Sample records for forest ecosystem final

  1. Forest ecosystems in the Alaskan taiga

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cleve, K.; Chapin, F.S. III; Flanagan, P.W.

    1986-01-01

    This volume in the series ''Ecological Studies'' provides an overview and synthesis of research on the structure and function of taiga forest ecosystems of interior Alaska. The first section discusses the nature of the taiga environment and covers climate, forest ecosystem distribution, natural regeneration of vegetation, and the role of fire. The second edition focuses on environmental controls over organism activity with discussions on growth and nutrient use, nitrogen fixation, physiological ecology of mosses, and microbial activity and element availability. The final section considers environmental controls over ecosystem processes with discussions of processes, plant-animal interactions, and a model of forestmore » growth and yield.« less

  2. Forest restoration, biodiversity and ecosystem functioning.

    PubMed

    Aerts, Raf; Honnay, Olivier

    2011-11-24

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  3. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    USGS Publications Warehouse

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  4. Aquatic biodiversity in forests: a weak link in ecosystem services resilience

    Treesearch

    Brooke E. Penaluna; Deanna H. Olson; Rebecca L. Flitcroft; Matthew A. Weber; J. Ryan Bellmore; Steven M. Wondzell; Jason B. Dunham; Sherri L. Johnson; Gordon H. Reeves

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in...

  5. INSECTS & PATHOGENS Regulators of Forest Ecosystems

    Treesearch

    Robert A. Haack; James W. Byler

    1993-01-01

    Today's forest managers are challenged by issues such as soil productivity, biodiversity, threatened and endangered species, and ecosystem sustainability; and ecosystem management has been proposed as a way to deal with them. The Society of American Foresters (1993) defines this term as keeping forest ecosystems functioning well over long periods of time in order...

  6. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  7. Acid Precipitation and the Forest Ecosystem

    ERIC Educational Resources Information Center

    Dochinger, Leon S.; Seliga, Thomas A.

    1975-01-01

    The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)

  8. Restoring Forested Wetland Ecosystems

    Treesearch

    John A. Stanturf; Emile S. Gardiner; Melvin L. Warren

    2003-01-01

    Forests as natural systems are intrinsically linked to the sustainability of fresh-water systems. Efforts worldwide to restore forest ecosystems seek to counteract centuries of forest conversion to agriculture and other uses. Afforestation, the practice of regenerating forests on land deforested for agriculture or other uses, is occurring at an intense pace in the...

  9. Criterion 3: Maintenance of forest ecosystem health and vitality

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Forest ecosystem health depends on stable forest composition and structure and on sustainable ecosystem processes. Forest disturbances that push an ecosystem beyond the range of conditions considered normal can upset the balance among processes, exacerbate forest health problems, and increase mortality beyond historical norms. Sometimes forest ecosystems respond to...

  10. Forest Ecosystem services: Water resources

    Treesearch

    Thomas P. Holmes; James Vose; Travis Warziniack; Bill Holman

    2017-01-01

    Since the publication of the Millennium Ecosystem Assessment (MEA 2005), awareness has steadily grown regarding the importance of maintaining natural capital. Forest vegetation is a valuable source of natural capital, and the regulation of water quantity and quality is among the most important forest ecosystem services in many regions around the world. Changes in...

  11. Forest Ecosystem Services As Production Inputs

    Treesearch

    Subhrendu Pattanayak; David T. Butry

    2003-01-01

    Are we cutting down tropical forests too rapidly and too extensively? If so, why? Answers to both questions are obscured in some ways by insufficient and unreliable data on the economic worth of forest ecosystem services. It is clear, however, that rapid, excessive cutting of forests can irreversibly and substantively impair ecosystem functions, thereby endangering the...

  12. Carbon allocation in forest ecosystems

    Treesearch

    Creighton M. Litton; James W. Raich; Michael G. Ryan

    2007-01-01

    Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...

  13. Forest ecosystem services: Provisioning of non-timber forest products

    Treesearch

    James L. Chamberlain; Gregory E. Frey; C. Denise Ingram; Michael G. Jacobson; Cara Meghan Starbuck Downes

    2017-01-01

    The purpose of this chapter is to describe approaches to calculate a conservative and defensible estimate of the marginal value of forests for non-timber forest products (NTFPs). 'Provisioning" is one of four categories of benefits, or services that ecosystems provide to humans and was described by the Millennium Ecosystem Assessment as 'products...

  14. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    USGS Publications Warehouse

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  15. Forest Health Monitoring and Forest Inventory Analysis programs monitor climate change effects in forest ecosystems

    Treesearch

    Kenneth W. Stolte

    2001-01-01

    The Forest Health Monitoring (FHM) and Forest Inventory and Analyses (FIA) programs are integrated bilogical monitoring systems that use nationally standardized methods to evaluate and report on the health and sustainability of forest ecosystems in the United States. Many of the anticipated changes in forest ecosystems from climate change were also issues addressed in...

  16. [Evaluation of economic forest ecosystem services in China].

    PubMed

    Wang, Bing; Lu, Shao-Wei

    2009-02-01

    This paper quantitatively evaluated the economic forest ecosystem services in the provinces of China in 2003, based on the long-term and continuous observations of economic forest ecosystems in this country, the sixth China national forest resources inventory data, and the price parameter data from the authorities in the world, and by applying the law of market value, the method of substitution of the expenses, and the law of the shadow project. The results showed that in 2003, the total value of economic forest ecosystem services in China was 11763.39 x 10(8) yuan, and the total value of the products from economic forests occupied 19.3% of the total ecosystem services value, which indicated that the economic forests not only provided society direct products, but also exhibited enormous eco-economic value. The service value of the functions of economic forests was in the order of water storage > C fixation and O2 release > biodiversity conservation > erosion control > air quality purification > nutrient cycle. The spatial pattern of economic forest ecosystem services in the provinces of China had the same trend with the spatial distribution of water and heat resources and biodiversity. To understand the differences of economic forest ecosystem services in the provinces of China was of significance in alternating the irrational arrangement of our present forestry production, diminishing the abuses of forest management, and establishing high grade, high efficient, and modernized economic forests.

  17. Application experiments to trace N-P interactions in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Krüger, Jaane; Niederberger, Jörg; Schulz, Stefanie; Lang, Friederike

    2017-04-01

    Phosphorus is a limited resource and there is increasing debate regarding the principles of tight P recycling. Forest ecosystems show commonly high P use efficiencies but the processes behind this phenomenon are still unresolved. In frame of the priority program "SPP 1685 Ecosystem nutrition - Forest strategies for limited phosphorus resources" around 70 researchers from different disciplines collaborate to unravel these processes. The overall hypothesis to be tested is that the P nutrition strategy of forest ecosystems at sites rich in mineral P is characterized by high P uptake efficiency (acquiring systems). In contrast, the P strategy of forest ecosystems facing low soil P stocks is characterized by highly efficient mechanisms of P recycling. To test this hypothesis, we analyzed five beech forest ecosystems on silicate rock with different parent materials representing a gradient of total P stocks (160 - 900 g P m-2, down to 1m soil depth). In fact, we found evidence confirming our hypothesis, but controls and drivers of P strategies are still unknown as other environmental variables differ. One of those might be the N content, as organisms strive to reach a specific internal N:P ratio. Thus, an additional application of N might also alter P nutrition. To test this, we established a factorial P x N application experiment at three of the study sites. With our presentation we will introduce this experiment and give a review on published P x N experiments discussing different advantages and disadvantages of different basic conditions (e.g. amount and application form, doses, sampling and statistical design, monitoring periods, budget calculation, isotopic tracing). Finally, we want to initiate a common discussion on the standardization of P x N field experiments to enable interdisciplinary and across-compartment comparisons (e.g. different land use, different climate zones, terrestrial and aquatic ecosystems).

  18. Whole-ecosystem experimental manipulations of tropical forests.

    PubMed

    Fayle, Tom M; Turner, Edgar C; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech

    2015-06-01

    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments.

    PubMed

    Roesch-McNally, Gabrielle E; Rabotyagov, Sergey S

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at $217.59 per household/year under a mandatory tax mechanism and $160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  20. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments

    NASA Astrophysics Data System (ADS)

    Roesch-McNally, Gabrielle E.; Rabotyagov, Sergey S.

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at 217.59 per household/year under a mandatory tax mechanism and 160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  1. Forest ecosystem services: Carbon and air quality

    Treesearch

    David J. Nowak; Neelam C. Poudyal; Steve G. McNulty

    2017-01-01

    Forests provide various ecosystem services related to air quality that can provide substantial value to society. Through tree growth and alteration of their local environment, trees and forests both directly and indirectly affect air quality. Though forests affect air quality in numerous ways, this chapter will focus on five main ecosystem services or disservices...

  2. [Forest ecosystem service and its evaluation in China].

    PubMed

    Fang, Jin; Lu, Shaowei; Yu, Xinxiao; Rao, Liangyi; Niu, Jianzhi; Xie, Yuanyuan; Zhag, Zhenming

    2005-08-01

    Facing the relative lag of forest ecosystem service and estimation in China, this paper proposed to quickly carry out the research on the evaluation of forest ecosystem service. On the basis of the classification of forest ecosystem types in China, the service of artificial and semi-artificial forest ecosystems was investigated, which was divided into eight types, i.e., timber and other products, recreation and eco-tourism, water storage, C fixation and O2 release, nutrient cycling, air quality purifying, erosion control, and habitat provision. According to the assessment index system for global ecosystem service proposed by Costanza et al., a series of assessment index system suitable for Chinese forest ecosystem service was set up, by which, the total value of forest ecosystem service in China was estimated to be 30 601.20 x 10(8) yuan x yr(-1), including direct and indirect economic value about 1 920.23 x 10(8) and 28 680.97 x 10(8) yuan x yr(-1), respectively. The indirect value was as 14.94 times as the direct one. The research aimed to bring natural resources and environment factors into the account system of national economy quickly, and to realize the green GDP at last, which would be helpful to realize sustainable development and environment protection.

  3. An Integrated Approach to Forest Ecosystem Services

    Treesearch

    José Joaquin Campos; Francisco Alpizar; Bastiaan Louman; John A. Parrotta

    2005-01-01

    Forest ecosystem services (FES) are fundamental for the Earth’s life support systems. This chapter discusses the different services provided by forest ecosystems and the effects that land use and forest management practices have on their provision. It also discusses the role of markets in providing an enabling environment for a sustainable and equitable provision of...

  4. The 1990 forest ecosystem dynamics multisensor aircraft campaign

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon

    1991-01-01

    The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.

  5. The Cooperative Forest Ecosystem Research Program

    USGS Publications Warehouse

    ,

    2002-01-01

    Changes in priorities for forest management on federal and state lands in the Pacific Northwest have raised many questions about the best ways to manage young-forest stands, riparian areas, and forest landscapes. The Cooperative Forest Ecosystem Research (CFER) Program draws together scientists and managers from the U.S. Geological Survey, Bureau of Land Management, Oregon Department of Forestry, and Oregon State University to find science-based answers to these questions. Managers, researchers, and decisionmakers, working within the CFER program, are helping develop and disseminate the knowledge needed to carry out ecosystem-based management successfully in the Pacific Northwest.

  6. Quantification of soil respiration in forest ecosystems across China

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan

    2014-09-01

    We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.

  7. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    PubMed

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a

  8. Forest operations for ecosystem management

    Treesearch

    Robert B. Rummer; John Baumgras; Joe McNeel

    1997-01-01

    The evolution of modern forest resource management is focusing on ecologically sensitive forest operations. This shift in management strategies is producing a new set of functional requirements for forest operations. Systems to implement ecosystem management prescriptions may need to be economically viable over a wider range of piece sizes, for example. Increasing...

  9. Biological invasions in forest ecosystems

    Treesearch

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  10. Supplementing forest ecosystem health projects on the ground

    Treesearch

    Cathy Barbouletos; Lynette Z. Morelan

    1995-01-01

    Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...

  11. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective

    PubMed Central

    Morris, Rebecca J.

    2010-01-01

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318

  12. Ten years of research on the MeadWestvaco Wildlife and Ecosystem Research Forest

    Treesearch

    P.D. Keyser; W.M. Ford; W.M. Ford

    2005-01-01

    Contains 90 citations and annotations of publications and final reports that describe research conducted on or in association with the MeadWestvaco Wildlife and Ecosystem Research Forest in West Virginia from 1994 through 2004.

  13. Maintaining ecosystem function and services in logged tropical forests.

    PubMed

    Edwards, David P; Tobias, Joseph A; Sheil, Douglas; Meijaard, Erik; Laurance, William F

    2014-09-01

    Vast expanses of tropical forests worldwide are being impacted by selective logging. We evaluate the environmental impacts of such logging and conclude that natural timber-production forests typically retain most of their biodiversity and associated ecosystem functions, as well as their carbon, climatic, and soil-hydrological ecosystem services. Unfortunately, the value of production forests is often overlooked, leaving them vulnerable to further degradation including post-logging clearing, fires, and hunting. Because logged tropical forests are extensive, functionally diverse, and provide many ecosystem services, efforts to expand their role in conservation strategies are urgently needed. Key priorities include improving harvest practices to reduce negative impacts on ecosystem functions and services, and preventing the rapid conversion and loss of logged forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Assessment and monitoring of forest ecosystem structure

    Treesearch

    Oscar A. Aguirre Calderón; Javier Jiménez Pérez; Horst Kramer

    2006-01-01

    Characterization of forest ecosystems structure must be based on quantitative indices that allow objective analysis of human influences or natural succession processes. The objective of this paper is the compilation of diverse quantitative variables to describe structural attributes from the arboreal stratum of the ecosystem, as well as different methods of forest...

  15. Predictors of Drought Recovery across Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Anderegg, W.

    2016-12-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. Here, we discuss what we have learned about forest ecosystem recovery from extreme drought across spatial and temporal scales, drawing on inference from tree rings, eddy covariance data, large scale gross primary productivity products, and ecosystem models. In tree rings, we find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. At larger scales, we see relatively rapid recovery of ecosystem fluxes, with strong influences of ecosystem productivity and diversity and longer recovery periods in high latidue forests. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought, and we highlight some of the key missing mechanisms in dynamic vegetation models. Our results reveal hysteresis in forest ecosystem carbon cycling and delayed recovery from climate extremes and help advance a predictive understanding of ecosystem recovery.

  16. Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.

    1999-01-01

    Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.

  17. Forest Ecosystem Services and Eco-Compensation Mechanisms in China

    NASA Astrophysics Data System (ADS)

    Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin

    2011-12-01

    Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.

  18. Disturbance dynamics of forested ecosystems

    Treesearch

    John A. Stanturf

    2004-01-01

    Forested ecosystems are dynamic, subject to natural developmental processes as well as natural and anthropogenic stresses and disturbances. Degradation is a related term. for lowered productive capacity from changes to forest structure of function (FAO. 2001). Degradation is not synonymous with disturbance, however; disturbance becomes degradation when natural...

  19. Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Ozcan, O.; Musaoglu, N.; Türkeş, M.

    2017-12-01

    The concept of `climate change vulnerability' helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. Herein, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. Thus, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem are based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a "very low" vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as "very low" account for 21% of the total area of the forest ecosystem, those classed as "low" account for 36%, those classed as "medium" account for 20%, and those classed as "high" account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results

  20. Impacts of forestry on boreal forests: An ecosystem services perspective.

    PubMed

    Pohjanmies, Tähti; Triviño, María; Le Tortorec, Eric; Mazziotta, Adriano; Snäll, Tord; Mönkkönen, Mikko

    2017-11-01

    Forests are widely recognized as major providers of ecosystem services, including timber, other forest products, recreation, regulation of water, soil and air quality, and climate change mitigation. Extensive tracts of boreal forests are actively managed for timber production, but actions aimed at increasing timber yields also affect other forest functions and services. Here, we present an overview of the environmental impacts of forest management from the perspective of ecosystem services. We show how prevailing forestry practices may have substantial but diverse effects on the various ecosystem services provided by boreal forests. Several aspects of these processes remain poorly known and warrant a greater role in future studies, including the role of community structure. Conflicts among different interests related to boreal forests are most likely to occur, but the concept of ecosystem services may provide a useful framework for identifying and resolving these conflicts.

  1. CO2 flux studies of different hemiboreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido

    2017-04-01

    Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).

  2. Disturbance dynamics and ecosystem-based forest management

    Treesearch

    Kalev Jogiste; W. Keith Moser; Malle Mandre

    2005-01-01

    Ecosystem-based management is intended to balance ecological, social and economic values of sustainable resource management. The desired future state of forest ecosystem is usually defined through productivity, biodiversity, stability or other terms. However, ecosystem-based management may produce an unbalanced emphasis on different components. Although ecosystem-based...

  3. Contingent Valuation of Forest Ecosystem Protection

    Treesearch

    Randall A. Kramer; Thomas P. Holmes; Michelle Haefele

    2003-01-01

    In recent decades, concerns have arisen about the proper valuation of the world's forests. While some of these concerns have to do with market distortions for timber products or inadequate data on non-timber forest products, an additional challenge is to uncover the economic worth of non- market services provided by forest ecosystems (Kramer et al. 1997). This has...

  4. Vulnerability and impacts of climate change on forest and freshwater wetland ecosystems in Nepal: A review.

    PubMed

    Lamsal, Pramod; Kumar, Lalit; Atreya, Kishor; Pant, Krishna Prasad

    2017-12-01

    Climate change (CC) threatens ecosystems in both developed and developing countries. As the impacts of CC are pervasive, global, and mostly irreversible, it is gaining worldwide attention. Here we review vulnerability and impacts of CC on forest and freshwater wetland ecosystems. We particularly look at investigations undertaken at different geographic regions in order to identify existing knowledge gaps and possible implications from such vulnerability in the context of Nepal along with available adaptation programs and national-level policy supports. Different categories of impacts which are attributed to disrupting structure, function, and habitat of both forest and wetland ecosystems are identified and discussed. We show that though still unaccounted, many facets of forest and freshwater wetland ecosystems of Nepal are vulnerable and likely to be impacted by CC in the near future. Provisioning ecosystem services and landscape-level ecosystem conservation are anticipated to be highly threatened with future CC. Finally, the need for prioritizing CC research in Nepal is highlighted to close the existing knowledge gap along with the implementation of adaptation measures based on existing location specific traditional socio-ecological system.

  5. Urban forests and pollution mitigation: analyzing ecosystem services and disservices.

    PubMed

    Escobedo, Francisco J; Kroeger, Timm; Wagner, John E

    2011-01-01

    The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Treesearch

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  7. Vegetation and environmental features of forest and range ecosystems

    Treesearch

    George A. Garrison; Ardell J. Bjugstad; Don A. Duncan; Mont E. Lewis; Dixie R. Smith

    1977-01-01

    This publication describes the 34 ecosystems into which all the land of the 48 contiguous states has been classified in the Forest-Range Environmental Study (FRES) of the Forest Service, U.S. Department of Agriculture. The description of each ecosystem discusses physiography, climate, vegetation, fauna, soils, and land use. For a number of the ecosystems, the...

  8. Missouri Ozark Forest Ecosystem Project: the experiment

    Treesearch

    Steven L. Sheriff

    2002-01-01

    Missouri Ozark Forest Ecosystem Project (MOFEP) is a unique experiment to learn about the impacts of management practices on a forest system. Three forest management practices (uneven-aged management, even-aged management, and no-harvest management) as practiced by the Missouri Department of Conservation were randomly assigned to nine forest management sites using a...

  9. Balancing trade-offs between ecosystem services in Germany’s forests under climate change

    NASA Astrophysics Data System (ADS)

    Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.

    2018-04-01

    Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining

  10. Estimation of biogeochemical climate regulation services in Chinese forest ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, S.

    2016-12-01

    As the global climate is changing, the climate regulation service of terrestrial ecosystem has been widely studied. Forests, as one of the most important terrestrial ecosystem types, is the biggest carbon pool or sink on land and can regulate climate through both biophysical and biogeochemical means. China is a country with vast forested areas and a variety of forest ecosystems types. Although current studies have related the climate regulation service of forest in China with biophysical or biogeochemical mechanism, there is still a lack of quantitative estimation of climate regulation services, especially for the biogeochemical climate regulation service. The GHGV (greenhouse gas value) is an indicator that can quantify the biochemical climate regulation service using ecosystems' stored organic matter, annual greenhouse gas flux, and potential greenhouse gas exchange rates during disturbances over a multiple year time frame. Therefore, we used GHGV to estimate the contribution of China's ten main forest types to biogeochemical climate regulation and generate the pattern of biochemical climate regulation service in Chinese forest ecosystems.

  11. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.

    PubMed

    Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  12. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests

    NASA Astrophysics Data System (ADS)

    Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  13. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.

    PubMed

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.

  14. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica

    PubMed Central

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869

  15. Modeling carbon and nitrogen biogeochemistry in forest ecosystems

    Treesearch

    Changsheng Li; Carl Trettin; Ge Sun; Steve McNulty; Klaus Butterbach-Bahl

    2005-01-01

    A forest biogeochemical model, Forest-DNDC, was developed to quantify carbon sequestration in and trace gas emissions from forest ecosystems. Forest-DNDC was constructed by integrating two existing moels, PnET and DNDC, with several new features including nitrification, forest litter layer, soil freezing and thawing etc, PnET is a forest physiological model predicting...

  16. Sustainable development and use of ecosystems with non-forest trees

    USDA-ARS?s Scientific Manuscript database

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  17. Water and the Ecosystems of the Luquillo Experimental Forest

    Treesearch

    Ariel E. Lugo

    1986-01-01

    Water dynamics, water balance, and water requirements of the ecosystems and aquatic organisms of the Luquillo Experimental Forest (aka Caribbean National Forest) are reviewed. Objective is to draw attention to research needs and to highlight importance of freshwater allocations to natural ecosystems.

  18. Neighbourhood-scale urban forest ecosystem classification.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Duinker, Peter N; Nowak, David J; Robinson, Pamela J

    2015-11-01

    Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape ecosystem conditions into logical and relatively homogeneous management units, making the potential for ecosystem-based decision support available to urban planners. The purpose of this study is to develop and propose a framework for urban forest ecosystem classification (UFEC). The multifactor framework integrates 12 ecosystem components that characterize the biophysical landscape, built environment, and human population. This framework is then applied at the neighbourhood scale in Toronto, Canada, using hierarchical cluster analysis. The analysis used 27 spatially-explicit variables to quantify the ecosystem components in Toronto. Twelve ecosystem classes were identified in this UFEC application. Across the ecosystem classes, tree canopy cover was positively related to economic wealth, especially income. However, education levels and homeownership were occasionally inconsistent with the expected positive relationship with canopy cover. Open green space and stocking had variable relationships with economic wealth and were more closely related to population density, building intensity, and land use. The UFEC can provide ecosystem-based information for greening initiatives, tree planting, and the maintenance of the existing canopy. Moreover, its use has the potential to inform the prioritization of limited municipal resources according to ecological conditions and to concerns of social equity in the access to nature and distribution of ecosystem service supply. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Missouri Ozark Forest Ecosystem Project: past, present, and future

    Treesearch

    Brian L. Brookshire; Randy Jensen; Daniel C. Dey

    1997-01-01

    In 1989, the Missouri Department of Conservation initiated a research project to examine the impacts of forest management practices on multiple ecosystem components. The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape experiment comparing the impacts of even-aged management, uneven-aged management, and no harvesting on a wide array of ecosystem...

