all over the world. Their sudden occurrence, as well as the high energies involved, represents a considerable threat to human life and infrastructures. They are usually triggered by long and/or intense rainfall events, but their mechanisms as well as the associated large scale atmospheric circulation are still poorly understood. Using a dense dendrogeomorphic time series of debris flows covering the period 1872-2008, reanalysis data (20th Century Reanalysis and ERA-Interim), instrumental time series and gridded hourly precipitation series (1992-2006) over the area, we analyzed the large scale atmospheric forcing connected with those events. An approach based on nonlinear statistical methods (i.e., Genetic K-Means and nonlinear Support Vector Classifier) combined with a thermo-dynamical characterization (potential instability and convective timescale) was developed and applied. Results highlight the crucial role of synoptic and mesoscale forcing as well as of convective equilibrium on triggering rainfalls. Two mid-tropospheric synoptic patterns favor anomalous south-westerly flow towards the area and high potential instability. These findings imply a certain degree of predictability of debris-flow events and can therefore be used to improve existing alert systems.

  19. Acceleration forces at eye level experienced with rotation on the horizontal bar.

    PubMed

    Beck, G R; Rabinovitch, P; Brown, A C

    1979-06-01

    Negative acceleration forces (-Gz) experienced at eye level have been associated with preretinal hemorrhage and headache. These signs and symptoms were found in individuals who experienced negative (toward the head) force while rotating on a horizontal bar or hanging from a trapeze. Lightweight accelerometers were used to measure -Gz experienced at eye level in children and adult gymnasts performing a single-knee backswing on a horizontal bar. Rate of onset of -Gz, peak -Gz, time experiencing -Gz, area of curve (G.second), and mean force (area/time) were calculated. There was no significant difference between the children and the adult gymnasts in any of the above parameters. The best gymnast had a maximum rate of onset of 38.15 G/s and the maximum negative force experienced was 5.52 G. The maximum rate of onset for a child was 41.56 G/s and the maximum negative force experienced was 5.73 G. Compared with -Gz tolerance curves generated on a centrifuge the best gymnast would have become symptomatic while performing this maneuver in 6 s. The best child would have become symptomatic in 25 s. These tolerance limits can be easily exceeded by gymnasts and by the monkey-bar enthusiast. PMID:468634

  20. Numerical investigation of incompressible fluid flow and heat transfer around a rotating circular cylinder

    NASA Astrophysics Data System (ADS)

    Bouakkaz, R.; Talbi, K.; Khelil, Y.; Salhi, F.; Belghar, N.; Ouazizi, M.

    2014-01-01

    The heat transfer and air flow around an unconfined heated rotating circular cylinder is investigated numerically for varying rotation rates ( α = 0-6) in the Reynolds number range of 20-200. The numerical calculations are carried out by using a finite volume method based commercial computational fluid dynamics solver FLUENT. The successive changes in the flow pattern are studied as a function of the rotation rate. Suppression of vortex shedding occurs as the rotation rate increases ( α > 2). A second kind of instability appears for higher rotation speed where a series of counter-clockwise vortices is shed in the upper shear layer. The rotation attenuates the secondary instability and increases the critical Reynolds number for the appearance of this instability. Besides, time-averaged (lift and drag coefficients and Nusselt number) results are obtained and compared with the literature data. A good agreement has been obtained for both the local and averaged values.

  1. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    SciTech Connect

    Kwon, Kyung; Fan, Liang-Shih; Zhou, Qiang; Yang, Hui

    2014-09-30

    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a

  2. Flow anisotropy in rotating buoyancy-driven turbulence

    NASA Astrophysics Data System (ADS)

    Rajaei, Hadi; Joshi, Pranav; Kunnen, Rudie P. J.; Clercx, Herman J. H.

    2016-08-01

    We report a combined experimental-numerical study of the effects of background rotation on large- and small-scale isotropy in rotating Rayleigh-Bénard convection (RBC) from both Eulerian and Lagrangian points of view. Three-dimensional particle-tracking velocimetry (3D-PTV) and direct numerical simulations (DNS) are employed at three different heights within the cylindrical cell. The Lagrangian velocity fluctuation and second-order Eulerian structure function are utilized to evaluate the large-scale isotropy for different rotation rates. Furthermore, we examine the experimental measurements of the Lagrangian acceleration of neutrally buoyant particles and the second-order Eulerian structure function to evaluate the small-scale isotropy as a function of rotation rate. It is found that background rotation enhances large-scale anisotropy at the cell center and close to the top plate, while decreases it at intermediate height. The large-scale anisotropy, induced by rotation, has negligible effect on the small scales at the cell center, whereas the small scales remain anisotropic close to the top plate.

  3. Flow and heat transfer in rotating-disc systems. Volume I - Rotor-stator systems

    NASA Astrophysics Data System (ADS)

    Owen, J. M.; Roger, R. H.

    The rotating flows occurring inside turbomachinery are discussed. Laminar and turbulent flow over a single disk and heat transfer from a single disk are addressed. Rotor-stator systems with and without superposed flow, heat transfer in rotor-stator systems, and the ingress problem of sealing rotor-stator systems are examined.

  4. Experimental Investigations of Exciting Forces Caused by Flow in Labyrinth Seals

    NASA Technical Reports Server (NTRS)

    Thieleke, G.; Stetter, H.

    1991-01-01

    The interaction of the flow through the labyrinth seals with the shaft of the rotor can have an effect on the stability of turbomachines. Thus, the excited forces, so-called cross forces or nonconservative forces, arise, which act perpendicular to the rotor eccentricity. This effect is caused by an unsymmetrical pressure distribution within the labyrinth cavities. Experimental studies were carried out for different types of labyrinth geometries: two staggered labyrinths with teeth on the stator and grooved rotor as well as a full and a convergent stepped labyrinth. These labyrinths can be found on the tip shrouding of bladings in steam or gas turbines. The following parameters were varied in the test facility: geometry of the labyrinth seals (number of cavities, inlet region), shaft rotation, pressure difference on the seal, entry swirl and eccentricity of the rotor. The results are presented for stiffness coefficients of the labyrinth seals, leakage flow and circumferential flow in each cavity which was measured with special probes. Generally, the inlet swirl has the greatest influence on the coefficients of the seals. The experimental results were compared with theoretical results and were in good agreement.

  5. Forced unsteady separated flows on a 45 degree delta wing

    NASA Astrophysics Data System (ADS)

    Huyer, Stephen Albert

    A great deal of current research activities has focused on possible exploitation of forced unsteady separated flows to provide enhanced lift and maneuvering characteristics. The formal and intentional utilization of these flows is currently being manifested in the form of the Advanced Tactical Fighter. The wing planform geometry of the ATF and other fighter aircraft is a delta wing. Under steady conditions, leading edge vortices are formed on each side of a delta wing. These vortices are mostly responsible for the attainment of lift to high angles of attack. Unsteady motion histories will likely alter the characteristics of this vortex as well as its development history. This will then present new difficulties in terms of lift enhancement and control. In order to successfully predict and optimally exploit the flight regimes offered by the ATF, greater understanding of the underlying physical mechanisms responsible for these unsteady flow fields must be obtained. The vortex dominated flow fields produced by an oscillating 45 degree delta wing were examined across a wide range of unsteady motion histories. Still and high speed video photography were employed to document the flow development processes and cortex kinematics. Force balance data recorded the unsteady aerodynamic loading produced. These methods allowed for a thorough qualitative and quantitative examination of the flow fields elicited by a pitching delta wing. The wide range of motion histories employed were found to have a tremendous impact in terms of flow development lift enhancement, drag reduction, and overall aerodynamic performance. Integrations of the data permitted speculation regarding the underlying physical mechanisms responsible for the observed phenomena. Experimental evidence allowed for hypotheses regarding the physical mechanisms of vorticity production, accumulation, convection, and diffusion.

  6. Towards the development of a novel experimental shoulder simulator with rotating scapula and individually controlled muscle forces simulating the rotator cuff.

    PubMed

    Baumgartner, Daniel; Tomas, Daniel; Gossweiler, Lukas; Siegl, Walter; Osterhoff, Georg; Heinlein, Bernd

    2014-03-01

    A preclinical analysis of novel implants used in shoulder surgery requires biomechanical testing conditions close to physiology. Existing shoulder experiments may only partially apply multiple cycles to simulate postoperative, repetitive loading tasks. The aim of the present study was therefore the development of an experimental shoulder simulator with rotating scapula able to perform multiple humeral movement cycles by simulating individual muscles attached to the rotator cuff. A free-hanging, metallic humerus pivoted in a polyethylene glenoid is activated by tension forces of linear electroactuators to simulate muscles of the deltoideus (DELT), supraspinatus (SSP), infraspinatus/teres minor and subscapularis. The abductors DELT and SSP apply forces with a ratio of 3:1 up to an abduction angle of 85°. The rotating scapular part driven by a rotative electro actuator provides one-third to the overall arm abduction. Resulting joint forces and moments are measured by a 6-axis load cell. A linear increase in the DELT and SSP motors is shown up to a maximum of 150 and 50 N for the DELT and SSP, respectively. The force vector in the glenoid resulted in 253 N at the maximum abduction. The present investigation shows the contribution of individual muscle forces attached to the moving humerus to perform active abduction in order to reproducibly test shoulder implants. PMID:24170552

  7. On the rotation and skew-symmetric forms for incompressible flow simulations

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.

    1991-01-01

    A variety of numerical simulations of transition and turbulence in incompressible flow are presented to compare the commonly used rotation form with the skew-symmetric (and other) forms of the nonlinear terms. The results indicate that the rotation form is much less accurate than the other forms for spectral algorithms which include aliasing errors. For de-aliased methods the difference is minimal.

  8. Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal axis wind turbine applications

    NASA Astrophysics Data System (ADS)

    Kriswanto, Jamari

    2016-04-01

    Permanent magnet bearings (PMB) are contact free bearings which utilize the forces generated by the magnets. PMB in this work is a type of radial PMB, which functions as the radial bearings of the Horizontal Axis Wind Turbine (HAWT) rotor shaft. Radial PMB should have a greater radial force than the radial force HAWT rotor shaft (bearing load). This paper presents a modeling and experiments to calculate the radial force of the radial PMB. This paper also presents rotational speed test of the radial PMB compared to conventional bearings for HAWT applications. Modeling using COMSOL Multiphysics 4.3b with the magnetic fields physics models. Experiments were conducted by measuring the displacement of the rotor to the stator for a given load variation. Results of the two methods showed that the large displacement then the radial force would be greater. Radial forces of radial PMB is greater than radial forces of HAWT rotor shaft. The rotational speed test results of HAWT that used radial PMB produced higher rotary than conventional bearings with an average increase of 87.4%. Increasing rotational speed occured because radial PMB had no friction. HAWT that used radial PMB rotated at very low wind speeds are 1.4 m/s with a torque of 0.043 Nm, while the HAWT which uses conventional bearing started rotating at a wind speed of 4.4 m/s and required higher torque of 0.104 N.

  9. Effect of heat transfer on rotating electroosmotic flow through a micro-vessel: haemodynamical applications

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Mondal, A.; Shit, G. C.; Kundu, P. K.

    2016-08-01

    This paper theoretically analyzes the heat transfer characteristics associated with electroosmotic flow of blood through a micro-vessel having permeable walls. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equations are assumed to represent the flow field in a rotating system. The velocity slip condition at the vessel walls is taken into account. The essential features of the rotating electroosmotic flow of blood and associated heat transfer characteristics through a micro-vessel are clearly highlighted by the variation in the non-dimensional flow velocity, volumetric flow rate and non-dimensional temperature profiles. Moreover, the effect of Joule heating parameter and Prandtl number on the thermal transport characteristics are discussed thoroughly. The study reveals that the flow of blood is appreciably influenced by the elctroosmotic parameter as well as rotating Reynolds number.

  10. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  11. The Characteristics Method Applied to Stationary Two-Dimensional and Rotationally Symmetrical Gas Flows

    NASA Technical Reports Server (NTRS)

    Pfeiffer, F.; Meyer-Koenig, W.

    1949-01-01

    By means of characteristics theory, formulas for the numerical treatment of stationary compressible supersonic flows for the two-dimensional and rotationally symmetrical cases have been obtained from their differential equations.

  12. Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1988-01-01

    A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.

  13. Flow mechanism and experimental investigation of a rotating stall in transonic compressors

    NASA Technical Reports Server (NTRS)

    Yajun, L.; Shunlin, Z.

    1983-01-01

    The flow characteristics of the rotating stall in compressors is studied, and a flow model is developed along with a theoretical calculation method based on vortex theory. A detailed theoretical calculation is completed for a two dimensional flow field in a transonic rotor in a rotating stall, and the result is in good agreement with experimental findings. The oscillograms of time-varying stall characteristic parameters recorded for the onset, growth, and cessation processes of rotating stall are analyzed, and some new flow phenomena deserving of further investigation are discovered. These include serious separation of individual blades, often preceding the onset of rotating stall in compressors with very small blade-camber angles, and periodical variation of the circumferential width of the stall cell with time, accompanied by periodical oscillation of the width of the stall cell in the radial direction of the blade. The circumferential and radial oscillation frequencies are the same.

  14. The sound field of a rotating monopole in a plug flow

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.

    2016-07-01

    A theoretical study is performed on the sound field generated by a rotating point monopole in a jet flow, the mixing layer of which is simulated by a velocity discontinuity. Its sound in the far field is compared to the sound field generated by a rotating monopole in a uniform flow in the absence of a velocity discontinuity, which makes it possible to estimate the size of the sound refraction effect.

  15. Rotational-translational energy transfer in rarefied nonequilibrium flows

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.

    1990-01-01

    A new model for simulating the transfer of energy between the translational and rotational modes is derived for a homogeneous gas of diatomic molecules. The model has been developed specifically for use in discrete particle simulation methods where molecular motion and intermolecular collisions are treated at the molecular level. A temperature dependence is introduced which has been predicted by theory and observed in experiment. The new model is applied to the relaxation of rotational temperature, and is found to produce significant differences in comparison with the model normally employed at both high and low temperatures. Calculations have also been performed for a Mach 7 normal shock wave.

  16. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  17. Destabilization of rotating flows with positive shear by azimuthal magnetic fields

    NASA Astrophysics Data System (ADS)

    Stefani, Frank; Kirillov, Oleg N.

    2015-11-01

    According to Rayleigh's criterion, rotating flows are linearly stable when their specific angular momentum increases radially outward. The celebrated magnetorotational instability opens a way to destabilize those flows, as long as the angular velocity is decreasing outward. Using a local approximation we demonstrate that even flows with very steep positive shear can be destabilized by azimuthal magnetic fields which are current free within the fluid. We illustrate the transition of this instability to a rotationally enhanced kink-type instability in the case of a homogeneous current in the fluid, and discuss the prospects for observing it in a magnetized Taylor-Couette flow.

  18. Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Braunscheidel, Edward P.

    2006-01-01

    Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.

  19. Spatiotemporal intermittency in the torsional Couette flow between a rotating and a stationary disk

    NASA Astrophysics Data System (ADS)

    Cros, A.; Le Gal, P.

    2002-11-01

    This work is devoted to the experimental study of the transition to turbulence of a flow confined in a narrow gap between a rotating and a stationary disk. When the fluid layer thickness is of the same order of magnitude as the boundary layer depths, the azimuthal velocity axial gradient is nearly constant and this rotating disk flow tends to be a torsional Couette flow. As in the plane Couette flow or the Taylor-Couette flow, transition to turbulence occurs via the appearance of turbulent domains inside a laminar background. In the rotating disk case, the nucleation of turbulent spirals, previously called "solitary waves" in the rotating disk flow literature, is connected to the birth of structural defects in a periodic underlying roll pattern. As the rotation rate is increased, the lifetime of these turbulent structures increases until a threshold is reached where they then form permanent turbulent spirals arranged nearly periodically all around a circumference. However, since the number of these turbulent spirals decreases with the rotational frequency, the transition to a fully turbulent regime is not achieved. Thus the turbulent fraction of the pattern saturates to a value lower than 0.5. After a geometrical description of the structures, we present a statistical analysis of sizes and lifetimes of the turbulent and laminar domains in order to compare this transition to already observed spatiotemporal intermittent behavior.

  20. Surface indicator and smoke flow visualization techniques in rotating machinery

    NASA Astrophysics Data System (ADS)

    Joslyn, H. David; Dring, Robert P.

    The surface indicator (ammonia/Ozalid paper) flow visualization technique for turbomachine flow research is presently noted to be especially valuable in the specification of instrumentation arrays in film cooling studies. This method is also useful in interpreting quantitative aerodynamic measurements and in detecting the presence of such three-dimensional phenomena as relative eddies, end-wall secondary flows, tip leakage flows, corner stalls, boundary layer transition and separation, and radial fluid transport. The smoke flow visualization technique can lead to a better understanding of wake-airfoil interaction, thereby furnishing a basis for the assessment of analytical models.

  1. Influence of slow rotation on the stability of a thermocapillary incompressible liquid flow in an infinite layer under zero-gravity conditions for small Prandtl number

    NASA Astrophysics Data System (ADS)

    Shvarts, Konstantin G.

    2012-06-01

    Instability of a thermocapillary flow arising in a rotating thin infinite liquid layer under zero-gravity conditions is investigated. Both boundaries of the layer are assumed to be plane and free and are subject to the tangential thermocapillary Marangoni force. A convective heat transfer at the boundaries is governed by Newton's law and the temperature of the fluid near the boundaries is a linear function of the coordinates. The axis of rotation is perpendicular to a liquid layer. The rotation is slow, which allows us to neglect the centrifugal force. The examined thermocapillary flow is described analytically, being an exact solution of the Navier-Stokes equations. According to the linear theory of stability the obtained neutral curves depict the dependence of the critical Marangoni number on the wave number at different values of the Taylor number for the small Prandtl number (Pr = 0.1). The behavior of the finite-amplitude perturbations beyond the stability threshold is studied numerically.

  2. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing

    NASA Astrophysics Data System (ADS)

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ (t ) and pressure p (t ) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Recturb=RecTDR≃(4.8 ±0.2 ) ×105 independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Recturb and RecTDR depending on polymer concentration ϕ . Both regimes differ by the values of Cf and Cp, by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998), 10.1063/1.869532; Phys. Rev. E 47, R28(R) (1993), 10.1103/PhysRevE.47.R28; and J. Phys.: Condens. Matter 17, S1195 (2005), 10.1088/0953-8984/17/14/008] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.

  3. Buoyancy-driven flow reversal phenomena in radially rotating serpentine ducts

    SciTech Connect

    Hwang, J.J.; Wang, W.J.; Chen, C.K.

    2000-02-01

    Convective characteristics are analyzed numerically in a rotating multipass square duct connecting with 180-deg sharp returns. Isoflux is applied to each duct wall and periodic conditions are used between the entrance and exit of a typical two-pass module. Emphasis is placed on the phenomenon of buoyancy-driven reversed flow in the serpentine duct. Predictions reveal that the radial distance from the rotational axis to the location of flow separation in the radial-outward duct decreases with increasing the Richardson number. In addition, the local buoyancy that is required to yield the radial flow reversal increases with increasing the rotation number. This buoyancy-driven reversed flow in the radial-outward duct always results in local hot spots in the cooling channels. The critical buoyancy for the initiation of flow reversal is therefore concluded for the design purpose.

  4. Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines

    NASA Astrophysics Data System (ADS)

    Kameier, F.; Neise, W.

    1997-06-01

    An experimental study is presented to investigate the aeroacoustic generation mechanism of the tip clearance noise in axial turbomachines. In addition to the increased broadband levels reported in the literature when the tip clearance is enlarged, significant level increases were observed within narrow frequency bands below the blade passing frequency. Measurements of the pressure fluctuations at the casing wall just upstream of the entrance plane of the impeller and on the rotating blades reveal that the tip clearance noise is associated with a rotating blade flow instability at the blade tip which in turn is only present under reversed flow conditions in the tip clearance gap. The rotating instability is interpreted as a rotating source or vortex mechanism which moves relative to the blade row at a fraction of the impeller shaft speed, similar to the cell(s) of rotating stall. A model for the generation of the narrow-band tip clearance noise is presented.

  5. Lagrangian statistics and flow topology in forced 2-D turbulence

    SciTech Connect

    Kadoch, B.; Del-Castillo-Negrete, Diego B; Bos, W.J.T.; Schneider, Kai

    2011-01-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order - 2.

  6. Pulsation-driven mean zonal and meridional flows in rotating massive stars

    NASA Astrophysics Data System (ADS)

    Lee, Umin; Mathis, Stéphane; Neiner, Coralie

    2016-04-01

    Zonal and meridional axisymmetric flows can deeply impact the rotational and chemical evolution of stars. Therefore, momentum exchanges between waves propagating in stars, differential rotation, and meridional circulation must be carefully evaluated. In this work, we study axisymmetric mean flows in rapidly and initially uniformly rotating massive stars driven by small amplitude non-axisymmetric κ-driven oscillations. We treat them as perturbations of second order of the oscillation amplitudes and derive their governing equations as a set of coupled linear ordinary differential equations. This allows us to compute 2D zonal and meridional mean flows driven by low frequency g and r modes in slowly pulsating B stars and p modes in β Cephei stars. Oscillation-driven mean flows usually have large amplitudes only in the surface layers. In addition, the kinetic energy of the induced 2D zonal rotational motions is much larger than that of the meridional motions. In some cases, meridional flows have a complex radial and latitudinal structure. We find pulsation-driven and rotation-driven meridional flows can have similar amplitudes. These results show the importance of taking wave - mean flow interactions into account when studying the evolution of massive stars.

  7. Flows and transverse forces of self propelled micro-swimmers

    NASA Astrophysics Data System (ADS)

    Kessler, John; Cortez, Ricardo

    2005-11-01

    We employ the properties of Stokes flows, using simple model ``organisms'' possessing the features needed, nothing more. At Reynolds numbers<<1 self propelled swimmers exert equal forward and backward forces on the fluid. Fore/aft asymmetry => locomotion. For spheres of unequal radii R, connected by an elongating Gedanken-rod, V(1)R(1)=V(2)R(2). Similarly other geometries, since drag is linear in velocity V. Time independence implies that an entire flow field develops ``instantaneously'': Calculating flows around an ``organism'' during an instant of self propulsion maps the entire field, while avoiding details of return strokes, or propulsion by a bundle of helices. Using the method of regularized Stokeslets, we find flows and interactions for various geometries. Transverse return flows toward the midsection of a swimmer, due to incompressibility, are associated with attraction of swimmers, to each other and boundaries, just as found in experiments with Bacillus subtilis. This work partially funded by NSF grants DMS0094179 and DEB0075296.