  20. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    PubMed

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Density-dependent vulnerability of forest ecosystems to drought

    USGS Publications Warehouse

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.; Fraver, Shawn; Battaglia, Mike A.; Asherin, Lance A.

    2017-01-01

    1. Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary driver of competitive intensity among trees, which influences tree growth and mortality. Manipulating tree population density may be a mechanism for moderating drought-induced stress and growth reductions, although the relationship between tree population density and tree drought vulnerability remains poorly quantified, especially across climatic gradients.2. In this study, we examined three long-term forest ecosystem experiments in two widely distributed North American pine species, ponderosa pine Pinus ponderosa (Lawson & C. Lawson) and red pine Pinus resinosa (Aiton), to better elucidate the relationship between tree population density, growth and drought. These experiments span a broad latitude and aridity range and include tree population density treatments that have been purposefully maintained for several decades. We investigated how tree population density influenced resistance (growth during drought) and resilience (growth after drought compared to pre-drought growth) of stand-level growth during and after documented drought events.3. Our results show that relative tree population density was negatively related to drought resistance and resilience, indicating that trees growing at lower densities were less vulnerable to drought. This result was apparent in all three forest ecosystems, and was consistent across species, stand age and drought intensity.4. Synthesis and applications. Our results highlighted that managing pine forest ecosystems at low tree population density represents a promising adaptive strategy for reducing the adverse impacts of drought on forest growth in coming decades

  2. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest.

    PubMed

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the

  3. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    PubMed Central

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the

  4. Forest Ecosystem Analysis Using a GIS

    Treesearch

    S.G. McNulty; W.T. Swank

    1996-01-01

    Forest ecosystem studies have expanded spatially in recent years to address large scale environmental issues. We are using a geographic information system (GIS) to understand and integrate forest processes at landscape to regional spatial scales. This paper presents three diverse research studies using a GIS. First, we used a GIS to develop a landscape scale model to...

  5. Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data

    NASA Astrophysics Data System (ADS)

    Alonzo, Mike Gerard

    Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned

  6. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective.

    PubMed

    Robertson, Susan J; McGill, William B; Massicotte, Hugues B; Rutherford, P Michael

    2007-05-01

    The importance of developing multi-disciplinary approaches to solving problems relating to anthropogenic pollution is now clearly appreciated by the scientific community, and this is especially evident in boreal ecosystems exposed to escalating threats of petroleum hydrocarbon (PHC) contamination through expanded natural resource extraction activities. This review aims to synthesize information regarding the fate and behaviour of PHCs in boreal forest soils in both ecological and sustainable management contexts. From this, we hope to evaluate potential management strategies, identify gaps in knowledge and guide future research. Our central premise is that mycorrhizal systems, the ubiquitous root symbiotic fungi and associated food-web communities, occupy the structural and functional interface between decomposition and primary production in northern forest ecosystems (i.e. underpin survival and productivity of the ecosystem as a whole), and, as such, are an appropriate focal point for such a synthesis. We provide pertinent basic information about mycorrhizas, followed by insights into the ecology of ecto- and ericoid mycorrhizal systems. Next, we review the fate and behaviour of PHCs in forest soils, with an emphasis on interactions with mycorrhizal fungi and associated bacteria. Finally, we summarize implications for ecosystem management. Although we have gained tremendous insights into understanding linkages between ecosystem functions and the various aspects of mycorrhizal diversity, very little is known regarding rhizosphere communities in PHC-contaminated soils. This makes it difficult to translate ecological knowledge into environmental management strategies. Further research is required to determine which fungal symbionts are likely to survive and compete in various ecosystems, whether certain fungal - plant associations gain in ecological importance following contamination events, and how PHC contamination may interfere with processes of nutrient

  7. The Hardwood Ecosystem Experiment: a framework for studying responses to forest management

    Treesearch

    Robert K. Swihart; Michael R. Saunders; Rebecca A. Kalb; G. Scott Haulton; Charles H., eds. Michler

    2013-01-01

    Conditions in forested ecosystems of southern Indiana are described before initiation of silvicultural treatments for the Hardwood Ecosystem Experiment (HEE). The HEE is a 100-year study begun in 2006 in Morgan-Monroe and Yellowwood State Forests to improve the sustainability of forest resources and quality of life of Indiana residents by understanding ecosystem and...

  8. Session overview: forest ecosystems

    Treesearch

    John J. Battles; Robert C. Heald

    2004-01-01

    The core assumption of this symposium is that science can provide insight to management. Nowhere is this link more formally established than in regard to the science and management of forest ecosystems. The basic questions addressed are integral to our understanding of nature; the applications of this understanding are crucial to effective stewardship of natural...

  9. Assessment and valuation of forest ecosystem services: State of the science review

    Treesearch

    Seth Binder; Robert G. Haight; Stephen Polasky; Travis Warziniack; Miranda H. Mockrin; Robert L. Deal; Greg Arthaud

    2017-01-01

    This review focuses on the assessment and economic valuation of ecosystem services from forest ecosystems—that is, our ability to predict changes in the quantity and value of ecosystem services as a result of specific forest management decisions. It is aimed at forest economists and managers and intended to provide a useful reference to those interested in developing...

  10. Tree diversity does not always improve resistance of forest ecosystems to drought.

    PubMed

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.

  11. Chapter 10: Case studies in ecosystem management: the Mammoth-June ecosystem management project, Inyo National Forest

    Treesearch

    Constance I. Millar

    1996-01-01

    To assess the various ways organizations and people come together to manage Sierran ecosystems, SNEP conducted four case studies to examine the efficacy of different institutional arrangements:The Mammoth-June case study examines how a single national forest is attempting to implement the new Forest Service policy for ecosystem analysis...

  12. Forests planted for ecosystem restoration or conservation.

    Treesearch

    Constance A. Harrington

    1999-01-01

    Although the phrase, "planting for ecosystem restoration," is of recent origin, many of the earliest large-scale tree plantings were made for what we now refer to as "'restoration" or "conservation" goals. Forest restoration activities may be needed when ecosystems are disturbed by either natural or anthropogenic forces. Disturbances...

  13. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  14. A framework for developing urban forest ecosystem services and goods indicators

    Treesearch

    Cynnamon Dobbs; Francisco J. Escobedo; Wayne C. Zipperer

    2011-01-01

    The social and ecological processes impacting on urban forests have been studied at multiple temporal and spatial scales in order to help us quantify, monitor, and value the ecosystem services that benefit people. Few studies have comprehensively analyzed the full suite of ecosystem services, goods (ESG), and ecosystem disservices provided by an urban forest....

  15. The Kings River Sustainable Forest Ecosystems Project: inception, objectives, and progress

    Treesearch

    Jared Verner; Mark T. Smith

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project, a formal administrative study involving extensive and intensive collaboration between Forest Service managers and researchers, is a response to changes in the agency’s orientation in favor of ecosystem approaches and to recent concern over issues associated with maintenance of late successional forest attributes...

  16. Studies on Interpretive Structural Model for Forest Ecosystem Management Decision-Making

    NASA Astrophysics Data System (ADS)

    Liu, Suqing; Gao, Xiumei; Zen, Qunying; Zhou, Yuanman; Huang, Yuequn; Han, Weidong; Li, Linfeng; Li, Jiping; Pu, Yingshan

    Characterized by their openness, complexity and large scale, forest ecosystems interweave themselves with social system, economic system and other natural ecosystems, thus complicating both their researches and management decision-making. According to the theories of sustainable development, hierarchy-competence levels, cybernetics and feedback, 25 factors have been chosen from human society, economy and nature that affect forest ecosystem management so that they are systematically analyzed via developing an interpretive structural model (ISM) to reveal their relationships and positions in the forest ecosystem management. The ISM consists of 7 layers with the 3 objectives for ecosystem management being the top layer (the seventh layer). The ratio between agricultural production value and industrial production value as the bases of management decision-making in forest ecosystems becomes the first layer at the bottom because it has great impacts on the values of society and the development trends of forestry, while the factors of climatic environments, intensive management extent, management measures, input-output ratio as well as landscape and productivity are arranged from the second to sixth layers respectively.

  17. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    PubMed

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  18. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    NASA Astrophysics Data System (ADS)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also

  19. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    PubMed

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation

  20. The forgotten stage of forest succession: early-successional ecosystems on forest sites

    Treesearch

    Mark E. Swanson; Jerry F. Franklin; Robert L. Beschta; Charles M. Crisafulli; Dominick A. DellaSala; Richard L. Hutto; David B. Lindenmayer; Frederick J. Swanson

    2010-01-01

    Early-successional forest ecosystems that develop after stand-replacing or partial disturbances are diverse in species, processes, and structure. Post-disturbance ecosystems are also often rich in biological legacies, including surviving organisms and organically derived structures, such as woody debris. These legacies and postdisturbance plant communities provide...

  1. Spatial complementarity of forests and farms: accounting for ecosystem services

    Treesearch

    Subhrendu K. Pattanayak; David T. Butry

    2006-01-01

    Our article considers the economic contributions of forest ecosystem services, using a case study from Flores, Indonesia, in which forest protection in upstream watersheds stabilize soil and hydrological flows in downstream farms. We focus on the demand for a weak complement to the ecosystem services--farm labor-- and account for spatial dependence due to economic...

  2. An assessment of forest ecosystem health in the Southwest

    Treesearch

    Cathy W. Dahms; Brian W. Geils

    1997-01-01

    This report documents an ecological assessment of forest ecosystem health in the Southwest. The assessment focuses at the regional level and mostly pertains to lands administered by the National Forest System. Information is presented for use by forest and district resource managers as well as collaborative partners in the stewardship of Southwestern forests. The...

  3. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  4. Learning in Virtual Forest: A Forest Ecosystem in the Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Jussila, Terttu; Virtanen, Viivi

    2014-01-01

    Virtual Forest is a web-based, open-access learning environment about forests designed for primary-school pupils between the ages of 10 and 13 years. It is pedagogically designed to develop an understanding of ecology, to enhance conceptual development and to give a holistic view of forest ecosystems. Various learning tools, such as concept maps,…

  5. Gall midges (Diptera: Cecidomyiidae) in forest ecosystems

    Treesearch

    Marcela Skuhrav& #225; ; Marcela NO-VALUE

    1991-01-01

    The family Cecidomyiidae is one of the largest of the Diptera. Gall midges are small, inconspicuous flies, but they may be very important both in forest ecosystems and in agroecosystems. Many phytophagous gall midge species attack forest trees, and some of them can be serious pests, such as the Dasineura rozhkovii Mamaev and Nikolsky, which develops...

  6. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China.

    PubMed

    Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

  7. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  8. Forest-land conversion, ecosystem services, and economic issues for policy: a review

    Treesearch

    Robert A. Smail; David J. Lewis

    2009-01-01

    The continued conversion and development of forest land pose a serious threat to the ecosystem services derived from forested landscapes. We argue that developing an understanding of the full range of consequences from forest conversion requires understanding the effects of such conversion on both components of ecosystem services: products and processes....

  9. Historical open forest ecosystems in the Missouri Ozarks: reconstruction and restoration targets

    Treesearch

    Brice B. Hanberry; D. Todd Jones-Farrand; John M. Kabrick

    2014-01-01

    Current forests no longer resemble historical open forest ecosystems in the eastern United States. In the absence of representative forest ecosystems under a continuous surface fire regime at a large scale, reconstruction of historical landscapes can provide a reference for restoration efforts. For initial expert-assigned vegetation phases ranging from prairie to...

  10. Sustainable carbon uptake - important ecosystem service within sustainable forest management

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Anić, Mislav; Paladinić, Elvis; Alberti, Giorgio; Marjanović, Hrvoje

    2016-04-01

    Even-aged forest management with natural regeneration under continuous cover (i.e. close to nature management) is considered to be sustainable regarding the yield, biodiversity and stability of forest ecosystems. Recently, in the context of climate change, there is a raising question of sustainable forest management regarding carbon uptake. Aim of this research was to explore whether current close to nature forest management approach in Croatia can be considered sustainable in terms of carbon uptake throughout the life-time of Pedunculate oak forest. In state-owned managed forest a chronosequence experiment was set up and carbon stocks in main ecosystem pools (live biomass, dead wood, litter and mineral soil layer), main carbon fluxes (net primary production, soil respiration (SR), decomposition) and net ecosystem productivity were estimated in eight stands of different age (5, 13, 38, 53, 68, 108, 138 and 168 years) based on field measurements and published data. Air and soil temperature and soil moisture were recorded on 7 automatic mini-meteorological stations and weekly SR measurements were used to parameterize SR model. Carbon balance was estimated at weekly scale for the growing season 2011 (there was no harvesting), as well as throughout the normal rotation period of 140 years (harvesting was included). Carbon stocks in different ecosystem pools change during a stand development. Carbon stocks in forest floor increase with stand age, while carbon stocks in dead wood are highest in young and older stands, and lowest in middle-aged, mature stands. Carbon stocks in mineral soil layer were found to be stable across chronosequence with no statistically significant age-dependent trend. Pedunculate Oak stand, assuming successful regeneration, becomes carbon sink very early in a development phase, between the age of 5 and 13 years, and remains carbon sink even after the age of 160 years. Greatest carbon sink was reached in the stand aged 53 years. Obtained results

  11. [Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region].

    PubMed

    Gao, Yang; Jin, Jing-Wei; Cheng, Ji-Min; Su, Ji-Shuai; Zhu, Ren-Bin; Ma, Zheng-Rui; Liu, Wei

    2014-03-01

    Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential.

  12. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China.

    PubMed

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total (15)N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total (15)N recoveries were similar under the ((15)NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total (15)N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K(15)NO3 tracer treatment. The (15)N assimilated into the tree biomass represented only 8.8% to 33.7% of the (15)N added to the forest ecosystems. In both of the tracer application treatments, more (15)N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of (15)N assimilated into tree biomass was greater under the K(15)NO3 tracer treatment than that of the ((15)NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems.

  13. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines

    NASA Astrophysics Data System (ADS)

    Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.

    2011-05-01

    Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.

  14. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    NASA Astrophysics Data System (ADS)

    Steenberg, James W. N.; Millward, Andrew A.; Nowak, David J.; Robinson, Pamela J.; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  15. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Nowak, David J; Robinson, Pamela J; Ellis, Alexis

    2017-03-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to assess and analyze the spatial and temporal changes, and potential vulnerability, of the urban forest resource in Toronto, Canada. This research was conducted using a spatially-explicit, indicator-based assessment of vulnerability and i-Tree Forecast modeling of temporal changes in forest structure and function. Nine scenarios were simulated for 45 years and model output was analyzed at the ecosystem and municipal scale. Substantial mismatches in ecological processes between spatial scales were found, which can translate into unanticipated loss of function and social inequities if not accounted for in planning and management. At the municipal scale, the effects of Asian longhorned beetle and ice storm disturbance were far less influential on structure and function than changes in management actions. The strategic goals of removing invasive species and increasing tree planting resulted in a decline in carbon storage and leaf biomass. Introducing vulnerability parameters in the modeling increased the spatial heterogeneity in structure and function while expanding the disparities of resident access to ecosystem services. There was often a variable and uncertain relationship between vulnerability and ecosystem structure and function. Vulnerability assessment and analysis can provide strategic planning initiatives with valuable insight into the processes of structural and functional change resulting from management intervention.

  16. Fitting rainfall interception models to forest ecosystems of Mexico

    NASA Astrophysics Data System (ADS)

    Návar, José

    2017-05-01

    Models that accurately predict forest interception are essential both for water balance studies and for assessing watershed responses to changes in land use and the long-term climate variability. This paper compares the performance of four rainfall interception models-the sparse Gash (1995), Rutter et al. (1975), Liu (1997) and two new models (NvMxa and NvMxb)-using data from four spatially extensive, structurally diverse forest ecosystems in Mexico. Ninety-eight case studies measuring interception in tropical dry (25), arid/semi-arid (29), temperate (26), and tropical montane cloud forests (18) were compiled and analyzed. Coefficients derived from raw data or published statistical relationships were used as model input to evaluate multi-storm forest interception at the case study scale. On average empirical data showed that, tropical montane cloud, temperate, arid/semi-arid and tropical dry forests intercepted 14%, 18%, 22% and 26% of total precipitation, respectively. The models performed well in predicting interception, with mean deviations between measured and modeled interception as a function of total precipitation (ME) generally <5.8% and Nash-Sutcliffe efficiency E estimators >0.66. Model fitting precision was dependent on the forest ecosystem. Arid/semi-arid forests exhibited the smallest, while tropical montane cloud forest displayed the largest ME deviations. Improved agreement between measured and modeled data requires modification of in-storm evaporation rate in the Liu; the canopy storage in the sparse Gash model; and the throughfall coefficient in the Rutter and the NvMx models. This research concludes on recommending the wide application of rainfall interception models with some caution as they provide mixed results. The extensive forest interception data source, the fitting and testing of four models, the introduction of a new model, and the availability of coefficient values for all four forest ecosystems are an important source of information and

  17. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    PubMed

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  18. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    PubMed Central

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  19. The Mammoth-June Ecosystem Management Project, Inyo National Forest

    Treesearch

    Connie Millar

    1996-01-01

    The Sierra Nevada Ecosystem Project (SNEP) case-study assessmentof the Mammoth-June Ecosystem Management Project(MJEMP) was undertaken to review and analyze the efficacy of alocal landscape analysis in achieving ecosystem-management objectivesin the Sierra Nevada. Of primary interest to SNEP was applicationof the new U.S. Forest Service (USFS) regional process...

  20. Ecological and geochemical impacts of exotic earthworm dispersal in forest ecosystems of Eastern Canada

    NASA Astrophysics Data System (ADS)

    Drouin, Melanie; Fugere, Martine; Lapointe, Line; Vellend, Mark; Bradley, Robert L.

    2016-04-01

    In Eastern Canada, native earthworm species did not survive the Wisconsin glaciation, which ended over 11,000 years ago. Accordingly, the 17 known Lumbricidae species in the province of Québec were introduced in recent centuries by European settlers. Given that natural migration rates are no more than 5-10 m yr-1, exotic earthworm dispersal across the landscape is presumed to be mediated by human activities, although this assertion needs further validation. In agroecosystems, earthworms have traditionally been considered beneficial soil organisms that facilitate litter decomposition, increase nutrient availability and improve soil structure. However, earthworm activities could also increase soil nutrient leaching and CO2 emissions. Furthermore, in natural forest ecosystems, exotic earthworms may reduce organic forest floors provoking changes in watershed hydrology and loss of habitat for some faunal species. Over the past decade, studies have also suggested a negative effect of exotic earthworms on understory plant diversity, but the underlying mechanisms remain elusive. Finally, there are no studies to our knowledge that have tested the effects of Lumbricidae species on the production of N2O (an important greenhouse gas) in forest ecosystems. We report on a series of field, greenhouse and laboratory studies on the human activities responsible for the dispersal of exotic earthworms, and on their ecological / geochemical impacts in natural forest ecosystems. Our results show: (1) Car tire treads and bait discarded by fishermen are important human vectors driving the dispersal of earthworms into northern temperate forests; (2) Exotic earthworms significantly modify soil physicochemical properties, nutrient cycling, microbial community structure and biomass; (3) Earthworm abundances in the field correlate with a decrease in understory plant diversity; (4) Lumbricus terrestris, an anecic earthworm species and favorite bait of fishermen, reduces seed germination and

  1. Soil and water related forest ecosystem services and resilience of social ecological system in the Central Highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Tekalign, Meron; Muys, Bart; Nyssen, Jan; Poesen, Jean

    2014-05-01

    In the central highlands of Ethiopia, deforestation and forest degradation are occurring and accelerating during the last century. The high population pressure is the most repeatedly mentioned reason. However, in the past 30 years researchers agreed that the absence of institutions, which could define the access rights to particular forest resources, is another underlying cause of forest depletion and loss. Changing forest areas into different land use types is affecting the biodiversity, which is manifested through not proper functioning of ecosystem services. Menagesha Suba forest, the focus of this study has been explored from various perspectives. However the social dimension and its interaction with the ecology have been addressed rarely. This research uses a combined theoretical framework of Ecosystem Services and that of Resilience thinking for understanding the complex social-ecological interactions in the forest and its influence on ecosystem services. For understanding the history and extent of land use land cover changes, in-depth literature review and a GIS and remote sensing analysis will be made. The effect of forest conversion into plantation and agricultural lands on soil and above ground carbon sequestration, fuel wood and timber products delivery will be analyzed with the accounting of the services on five land use types. The four ecosystem services to be considered are Supporting, Provisioning, Regulating, and Cultural services as set by the Millennium Ecosystem Assessment. A resilience based participatory framework approach will be used to analyze how the social and ecological systems responded towards the drivers of change that occurred in the past. The framework also will be applied to predict future uncertainties. Finally this study will focus on the possible interventions that could contribute to the sustainable management and conservation of the forest. An ecosystem services trade-off analysis and an environmental valuation of the water

  2. Integrating forest products with ecosystem services: a global perspective

    Treesearch

    Robert L. Deal; Rachel White

    2012-01-01

    Around the world forests provide a broad range of vital ecosystem services. Sustainable forest management and forest products play an important role in global carbon management, but one of the major forestry concerns worldwide is reducing the loss of forestland from development. Currently, deforestation accounts for approximately 20% of total greenhouse gas emissions....

  3. Sinks for Inorganic Nitrogen Deposition in Forest Ecosystems with Low and High Nitrogen Deposition in China

    PubMed Central

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope 15N in the form of (15NH4)2SO4 and K15NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the 15N tracers, the natural 15N abundance ranging from −3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from −3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total 15N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total 15N recoveries were similar under the (15NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total 15N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K15NO3 tracer treatment. The 15N assimilated into the tree biomass represented only 8.8% to 33.7% of the 15N added to the forest ecosystems. In both of the tracer application treatments, more 15N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of 15N assimilated into tree biomass was greater under the K15NO3 tracer treatment than that of the (15NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems. PMID:24586688

  4. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    Treesearch

    James W. N. Steenberg; Andrew A. Millward; David J. Nowak; Pamela J. Robinson; Alexis Ellis

    2016-01-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to...

  5. Applications of satellite remote sensing to forested ecosystems

    Treesearch

    Louis R. Iverson; Robin Lambert Graham; Elizabeth A. Cook; Elizabeth A. Cook

    1989-01-01

    Since the launch of the first civilian earth-observing satellite in 1972, satellite remote sensing has provided increasingly sophisticated information on the structure and function of forested ecosystems. Forest classification and mapping, common uses of satellite data, have improved over the years as a result of more discriminating sensors, better classification...

  6. A conceptual framework of urban forest ecosystem vulnerability

    Treesearch

    James W.N. Steenberg; Andrew A. Millward; David J. Nowak; Pamela J. Robinson

    2017-01-01

    The urban environment is becoming the most common setting in which people worldwide will spend their lives. Urban forests, and the ecosystem services they provide, are becoming a priority for municipalities. Quantifying and communicating the vulnerability of this resource are essential for maintaining a consistent and equitable supply of these ecosystem services. We...

  7. Wastewater and Sludge Nutrient Utilization in Forest Ecosystems

    Treesearch

    D.G. Brockway; D.H. Urie; P.V. Nguyen; J.B. Hart

    1986-01-01

    Although forest ecosystems have evolved efficient mechanisms to assimilate and retain modest levels of annual geochemical input, their productivity is frequently limited by low levels of available nutrients. A review of research studies conducted in the major U.S. forest regions indicates that the nutrients and organic matter in wastewater and sludge representa...