  8. Onset of granular flows by local and global forcing

    NASA Astrophysics Data System (ADS)

    Toiya, Masahiro

    This thesis focuses on the onset of granular flows and memory effects in granular materials under local and global forcing conditions. Global flows are induced in a shear cell of Taylor-Couette type by moving a boundary wall. We find that how a granular shear flow starts depends strongly on the prior shear direction. We observe that when the shear direction is reversed, the material goes through a transient period during which the material compacts, the shear force is small, and the shear band is wide. Three dimensional confocal imaging of particle rearrangements during shear reversal shows that bulk and surface flows are comparable. Local flows are induced by forcing a rod into a fluid immersed granular bed with various preparation methods. Particle rearrangements are observed in 3D by confocal microscopy and by moving a laser sheet through the sample. Image analysis indicates that rearrangements spread farthest not directly under the penetrometer but in a ring around the penetrometer. In addition, the direction of preformed stress chains in the material influences the particle rearrangements. Material compressed from one side exhibits anisotropic particle rearrangements under penetrometer testing. Particle rearrangements that do not lead to steady flows but overall increase in the packing fraction have also been investigated. Vibration-induced compaction of spherical grains indicates that in addition to the cage motion there are rare "jump" events in which a single particle moves significantly more compared to its neighbors. Although rare, such "jumps" play a significant role in the compaction of the material as a whole. Temperature cycling experiments show similar results. Compaction of material has also been observed in the Couette cell. Repeated reversals or oscillations of the shear direction lead to additional compaction, which can be described by a stretched exponential, similar to compaction induced by tapping. For 3D imaging of dry and non

  9. MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks.

    PubMed

    Srivastava, Neetu

    2014-01-01

    This analytical investigation examines the magnetohydrodynamic flow problem of an incompressible micropolar fluid between the two eccentrically placed disks. Employing suitable transformations, the flow governing partial differential equations is reduced to ordinary differential equations. An exact solution representing the different flow characteristic of micropolar fluid has been derived by solving the ordinary differential equations. Analysis of the flow characteristics of the micropolar fluid has been done graphically by varying the Reynolds number and the Hartmann number. This analysis has been carried out for the weak and strong interactions. PMID:27355040

  10. MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks

    PubMed Central

    Srivastava, Neetu

    2014-01-01

    This analytical investigation examines the magnetohydrodynamic flow problem of an incompressible micropolar fluid between the two eccentrically placed disks. Employing suitable transformations, the flow governing partial differential equations is reduced to ordinary differential equations. An exact solution representing the different flow characteristic of micropolar fluid has been derived by solving the ordinary differential equations. Analysis of the flow characteristics of the micropolar fluid has been done graphically by varying the Reynolds number and the Hartmann number. This analysis has been carried out for the weak and strong interactions.

  11. Development of forced flow cooled current leads for fusion magnets

    NASA Astrophysics Data System (ADS)

    Heller, R.; Fink, S.; Friesinger, G.; Kienzler, A.; Lingor, A.; Schleinkofer, G.; Süßer, M.; Ulbricht, A.; Wüchner, F.; Zahn, G.

    2001-03-01

    During the past 15 years, the Institut für Technische Physik of the Forschungszentrum Karlsruhe, Germany, has developed current leads cooled by forced-flow supercritical helium in the current range from 20 to 80 kA. The design is based on a separation of the current carrying part and the heat exchanger part as well as the presence of the so-called superconductor inserts made of Nb 3Sn wires inside the conductor in the heat exchanger area which allows the operation of the current lead at minimum helium mass flow in a wide current range. The paper describes the design and construction of the current leads as well as operation results obtained during various tests performed in the coil test facility TOSKA at the Forschungszentrum Karlsruhe.

  12. Lithium mass flow control for high power Lorentz Force Accelerators

    NASA Astrophysics Data System (ADS)

    Kodys, Andrea D.; Emsellem, Gregory; Cassady, Leonard D.; Polk, James E.; Choueiri, Edgar Y.

    2001-02-01

    A lithium feeding system has been developed to measure and control propellant flow for 30-200 kW Lithium Lorentz Force Accelerators (LiLFAs). The new, mechanically actuated, liquid lithium feed system has been designed and tested as a central component of a campaign to obtain basic data and establish scaling laws and performance relations for these thrusters. Calibration data are presented which demonstrate reliable and controllable feed of liquid lithium to the vaporizer hollow cathode of the thruster at flow rates between 10 and 120 mg/s. The ability to thermally track the liquid lithium through the system by the use of external temperature measurements is demonstrated. In addition, recent developments are presented in the establishment and successful testing of a lithium handling facility and safety procedures allowing for the in-house loading of the feed system and the neutralization, cleaning and disposal of up to 300 g of lithium. .

  13. Flow in a differentially rotated cylindrical drop at moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Harriott, G. M.; Brown, R. A.

    1984-07-01

    Galerkin finite-element approximations are combined with computer-implemented perturbation methods for tracking families of solutions to calculate the steady axisymmetric flows in a differentially rotated cylindrical drop as a function of Reynolds number Re, drop aspect ratio and the rotation ratio between the two end disks. The flows for Reynolds numbers below 100 are primarily viscous and reasonably described by an asymptotic analysis. When the disks are exactly counter-rotated, multiple steady flows are calculated that bifurcate to higher values of Re from the expected solution with two identical secondary cells stacked symmetrically about the axial midplane. The new flows have two cells of different size and are stable beyond the critical value Re sub c. The slope of the locus of Re sub c for drops with aspect ratio up to 3 disagrees with the result for two disks of infinite radius computed assuming the similarity form of the velocity field. Changing the rotation ratio for exact counter-rotation ruptures the junction of the multiple flow fields into two separated flow families.

  14. A method for measuring cooling air flow in base coolant passages of rotating turbine blades

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1975-01-01

    Method accurately determines actual coolant mass flow rate in cooling passages of rotating turbine blades. Total and static pressures are measured in blade base coolant passages. Mass flow rates are calculated from these measurements of pressure, measured temperature and known area.

  15. Partial slip effect in flow of magnetite-Fe3O4 nanoparticles between rotating stretchable disks

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alzahrani, Faris; Alsaedi, Ahmed

    2016-09-01

    This paper addresses the flow of magnetic nanofluid (ferrofluid) between two parallel rotating stretchable disks with different rotating and stretching velocities. Water based fluid comprising magnetite-Fe3O4 nanoparticles is addressed. Velocity slip and temperature jump at solid-fluid interface are also taken into account. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are obtained. Effects of various pertinent parameters on the velocity and temperature profiles are shown and evaluated. Computations for skin friction coefficient and Nusselt number are presented and examined for the influence of involved parameters. It is noted that tangential velocity of fluid decreases for larger velocity slip parameter. Fluid temperature also reduces for increasing value of thermal slip parameter. Surface drag force and heat transfer rate at lower disk are enhanced when magnetic field strength is increased.

  16. The three-dimensional flow past a rapidly rotating circular cylinder

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Duck, Peter W.

    1993-01-01

    The high Reynolds number (Re) flow past a rapidly rotating circular cylinder is investigated. The rotation rate of the cylinder is allowed to vary (slightly) along the axis of the cylinder, thereby provoking three-dimensional flow disturbances, which are shown to involve relatively massive (O(Re)) velocity perturbations to the flow away from the cylinder surface. Additionally, three integral conditions, analogous to the single condition determined in two dimensions by Batchelor, are derived, based on the condition of periodicity in the azimuthal direction.

  17. Granular flow regimes in rotating drums from depth-integrated theory

    NASA Astrophysics Data System (ADS)

    Hung, C.-Y.; Stark, C. P.; Capart, H.

    2016-03-01

    Granular flows in rotating drums transition between two regimes characterized by straight and curved free surfaces. Here we predict this behavior using a depth-integrated theory applicable to general eroding flows. Closure is achieved by a local μ (I ) rheology and an equation for kinetic energy. Spanning the transition, the theory yields relations for all flow properties in terms of a single dimensionless rotation rate. In accord with experiments, distinct scaling laws are obtained for slow and fast rates, dominated respectively by local energy dissipation and longitudinal energy transfer.

  18. Motion and decay of vortex rings submerged in a rotational flow

    NASA Technical Reports Server (NTRS)

    Ishii, K.; Liu, C. H.

    1987-01-01

    The interaction between vortex rings of finite strength and an axisymmetric rotational background flow is studied by a singular perturbation method, because it is difficult to use a finite-difference method to analyze the viscous decay in the small core of a vortex ring. The analysis is carried out by combining a composite solution of a vortex ring and an unsteady Euler solution for the background rotational flow. Using the method of averaging, a numerical scheme is developed to obtain an Euler solution in which the grid and time-step sizes depend solely on the length and velocity scales of the background flow. Numerical results are presented to illustrate the interaction between the trajectories and decay rates of the vortex rings and the background rotational flow.

  19. Numerical simulation of unsteady rotational flow over propfan configurations

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Sankar, L. N.

    1989-01-01

    The objective is to develop efficient numerical techniques for the study of aeroelastic response of a propfan in an unsteady transonic flow. A three dimensional unsteady Euler solver is being modified to address this problem.

  20. Incompressible Navier-Stokes computations of rotating flows

    NASA Astrophysics Data System (ADS)

    Kiris, Cetin; Chang, Leon; Kwak, Dochan; Rogers, Stuart

    1993-01-01

    Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high-pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. Flow analyses at 80-, 100-, and 120-percent of design conditions are presented.

  1. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    2000-01-01

    Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number

  2. Hamiltonian structure for rotational capillary waves in stratified flows

    NASA Astrophysics Data System (ADS)

    Martin, Calin Iulian

    2016-07-01

    We show that the governing equations of two-dimensional water waves driven by surface tension propagating over two-layered stratified flows admit a Hamiltonian formulation. Moreover, the underlying flows that we consider here, have piecewise constant distribution of vorticity, the jump in vorticity being located along the interface separating the fluid of bigger density at the bottom from the lighter fluid adjacent to the free surface.

  3. Forced magnetic reconnection and field penetration of an externally applied rotating helical magnetic field in the TEXTOR tokamak.

    PubMed

    Kikuchi, Y; de Bock, M F M; Finken, K H; Jakubowski, M; Jaspers, R; Koslowski, H R; Kraemer-Flecken, A; Lehnen, M; Liang, Y; Matsunaga, G; Reiser, D; Wolf, R C; Zimmermann, O

    2006-08-25

    The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization. PMID:17026312

  4. Hydrodynamic turbulence in quasi-Keplerian rotating flows?

    NASA Astrophysics Data System (ADS)

    Shi, Liang; Avila, Marc; Hof, Bjoern; Liang Shi Team; Marc Avila Team; Bjoern Hof Team

    2013-11-01

    The origin of turbulence in astrophysical accretion discs has been under scrutiny for decades and remains still unclear. The velocity profiles of discs (Keplerien profiles) are centrifugally stable and therefore a different instability mechanism is required for turbulence to arise. While in hot discs turbulence can be triggered through magnetorotational instability, cooler discs lack sufficient ionization and it is unclear how turbulence sets in. In analogy to other linearly stable flows like pipe and Couette flow, subcritical transition to turbulence may be the mechanism. Recently, experimental studies of Taylor-Couette flow in quasi-Keplerian regime have given conflicting results and numerical simulations of above experimental flows showed that the top and bottom end-wall leads to strong deviations from the Keplerian velocity profile and drives turbulence. In order to clarify this, we perform direct numerical simulations of incompressible Taylor-Couette flow without end walls in the quasi Keplerian regime for Re up to 200000. Strong transient growth is observed and gives rise to strongly disorted motion, suggesting that for large enough Re this mechanism may lead to turbulence even for Keplerian flows. This work is supported by Deutsche Forschungsgemeinschaft (DFG) under project SFB 963 and Max Planck Society.

  5. Suppression of force fluctuations in flow past an aerofoil

    NASA Astrophysics Data System (ADS)

    Conlin, A.; Mao, X.

    2015-07-01

    Force fluctuations on a solid body are associated with unsteadiness in the wake, e.g. vortex shedding. Therefore, the control of force fluctuations can be realised by suppressing the flow unsteadiness. A NACA0024 aerofoil closed with a round trailing edge is chosen to represent the solid body throughout this investigation, with the Reynolds number fixed at Re = 1000 and angle of attack α ≤ 15o, at which the uncontrolled flow is two-dimensional. A linear optimal control is calculated by analysing the distribution of sensitivity of unsteadiness to control around the entire surface of the body. The nonlinear effects of the calculated control, which can be actuated through surface-normal suction and blowing across the surface of the aerofoil, are tested through two-dimensional direct numerical simulations. It is observed that a surface-normal velocity control with a maximum magnitude less than 8% of the free stream velocity completely suppresses unsteadiness at α = 10° with an overall drag reduction of 14% and a 138% increase of lift.

  6. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads

    PubMed Central

    Vázquez-Guerrero, Jairo; Moras, Gerard

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766

  7. Flow and Heat Transfer in 180-Degree Turn Square Ducts: Effects of Turning Configuration and System Rotation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chyu, Ming-King

    1993-01-01

    Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.

  8. Flow and heat transfer in 180-degree turn square ducts: Effects of turning configuration and system rotation

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See; Chyu, Ming-King

    1993-07-01

    Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.

  9. The flow of a thin liquid film on a stationary and rotating disk. II - Theoretical prediction

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1990-01-01

    The existing theoretical models are improved and a systematic procedure to compute the free surface flow of a thin liquid film is suggested. The solutions for axisymmetric radial flow on a stationary horizontal disk and for the disk rotating around its axis are presented. The theoretical predictions are compared with the experimental data presented in Part I of this report. The analysis shows results for both supercritical and subcritical flows and the flow structure in the vicinity of a hydraulic jump which isolates these two flow types. The detailed flow structure in a hydraulic jump was computed and shown to contain regions of separation including a 'surface roller'. The effects of surface tension are found to be important near the outer edge of the disk where the fluid experiences a free fall. At other locations, the surface tension is negligible. For a rotating disk, the frictional resistance in the angular direction is found to be as important as that in the radial direction.

  10. Experimental observations of direct laminar-turbulent transition in counter-rotating Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Crowley, Christopher; Krygier, Michael; Borrero-Echeverry, Daniel; Grigoriev, Roman; Schatz, Michael

    2015-11-01

    The transition to turbulence in counter-rotating Taylor-Couette flow typically occurs through a sequence of supercritical bifurcations of stable flow states (e.g. spiral vortices, interpenetrating spirals (IPS), and wavy interpenetrating spirals). Coughlin and Marcus have proposed a mechanism by which these laminar spiral flows undergo a secondary instability that leads to turbulence. We report the discovery of a counter-rotating regime (Reout = - 1000 , Rein ~ 640) of small aspect ratio/large radius ratio Taylor-Couette flow (Γ = 5 . 26 / η = 0 . 91), where the system bypasses the primary instability to stable laminar spirals and instead undergoes a direct transition to turbulence as the inner cylinder rotation rate is slowly increased. This transition is mediated by an unstable IPS state. We study the transition experimentally using flow visualization and tomographic PIV, and show that it is both highly repeatable and that it shows hysteresis as the inner cylinder rotation rate is decreased. As Rein is decreased, the turbulent flow relaminarizes into an intermediate, stable IPS state. Decreasing Rein further returns the system back to circular Couette flow. This study was supported by NSF DMS-1125302 and NSF CMMI-1234436.

  11. Flow Straightener for a Rotating-Drum Liquid Separator

    NASA Technical Reports Server (NTRS)

    O'Coin, James R.; Converse, David G.; Rethke, Donald W.

    2004-01-01

    A flow straightener has been incorporated into a rotary liquid separator that originally comprised an inlet tube, a shroud plate, an impeller, an inner drum, an outer drum, a housing, a pitot tube, and a hollow shaft motor. As a consequence of the original geometry of the impeller, shroud, inner drum, and hollow shaft, swirl was created in the airflow inside the hollow shaft during operation. The swirl speed was large enough to cause a significant pressure drop. The flow straightener consists of vanes on the back side of the shroud plate. These vanes compartmentalize the inside of the inner drum in such a way as to break up the flow path and thereby stop the air from swirling; as a result, the air enters the hollow shaft with a predominantly axial velocity instead of a swirl. Tests of the rotary liquid separator at an airflow rate of 10 cu ft/min (0.0047 cu m/s) revealed that the dynamic pressure drop was 8 in. of water (approx.=2 kPa) in the absence of the flow straightener and was reduced to 1 in. of water (approx.=0.25 kPa) in the presence of the flow straightener.

  12. On the correlation between force production and the flow field around a flapping flat-plate wing

    NASA Astrophysics Data System (ADS)

    Öz, Sören; Krishna, Swathi; Mulleners, Karen

    2015-11-01

    One of the several sophisticated flight skills that insects exhibit is hovering, which is accomplished largely by modulating the wing kinematics and thereby the flow field around the wings. Along with the prolonged attachment of the leading edge vortex, the wing reversal mechanisms form the basis by which insects regulate the magnitude and direction of forces produced. The duration and starting point of these directional flips are studied in the current experimental investigation. Particle image velocimetry is conducted to evaluate the flow features inherent to changes in wing reversal during the stroke of a flat plate, which is modelled based on hoverfly characteristics. The duration of rotation is one-third of the total time period. A +10% phase shift is used for delayed rotation, a -10% phase shift for advanced rotation. Phase-averaged data is analysed to understand the influence of a delayed or advanced rotation on the formation and evolution of large and small scale structures, their interactions with the wing, and disintegration. Additionally, force data is used to quantify the effects of phase-shift in terms of lift and drag variation and is correlated with the vortex dynamics.

  13. Channel flow modeling of impingement cooling of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Koo, J. J.

    1984-01-01

    Local heat transfer distributions in impingement cooling have been measured by Kreatsoulas and Prieser for a range of conditions which model those in actual turbine blades, including the effects of rotation. These data were reported as local Nusselt numbers, but referred to coolant supply conditions. By means of a channel flow modeling of the flow in the supply and impingement passages, the same data are here presented in terms of local Nusselt number distributions such as are used in design. The results in this form are compared to the nonrotating impingement results of Chupp and to the rotating but nonimpingement results of Morris. Rotation reduces the mean Nusselt numbers from these found by Chupp by about 30 percent, and introduces important radial variations which are sensitive to rotation and to leading edge stagger angle.

  14. Numerical and Experimental study of secondary flows in a rotating two-phase flow: the tea leaf paradox

    NASA Astrophysics Data System (ADS)

    Calderer, Antoni; Neal, Douglas; Prevost, Richard; Mayrhofer, Arno; Lawrenz, Alan; Foss, John; Sotiropoulos, Fotis

    2015-11-01

    Secondary flows in a rotating flow in a cylinder, resulting in the so called ``tea leaf paradox'', are fundamental for understanding atmospheric pressure systems, developing techniques for separating red blood cells from the plasma, and even separating coagulated trub in the beer brewing process. We seek to gain deeper insights in this phenomenon by integrating numerical simulations and experiments. We employ the Curvilinear Immersed boundary method (CURVIB) of Calderer et al. (J. Comp. Physics 2014), which is a two-phase flow solver based on the level set method, to simulate rotating free-surface flow in a cylinder partially filled with water as in the tea leave paradox flow. We first demonstrate the validity of the numerical model by simulating a cylinder with a rotating base filled with a single fluid, obtaining results in excellent agreement with available experimental data. Then, we present results for the cylinder case with free surface, investigate the complex formation of secondary flow patterns, and show comparisons with new experimental data for this flow obtained by Lavision. Computational resources were provided by the Minnesota Supercomputing Institute.

  15. Rotation of a rod system containing inertial fluid flow

    NASA Astrophysics Data System (ADS)

    Sergeev, A. D.

    2012-11-01

    This paper considers a rod system for which it is possible to correctly formulate and solve the problem of three-dimensional motion in the physical space of an elastic pipeline area containing inertial incompressible fluid flow. The precession of the axis of an elastic pipeline along which inertial incompressible fluid flows is described, a physical phenomenon which has not been previously studied. With the use of rigid body dynamics, it was theoretically established that a three-dimensional dynamic process is possible in an open (exchanging mass with the environment) elastic-inertial rod system.

  16. Flow in complex domains simulated by Dissipative Particle Dynamics driven by geometry-specific body-forces

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Deng, Mingge; Caswell, Bruce; Karniadakis, George Em

    2016-01-01

    We demonstrate how the quality of simulations by Dissipative Particle Dynamics (DPD) of flows in complex geometries is greatly enhanced when driven by body forces suitably tailored to the geometry. In practice, the body force fields are most conveniently chosen to be the pressure gradient of the corresponding Navier-Stokes (N-S) flow. In the first of three examples, the driving-force required to yield a stagnation-point flow is derived from the pressure field of the potential flow for a lattice of counter-rotating line vortices. Such a lattice contains periodic squares bounded by streamlines with four vortices within them. Hence, the DPD simulation can be performed with periodic boundary conditions to demonstrate the value of a non-uniform driving-force without the need to model real boundaries. The second example is an irregular geometry consisting of a 2D rectangular cavity on one side of an otherwise uniform channel. The Navier-Stokes pressure field for the same geometry is obtained numerically, and its interpolated gradient is then employed as the driving-force for the DPD simulation. Finally, we present a third example, where the proposed method is applied to a complex 3D geometry of an asymmetric constriction. It is shown that in each case the DPD simulations closely reproduce the Navier-Stokes solutions. Convergence rates are found to be much superior to alternative methods; in addition, the range of convergence with respect to Reynolds number and Mach number is greatly extended.

  17. Acoustic forcing on swirling flow: experiments and simulation

    NASA Astrophysics Data System (ADS)

    Hubschmid, W.; Denisov, A.; Biagioli, F.

    2014-09-01

    We investigated the effect of sound irradiated from loudspeakers on the flow of preheated air in the combustion chamber of a swirl burner. The temporally periodic pattern of the flow generated by the sound was detected by fast particle image velocimetry (PIV), with a repetition rate that was adapted to the observation of 12 phase angles of the irradiated monochromatic sound. The strong observed movement of the air is related to the movement by the sound itself, as determined by the pressure measurements with microphones. The PIV measurements reveal also a nonlinear interaction between the irradiated sound and the precession of the vortex core. The accuracy of the sound measurements was tested by determining in quiescent air the acoustic velocity by microphones and as well by PIV; good agreement was obtained thereby. Numerical calculations, using large eddy simulation and accounting for the sound forcing by variation in the mass flow at the inlet of the computational domain, approximately reproduce some of the experimental results.

  18. Numerical investigation of laminar forced convection in Newtonian and non-Newtonian flows in eccentric annuli

    NASA Astrophysics Data System (ADS)

    Fang, Pingping

    1998-12-01

    An extended numerical investigation of fully developed, forced convective laminar flows with heat transfer in eccentric annuli has been carried out. Both Newtonian and non-Newtonian (power-law or Ostwald-de Waele) fluids are studied, representing typical applications in petrochemical, bio-chemical, personal care products, polymer/plastic extrusion and food industries. For the heat transfer problem, with an insulated outer surface, two types of thermal boundary conditions have been considered: Constant wall temperature (T), and uniform axial heat flux with constant peripheral temperature (H1) on the inner surface of the annulus. The governing differential equations for momentum and energy conservation are solved by finite-difference methods. Velocity and temperature distributions in the flow cross section, the wall shear-stress distribution, and isothermal f Re, Nu i,T and Nu i,H1 values for different eccentric annuli (0/leɛ/*/le0.6,/ 0.2/le r/sp/*/le0.8) are presented. In Newtonian flows, the eccentricity is found to have a very strong influence on the flow and temperature fields. In an annulus with relatively large inner cylinder eccentricity, the flow tends to stagnate in the narrow section and has higher peak velocities in the wide section of the annulus. There is considerable flow maldistribution in the azimuthal direction, which in turn produces greater nonuniformity in the temperature field and a consequent degradation in the average heat transfer. Also, the H1 wall condition sustains higher heat transfer coefficients relative to the T boundary condition on the inner surface. For viscous, power-law type non-Newtonian flows, both shear thinning (n<1) and shear thickening (n>1) fluids are considered. Here, the non-linear shear behavior of the fluid is found to further aggravate the flow and temperature maldistribution, and once again the eccentricity is seen to exhibit a very strong influence on the friction and heat transfer behavior. Finally, the

  19. A model for origin of self-rotation in a protoplanetary cloud under action of exterior periodic force

    NASA Astrophysics Data System (ADS)

    Tkachova, P. P.; Krot, A. M.

    2009-04-01

    This work investigates condition for origin of increasing rotational disturbance in a gas-liquid protoplanetary cloud under action of a periodic force. The model (based on Reynolds equations [1]) describing self-organization of rotational disturbance of viscous gas-liquid substance into a protoplanetary cloud is proposed. The Reynolds equations as well as continuity equation in cylindrical frame of reference (r, e, z) as basis relations for this analytical model are used. The mean velocity is supposed to be equal to zero from the beginning action of an exterior periodic force. The Reynolds' tensor of turbulent strain of velocity disturbances in a becoming fluid flow is sought for (besides, z-component of velocity disturbance is supposed to be equal to zero). In assumption that z-components of turbulent strains are equal to zero, the (r, e)-turbulent strain components are found. After all considerations the Reynolds equations and continuity one (in the cylindrical coordinate system) are reduced to the system of two differential equations in partial derivatives relatively to (r, e)-cylindrical components of turbulent strain of velocity disturbance. A common solution of these two equations permits us to reduce this task to solution of one differential equation relatively to (r, e)-turbulent strain. This homogeneous differential equation is solved with usage of the variables separation method. As a result, a superposition of two cosine's and sine's waves gives us (r, e)-turbulent strain wave with an elliptic (or circular) polarization. Moreover, this paper shows that amplitude of cosine-wave as well as sine-wave is an increasing function as r**(n**2-2). This paper finds that oscillations are intensified with growing a frequency of becoming oscillations. The computational experiments based on STAR-CD package [2] confirm the main analytical statements of the proposed model for becoming self-rotation in a gas-liquid protoplanetary cloud. This work develops also the

  20. 3D Structure and Internal Circulation of Pancake Vortices in Rotating Stratified Flows

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram; Marcus, Philip; Aubert, Oriane; Le Bars, Michael; Le Gal, Patrice

    2011-11-01

    Jovian vortices, Atlantic meddies, and vortices of the protoplanetrary disks are examples of weakly-forced or unforced long-lived vortices in rotating stratified flows. Knowing the 3D structure and internal circulation of these vortices is essential in understanding their physics, which is not well-understood. For example, the aspect ratio of these vortices has been long thought to be f / N where f is the Coriolis parameter and N is the Brunt-Vaisala frequency. However, our recent theoretical and experimental study has shown that the aspect ratio in fact depends not only on f and N but also on the Rossby number and density mixing inside the vortex. The new scaling law also agrees with the available measurements of the meddies and Jupiter's Great Red Spot. High resolution 3D numerical simulations of the Navier-Stokes equation are carried out to confirm this new scaling law for a slowly (viscously) decaying anticyclonic vortex in which the Rossby number and stratification inside the vortex evolve in time. For a wide range of parameters and different distributions of density anomaly, the secondary circulations within the vortices are studied. The effect of a non-uniform background stratification is investigated, and the small cyclonic vortices that form above and below the anticyclone are studied.

  1. Experimental comparison of the rotating cylinder electrode and full pipe flow for evaluating flow induced CO{sub 2} corrosion

    SciTech Connect

    McMahon, A.J.; Webster, S.; Paisley, D.; Moros, T.; Harrop, D.

    1995-10-01

    Corrosion of oil and gas pipelines by the internal fluids is complex and difficult to simulate in the laboratory. Here, the rotating cylinder electrode and full pipe flow in a recirculating flow loop give different results for nominally equivalent conditions. Pipe flow produces a higher mass transfer rate for the same nominal wall shear stress. Pipe flow also produces a higher CO{sub 2} corrosion rate for inhibited and uninhibited conditions at either the same shear stress or at the same mass transfer rate. Crucially, the rotating cylinder overestimates the performance of corrosion inhibitors. Therefore, while the cylinder is suitable for preliminary inhibitor screening it is not recommended for final selection of products.

  2. Rotation of a Pulsed Jet, or Plume, in a Rotating Flow: A Source of Helicity for an α-ω Astrophysical Dynamo

    NASA Astrophysics Data System (ADS)

    Beckley, Howard F.; Colgate, Stirling A.; Romero, Van D.; Ferrel, Ragnar

    2003-12-01

    A fluid-flow experiment was performed in water to investigate how an expanding pulsed jet rotates when injected off-axis into a rotating annular flow. The pulsed jet simulates a large-scale rising plume in a stellar or accretion disk environment. In the experiment, the pulsed jet was injected parallel to, but radially displaced from, the axis of rotation. The jet was observed to counterrotate Δφ~π/2 to π rad relative to the rotating frame before dispersing into the background flow. The counterrotation of an expanding pulsed jet in a rotating frame is the key result of the experiment. The counterrotation of the jet occurs because of the increased moment of inertia due to its expansion and conserved angular momentum. Rapid turbulent entrainment of the pulsed jet with the background flow during radial divergence when striking the end wall limits the net rotation of the jet. Shear within the differentially rotating background flow enhances the net rotation of the jet. Naturally occurring buoyant plumes in rotating flows should exhibit this same coherent nature, i.e., the same direction of rotation, the same vertical motion, and the same finite angle of rotation for every plume. This should make pulsed jets, or plumes, when occurring in a conducting medium, nearly ideal for producing helicity for the α-ω dynamo. In the experiment, Couette flow was established in water between two coaxial cylinders with an outer radius R0=15 cm, an inner radius R1=7.5 cm, and height Z=10 cm. The Reynolds number of the experiment was Re~=105 in order to simulate the behavior of turbulent entrainment at high Reynolds number. The differential rotation of the background flow was varied from constant rotation, dΩ/dR=0, to Ω~1/R. The flow was made visible by pulsed hydrogen electrolysis from a tungsten wire and by dispersed guanidine in water. The flow was imaged using a digital video camcorder. These measurements are a precursor to the design and development of an α-ω dynamo

  3. Preconditioned iterative methods for unsteady non-Newtonian flow between eccentrically rotating cylinders

    SciTech Connect

    Gwynllyw, D.Rh.; Phillips, T.N.

    1994-12-31

    The journal bearing is an essential part of all internal combustion engines as a means of transferring the energy from the piston rods to the rotating crankshaft. It consists essentially of an inner cylinder (the journal), which is part of the crankshaft, and an outer cylinder (the bearing), which is at the end of the piston rod. In general, the two cylinders are eccentric and there is a lubricating film of oil separating the two surfaces. The addition of polymers to mineral (Newtonian) oils to minimize the variation of viscosity with temperature has the added effect of introducing strain-dependent viscosity and elasticity. The physical problem has many complicating features which need to be modelled. It is a fully three-dimensional problem which means that significant computational effort is required to solve the problem numerically. The system is subject to dynamic loading in which the journal is allowed to move under the forces the fluid imparts on it and also any other loads such as that imparted by the engine force. The centre of the journal traces out a nontrivial locus in space. In addition, there is significant deformation of the bearing and journal and extensive cavitation of the oil lubricant. In the present study the authors restrict themselves to the two-dimensional statically loaded problem. In previous work a single domain spectral method was used which employed a bipolar coordinate transformation to map the region between the journal and the bearing onto a rectangle. The flow variables were then approximated on this rectangle using Fourier-Chebyshev expansions. However, to allow for future possible deformation of the journal and bearing surfaces due to increased load in the dynamically loaded case they have decided to use a more versatile spectral element formulation.

  4. A numerical investigation of flow around octopus-like arms: near-wake vortex patterns and force development.

    PubMed

    Kazakidi, A; Vavourakis, V; Tsakiris, D P; Ekaterinaris, J A

    2015-01-01

    The fluid dynamics of cephalopods has so far received little attention in the literature, due to their complexity in structure and locomotion. The flow around octopuses, in particular, can be complicated due to their agile and dexterous arms, which frequently display some of the most diverse mechanisms of motion. The study of this flow amounts to a specific instance of the hydrodynamics problem for rough tapered cylinder geometries. The outstanding manipulative and locomotor skills of octopuses could inspire the development of advanced robotic arms, able to operate in fluid environments. Our primary aim was to study the hydrodynamic characteristics of such bio-inspired robotic models and to derive the hydrodynamic force coefficients as a concise description of the vortical flow effects. Utilizing computational fluid dynamic methods, the coefficients were computed on realistic morphologies of octopus-like arm models undergoing prescribed solid-body movements; such motions occur in nature for short durations in time, e.g. during reaching movements and exploratory behaviors. Numerical simulations were performed on translating, impulsively rotating, and maneuvering arms, around which the flow field structures were investigated. The results reveal in detail the generation of complex vortical flow structures around the moving arms. Hydrodynamic forces acting on a translating arm depend on the angle of incidence; forces generated during impulsive rotations of the arms are independent of their exact morphology and the angle of rotation; periodic motions based on a slow recovery and a fast power stroke are able to produce considerable propulsive thrust while harmonic motions are not. Parts of these results have been employed in bio-inspired models of underwater robotic mechanisms. This investigation may further assist elucidating the hydrodynamics underlying aspects of octopus locomotion and exploratory behaviors. PMID:24730546

  5. Mean and turbulent flow development through an array of rotating elements

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2014-11-01

    The adjustment of an incoming boundary layer profile as it impacts and interacts with an array of elements has received significant attention in the context of terrestrial and aquatic canopies and more recently in the context of horizontal axis wind farms. The distance required for the mean flow profile to stabilize, the energy transport through the array, and the structure of the turbulence within the array are directly dependent upon such factors as the element height, density, rigidity/flexibility, frontal area distribution, element homogeneity, and underlying topography. In the present study, the mean and turbulent development of the flow through an array of rotating elements was examined experimentally. Element rotation has been shown to drastically alter wake dynamics of single and paired elements, but the possible extension of such rotation-driven dynamics had not previously been examined on larger groups of elements. Practically, such an array of rotating elements may provide insight into the flow dynamics of an array of vertical axis wind turbines. 2D particle image velocimetry was used along the length of the array in order to examine the effects of an increasing ratio of cylinder rotation speed to streamwise freestream velocity on flow development and structure. Work supported by a NSF Graduate Research Fellowship & Stanford Graduate Fellowship to A.E.C, by funding to J.O.D. from ONR N000141211047 and the Gordon and Betty Moore Foundation through Grant GBMF2645, and by funding from the EFML.

  6. Direct numerical simulations of turbulent flow through a stationary and rotating infinite serpentine passage

    NASA Astrophysics Data System (ADS)

    Laskowski, Gregory M.; Durbin, Paul A.

    2007-01-01

    Serpentine passages are found in a number of engineering applications including turbine blade cooling passages. The design of effective cooling passages for high-temperature turbine blades depends in part on the ability to predict heat transfer, thus requiring an accurate representation of the turbulent flow field. These passages are subjected to strong curvature and rotational effects, and the resulting turbulent flow field is fairly complex. An understanding of the flow physics for flows with strong curvature and rotation is required in order to improve the design of turbine blade cooling passages. Experimental measurements of certain turbulence quantities for such configurations can be challenging to obtain, especially near solid surfaces, making the serpentine passage an ideal candidate for a direct numerical simulation (DNS). A DNS study has been conducted to investigate the coupled effect of strong curvature and rotation by simulating turbulent flow through a fully developed, smooth wall, round-ended, isothermal serpentine channel subjected to orthogonal mode rotation. The geometry investigated has an average radius of curvature Rc/δ=2.0 in the curved section and dimensions 12πδ×2δ×3πδ in the streamwise, transverse, and spanwise directions. The computational domain consists of periodic inflow/outflow boundaries, two solid wall boundaries, and periodic boundaries in the spanwise direction. The simulations were conducted for Reynolds number, Reb=5600, and rotation numbers, Rob ,z=0 and 0.32. Differences observed between the stationary and rotating cases are discussed in terms of the mean velocity, secondary flow, and Reynolds stresses.

  7. Acute Effects of Foot Rotation in Healthy Adults during Running on Knee Moments and Lateral-Medial Shear Force

    PubMed Central

    Valenzuela, Kevin A.; Lynn, Scott K.; Noffal, Guillermo J.; Brown, Lee E.

    2016-01-01

    As runners age, the likelihood of developing osteoarthritis (OA) significantly increases as 10% of people 55+ have symptomatic knee OA while 70% of people 65+ have radiographic signs of knee OA. The lateral-medial shear force (LMF) and knee adduction moment (KAM) during gait have been associated with cartilage loading which can lead to OA. Foot rotation during gait has been shown to alter the LMF and KAM, however it has not been investigated in running. The purpose of this study was to investigate changes in the KAM and LMF with foot rotation during running. Twenty participants volunteered and performed five running trials in three randomized conditions (normal foot position [NORM], external rotation [EXT], and internal rotation [INT]) at a running speed of 3.35m·s-1 on a 20 meter runway. Kinematic and kinetic data were gathered using a 9-camera motion capture system and a force plate, respectively. Repeated measures ANOVAs determined differences between conditions. The KAM and LMF were lower in both EXT and INT conditions compared to the NORM, but there were no differences between EXT and INT conditions. The decreases in KAM and LMF in the EXT condition were expected and concur with past research in other activities. The reductions in the INT condition were unexpected and contradict the literature. This may indicate that participants are making mechanical compensations at other joints to reduce the KAM and LMF in this abnormal internal foot rotation condition. Key points External rotation of the foot during running reduced the loads on the medial compartment of the knee Internal rotation of the foot also reduced the medial loads, but is a more unnatural intervention External and internal rotation reduced the shear forces on the knee, which may help slow the degeneration of knee joint cartilage PMID:26957926

  8. Acute Effects of Foot Rotation in Healthy Adults during Running on Knee Moments and Lateral-Medial Shear Force.

    PubMed

    Valenzuela, Kevin A; Lynn, Scott K; Noffal, Guillermo J; Brown, Lee E

    2016-03-01

    As runners age, the likelihood of developing osteoarthritis (OA) significantly increases as 10% of people 55+ have symptomatic knee OA while 70% of people 65+ have radiographic signs of knee OA. The lateral-medial shear force (LMF) and knee adduction moment (KAM) during gait have been associated with cartilage loading which can lead to OA. Foot rotation during gait has been shown to alter the LMF and KAM, however it has not been investigated in running. The purpose of this study was to investigate changes in the KAM and LMF with foot rotation during running. Twenty participants volunteered and performed five running trials in three randomized conditions (normal foot position [NORM], external rotation [EXT], and internal rotation [INT]) at a running speed of 3.35m·s(-1) on a 20 meter runway. Kinematic and kinetic data were gathered using a 9-camera motion capture system and a force plate, respectively. Repeated measures ANOVAs determined differences between conditions. The KAM and LMF were lower in both EXT and INT conditions compared to the NORM, but there were no differences between EXT and INT conditions. The decreases in KAM and LMF in the EXT condition were expected and concur with past research in other activities. The reductions in the INT condition were unexpected and contradict the literature. This may indicate that participants are making mechanical compensations at other joints to reduce the KAM and LMF in this abnormal internal foot rotation condition. Key pointsExternal rotation of the foot during running reduced the loads on the medial compartment of the kneeInternal rotation of the foot also reduced the medial loads, but is a more unnatural interventionExternal and internal rotation reduced the shear forces on the knee, which may help slow the degeneration of knee joint cartilage. PMID:26957926

  9. FORCE2: A multidimensional flow program for gas solids flow user`s guide

    SciTech Connect

    Burge, S.W.

    1991-05-01

    This report describes the FORCE2 flow program input, output, and the graphical post-processor. The manual describes the steps for creating the model, executing the programs and processing the results into graphical form. The FORCE2 post-processor was developed as an interactive program written in FORTRAN-77. It uses the Graphical Kernel System (GKS) graphics standard recently adopted by International Organization for Standardization, ISO, and American National Standards Institute, ANSI, and, therefore, can be used with many terminals. The post-processor vas written with Calcomp subroutine calls and is compatible with Tektkonix terminals and Calcomp and Nicolet pen plotters. B&W has been developing the FORCE2 code as a general-purpose tool for flow analysis of B&W equipment. The version of FORCE2 described in this manual was developed under the sponsorship of ASEA-Babcock as part of their participation in the joint R&D venture, ``Erosion of FBC Heat Transfer Tubes,`` and is applicable to the analyses of bubbling fluid beds. This manual is the principal documentation for program usage and is segmented into several sections to facilitate usage. In Section 2.0 the program is described, including assumptions, capabilities, limitations and uses, program status and location, related programs and program hardware and software requirements. Section 3.0 is a quick user`s reference guide for preparing input, executing FORCE2, and using the post-processor. Section 4.0 is a detailed description of the FORCE2 input. In Section 5.0, FORCE2 output is summarized. Section 6.0 contains a sample application, and Section 7.0 is a detailed reference guide.

  10. Mathematical Analysis of Hall Effect on Transient Hartman Flow about a Rotating Horizontal Permeable Surface in a Porous Medium under Inclined Magnetic Field

    PubMed Central

    Suresh, M.; Manglik, A.

    2014-01-01

    This paper proposes the exact solution for unsteady flow of a viscous incompressible electrically conducting fluid past a impulsively started infinite horizontal surface which is rotating with an angular velocity embedded in a saturated porous medium under the influence of strong magnetic field with hall effect. Our study focuses on the change of direction of the external magnetic field on the flow system which leads to change in the flow behavior and skin frictional forces at the boundary. Systems of flow equations are solved using Laplace transform technique. The impacts of control parameters Hartman number, rotation of the system, hall effect, inclination of the magnetic field, and Darcy number on primary and secondary velocities are shown graphically, skin friction at horizontal boundary in tabular form. For validating our results, in the absence of permeability of the porous medium and inclination of the magnetic field the results are in good agreement with the published results.

  11. Mixed convection flow of Eyring-Powell fluid along a rotating cone

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Saleem, S.

    In the present article, we have studied the unsteady boundary layer flow of a rotating Eyring-Powell fluid on a rotating cone with the combined effects of heat and mass transfer. The governing momentum, energy and mass equations for unsteady flow are presented and simplified using similar and nonsimilar transformations. The reduced coupled nonlinear differential equations are solved analytically with the help of a strong analytical technique namely the optimal homotopy analysis method. Numerical results for important physical quantities are computed and displayed. The physical features of suitable parameters are discussed through the graphs of velocities, heat transfer, concentration, skin friction, Nusselt number and Sherwood number.

  12. Identification of complex flows in Taylor-Couette counter-rotating cavities

    NASA Technical Reports Server (NTRS)

    Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.

    2001-01-01

    The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

  13. Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow?

    NASA Astrophysics Data System (ADS)

    Quadrio, Maurizio; Frohnapfel, Bettina; Hasegawa, Yosuke

    2016-01-01

    We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient and constant power input are used to build large databases, and in particular to store the complete temporal trace of the wall-shear stress for later analysis. As these approaches correspond to different dynamical systems, it can in principle be envisaged that these differences are reflect by certain statistics of the turbulent flow field. The instantaneous realizations of the flow in the various simulations are obviously different, but, as expected, the usual one-point, one-time statistics do not show any appreciable difference. However, the PDF for the fluctuations of the streamwise component of wall friction reveals that the simulation with constant flow rate presents lower probabilities for extreme events of large positive friction. The low probability value of such events explains their negligible contribution to the commonly computed statistics; however, the very existence of a difference in the PDF demonstrates that the forcing term is not entirely uninfluential. Other statistics for wall-based quantities (the two components of friction and pressure) are examined; in particular spatio-temporal autocorrelations show small differences at large temporal separations, where unfortunately the residual statistical uncertainty is still of the same order of the observed difference. Hence we suggest that the specific choice of the forcing term does not produce important statistical consequences, unless one is interested in the strongest events of high wall friction, that are underestimated by a simulation run at constant flow rate.

  14. Pulmonary blood flow redistribution by increased gravitational force

    NASA Technical Reports Server (NTRS)

    Hlastala, M. P.; Chornuk, M. A.; Self, D. A.; Kallas, H. J.; Burns, J. W.; Bernard, S.; Polissar, N. L.; Glenny, R. W.

    1998-01-01

    This study was undertaken to assess the influence of gravity on the distribution of pulmonary blood flow (PBF) using increased inertial force as a perturbation. PBF was studied in unanesthetized swine exposed to -Gx (dorsal-to-ventral direction, prone position), where G is the magnitude of the force of gravity at the surface of the Earth, on the Armstrong Laboratory Centrifuge at Brooks Air Force Base. PBF was measured using 15-micron fluorescent microspheres, a method with markedly enhanced spatial resolution. Each animal was exposed randomly to -1, -2, and -3 Gx. Pulmonary vascular pressures, cardiac output, heart rate, arterial blood gases, and PBF distribution were measured at each G level. Heterogeneity of PBF distribution as measured by the coefficient of variation of PBF distribution increased from 0.38 +/- 0.05 to 0.55 +/- 0.11 to 0.72 +/- 0.16 at -1, -2, and -3 Gx, respectively. At -1 Gx, PBF was greatest in the ventral and cranial and lowest in the dorsal and caudal regions of the lung. With increased -Gx, this gradient was augmented in both directions. Extrapolation of these values to 0 G predicts a slight dorsal (nondependent) region dominance of PBF and a coefficient of variation of 0.22 in microgravity. Analysis of variance revealed that a fixed component (vascular structure) accounted for 81% and nonstructure components (including gravity) accounted for the remaining 19% of the PBF variance across the entire experiment (all 3 gravitational levels). The results are inconsistent with the predictions of the zone model.