  8. Carbon allocation patterns in boreal and hemiboreal forest ecosystems along the gradient of soil fertility

    NASA Astrophysics Data System (ADS)

    Kriiska, Kaie; Uri, Veiko; Frey, Jane; Napa, Ülle; Kabral, Naima; Soosaar, Kaido; Rannik, Kaire; Ostonen, Ivika

    2017-04-01

    Carbon (C) allocation plays a critical role in forest ecosystem carbon cycling. Changes in C allocation alter ecosystems carbon sequestration and plant-soil-atmosphere gas exchange, hence having an impact on the climate. Currently, there is lack of reliable indicators that show the direction of C accumulation patterns in forest ecosystems on regional scale. The first objective of our study was to determine the variability of carbon allocation in hemiboreal coniferous forests along the gradient of soil fertility in Estonia. We measured C stocks and fluxes, such as litter, fine root biomass and production, soil respiration etc. in 8 stands of different site types - Scots pine (Cladonia, Vaccinium, Myrtillus, Fragaria) and Norway spruce (Polytrichum, Myrtillus, Oxalis, Calamagrostis alvar). The suitability of above- and belowground litter production (AG/BG) ratio was analysed as a carbon allocation indicator. The second aim of the study was to analyse forest C allocation patterns along the north-south gradient from northern boreal Finland to hemiboreal Estonia. Finally, C sequestration in silver birch and grey alder stands were compared with coniferous stands in order to determine the impact of tree species on carbon allocation. Preliminary results indicate that estimated AG/BG ratio (0.5 ... 3.0) tends to decrease with increasing soil organic horizon C/N ratio, indicating that in less fertile sites more carbon is allocated into belowground through fine root growth and in consequence the soil organic carbon stock increases. Similar trends were found on the north-south forest gradient. However, there was a significant difference between coniferous and broadleaf stands in C allocation patterns. Net ecosystem exchange in Estonian coniferous stands varied from -1.64 ... 3.95 t C ha-1 yr-1, whereas older stands tended to be net carbon sources.

  9. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2016-01-01

    Drought has long been recognized as a driving mechanism in the forests of western North America and drought-induced mortality has been documented across genera in recent years. Given the frequency of these events are expected to increase in the future, understanding patterns of mortality and plant response to severe drought is important to resource managers. Drought can affect the functional, physiological, structural, and demographic properties of forest ecosystems. Remote sensing studies have documented changes in forest properties due to direct and indirect effects of drought; however, few studies have addressed this at local scales needed to characterize highly heterogeneous ecosystems in the forest-shrubland ecotone. We analyzed a 22-year Landsat time series (1985–2012) to determine changes in forest in an area that experienced a relatively dry decade punctuated by two years of extreme drought. We assessed the relationship between several vegetation indices and field measured characteristics (e.g. plant area index and canopy gap fraction) and applied these indices to trend analysis to uncover the location, direction and timing of change. Finally, we assessed the interaction of climate and topography by forest functional type. The Normalized Difference Moisture Index (NDMI), a measure of canopy water content, had the strongest correlation with short-term field measures of plant area index (R2 = 0.64) and canopy gap fraction (R2 = 0.65). Over the entire time period, 25% of the forested area experienced a significant (p-value < 0.05) negative trend in NDMI, compared to less than 10% in a positive trend. Coniferous forests were more likely to be associated with a negative NDMI trend than deciduous forest. Forests on southern aspects were least likely to exhibit a negative trend while north aspects were most prevalent. Field plots with a negative trend had a lower live density, and higher amounts of standing dead and down trees compared to plots with no

  10. Biological effects of wood ash application to forest and aquatic ecosystems.

    PubMed

    Aronsson, K Andreas; Ekelund, Nils G A

    2004-01-01

    The present review aims to summarize current knowledge in the topic of wood ash application to boreal forest and aquatic ecosystems, and the different effects derived from these actions. Much research has been conducted regarding the effects of wood ash application on forest growth. Present studies show that, generally speaking, forest growth can be increased on wood ash-ameliorated peatland rich in nitrogen. On mineral soils, however, no change or even decreased growth have been reported. The effects on ground vegetation are not very clear, as well as the effects on fungi, soil microbes, and soil-decomposing animals. The discrepancies between different studies are for the most part explained by abiotic factors such as variation in fertility among sites, different degrees of stabilization, and wood ash dosage used, and different time scales among different studies. The lack of knowledge in the field of aquatic ecosystems and their response to ash application is an important issue for future research. The few studies conducted have mainly considered changes in water chemistry. The biotoxic effects of ash application can roughly be divided into two categories: primary and secondary. Among the primary effects is toxicity deriving from compounds in the wood ash and cadmium is probably the worst among these. The secondary effects of wood ash are generally due to its alkaline capacity and a release of ions into the soil and soil water, and finally, watercourses and lakes. Given current knowledge, we would recommend site- and wood ash-specific application practices, rather than broad and general guidelines for wood ash application to forests.

  11. Multi-temporal Scale Analysis of Environmental Control on Net Ecosystem Exchange of CO2 in Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Yu, Guirui; Zhuang, Jie; Gentry, Randy; Koirala, Shesh; Zhang, Leiming; Sun, Xiaomin; Han, Shijie; Yan, Junhua

    2013-04-01

    Multi-temporal scale analysis of environmental control on forest ecosystem carbon budget is a basis for understanding the responses and adaptation of forest carbon cycle to climate change. In this study, we chose two typical forest ecosystems, Changbaishan temperate mixed forest (CBS) in northeastern China and Dinghushan subtropical evergreen broad-leaved forest (DHS) in southern China to identify the changes in environmental control on net ecosystem exchange of carbon dioxide (NEE) with the temporal scales. The analysis was made based on the flux and routine meteorological data measured during the period from 2005 to 2008. These time series data were analyzed using wavelet and cross wavelet transform. The results showed that NEE had significant daily and annual periodic variation in the two types of forest ecosystem. NEE at CBS and DHS showed semi-annual (176 days) and seasonal (88-104 days) periodic variations, respectively. Photosynthetically active radiation (PAR), vapor pressure deficient (VPD), air temperature (Ta), soil temperature (Ts, at 5-cm depth) controlled daily variation of NEE as indicated by the significant high common power of cross wavelet transform spectrums between NEE and these factors. Similarly, Ta, VPD, and precipitation (P) controlled annual variation of NEE at CBS. However, Ta, PAR, and soil water content (SWC, at 5-cm depth) dominated the annual variation of NEE at DHS. An anti-phase between NEE and PAR at daily scale in the two forest ecosystems demonstrated an agreement of the variation of NEE with PAR, with rising sunlight corresponding with increased net carbon uptake. At annual scale, phase angles between NEE and Ta and between NEE and P were -170° and 176°, respectively at CBS. At DHS, phase angle between NEE and VPD was smallest at annual scale. The results indicated that the peak of net carbon uptake seasonal variation and the peaks of P and Ta seasonal variations occurred at the same month at CBS. But, at DHS, seasonal

  12. [Effects of small hydropower substitute fuel project on forest ecosystem services].

    PubMed

    Yu, Hai Yan; Zha, Tong Gang; Nie, Li Shui; Lyu, Zhi Yuan

    2016-10-01

    Based on the Forest Ecosystem Services Assessment Standards (LY/T 1721-2008) issued by the State Forestry Administration, this paper evaluated four key functions of forest ecosystems, i.e., water conservation, soil conservation, carbon fixation and oxygen release, and nutrient accumulation. Focusing on the project area of Majiang County in Guizhou Province, this study provided some quantitative evidence that the implementation of the small hydropower substituting fuel project had positive effects on the values and material quantities of ecosystem service functions. The results showed that the small hydropower substituting fuel project had a significant effect on the increase of forest ecosystem services. Water conservation quantity of Pinus massoniana and Cupressus funebris plantations inside project area was 20662.04 m 3 ·hm -2 ·a -1 , 20.5% higher than outside project area, with soil conservation quantity of 119.1 t·hm -2 ·a -1 , 29.7% higher than outside project area, carbon fixation and oxygen release of 220.49 t·hm -2 ·a -1 , 40.2% higher than outside project area, and forest tree nutrition accumulation of 3.49 t·hm -2 ·a -1 , 48.5% higher than outside project area. Small hydropower substituting fuel project for increasing the quota of forest ecosystem service function value was in the order of carbon fixation and oxygen release function (71400 yuan·hm -2 ·a -1 ) > water conservation function (60100 yuan·hm -2 ·a -1 ) > tree nutrition accumulation function (13800 yuan·hm -2 ·a -1 ) > soil conservation function (8100 yuan·hm -2 ·a -1 ). Small hydropower substituting fuel project played an important role for improving the forest ecological service function value and realizing the sustainable development of forest.

  13. Linking ecosystem characteristics to final ecosystem services for public policy

    PubMed Central

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. PMID:25394857

  14. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.

    PubMed

    Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing

    2017-05-15

    The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO 2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr -1 for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr -1 . These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cryptic Methane Emissions from Upland Forest Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megonigal, Patrick; Pitz, Scott

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) developmore » the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.« less

  16. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  17. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems.

    PubMed

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-19

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m(2) quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  18. Managing forest ecosystems to conserve fungus diversity and sustain wild mushroom harvests.

    Treesearch

    D. Pilz; R. Molina

    1996-01-01

    Ecosystem management is the dominant paradigm for managing the forests of the Pacific Northwest. It integrates biological, ecological, geophysical, and silvicultural information to develop adaptive management practices that conserve biological diversity and maintain ecosystem functioning while meeting human needs for the sustainable production of forest products. Fungi...

  19. Understory cover and biomass indices predictions for forest ecosystems of the Northwestern United States

    Treesearch

    Vasile A. Suchar; Nicholas L. Crookston

    2010-01-01

    The understory community is a critical component of many processes of forest ecosystems. Cover and biomass indices of shrubs and herbs of forested ecosystems of Northwestern United States are presented. Various forest data were recorded for 10,895 plots during a Current Vegetation Survey, over the National Forest lands of entire Pacific Northwest. No significant...

  20. Diseases of Forest Trees: Consequences of Exotic Ecosystems?

    Treesearch

    William J. Otrosina

    1998-01-01

    Much attention is now given to risks and impacts of exotic pest introductions in forest ecosystems. This concern is for good reason because, once introduced, an exotic pathogen or insect encounters little resistance in the native plant population and can produce catastrophic losses in relatively short periods of time. Most native fungal pathogens of forest trees have...

  1. Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy).

    PubMed

    Loppi, Stefano; Pirintsos, Stergios Arg

    2003-01-01

    The results of a study using epiphytic lichens (Parmelia caperata) as sentinels for heavy metal deposition at six selected forest ecosystems of central Italy are reported. The woods investigated are characterized by holm oak (Quercus ilex), turkey oak (Quercus cerris) and beech (Fagus sylvatica) and represent the typical forest ecosystems of central Italy at low, medium and high elevations, respectively. The results showed that levels of heavy metals in lichens were relatively low and consequently no risk of heavy metal air pollution is expected for the six forest ecosystems investigated. However, for two of them there are indications of a potential risk: the beech forest of Vallombrosa showed signs of contamination by Pb as a consequence of vehicle traffic due to the rather high touristic pressure in the area, and the holm oak forest of Cala Violina showed transboundary pollution by Mn, Cr and Ni originating from the steel industry in Piombino. Epiphytic lichens proved to be very effective as an early warning system to detect signs of a changing environment at forest ecosystems.

  2. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions

    PubMed Central

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2016-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long-lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous

  3. Neighbourhood-Scale Urban Forest Ecosystem Classification

    Treesearch

    James W.N. Steenberg; Andrew A. Millward; Peter N. Duinker; David J. Nowak; Pamela J. Robinson

    2015-01-01

    Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape...

  4. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China

    PubMed Central

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  5. Plant hydraulic diversity buffers forest ecosystem responses to drought

    NASA Astrophysics Data System (ADS)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  6. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests.

    PubMed

    Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate

    2017-07-01

    Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a

  7. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests.

    PubMed

    Samuelson, Lisa J; Stokes, Thomas A; Butnor, John R; Johnsen, Kurt H; Gonzalez-Benecke, Carlos A; Martin, Timothy A; Cropper, Wendell P; Anderson, Pete H; Ramirez, Michael R; Lewis, John C

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from <1 Mg C/ha to 74 Mg C/ha and comprised <1% to 39% of ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management. © 2016 by the Ecological Society

  8. Soil microbial community successional patterns during forest ecosystem restoration.

    PubMed

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  9. Using DCOM to support interoperability in forest ecosystem management decision support systems

    Treesearch

    W.D. Potter; S. Liu; X. Deng; H.M. Rauscher

    2000-01-01

    Forest ecosystems exhibit complex dynamics over time and space. Management of forest ecosystems involves the need to forecast future states of complex systems that are often undergoing structural changes. This in turn requires integration of quantitative science and engineering components with sociopolitical, regulatory, and economic considerations. The amount of data...

  10. Linking ecosystem characteristics to final ecosystem services for public policy.

    PubMed

    Wong, Christina P; Jiang, Bo; Kinzig, Ann P; Lee, Kai N; Ouyang, Zhiyun

    2015-01-01

    Governments worldwide are recognising ecosystem services as an approach to address sustainability challenges. Decision-makers need credible and legitimate measurements of ecosystem services to evaluate decisions for trade-offs to make wise choices. Managers lack these measurements because of a data gap linking ecosystem characteristics to final ecosystem services. The dominant method to address the data gap is benefit transfer using ecological data from one location to estimate ecosystem services at other locations with similar land cover. However, benefit transfer is only valid once the data gap is adequately resolved. Disciplinary frames separating ecology from economics and policy have resulted in confusion on concepts and methods preventing progress on the data gap. In this study, we present a 10-step approach to unify concepts, methods and data from the disparate disciplines to offer guidance on overcoming the data gap. We suggest: (1) estimate ecosystem characteristics using biophysical models, (2) identify final ecosystem services using endpoints and (3) connect them using ecological production functions to quantify biophysical trade-offs. The guidance is strategic for public policy because analysts need to be: (1) realistic when setting priorities, (2) attentive to timelines to acquire relevant data, given resources and (3) responsive to the needs of decision-makers. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  11. Assessing exergy of forest ecosystem using airborne and satellite data

    NASA Astrophysics Data System (ADS)

    Brovkina, Olga; Fabianek, Tomas; Lukes, Petr; Zemek, Frantisek

    2017-04-01

    Interactions of the energy flows of forest ecosystem with environment are formed by a suite of forest structure, functions and pathways of self-control. According to recent thermodynamic theory for open systems, concept of exergy of solar radiation has been applied to estimate energy consumptions on evapotranspiration and biomass production in forest ecosystem or to indicate forest decline and human land use impact on ecosystem stability. However, most of the methods for exergy estimation in forest ecosystem is not stable and its physical meaning remains on the surface. This study was aimed to contribute to understanding the exergy of forest ecosystem using combination of remote sensing (RS) and eddy covariance technologies, specifically: 1/to explore exergy of solar radiation depending on structure of solar spectrum (number of spectral bands of RS data), and 2/to explore the relationship between exergy and flux tower eddy covariance measurements. Two study forest sites were located in Western Beskids in the Czech Republic. The first site was dominated by young Norway spruce, the second site was dominated by mature European beech. Airborne hyperspectral data in VNIR, SWIR and TIR spectral regions were acquired 9 times for study sites during a vegetation periods in 2015-2016. Radiometric, geometric and atmospheric corrections of airborne data were performed. Satellite multispectral Landsat-8 cloud-free 21 scenes were downloaded and atmospherically corrected for the period from April to November 2015-2016. Evapotranspiration and latent heat fluxes were collected from operating flux towers located on study sites according to date and time of remote sensing data acquisition. Exergy was calculated for each satellite and airborne scene using various combinations of spectral bands as: Ex=E^out (K+ln E^out/E^in )+R, where Ein is the incoming solar energy, Eout is the reflected solar energy, R = Ein-Eout is absorbed energy, Eout/Ein is albedo and K is the Kullback increment

  12. Hemiboreal forest: natural disturbances and the importance of ecosystem legacies to management

    Treesearch

    Kalev Jogiste; Henn Korjus; John Stanturf; Lee E. Frelich; Endijs Baders; Janis Donis; Aris Jansons; Ahto Kangur; Kajar Koster; Diana Laarmann; Tiit Maaten; Vitas Marozas; Marek Metslaid; Kristi Nigul; Olga Polyachenko; Tiit Randveer; Floortje Vodde

    2017-01-01

    The condition of forest ecosystems depends on the temporal and spatial pattern of management interventions and natural disturbances. Remnants of previous conditions persisting after disturbances, or ecosystem legacies, collectively comprise ecosystem memory. Ecosystem memory in turn contributes to resilience and possibilities of ecosystem reorganization...

  13. Forest reference conditions for ecosystem management in the Sacramento Mountains, New Mexico

    Treesearch

    M. R. Kaufmann; L. S. Huckaby; C. M. Regan; J. Popp

    1998-01-01

    We present the history of land use and historic vegetation conditions on the Sacramento Ranger District of the Lincoln National Forest within the framework of an ecosystem needs assessment. We reconstruct forest vegetation conditions and ecosystem processes for the period immediately before Anglo-American settlement using General Land Office survey records, historic...

  14. A Practical Decision-Analysis Process for Forest Ecosystem Management

    Treesearch

    H. Michael Rauscher; F. Thomas Lloyd; David L. Loftis; Mark J. Twery

    2000-01-01

    Many authors have pointed out the need to firm up the 'fuzzy' ecosystem management paradigm and develop operationally practical processes to allow forest managers to accommodate more effectively the continuing rapid change in societal perspectives and goals. There are three spatial scales where clear, precise, practical ecosystem management processes are...

  15. Current net ecosystem exchange of CO2 in a young mixed forest: any heritage from the previous ecosystem?

    NASA Astrophysics Data System (ADS)

    Violette, Aurélie; Heinesch, Bernard; Erpicum, Michel; Carnol, Monique; Aubinet, Marc; François, Louis

    2013-04-01

    For 15 years, networks of flux towers have been developed to determine accurate carbon balance with the eddy-covariance method and determine if forests are sink or source of carbon. However, for prediction of the evolution of carbon cycle and climate, major uncertainties remain on the ecosystem respiration (Reco, which includes the respiration of above ground part of trees, roots respiration and mineralization of the soil organic matter), the gross primary productivity (GPP) and their difference, the net ecosystem exchange (NEE) of forests. These uncertainties are consequences of spatial and inter-annual variability, driven by previous and current climatic conditions, as well as by the particular history of the site (management, diseases, etc.). In this study we focus on the carbon cycle in two mixed forests in the Belgian Ardennes. The first site, Vielsalm, is a mature stand mostly composed of beeches (Fagus sylvatica) and douglas fir (Pseudotsuga menziesii) from 80 to 100 years old. The second site, La Robinette, was covered before 1995 with spruces. After an important windfall and a clear cutting, the site was replanted, between 1995 and 2000, with spruces (Piceas abies) and deciduous species (mostly Betula pendula, Aulnus glutinosa and Salix aurita). The challenge here is to highlight how initial conditions can influence the current behavior of the carbon cycle in a growing stand compared to a mature one, where initial conditions are supposed to be forgotten. A modeling approach suits particularly well for sensitivity tests and estimation of the temporal lag between an event and the ecosystem response. We use the forest ecosystem model ASPECTS (Rasse et al., Ecological Modelling 141, 35-52, 2001). This model predicts long-term forest growth by calculating, over time, hourly NEE. It was developed and already validated on the Vielsalm forest. Modelling results are confronted to eddy-covariance data on both sites from 2006 to 2011. The main difference between both

  16. Biogeochemical modelling vs. tree-ring data - comparison of forest ecosystem productivity estimates

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Hidy, Dóra; Paladinić, Elvis; Kern, Anikó; Marjanović, Hrvoje

    2017-04-01

    Forest ecosystems are sensitive to environmental changes as well as human-induce disturbances, therefore process-based models with integrated management modules represent valuable tool for estimating and forecasting forest ecosystem productivity under changing conditions. Biogeochemical model Biome-BGC simulates carbon, nitrogen and water fluxes, and it is widely used for different terrestrial ecosystems. It was modified and parameterised by many researchers in the past to meet the specific local conditions. In this research, we used recently published improved version of the model Biome-BGCMuSo (BBGCMuSo), with multilayer soil module and integrated management module. The aim of our research is to validate modelling results of forest ecosystem productivity (NPP) from BBGCMuSo model with observed productivity estimated from an extensive dataset of tree-rings. The research was conducted in two distinct forest complexes of managed Pedunculate oak in SE Europe (Croatia), namely Pokupsko basin and Spačva basin. First, we parameterized BBGCMuSo model at a local level using eddy-covariance (EC) data from Jastrebarsko EC site. Parameterized model was used for the assessment of productivity on a larger scale. Results of NPP assessment with BBGCMuSo are compared with NPP estimated from tree ring data taken from trees on over 100 plots in both forest complexes. Keywords: Biome-BGCMuSo, forest productivity, model parameterization, NPP, Pedunculate oak

  17. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    PubMed

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  18. The experimental design of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Steven L. Sheriff; Shuoqiong He

    1997-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is an experiment that examines the effects of three forest management practices on the forest community. MOFEP is designed as a randomized complete block design using nine sites divided into three blocks. Treatments of uneven-aged, even-aged, and no-harvest management were randomly assigned to sites within each block...

  19. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning

    PubMed Central

    Seidl, Rupert; Rammer, Werner; Spies, Thomas A.

    2015-01-01

    Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average

  20. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    NASA Astrophysics Data System (ADS)

    Band, Larry

    2010-05-01

    Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a

  1. The role of forest floor and trees to the ecosystem scale methane budget of boreal forests

    NASA Astrophysics Data System (ADS)

    Pihlatie, Mari; Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Urban, Otmar; Machacova, Katerina

    2016-04-01

    Boreal forests are considered as a sink of atmospheric methane (CH4) due to the activity of CH4 oxidizing bacteria (methanotrophs) in the soil. This soil CH4 sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH4 production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH4 fluxes has until recently been neglected due to the perception that trees do not contribute to the CH4 exchange, and also due to difficulties in measuring the CH4 exchange from trees. Findings of aerobic CH4 formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH4 cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH4 fluxes from trees in boreal region. We measured the CH4 exchange of tree-stems and tree-canopies from pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens, Betula pendula) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH4 fluxes from trees to forest-floor CH4 exchange, both measured by static chambers, and to CH4 fluxes measured above the forest canopy by a flux gradient technique. We link the CH4 fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO2 net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH4 producing methanogens and CH4 oxidizing methanotrophs in trees or soil. The above canopy CH4 flux measurements show that the whole forest ecosystem was a small source of CH4 over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH4, with variation

  2. Assemblages of braconidae (Hymenoptera) at agricultural and secondary forest ecosystem

    NASA Astrophysics Data System (ADS)

    Razali, Rabibah; Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah

    2016-11-01

    Braconids are parasitoid insects which parasitize other insects by injecting their eggs into the larvae and eventually killing the hosts. Due to this character, braconids play an important role in stabilizing the natural and human-made environment. The objective of this study was to evaluate the diversity and distribution of braconids in two ecosystems. Nine Malaise traps were installed in each ecosystem for 30 days at five sampling sites, namely Bukit Rupa (BR), Bukit Fraser (BF), Ladang Zamrud (LZ), Felda Lui Muda (FLM) and Cherating (Ch). Samples were collected and kept in 75% alcohol for identification process. Two types of ecosystem were selected namely forest (secondary forest) and agricultural (oil palm plantation, star fruit orchard) ecosystems. A total of 1201 individuals were collected in 18 subfamilies and 137 morphospecies. From the results, BR showed the highest H', as it was a natural habitat for the braconids. FLM and LZ also showed high H' values, while Ch was the lowest. Based on the cluster analysis, the clade was divided into two groups; the oil palm plantation (LZ, FLM) and forest ecosystem (BF, BR). Ch was considered an outgroup because the braconid spesies found there were specific to Bactocera spp. Based on the rarefaction curve, LZ had the most stable curve compared to the others due to high sample size.

  3. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    PubMed

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous

  4. EnviroAtlas - Ecosystem Services Market-Based Programs Web Service, U.S., 2016, Forest Trends' Ecosystem Marketplace

    EPA Pesticide Factsheets

    This EnviroAtlas web service contains layers depicting market-based programs and projects addressing ecosystem services protection in the United States. Layers include data collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets and enabling conditions that facilitate, directly or indirectly, market-based approaches to protecting and investing in those ecosystem services. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. Hydrologic Modeling of Boreal Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  6. Forest Ecosystem services and development pressures

    Treesearch

    David N. Wear

    2006-01-01

    Ecosystem services from forests on private lands are often under-produced because landowners bear the cost of restoring, preserving, and managing their lands to produce ecological services that benefit all members of the community or larger society. Over the last two decades, a variety of federal and state programs have applied a combination of regulations, extension,...

  7. Vegetation indicators of transformation in the urban forest ecosystems of "Kuzminki-Lyublino" Park

    NASA Astrophysics Data System (ADS)

    Buyvolova, Anna; Trifonova, Tatiana; Bykova, Elena

    2017-04-01

    Forest ecosystems in the city are at the same time a component of its natural environment and part of urban developmental planning. It imposes upon urban forests a large functional load, both environmental (formation of environment, air purification, noise pollution reducing, etc.) and social (recreational, educational) which defines the special attitude to their management and study. It is not a simple task to preserve maximum accessibility to the forest ecosystems of the large metropolises with a minimum of change. The urban forest vegetates in naturally formed soil, it has all the elements of a morphological structure (canopy layers), represented by natural species of the zonal vegetation. Sometimes it is impossible for a specialist to distinguish between an urban forest and a rural one. However, the urban forests are changing, being under the threat of various negative influences of the city, of which pollution is arguably the most significant. This article presents some indicators of structural changes to the plant communities, which is a response of forest ecosystems to an anthropogenic impact. It is shown that the indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The assessment of the impact of the urban environment on the state of vegetation in the "Kuzminki-Lyublino" Natural-Historical Park was conducted in two key areas least affected by anthropogenic impacts under different plant communities represented by complex pine and birch forests and in similar forest types in the Prioksko-Terrasny Biosphere Reserve. The selection of pine forests as a model is due to the fact that, according to some scientists, pine (Pinus

  8. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-08-31

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.

  9. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  10. Harvest-associated disturbance in upland Ozark forests of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Johann N. Bruhn; James J. Wetteroff; Jeanne D. Mihail; Randy G. Jensen; James B. Pickens

    2002-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is a long-term, multidisciplinary, landscape-based research program studying effects of even-aged (EAM), uneven-aged (UAM), and no-harvest (NHM) management on forest communities. The first MOFEP timber harvests occurred from May through November 1996. Harvest- related disturbance occurred on 69 of 180 permanent 0.2-ha...

  11. Carbon storage in China's forest ecosystems: estimation by different integrative methods.

    PubMed

    Peng, Shunlei; Wen, Ding; He, Nianpeng; Yu, Guirui; Ma, Anna; Wang, Qiufeng

    2016-05-01

    Carbon (C) storage for all the components, especially dead mass and soil organic carbon, was rarely reported and remained uncertainty in China's forest ecosystems. This study used field-measured data published between 2004 and 2014 to estimate C storage by three forest type classifications and three spatial interpolations and assessed the uncertainty in C storage resulting from different integrative methods in China's forest ecosystems. The results showed that C storage in China's forest ecosystems ranged from 30.99 to 34.96 Pg C by the six integrative methods. We detected 5.0% variation (coefficient of variation, CV, %) among the six methods, which was influenced mainly by soil C estimates. Soil C density and storage in the 0-100 cm soil layer were estimated to be 136.11-153.16 Mg C·ha(-1) and 20.63-23.21 Pg C, respectively. Dead mass C density and storage were estimated to be 3.66-5.41 Mg C·ha(-1) and 0.68-0.82 Pg C, respectively. Mean C storage in China's forest ecosystems estimated by the six integrative methods was 8.557 Pg C (25.8%) for aboveground biomass, 1.950 Pg C (5.9%) for belowground biomass, 0.697 Pg C (2.1%) for dead mass, and 21.958 Pg C (66.2%) for soil organic C in the 0-100 cm soil layer. The R:S ratio was 0.23, and C storage in the soil was 2.1 times greater than in the vegetation. Carbon storage estimates with respect to forest type classification (38 forest subtypes) were closer to the average value than those calculated using the spatial interpolation methods. Variance among different methods and data sources may partially explain the high uncertainty of C storage detected by different studies. This study demonstrates the importance of using multimethodological approaches to estimate C storage accurately in the large-scale forest ecosystems.

  12. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    PubMed

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  13. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    NASA Astrophysics Data System (ADS)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  14. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    NASA Astrophysics Data System (ADS)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  15. Retenation of soluble organic nutrients by a forested ecosystem

    Treesearch

    R.G. Qualls; B.L. Haines; Wayne T. Swank; S.W. Tyler

    2002-01-01

    We document an example of a forested watershed at the Coweeta Hydrologic Laboratory with an extraordinary tendency to retain dissolved organic matter (DOM) generated in large quantities within the ecosystem. Our objectives were to determine fluxes of dissolved organic C, N, and P (DOC,D ON, DOP, respectively), in water draining through each stratum of the ecosystem and...

  16. Disturbance in forest ecosystems caused by pathogens and insects

    Treesearch

    Philip M. Wargo; Philip M. Wargo

    1995-01-01

    Pathogens and insects are major driving forces of processes in forested ecosystems. Disturbances caused by them are as intimately involved in ecosystem dynamics as the more sudden and obvious abiotic disturbances, for example, those caused by wind or fire. However, because pathogens and insects are selective and may affect only one or several related species of...

  17. Urban Forest Ecosystem Service Optimization, Tradeoffs, and Disparities

    NASA Astrophysics Data System (ADS)

    Bodnaruk, E.; Kroll, C. N.; Endreny, T. A.; Hirabayashi, S.; Yang, Y.

    2014-12-01

    Urban land area and the proportion of humanity living in cities is growing, leading to increased urban air pollution, temperature, and stormwater runoff. These changes can exacerbate respiratory and heat-related illnesses and affect ecosystem functioning. Urban trees can help mitigate these threats by removing air pollutants, mitigating urban heat island effects, and infiltrating and filtering stormwater. The urban environment is highly heterogeneous, and there is no tool to determine optimal locations to plant or protect trees. Using spatially explicit land cover, weather, and demographic data within biophysical ecosystem service models, this research expands upon the iTree urban forest tools to produce a new decision support tool (iTree-DST) that will explore the development and impacts of optimal tree planting. It will also heighten awareness of environmental justice by incorporating the Atkinson Index to quantify disparities in health risks and ecosystem services across vulnerable and susceptible populations. The study area is Baltimore City, a location whose urban forest and environmental justice concerns have been studied extensively. The iTree-DST is run at the US Census block group level and utilizes a local gradient approach to calculate the change in ecosystem services with changing tree cover across the study area. Empirical fits provide ecosystem service gradients for possible tree cover scenarios, greatly increasing the speed and efficiency of the optimization procedure. Initial results include an evaluation of the performance of the gradient method, optimal planting schemes for individual ecosystem services, and an analysis of tradeoffs and synergies between competing objectives.

  18. Assessing pathogen and insect succession functions in forest ecosystems

    Treesearch

    Susan K. Hagle; Sandra J. Kegley; Stephen B. Williams

    1995-01-01

    The pilot test of a method to assess the ecological function of pathogens and insects in forests is reported. The analysis is a practical application of current ecosystem management theory.The influences of pathogens and insects on forest succession are measured by relating successional transition rates and types to conditions for pathogen and insect activities which...

  19. Available fuel dynamics in nine contrasting forest ecosystems in North America

    Treesearch

    Soung-Ryoul Ryu; Jiquan Chen; Thomas R. Crow; Sari C. Saunders

    2004-01-01

    Available fuel and its dynamics, both of which affect fire behavior in forest ecosystems, are direct products of ecosystem production, decomposition, and disturbances. Using published ecosystem models and equations, we developed a simulation model to evaluate the effects of dynamics of aboveground net primary production (ANPP), carbon allocation, residual slash,...

  20. A review of the ecosystem functions in oil palm plantations, using forests as a reference system.

    PubMed

    Dislich, Claudia; Keyel, Alexander C; Salecker, Jan; Kisel, Yael; Meyer, Katrin M; Auliya, Mark; Barnes, Andrew D; Corre, Marife D; Darras, Kevin; Faust, Heiko; Hess, Bastian; Klasen, Stephan; Knohl, Alexander; Kreft, Holger; Meijide, Ana; Nurdiansyah, Fuad; Otten, Fenna; Pe'er, Guy; Steinebach, Stefanie; Tarigan, Suria; Tölle, Merja H; Tscharntke, Teja; Wiegand, Kerstin

    2017-08-01

    Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal

  1. A review of impacts by invasive exotic plants on forest ecosystem services

    Treesearch

    Kevin Devine; Songlin Fei

    2011-01-01

    Many of our forest ecosystems are at risk due to the invasion of exotic invasive plant species. Invasive plant species pose numerous threats to ecosystems by decreasing biodiversity, deteriorating ecosystem processes, and degrading ecosystem services. Literature on Kentucky's most invasive exotic plant species was examined to understand their potential impacts on...

  2. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems

    Treesearch

    Aaron M. Ellison; Michael S. Bank; Barton D. Clinton; Elizabeth A. Colburn; Katherine Elliott; Chelcy Rae Ford; David R. Foster; Brian D. Kloeppel; Jennifer D. Knoepp; Gary M. Lovett; Jacqueline Mohan; David A. Orwig; Nicholas L. Rodenhouse; William V. Sobczak; Kristina A. Stinson; Jeffrey K. Stone; Christopher M. Swan; Jill Thompson; Betsy Von Holle; Jackson R. Webster

    2005-01-01

    In many forested ecosystems, the architecture and functional ecology of certain tree species define forest structure and their species-specific traits control ecosystem dynamics. Such foundation tree species are declining throughout the world due to introductions and outbreaks of pests and pathogens, selective removal of individual taxa, and over-harvesting. Through a...

  3. Management to conserve forest ecosystems

    USGS Publications Warehouse

    Robbins, C.S.; McComb, William C.

    1984-01-01

    Historically, management of forests for wildlife has emphasized creation of openings and provision for a maximum of edge habitats. Wildlife managers have believed, quite logically, that increased sunlight enhances productivity among plants and insects, resulting in greater use by game animals and other wildlife. Recent studies comparing breeding bird populations of extensive forests with those of isolated woodlots have shown that the smaller woodlots, especially those under 35 ha (about 85 acres), lack many species that are typical of the larger tracts. The missing species can be predicted, and basically are the neotropical migrants. These long-distance migrants share several characteristics that make them especially vulnerable to reproductive failure in situations where predation and cowbird parasitism are high: they are primarily single-brooded, open nesters that lay small clutches on or near the ground. Edge habitats and forest openings attract cowbirds and predators. The edge species of birds, which are mostly permanent residents or short-distance migrants, are well adapted to survive and reproduce in small isolated woodlands without the benefit of special habitat management. The obligate forest interior species, on the other hand, are decreasing in those parts of North America where extensive forests are being replaced by isolated woodlands. If we are to preserve ecosystems intact for the benefit of future generations, and maintain a viable gene pool for the scarcer species, we must think in terms of retaining large, unbroken tracts of forest and of limiting disturbance in the more remote portions of these tracts.

  4. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States

    Treesearch

    James E. Smith; Linda S. Heath; Kenneth E. Skog; Richard A. Birdsey

    2006-01-01

    This study presents techniques for calculating average net annual additions to carbon in forests and in forest products. Forest ecosystem carbon yield tables, representing stand-level merchantable volume and carbon pools as a function of stand age, were developed for 51 forest types within 10 regions of the United States. Separate tables were developed for...

  5. Dust outpaces bedrock in nutrient supply to montane forest ecosystems

    PubMed Central

    Aciego, S. M.; Riebe, C. S.; Hart, S. C.; Blakowski, M. A.; Carey, C. J.; Aarons, S. M.; Dove, N. C.; Botthoff, J. K.; Sims, K. W. W.; Aronson, E. L.

    2017-01-01

    Dust provides ecosystem-sustaining nutrients to landscapes underlain by intensively weathered soils. Here we show that dust may also be crucial in montane forest ecosystems, dominating nutrient budgets despite continuous replacement of depleted soils with fresh bedrock via erosion. Strontium and neodymium isotopes in modern dust show that Asian sources contribute 18–45% of dust deposition across our Sierra Nevada, California study sites. The remaining dust originates regionally from the nearby Central Valley. Measured dust fluxes are greater than or equal to modern erosional outputs from hillslopes to channels, and account for 10–20% of estimated millennial-average inputs of bedrock P. Our results demonstrate that exogenic dust can drive the evolution of nutrient budgets in montane ecosystems, with implications for predicting forest response to changes in climate and land use. PMID:28348371

  6. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    PubMed Central

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-01-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832

  7. Unconventional gas development and its effect on forested ecosystems in the Northern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Drohan, Patrick; Brittingham, Margaret; Mortensen, David; Barlow, Kathryn; Langlois, Lillie

    2017-04-01

    Worldwide unconventional shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S.A. Appalachian Mountains across the states of Pennsylvania, West Virginia, Ohio, and Kentucky, are experiencing rapid landscape change as unconventional gas development occurs. We highlight several years of our research from this region in order to demonstrate the unique effect unconventional development has had on forested ecosystems. Infrastructure development has had a wide-reaching and varied effect on forested ecosystems and their services, which has resulted in temporary disturbances and long-lasting ones altering habitats and their viability. Corridor disturbances, such as pipelines, are the most spatially extensive disturbance and have substantially fragmented forest cover. Core forest disturbance, especially, in upper watershed positions, has resulted in disproportionate disturbances to forested ecosystems and their wildlife, and suggests a need for adaptive land management strategies to minimize and mitigate the effects of gas development. Soil and water resources are most affected by surface disturbances; however, soil protection and restoration strategies are evolving as the gas play changes economically. Dynamic soil properties related to soil organic matter and water availability respond uniquely to unconventional gas development and new, flexible restoration strategies are required to support long-term ecosystem stability. While the focus of management and research to date has been on acute disturbances to forested ecosystems, unconventional gas development is clearly a greater chronic, long-term disturbance factor in the Appalachian Mountains. Effectively managing ecosystems where unconventional gas development is occurring is a complicated interplay between public, private and corporate interests.

  8. Ecosystem carbon stocks in Pinus palustris forests

    Treesearch

    Lisa Samuelson; Tom Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Pete Anderson; Jason Jackson; Lorenzo Ferrari; Tim A. Martin; Wendell P. Cropper

    2014-01-01

    Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for...

  9. Net ecosystem carbon exchange of a dry temperate eucalypt forest

    NASA Astrophysics Data System (ADS)

    Hinko-Najera, Nina; Isaac, Peter; Beringer, Jason; van Gorsel, Eva; Ewenz, Cacilia; McHugh, Ian; Exbrayat, Jean-François; Livesley, Stephen J.; Arndt, Stefan K.

    2017-08-01

    Forest ecosystems play a crucial role in the global carbon cycle by sequestering a considerable fraction of anthropogenic CO2, thereby contributing to climate change mitigation. However, there is a gap in our understanding about the carbon dynamics of eucalypt (broadleaf evergreen) forests in temperate climates, which might differ from temperate evergreen coniferous or deciduous broadleaved forests given their fundamental differences in physiology, phenology and growth dynamics. To address this gap we undertook a 3-year study (2010-2012) of eddy covariance measurements in a dry temperate eucalypt forest in southeastern Australia. We determined the annual net carbon balance and investigated the temporal (seasonal and inter-annual) variability in and environmental controls of net ecosystem carbon exchange (NEE), gross primary productivity (GPP) and ecosystem respiration (ER). The forest was a large and constant carbon sink throughout the study period, even in winter, with an overall mean NEE of -1234 ± 109 (SE) g C m-2 yr-1. Estimated annual ER was similar for 2010 and 2011 but decreased in 2012 ranging from 1603 to 1346 g C m-2 yr-1, whereas GPP showed no significant inter-annual variability, with a mean annual estimate of 2728 ± 39 g C m-2 yr-1. All ecosystem carbon fluxes had a pronounced seasonality, with GPP being greatest during spring and summer and ER being highest during summer, whereas peaks in NEE occurred in early spring and again in summer. High NEE in spring was likely caused by a delayed increase in ER due to low temperatures. A strong seasonal pattern in environmental controls of daytime and night-time NEE was revealed. Daytime NEE was equally explained by incoming solar radiation and air temperature, whereas air temperature was the main environmental driver of night-time NEE. The forest experienced unusual above-average annual rainfall during the first 2 years of this 3-year period so that soil water content remained relatively high and the forest

  10. Models for Forest Ecosystem Management: A European Perspective

    PubMed Central

    Pretzsch, H.; Grote, R.; Reineking, B.; Rötzer, Th.; Seifert, St.

    2008-01-01

    Background Forest management in Europe is committed to sustainability. In the face of climate change and accompanying risks, however, planning in order to achieve this aim becomes increasingly challenging, underlining the need for new and innovative methods. Models potentially integrate a wide range of system knowledge and present scenarios of variables important for any management decision. In the past, however, model development has mainly focused on specific purposes whereas today we are increasingly aware of the need for the whole range of information that can be provided by models. It is therefore assumed helpful to review the various approaches that are available for specific tasks and to discuss how they can be used for future management strategies. Scope Here we develop a concept for the role of models in forest ecosystem management based on historical analyses. Five paradigms of forest management are identified: (1) multiple uses, (2) dominant use, (3) environmentally sensitive multiple uses, (4) full ecosystem approach and (5) eco-regional perspective. An overview of model approaches is given that is dedicated to this purpose and to developments of different kinds of approaches. It is discussed how these models can contribute to goal setting, decision support and development of guidelines for forestry operations. Furthermore, it is shown how scenario analysis, including stand and landscape visualization, can be used to depict alternatives, make long-term consequences of different options transparent, and ease participation of different stakeholder groups and education. Conclusions In our opinion, the current challenge of forest ecosystem management in Europe is to integrate system knowledge from different temporal and spatial scales and from various disciplines. For this purpose, using a set of models with different focus that can be selected from a kind of toolbox according to particular needs is more promising than developing one overarching model

  11. Application of artificial intelligence to risk analysis for forested ecosystems

    Treesearch

    Daniel L. Schmoldt

    2001-01-01

    Forest ecosystems are subject to a variety of natural and anthropogenic disturbances that extract a penalty from human population values. Such value losses (undesirable effects) combined with their likelihoods of occurrence constitute risk. Assessment or prediction of risk for various events is an important aid to forest management. Artificial intelligence (AI)...

  12. Emerald ash borer aftermath forests: the future of ash ecosystems

    Treesearch

    Kathleen S. Knight; Daniel A. Herms; John Cardina; Robert Long; Kamal J.K. Gandhi; Catharine P. Herms

    2011-01-01

    The effects of emerald ash borer (EAB) (Agrilus planipennis) on forest ecosystems are being studied through a collaborative research program between the U.S. Forest Service and The Ohio State University. We are monitoring ash demographics, understory light availability, EAB population dynamics, native and non-native plants, and effects of ash...

  13. Fire, competition and forest pests: landscape treatment to sustain ecosystem function

    Treesearch

    Geral I. McDonald; A. E. Harvey; J. R. Tonn

    2000-01-01

    Fire, competition for light and water, and native forest pests have interacted for millennia in western forests to produce a countryside dominated by seral species of conifers. These conifer-dominated ecosystems exist in six kinds of biotic communities. We divided one of these communities, the Rocky Mountain Montane Conifer Forest, into 31 subseries based on the...

  14. Integrating neotropical migratory birds into Forest Service plans for ecosystem management

    Treesearch

    Deborah M. Finch; William M. Block; Reg A. Fletcher; Leon F. Fager

    1993-01-01

    The USDA Forest Service is undergoing a major change in focus in response to public interests, growing concern for sustaining natural resources, and new knowledge about wildlife, fisheries, forests and grasslands, and how they interact at the ecosystem level. This shift in direction affects how Forest Service lands are managed, what research is conducted, how resource...

  15. Effects of roads on elk: implications for management in forested ecosystems.

    Treesearch

    Mary M. Rowland; Michael J. Wisdom; Bruce K. Johnson; Mark A. Penninger

    2004-01-01

    The effects of roads on both habitat and population responses of elk (Cervus elaphus) have been of keen interest to foresters and ungulate biologists for the last half century. Increased timber harvest in national forests, beginning in the 1960s, led to a proliferation of road networks in forested ecosystems inhabited by elk (Hieb 1976, Lyon and...

  16. The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems

    PubMed Central

    Innes, Clinton; Anand, Madhur; Bauch, Chris T.

    2013-01-01

    Forest-grassland mosaic ecosystems can exhibit alternative stables states, whereby under the same environmental conditions, the ecosystem could equally well reside either in one state or another, depending on the initial conditions. We develop a mathematical model that couples a simplified forest-grassland mosaic model to a dynamic model of opinions about conservation priorities in a population, based on perceptions of ecosystem rarity. Weak human influence increases the region of parameter space where alternative stable states are possible. However, strong human influence precludes bistability, such that forest and grassland either co-exist at a single, stable equilibrium, or their relative abundance oscillates. Moreover, a perturbation can shift the system from a stable state to an oscillatory state. We conclude that human-environment interactions can qualitatively alter the composition of forest-grassland mosaic ecosystems. The human role in such systems should be viewed as dynamic, responsive element rather than as a fixed, unchanging entity. PMID:24048359

  17. Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.

    2013-03-01

    Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.

  18. Unlocking the climate riddle in forested ecosystems

    Treesearch

    Greg C. Liknes; Christopher W. Woodall; Brian F. Walters; Sara A. Goeking

    2012-01-01

    Climate information is often used as a predictor in ecological studies, where temporal averages are typically based on climate normals (30-year means) or seasonal averages. While ensemble projections of future climate forecast a higher global average annual temperature, they also predict increased climate variability. It remains to be seen whether forest ecosystems...

  19. Ecosystem Level Methane Dynamics in a Southern Forest Wetland

    NASA Astrophysics Data System (ADS)

    Mitra, B.; Minick, K.; Miao, G.; Furst, J.; Domec, J. C.; Sun, G.; McNulty, S.; King, J. S.; Noormets, A.