  15. Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA.

    PubMed

    Rozitis, Ben; MacLennan, Eric; Emery, Joshua P

    2014-08-14

    Space missions and ground-based observations have shown that some asteroids are loose collections of rubble rather than solid bodies. The physical behaviour of such 'rubble-pile' asteroids has been traditionally described using only gravitational and frictional forces within a granular material. Cohesive forces in the form of small van der Waals forces between constituent grains have recently been predicted to be important for small rubble piles (ten kilometres across or less), and could potentially explain fast rotation rates in the small-asteroid population. The strongest evidence so far has come from an analysis of the rotational breakup of the main-belt comet P/2013 R3 (ref. 7), although that was indirect and poorly constrained by observations. Here we report that the kilometre-sized asteroid (29075) 1950 DA (ref. 8) is a rubble pile that is rotating faster than is allowed by gravity and friction. We find that cohesive forces are required to prevent surface mass shedding and structural failure, and that the strengths of the forces are comparable to, though somewhat less than, the forces found between the grains of lunar regolith. PMID:25119234

  16. Experiments on the Flow of a Thin Liquid Film Over a Horizontal Stationary and Rotating Disk Surface

    NASA Technical Reports Server (NTRS)

    Ozar, B.; Cetegen, B. M.; Faghri, A.

    2003-01-01

    Experiments on characterization of thin liquid films flowing over stationary and rotating disk surfaces are described. The thin liquid film was created by introducing deionized water from a flow collar at the center of an aluminum disk with a known initial film thickness and uniform radial velocity. Radial film thickness distribution was measured using a non-intrusive laser light interface reflection technique that enabled the measurement of the instantaneous film thickness over a finite segment of the disk. Experiments were performed for a range of flow rates between 3.01pm and 15.01pm, corresponding to Reynolds numbers based on the liquid inlet gap height and velocity between 238 and 1,188. The angular speed of the disk was varied from 0 rpm to 300 rpm. When the disk was stationary, a circular hydraulic jump was present in the liquid film. The liquid-film thickness in the subcritical region (down-stream of the hydraulic jump) was an order of magnitude greater than that in the supercritical region (upstream of the hydraulic jump) which was of the order of 0.3 mm. As the Reynolds number increased, the hydraulic jump migrated toward the edge of the disk. In the case of rotation, the liquid-film thickness exhibited a maximum on the disk surface. The liquid-film inertia and friction influenced the inner region where the film thickness progressively increased. The outer region where the film thickness decreased was primarily affected by the centrifugal forces. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. At high rotational speeds, spiral waves were observed on the liquid film. It was also determined that the angle of the waves which form on the liquid surface was a function of the ratio of local radial to tangential velocity.

  17. Fluid flows and forces in development: functions, features and biophysical principles

    PubMed Central

    Freund, Jonathan B.; Goetz, Jacky G.; Hill, Kent L.; Vermot, Julien

    2012-01-01

    Throughout morphogenesis, cells experience intracellular tensile and contractile forces on microscopic scales. Cells also experience extracellular forces, such as static forces mediated by the extracellular matrix and forces resulting from microscopic fluid flow. Although the biological ramifications of static forces have received much attention, little is known about the roles of fluid flows and forces during embryogenesis. Here, we focus on the microfluidic forces generated by cilia-driven fluid flow and heart-driven hemodynamics, as well as on the signaling pathways involved in flow sensing. We discuss recent studies that describe the functions and the biomechanical features of these fluid flows. These insights suggest that biological flow determines many aspects of cell behavior and identity through a specific set of physical stimuli and signaling pathways. PMID:22395739

  18. Active unsteady aerodynamic suppression of rotating stall in an incompressible flow centrifugal compressor with vaned diffuser

    NASA Technical Reports Server (NTRS)

    Lawless, Patrick B.; Fleeter, Sanford

    1991-01-01

    A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.

  19. Modeling the Material Flow and Heat Transfer in Reverse Dual-Rotation Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Shi, L.; Wu, C. S.; Liu, H. J.

    2014-08-01

    Reverse dual-rotation friction stir welding (RDR-FSW) is a novel modification of conventional friction stir welding (FSW) process. During the RDR-FSW process, the tool pin and the assisted shoulder are separated and rotate with opposite direction independently, so that there are two material flows with reverse direction. The material flow and heat transfer in RDR-FSW have significant effects on the microstructure and properties of the weld joint. A 3D model is developed to quantitatively analyze the effects of the separated tool pin and the assisted shoulder which rotate in reverse direction on the material flow and heat transfer during RDR-FSW process. Numerical simulation is conducted to predict the temperature profile, material flow field, streamlines, strain rate, and viscosity distributions near the tool. The calculated results show that as the rotation speed of the tool pin increases, the temperature near the tool gets higher, the zone with higher temperature expands, and approximately symmetric temperature distribution is obtained near the tool. Along the workpiece thickness direction, the calculated material flow velocity and its layer thickness near the tool get lowered because the effect of the shoulder is weakened as the distance away from the top surface increases. The model is validated by comparing the predicted values of peak temperature at some typical locations with the experimentally measured ones.

  20. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1990-01-01

    In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

  1. The evolution of a dipole in a periodic forced flow

    NASA Astrophysics Data System (ADS)

    Ruiz Chavarria, Gerardo; Lopez Sanchez, Erick Javier; Hernandez Zapata, Sergio

    2015-11-01

    In a tidal induced flow between a channel and an open domain a pair of counter-rotating vortices is produced during each cycle. Such pair of vortices is known as a dipole. The Strouhal number (S) is the parameter determining if dipole escapes or is sucked during the stage of negative flowrate. Some years ago an analytical model has been proposed to determine the evolution of the vortices. This model agrees with experimental and observational data when S is close to the critical value 0.13. However, no realistic predictions are given for small values of S. In this work we present a modification of this model to take into account some details not considered before. In particular the fact that not all vorticity created into the channel is incorporates into the dipole. This fact leads to have a lower translational velocity and also to the formation of a vorticity band behind the vortices. Our results have a better agreement with numerical simulations and experimental data. Finally we study the influence of the Reynolds number in the evolution of the vortices and the interaction between dipoles produced in subsequent cycles. Authors akknowledge DGAPA-UNAM by support under project IN115315 ``Ondas y estrcturas coherentes en dinamica de fluidos.''

  2. Correlation analysis of spatio-temporal images for estimating two-dimensional flow velocity field in a rotating flow condition

    NASA Astrophysics Data System (ADS)

    Yu, Kwonkyu; Kim, Seojun; Kim, Dongsu

    2015-10-01

    Flow velocity estimation in actual rivers using image processing technique has been highlighted for hydrometric communities in the last decades, and this technique is called Large Scale Particle Image Velocimetry (LSPIV). Although LSPIV has been successfully tested in many flow conditions, it has addressed several limitations estimating mean flow field because of difficult flow conditions such as rotating, lack of light and seeds, and noisy flow conditions. Recently, an alternative technique named STIV to use spatio-temporal images based on successively recorded images has been introduced to overcome the limitations of LSPIV. The STIV was successfully applied to obtain one-dimensional flow component in the river for estimating streamflow discharge, where the main flow direction is known. Using the 5th order of central difference scheme, the STIV directly calculated the mean angle of slopes which appeared as strips in the spatio-temporal images and has been proved to be more reliable and efficient for the discharge estimation as compared with the conventional LSPIV. However, yet it has not been sufficiently qualified to derive two-dimensional flow field in the complex flow, such as rotating or locally unsteady flow conditions. We deemed that it was because the strips in the given spatio-temporal images from not properly oriented for main flow direction are not narrow enough or clearly visible, thus the direct estimating strip slope could give erroneous results. Thereby, the STIV has been mainly applied for obtaining one-dimensional flow component. In this regard, we proposed an alternative algorithm to estimate the mean slope angle for enhancing the capability of the STIV, which used correlation coefficient between odd and even image splits from the given spatio-temporal image. This method was named CASTI (Correlation Analysis of Spatio-Temporal Image). This paper described the step-by-step procedure of the CASTI and validated its capability for estimating two

  3. Modeling of forced flow/thermal gradient chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Smith, A.W.

    1992-09-01

    The forced flow/thermal gradient chemical vapor infiltration process (FCVI) has proven to be a successful technique for fabrication of ceramic matrix composites. It is particularly attractive for thick components which cannot be fabricated using the conventional, isothermal method (ICVI). Although it offers processing times that are at least an order of magnitude shorter than ICVI, FCVI has not been used to fabricate parts of complex geometry and is perceived by some to be unsuitable for such components. The major concern Is that selection and control of the flow pattern and thermal profile for optimum infiltration can be a difficult and costly exercise. In order to reduce this effort, we are developing a computer model for FCVI that simulates the densification process for given component geometry, reactor configuration and operating parameters. Used by a process engineer, this model can dramatically reduce the experimental effort needed to obtain uniform densification. A one-dimensional process model, described in a previous interim report, has demonstrated good agreement with experimental results in predicting overall densification time and density uniformity during processing and the effect of various fiber architectures and operating parameters on these process issues. This model is fundamentally unsuitable for more complex geometries, however, and extension to two- and three-dimensions is necessary. This interim report summarizes our progress since the previous interim report toward development of a ``finite volume`` model for FCVI.

  4. Modeling of forced flow/thermal gradient chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Smith, A.W. )

    1992-09-01

    The forced flow/thermal gradient chemical vapor infiltration process (FCVI) has proven to be a successful technique for fabrication of ceramic matrix composites. It is particularly attractive for thick components which cannot be fabricated using the conventional, isothermal method (ICVI). Although it offers processing times that are at least an order of magnitude shorter than ICVI, FCVI has not been used to fabricate parts of complex geometry and is perceived by some to be unsuitable for such components. The major concern Is that selection and control of the flow pattern and thermal profile for optimum infiltration can be a difficult and costly exercise. In order to reduce this effort, we are developing a computer model for FCVI that simulates the densification process for given component geometry, reactor configuration and operating parameters. Used by a process engineer, this model can dramatically reduce the experimental effort needed to obtain uniform densification. A one-dimensional process model, described in a previous interim report, has demonstrated good agreement with experimental results in predicting overall densification time and density uniformity during processing and the effect of various fiber architectures and operating parameters on these process issues. This model is fundamentally unsuitable for more complex geometries, however, and extension to two- and three-dimensions is necessary. This interim report summarizes our progress since the previous interim report toward development of a finite volume'' model for FCVI.

  5. A fully nonlinear, mixed spectral and finite difference model for thermally driven, rotating flows

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Lu, Huei-Iin; Butler, Karen A.

    1992-01-01

    Finite difference in time and the meridional plane, in conjunction with a spectral technique in the azimuthal direction, are used to approximate the Navier-Stokes equations in a model that can simulate a variety of thermally driven rotating flows in cylindrical and spherical geometries. Axisymmetric flow, linearized waves relative to a fixed or changing axisymmetric flow, nonlinear waves without wave-wave interaction, and fully nonlinear 3D flow, can in this way be calculated. A reexamination is conducted of the steady baroclinic wave case previously treated by Williams (1971) and Quon (1976).

  6. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  7. Experimental investigation of lateral forces induced by flow through model labyrinth glands

    NASA Technical Reports Server (NTRS)

    Leong, Y. M. M. S.; Brown, R. D.

    1984-01-01

    The lateral forces induced by flow through model labyrinth glands were investigated. Circumferential pressure distributions, lateral forces and stiffness coefficients data obtained are discussed. The force system is represented as a negative spring and a tangential force orthogonal to eccentricity. The magnitude of these forces are dependent on eccentricity, entry swirl, rotor peripheral velocity and seal size. A pressure equalization chamber at midgland tests should in significantly reduced forces and stiffness coefficients.

  8. Banded surface flow maintained by convection in a model of the rapidly rotating giant planets

    NASA Astrophysics Data System (ADS)

    Sun, Z.-P.; Schubert, G.; Glatzmaier, G. A.

    1993-04-01

    In three-dimensional numerical simulations of a rapidly rotating Boussinesq fluid shell, thermally driven convection in the form of columns parallel to the rotation axis generates an alternately directed mean zonal flow with a cylindrical structure. The mean structure at the outer spherical surface consists of a broad eastward flow at the equator and alternating bands of westward and eastward flows at higher latitudes in both hemispheres. The banded structure persists even though the underlying convective motions are time-dependent. These results, although still far from the actual motions seen on Jupiter and Saturn, provide support for theoretical suggestions that thermal convection can account for the remarkable banded flow structures on these planets.

  9. A computational study of laminar and turbulent flows in rotating rectangular ducts

    NASA Astrophysics Data System (ADS)

    Asan, Habip

    This work is concerned with fully developed incompressible laminar and turbulent flows through rectangular straight ducts rotating in an orthogonal mode. The Navier-Stokes equations are solved by the finite volume method for low to high rotation rates. Solutions are obtained for aspect ratios 1, 2, and 3. For laminar flow, predictions have been performed for Reynolds number of 2000 and for turbulent flow the computations were carried out for a Reynolds number of 20000. The standard k-epsilon model is used to model the turbulence. Low rotational speeds cause the formation of a pair of symmetric vortices on the cross-section. At higher rotational speeds, a more complex four-vortex structure develops. The transition point depends on the cross-sectional geometry. Moreover, over a range of Rossby numbers, either two- or four-vortex solutions are possible. The rotation leads to significant differences between the values of friction factor and Nusselt number on the suction and pressure sides of the duct.

  10. Flow Structure and Force Variation with Aspect Ratio for a Two-Degree-of-Freedom Flapping Wing

    NASA Astrophysics Data System (ADS)

    Burge, Matthew; Favale, James; Ringuette, Matthew

    2014-11-01

    We investigate experimentally the effect of aspect ratio (AR) on the flow structure and forces of a two-degree-of-freedom flapping wing. Flapping wings are known to produce complex and unsteady vortex loop structures, and the objective is to characterize their variation with AR and how this influences the lift force. Previous results on rotating wings demonstrated that changes in AR significantly affect the three-dimensional flow structure and lift coefficient. This is primarily due to the relatively greater influence of the tip vortex for lower AR. At Reynolds number of order O(103) we test wings of AR = 2-4, values typically found in nature, with simplified planform shapes. The lift force is measured using a submersible transducer at the base of the wing in a glycerin-water mixture. The qualitative, three-dimensional vortex loop structure for different ARs is obtained using multi-color dye flow visualization. Guided by this, quantitative three-component flow information, namely vorticity, the Q-criterion, and circulation, is acquired from stereoscopic particle image velocimetry in key planes. Of interest is how these parameters and the vortex loop topology vary with AR, and their connection to features in the unsteady force signal. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  11. One-dimensional analysis of plane and radial thin film flows including solid-body rotation

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

    1989-01-01

    The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.

  12. Ionospheric Heating Rates Associated with Solar Wind Forcing: Ejecta flow, High Speed Flow and Slow Flow

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Kasprzak, B.; Richardson, I.; Paige, T.; Evans, D.

    2001-12-01

    We present estimates of global ionospheric Joule and particle heating as a function of solar wind flow types over solar cycles 21, 22 and the first half of solar cycle 23. Richardson et al., [JGR, 2000] used a variety of techniques to categorize the solar wind flow as ejecta, high-speed stream or slow flow. Their work provides the basis for our catigorization of heating by flow type. The estimates of Joule heating are based on output of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure, and fits to the Polar Cap Index [Chun et al., GRL, 1999]. Estimates of particle heating are derived from polar orbiting satellites. Although ejecta only account for 19% of the solar wind flow, they account for 27% of the Joule heating. High-speed stream flow accounts for 47% of the flow occurrence and 44% of the Joule heating. We will show similar comparisons for particle heating. Our solar cycle statistics indicate that Joule heating produces a yearly average hemispheric heating rate of 53 GW while particles produce a hemispheric heating rate of 38 GW. Joule heating exhibits more variability than particle heating. During solar cycle maximum years Joule heating accounts for twice the heating associated with particles heating.

  13. Direct Numerical Simulations of the Flow around a Golf Ball: Effect of Rotation

    NASA Astrophysics Data System (ADS)

    Smith, Clinton; Beratlis, Nikolaos; Squires, Kyle; Balaras, Elias; Tsunoda, Masaya

    2008-11-01

    Golf ball flight is affected by rotation of the ball (lift generation) and dimpling on the surface (drag reduction). Direct Numerical Simulation (DNS) is being developed for the flow around a rotating golf ball using an immersed boundary method. Adding to the computational cost is that the moving body must be re-located as the ball rotates. In the present effort, interface-tracking of the moving body is optimized using the Approximate Nearest Neighbor (ANN) approach. The code is parallelized using domain decomposition and message passing interface (MPI), and parallel performance results are presented for a range of grid sizes. Results are presented from a series of validation cases for flow over a smooth sphere and a golf ball.

  14. Experimental observation of steady inertial wave turbulence in deep rotating flows

    NASA Astrophysics Data System (ADS)

    Yarom, Ehud; Sharon, Eran

    2015-11-01

    We present experimental evidence of inertial wave turbulence in deep rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.

  15. Using flow information to support 3D vessel reconstruction from rotational angiography

    SciTech Connect

    Waechter, Irina; Bredno, Joerg; Weese, Juergen; Barratt, Dean C.; Hawkes, David J.

    2008-07-15

    For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here, we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute

  16. Force production during squats performed with a rotational resistance device under stable versus unstable conditions

    PubMed Central

    Moras, Gerard; Vázquez-Guerrero, Jairo

    2015-01-01

    [Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases. PMID:26696707

  17. Force production during squats performed with a rotational resistance device under stable versus unstable conditions.

    PubMed

    Moras, Gerard; Vázquez-Guerrero, Jairo

    2015-11-01

    [Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases. PMID:26696707

  18. Computational Study of Fluid Flow in a Rotational Chemical Vapor Deposition (CVD) Reactor

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Jaluria, Yogesh

    2015-11-01

    In a typical Chemical Vapor Deposition (CVD) reactor, the flow of the reacting gases is one of the most important considerations that must be precisely controlled in order to obtain desired film quality. In general, the fluids enter the reactor chamber, travel over to the heated substrate area, where chemical reactions lead to deposition, and then exit the chamber. However, the flow inside the reactor chamber is not that simple. It would often develop recirculation at various locations inside the reactor due to reactor geometry, flow conditions, buoyancy effects from temperature differences and rotational effects cause by the rotating substrate. This recirculation causes hot spots and affects the overall performance of the reactor. A recirculation fluid packet experiences a longer residence time inside the reactor and, thus, it heats up to higher temperatures causing unwanted chemical reactions and decomposition. It decreases the grow rate and uniformity on the substrate. A mathematical and computational model has been developed to help identify these unwanted hot spots occurring inside the CVD reactor. The model can help identify the user parameters needed to reduce the recirculation effects and better control the flow. Flow rates, pressures, rotational speeds and temperatures can all affect the severity of the recirculation within the reactor. The model can also help assist future designs as the geometry plays a big role in controlling fluid flow. The model and the results obtained are discussed in detail.

  19. Lateral Migration and Rotational Motion of Elliptic Particles in Planar Poiseuille Flow

    NASA Technical Reports Server (NTRS)

    Qi, Dewei; Luo, Li-Shi; Aravamuthan, Raja; Strieder, William; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Simulations of elliptic particulate suspensions in the planar Poiseuille flow are performed by using the lattice Boltzmann equation. Effects of the multi-particle on the lateral migration and rotational motion of both neutrally and non-neutrally buoyant elliptic particles are investigated. Low and intermediate total particle volume fraction f(sub a) = 13%, 15%, and 40% are considered in this work.

  20. Computation of fluid flow and heat transfer in rotating disc-systems

    NASA Astrophysics Data System (ADS)

    Ong, Chew-Lan

    Described here is a numerical investigation into the turbulent flow and heat transfer characteristics in rotating disc systems. Particular emphasis has been given to the study of a rotating cylindrical cavity with a radial outflow of fluid which provides a simple model of the flow between two corotating air-cooled gas-turbine discs. Study is also made of the free disc, a single disc rotating in an infinite quiescent environment. The main effort has been devoted to the development and application of a suite of computer programs for the solution of the momentum and energy equations governing the highly-skewed boundary layers on the discs, for both incompressible and compressible flows. An accurate and efficient solution procedure has been devised, based on the Keller-Box finite-difference scheme, and a noniterative method for the determination of the pressure field implemented. Serious numerical problems associated with the reverse flows in the nonentraining Ekman-type layer have been successfully overcome. Turbulence has been modelled using both isotropic and anisotropic eddy-viscosity/mixing-length formulations, the use of a low-Reynolds-number k-epsilon turbulence model proving unsatisfactory. Predictions of the velocity distributions inside the Ekman layer and in the inviscid core of the rotating cavity have been compared with extensive laser-Doppler-anemometry measurements.

  1. Capturing the S in Segregation: A Simple Model of Flowing Granular Mixtures in Rotating Drums

    ERIC Educational Resources Information Center

    Tordesillas, A.; Arber, D.

    2005-01-01

    Flowing granular mixtures in rotating cylindrical drums arise in numerous industrial settings and are of great technological significance worldwide. To date, the development of a robust mathematical model for this process remains an open research problem. However, simple mathematical models may be developed that capture some of the underlying…

  2. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    NASA Astrophysics Data System (ADS)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid

  3. Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid.

    PubMed

    Joseph, Daniel D

    2006-09-26

    In this work, I present the form of the Navier-Stokes equations implied by the Helmholtz decomposition in which the relation of the irrotational and rotational velocity fields is made explicit. The idea of self-equilibration of irrotational viscous stresses is introduced. The decomposition is constructed by first selecting the irrotational flow compatible with the flow boundaries and other prescribed conditions. The rotational component of velocity is then the difference between the solution of the Navier-Stokes equations and the selected irrotational flow. To satisfy the boundary conditions, the irrotational field is required, and it depends on the viscosity. Five unknown fields are determined by the decomposed form of the Navier-Stokes equations for an incompressible fluid: the rotational component of velocity, the pressure, and the harmonic potential. These five fields may be readily identified in analytic solutions available in the literature. It is clear from these exact solutions that potential flow of a viscous fluid is required to satisfy prescribed conditions, like the no-slip condition at the boundary of a solid or continuity conditions across a two-fluid boundary. It can be said that equations governing the Helmholtz decomposition describe the modification of irrotational flow due to vorticity, but the analysis shows the two fields are coupled and cannot be completely determined independently. PMID:16983077

  4. Structure-based turbulence model: Application to a rotating pipe flow

    NASA Astrophysics Data System (ADS)

    Poroseva, S. V.; Kassinos, S. C.; Langer, C. A.; Reynolds, W. C.

    2002-04-01

    A new approach for modeling the one-point turbulence statistics, which takes into account the information on turbulence structure, has been suggested in Kassinos and Reynolds (Report TF-61, Thermosciences Division, Department of Mechanical Engineering, Stanford University, 1994). In the present work, the structure-based model [Int. J. Heat Fluid Flow 21, 599 (2000)] (SBM) based on those ideas, was evaluated in a complex inhomogeneous turbulent flow in a cylindrical pipe rotating around its longitudinal axis. It was found that the SBM is able to predict the flow accurately at various Reynolds numbers and under stronger rotation than what is possible with the Reynolds stress transport models (RSTMs). In a fully developed rotating pipe flow, the SBM, being a linear model, slightly improves the profiles obtained with the nonlinear RSTM [J. Fluid Mech. 227, 245 (1991)]. However, if the standard equation for the dissipation rate is used, the SBM, as do the RSTMs, significantly overpredicts the turbulent kinetic energy level in this part of flow in comparison with the results of experiments.

  5. NUMERICAL SIMULATIONS OF Z-PINCH EXPERIMENTS TO CREATE SUPERSONIC DIFFERENTIALLY ROTATING PLASMA FLOWS

    SciTech Connect

    Bocchi, M.; Ummels, B.; Chittenden, J. P.; Lebedev, S. V.; Frank, A.; Blackman, E. G.

    2013-04-10

    The physics of accretion disks is of fundamental importance for understanding of a wide variety of astrophysical sources that includes protostars, X-ray binaries, and active galactic nuclei. The interplay between hydrodynamic flows and magnetic fields and the potential for turbulence-producing instabilities is a topic of active research that would benefit from the support of dedicated experimental studies. Such efforts are in their infancy, but in an effort to push the enterprise forward we propose an experimental configuration which employs a modified cylindrical wire array Z-pinch to produce a rotating plasma flow relevant to accretion disks. We present three-dimensional resistive magnetohydrodynamic simulations which show how this approach can be implemented. In the simulations, a rotating plasma cylinder or ring is formed, with typical rotation velocity {approx}30 km s{sup -1}, Mach number {approx}4, and Reynolds number in excess of 10{sup 7}. The plasma is also differentially rotating. Implementation of different external magnetic field configurations is discussed. It is found that a modest uniform vertical field of 1 T can affect the dynamics of the system and could be used to study magnetic field entrainment and amplification through differential rotation. A dipolar field potentially relevant to the study of accretion columns is also considered.

  6. The investigation of flow instabilities on a rotating disk with curvature in the radial direction

    NASA Technical Reports Server (NTRS)

    Intemann, P. A.; Clarkson, M. H.

    1982-01-01

    The major objective is to explore any visible differences of the flow field with wall curvature of the test body, including possible interaction between Taylor-Gortler instabilities present along concave walls and the inflexional instabilities investigated here. An experimental study was conducted with emphasis placed on making visual observations and recording photographically the flow instabilities present under three different rotating bodies: a flat disk, a concave paraboloid, and a convex paraboloid. The data collected for the three test bodies lead to the conclusion that the wall curvature of the concave and convex paraboloids did not alter the observed flow field significantly from that observed on the flat disk.

  7. Prediction of rotating disc flow and heat transfer in gas turbine engines

    NASA Astrophysics Data System (ADS)

    Chew, John W.

    Motivated by the need to improve design techniques for aero engines considerable effort has been put into developing predictive techniques for rotating disc flow and heat transfer. Some notable advances have been made recently and these are reviewed here. The theoretical techniques employed include analytical solutions for laminar flow, momentum-integral methods for turbulent flow, and finite difference solutions of the Reynolds-averaged Navier-Stokes equations. Each of these methods is discussed and predictive capability is illustrated through comparisons with experimental data.

  8. Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence

    NASA Astrophysics Data System (ADS)

    Bég, O. Anwar; Sim, Lik; Zueco, J.; Bhargava, R.

    2010-02-01

    A numerical solution is developed for the viscous, incompressible, magnetohydrodynamic flow in a rotating channel comprising two infinite parallel plates and containing a Darcian porous medium, the plates lying in the x-z plane, under constant pressure gradient. The system is subjected to a strong, inclined magnetic field orientated to the positive direction of the y-axis (rotational axis, normal to the x-z plane). The Navier-Stokes flow equations for a general rotating hydromagnetic flow are reduced to a pair of linear, viscous partial differential equations neglecting convective acceleration terms, for primary velocity (u‧) and secondary velocity (v‧) where these velocities are directed along the x and y axes. Only viscous terms are retained in the momenta equations. The model is non-dimensionalized and shown to be controlled by a number of dimensionless parameters. The resulting dimensionless ordinary differential equations are solved using a robust numerical method, Network Simulation Methodology. Full details of the numerics are provided. The present solutions are also benchmarked against the analytical solutions presented recently by Ghosh and Pop [Ghosh SK, Pop I. An analytical approach to MHD plasma behaviour of a rotating environment in the presence of an inclined magnetic field as compared to excitation frequency. Int J Appl Mech Eng 2006;11(4):845-856] for the case of a purely fluid medium (infinite permeability). We study graphically the influence of Hartmann number (Ha, magnetic field parameter), Ekman number (Ek, rotation parameter), Hall current parameter (Nh), Darcy number (Da, permeability parameter), pressure gradient (Np) and also magnetic field inclination (θ) on primary and secondary velocity fields. Additionally we investigate the effects of these multiphysical parameters on the dimensionless shear stresses at the plates. Both primary and secondary velocity are seen to be increased with a rise in Darcy number, owing to a simultaneous

  9. Control of Meridional Flow by a Non-Uniform Rotational Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1999-01-01

    The diffusive mass transfer of species during crystal growth in vertical ampoules is significantly affected by fluid flow in the liquid mother phase (melt). For electrically conductive melts, an elegant way of remotely inducing and controlling this flow is by utilizing a uniform rotational magnetic field (RMF) in the transverse direction. It induces an azimuthal flow which tends to homogenize the thermal and solutal fields. The rotating field also reduces the diffusion boundary layer, stabilizes temperature fluctuations, and promotes better overall crystal growth. For moderate strengths of the applied magnetic field (2-20 m Tesla) with frequencies of up to 400 Hz, the induced secondary meridional flow becomes significant. It typically consists of one roll at the bottom of the liquid column and a second roll (vortex) at the top. The flow along the centerline (ampoule axis) is directed from the growing solid (interface) towards the liquid (melt). In case of convex interfaces (e.g. in floating zone crystal growth) such flow behavior is beneficial since it suppresses diffusion at the center. However, for concave interfaces (e.g. vertical Bridgman crystal growth) such a flow tends to exacerbate the situation in making the interface shape more concave. It would be beneficial to have some control of this meridional flow- for example, a single recirculating cell with controllable direction and flow magnitude will make this technique even more attractive for crystal growth. Such flow control is a possibility if a non-uniform PNE field is utilized for this purpose. Although this idea has been proposed earlier, it has not been conclusively demonstrated so far. In this work, we derive the governing equations for the fluid dynamics for such a system and obtain solutions for a few important cases. Results from parallel experimental measurements of fluid flow in a mercury column subjected to non-uniform RMF will also be presented.

  10. Rotating electro-osmotic flow over a plate or between two plates.

    PubMed

    Chang, Chien-Cheng; Wang, Chang-Yi

    2011-11-01

    In this paper, we investigate rotating electro-osmotic (EO) flow over an infinite plate or in a channel formed by two parallel plates. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equation for a transport electrolyte in the rotating frame. It is shown that, for the single plate, the nondimensional speed of system rotation ω is the singly most important parameter, while for the channel, in addition to ω, the nondimensional electrokinetic width K also plays an important role. However, the parameter ω≡η(2) has different natural appearances in the respective cases of a single plate (SP) and two plates (TPs). More precisely, η(SP) measures the ratio λ(D)/L(K) of the Debye length to the Ekman depth, while η(TP) measures the ratio L/L(K) of the channel width to the Ekman depth. The effect of rotation is always to reduce the axial flow rate along the direction of the applied electric field, accompanied by a (secondary) transverse flow. In the SP case, the plot on the velocity plane for each ω shows an interesting closed EO Ekman spiral. The size of the spiral shrinks with increasing ω. The transverse flow is so significant that the volume transport associated with the EO Ekman spiral turns clockwise 45° to the applied field near ω=0 and gradually turns at a right angle to the applied field as ω is increased. In contrast, in the TP case, the transverse flow rate is smaller than the axial flow rate when ω is small. The transverse flow rates at all K are observed to reach their maxima at ω of order 1. The volume transport is nearly at a zero angle to the applied field near ω=0 and gradually turns to 45° to the applied field as ω is increased. In the limit of ω→∞, for both SP and TP cases, the entire system forms a rigid body rotation-there is neither axial nor transverse flow. PMID:22181511

  11. Numerical predictions for laminar source-sink flow in a rotating cylindrical cavity

    NASA Astrophysics Data System (ADS)

    Chew, J. W.; Owen, J. M.; Pincombe, J. R.

    1984-06-01

    Numerical solutions are presented for steady, axisymmetric, laminar, isothermal, source-sink flow in a rotating cylindrical cavity. These results, which are in good agreement with previously published experimental work, have been used to give a fresh insight into the nature of the flow and to investigate the validity of other theoretical solutions. When the fluid enters the cavity through a central uniform radial source and leaves through an outer sink, it is shown that the flow near the disks can be approximated by two known analytical solutions. If the radial source is replaced by an axial inlet, the flow becomes more complex, with a wall jet forming on the downstream disk at sufficiently high flow rates.

  12. Blade-to-Blade Flow at Centrifugal Impeller Exit Under Rotating Stall

    NASA Astrophysics Data System (ADS)

    Shin, You Hwan; Kim, Kwang Ho

    This study presents the unsteady fluctuation measurements of impeller discharge flow for a centrifugal compressor in unstable operating region. The characteristics of the blade-to-blade flow under rotating stall were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer and high frequency pressure transducers mounted on the shroud wall. The flow characteristics in terms of the radial and tangential velocity components and turbulence intensity at the impeller exit were analyzed by using double phase-locked ensemble averaging techniques. During one stall period, a deep wake core was observed on the suction surface near the hub for the maximum radial velocity instant. On the other hand, large wake region existed in the middle of the passage near the shroud side. For the radial velocity increasing instant a quite strong core flow was generated at the pressure side, however, for the decreasing instant comparatively strong core flow was developed near the suction side.

  13. Flow Visualization of Forced and Natural Convection in Internal Cavities

    SciTech Connect

    John Crepeau; Hugh M. Mcllroy,Jr.; Donald M. McEligot; Keith G. Condie; Glenn McCreery; Randy Clarsean; Robert S. Brodkey; Yann G. Guezennec

    2002-01-31

    The report descries innovative flow visualization techniques, fluid mechanics measurements and computational models of flows in a spent nuclear fuel canister. The flow visualization methods used a fluid that reacted with a metal plate to show how a local reaction affects the surrounding flow. A matched index of refraction facility was used to take mean flow and turbulence measurements within a generic spent nuclear fuel canister. Computational models were also made of the flow in the canister. It was determined that the flow field in the canister was very complex, and modifications may need to be made to ensure that the spent fuel elements are completely passivated.

  14. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

    NASA Astrophysics Data System (ADS)

    Huang, S.; Guo, J.; Yang, F. X.

    2013-12-01

    In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects.

  15. A 3D pseudospectral method for cylindrical coordinates. Application to the simulations of rotating cavity flows

    NASA Astrophysics Data System (ADS)

    Peres, Noele; Poncet, Sébastien; Serre, Eric

    2012-08-01

    The present work proposes a collocation spectral method for solving the three-dimensional Navier-Stokes equations using cylindrical coordinates. The whole diameter -R⩽r⩽R is discretized with an even number of radial Gauss-Lobatto collocation points and an angular shift is introduced in the Fourier transform that avoid pole and parity conditions usually required. The method keeps the spectral convergence that reduces the number of grid points with respect to lower-order numerical methods. The grid-points distribution densifies the mesh only near the boundaries that makes the algorithm well-suited to simulate rotating cavity flows where thin layers develop along the walls. Comparisons with reliable experimental and numerical results of the literature show good quantitative agreements for flows driven by rotating discs in tall cylinders and thin inter-disc cavities. Associated to a spectral vanishing viscosity [E. Séverac, E. Serre, A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities, J. Comp. Phys. 226 (2007) 1234-1255], the method provides very promising LES results of turbulent cavity flows.

  16. Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Itikawa, Y.

    1976-01-01

    The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

  17. Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Chen, M.; Classen, I. G. J.; Domier, C. W.; Fitzpatrick, R.; Grierson, B. A.; Luhmann, N. C.; Muscatello, C. M.; Okabayashi, M.; Olofsson, K. E. J.; Paz-Soldan, C.

    2016-05-01

    The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q95, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.

  18. Forced nutations of the Earth: Contributions from the effects of ellipticity and rotation on the elastic deformations

    NASA Technical Reports Server (NTRS)

    Buffett, B. A.; Mathews, P. M.; Herring, T. A.; Shapiro, I. I.

    1993-01-01

    We determine the deformation produced by the lunisolar tidal potential in a rotating, spheroidal model Earth. We proceed by decomposing the equations of motion into separate, though coupled, equations for the nutational and deformational parts of the Earth's response. Using this scheme, we derive a simpler set of equations for the deformational displacements, where the driving forces include not only the tidal terms but also inertial forces and gravitational perturbations associated with the nutational motions. We show that the deformations are affected only to a very small extent by the Earth's asphericity and rotation. This fact is exploited to set up a perturbative procedure, whereby the equation governing the deformation is separated into equations of zeroth and first orders in the perturbation.

  19. Force and torque on a cylinder rotating in a narrow gap at low Reynolds number: Scaling and lubrication analyses

    NASA Astrophysics Data System (ADS)

    Yang, J.; Wolgemuth, C. W.; Huber, G.

    2013-05-01

    The hydrodynamic forces and torques on a rotating cylinder in a narrow channel are investigated in this paper using lubrication analysis and scaling analysis. To explore the effect of the shape of the gap, three different geometries are considered. The force and torque expressions from lubrication analysis agree well with numerical solutions when the gap between cylinder and wall is small. The solutions from scaling analysis can be applied over a broader range, but only if the scaling coefficients are properly deduced from numerical solution or lubrication analysis. Self-similarity in the solutions is discussed as well.

  20. The application of potential flow theory to the rotational dynamics of spheroids, disks, and cylinders

    NASA Technical Reports Server (NTRS)

    Weinheimer, A. J.; Few, A. A., Jr.

    1985-01-01

    An example for the considered phenomenon in the area of cloud microphysics is the rotational motion of ice particles as they fall through the air. Of fundamental importance for the general problem is a knowledge of the magnitude of the torque exerted by the fluid on the translating object as well as the frequency of the rotational oscillation which results from this torque. The present investigation has the objective to obtain estimates of these quantities, and to assess the accuracy of these estimates. Torques and oscillation frequencies for spheroidal objects immersed in flow are computed for potential flow and compared to measured values. The results form a consistent picture in which the ratios of measured to potential flow values are always less than 1 but generally greater than 0.1. The reason for this is described in terms of the well-known deviations of real flow from potential flow. The reported results are of academic interest in filling a gap in the knowledge regarding the applicability of potential flow.

  1. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to

  2. Statistics of turbulent fluctuations in counter-rotating Taylor-Couette flows.

    PubMed

    Huisman, Sander G; Lohse, Detlef; Sun, Chao

    2013-12-01

    The statistics of velocity fluctuations of turbulent Taylor-Couette flow are examined. The rotation rates of the inner and outer cylinders are varied while keeping the Taylor number fixed to 1.49×10(12) [O(Re)=10(6)]. The azimuthal velocity component of the flow is measured using laser Doppler anemometry. For each experiment 5×10(6) data points are acquired and carefully analyzed. Using extended self-similarity [Benzi et al., Phys. Rev. E 48, R29 (1993)] the longitudinal structure function exponents are extracted and are found to weakly depend on the ratio of the rotation rates. For the case where only the inner cylinder rotates the results are in good agreement with results measured by Lewis and Swinney [Phys. Rev. E 59, 5457 (1999)] using hot-film anemometry. The power spectra show clear -5/3 scaling for the intermediate angular velocity ratios -ω(o)/ω(i)∈{0.6,0.8,1.0}, roughly -5/3 scaling for -ω(o)/ω(i)∈{0.2,0.3,0.4,2.0}, and no clear scaling law can be found for -ω(0)/ω(i)=0 (inner cylinder rotation only); the local scaling exponent of the spectra has a strong frequency dependence. We relate these observations to the shape of the probability density function of the azimuthal velocity and the presence of a neutral line. PMID:24483551

  3. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    SciTech Connect

    Guntur, S.; Schreck, S.; Sorensen, N. N.; Bergami, L.

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  4. Measuring the orientation and rotation rate of 3D printed particles in turbulent flow

    NASA Astrophysics Data System (ADS)

    Voth, Greg; Marcus, Guy G.; Parsa, Shima; Kramel, Stefan; Ni, Rui; Cole, Brendan

    2014-11-01

    The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 μm. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow. This research is supported by NSF Grant DMR-1208990.

  5. Measuring the orientation and rotation rate of 3D printed particles in turbulent flow

    NASA Astrophysics Data System (ADS)

    Voth, Greg; Kramel, Stefan; Cole, Brendan

    2015-03-01

    The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 ?m. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow.

  6. Effect of shaft rotation on the incompressible flow in a labyrinth seal

    NASA Technical Reports Server (NTRS)

    Demko, J. A.; Morrison, G. L.; Rhode, D. L.

    1987-01-01

    The incompressible flow in a labyrinth seal at low leakage rates was computationally and experimentally investigated over a wide range of seal rotation rates. QUICK differencing was employed in the finite difference code to reduce the effects of false diffusion. The use of measured inlet boundary conditions for the axial and swirl velocity components and for the turbulent kinetic energy resulted in good agreement between velocity predictions and hot-film measurements. It was found that when the rotation rate is increased beyond a certain point, a second recirculation zone forms inside the seal cavity, altering the flow field in the cavity and resulting in a substantial increase in the pressure drop across it.

  7. A RANS/DES Numerical Procedure for Axisymmetric Flows with and without Strong Rotation

    SciTech Connect

    Andrade, A J

    2007-10-30

    A RANS/DES numerical procedure with an extended Lax-Wendroff control-volume scheme and turbulence model is described for the accurate simulation of internal/external axisymmetric flow with and without strong rotation. This new procedure is an extension, from Cartesian to cylindrical coordinates, of (1) a second order accurate multi-grid, control-volume integration scheme, and (2) a k-{omega} turbulence model. This paper outlines both the axisymmetric corrections to the mentioned numerical schemes and the developments of techniques pertaining to numerical dissipation, multi-block connectivity, parallelization, etc. Furthermore, analytical and experimental case studies are presented to demonstrate accuracy and computational efficiency. Notes are also made toward numerical stability of highly rotational flows.

  8. Rotating annulus laboratory experiments with application to baroclinic channel flows with narrows

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Wenzel, Julia; Egbers, Christoph

    2010-05-01

    The differentially heated rotating annulus is a classical experiment of geophysical fluid dynamics that shows many similarities with large-scale atmospheric flows. Still, many features of the annulus flow are not well understood and modern non-intrusive measurement techniques can help to clarify them. Moreover, blocked or partly blocked annulus flows are less well studied although such flows show resemblance with oceanic channel flows. We present experimental results from a heated rotating annulus with a barrier that constricts the flow along the inner wall and at the bottom [1]. For the experiments a flow regime has been chosen that is characterized by an Eady wave with azimuthal wave number three. Without the barrier, the wave propagates prograde with no significant structural change. In contrast, when the barrier is mounted, wave crests break approaching it but redevelop downstream of the barrier. We are interested in the transient wave behavior and in particular in the dominant frequencies that occur in the narrow and downstrean or upstream of it. Moreover, we study the impact of a slowly varying radial temperature gradient on the wave's phase speed and the period it takes for the reestablishment of the baroclinic wave downstream of the barrier. It is suggested that the experiments are useful in understanding some features of the flow through the Mozambique Channel. It has been shown that the flow characteristic within the Channel is quite different from the one downstream of it [2]. [1] J. Wenzel (2009): Barokline Wellen in einem rotierenden asymmetrischen Tank, Studienarbeit BTU Cottbus, Univ. Leipzig, 55pp. [2] U. Harlander, H. Ridderinkhof, M.W. Schouten, and W.P.M. De Ruijter (2009): Long term observations of transport, eddies, and Rossby waves in the Mozambique Channel, J. Geophys. Res., 114, C02003, doi:10.1029/2008JC004846.

  9. Correlation of steel corrosion in pipe flow with jet impingement and rotating cylinder tests

    SciTech Connect

    Efird, K.D.; Wright, E.J.; Boros, J.A.; Hailey, T.G.

    1993-12-01

    The relationship of laboratory fluid flow corrosion test techniques to flow-accelerated corrosion in field applications and the parameters required to apply laboratory data effectively in the field were studied. Single-phase, aqueous, sweet corrosion of steel in turbulent pipe flow was correlated to corrosion in jet impingement and rotating cylinder tests. All tests were conducted simultaneously, using the same test fluid to minimize environmental variables and to allow a direct, realistic comparison of test methods. Rotating cylinder electrode corrosion rates did not correlate with pipe flow based on wall shear stress or mass transfer for flow-accelerated corrosion of carbon (C) steel in the environment studied. Jet impingement corrosion rates for the test ring at r/r{sub 0} = 3 correlated with pipe flow based on wall shear stress. The general equation for flow-accelerated corrosion of C steel under turbulent flow conditions in this environment was expressed as: R = a{tau}{sub w}{sup b} where R was the C steel corrosion rate in mm/y and {tau}{sub w} was the wall shear stress in N/m{sup 2}. Effects of solution chemistry were contained in the equation coefficient and exponent and require further experimental definition. The physical fluid and hydrodynamic parameters were included in {tau}{sub w}. Use of wall shear stress as the correlating factor did not imply a shear mechanism for corrosion acceleration. Wall shear stress was found to be a hydrodynamic factor that can be used effectively to relate fluid flow in different geometries, allowing valid comparison of laboratory tests and field operations.

  10. Granular Mechanics of Debris-Flow Incision: Measuring and Modeling Grain-Scale Impact Forces

    NASA Astrophysics Data System (ADS)

    McCoy, S. W.; Tucker, G. E.; Kean, J. W.; Coe, J. A.