    2017-12-01

    Methane (CH4) budgets of most ecosystems remain poorly defined, particularly for the forested wetlands of the Southeastern United States.These once abundant ecosystems are unique in the amount of sequestered soil carbon they hold, and because of their interaction with climate through their contribution to both CO2 and CH4 exchange. The stability of the large C stocks in the vegetation and soil of these ecosystems is largest in submerged anoxic conditions, even though methanogenic processes still occur. However, the pressure from land development and drainage, more variable hydrology, and salt-water intrusion can alter the magnitude and balance of aerobic and anaerobic decomposition processes. Here we report five years of CH4 and CO2 fluxes from a forested wetland in the Alligator River National Wildlife Refuge (ARNWR) on the Albemarle-Pamlico Peninsula of North Carolina, USA. Time series of eddy covariance based estimates of CH4 fluxes from 2012 to 2016 show large temporal variation, with seasonal progression in daily mean fluxes from June through October. The peak methane emission coincided with the peak of gross primary production and ecosystem level respiration. The combined responses of these fluxes increases the uncertainty in whether wetlands will be sources or sinks of carbon. CH4 fluxes demonstrated strong variability and different environmental regulation across years and seasons. Water table depth and atmospheric pressure regulated synoptic and seasonal patterns of CH4 emissions. Across all years, the forested wetland emitted CH4 at rates far exceeding those reported for mid-latitude wetlands and rice paddy systems.

  20. Carbon Budget and its Dynamics over Northern Eurasia Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian; Maksyutov, Shamil

    2016-04-01

    The presentation contains an overview of recent findings and results of assessment of carbon cycling of forest ecosystems of Northern Eurasia. From a methodological point of view, there is a clear tendency in understanding a need of a Full and Verified Carbon Account (FCA), i.e. in reliable assessment of uncertainties for all modules and all stages of FCA. FCA is considered as a fuzzy (underspecified) system that supposes a system integration of major methods of carbon cycling study (land-ecosystem approach, LEA; process-based models; eddy covariance; and inverse modelling). Landscape-ecosystem approach 1) serves for accumulation of all relevant knowledge of landscape and ecosystems; 2) for strict systems designing the account, 3) contains all relevant spatially distributed empirical and semi-empirical data and models, and 4) is presented in form of an Integrated Land Information System (ILIS). The ILIS includes a hybrid land cover in a spatially and temporarily explicit way and corresponding attributive databases. The forest mask is provided by utilizing multi-sensor remote sensing data, geographically weighed regression and validation within GEO-wiki platform. By-pixel parametrization of forest cover is based on a special optimization algorithms using all available knowledge and information sources (data of forest inventory and different surveys, observations in situ, official statistics of forest management etc.). Major carbon fluxes within the LEA (NPP, HR, disturbances etc.) are estimated based on fusion of empirical data and aggregations with process-based elements by sets of regionally distributed models. Uncertainties within LEA are assessed for each module and at each step of the account. Within method results of LEA and corresponding uncertainties are harmonized and mutually constrained with independent outputs received by other methods based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000

  1. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau.

    PubMed

    Yue, Kai; Yang, Wanqin; Peng, Changhui; Peng, Yan; Zhang, Chuan; Huang, Chunping; Tan, Yu; Wu, Fuzhong

    2016-10-01

    Litter decomposition is a biological process fundamental to element cycling and a main nutrient source within forest meta-ecosystems, but few studies have looked into this process simultaneously in individual ecosystems, where environmental factors can vary substantially. A two-year field study conducted in an alpine forest meta-ecosystem with four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana) that varied widely in chemical traits showed that both litter species and ecosystem type (i.e., forest floor, stream and riparian zone) are important factors affecting litter decomposition, and their effects can be moderated by local-scale environmental factors such as temperature and nutrient availability. Litter decomposed fastest in the streams followed by the riparian zone and forest floor regardless of species. For a given litter species, both the k value and limit value varied significantly among ecosystems, indicating that the litter decomposition rate and extent (i.e., reaching a limit value) can be substantially affected by ecosystem type and the local-scale environmental factors. Apart from litter initial acid unhydrolyzable residue (AUR) concentration and its ratio to nitrogen concentration (i.e., AUR/N ratio), the initial nutrient concentrations of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also important litter traits that affected decomposition depending on the ecosystem type. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A decision framework for identifying models to estimate forest ecosystem services gains from restoration

    USGS Publications Warehouse

    Christin, Zachary; Bagstad, Kenneth J.; Verdone, Michael

    2016-01-01

    Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving “tools landscape” presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.

  3. Ecosystem services to enhance sustainable forest management in the US: moving from forest service national programmes to local projects in the Pacific Northwest

    Treesearch

    Robert L. Deal; Nikola Smith; Joe Gates

    2017-01-01

    Ecosystem services are increasingly recognized as a way of framing and describing the broad suite of benefits that people receive from forests. The USDA Forest Service has been exploring use of an ecosystem services framework to describe forest values provided by federal lands and to attract and build partnerships with stakeholders to implement projects. Recently, the...

  4. Northern Forest DroughtNet: A New Framework to Understand Impacts of Precipitation Change on the Northern Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Rustad, L.; Templer, P. H.; Jennings, K.; Phillips, R.; Smith, M.

    2014-12-01

    Recent trends and projections for future change for the U.S. northern forests suggest that the region's climate is becoming warmer, wetter, and, ironically, drier, with more precipitation occurring as large events, separated by longer periods with no precipitation. However, to date, precipitation manipulation experiments conducted in forest ecosystems represent only ~5% of all such experiments worldwide, and our understanding of how the mesic-adapted northern forest will respond to greater frequency and intensity of drought in the future is especially poor. Several important challenges have hampered previous research efforts to conduct forest drought experiments and draw robust conclusions, including difficulties in reducing water uptake by deep and lateral tree roots, logistical and financial constraints to establishing and maintaining large-scale field experiments, and the lack of standardized approaches for determining the appropriate precipitation manipulation treatment (e.g., amount and timing of throughfall displacement), designing and constructing the throughfall displacement infrastructure, identifying key response variables, and collecting and analyzing the field data. The overarching goal of this project is to establish a regional research coordination network - Northern Forest DroughtNet - to investigate the impacts of changes in the amount and distribution of precipitation on the hydrology, biogeochemistry, and carbon (C) cycling dynamics of northern temperate forests. Specific objectives include the development of a standard prototype for conducting precipitation manipulation studies in forest ecosystems (in collaboration with the international DroughtNet-RCN) and the implementation of this prototype drought experiment at the Hubbard Brook Experimental Forest. Here, we present the advances made thus far towards achieving the objectives of Northern Forest DroughtNet, plans for future work, and an invitation to the larger scientific community interested

  5. Restoring longleaf pine forest ecosystems in the southern United States

    Treesearch

    Dale G. Brockway; Kenneth W. Outcalt; Donald J. Tomczak; E. E. Johnson

    2002-01-01

    Longleafpine (Pinus palustris) forests were historically one of the most extensive ecosystems in North America, covering 38 million ha along the coastal plain from Texas to Virginia and extending into central Florida and the Piedmont and mountains of Alabama and Georgia. Throughout its domain. longleaf pine occurred in forests, woodlands and savannas...

  6. Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.

    2011-09-01

    This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  7. EnviroAtlas - Ecosystem Service Market and Project Areas, U.S., 2015, Forest Trends' Ecosystem Marketplace

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains polygons depicting the geographic areas of market-based programs, referred to herein as markets, and projects addressing ecosystem services protection in the United States. Depending upon the type of market or project and data availability, polygons reflect market coverage areas, project footprints, or project primary impact areas in which ecosystem service markets and projects operate. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets. Additional biodiversity data were obtained from the Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) database in 2015. Attribute data include information regarding the methodology, design, and development of biodiversity, carbon, and water markets and projects. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about thi

  8. EnviroAtlas - Ecosystem Service Market and Project Locations, U.S., 2015, Forest Trends' Ecosystem Marketplace

    EPA Pesticide Factsheets

    This EnviroAtlas dataset contains points depicting the location of market-based programs, referred to herein as markets, and projects addressing ecosystem services protection in the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets. Additional biodiversity data were obtained from the Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) database in 2015. Points represent the centroids (i.e., center points) of market coverage areas, project footprints, or project primary impact areas in which ecosystem service markets or projects operate. National-level markets are an exception to this norm with points representing administrative headquarters locations. Attribute data include information regarding the methodology, design, and development of biodiversity, carbon, and water markets and projects. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) o

  9. [Eco-value level classification and ecosystem management strategy of broad-leaved Korean pine forest in Changbai Mountain].

    PubMed

    Zheng, Jingming; Jiang, Fengqi; Zeng, Dehui

    2003-06-01

    To realize the sustainable management of forest ecosystems, we should explicitly clarify the types and differences of the ecosystem services provided by different ecosystems under different conditions, with rethinking about the value of forest ecosystems; then solid management strategies and measurements will be enacted and applied to achieve the objects. The broad-leaved Korean pine forest (BLKPF) in Changbai Mountain is a unique and important forest type in China, owing to its many important ecosystem services such as preventing soil erosion, regulating climates, nutrient cycling, providing wood and non-timber forest products, etc. This paper is a preliminary study on the management strategy of BLKPF on the basis of analyzing the characters of the ecosystems and the relative importance of services they provided in this region. Based on the latest research of ecosystem services of BLKPF in Changbai Mountain, an idea of eco-value level (EVL) was introduced, and accordingly, management strategies were summarized by adopting the advanced theories in ecosystem management science and by analyzing field survey data. EVL means the relative amount of the value of ecosystem services provided by certain ecosystem, which can indicate the difference between services in given objects. The EVL classification of BLKPF implies the relative amount of the eco-value of different ecosystems including virgin forest, secondary forest, forest with human disturbance, and man-made forest in the clear-cutting sites. Analytical Hierarchical Processing method was used to formulate the equation for EVL index. Eight factors, namely, slope, soil depth, stability of soil maternal material, coverage of above-ground canopy, species diversity, regeneration rate of the stand, life span of dominant tree species, and intensity of human disturbance were chosen to build the formula. These factors belonged to three aspects affecting ecosystem services including the physical environment, community, and

  10. Biogeochemistry of vertebrate decomposition in a forest ecosystem

    USDA-ARS?s Scientific Manuscript database

    Decomposing plants and animals provide critical nutrients for ecosystems, including forests. During vertebrate decay, the rapid release of limiting nutrients, including N, P, C, and S fundamentally transforms the soil environment by stimulating endogenous organisms. The goal of this study was t...

  11. Assessment of vulnerability of forest ecosystems to climate change and adaptation planning in Nepal

    NASA Astrophysics Data System (ADS)

    Matin, M. A.; Chitale, V. S.

    2016-12-01

    Understanding ecosystem level vulnerability of forests and dependence of local communities on these ecosystems is a first step towards developing effective adaptation strategies. As forests are important components of livelihoods system for a large percentage of the population in the Himalayan region, they offer an important basis for creating and safeguarding more climate-resilient communities. Increased frequency, duration, and/or severity of drought and heat stress, changes in winter ecology, and pest and fire outbreaksunder climate change scenarios could fundamentally alter the composition, productivity and biogeography of forests affecting the potential ecosystem services offered and forest-based livelihoods. Hence, forest ecosystem vulnerability assessment to climate change and the development of a knowledgebase to identify and support relevant adaptation strategies is identified as an urgent need. Climate change vulnerability is measured as a function of exposure, sensitivity and the adaptive capacity of the system towards climate variability and extreme events. Effective adaptation to climate change depends on the availability of two important prerequisites: a) information on what, where, and how to adapt, and b) availability of resources to implement the adaptation measures. In the present study, we introduce the concept of two way multitier approach, which can support effective identification and implementation of adaptation measures in Nepal and the framework can be replicated in other countries in the HKH region. The assessment of overall vulnerability of forests comprises of two components: 1) understanding the relationship between exposure and sensitivity and positive feedback from adaptive capacity of forests; 2) quantifying the dependence of local communities on these ecosystems. We use climate datasets from Bioclim and biophysical products from MODIS, alongwith field datasets. We report that most of the forests along the high altitude areas and few

  12. An ecosystem model for tropical forest disturbance and selective logging

    Treesearch

    Maoyi Huang; Gregory P. Asner; Michael Keller; Joseph A. Berry

    2008-01-01

    [1] A new three-dimensional version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model (CASA-3D) was developed to simulate regional carbon cycling in tropical forest ecosystems after disturbances such as logging. CASA-3D has the following new features: (1) an alternative approach for calculating absorbed photosynthetically active radiation (APAR) using new...

  13. Scaling ozone responses of forest trees to the ecosystem level in a changing climate

    Treesearch

    D.F. Karnosky; K.S. Pregitzer; D.R. Zak; M.E. Kubiske; G.R. Hendrey; D. Weinstein; M. Nosal; K.E. Percy

    2005-01-01

    Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO2) and ozone (O3),...

  14. Timber productivity of seven forest ecosystems in southeastern Alaska.

    Treesearch

    Willem W.S. van Hees

    1988-01-01

    Observations of growth on Alaska-cedar (Chamaecyparis nootkatensis), mountain hemlock (Tsuga mertensiana), Sitka spruce (Picea sitchensis), western hemlock (Tsuga heterophylla), and western redcedar (Thuja plicata) on seven forest ecosystems in southeastern Alaska...

  15. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    PubMed

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  16. Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest

    Treesearch

    John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso

    2007-01-01

    Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.

  17. Forest ecosystems, disturbance, and climate change in Washington State, USA

    Treesearch

    Jeremy S. Littell; Elaine E. Oneil; Donald McKenzie; Jeffrey A. Hicke; James A. Lutz; Robert A. Norheim; Marketa M. Elsner

    2010-01-01

    Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is...

  18. Achieving sustainable ese of environment: a framework for payment for protected forest ecosystem service

    NASA Astrophysics Data System (ADS)

    Widicahyono, A.; Awang, S. A.; Maryudi, A.; Setiawan, M. A.; Rusdimi, A. U.; Handoko, D.; Muhammad, R. A.

    2018-04-01

    Over the last decade, deforestation in Indonesia has reduced the forest area down to more than 6 million hectares. There is conflict that the protected forest ecosystem service is still often perceived as public goods. Many of them went unrecognized in planning process and continue to be undervalued. The challenge lies in maintaining socioeconomic development and ecosystem services sustainability without overlooking the people’s opportunities and improving their livelihoods over the long term. An integrated approach is required to understand the comprehensive concept of protected forest ecosystem service. This research aims to formulate a scheme of payment for ecosystem service (PES) in a protected forest. It is a first step towards the attempt for the value of ecosystem services to be reflected in decision-making. Literatures, previous researches and secondary data are reviewed thoroughly to analyze the interrelated components by looking at the environment as a whole and recognize their linkages that have consequences to one another both positive and negative. The framework of implementation of PES schemes outlines the complexity of human-environment interconnecting relationships. It evaluates the contributing actors of different interest i.e. long term use and short term use. The concept of PES accommodates the fulfillment of both conservation and exploitation with an incentive scheme to the contributing parties who are willing to implement conservation and issuance of compensation expense for any exploitation means. The most crucial part in this concept is to have a good and effective communication between every policy makers concerning the forest ecosystem and local communities.

  19. Anthropogenic effects on forest ecosystems at various spatio-temporal scales.

    PubMed

    Bredemeier, Michael

    2002-03-27

    The focus in this review of long-term effects on forest ecosystems is on human impact. As a classification of this differentiated and complex matter, three domains of long-term effects with different scales in space and time are distinguished: Exploitation and conversion history of forests in areas of extended human settlement, Long-range air pollution and acid deposition in industrialized regions, Current global loss of forests and soil degradation. There is an evident link between the first and the third point in the list. Cultivation of primary forestland--with its tremendous effects on land cover--took place in Europe many centuries ago and continued for centuries. Deforestation today is a phenomenon predominantly observed in the developing countries, yet it threatens biotic and soil resources on a global scale. Acidification of forest soils caused by long-range air pollution from anthropogenic emission sources is a regional to continental problem in industrialized parts of the world. As a result of emission reduction legislation, atmospheric acid deposition is currently on the retreat in the richer industrialized regions (e.g., Europe, U.S., Japan); however, because many other regions of the world are at present rapidly developing their polluting industries (e.g., China and India), "acid rain" will most probably remain a serious ecological problem on regional scales. It is believed to have caused considerable destabilization of forest ecosystems, adding to the strong structural and biogeochemical impacts resulting from exploitation history. Deforestation and soil degradation cause the most pressing ecological problems for the time being, at least on the global scale. In many of those regions where loss of forests and soils is now high, it may be extremely difficult or impossible to restore forest ecosystems and soil productivity. Moreover, the driving forces, which are predominantly of a demographic and socioeconomic nature, do not yet seem to be lessening in

  20. Integration of multispectral and SAR data for monitoring forest ecosystems recovery after fire

    NASA Astrophysics Data System (ADS)

    Stankova, Nataliya; Nedkov, Roumen; Ivanova, Iva; Avetisyan, Daniela

    2017-09-01

    The aim of this study is assessing the impacts and monitoring the condition and recovery processes of forest ecosystems after fire based on remote aerospace methods and data. To achieve this goal, satellite imagery in microwave and optical range of the spectrum were used. A hybrid model for assessing the instantaneous condition of forest ecosystems after fire that uses parallel data from optical and Synthetic Aperture Radar (SAR) was developed. Based on the three Tasseled Cap components (Brightness-BR, Greenness-GR and Wetness-W), a vector describing the current condition of the forest ecosystems was obtained and used as input data from the optical range. Results obtained by implementation of the proposed approach show that the integrated composite images of VIC and SAR represent the degree of recovery.

  1. Ecosystem Carbon Emissions from 2015 Forest Fires in Interior Alaska

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2018-01-01

    In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high). Results: Field measurements indicated that the loss of surface organic layers in boreal ecosystem fires is a major factor determining post-fire soil temperature changes, depth of thawing, and carbon losses from the mineral topsoil layer. Measurements in forest sites showed that soil temperature profiles to 30 cm depth at burned forest sites increased by an average of 8o - 10o C compared to unburned forest sites. Sampling and laboratory analysis indicated a 65% reduction in soil carbon content and a 58% reduction in soil nitrogen content in severely burned sample sites compared to soil mineral samples from nearby unburned spruce forests. Conclusions: Combined with nearly unprecedented forest areas severely burned in the Interior region of Alaska in 2015, total ecosystem fire emission of carbon to the atmosphere exceeded most previous estimates for the state.

  2. Integrating studies in the Missouri Ozark Forest Ecosystem Project: Status and outlook

    Treesearch

    David Gwaze; Stephen Sheriff; John Kabrick; Larry Vangilder

    2011-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP), which was started in 1989 by the Missouri Department of Conservation, evaluates the effects of forest management practices (even-aged management, uneven-aged management, and no-harvest management) on upland oak-forest components in southern Missouri. MOFEP is a long-term, landscape-level, fully replicated, and...

  3. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWATmore » model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.« less

  4. Study of the radiocesium dynamics in the Fukushima forest ecosystems

    NASA Astrophysics Data System (ADS)

    Yoschenko, Vasyl; Konoplev, Alexei; Takase, Tsugiko; Nanba, Kenji; Onda, Yuichi; Zheleznyak, Mark; Kivva, Sergii

    2016-04-01

    Accident at Fukushima Dai-ichi NPP on March 11, 2011, has resulted in release into the environment of large amounts of radiocesium (134Cs and 137Cs) and in radioactive contamination of terrestrial and aquatic ecosystems. Up to 2/3 of the most contaminated territory in Fukushima prefecture is covered with forests, and efforts aimed at revitalization of this territory should include, therefore, elaboration of the forestry strategy. In particular, understanding of the radiocesium dynamics in the ecosystem compartments is necessary for the reliable long-term prognosis. Numerous studies revealed and quantified the key processes governing radiocesium redistribution in Fukushima forests at the early stage after the accident, when initially intercepted radiocesium was gradually transported from the trees' crowns to the soil surface and profile with precipitations and litterfall, and the general trend was a decrease of the radiocesium total inventory in the forest biomass. However, at the later stage, the radiocesium activities in the biomass compartments can increase due to its root uptake from the soil profile; the two major processes, radionuclide root uptake and its return to soil, will determine the future radiocesium levels in the forest compartments. Objectives of our study were characterization of the radiocesium distribution at the beginning of the late stage, revealing its dynamics and parameterization of the above-mentioned fluxes for prognosis of the radiocesium long-term redistribution in the typical Fukushima forest ecosystems. The study started at one experimental site (Yamakiya district, Kawamata town, Fukushima Prefecture) in the spring of 2014; to the moment, it has been continuing at several experimental sites in the Fukushima zone characterized by different species composition and soil-landscape conditions. For the typical Japanese cedar (Cryptomeria japonica) and Japanese red pine (Pinus Densiflora) forests, we determined distributions of radiocesium in

  5. Application of BIOME-BGC to Managed Forest Ecosystems in Europe

    NASA Astrophysics Data System (ADS)

    Pietsch, S. A.; Petritsch, R.; Hasenauer, H.

    2007-05-01

    European forests have been severely modified by humans resulting in a reduction of forest covered land area, a change in tree species distribution and the deterioration of forest soils. One option to assess forest management impacts on the cycling of carbon, nitrogen and water is the use of BGC-Models. Such models are considered as diagnostic tools for studying sustainability of forest ecosystems and have been used for climate change impact studies on forest growth and carbon sequestration issues. In our efforts to develop an appropriate diagnostic tool to assess the dynamics of carbon, nitrogen, water and energy flux for sustainable forest ecosystem management and climate change studies, we have selected BIOME-BGC. The main reason was that the general model structure is flexible enough to integrate large scale, regional as well as forest stand level information. During the last years we worked on the following extensions: (1) Tested and extended algorithms to interpolate daily climate input data as they are needed to run the model for any location within the country; (2) We developed a set of species specific parameters for all major tree species in Central Europe: Norway spruce (two variants highland and lowlands), Scots pine, Stone pine, larch, common beech and oak forests. These parameters sets are important since in BIOME-BGC vegetation is distinguished in biomes or plant functional types but the impacts of forest management (e.g. changes in stand density) may differ substantially among the tree species assigned to a single biome. (3) We extended the model to cover the full variation ranging from conditions including temperature extremes at the timberline to periodic ground water access or flooding in lowlands. (4) We adapted the spinup procedure to ensure unbiased predictions on forest status in the absence of past and present management impacts. (5) Explicitly addressed the effects of past and present forest management as they may differ by species and

  6. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China.

    PubMed

    Fei, Xuehai; Song, Qinghai; Zhang, Yiping; Liu, Yuntong; Sha, Liqing; Yu, Guirui; Zhang, Leiming; Duan, Changqun; Deng, Yun; Wu, Chuansheng; Lu, Zhiyun; Luo, Kang; Chen, Aiguo; Xu, Kun; Liu, Weiwei; Huang, Hua; Jin, Yanqiang; Zhou, Ruiwu; Li, Jing; Lin, Youxing; Zhou, Liguo; Fu, Yane; Bai, Xiaolong; Tang, Xianhui; Gao, Jinbo; Zhou, Wenjun; Grace, John

    2018-03-01

    Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was -3.40tCha -1 yr -1 ); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ); 3) as the GPP increased, the net ecosystem production (NEP) first increased and then decreased when the GPP>17.5tCha -1 yr -1 ; 4) the precipitation determines the carbon sinks in the savanna ecosystem (e.g., YJ), while temperature did so in the tropical forest ecosystem (e.g., XSBN); 5) overall, under the circumstances of warming and decreased precipitation, the carbon sink might decrease in the YJ but maybe increase in the ALS and LJ, while future strength of the sink in the XSBN is somewhat uncertain. However, based on the redundancy analysis, the temperature and precipitation combined together explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively, which indicates that considerable changes in the NEE could not be explained by variations in the temperature and precipitation. Therefore, the effects of other factors (e.g., CO 2 concentration, N

  7. Ecosystem services: foundations, opportunities, and challenges for the forest products sector

    Treesearch

    Trista M. Patterson; Dana L. Coelho

    2009-01-01

    The ecosystem service concept has been proposed as a meaningful framework for natural resource management. In theory, it holds concomitant benefit and consequence for the forest product sector. However, numerous barriers impede practitioners from developing concrete and enduring responses to emerging ecosystem service markets, policies, and initiatives. Principal among...