    2012-12-01

    Although steep valleys are ubiquitous in mountainous terrain and there is evidence that episodic scour by debris flows is an important erosional process in these valleys, there is no agreed upon mechanical framework to describe debris flow incision into bedrock. In this work, we take steps towards a defensible stochastic debris flow incision rule. We first characterize frequency-magnitude distributions of basal force using measurements made with a force plate that was overridden during natural debris-flow events that incised bedrock. With these measurements in mind, we use grain-scale numerical experiments (discrete element method simulations) of free-surface, gravity-driven granular flows to quantify how changes in field measureable channel and flow properties (channel slope, flow depth, and grain size) influence the erosive potential of a flow. The basal force during five monitored natural debris-flow events had a large-magnitude, high-frequency fluctuating component. Variability in force magnitude that resulted from the fluctuating component increased linearly with the time-averaged mean basal force. Probability density functions of basal normal forces greater than the mean force were best fit by generalized Pareto distributions with well-defined means and variances. In contrast, probability density of basal normal force from simulated monodispersed flows decayed much more rapidly and in an exponential manner with increasing force magnitude. Only when monodispersed flows were replaced by broad grain size distributions, characteristic of natural debris flows, did the distributions of simulated impact forces have a similar form to those measured beneath the natural flows. These results highlight the important role flow grain size can have on basal impact force. As either bed inclination or flow depth was increased in the simulated flows, the mean and the spread of the impact force and impact energy distribution increased as well and in a nonlinear fashion. Bed

  11. Analytical prediction of labyrinth-seal-flow-induced arotor excitation forces

    NASA Technical Reports Server (NTRS)

    Rajakumar, C.; Sisto, E.

    1985-01-01

    An analytical method to calculate the rotor excitation forces arising from labyrinth seals is presented. The objective is to model the gas flow through the seal clearance passages and cavities when the rotor is positioned eccentricly relative to the stator center. The seal flow model used in the analysis yields solutions which validate the experimentally observed influence of seal parameters on seal forces reported in the literature. The analytically predicted seal pressure distributions and forces were compared with published experimental results.

  12. The motion of a light particle in a rotating Stokes flow

    NASA Astrophysics Data System (ADS)

    Mullin, Tom; Sauma Perez, Tania; Li, Yang

    2015-11-01

    We present the results of experimental investigations into the motion of light spheres in a rotating horizontal drum filled with viscous fluid. Stokesian dynamics calculations indicate a single stable fixed point on the centreline of the flow whereas calculations with finite sized spheres suggest the possibility of a range of fixed points. Our results support the latter with good quantitative accord between theory and experiment. We also consider the effects of roughness, porosity and elasticity on the fixed points and dynamics.

  13. Flow patterns of rotating time-dependent Hartree-Fock wave packets

    NASA Astrophysics Data System (ADS)

    Rosina, M.; Bouten, M.; Van Leuven, P.

    1982-12-01

    A soluble model (Elliott's model in two dimensions) is used to study how well flow patterns and features of rotational motion are represented by the time-dependent Hartree-Fock approximation. Due to the spreading of the wave packet in the exact Schrödinger time-evolution, the agreement is good only for phenomena which probe the current during a short time interval.

  14. Development of Lorentz force-type self-bearing motor for an alternative axial flow blood pump design.

    PubMed

    Lim, Tau Meng; Zhang, Dongsheng

    2006-05-01

    A Lorentz force-type self-bearing motor was developed to provide delivery of both motoring torque and levitation force for an alternative axial flow blood pump design with an enclosed impeller. The axial flow pumps currently available introduce electromagnetic coupling from the motor's stator to the impeller by means of permanent magnets (PMs) embedded in the tips of the pump's blades. This design has distinct disadvantages, for example, pumping efficiency and electromagnetic coupling transmission are compromised by the constrained or poor geometry of the blades and limited pole width of the PMs, respectively. In this research, a Lorentz force-type self-bearing motor was developed. It is composed of (i) an eight-pole PM hollow-cylindrical rotor assembly supposedly to house and enclose the impeller of an axial flow blood pump, and (ii) a six-pole stator with two sets of copper wire and different winding configurations to provide the motoring torque and levitating force for the rotor assembly. MATLAB's xPC Target interface hardware was used as the rapid prototyping tool for the development of the controller for the self-bearing motor. Experimental results on a free/simply supported rotor assembly validated the design feasibility and control algorithm effectiveness in providing both the motoring torque and levitation force for the rotor. When levitated, a maximum orbital displacement of 0.3 mm corresponding to 1050 rpm of the rotor was measured by two eddy current probes placed in the orthogonal direction. This design has the advantage of eliminating the trade-off between motoring torques, levitating force, and pumping efficiency of previous studies. It also indicated the benefits of enclosed-impeller design as having good dynamic response, linearity, and better reliability. The nonmechanical contact feature between rotating and stationary parts will further reduce hemolysis and thromboembolitic tendencies in a typical blood pump application. PMID:16683951

  15. Rotating electro-osmotic flow over a plate or between two plates

    NASA Astrophysics Data System (ADS)

    Chang, Chien-Cheng; Wang, Chang-Yi

    2011-11-01

    In this paper, we investigate rotating electro-osmotic (EO) flow over an infinite plate or in a channel formed by two parallel plates. The analysis is based on the Debye-Hückel approximation for charge distributions and the Navier-Stokes equation for a transport electrolyte in the rotating frame. It is shown that, for the single plate, the nondimensional speed of system rotation ω is the singly most important parameter, while for the channel, in addition to ω, the nondimensional electrokinetic width K also plays an important role. However, the parameter ω≡η2 has different natural appearances in the respective cases of a single plate (SP) and two plates (TPs). More precisely, η(SP) measures the ratio λD/LK of the Debye length to the Ekman depth, while η(TP) measures the ratio L/LK of the channel width to the Ekman depth. The effect of rotation is always to reduce the axial flow rate along the direction of the applied electric field, accompanied by a (secondary) transverse flow. In the SP case, the plot on the velocity plane for each ω shows an interesting closed EO Ekman spiral. The size of the spiral shrinks with increasing ω. The transverse flow is so significant that the volume transport associated with the EO Ekman spiral turns clockwise 45° to the applied field near ω=0 and gradually turns at a right angle to the applied field as ω is increased. In contrast, in the TP case, the transverse flow rate is smaller than the axial flow rate when ω is small. The transverse flow rates at all K are observed to reach their maxima at ω of order 1. The volume transport is nearly at a zero angle to the applied field near ω=0 and gradually turns to 45° to the applied field as ω is increased. In the limit of ω→∞, for both SP and TP cases, the entire system forms a rigid body rotation—there is neither axial nor transverse flow.

  16. Off-Centered Stagnation Point Flow of a Couple Stress Fluid towards a Rotating Disk

    PubMed Central

    Khan, Najeeb Alam; Riaz, Fatima

    2014-01-01

    An investigation has been made to study the off-centered stagnation flow of a couple stress fluid over a rotating disk. The model developed for the governing problem in the form of partial differential equations has been converted to ordinary differential equations with the use of suitable similarity transformation. The analytical approximation has been made with the most promising analytical approach, homotopy analysis method (HAM). The convergence region of the obtained solution is determined and plotted. The effects of couple stress and nondimensional parameters have been observed on the flows of couple stress fluid. Also comparison has been made with the Newtonian fluid as the special case of considered problem. PMID:24672291

  17. Experimental and theoretical investigation of barotropic blocking in quasi-two-dimensional rotating flows

    NASA Astrophysics Data System (ADS)

    Chkhetiani, Otto; Gledzer, Alexey; Gledzer, Evgeny; Kalashnik, Maxim; Khapaev, Alexey; Chernous'ko, Yurii

    2015-04-01

    Experiments on the excitation of zonal flows in a barotropic rotating annulus with conical bottom have been performed [1,2]. The flow was produced by two methods: mechanical pumping and suction - sourse-sink method [1] and MHD method [2]. The velocity fields have been reconstructed by the particle image velocimetry (PIV) method. Diagrams of regimes are presented in parameters of the dimensionless angular velocity of the zonal flow averaged over the channel width and the dimensionless angular velocity of transport of vortex perturbations of cyclonic and anticyclonic types. Attention is focused on the results for the regions of the diagram with slow motion of vortices with respect to the rotating coordinate system near the parameters for stationary Rossby waves (blocking of circulation). For some parameters of the flow the system with almost immobile blocked anticyclones in the outer part of the flow and rapidly moving cyclones in the main stream appears. We consider some simple linear estimation of blocking conditions [1,2]. It is obatined the solution of Obukhov-Charney equation admitting a long quasi-stationary stage of evolution in which the meridional wave number and value of the total wave energy (close to the maximum value) remained virtually unchanged over long time [3]. This effect is realized in a dominant contribution of the free surface deformation in the potential vorticity. It was shown that this effect can lead to new scenarios phase and amplitude Rossby wave blocking. This work was supported by the Russian Sciense Foundation (Project No 14-05-00847) References [1] Gledzer, A. E., Gledzer, E. B., Khapaev, A. A., & Chernous'ko, Y. L. (2014). Zonal flows, Rossby waves, and vortex transport in laboratory experiments with rotating annular channel. Izvestiya, Atmospheric and Oceanic Physics, 50(2), 122-133. [2] Gledzer, A. E. E., Gledzer, E. B., Khapaev, A. A., & Chkhetiani, O. G. (2013). Experimental manifestation of vortices and Rossby wave blocking at

  18. Analytical support for SPAR experiment 76-36. [thermal, convective and rotational fluid flow

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Grodzka, P. G.; Pond, J. E.; Spradley, L. W.

    1977-01-01

    The apparatus, materials, and procedures used in an analysis of thermal, convective, and rotational fluid flow for a second series of rocket experiments of dendrite growth are described. A constitutive supercooling criterion was calculated from the thermal data. A convection analysis was made of the various cases to ensure that convective velocities will not exceed about .01 cm/sec in the low-g tests. Damping times for fluid flow generated by rocket spin-up and spin-down were also determined, so that the conditions for this experiment are generally the same as those for the SPAR experiment 74-21 study of ammonium chloride low-g crystallizations.

  19. Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration.

    PubMed

    Quadt, Katharina A; Streichfuss, Martin; Moreau, Catherine A; Spatz, Joachim P; Frischknecht, Friedrich

    2016-02-23

    Migration of malaria parasites is powered by a myosin motor that moves actin filaments, which in turn link to adhesive proteins spanning the plasma membrane. The retrograde flow of these adhesins appears to be coupled to forward locomotion. However, the contact dynamics between the parasite and the substrate as well as the generation of forces are complex and their relation to retrograde flow is unclear. Using optical tweezers we found retrograde flow rates up to 15 μm/s contrasting with parasite average speeds of 1-2 μm/s. We found that a surface protein, TLP, functions in reducing retrograde flow for the buildup of adhesive force and that actin dynamics appear optimized for the generation of force but not for maximizing the speed of retrograde flow. These data uncover that TLP acts by modulating actin dynamics or actin filament organization and couples retrograde flow to force production in malaria parasites. PMID:26792112

  20. Stabilization and destabilization of turbulent shear flow in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Tritton, D. J.

    1992-08-01

    Processes involved in a turbulent shear flow in a rotating fluid are investigated analytically for cases when the rotation axis is parallel or antiparallel to the mean flow vorticity. These processes are formulated in ways that permit direct comparison of the underlying concepts with experimental data. The 'simplified Reynolds stress equations scheme' proposed by Johnson et al. (1972) is reformulated in terms of two angles, representing the orientation of the principal axes of the Reynolds stress tensor alpha-a and the orientation of the Reynolds stress-generating processes alpha-b, which are approximately equal according to the scheme. It is shown that, although the scheme fails at large rotation rates, it can be applied to a wide range of cases which may be tested with experimental data. The values of alpha-a and alpha-b were evaluated using numerical data of Bertoglio (1982) for homogeneous shear flow, and laboratory data for a wake (Witt and Joubert, 1985) and a free shear layer (Bidokhti and Tritton, 1992).

  1. Scaling laws for homogeneous turbulent shear flows in a rotating frame

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Mhuiris, Nessan Macgiolla

    1988-01-01

    The scaling properties of plane homogeneous turbulent shear flows in a rotating frame are examined mathematically by a direct analysis of the Navier-Stokes equations. It is proved that two such shear flows are dynamically similar if and only if their initial dimensionless energy spectrum E star (k star, 0), initial dimensionless shear rate SK sub 0/epsilon sub 0, initial Reynolds number K squared sub 0/nu epsilon sub 0, and the ration of the rotation rate to the shear rate omega/S are identical. Consequently, if universal equilibrium states exist, at high Reynolds numbers, they will only depend on the single parameter omega/S. The commonly assumed dependence of such equilibrium states on omega/S through the Richardson number Ri=-2(omega/S)(1-2 omega/S) is proven to be inconsistent with the full Navier-Stokes equations and to constitute no more than a weak approximation. To be more specific, Richardson number similarity is shown to only rigorously apply to certain low-order truncations of the Navier-Stokes equations (i.e., to certain second-order closure models) wherein closure is achieved at the second-moment level by assuming that the higher-order moments are a small perturbation of their isotropic states. The physical dependence of rotating turbulent shear flows on omega/S is discussed in detail along with the implications for turbulence modeling.

  2. Characteristics of Turbulence-driven Plasma Flow and Origin of Experimental Empirical Scalings of Intrinsic Rotation

    SciTech Connect

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Tang, W. M.; Lee, W. W.; Diamond, P. H.

    2011-03-20

    Toroidal plasma flow driven by turbulent torque associated with nonlinear residual stress generation is shown to recover the observed key features of intrinsic rotation in experiments. Specifically, the turbulence-driven intrinsic rotation scales close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing empirical scalings obtained from a large experimental data base. The effect of magnetic shear on the symmetry breaking in the parallel wavenumber spectrum is identified. The origin of the current scaling is found to be the enhanced kll symmetry breaking induced by increased radial variation of the safety factor as the current decreases. The physics origin for the linear dependence of intrinsic rotation on the pressure gradient comes from the fact that both turbulence intensity and the zonal flow shear, which are two key ingredients for driving the residual stress, are increased with the strength of the turbulence drives, which are R/LTe and R/Lne for the collisionless trapped electron mode (CTEM). Highlighted results also include robust radial pinches in toroidal flow, heat and particle transport driven by CTEM turbulence, which emerge "in phase", and are shown to play important roles in determining plasma profiles. Also discussed are experimental tests proposed to validate findings from these gyrokinetic simulations.

  3. Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Balachandar, S.

    2003-04-01

    The focus of this paper is the effect of spatial non-uniformity in the ambient flow on the forces acting on a rigid sphere when the sphere Reynolds number, Re, is in the range 10 to 300. Direct numerical simulations (DNS) based on a pseudospectral methodology are carried out to solve for the unsteady three-dimensional flow field around a sphere which is either held stationary or allowed to translate freely under the hydrodynamic forces. The various components of the total force, namely the inertial, steady viscous, and history forces, are systematically estimated in the context of linearly varying straining flows. The inertial forces are isolated by computing the rapid changes in the drag and lift forces in response to a rapid acceleration of the ambient flow. It is shown that the inertial forces arising due to convective acceleration at moderate Reynolds numbers follow the inviscid flow result. While the effect of temporal acceleration depends only on the sign and magnitude of the acceleration, the effect of convective acceleration is shown to depend also on the initial state of the ambient flow. A simple theoretical argument is presented to support the numerical observations. It is also shown that the effect of convective acceleration on the steady viscous force can be realized on a slower time scale. The results show that the history kernels currently available in the literature are not adequate to represent the effect of non-uniformity on the history force.

  4. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.

    PubMed

    Li, Q; Luo, K H; Li, X J

    2012-07-01

    The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model. PMID:23005565

  5. Magnetohydrodynamic counter-rotating vortices and synergetic stabilizing effects of magnetic field and plasma flow

    SciTech Connect

    Throumoulopoulos, G. N.; Tasso, H.

    2010-03-15

    A nonlinear two-dimensional steady state solution in the framework of hydrodynamics describing a row of periodic counter-rotating vortices is extended to the magnetohydrodynamic (MHD) equilibrium equation with incompressible flow of arbitrary direction. The extended solution covers a variety of equilibria because four surface quantities remain free. Similar to the case of the MHD cat-eyes equilibrium [Throumoulopoulos et al., J. Phys. A: Math. Theor. 42, 335501 (2009)] and unlike linear equilibria, the flow has a strong impact on isobaric surfaces by forming pressure islands located within the counter-rotating vortices even for values of beta (defined as the ratio of the thermal pressure over the external axial magnetic-field pressure) on the order of 0.01. Also, the axial current density is appreciably modified by the flow. Furthermore, a magnetic-field-aligned flow of experimental fusion relevance, i.e., for Alfven Mach numbers of the order of 0.01, and the flow shear in combination with the variation of the magnetic field perpendicular to the magnetic surfaces have significant stabilizing effects potentially related to the equilibrium nonlinearity. The stable region is enhanced by an external axial magnetic field.

  6. Stability Analysis of Non-Newtonian Rotational Flow with Hydromagnetic Effect

    NASA Astrophysics Data System (ADS)

    Ashrafi, Nariman

    2014-11-01

    Stability of the magnetorheological rotational flow in the presence of a magnetic excitation in the tangential direction is examined. The conservation of mass and momentum equations for an isothermal Carreau fluid between coaxial cylinders are numerically solved while mixed boundary conditions are assumed. In the absence of magnetic excitation, the base flow loses its radial flow stability to the vortex structure at a critical Taylor number. The emergence of the vortices corresponds to the onset of a supercritical bifurcation. The Taylor vortices, in turn, lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. The tangential magnetic field turns out to be a controlling parameter as it alters the critical points throughout the bifurcation diagram. Also, the effect of the Hartmann number, the Deborah number and the fluid elasticity on the flow parameters were investigated.

  7. Vortex Formation in the Starting Flow of Rotating Low-Aspect-Ratio Plates

    NASA Astrophysics Data System (ADS)

    Devoria, Adam; Ringuette, Matthew

    2010-11-01

    We investigate the unsteady flow of fish fin-like plates accelerating from rest through various angular velocity profiles. The objective is to gain an understanding of the connection among the prescribed kinematics and resulting vortex formation; a relationship which has not currently been thoroughly explored. The root-to-tip flow that is induced by the plate motion is expected to have significant effects on the vortex formation. Additionally, different plate shapes are studied to compare the effects of geometrical changes. The experiments are conducted in a water tank, and the plates have a fixed axis of rotation. Digital particle image velocimetry (DPIV) is used to measure the flow velocity in a symmetry plane through the plates. Vorticity and circulation are subsequently computed and vortices are distinguished from surrounding flow structures using vortex identification schemes. Carefully incorporating these techniques will aid the development of scaling laws to characterize the vortex formation with maximum attainable vortex strength.

  8. Computation of three-dimensional, rotational flow through turbomachinery blade rows for improved aerodynamic design studies

    NASA Technical Reports Server (NTRS)

    Subramanian, S. V.; Bozzola, R.; Povinelli, L. A.

    1986-01-01

    The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.

  9. A flow simulation study of protein solution under magnetic forces

    NASA Astrophysics Data System (ADS)

    Okada, Hidehiko; Hirota, Noriyuki; Matsumoto, Shinji; Wada, Hitoshi

    2013-02-01

    We have developed a superconducting magnet system generating magnetic forces able to compensate gravity and suppress convection of diamagnetic protein solution from which protein crystals precipitate. A simulation model has been proposed to elucidate the motion of protein solutions and search for the optimal conditions of the crystal formation process. This model incorporates general, non-uniform magnetic forces as external forces, while the previous models involve only simple, uniform magnetic forces. The simulation results indicate that the vertical component can suppress the convection of protein solution, while the horizontal component induces minimal convection. We, therefore, need to take into account the both components when considering the formation of protein crystals under magnetic forces.

  10. Experimental study on exciting force by two-phase cross flow

    SciTech Connect

    Nakamura, T.; Fujita, K.; Shiraki, K.; Kanazawa, H.; Sakata, K.

    1982-01-01

    Buffeting forces acting on tube arrays and induced by air-water two-phase cross flow, in the range of bubble flow and slug flow (or froth flow), are experimentally examined. Experimental results are treated by statistical modal analysis for use in design calculation. Based on these results, a hypothesis, especially applicable in the region of slug flow, is proposed to explain the experimental results. 9 refs.

  11. Investigation of forced unsteady separated flows using velocity-vorticity form of Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Ghia, U.; Osswald, G. A.

    1992-01-01

    The phenomenon of forced unsteady separation and eruption of boundary-layer vorticity is a highly-complex, high-Reynolds number flow phenomenon, which abruptly leads to the formation of a dynamic stall vortex as demonstrated earlier by the authors for a NACA 0015 airfoil undergoing constant rate pitch-up motion. This, as well as the results of other researchers, have convincingly demonstrated a complex vortical structure within the state of unsteady separation prior to the evolution of dynamic stall. This phenomenon of vortex eruption, although observed in studying dynamic stall phenomena, is also associated with transition from laminar to turbulence flow and its generic nature has been stressed by many researchers including the present investigators. An unsteady Navier-Stokes (NS) analysis is developed for arbitrarily maneuvering bodies using velocity-vorticity variables; this formulation is nearly form-invariant under a generalized non-inertial coordinate transformation. A fully-implicit uniformly second-order accurate method is used, with the nonlinear convective terms approximated using a biased third-order upwind differencing scheme to be able to simulate higher-Re flows. No explicit artificial dissipation is added. The numerical method is fully vectorized and currently achieves a computational index of 7 micro-seconds per time step per mesh point, using a single processor on a CRAY Y-MP. The simulation results show that the energetic free shear from the leading edge is responsible for the wall viscous layer to abruptly erupt near the center of the counterclockwise rotating eddy in the unsteady boundary layer. Primary, secondary, tertiary and quaternary vortices have been observed before the dynamic stall vortex evolves and gathers its maximum strength. This study will discuss the simulation results of Reynolds number up to Re = 45,000 and will also discuss the efforts of initial acceleration in a specific maneuver, on the evolution of the stall vortex.

  12. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

    NASA Astrophysics Data System (ADS)

    Sharf, Abdusalam M.; Jawan, Hosen A.; Almabsout, Fthi A.

    2014-03-01

    In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig) and computational (employing CFD software) investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

  13. Statistical classification of flow morphology in rapidly rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Nieves, David; Rubio, Antonio M.; Julien, Keith

    2014-08-01

    In rapidly rotating convection four flow regimes with distinct characteristics have been identified via simulations of asymptotically reduced equations as a function of a reduced Rayleigh number RaE4/3 and Prandtl number σ (K. Julien, A. Rubio, I. Grooms, and E. Knobloch, "Statistical and physical balances in low Rossby number Rayleigh-Bénard convection," Geophys. Astrophys. Fluid Dyn. 106, 392-428 (2012)). In each regime the flow organizes, with varying intensity, into coherent vertical structures. The identified morphologies, in order of increasing RaE4/3, consist of the cellular regime, the convective Taylor column regime, the plume regime, and a regime characterized by geostrophic turbulence. Presently, physical limitations on laboratory experiments and spatio-temporal resolution challenges on direct numerical simulations of the incompressible Navier-Stokes equations inhibit an exhaustive analysis of the flow morphology in the rapid rotating limit. In this paper the flow morphologies obtained from simulations of the reduced equations are investigated from a statistical perspective. We utilize auto- and cross-correlations of temporal and spatial signals that synthesize experimental data obtained from thermistor measurements or particle image velocimetry. We show how these statistics can be employed in laboratory experiments to (i) identify transitions in the flow morphology, (ii) capture the radial profiles of coherent structures, and (iii) extract transport properties of these structures. These results provide a foundation for comparison and a measure for understanding the extent to which rotationally constrained regime has been accessed by laboratory experiments and direct numerical simulations.

  14. Drag force and transport property of a small cylinder in free molecule flow: A gas-kinetic theory analysis.

    PubMed

    Liu, Changran; Li, Zhigang; Wang, Hai

    2016-08-01

    Analytical expressions are derived for aerodynamic drag force on small cylinders in the free molecule flow using the gas-kinetic theory. The derivation considers the effect of intermolecular interactions between the cylinder and gas media. Two limiting collision models, specular and diffuse scattering, are investigated in two limiting cylinder orientations with respect to the drift velocity. The earlier solution of Dahneke [B. E. Dahneke, J. Aerosol Sci. 4, 147 (1973)10.1016/0021-8502(73)90066-9] is shown to be a special case of the current expressions in the rigid-body limit of collision. Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those that align with the drift velocity. The validity of the theoretical expressions is tested against experimental mobility data available for carbon nanotubes. PMID:27627388

  15. Drag force and transport property of a small cylinder in free molecule flow: A gas-kinetic theory analysis

    NASA Astrophysics Data System (ADS)

    Liu, Changran; Li, Zhigang; Wang, Hai

    2016-08-01

    Analytical expressions are derived for aerodynamic drag force on small cylinders in the free molecule flow using the gas-kinetic theory. The derivation considers the effect of intermolecular interactions between the cylinder and gas media. Two limiting collision models, specular and diffuse scattering, are investigated in two limiting cylinder orientations with respect to the drift velocity. The earlier solution of Dahneke [B. E. Dahneke, J. Aerosol Sci. 4, 147 (1973), 10.1016/0021-8502(73)90066-9] is shown to be a special case of the current expressions in the rigid-body limit of collision. Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those that align with the drift velocity. The validity of the theoretical expressions is tested against experimental mobility data available for carbon nanotubes.

  16. Reconstruction of the 3D flow field in a differentially heated rotating annulus laboratory experiment

    NASA Astrophysics Data System (ADS)

    Harlander, U.; Wright, G. B.; Egbers, C.

    2012-04-01

    In the earth's atmosphere baroclinic instability is responsible for the heat and momentum transport from low to high latitudes. In the fifties, Raymond Hide used a rather simple laboratory experiment to study such vortices in the lab. The experiment is comprised by a cooled inner and heated outer cylinder mounted on a rotating platform, which mimics the heated tropical and cooled polar regions of the earth's atmosphere. The experiment shows rich dynamics that have been studied by varying the radial temperature difference and the rate of annulus revolution. At the Brandenburg University of Technology (BTU) Cottbus the differentially heated rotating annulus is a reference experiment of the DFG priority program 'MetStröm'. The 3D structure of the annulus flow field has been numerically simulated but, to our knowledge, has not been measured in the laboratory. In the present paper we use novel interpolation techniques to reconstruct the 3D annulus flow field from synchronous Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements. The PIV system is used to measure the horizontal velocity components at 40, 60, 80, 100, and 120 mm above the bottom. The uppermost level is thus 15 mm below the fluid's surface. The surface temperature is simultaneously measured by an infrared (IR) camera. The PIV and infrared cameras have been mounted above the annulus and they co-rotate with the annulus. From the PIV observations alone a coherent 3D picture of the flow cannot be constructed since the PIV measurements have been taken at different instants of time. Therefore a corresponding IR image has been recorded for each PIV measurement. These IR images can be used to reconstruct the correct phase of the measured velocity fields. Each IR and PIV image for which t>0 is rotated back to the position at t=0. Then all surface waves have the same phase. In contrast, the PIV velocity fields generally have different phases since they have been taken at different vertical

  17. Analysis of High-Speed Rotating Flow in 2D Polar (r - θ)Coordinate

    NASA Astrophysics Data System (ADS)

    Pradhan, S.

    2016-03-01

    The generalized analytical model for the radial boundary layer in a high-speed rotating cylinder is formulated for studying the gas flow field due to insertion of mass, momentum and energy into the rotating cylinder in the polar (r - θ) plane. The analytical solution includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in a polar (r - θ) plane. The linearization approximation (Wood & Morton, J. Fluid Mech-1980; Pradhan & Kumaran, J. Fluid Mech-2011; Kumaran & Pradhan, J. Fluid Mech-2014) is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional assumptions in the analytical model include constant temperature in the base state (isothermal condition), and high Reynolds number, but there is no limitation on the stratification parameter. In this limit, the gas flow is restricted to a boundary layer of thickness (Re (1 / 3) R) at the wall of the cylinder. Here, the stratification parameter A = √ ((mΩ 2R2) / (2kB T)) . This parameter Ais the ratio of the peripheral speed, ΩR , to the most probable molecular speed, √(2 k_B T/m), the Reynolds number Re = (ρ _w ΩR2 / μ) , where m is the molecular mass, Ω and R are the rotational speed and radius of the cylinder, k_B is the Boltzmann constant, T is the gas temperature, ρ_w is the gas density at wall, and μ is the gas viscosity. The analytical solutions are then compared with direct simulation Monte Carlo (DSMC) simulations.

  18. Thermally relativistic flows induced by gravitational-force-free particle motion in curved spacetime

    SciTech Connect

    Yano, Ryosuke; Suzuki, Kojiro; Kuroda, Hisayasu

    2009-12-15

    Thermally relativistic flows in the early Universe can be characterized by the emergence of flows induced by gravitational-force-free particle motion in curved spacetime as well as induced by the gravitational force. In this paper, thermally relativistic flows induced by gravitational-force-free particle motion in curved spacetime are discussed on the basis of the general relativistic Boltzmann equation. As an object of analysis, we consider the flow from the static state inside the Schwarzschild radius of a thermally relativistic stuffed black hole induced by such motion. Analytical results obtained using the collisionless, nongravitational general relativistic Boltzmann equation reveal that the initial cluster is induced by gravitational-force-free particle motion. Numerical results obtained using the nongravitational general relativistic Anderson-Witting model confirm the presence of an initial cluster inside the thermally relativistic stuffed black hole, which is induced by gravitational-force-free particle motion.

  19. Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian J.; Skor, Mark

    2003-01-01

    Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.

  20. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

    2016-04-01

    We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin ‑ Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10‑5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the

  1. Numerical Simulation of Molten Metal Flow Produced by Induction MHD Pump Using Rotating Twisted Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ando, Tsutomu; Ueno, Kazuyuki; Sawada, Keisuke

    Numerical simulation at the same condition as an experiment is carried out under the magnetic Stokes approximation for small shielding parameter. Results of the simulation compensate for the information of molten metal flow that we could not directly obtain in the experiment. In this paper, we study the molten metal flow at a starting condition and quasi-steady state. Besides, the energy conversion in the MHD pump is discussed. The simulation result shows that the proposed MHD pump causes the spiral induced current in a molten gallium and produces an axial flow with swirl. At quasi-steady state, it is confirmed that the centrifugal force by the excessive swirl flow produces high pressure at a duct wall and low pressure around the central axis. Since the excessive swirl flow results in large viscous dissipation, the mechanical power output of the pump uses only about 1% of the mechanical energy production in the molten gallium.

  2. Observations of ferrofluid flow under a uniform rotating magnetic field in a spherical cavity

    NASA Astrophysics Data System (ADS)

    Torres-Díaz, Isaac; Rinaldi, Carlos; Khushrushahi, Shahriar; Zahn, Markus

    2012-04-01

    Flow of a ferrofluid in spherical and cylindrical geometries were measured under the influence of a uniform rotating magnetic field produced by two perpendicular spherical coils, a so-called fluxball, excited by quadrature currents. Using an ultrasound velocity profile technique and a commercial oil based ferrofluid (EFH1, Ferrotec) we observed rotational flow around the z-axis. In comparison, the radial component of the flow was found to be negligible. Results show that the magnitude of the azimuthal velocity profile increases as the applied magnetic field amplitude increases. This behavior is also observed for ferrofluid in a cylindrical container placed inside the fluxball cavity and inside a two-pole stator winding. These results indicate that inhomogeneities in the magnetic field produced by slots and finite height of the stator winding used in prior experiments are not the source of previously observed flows produced by a two pole stator winding. The experiments reported here either point to the existence of non-uniform demagnetizing magnetic fields due to the finite height of the cylindrical container, the existence of couple stresses and spin viscosity in ferrofluids, or to the need to develop alternate governing and constitutive equations capable of describing the experimental observations.

  3. An experimental investigation on the tip leakage noise in axial-flow fans with rotating shroud

    NASA Astrophysics Data System (ADS)

    Canepa, Edward; Cattanei, Andrea; Mazzocut Zecchin, Fabio; Milanese, Gabriele; Parodi, Davide

    2016-08-01

    The tip leakage noise generated by a shrouded rotor of an axial-flow fan has been experimentally studied. The measurements have been taken at high flow rate and at the design point in a hemi-anechoic chamber, at constant rotational speed and during speed ramps. A test plenum designed according to ISO 10302 has been employed to modify the operating conditions and different inlet configurations, ducted and unducted with standard and reduced tip gap, have been considered. The basic features of the inflow have been studied by means of aerodynamic measurements taken upstream of the rotor. To separate the noise generating mechanisms from the acoustic propagation effects, the acoustic response function of the test configuration has been computed employing the spectral decomposition method, and then it has been compared with the velocity-scaled, constant-Strouhal number SPL. In this way, the noise components related to the tip leakage flow have been identified and their connection with geometry have been highlighted. The broadband part of the spectra and the peaks related to the tip leakage flow are affected by the same propagation effects, but show a different dependence on the rotational speed and on the operating point. The upstream geometry affects the radiated noise much more than the performance and even a strong reduction in the tip-gap cannot completely eliminate the related noise.

  4. Transfer of heat by self-induced flow in a rotating tube

    NASA Astrophysics Data System (ADS)

    Gilham, S.; Ivey, P. C.; Owen, J. M.

    1994-04-01

    This paper provides a review of recently published research on self-induced flow and heat transfer in a rotating tube, together with additional theoretical work on heat transfer to the cylindrical wall of the tube. Earlier work has shown that self-induced flow can occur when a tube, with one end open and the other sealed, is rotated about its axis: Fluid flows along the axis toward the sealed end and returns in an annular layer on the cylindrical wall. The flow and heat transfer on the end wall are similar to those associated with the so-called free disk, and measured velocity distributions in the tube and Nusselt numbers for the end wall are in good agreement with those computed from numerical solutions of the Navier-Stokes and energy equations. The Reynolds analogy is used in this paper to provide a correlation for the computed Nusselt numbers for the cylindrical wall, and design correlations are provided to enable the results to be applied to anti-icing systems for the nose bullets of aero-engines.

  5. Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian (Technical Monitor); Ozar, B.; Cetegen, B. M.; Faghri, A.

    2004-01-01

    An experimental study of heat transfer into a thin liquid film on a rotating heated disk is described. Deionized water was introduced at the center of a heated. horizontal disk with a constant film thickness and uniform radial velocity. Radial distribution of the disk surface temperatures was measured using a thermocouple/slip ring arrangement. Experiments were performed for a range of liquid flow rates between 3.01pm and 15.01pm. The angular speed of the disk was varied from 0 rpm to 500 rpm. The local heat transfer coefficient was determined based on the heat flux supplied to the disk and the temperature difference between the measured disk surface temperature and the liquid entrance temperature onto the disk. The local heat transfer coefficient was seen to increase with increasing flow rate as well as increasing angular velocity of the disk. Effect of rotation on heat transfer was largest for the lower liquid flow rates with the effect gradually decreasing with increasing liquid flow rates. Semi-empirical correlations are presented in this study for the local and average Nusselt numbers.

  6. Finite element analysis of the convergence of the centers of resistance and rotation in extreme moment-to-force ratios.

    PubMed

    Geramy, Allahyar; Tanne, Kazuo; Moradi, Meisam; Golshahi, Hamid; Farajzadeh Jalali, Yasamin

    2016-06-01

    The aim of this study was to investigate how very high and very low M/F ratios affect the location of the center of rotation (CRo). A 3D model of a mesiodistal slice of the mandible was used for this purpose. The model comprised the lower right central incisor, its PDL, the spongy and cortical bone, and a bracket on the labial surface of the bracket. A couple of 1N was applied to the bracket slot to find the level of the center of resistance (Cre). In a second stage, we attempted to produce bodily movement by applying the appropriate M/F ratio. M/F ratios of ±100, 200, 400, and 800 were applied to the last tenths of a millimeter of a pre-activated loop. Higher M/F ratios with positive or negative values, at constant force, increased both incisal and apical movements. The change in the tooth inclination before and after force application matched the difference produced by the different M/F ratios. It was found that a single center of rotation can be constructed for any tooth position. However, this single point does not act as the center of rotation during the entire movement. PMID:27177875

  7. The rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines

    NASA Astrophysics Data System (ADS)

    Greiner, Bernd; Neugebauer, Joachim

    2013-07-01

    We provide an up-to-date compilation of Euler rotations that model the evolution of the Central and Northern Atlantic Ocean (Table 1). The data basis forms seafloor spreading magnetic anomalies of the Atlantic. We checked the published rotations and selected those that form a consistent model. The increments of the Euler rotations going back in time from magnetic anomaly to magnetic anomaly can be illustrated by chains of points on "drift lines" that are paths of motions from continent to continent. Along these paths, the continents bordering the Atlantic Ocean can be moved back to their Mesozoic position within Pangea. Other figures exhibit the early rifting of the North Atlantic, the drift of Iberia, and the evolution of the Greenland-Ellesmere region. The points on the drift lines do not correspond directly to the lines of magnetic anomalies or their "picks" displayed today symmetrically in the Atlantic Ocean. To acquire correspondence, symmetric "flow lines" are constructed analogous to the spreading procedure. But points on the flow lines constructed by half of the increments partially also deviate from the expected symmetric position and in this way quantify displacements or jumps of the axis of rifting or spreading. Most of the selected rotations are from the excellent analyses of previous work. Essential deviations from published rotations are the M 0 rotations of Eurasia and of the Porcupine unit with respect to North America (EUR-NAM and POR-NAM). They lead to a better coincidence between the back-rotated M 0 magnetic anomalies in the Bay of Biscay on the one side and a change of the first transform motions between Greenland and Svalbard on the other side. Through this explanation, an overlap in Pangea SW of Svalbard is avoided and transform motions instead of strong extension are predicted. Some additional data are needed to complete the model: the earliest part of the path of Iberia to North America (IBA-NAM) up to M 4 is calculated assuming that Iberia

  8. Numerical investigation of direct laminar-turbulent transition in counter-rotating Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Krygier, Michael; Grigoriev, Roman

    2015-11-01

    A direct transition from laminar to turbulent flow has recently been discovered experimentally in the small-gap Taylor-Couette flow with counter-rotating cylinders. The subcritical nature of this transition is a result of relatively small aspect ratio, Γ = 5 . 26 for large Γ the transition is supercritical and involves an intermediate stable state (Coughlin & Marcus, 1996) - interpenetrating spirals (IPS). We investigate this transition numerically to probe the dynamics in regimes inaccessible to experiments for a fixed Reo = - 1000 by varying Rei . The numerics reproduce all the experimentally observed features and confirm the hysteretic nature of the transition. As Rei is increased, the laminar flow transitions to turbulence, with an unstable IPS state mediating the transition, similar to the Tollmien-Schlichting waves in plane Poiseuille flow. As Rei is decreased, turbulent flow transitions to a stable, temporally chaotic IPS state. This IPS state further transitions to either laminar or turbulent flow as Rei is decreased or increased. The stable IPS state is reminiscent of the pre-turbulent chaotic states found numerically in plane Poiseuille flow (Zammert & Eckhardt, 2015), but previously never observed experimentally.

  9. Mean flow generation by Görtler vortices in a rotating annulus with librating side walls

    NASA Astrophysics Data System (ADS)

    Ghasemi V., Abouzar; Klein, Marten; Harlander, Uwe; Kurgansky, Michael V.; Schaller, Eberhard; Will, Andreas

    2016-05-01

    Time periodic variation of the rotation rate of an annulus induces in supercritical regime an unstable Stokes boundary layer over the cylinder side walls, generating Görtler vortices in a portion of a libration cycle as a discrete event. Numerical results show that these vortices propagate into the fluid bulk and generate an azimuthal mean flow. Direct numerical simulations of the fluid flow in an annular container with librating outer (inner) cylinder side wall and Reynolds-averaged Navier-Stokes (RANS) equations as diagnostic equations are used to investigate generation mechanism of the retrograde (prograde) azimuthal mean flow in the bulk. First, we explain, phenomenologically, how absolute angular momentum of the bulk flow is mixed and changed due to the propagation of the Görtler vortices, causing a new vortex of basin size. Then we investigate the RANS equations for intermediate time scale of the development of the Görtler vortices and for long time scale of the order of several libration periods. The former exhibits sign selection of the azimuthal mean flow. Investigating the latter, we predict that the azimuthal mean flow is proportional to the libration amplitude squared and to the inverse square root of the Ekman number and libration frequency and then confirms this using the numerical data. Additionally, presence of an upscale cascade of energy is shown, using the kinetic energy budget of fluctuating flow.

  10. Flow of Newtonian and non-Newtonian fluids in a concentric annulus with a rotating inner cylinder

    NASA Astrophysics Data System (ADS)

    Kim, Young-Ju; Han, Sang-Mok; Woo, Nam-Sub

    2013-05-01

    We examine the characteristics of helical flow in a concentric annulus with radii ratios of 0.52 and 0.9, whose outer cylinder is stationary and inner cylinder is rotating. Pressure losses and skin friction coefficients are measured for fully developed flows of water and a 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), when the inner cylinder rotates at the speed of 0˜62.82 rad/s. The transitional flow has been examined by the measurement of pressure losses to reveal the relation between the Reynolds and Rossby numbers and the skin friction coefficients. The effect of rotation on the skin friction coefficient is largely changed in accordance with the axial fluid flow, from laminar to turbulent flow. In all flow regimes, the skin friction coefficient increases due to inner cylinder rotation. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, becomes smaller as the Reynolds number increases for the transitional flow regime, and gradually approaches zero for the turbulent flow regime. The value of skin friction coefficient for a radii ratio of 0.52 is about two times larger than for a radii ratio of 0.9. For 0.4% CMC solution, the value of skin friction coefficient for a radii ratio of 0.52 is about four times larger than for a radii ratio of 0.9.

  11. Lift forces on colloidal particles in combined electroosmotic and Poiseuille flow.

    PubMed

    Cevheri, Necmettin; Yoda, Minami

    2014-11-25

    Colloidal particles suspended in aqueous electrolyte solutions flowing through microchannels are subject to lift forces that repel the particles from the wall due to the voltage and pressure gradients commonly used to drive flows in microfluidic devices. There are very few studies that have considered particles subject to both an electric field and a pressure gradient, however. Evanescent-wave particle tracking velocimetry was therefore used to investigate the near-wall dynamics of a dilute suspension of 245 nm radius polystyrene particles in a monovalent electrolyte solution in Poiseuille and combined electroosmotic (EO) and Poiseuille flow through 30-μm-deep fused-silica channels. The lift force observed in Poiseuille flow, which is estimated from the near-wall particle distribution, appears to be proportional to the shear rate, a scaling consistent with hydrodynamic lift forces previously reported in field-flow fractionation studies. The estimates of the lift force observed in combined flow suggest that the force magnitude exceeds the sum of the lift forces observed in EO flow at the same electric field or in Poiseuille flow at the same shear rate. Moreover, the force magnitude appears to be proportional to the electric field magnitude and have a power law dependence on the shear rate with an exponent between 0.4 and 0.5. This unexpected scaling suggests that the repulsive lift force observed in combined electroosmotic and Poiseuille flow is a new phenomenon, distinct from previously reported electroviscous, hydrodynamic lift, or dielectrophoretic-like forces, and warrants further study. PMID:25343853

  12. Experimental study of the stability and flow characteristics of floating liquid columns confined between rotating disks

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.; Soto, L.; Strong, P. F.; Wang, C. A.

    1980-01-01

    A low Bond number simulation technique was used to establish the stability limits of cylindrical and conical floating liquid columns under conditions of isorotation, equal counter rotation, rotation of one end only, and parallel axis offset. The conditions for resonance in cylindrical liquid columns perturbed by axial, sinusoidal vibration of one end face are also reported. All tests were carried out under isothermal conditions with water and silicone fluids of various viscosities. A technique for the quantitative measurement of stream velocity within a floating, isothermal, liquid column confined between rotatable disks was developed. In the measurement, small, light scattering particles were used as streamline markers in common arrangement, but the capability of the measurement was extended by use of stereopair photography system to provide quantitative data. Results of velocity measurements made under a few selected conditions, which established the precision and accuracy of the technique, are given. The general qualitative features of the isothermal flow patterns under various conditions of end face rotation resulting from both still photography and motion pictures are presented.

  13. Primate-inspired vehicle navigation using optic flow and mental rotations

    NASA Astrophysics Data System (ADS)

    Arkin, Ronald C.; Dellaert, Frank; Srinivasan, Natesh; Kerwin, Ryan

    2013-05-01

    Robot navigation already has many relatively efficient solutions: reactive control, simultaneous localization and mapping (SLAM), Rapidly-Exploring Random Trees (RRTs), etc. But many primates possess an additional inherent spatial reasoning capability: mental rotation. Our research addresses the question of what role, if any, mental rotations can play in enhancing existing robot navigational capabilities. To answer this question we explore the use of optical flow as a basis for extracting abstract representations of the world, comparing these representations with a goal state of similar format and then iteratively providing a control signal to a robot to allow it to move in a direction consistent with achieving that goal state. We study a range of transformation methods to implement the mental rotation component of the architecture, including correlation and matching based on cognitive studies. We also include a discussion of how mental rotations may play a key role in understanding spatial advice giving, particularly from other members of the species, whether in map-based format, gestures, or other means of communication. Results to date are presented on our robotic platform.