  8. A dynamic ecosystem growth model for forests at high complexity structure

    NASA Astrophysics Data System (ADS)

    Collalti, A.; Perugini, L.; Chiti, T.; Matteucci, G.; Oriani, A.; Santini, M.; Papale, D.; Valentini, R.

    2012-04-01

    Forests ecosystem play an important role in carbon cycle, biodiversity conservation and for other ecosystem services and changes in their structure and status perturb a delicate equilibrium that involves not only vegetation components but also biogeochemical cycles and global climate. The approaches to determine the magnitude of these effects are nowadays various and one of those include the use of models able to simulate structural changes and the variations in forests yield The present work shows the development of a forest dynamic model, on ecosystem spatial scale using the well known light use efficiency to determine Gross Primary Production. The model is predictive and permits to simulate processes that determine forest growth, its dynamic and the effects of forest management using eco-physiological parameters easy to be assessed and to be measured. The model has been designed to consider a tri-dimensional cell structure composed by different vertical layers depending on the forest type that has to be simulated. These features enable the model to work on multi-layer and multi-species forest types, typical of Mediterranean environment, at the resolution of one hectare and at monthly time-step. The model simulates, for each layer, a value of available Photosynthetic Active Radiation (PAR) through Leaf Area Index, Light Extinction Coefficient and cell coverage, the transpiration rate that is closely linked to the intercepted light and the evaporation from soil. Using this model it is possible to evaluate the possible impacts of climate change on forests that may result in decrease or increase of productivity as well as the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities during the forest harvesting cycle. The model has been parameterised, validated and applied in a multi-layer, multi-age and multi-species Italian turkey oak forest (Q. cerris L., C. betulus L. and C. avellana L

  9. Potential climate change impacts on temperate forest ecosystem processes

    USGS Publications Warehouse

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  10. Integrating ecosystem services into national Forest Service policy and operations

    Treesearch

    Robert Deal; Lisa Fong; Erin Phelps; Emily Weidner; Jonas Epstein; Tommie Herbert; Mary Snieckus; Nikola Smith; Tania Ellersick; Greg Arthaud

    2017-01-01

    The ecosystem services concept describes the many benefits people receive from nature. It highlights the importance of managing public and private lands sustainably to ensure these benefits continue into the future, and it closely aligns with the U.S. Forest Service (USFS) mission to “sustain the health, diversity, and productivity of the Nation’s forests and...

  11. Ecosystem and decomposer effects on litter dynamics along an old field to old-growth forest successional gradient

    NASA Astrophysics Data System (ADS)

    Mayer, Paul M.

    2008-03-01

    Identifying the biotic (e.g. decomposers, vegetation) and abiotic (e.g. temperature, moisture) mechanisms controlling litter decomposition is key to understanding ecosystem function, especially where variation in ecosystem structure due to successional processes may alter the strength of these mechanisms. To identify these controls and feedbacks, I measured mass loss and N flux in herbaceous, leaf, and wood litter along a successional gradient of ecosystem types (old field, transition forest, old-growth forest) while manipulating detritivore access to litter. Ecosystem type, litter type, and decomposers contributed directly and interactively to decomposition. Litter mass loss and N accumulation was higher while litter C:N remained lower in old-growth forests than in either old fields or transition forest. Old-growth forests influenced litter dynamics via microclimate (coolest and wettest) but also, apparently, through a decomposer community adapted to consuming the large standing stocks of leaf litter, as indicated by rapid leaf litter loss. In all ecosystem types, mass loss of herbaceous litter was greater than leaf litter which, in turn was greater than wood. However, net N loss from wood litter was faster than expected, suggesting localized N flux effects of wood litter. Restricting detritivore access to litter reduced litter mass loss and slowed the accumulation of N in litter, suggesting that macro-detritivores affect both physical and chemical characteristics of litter through selective grazing. These data suggest that the distinctive litter loss rates and efficient N cycling observed in old-growth forest ecosystems are not likely to be realized soon after old fields are restored to forested ecosystems.

  12. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  13. The Forest Ecosystem Study: background, rationale, implementation, baseline conditions, and silvicultural assessment.

    Treesearch

    Andrew B. Carey; David R. Thysell; Angus W. Brodie

    1999-01-01

    The Forest Ecosystem Study (FES) came about as an early response to the need for innovative silvicultural methods designed to stimulate development of late-successional attributes in managed forests—a need ensuing from the exceptional and longstanding controversies over old-growth forests and endangered species concerns in the Pacific Northwest. In 1991, scientists...

  14. Monitoring gradual ecosystem change using Landsat time series analyses: case studies in selected forest and rangeland ecosystems

    USGS Publications Warehouse

    Vogelmann, James E.; Xian, George; Homer, Collin G.; Tolk, Brian

    2012-01-01

    The focus of the study was to assess gradual changes occurring throughout a range of natural ecosystems using decadal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM +) time series data. Time series data stacks were generated for four study areas: (1) a four scene area dominated by forest and rangeland ecosystems in the southwestern United States, (2) a sagebrush-dominated rangeland in Wyoming, (3) woodland adjacent to prairie in northwestern Nebraska, and (4) a forested area in the White Mountains of New Hampshire. Through analyses of time series data, we found evidence of gradual systematic change in many of the natural vegetation communities in all four areas. Many of the conifer forests in the southwestern US are showing declines related to insects and drought, but very few are showing evidence of improving conditions or increased greenness. Sagebrush communities are showing decreases in greenness related to fire, mining, and probably drought, but very few of these communities are showing evidence of increased greenness or improving conditions. In Nebraska, forest communities are showing local expansion and increased canopy densification in the prairie–woodland interface, and in the White Mountains high elevation understory conifers are showing range increases towards lower elevations. The trends detected are not obvious through casual inspection of the Landsat images. Analyses of time series data using many scenes and covering multiple years are required in order to develop better impressions and representations of the changing ecosystem patterns and trends that are occurring. The approach described in this paper demonstrates that Landsat time series data can be used operationally for assessing gradual ecosystem change across large areas. Local knowledge and available ancillary data are required in order to fully understand the nature of these trends.

  15. Human influences on forest ecosystems: the southern wildland-urban interface assessment

    Treesearch

    Edward A. Macie; L. Annie Hermansen; [Editors

    2002-01-01

    This publication provides a review of critical wildland-urban interface issues, challenges, and needs for the Southern United States. Chapter topics include population and demographic trends; economic and tax issues; land use planning and policy; urban effects on forest ecosystems; challenges for forest resource management and conservation; social consequences of...

  16. Ecosystem services as a framework for forest stewardship: Deschutes National Forest overview

    Treesearch

    Nikola Smith; Robert Deal; Jeff Kline; Dale Blahna; Trista Patterson; Thomas A. Spies; Karen Bennett

    2011-01-01

    The concept of ecosystem services has emerged as a way of framing and describing the comprehensive set of benefits that people receive from nature. These include commonly recognized goods like timber and fresh water, as well as processes like climate regulation and water purification, and aesthetic, spiritual, and cultural benefits. The USDA Forest Service has been...

  17. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, Christopher; Curtis, Peter; Hardiman, Brady

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperatemore » deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience

  18. Establishment and Data Collection of Vegetation-related Studies on the Missouri Ozark Forest Ecosystem Project Study Sites

    Treesearch

    Brian L. Brookshire; Daniel C. Dey

    2000-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is an experiment designed to determine the effects of forest management practices on important ecosystem attributes. MOFEP treatments evaluated include even-aged, uneven-aged, and no management treatments. Forest vegetation provides a common ecological link among many organisms and ecological processes, and therefore...

  19. Climate changes impact the surface albedo of a forest ecosystem based on MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Nemuc, A. V.

    2007-10-01

    Surface albedo is one of the most important biophysical parameter responsible for energy balance control and the surface temperature and boundary-layer structure of the atmosphere. Forest land surface albedo is also highly variable temporally showing both diurnal as well as seasonal variations. In forest systems, albedo controls the microclimate conditions which affects ecosystem physical, physiological, and biogeochemical processes such as energy balance, evapotranspiration, photosynthesis. Due to anthropogenic and natural factors, land cover and land use changes result is the land surfaces albedo change. The main aim of this paper is to investigate the albedo patterns due to the impact of atmospheric pollution and climate variations of a forest ecosystem Branesti-Cernica, placed to the North-East of Bucharest city, Romania based on satellite Landsat ETM+, IKONOS and MODIS data and climate station observations. Our study focuses on 3 years of data (2003-2005), each of which had a different climatic regime. As the physical climate system is very sensitive to surface albedo, forest ecosystems could significantly feedback to the projected climate change modeling scenarios through albedo changes. The results of this research have a number of applications in weather forecasting, climate change, and forest ecosystem studies.

  20. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    PubMed Central

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  1. Understanding fire drivers and relative impacts in different Chinese forest ecosystems.

    PubMed

    Guo, Futao; Su, Zhangwen; Wang, Guangyu; Sun, Long; Tigabu, Mulualem; Yang, Xiajie; Hu, Haiqing

    2017-12-15

    In this study, spatial patterns and driving factors of fires were identified from 2000 to 2010 using Ripley's K (d) function and logistic regression (LR) model in two different forest ecosystems of China: the boreal forest (Daxing'an Mountains) and sub-tropical forest (Fujian province). Relative effects of each driving factor on fire occurrence were identified based on standardized coefficients in the LR model. Results revealed that fires were spatially clustered and that fire drivers vary amongst differing forest ecosystems in China. Fires in the Daxing'an Mountains respond primarily to human factors, of which infrastructure is recognized as the most influential. In contrast, climate factors played a critical role in fire occurrence in Fujian, of which the temperature of fire season was found to be of greater importance than other climate factors. Selected factors can predict nearly 80% of the total fire occurrence in the Daxing'an Mountains and 66% in Fujian, wherein human and climate factors contributed the greatest impact in the two study areas, respectively. This study suggests that different fire prevention and management strategies are required in the areas of study, as significant variations of the main fire-driving exist. Rapid socio-economic development has produced similar effects in different forest ecosystems within China, implying a strong correlation between socio-economic development and fire regimes. It can be concluded that the influence of human factors will increase in the future as China's economy continues to grow - an issue of concern that should be further addressed in future national fire management. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  3. Advancement of tree species across ecotonal borders into non-forested ecosystems

    NASA Astrophysics Data System (ADS)

    Hanberry, Brice B.; Hansen, Mark H.

    2015-10-01

    Woody species are increasing in density, causing transition to more densely wooded vegetation states, and encroaching across ecotonal borders into non-forested ecosystems. We examined USDA Forest Service Forest Inventory and Analysis data to identify tree species that have expanded longitudinally in range, particularly into the central United States. We analyzed compositional differences within ecological regions (i.e., subsections) in eastern and western ranges of species using repeated measures ANOVA. We considered differences in outer ranges to indicate range expansion or contraction. We also estimated the shift in forest area and basal area relative to the center of the US and compared change in deciduous forest land cover. Out of 80 candidate species, 22 species expanded to the west, seven species expanded to the east, and five species expanded in both directions. During the survey interval, eastern tree species advanced into the predominantly non-forested ecosystems of central United States. Eastern cottonwood, eastern hophornbeam, eastern redbud, honeylocust, Osage-orange, pecan, red mulberry, and Shumard oak represent some of the species that are advancing eastern forest boundaries across forest-grassland ecotones into the central United States. Forest land has shifted towards the center of the continent, as has the center of mean tree basal area, and a simple comparison of deciduous cover change also displayed forest advancement into the central United States from eastern forests. The expanding species may spread along riparian migration corridors that provide protection from drought. Humans use the advancing tree species for windbreaks, fencerows, and ornamental landscaping, while wildlife spread fruit seeds, which results in unintentional assisted migration, or translocation, to drier sites across the region.

  4. A tool for assessing ecological status of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  5. Density-dependent vulnerability of forest ecosystems to drought

    Treesearch

    Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann

    2017-01-01

    Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...

  6. Central Appalachians forest ecosystem vulnerability assessment and synthesis: a report from the Central Appalachians Climate Change Response Framework project

    Treesearch

    Patricia R. Butler; Louis Iverson; Frank R. Thompson; Leslie Brandt; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kent Karriker; Jarel Bartig; Stephanie Connolly; William Dijak; Scott Bearer; Steve Blatt; Andrea Brandon; Elizabeth Byers; Cheryl Coon; Tim Culbreth; Jad Daly; Wade Dorsey; David Ede; Chris Euler; Neil Gillies; David M. Hix; Catherine Johnson; Latasha Lyte; Stephen Matthews; Dawn McCarthy; Dave Minney; Daniel Murphy; Claire O’Dea; Rachel Orwan; Matthew Peters; Anantha Prasad; Cotton Randall; Jason Reed; Cynthia Sandeno; Tom Schuler; Lesley Sneddon; Bill Stanley; Al Steele; Susan Stout; Randy Swaty; Jason Teets; Tim Tomon; Jim Vanderhorst; John Whatley; Nicholas Zegre

    2015-01-01

    Forest ecosystems in the Central Appalachians will be affected directly and indirectly by a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Central Appalachian Broadleaf Forest-Coniferous Forest-Meadow and Eastern Broadleaf Forest Provinces of Ohio, West Virginia, and Maryland for a range of future...

  7. Beyond CO2 - Tackling the full greenhouse gas budget of a sub-alpine forest ecosystem

    NASA Astrophysics Data System (ADS)

    Burri, Susanne; Merbold, Lutz; Meier, Philip; Eugster, Werner; Hörtnagl, Lukas; Buchmann, Nina

    2017-04-01

    In order to tackle the full greenhouse gas (GHG) budgets of forest ecosystems, it is desirable but challenging to quantify the three major GHGs, i.e. CO2, CH4 and N2O simultaneously in-situ. At the long-term forest research site Davos (Candidate Class I Ecosystem Station within the Integrated Carbon Observation System - ICOS), we have recently installed a state-of-the-art measuring system simultaneously to observe the three GHGs on a high temporal resolution and both within and above the forest canopy. Thereby, we combine above-canopy eddy covariance flux measurements and forest floor chamber flux measurements (using five custom-made fully automated chambers). Both systems are connected to a quantum cascade laser absorption spectrometer (QCL, Aerodyne) and measurements are switched between three hours of above-canopy and one hour of forest floor GHG flux measurements. Using this approach, we will be able to study the full GHG budget as well as the dynamics of the individual fluxes on two vertical levels within the forest using a single instrument. The first results presented here will highlight the suitability of this promising tool for quantifying the full GHG budget of forest ecosystems.

  8. The role of remote sensing in process‐scaling studies of managed forest ecosystems

    Treesearch

    Jeffrey G. Masek; Daniel J. Hayes; M. Joseph Hughes; Sean P. Healey; David P. Turner

    2015-01-01

    Sustaining forest resources requires a better understanding of forest ecosystem processes, and how management decisions and climate change may affect these processes in the future. While plot and inventory data provide our most detailed information on forest carbon, energy, and water cycling, applying this understanding to broader spatial and temporal domains...

  9. Extended benefit cost analysis as an instrument of economic valuated in Petungkriyono forest ecosystem services

    NASA Astrophysics Data System (ADS)

    Damayanti, Irma; Nur Bambang, Azis; Retnaningsih Soeprobowati, Tri

    2018-05-01

    Petungkriyono is the last tropical forest in Java and provides biodiversity including rare flora and fauna that must be maintained, managed and utilized in order to give meaning for humanity and sustainability. Services of Forest Ecosystem in Petungkriyono are included such as goods supply, soil-water conservation, climate regulation, purification environment and flora fauna habitats. The approach of this study is the literature review from various studies before perceiving the influenced of economic valuation in determining the measurement conservation strategies of Petungkriyono Natural Forest Ecosystem in Pekalongan Regency. The aims of this study are to analyzing an extended benefit cost of natural forest ecosystems and internalizing them in decision making. The method of quantification and valuation of forest ecosystem is Cost and Benefit Analysis (CBA) which is a standard economic appraisal tools government in development economics. CBA offers the possibility capturing impact of the project. By using productivity subtitution value and extended benefit cost analysis any comodity such as Backwoods,Pine Woods, Puspa woods and Pine Gum. Water value, preventive buildings of landslide and carbon sequestration have total economic value of IDR.163.065.858.080, and the value of Extended Benefit Cost Ratio in Petungkriyono is 281.35 %. However, from the result is expected the local government of Pekalongan to have high motivation in preserve the existence of Petungkriyono forest.

  10. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010.

    PubMed

    Zhang, Xinyu; Xu, Zhiwei; Sun, Xiaomin; Dong, Wenyi; Ballantine, Deborah

    2013-05-01

    The nitrate-nitrogen (NO3(-)-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations, representing typical agro- and forest ecosystems, were assessed using monitoring data collected between 2004 and 2010. Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater, and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made. Results indicated that most of the NO3(-)-N concentrations in groundwater from the agro- and forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard: Quality Standard for Ground Water (< or = 20 mg/L). Over the study period, the average NO3(-)-N concentrations were significantly higher in agro-ecosystems (4.1 +/- 0.33 mg/L) than in forest ecosystems (0.5 +/- 0.04 mg/L). NO3(-)-N concentrations were relatively higher (> 10 mg N /L) in 10 of the 43 wells sampled in the agricultural ecosystems. These elevated concentrations occurred mainly in the Ansai, Yucheng, Linze, Fukang, Akesu, and Cele field sites, which were located in arid and semi-arid areas where irrigation rates are high. We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations.

  11. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems.

    PubMed

    Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter

    2017-03-15

    Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future

  12. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Treesearch

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  13. Disturbance and net ecosystem production across three climatically distinct forest landscapes

    Treesearch

    John L. Campbell; O.J. Sun; B.E. Law

    2004-01-01

    Biometric techniques were used to measure net ecosystem production (NEP) across three climatically distinct forest chronosequences in Oregon. NEP was highly negative immediately following stand-replacing disturbance in all forests and recovered to positive values by 10, 20, and 30 years of age for the mild mesic Coast Range, mesic West Cascades, and semi-arid East...

  14. Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes

    Treesearch

    Scott W. Bailey; James W. Hornbeck; Charles T. Driscoll; Henri E. Gaudette

    1996-01-01

    Depletion of Ca in forests and its effects on forest health are poorly quantified. Depletion has been difficult to document due to limitations in determining rates at which Ca becomes available for ecosystem processes through weathering, and difficulty in determining changes in ecosystem storage. We coupled a detailed analysis of Sr isotopic composition with a mass...

  15. Anthropogenic alterations of genetic diversity within tree populations: Implications for forest ecosystem resilience

    Treesearch

    Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Samuel E. Nijensohn

    2008-01-01

    Healthy forests provide many of the essential ecosystem services upon which all life depends. Genetic diversity is an essential component of long-term forest health because it provides a basis for adaptation and resilience to environmental stress and change. In addition to natural processes, numerous anthropogenic factors deplete forest genetic resources. Genetic...

  16. An individual-based process model to simulate landscape-scale forest ecosystem dynamics

    Treesearch

    Rupert Seidl; Werner Rammer; Robert M. Scheller; Thomas Spies

    2012-01-01

    Forest ecosystem dynamics emerges from nonlinear interactions between adaptive biotic agents (i.e., individual trees) and their relationship with a spatially and temporally heterogeneous abiotic environment. Understanding and predicting the dynamics resulting from these complex interactions is crucial for the sustainable stewardship of ecosystems, particularly in the...

  17. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape.

    PubMed

    Cantarello, Elena; Newton, Adrian C; Martin, Philip A; Evans, Paul M; Gosal, Arjan; Lucash, Melissa S

    2017-11-01

    Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one-off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications . The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience

  18. Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition

    Treesearch

    Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov

    1998-01-01

    Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...

  19. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  20. Factors affecting private forest landowner interest in ecosystem management: linking spatial and survey data.

    PubMed

    Jacobson, Michael G

    2002-10-01

    Many factors influence forest landowner management decisions. This study examines landowner decisions regarding participation in ecosystem management activities, such as a landscape corridor cutting across their private lands. Landscape corridors are recognized worldwide as an important tool in biodiversity conservation. For ecosystem management activities to occur in areas dominated by a multitude of small private forest landholdings, landowner participation and cooperation is necessary. Data from a survey of landowners combined with an analysis of their land's spatial attributes is used to assess their interest in ecosystem management. Results suggest that spatial attributes are not good predictors of an owner's interest in ecosystem management. Other factors such as attitudes and opinions about the environment are more effective in explaining landowner interest. The results have implications for any land manager using GIS data and implementing ecosystem management activities on private forestland.

  1. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks

    USGS Publications Warehouse

    Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.

  2. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests.

    PubMed

    Thom, Dominik; Seidl, Rupert

    2016-08-01

    In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are expected to amplify this development further in the coming decades. These changes are increasingly challenging the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool- and warm-temperate biomes. Our objectives were to (i) synthesize the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate standardized effect sizes of disturbance for selected indicators via a quantitative meta-analysis. We screened a total of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning, regulating, and cultural services (P < 0.001). Indicators of biodiversity, i.e. species richness, habitat quality and diversity indices, on the other hand were found to be influenced positively by disturbance (P < 0.001). Our analyses thus

  3. Eutrophication of an Urban Forest Ecosystem: Causes and Effects

    NASA Astrophysics Data System (ADS)

    Bednova, O. V.; Kuznetsov, V. A.; Tarasova, N. P.

    2018-01-01

    The combined use of methods of passive dosimetry of the status of atmospheric air, phytoindication, and cartographic visualization of data made it possible to elaborate and substantiate approaches to evaluation of the effect of atmospheric air contamination on the eutrophication of forest ecosystems under urban conditions.

  4. A review of malaria transmission dynamics in forest ecosystems

    PubMed Central

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  5. The encyclopedia of southern Appalachian forest ecosystems: A prototype of an online scientific knowledge management system

    Treesearch

    Deborah K. Kennard; H. Michael Rauscher; Patricia A. Flebbe; Daniel L. Schmoldt; William G. Hubbard; J. Bryan Jordin; William Milnor

    2003-01-01

    The Encyclopedia of Southern Appalachian Forest Ecosystems (ESAFE), a hyperdocument-based encyclopedia system available on the Internet, provides an organized synthesis of existing research on the management and ecology of Southern Appalachian forests ecosystems. The encyclopedia is dynamic, so that new or revised content can be submitted directly through the Internet...

  6. Forest health in the Blue Mountains: a management strategy for fire-adapted ecosystems.

    Treesearch

    R.W. Mutch; S.F. Arno; J.K. Brown; C.E. Carlson; R.D. Ottmar; J.L. Peterson

    1993-01-01

    The fire-adapted forests of the Blue Mountains are suffering from a forest health problem of catastrophic proportions. Contributing to the decline of forest health are such factors as the extensive harvesting of the western larch and ponderosa pine overstory during the 1900s, attempted exclusion of fire from a fire-dependent ecosystem, and the continuing drought. The...

  7. The importance and conservation of ectomycorrizal fungal diversity in forest ecosystems: lessons from Europe and the Pacific Northwest.

    Treesearch

    Michael P. Amaranthus

    1998-01-01

    Ectomycorrhizal fungi (EMF) consist of about 5,000 species and profoundly affect forest ecosystems by mediating nutrient and water uptake, protecting roots from pathogens and environmental extremes, and maintaining soil structure and forest food webs. Diversity of EMF likely aids forest ecosystem resilience in the face of changing environmental factors such as...

  8. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change

    Treesearch

    Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston

    2017-01-01

    We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...

  9. IMPACTS OF AIR POLLUTION AND CLIMATE CHANGE ON FOREST ECOSYSTEMS - EMERGING RESEARCH NEEDS

    EPA Science Inventory

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure - Effects of Air Pollution, Climate Change and Urban Development", September 10-16, 2006, Riverside, CA, USA are summarized. Tropospheric ozone is st...

  10. Controls on Nitrogen Retention and Loss in Urban and Rural Forest Ecosystems.

    NASA Astrophysics Data System (ADS)

    Templer, P. H.

    2011-12-01

    Human activities, such as the burning of fossil fuels and production of fertilizer, have increased the amount of nitrogen deposited onto terrestrial ecosystems. In addition to changes in atmospheric deposition of nitrogen, other human-induced disturbances have led to dramatic shifts in forest composition of the United States over the last 100 years. Tree species composition of many forests is changing in response to introduced pests and pathogens, competition with introduced plant species and changes in climate. Understanding the combined effects of increased nitrogen inputs and changes in plant species composition on forest nitrogen cycling is critical to our understanding of forest biogeochemistry and nutrient budgets. Despite several decades of research on the effects of atmospheric nitrogen deposition, there is still significant uncertainty about the factors that regulate nitrogen retention and loss in forest ecosystems. The use of natural abundance stable isotopes of nitrogen and oxygen has proven to be a powerful tool for tracing the sources of nitrate in water, from inputs to leaching, as it moves through an ecosystem. The evaluation of natural abundance nitrogen values in atmospheric deposition has been used to partition sources of nitrogen, such as coal-fired power plants vs. tailpipe exhaust, since each of their isotopic signatures is distinct. Similarly, natural abundance oxygen values of nitrate in atmospheric inputs and soil leachate have been used as a tool to partition sources of nitrate between precipitation and nitrate produced microbially during nitrification. We measured the natural abundance isotopic composition of nitrate to quantify rates of nitrogen inputs to the forest and to determine rates of nitrogen losses from healthy, declining and preemptively cut eastern hemlock (Tsuga canadensis) stands in both an urban forest at the Arnold Arboretum in Boston, MA, and a rural forest at Harvard Forest in Petersham, MA. The hemlock woolly adelgid

  11. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  12. Carbon storage and carbon-to-organic matter relationships of three forested ecosystems of the Rocky Mountains

    Treesearch

    Theresa B. Jain

    1994-01-01

    Fluctuations in atmospheric carbon dioxide is influenced by carbon storage and cycling in terrestrial forest ecosystems. Currently, only gross estimates are available for carbon content of these ecosystems and reliable estimates are lacking for Rocky Mountain forests. To improve carbon storage estimates more information is needed on the relationship between carbon and...

  13. Managing ecosystems for forest health: An approach and the effects on uses and values

    Treesearch

    Chadwick D. Oliver; Dennis E. Ferguson; Alan E. Harvey; Herbert S. Malany; John M. Mandzak; Robert W. Mutch

    1994-01-01

    Forest health is most appropriately based on the scientific paradigm of dynamic, constantly changing forest ecosystems. Many forests in the Inland West now support high levels of insect infestations, disease epidemics, fire susceptibilities, and imbalances in stand structures and habitats because of natural processes and past management practices. Impending,...

  14. Dynamics of novel forests of Castilla elastica in Puerto Rico: from species to ecosystems

    Treesearch

    Jessica Fonseca da Silva

    2015-01-01

    Novel forests (NFs)—forests that contain a combination of introduced and native species—are a consequence of intense anthropogenic disturbances and the natural resilience of disturbed ecosystems. The extent to which NFs have similar forest function as comparable native secondary forests is a matter of debate in the scientific community. Little is known about the...

  15. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems

    PubMed Central

    Seidl, Rupert; Albrich, Katharina; Thom, Dominik; Rammer, Werner

    2018-01-01

    In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in

  16. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Treesearch

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  17. Temperature sensitivity of soil carbon dioxide and nitrous oxide emissions in mountain forest and meadow ecosystems in China

    NASA Astrophysics Data System (ADS)

    Zhang, Junjun; Peng, Changhui; Zhu, Qiuan; Xue, Wei; Shen, Yan; Yang, Yanzheng; Shi, Guohua; Shi, Shengwei; Wang, Meng

    2016-10-01

    An incubation experiment was conducted at three temperature levels (8, 18 and 28 °C) to quantify the response of soil CO2 and N2O emissions to temperature in three ecosystems (pine forest, oak forest, and meadow) located in the Qinling Mountains of China, which are considered to be susceptible to disturbance and climate changes, especially global warming. The soil CO2 emission rates increased with temperature and decreased with soil depth; they were the highest in the oak forest (broadleaf forest) and were lower in the pine forest (coniferous forest) and the meadow ecosystem. However, there was no significant difference in the soil N2O emission rates among the three ecosystems. The temperature sensitivity of CO2 and N2O was higher in the forest than in the meadow ecosystem. The Q10 values (temperature sensitivity coefficient) for CO2 and N2O were 1.07-2.25 and 0.82-1.22, respectively, for the three ecosystems. There was also evidence that the CO2 and N2O emission rates were positively correlated. The soil characteristics exhibited different effects on CO2 and N2O emissions among different ecosystems at the three temperature levels. Moreover, the soil dissolved organic carbon (DOC), specific ultraviolet absorbance (SUVA) and nitrate (NO3-) were important factors for CO2 emissions, whereas the soil ammonium (NH4+) and pH were the major controllers of N2O emissions. Unexpectedly, our results indicated that CO2 emissions are more sensitive to increasing temperature than N2O, noting the different feedback of CO2 and N2O emissions to global warming in this region. The different responses of greenhouse gas emissions in different forest types and a meadow ecosystem suggest that it is critical to conduct a comprehensive investigation of the complex mountain forest and meadow ecosystem in the transitional climate zone under global warming. Our research results provide new insight and advanced understanding of the variations in major greenhouse gas emissions (CO2 and N2O

  18. Forest cover type, habitat diversity, and anthropogenic influences on forest ecosystems adjoining the Maasai Mara National Reserve, Kenya

    Treesearch

    James Legilisho-Kiyiapi

    2000-01-01

    Through combined use of satellite imagery, aerial photographs, and ground truthing, a multilevel assessment was conducted in a forest block that forms a unique dispersal zone to the Maasai Mara National Reserve ecosystem. Results of the survey revealed considerable ecological diversity on an area-scale basis - in terms of ecotypes. Forest types ranged from Afro-montane...

  19. Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA

    Treesearch

    Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff

    2008-01-01

    Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...

  20. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services.

    PubMed

    Birch, Jennifer C; Newton, Adrian C; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-12-14

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost-benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape.

  1. Placing man in regional landscape classification: Use of Forest Survey data to assess human influences for southern U.S. forest ecosystems

    Treesearch

    Victor A. Rudis; John B. Tansey

    1991-01-01

    Information from plots surveyed by U.S.D.A., Forest Service, Forest Inventory and Analysis (FIA) units provides a basis for classifying human-dominated ecosystems at the regional scale of resolution.Attributes include forest stand measures, evidence of human influence, and other disturbances.Data from recent FIA surveys suggest that human influences are common to...

  2. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    USGS Publications Warehouse

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  3. [Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region].

    PubMed

    Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan

    2016-02-01

    The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (P<0.05). However, to air and soil moisture, Re and GEP had different responses, that was, GEP was more vulnerable by the decrease of the soil moisture compared with Re. Besides, the raising of saturation vapour pressure promoted the Re modestly but inhibited the GEP, which was supposed to be the main reason for NEP decrease of bamboo forest ecosystem in Anji, from July to August in 2013.

  4. Presettlement fire regime and vegetation mapping in Southeastern Coastal Plain forest ecosystems

    Treesearch

    Andrew D. Bailey; Robert Mickler; Cecil Frost

    2007-01-01

    Fire-adapted forest ecosystems make up 95 percent of the historic Coastal Plain vegetation types in the Southeastern United States. Fire suppression over the last century has altered the species composition of these ecosystems, increased fuel loads, and increased wildfire risk. Prescribed fire is one management tool used to reduce fuel loading and restore fire-adapted...

  5. Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem

    Treesearch

    Scott W. Bailey; Donald C. Buso; Gene E. Likens

    2003-01-01

    Disturbance of forest ecosystems, such as that caused by harvesting or acid deposition, is thought to alter the ability of the ecosystem to retain nutrients. Although many watershed studies have suggested depletion of available calcium (Ca) pools, interpretation of ecosystem Ca mass balance has been limited by the difficulty in obtaining mineral weathering flux...

  6. Characterization of Canopy Layering in Forested Ecosystems Using Full Waveform Lidar

    NASA Technical Reports Server (NTRS)

    Whitehurst, Amanda S.; Swatantran, Anu; Blair, J. Bryan; Hofton, Michelle A.; Dubayah, Ralph

    2013-01-01

    Canopy structure, the vertical distribution of canopy material, is an important element of forest ecosystem dynamics and habitat preference. Although vertical stratification, or "canopy layering," is a basic characterization of canopy structure for research and forest management, it is difficult to quantify at landscape scales. In this paper we describe canopy structure and develop methodologies to map forest vertical stratification in a mixed temperate forest using full-waveform lidar. Two definitions-one categorical and one continuous-are used to map canopy layering over Hubbard Brook Experimental Forest, New Hampshire with lidar data collected in 2009 by NASA's Laser Vegetation Imaging Sensor (LVIS). The two resulting canopy layering datasets describe variation of canopy layering throughout the forest and show that layering varies with terrain elevation and canopy height. This information should provide increased understanding of vertical structure variability and aid habitat characterization and other forest management activities.

  7. Biodiversity and ecosystem processes: lessons from nature to improve management of planted forests for REDD-plus

    Treesearch

    Ian D. Thompson; Kimiko Okabe; John A. Parrotta; David I. Forrester; Eckehard Brockerhoff; Hervé Jactel; Hisatomo Taki

    2014-01-01

    Planted forests are increasingly contributing wood products and other ecosystem services at a global scale. These forests will be even more important as carbon markets develop and REDD-plus forest programs (forests used specifically to reduce atmospheric emissions of CO2 through deforestation and forest degradation) become common. Restoring degraded and deforested...

  8. Integrating remotely sensed land cover observations and a biogeochemical model for estimating forest ecosystem carbon dynamics

    USGS Publications Warehouse

    Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.

    2008-01-01

    Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.

  9. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  10. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services

    PubMed Central

    Seidl, Rupert; Spies, Thomas A.; Peterson, David L.; Stephens, Scott L.; Hicke, Jeffrey A.

    2016-01-01

    Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. 2. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on temperate and boreal forests. Subsequently, we focus on resilience as a powerful concept to quantify and address these changes and their impacts, and present an approach towards its operational application using established methods from disturbance ecology. 3. We suggest using the range of variability concept – characterizing and bounding the long-term behaviour of ecosystems – to locate and delineate the basins of attraction of a system. System recovery in relation to its range of variability can be used to measure resilience of ecosystems, allowing inferences on both engineering resilience (recovery rate) and monitoring for regime shifts (directionality of recovery trajectory). 4. It is important to consider the dynamic nature of these properties in ecosystem analysis and management decision-making, as both disturbance processes and mechanisms of resilience will be subject to changes in the future. Furthermore, because ecosystem services are at the interface between natural and human systems, the social dimension of resilience (social adaptive capacity and range of variability) requires consideration in responding to changing disturbance regimes in forests. 5. Synthesis and applications. Based on examples from temperate and boreal forests we synthesize principles and pathways for fostering resilience to changing disturbance regimes in ecosystem management. We

  11. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks.

    Treesearch

    John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...

  12. Disturbance Distance: Combining a process based ecosystem model and remote sensing data to map the vulnerability of U.S. forested ecosystems to potentially altered disturbance rates

    NASA Astrophysics Data System (ADS)

    Dolan, K. A.

    2015-12-01

    Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. In addition, recent studies suggest that disturbance rates may increase in the future under altered climate and land use scenarios. Thus understanding how vulnerable forested ecosystems are to potential changes in disturbance rates is of high importance. This study calculated the theoretical threshold rate of disturbance for which forest ecosystems could no longer be sustained (λ*) across the Coterminous U.S. using an advanced process based ecosystem model (ED). Published rates of disturbance (λ) in 50 study sites were obtained from the North American Forest Disturbance (NAFD) program. Disturbance distance (λ* - λ) was calculated for each site by differencing the model based threshold under current climate conditions and average observed rates of disturbance over the last quarter century. Preliminary results confirm all sample forest sites have current average rates of disturbance below λ*, but there were interesting patterns in the recorded disturbance distances. In general western sites had much smaller disturbance distances, suggesting higher vulnerability to change, while eastern sites showed larger buffers. Ongoing work is being conducted to assess the vulnerability of these sites in the context of potential future changes by propagating scenarios of future climate and land-use change through the analysis.

  13. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    NASA Astrophysics Data System (ADS)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  14. Analysis of zone of vulnurability and impact of forest fires in forest ecosystems in north algeria by susing remote sensing

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2010-05-01

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.

  15. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes

    USGS Publications Warehouse

    Wood, Tana E.; Cavaleri, Molly A.; Reed, Sasha C.

    2012-01-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will respond to this significant climatic change. Here we present a contemporary synthesis of the existing data and what they suggest about how tropical forests will respond to increasing temperatures. Our goals were to: (i) determine whether there is enough evidence to support the conclusion that increased temperature will affect tropical forest C balance; (ii) if there is sufficient evidence, determine what direction this effect will take; and, (iii) establish what steps should to be taken to resolve the uncertainties surrounding tropical forest responses to increasing temperatures. We approach these questions from a mass-balance perspective and therefore focus primarily on the effects of temperature on inputs and outputs of C, spanning microbial- to ecosystem-scale responses. We found that, while there is the strong potential for temperature to affect processes related to C cycling and storage in tropical forests, a notable lack of data combined with the physical, biological and chemical diversity of the forests themselves make it difficult to resolve this issue with certainty. We suggest a variety of experimental approaches that could help elucidate how tropical forests will respond to warming, including large-scale in situ manipulation experiments, longer term field experiments, the incorporation of a range of scales in the investigation of warming effects (both spatial and temporal), as well as the inclusion of a diversity of tropical forest sites. Finally, we highlight areas of tropical forest research where notably few data are available, including temperature effects on: nutrient cycling

  16. Maintenance of Ecosystem Nitrogen Limitation by Ephemeral Forest Disturbance: An Assessment using MODIS, Hyperion, and Landsat ETM+

    NASA Technical Reports Server (NTRS)

    McNeil, Brenden E.; deBeurs, Kirsten M.; Eshleman, Keith N.; Foster, Jane R.; Townsend, Philip A.

    2007-01-01

    Ephemeral disturbances, such as non-lethal insect defoliations and crown damage from meteorological events, can significantly affect the delivery of ecosystem services by helping maintain nitrogen (N) limitation in temperate forest ecosystems. However, the impacts of these disturbances are difficult to observe across the broad-scales at which they affect ecosystem function. Using remotely sensed measures and field data, we find support for the hypothesis that ephemeral disturbances help maintain landscape-wide ecosystem N limitation. Specifically, a phenology-based defoliation index derived from daily MODIS satellite imagery predicts three ecosystem responses from oak-dominated forested watersheds: elevated stream water N export (R(exp 2) = 0.48), decreased foliar N (R(exp 2) = 0.69, assessed with Hyperion imagery), and reduced vegetation growth vigor (R(exp 2) = 0.49, assessed with Landsat ETM+ imagery). The results indicate that ephemeral disturbances and other forest stressors may sustain N limitation by reducing the ability of trees to compete for--and retain--soil available N.

  17. Assessing and comparing risk to climate changes among forested locations: implications for ecosystem services

    Treesearch

    Stephen N. Matthews; Louis R. Iverson; Matthew P. Peters; Anantha M. Prasad; Sakthi Subburayalu

    2014-01-01

    Forests provide key ecosystem services (ES) and the extent to which the ES are realized varies spatially, with forest composition and cultural context, and in breadth, depending on the dominant tree species inhabiting an area. We address the question of how climate change may impact ES within the temperate and diverse forests of the eastern United States. We quantify...

  18. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Aber, John D.; Peterson, David L.; Melillo, Jerry M.

    1988-01-01

    The use of images acquired by the Airborne Imaging Spectrometer, an experimental high-spectral resolution imaging sensor developed by NASA, to estimate the lignin concentration of whole forest canopies in Wisconsin is reported. The observed strong relationship between canopy lignin concentration and nitrogen availability in seven undisturbed forest ecosystems on Blackhawk Island, Wisconsin, suggests that canopy lignin may serve as an index for site nitrogen status. This predictive relationship presents the opportunity to estimate nitrogen-cycling rates across forested landscapes through remote sensing.

  19. Multi-objective optimization to evaluate tradeoffs among forest ecosystem services following fire hazard reduction in the Deschutes National Forest, USA

    Treesearch

    Svetlana A. (Kushch) Schroder; Sandor F. Toth; Robert L. Deal; Gregory J. Ettl

    2016-01-01

    Forest owners worldwide are increasingly interested in managing forests to provide a broad suite of Ecosystem services, balancing multiple objectives and evaluating management activities in terms of Potential tradeoffs. We describe a multi-objective mathematical programming model to quantify tradeoffs in expected sediment delivery and the preservation of Northern...

  20. Enhanced accumulation and storage of mercury on subtropical evergreen forest floor: Implications on mercury budget in global forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Lin, Che-Jen; Lu, Zhiyun; Zhang, Hui; Zhang, Yiping; Feng, Xinbin

    2016-08-01

    Forest ecosystems play an important role in the global cycling of mercury (Hg). In this study, we characterized the Hg cycling at a remote evergreen broadleaf (EB) forest site in southwest China (Mount Ailao). The annual Hg input via litterfall is estimated to be 75.0 ± 24.2 µg m-2 yr-1 at Mount Ailao. Such a quantity is up to 1 order of magnitude greater than those observed at remote temperate/boreal (T/B) forest sites. Production of litter biomass is found to be the most influential factor causing the high Hg input to the EB forest. Given their large areal coverage, Hg deposition through litterfall in EB forests is appropriately 9 ± 5 Mg yr-1 in China and 1086 ± 775 Mg yr-1 globally. The observed wet Hg deposition at Mount Ailao is 4.9 ± 4.5 µg m-2 yr-1, falling in the lower range of those observed at 49 T/B forest sites in North America and Europe. Given the data, the Hg deposition flux through litterfall is approximately 15 times higher than the wet Hg deposition at Mount Ailao. Steady Hg accumulation in decomposing litter biomass and Hg uptake from the environment were observed during 25 months of litter decomposition. The size of the Hg pool in the organic horizon of EB forest floors is estimated to be up to 2-10 times the typical pool size in T/B forests. This study highlights the importance of EB forest ecosystems in global Hg cycling, which requires further assessment when more data become available in tropical forests.

  1. 76 FR 46721 - Salmon-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...

  2. Toward a social-ecological theory of forest macrosystems for improved ecosystem management

    USGS Publications Warehouse

    Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.

    2018-01-01

    The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?

  3. Forest Floor CO2 Flux From Two Contrasting Ecosystems in the Southern Appalachians

    Treesearch

    James M. Vose; Barton D. Clinton; Verl Emrick

    1995-01-01

    We measured forest floor CO2 flux in two contrasting ecosystems (white pine plantation and northern hardwood ecosystems at low and high elevations, respectively) in May and September 1993 to quantify differences and determine factors regulating CO2 fluxes. An automated IRGA based, flow through system was used with chambers...

  4. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    Treesearch

    Jane M. Wolken; Teresa N. Hollingsworth; T. Scott Rupp; F. Stuart Chapin; Sarah F. Trainor; Tara M. Barrett; Patrick F. Sullivan; A. David McGuire; Eugenie S. Euskirchen; Paul E. Hennon; Erik A. Beever; Jeff S. Conn; Lisa K. Crone; David V. A' More; Nancy Fresco; Thomas A. Hanley; Knut Kielland; James J. Kruse; Trista Patterson; Edward A.G. Schuur; David L. Verbyla; John Yarie

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of...

  5. Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration

    Treesearch

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Martin A. Nuñez

    2017-01-01

    The world's forests are crucial biological resources that provide a variety of ecosystem services such as nutrient cycling and provisioning of resources to society. But forests are particularly affected by biological invasions, with regions around the world experiencing invasions by species from virtually every kingdom. Many of these species have severely...

  6. Estimating aboveground net primary productivity in forest-dominated ecosystems

    Treesearch

    Brian D. Kloeppel; Mark E. Harmon; Timothy J. Fahey

    2007-01-01

    The measurement of net primary productivity (NPP) in forest ecosystems presents a variety of challenges because of the large and complex dimensions of trees and the difficulties of quantifying several components of NPP. As summarized by Clark et al. (2001a), these methodological challenges can be overcome, and more reliable spatial and temporal comparisons can be...

  7. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  8. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Treesearch

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  9. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change

    PubMed Central

    Lladó, Salvador; López-Mondéjar, Rubén

    2017-01-01

    SUMMARY The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. PMID:28404790

  10. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    PubMed

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  11. Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09: Phytophthoras in forests and natural ecosystems

    Treesearch

    E.M. Goheen; S.J. Frankel

    2009-01-01

    The fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09, Phytophthoras in Forests and Natural Ecosystems provided a forum for current research on Phytophthora species worldwide. Seventy-eight submissions describing papers and posters on recent developments in Phytophthora diseases of trees and natural ecosystems in...

  12. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services

    PubMed Central

    Birch, Jennifer C.; Newton, Adrian C.; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-01-01

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761

  13. Anthropogenic calcium depletion: a unique threat to forest ecosystem health?

    Treesearch

    Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley

    2001-01-01

    Numerous anthropogenic factors can deplete calcium (Ca) from forest ecosystems. Because an adequate supply of Ca is needed to support fundamental biological functions, including cell membrane stability and stress response, the potential for Ca deficiency following the individual, cumulative, or potentially synergistic, influences of anthropogenic factors raises...

  14. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    USGS Publications Warehouse

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  15. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation.