  14. On the receptivity and non-parallel stability of travelling disturbances in rotating disk flow

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Hall, P.; Malik, M. R.

    1990-01-01

    The generation and evolution of small amplitude wavelength traveling disturbances in rotating disk flow is discussed. The steady rotational speed of the disk is perturbed so as to introduce high frequency oscillations in the flow field. Secondly, surface imperfections are introduced on the disk such as roughness elements. The interaction of these two disturbances will generate the instability waves whose evolution is governed by parabolic partial differential equations that are solved numerically. For the class of disturbances considered (wavelength on the order of Reynolds number), it is found that eigensolutions exist which decay or grow algebraically in the radial direction. However, these solutions grow only for frequencies larger than 4.58 times the steady rotational speed of the disk. The computed receptivity coefficient shows that there is an optimum size of roughness for which these modes are excited the most. The width of these roughness elements in the radial direction is about .1 r(sub 0) where r(sub 0) is the radial location of the roughness. It is also found that the receptivity coefficient is larger for a negative spanwise wavenumber than for a positive one. Typical wave angles found for these disturbances are about -26 degrees.

  15. Experimental study of flow and heat transfer in a rotating chemical vapor deposition reactor

    NASA Astrophysics Data System (ADS)

    Wong, Sun

    An experimental model was set up to study the rotating vertical impinging chemical vapor deposition reactor. Deposition occurs only when the system has enough thermal energy. Therefore, understanding the fluid characteristic and heat transfer of the system will provide a good basis to understand the full model. Growth rate and the uniformity of the film are the two most important factors in CVD process and it is depended on the flow and thermal characteristic within the system. Optimizing the operating parameters will result in better growth rate and uniformity. Operating parameters such as inflow velocity, inflow diameter and rotational speed are used to create different design simulations. Fluid velocities and various temperatures are recorded to see the effects of the different operating parameters. Velocities are recorded by using flow meter and hot wire anemometer. Temperatures are recorded by using various thermocouples and infrared thermometer. The result should provide a quantitative basis for the prediction, design and optimization of the system and process for design and fabrication of future CVD reactors. Further assessment of the system results will be discuss in detail such as effects of buoyancy and effects of rotation. The experimental study also coupled with a numerical study for further validation of both model. Comparisons between the two models are also presented.

  16. Flow between Rotating Cylinders as a Model of Instability in Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Rodenborn, Bruce; Swinney, Harry L.

    2010-03-01

    The study of flow between rotating concentric cylinders (Couette-Taylor flow) began over a century ago and has been conducted by giants in the fields of fluid mechanics and astrophysics such as Lord Rayleigh, G.I. Taylor, and S. Chandreshekar. The system still yields seminal findings in fluid turbulence, hydrodynamic stability theory, plasma physics and chaos theory. It is also a model system for instabilities that arise in proto-planetary and proto-solar disks, the earth's core and other important applications. Simple geometry makes the base fluid state at low rotation rates analytically solvable at an undergraduate level, which belies the zoo of instabilities and patterns that develop for higher rotation rates. Low-cost cameras and open source software make a well-instrumented experiment possible for a few hundred dollars. Just as the Couette-Taylor system provides a valuable model for instability in systems driven away from thermodynamic equilibrium, it also serves as a valuable model experiment that builds important scientific abilities including: instrument control, data acquisition, image analysis, Fourier spectral analysis and other experimental skills. I use a Couette-Taylor system in annual winter schools on experimental physics, ``Hands-On Research in Complex Systems'' conducted in developing countries to stimulate interest in low-cost, table-top experimental physics.

  17. Interplay of Waves and Eddies and Energy Exchange in Rotating Stratified Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Pouquet, A.; Marino, R.; Rosenberg, D. L.; Herbert, C.

    2015-12-01

    We investigate the distribution of energy between wave and vortical modes as a function of scale in high resolution direct numerical simulations of rotating stratified Boussinesq flows with a unit aspect ratio, varying the dimensionless parameters in regimes in which wave turbulence prevails. The shift in scale from a vortex-dominated to a wave-dominated dynamics, characterized each by their Fourier spectra, is quantified by the wavenumber KR at which they cross. We examine the dependency of KR with parameters characteristics of the intrinsic dynamics of the flow such as Reynolds, Froude and Rossby numbers, and their combinations. Features of the energy exchange between potential and kinetic energy related to the interplay of wave modes and vortical modes are also explored and results recast in the context of geophysical flows.

  18. Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion

    SciTech Connect

    Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas; Shafie, Sharidan

    2015-05-15

    Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions with technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.

  19. Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion

    NASA Astrophysics Data System (ADS)

    Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas; Shafie, Sharidan

    2015-05-01

    Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions with technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.

  20. Shear flow driven drift waves and the counter-rotating vortices

    SciTech Connect

    Haque, Q.; Saleem, H.; Mirza, Arshad M.

    2005-10-01

    It is shown that the drift waves can become unstable due to the shear flow produced by externally applied electric field. The modified Rayleigh instability condition is obtained which is applicable to both electron-ion and electron-positron-ion plasmas. It is proposed that the shear flow driven drift waves can be responsible for large amplitude electrostatic fluctuations in tokamak edges. In the nonlinear regime the stationary structures may appear in electron-positron-ion plasmas as well as electron-ion plasmas. A particular form of the shear flow can give rise to counter-rotating dipole vortices and vortex chains. The speed and amplitude of the structures are affected by the presence of positrons in the electron ion plasma. The relevance of this investigation to laboratory and astrophysical plasmas is pointed out.

  1. Numerical solution of the three-dimensional fluid flow in a rotating heterogeneous porous channel

    NASA Astrophysics Data System (ADS)

    Havstad, Mark A.; Vadasz, Peter

    1999-09-01

    A numerical solution to the problem of the three-dimensional fluid flow in a long rotating heterogeneous porous channel is presented. A co-ordinate transformation technique is employed to obtain accurate solutions over a wide range of porous media Ekman number values and consequent boundary layer thicknesses. Comparisons with an approximate asymptotic solution (for large values of Ekman number) and with theoretical predictions on the validity of Taylor-Proudman theorem in porous media for small values of Ekman number show good qualitative agreement. An evaluation of the boundary layer thickness is presented and a power-law correlation to Ekman number is shown to well-represent the results for small values of Ekman number. The different three-dimensional fluid flow regimes are presented graphically, demonstrating the distinct variation of the flow field over the wide range of Ekman numbers used. Copyright

  2. Nuclear magnetic resonance imaging of flow using the rotating ultra-fast imaging sequence

    NASA Astrophysics Data System (ADS)

    Gach, H. Michael

    Fluid dynamics has a wide range of applications including biomedical. Traditionally, experimental fluid mechanics has involved invasive techniques to study flow dynamics. The advent of magnetic resonance imaging (MRI) in the 1970's presented a powerful new noninvasive, diagnostic tool for biomedical applications. However, the slow acquisition times associated with MRI limited its usefulness in vivo for regions with flow and motion. Recent advances in ultra-fast MRI allow one to obtain quality images that are not affected by the typical degrading effects of flow. With the development of the Rotating Ultra-Fast Imaging Sequence (RUFIS) in 1995, it is possible to quantitatively measure flow rates at velocities typically seen in vivo. In addition, RUFIS allows one to verify older, invasive studies of fluid flows under various conditions. In this work, we describe the application of RUFIS to study laminar and turbulent flows through straight channels, flow emerging from a stenosis, and flow through a curved tube. The results are compared to other invasive studies and applicable theory. In order to implement RUFIS and obtain precise measurements, technological advancements are required in eddy current compensation, and gradient field and RF probe performance. In addition, pulse sequence design improvements are needed to minimize imaging errors and techniques for processing the MR data are required. We present our approaches to resolving the technical challenges associated with quantitative flow assessment and data processing. These approaches include a programmable pre-emphasis system and a Linear Algebra Method (LAM) for reconstructing oversampled, bandlimited Free Induction Decay (FID) data. The challenges of applying our flow assessment techniques in vivo are delineated for various specimen sizes and imager types. Preliminary in vivo imaging results for the rat thorax using various preparation sequences in conjunction with RUFIS are demonstrated. Techniques for

  3. MHD Flow and Heat Transfer between Coaxial Rotating Stretchable Disks in a Thermally Stratified Medium.

    PubMed

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed

    2016-01-01

    This paper investigates the unsteady MHD flow of viscous fluid between two parallel rotating disks. Fluid fills the porous space. Energy equation has been constructed by taking Joule heating, thermal stratification and radiation effects into consideration. We convert system of partial differential equations into system of highly nonlinear ordinary differential equations after employing the suitable transformations. Convergent series solutions are obtained. Behavior of different involved parameters on velocity and temperature profiles is examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and inspected. It is found that tangential velocity profile is increasing function of rotational parameter. Fluid temperature reduces for increasing values of thermal stratification parameter. At upper disk heat transfer rate enhances for larger values of Eckert and Prandtl numbers. PMID:27218651

  4. Torque measurements and numerical determination in differentially rotating wide gap Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Merbold, S.; Brauckmann, H. J.; Egbers, C.

    2013-02-01

    We investigate experimentally and numerically turbulent Taylor-Couette flow with independently rotating cylinders and radius ratio η=0.5. The torque acting on the inner wall is measured to analyze the transverse current of azimuthal motion Jω. The scaling of the torque with shear Reynolds number is determined for the outer cylinder at rest. For constant shear Reynolds number we investigate various ratios of angular velocities and find a torque maximum for counter-rotating cylinders that deviates from the prediction suggested by van Gils [J. Fluid Mech.10.1017/jfm.2012.236 706, 118 (2012)]. The direct comparison between the experiment and the numerical simulation shows a good agreement in the torques.

  5. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Gillies, D. C.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  6. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Gillies, D. C.; Volz, M. P.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  7. MHD Flow and Heat Transfer between Coaxial Rotating Stretchable Disks in a Thermally Stratified Medium

    PubMed Central

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alsaedi, Ahmed

    2016-01-01

    This paper investigates the unsteady MHD flow of viscous fluid between two parallel rotating disks. Fluid fills the porous space. Energy equation has been constructed by taking Joule heating, thermal stratification and radiation effects into consideration. We convert system of partial differential equations into system of highly nonlinear ordinary differential equations after employing the suitable transformations. Convergent series solutions are obtained. Behavior of different involved parameters on velocity and temperature profiles is examined graphically. Numerical values of skin friction coefficient and Nusselt number are computed and inspected. It is found that tangential velocity profile is increasing function of rotational parameter. Fluid temperature reduces for increasing values of thermal stratification parameter. At upper disk heat transfer rate enhances for larger values of Eckert and Prandtl numbers. PMID:27218651

  8. Fluorescence Imaging of Rotational and Vibrational Temperature in a Shock Tunnel Nozzle Flow

    NASA Technical Reports Server (NTRS)

    Palma, Philip C.; Danehy, Paul M.; Houwing, A. F. P.

    2003-01-01

    Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.

  9. Combined Effect of Hall and Ion-Slip Currents on Unsteady MHD Couette Flows in a Rotating System

    NASA Astrophysics Data System (ADS)

    Jha, Basant K.; Apere, Clement A.

    2010-10-01

    The unsteady MHD Couette flows of a viscous incompressible electrically conducting fluid between two parallel plates in a rotating system are studied taking hall and ion-slip currents into consideration. The relevant equations are solved analytically using the Laplace transform techniques. A unified closed form analytical expressions for the velocity and the skin friction for the cases; when the magnetic lines of force are fixed relative to the fluid or to the moving plate are derived. The solution obtained shows that the inclusion of Hall and ion-slip currents gives some interesting results. It is found that the influence of the Hall and ion slip parameters have a reducing effect on the magnitude of the secondary velocity especially when the magnetic lines of force are fixed relative to the moving plate. It is also interesting to note that the presence of Hall and ion-slip currents led to an increase in the time it took both the primary and the secondary velocities to achieve their steady state values. On the other hand, the resultant skin friction on the moving plate decreases with an increase in both the Hall and ion-slip parameters when the magnetic field is fixed relative to the fluid, while the opposite behaviour is noticed the magnetic field is fixed relative to the moving plate.

  10. Flow field and thermal characteristics induced by a rotationally oscillating heated flat plate

    NASA Astrophysics Data System (ADS)

    Koffi, Moise

    The objective of this dissertation is the study the flow and heat transfer in the vicinity of a rectangular flat heated plate of subject to rotational oscillations. Of interest is the effect of the flow field on the thermal characteristics of the plate's surface. A constant heat flux is applied to both sides while the plate is rotated about a fixed edge at a frequency of 2 rad/s in an infinite domain at atmospheric pressure. A computational simulation of the flow with FLUENT reveals a hooked-shape vortex tube around the free edges of the plate, which is confirmed by the flow visualization with smoke particles. During the flapping cycle, vortices form and grow progressively on one face while they shed from the opposite, until they are completely detached from both surfaces at stroke reversal. A data acquisition system uses a numerical computing and programming software (MATLAB) to track the surface temperature recorded by J- type thermocouples at desired locations on the plate. Both experimental and computational results agree with local surface temperature profiles characterized by a transient unsteady periodic variation followed by a steady periodic phase. These characteristics are symmetrical about the median plane of the plate, which is normal to its axis of rotation. The cooling rate of the surface, proportional to the frequency of rotation, depends on the angular position of the plate and the spatial location on the plate's surface. However, the highest heat transfer coefficient is recorded at free edges, especially in the corners swept by strong tip vortices shedding in two orthogonal directions. Conclusions of the present study are used to explain the role of ear flapping in the metabolic heat regulation of large mammals such as elephants. Flow visualization and surface temperature measurements of full size rigid and flexible elephant ear-shape models were carried out. Results indicate improved interaction between the shedding vortex and the model's boundary

  11. [Flow field test on the tangential section of polypropylene tubular membrane module annular gap in rotating linear tangential flow].

    PubMed

    Wang, Chengduan; Chen, Wenmei; Li, Jianming; Jiang, Guangming

    2002-07-01

    A new type of polypropylene tubular membrane apparatus of rotating cross flow was designed to study experimentally the flow field characteristics of the tangential section of the membrane annular gap. The authors designed rotary linear tangential flow tubular membrane separator and its test system for the first time. Through the system, the flow field of rotary linear tangential flow with the advanced Particle Image Velocimetry (PIV) was tested for the first time. A lot of streamlines and vorticity maps of the tangential section of separator in different operation conditions were obtained. The velocity distribution characteristics were analyzed quantitatively: 1. At non-vortex area, no matter how the operation parameters change, the velocity near to rotary tangential flow entrance was higher than the velocity far from entrance at the same radial coordinates. At vortex area, generally the flow velocity of inner vortex was lower than the outer vortex. At the vortex center, the velocity was lowest, the tangential velocity were equal to zero generally. At the vortex center zone, the tangential velocity was less than the axial velocity. 2. Under test operations, the tangential velocity and axial velocity of vortices borders are 1-2 times of average axial velocity of membrane module annular gap. The maximum tangential velocity and axial velocity of ellipse vortices were 2-6 times of average axial velocity of membrane module annular gap. 3. The vortices that are formed on the tangential section, there existed mass transfer between inner and outer parts of fluid. Much fluid of outer vortices got into the inner ones, which was able to prevent membrane tube from particles blocking up very soon. PMID:12371104

  12. Statistics of turbulent fluctuations in counter-rotating Taylor-Couette flows

    NASA Astrophysics Data System (ADS)

    Huisman, Sander G.; Lohse, Detlef; Sun, Chao

    2013-12-01

    The statistics of velocity fluctuations of turbulent Taylor-Couette flow are examined. The rotation rates of the inner and outer cylinders are varied while keeping the Taylor number fixed to 1.49×1012 [O(Re)=106]. The azimuthal velocity component of the flow is measured using laser Doppler anemometry. For each experiment 5×106 data points are acquired and carefully analyzed. Using extended self-similarity [Benzi , Phys. Rev. E1063-651X10.1103/PhysRevE.48.R29 48, R29 (1993)] the longitudinal structure function exponents are extracted and are found to weakly depend on the ratio of the rotation rates. For the case where only the inner cylinder rotates the results are in good agreement with results measured by Lewis and Swinney [Phys. Rev. E1063-651X10.1103/PhysRevE.59.5457 59, 5457 (1999)] using hot-film anemometry. The power spectra show clear -5/3 scaling for the intermediate angular velocity ratios -ωo/ωi∈{0.6,0.8,1.0}, roughly -5/3 scaling for -ωo/ωi∈{0.2,0.3,0.4,2.0}, and no clear scaling law can be found for -ω0/ωi=0 (inner cylinder rotation only); the local scaling exponent of the spectra has a strong frequency dependence. We relate these observations to the shape of the probability density function of the azimuthal velocity and the presence of a neutral line.

  13. Bulk flow coupled to a viscous interfacial film sheared by a rotating knife edge

    NASA Astrophysics Data System (ADS)

    Raghunandan, Aditya; Rasheed, Fayaz; Hirsa, Amir; Lopez, Juan

    2015-11-01

    The measurement of the interfacial properties of highly viscous biofilms, such as DPPC (the primary component of lung surfactant), present on the surface of liquids (bulk phase) continues to attract significant attention. Most measurement techniques rely on shearing the interfacial film and quantifying its viscous response in terms of a surface (excess) viscosity at the air-liquid interface. The knife edge viscometer offers a significant advantage over other approaches used to study highly viscous films as the film is directly sheared by a rotating knife edge in direct contact with the film. However, accurately quantifying the viscous response is non-trivial and involves accounting for the coupled interfacial and bulk phase flows. Here, we examine the nature of the viscous response of water insoluble DPPC films sheared in a knife edge viscometer over a range of surface packing, and its influence on the strength of the coupled bulk flow. Experimental results, obtained via Particle Image Velocimetry in the bulk and at the surface (via Brewster Angle Microscopy), are compared with numerical flow predictions to quantify the coupling across hydrodynamic flow regimes, from the Stokes flow limit to regimes where flow inertia is significant. Supported by NNX13AQ22G, National Aeronautics and Space Administration.

  14. Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds.

    PubMed

    Lin, Chia-Chang; Lin, Yu-Hong; Tan, Chung-Sung

    2010-03-15

    The removal of CO(2) from a 10 vol% CO(2) gas by chemical absorption with 30 wt% alkanolamine solutions containing monoethanolamine (MEA), piperazine (PZ), and 2-amino-2-methyl-1-propanol (AMP) in the cross-flow rotating packed bed (RPB) was investigated. The CO(2) removal efficiency increased with rotor speed, liquid flow rate and inlet liquid temperature. However, the CO(2) removal efficiency decreased with gas flow rate. Also, the CO(2) removal efficiency was independent of inlet gas temperature. The 30 wt% alkanolamine solutions containing PZ with MEA were the appropriate absorbents compared with the single alkanolamine (MEA, AMP) and the mixed alkanolamine solutions containing AMP with MEA. A higher portion of PZ in alkanolamine solutions was more favorable to CO(2) removal. Owing to less contact time in the cross-flow RPB, alkanolamines having high reaction rates with CO(2) are suggested to be used. For the mixed alkanolamine solution containing 12 wt% PZ and 18 wt% MEA, the highest gas flow rate allowed to achieve the CO(2) removal efficiency more than 90% at a liquid flow rate of 0.54 L/min was of 29 L/min. The corresponding height of a transfer unit (HTU) was found to be less than 5.0 cm, lower than that in the conventional packed bed. PMID:19910115

  15. The effect of Thompson and Troian's nonlinear slip condition on Couette flows between concentric rotating cylinders

    NASA Astrophysics Data System (ADS)

    Power, H.; Soavi, J.; Kantachuvesiri, P.; Nieto, C.

    2015-10-01

    In this work, a detailed study of the effect of the Thompson and Troian's nonlinear slip condition on the flow behaviour of a Newtonian incompressible fluid between two concentric rotating cylinders (Couette flow) is considered. In Thompson and Troian's nonlinear condition, the slip length on the Navier slip condition is considered to be a function of the tangential shear rate at the solid surface instead of being a constant. The resulting formulation presents an apparent singularity on the slip length when a critical shear rate is approached. By considering this type of nonlinear slip condition, it is possible to predict complex characteristics of the flow field not previously reported in the literature, and to show the effect of nonlinear slip on the inverted velocity profiles previously observed in the linear slip case. Particular attention is given to the behaviour of the flow field near the critical shear rate. In such a limit, it is found that the flow field tends to slip flow with a finite slip length. Consequently, previous critique on the singular behaviour of Thompson and Troian's nonlinear model is not valid in the present case.

  16. On the stability of a solid-body-rotation flow in a finite-length pip

    NASA Astrophysics Data System (ADS)

    Wang, Shixiao; Rusak, Zvi; Gong, Rui; Liu, Feng

    2015-11-01

    The three-dimensional, inviscid and viscous flow instability modes that appear on a solid-body rotation flow in a finite-length, straight, circular pipe are analyzed. This study is a direct extension of the Wang & Rusak (1996) analysis of axisymmetric instabilities on inviscid swirling flows in a pipe. We study a general mode of perturbation that satisfies the inlet, outlet and wall conditions of a flow in a finite-length pipe with a fixed-in-time and in-space vortex generator ahead of it. The eigenvalue problem for the growth rate and the shape of the perturbations for any azimuthal wave number m is solved numerically for all azimuthal wave number m. In the inviscid flow case, the m = 1 modes are the first to become unstable as the swirl ratio is increased and dominate the perturbation's growth in a certain range of swirl levels. In the viscous flow case, the neutral stability line is presented in a Reynolds number (Re) versus swirl ratio (ω) diagram and can be used to predict the first appearance of of axisymmetric or spiral instabilities as a function of Re and L. We will discuss and demonstrate the physical mechanism and evidences of the onset of the instability.

  17. An experimental study on the effect of air bubble injection on the flow induced rotational hub

    SciTech Connect

    Nouri, N.M.; Sarreshtehdari, A.

    2009-01-15

    Modification of shear stress due to air bubbles injection in a rotary device was investigated experimentally. Air bubbles inject to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses, in this device. Increasing air void fraction leads to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress was decreased by bubble injection in all range of tested Reynolds number, changing from 50,378 to 71,238, and also by increasing air void fraction from zero to 3.06%. Skin friction reduction more than 85% was achieved in this study as maximum measured volume of air fraction injected to fluid flow while bubbles are distinct and they do not make a gas layer. Significant skin friction reduction obtained in this special case indicate that using small amount of bubble injection causes large amount of skin friction reduction in some rotary parts in the liquid phases like as water. (author)

  18. Film stability in a vertical rotating tube with a core-gas flow.

    NASA Technical Reports Server (NTRS)

    Sarma, G. S. R.; Lu, P. C.; Ostrach, S.

    1971-01-01

    The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and