    PubMed

    Abdalla, Mohamed; Saunders, Matthew; Hastings, Astley; Williams, Mike; Smith, Pete; Osborne, Bruce; Lanigan, Gary; Jones, Mike B

    2013-11-01

    In this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems. Differences in NEE were found to be primarily land cover specific. The annual NEE was similar for the grassland and arable sites, but due to the contribution of exported carbon, the soil carbon increased at the grassland site and decreased at the arable site. The NEE of the forest site was an order of magnitude larger than that of the grassland or arable ecosystems, with large amounts of carbon stored in woody biomass and the soil. The average annual NEE, GPP and Reco values over the measurement period were -904, 2379 and 1475 g C m(-2) (forest plantations), -189, 906 and 715 g C m(-2) (arable systems) and -212, 1653 and 1444 g C m(-2) (grasslands), respectively. The average RMSE values were 3.8 g C m(-2) (forest plantations), 0.12 g C m(-2) (arable systems) and 0.21 g C m(-2) (grasslands). When these models were run with climate change scenarios to 2060, predictions show that all three ecosystems will continue to operate as carbon sinks. Further, climate change may decrease the carbon sink strength in the forest plantations by up to 50%. This study supports the use of the DNDC model as a valid tool to predict the consequences of climate change on NEE from different ecosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Involving forest communities in identifying and constructing ecosystems services: millennium assessment and place specificity

    Treesearch

    Stanley T. Asah; Dale J. Blahna; Clare M. Ryan

    2012-01-01

    The ecosystem services (ES) approach entails integrating people into public forest management and managing to meet their needs and wants. Managers must find ways to understand what these needs are and how they are met. In this study, we used small group discussions, in a case study of the Deschutes National Forest, to involve community members and forest staff in...

  17. Impacts of air pollution and climate change on forest ecosystems - emerging research needs

    Treesearch

    Elena Paoletti; Bytnerowicz; Chris Andersen; Algirdas Augustaitis; Marco Ferretti; Nancy Grulke; Madeleine S. Gunthardt-goerg; John Innes; Dale Johnson; Dave Karnosky; Jessada Luangjame; Rainer Matyssek; Steven McNulty; Gerhard Muller-Starck; Robert Musselman; Kevin Percy

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure – Effects of Air Pollution, Climate Change and Urban Development", September 10–16, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic...

  18. A review of the role of fungi in wood decay of forest ecosystems

    Treesearch

    Bruce G. Marcot

    2017-01-01

    Fungi are key players in the health, diversity, and productivity of forest ecosystems in Pacific Northwest forests, as mycorrhizal associations, pathogens, decomposers, nontimber resources, and food resources for wildlife. A number of invertebrate species are associated with wood decay fungi, serve as vectors for fungal pathogens, or are fungivorous (consume fungi) and...

  19. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    USGS Publications Warehouse

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  20. A sensor fusion field experiment in forest ecosystem dynamics

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ranson, K. Jon; Williams, Darrel L.; Levine, Elissa R.; Goltz, Stewart M.

    1990-01-01

    The background of the Forest Ecosystem Dynamics field campaign is presented, a progress report on the analysis of the collected data and related modeling activities is provided, and plans for future experiments at different points in the phenological cycle are outlined. The ecological overview of the study site is presented, and attention is focused on forest stands, needles, and atmospheric measurements. Sensor deployment and thermal and microwave observations are discussed, along with two examples of the optical radiation measurements obtained during the experiment in support of radiative transfer modeling. Future activities pertaining to an archival system, synthetic aperture radar, carbon acquisition modeling, and upcoming field experiments are considered.

  1. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems.

    PubMed

    Seidl, Rupert; Albrich, Katharina; Thom, Dominik; Rammer, Werner

    2018-03-01

    In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in

  2. Long-Term Post-Disturbance Forest Recovery in the Greater Yellowstone Ecosystem Analyzed Using Landsat Time Series Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Feng R.; Meng, Ran; Huang, Chengquan

    Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less

  3. Long-Term Post-Disturbance Forest Recovery in the Greater Yellowstone Ecosystem Analyzed Using Landsat Time Series Stack

    DOE PAGES

    Zhao, Feng R.; Meng, Ran; Huang, Chengquan; ...

    2016-10-29

    Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. Here in this study, the LTSS-VCT approach was applied to examine long-term (up to 24more » years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of ~80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. Lastly, with the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S.« less

  4. Ecosystem management decision support for federal forests in the United States: a review

    Treesearch

    H. Michael Rauscher

    1999-01-01

    Ecosystem management has been adopted as the philosophical paradigm guiding management on many Federal forests in the United States. The strategic goal of ecosystem management is to find a sensible middle ground between ensuring long-term protection of the environment while allowing an increasing population to use its natural resources for maintaining and improving...

  5. Forest ecosystems and the changing patterns of nitrogen input and acid deposition today and in the future based on a scenario.

    PubMed

    Busch, G; Lammel, G; Beese, F O; Feichter, J; Dentener, F J; Roelofs, G J

    2001-01-01

    A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.

  6. Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests

    Treesearch

    Richard C. Cobb; Joao A.N. Filipe; Ross K. Meentemeyer; Christopher A. Gilligan; David M. Rizzo

    2012-01-01

    1. Few pathogens are the sole or primary cause of species extinctions, but forest disease has caused spectacular declines in North American overstorey trees and restructured forest ecosystems at large spatial scales over the past 100 years. These events threaten biodiversity associated with impacted host trees and other resources valued by human societies even when...

  7. Simulation of the effect of air pollution on forest ecosystems in a region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarko, A.M.; Bykadorov, A.V.; Kryuchkov, V.V.

    1995-03-01

    This article describes a model of air pollution effects on spruce in forests of the northern taiga regions which have been exposed to air pollution from a large metallurgical industrial complex. Both the predictions the model makes about forest ecosystem degradation zones and the limitations of the model are discussed. 5 refs., 1 fig.

  8. [Global climate change and carbon balance in forest ecosystems of boreal zones: imitating modeling as a forecast tool].

    PubMed

    Shanin, V N; Mikhaĭlov, A V; Bykhovets, S S; Komarov, A S

    2010-01-01

    The individually oriented system of the EFIMOD models simulating carbon and nitrogen flows in forest ecosystems has been used for forecasting the response of forest ecosystems to various forest exploitation regimes with climate change. As input data the forest management materials for the Manturovskii forestry of the Kostroma region were used. It has been shown that increase of mid-annual temperatures and rainfall influence the redistribution of carbon and nitrogen supply in organic form: supply increase of these elements in phytomass simultaneously with depletion of them in soil occurred. The most carbon and nitrogen accumulation in forest ecosystems occurs in the scenario without felling. In addition, in this scenario only the ecosystems of the modeling territory function as a carbon drain; in the other two scenarios (with selective and total felling) they function as a source of carbon. Climate changes greatly influence the decomposition rate of organic matter in soil, which leads to increased emission of carbonic acid. The second consequence of the increase in the destruction rate is nitrogen increase in the soil in a form available for plants that entails production increase of plantations.

  9. Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems.

    PubMed

    Mitchell, Stephen R; Harmon, Mark E; O'Connell, Kari E B

    2009-04-01

    Two forest management objectives being debated in the context of federally managed landscapes in the U.S. Pacific Northwest involve a perceived trade-off between fire restoration and carbon sequestration. The former strategy would reduce fuel (and therefore C) that has accumulated through a century of fire suppression and exclusion which has led to extreme fire risk in some areas. The latter strategy would manage forests for enhanced C sequestration as a method of reducing atmospheric CO2 and associated threats from global climate change. We explored the trade-off between these two strategies by employing a forest ecosystem simulation model, STANDCARB, to examine the effects of fuel reduction on fire severity and the resulting long-term C dynamics among three Pacific Northwest ecosystems: the east Cascades ponderosa pine forests, the west Cascades western hemlock-Douglas-fir forests, and the Coast Range western hemlock-Sitka spruce forests. Our simulations indicate that fuel reduction treatments in these ecosystems consistently reduced fire severity. However, reducing the fraction by which C is lost in a wildfire requires the removal of a much greater amount of C, since most of the C stored in forest biomass (stem wood, branches, coarse woody debris) remains unconsumed even by high-severity wildfires. For this reason, all of the fuel reduction treatments simulated for the west Cascades and Coast Range ecosystems as well as most of the treatments simulated for the east Cascades resulted in a reduced mean stand C storage. One suggested method of compensating for such losses in C storage is to utilize C harvested in fuel reduction treatments as biofuels. Our analysis indicates that this will not be an effective strategy in the west Cascades and Coast Range over the next 100 years. We suggest that forest management plans aimed solely at ameliorating increases in atmospheric CO2 should forgo fuel reduction treatments in these ecosystems, with the possible exception of

  10. The role of mosses in ecosystem succession and function in Alaska's boreal forest

    Treesearch

    Merritt R. Turetsky; Michelle C. Mack; Teresa N. Hollingsworth; Jennifer W. Harden

    2010-01-01

    Shifts in moss communities may affect the resilience of boreal ecosystems to a changing climate because of the role of moss species in regulating soil climate and biogeochemical cycling. Here, we use long-term data analysis and literature synthesis to examine the role of moss in ecosystem succession, productivity, and decomposition. In Alaskan forests, moss abundance...

  11. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    PubMed

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Treesearch

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  13. Practical Strategies for Integrating Final Ecosystem Goods and ...

    EPA Pesticide Factsheets

    The concept of Final Ecosystem Goods and Services (FEGS) explicitly connects ecosystem services to the people that benefit from them. This report presents a number of practical strategies for incorporating FEGS, and more broadly ecosystem services, into the decision-making process. Whether a decision process is in early or late stages, or whether a process includes informal or formal decision analysis, there are multiple points where ecosystem services concepts can be integrated. This report uses Structured Decision Making (SDM) as an organizing framework to illustrate the role ecosystem services can play in a values-focused decision-process, including: • Clarifying the decision context: Ecosystem services can help clarify the potential impacts of an issue on natural resources together with their spatial and temporal extent based on supply and delivery of those services, and help identify beneficiaries for inclusion as stakeholders in the deliberative process. • Defining objectives and performance measures: Ecosystem services may directly represent stakeholder objectives, or may be means toward achieving other objectives. • Creating alternatives: Ecosystem services can bring to light creative alternatives for achieving other social, economic, health, or general well-being objectives. • Estimating consequences: Ecosystem services assessments can implement ecological production functions (EPFs) and ecological benefits functions (EBFs) to link decision alt

  14. Higher levels of multiple ecosystem services are found in forests with more tree species

    PubMed Central

    Gamfeldt, Lars; Snäll, Tord; Bagchi, Robert; Jonsson, Micael; Gustafsson, Lena; Kjellander, Petter; Ruiz-Jaen, María C.; Fröberg, Mats; Stendahl, Johan; Philipson, Christopher D.; Mikusiński, Grzegorz; Andersson, Erik; Westerlund, Bertil; Andrén, Henrik; Moberg, Fredrik; Moen, Jon; Bengtsson, Jan

    2013-01-01

    Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000 km2, we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests. PMID:23299890

  15. New Projections of Global Forest Carbon and Ecosystems at Risk for Increased Greenhouse Gas Emissions From Disturbance and Forest Degradation

    NASA Astrophysics Data System (ADS)

    Klooster, S.; Potter, C. S.; Genovese, V. B.; Gross, P. M.; Kumar, V.; Boriah, S.; Mithal, V.; Castilla-Rubio, J.

    2009-12-01

    Widely cited forest carbon values from look-up tables and statistical correlations with aboveground biomass have proven to be inadequate to discern details of national carbon stocks in forest pools. Similarly, global estimates based on biome-average (tropical, temperate, boreal, etc.) carbon measurements are generally insufficient to support REDD incentives (Reductions in Emission from Deforestation in Developing countries). The NASA-CASA (Carnegie-Ames-Stanford Approach) ecosystem model published by Potter et al. (1999 and 2003) offers several unique advantages for carbon accounting that cannot be provided by conventional inventory techniques. First, CASA uses continuous satellite observations to map land cover status and changes in vegetation on a monthly time interval over the past 25 years. NASA satellites observe areas that are too remote or rugged for conventional inventory-based techniques to measure. Second, CASA estimates both aboveground and belowground pools of carbon in all ecosystems (forests, shrublands, croplands, and rangelands). Carbon storage estimates for forests globally are currently being estimated for the Cisco Planetary Skin open collaborative platform (www.planetaryskin.org ) in a new series of CASA model runs using the latest input data from the NASA MODIS satellites, from 2000 to the present. We have also developed an approach for detection of large-scale ecosystem disturbance (LSED) events based on sustained declines in the same satellite greenness data used for CASA modeling. This approach is global in scope, covers more than a decade of observations, and encompasses all potential categories of major ecosystem disturbance - physical, biogenic, and anthropogenic, using advanced methods of data mining and analysis. In addition to quantifying forest areas at various levels of risk for loss of carbon storage capacity, our data mining approaches for LSED events can be adapted to detect and map biophysically unsuitable areas for deforestation

  16. Integrated restoration of forested ecosystems to achieve multiresource benefits: proceedings of the 2007 national silviculture workshop.

    Treesearch

    Robert L. Deal

    2008-01-01

    A primary mission of the U.S. Department of Agriculture Forest Service is multiple resource management, and one of the emerging themes is forest restoration. The National Silviculture Workshop, a biennial event co-sponsored by the Forest Service, was held May 7-10, 2007, in Ketchikan, Alaska, with the theme of "Integrated Restoration of Forested Ecosystems to...

  17. Significant Increase in Ecosystem C Can Be Achieved with Sustainable Forest Management in Subtropical Plantation Forests

    PubMed Central

    Wei, Xiaohua; Blanco, Juan A.

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500–2500 trees ha−1. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir – Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr−1, offsetting 1.9% of China’s annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber

  18. Locating provisioning ecosystem services in urban forests: Forageable woody species in New York City, USA

    Treesearch

    Patrick T. Hurley; Marla R. Emery

    2017-01-01

    Scholarship on the ecosystem services provided by urban forests has focused on regulating and supporting services, with a growing body of research examining provisioning and cultural ecosystem services from farms and gardens in metropolitan areas. Using the case of New York, New York, USA, we propose a method to assess the supply of potential provisioning ecosystem...

  19. Forest biodiversity, carbon and other ecosystem services: relationships and impacts of deforestation and forest degradation

    Treesearch

    Ian D. Thompson; Joice Ferreira; Toby Gardner; Manuel Guariguata; Lian Pin Koh; Kimiko Okabe; Yude Pan; Christine B. Schmitt; Jason Tylianakis; Jos Barlow; Valerie Kapos; Werner A. Kurz; John A. Parrotta; Mark D. Spalding; Nathalie van Vliet

    2012-01-01

    REDD+ actions should be based on the best science and on the understanding that forests can provide more than a repository for carbon but also offer a wide range of services beneficial to people. Biodiversity underpins many ecosystem services, one of which is carbon sequestration, and individual species’ functional traits play an important role in determining...

  20. Synthesis and Integration of Pre-treatment Results from the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Wendy K. Gram; Victoria L. Sork; Robert J. Marquis

    1997-01-01

    Integrating results across disciplines is a critical component of ecosystem management and research. The common research sites, landscape-scale experimental design, and breadth of research subjects in Missouri Ozark Forest Ecosystem Project provide circumstances conducive for addressing multidisciplinary questions. Our objectives were to (1) summarize the treatment and...

  1. Alternative silvicultural practices in Appalachian forest ecosystems: implications for species diversity, ecosystem resilience, and commercial timber production

    Treesearch

    Thomas R. Fox; Carola A. Haas; David W. Smith; David L. Loftis; Shepard M. Zedaker; Robert H. Jones; A.L. Hammett

    2007-01-01

    Increasing demands for timber and non-timber forest products often conflict with demands to maintain biodiversity and ecosystem processes. To examine tradeoffs between these goals, we implemented six alternative management systems using a stand-level, replicated experiment. The treatments included four silvicultural regeneration methods designed to sustain timber...

  2. Changes in ground layer vegetation following timber harvests on the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Jennifer K. Grabner; Eric K. Zenner

    2002-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape-scale experiment to test for effects of the following three common forest management practices on upland forests: 1) even-aged management (EAM), 2) uneven-aged management (UAM), and 3) no-harvest management (NHM). The first round of harvesting treatments was applied on the nine MOFEP sites in 1996. One...

  3. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest

    Treesearch

    YIQING LI; MING XU; XIAOMING ZOU

    2006-01-01

    Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July...

  4. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in

  5. Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem

    Treesearch

    Mark E. Harmon; Ken Bible; Michael G. Ryan; David C. Shaw; H. Chen; Jeffrey Klopatek; Xia Li

    2004-01-01

    Ground-based measurements of stores, growth, mortality, litterfall, respiration, and decomposition were conducted in an old-growth forest at Wind River Experimental Forest, Washington. These measurements were used to estimate: Gross (GPP) and Net Primary Production (NPP); autotrophic (Ra) and heterotrophic (Rh) respiration; and Net Ecosystem Production (NEP). Monte...

  6. Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.

    2017-12-01

    Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.

  7. Human dimensions in ecosystem management: a USDA Forest Service perspective

    Treesearch

    Deborah S. Carr

    1995-01-01

    For many decades, the natural resource profession has approached the management of public lands as exclusively a natural science endeavor requiring purely technical solutions. With the adoption of an ecosystem management philosophy, the USDA Forest Service has acknowledged the centrality of people in land management policy and decision-making. This paper explores the...

  8. Modelling the management of forest ecosystems: Importance of wood decomposition

    Treesearch

    Juan A. Blanco; Deborah S. Page-Dumroese; Martin F. Jurgensen; Michael P. Curran; Joanne M. Tirocke; Joanna Walitalo

    2018-01-01

    Scarce and uncertain data on woody debris decomposition rates are available for calibrating forest ecosystem models, owing to the difficulty of their empirical estimations. Using field data from three experimental sites which are part of the North American Long-Term Soil Productivity (LTSP) Study in south-eastern British Columbia (Canada), we developed probability...

  9. Estimating Daytime Ecosystem Respiration to Improve Estimates of Gross Primary Production of a Temperate Forest

    PubMed Central

    Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie

    2014-01-01

    Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844

  10. Minnesota forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Treesearch

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kelly Barrett; Randy Kolka; Casey McQuiston; Brian Palik; Peter B. Reich; Clarence Turner; Mark White; Cheryl Adams; Anthony D' Amato; Suzanne Hagell; Patricia Johnson; Rosemary Johnson; Mike Larson; Stephen Matthews; Rebecca Montgomery; Steve Olson; Matthew Peters; Anantha Prasad; Jack Rajala; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Minnesota will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Minnesota's Laurentian Mixed Forest Province to a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and...

  11. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  12. Ownership and ecosystem as sources of spatial heterogeneity in a forested landscape, Wisconsin, USA

    Treesearch

    Thomas R. Crow; George E. Host; David J. Mladenoff

    1999-01-01

    The interaction between physical environment and land ownership in creating spatial heterogeneity was studied in largely forested landscapes of northern Wisconsin, USA. A stratified random approach was used in which 2500-ha plots representing two ownerships (National Forest and private non-industrial) were located within two regional ecosystems (extremely well-drained...

  13. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    NASA Astrophysics Data System (ADS)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach

  14. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe.

    PubMed

    Purahong, Witoon; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L M; Krüger, Dirk

    2014-11-12

    The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function.

  15. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate

    Treesearch

    Kai Duan; Ge Sun; Shanlei Sun; Peter V. Caldwell; Erika Cohen Mack; Steve McNulty; Heather D. Aldridge; Yang Zhang

    2016-01-01

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent...

  16. Hydro-chemical cycle of forest ecosystem in the Norikura Highlands

    NASA Astrophysics Data System (ADS)

    Muramoto, Michiko; Nara, Maiko; Asari, Tomoko; Suzuki, Keisuke

    Because of precipitation serves as a major vehicle of nutrient input into the forest ecosystem, the accurate measurement of its volume and ion concentration is of prime importance in an evaluation of any bio-geochemical cycle. Therefore, chemistry of the precipitation and throughfall of forest ecosystem was investigated in the Norikura Highlands. The investigation period was from January, 2003 to October, 2006. The throughfall volume in growing season and dormant season were 86 % and 93 % of the precipitation volume. Throughfall pH increased with increasing K+ concentration showed that H+ was held within the canopy by cation exchange reaction. And the concentration level of K+, Mg2+ and Ca2+ in the throughfall was much higher than that in the precipitation. It was the cause of canopy leaching. In growing season, proportions of canopy leaching of K+, Mg2+ and Ca2+ were 95 %, 70 % and 43 % of the throughfall deposition respectively. At Coniferous site, the flux of dry deposition was higher in dormant season than growing season. It is suggested that aerosol of the atmosphere and leaf area might be influenced.

  17. The impact of forest structure and light utilization on carbon cycling in tropical forests

    NASA Astrophysics Data System (ADS)

    Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.

    2015-12-01

    Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.

  18. Proceedings of the International Symposium on Air Pollution and Climate Change Effects on Forest Ecosystems

    Treesearch

    Andrzej Bytnerowicz; Michael J. Arbaugh; Susan L. Schilling

    1998-01-01

    Industrial air pollution has been identified as one of the primary causes of severe damage to forests of central Europe in the past 30 to 40 years. The mountain forest ecosystems have been affected considerably, resulting in extensive areas of severely deteriorated forest stands (e.g., the Krusne Hory of the Czech Republic or the Izerske and Sudety Mountains along the...

  19. Lessons from native spruce forests in Alaska: managing Sitka spruce plantations worldwide to benefit biodiversity and ecosystem services

    Treesearch

    Robert L. Deal; Paul Hennon; Richard O' Hanlon; David D' Amore

    2014-01-01

    There is increasing interest worldwide in managing forests to maintain or improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An important goal of forest management is to increase stand diversity, provide wildlife habitat and improve forest species diversity. We synthesize results from natural spruce forests in...

  20. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    PubMed

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  1. Preface: long-term response of a forest watershed ecosystem, clearcutting in the Southern Appalachians

    Treesearch

    Wayne Swank; Jackson Webster

    2014-01-01

    Our North American forests are no longer the wild areas of past centuries; they are an economic and ecological resource undergoing changes from both natural and management disturbances. A watershed-scale and long-term perspective of forest ecosystem responses is requisite to understanding and predicting cause and effect relationships. This book synthesizes...

  2. Invasive bark and ambrosia beetles in California Mediterranean forest ecosystems

    Treesearch

    Steven Seybold; Richard Penrose; Andrew Graves

    2016-01-01

    This chapter discusses the native ranges, histories of introduction, recent research efforts, and the potential impacts of some of 22 species of invasive scolytids in California’s Mediterranean forest ecosystems. The diversity of native and ornamental tree species, the varied climatic zones, and the widespread importation of nursery stock and packaged cargo have made...

  3. Analyzing growth and mortality in a subtropical urban forest ecosystem

    Treesearch

    Alicia B. Lawrence; Fancisco J. Escobedo; Christina L. Staudhammera; Wayne Zipperer Zipperer

    2012-01-01

    Information on urban tree growth, mortality and in-growth is currently being used to estimate urban forest structure changes and ecosystem services such as carbon sequestration. This study reports on tree diameter growth and mortality in 65 plots distributed among four land use categories, which were established in 2005/2006 in Gainesville, Florida, USA and were re-...

  4. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    PubMed Central

    Michie, Laura; Taylor, Ben W.

    2014-01-01

    Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505

  5. Direct quantification of long-term rock nitrogen inputs to temperate forest ecosystems.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2016-01-01

    Sedimentary and metasedimentary rocks contain large reservoirs of fixed nitrogen (N), but questions remain over the importance of rock N weathering inputs in terrestrial ecosystems. Here we provide direct evidence for rock N weathering (i.e., loss of N from rock) in three temperate forest sites residing on a N-rich parent material (820-1050 mg N kg(-1); mica schist) in the Klamath Mountains (northern California and southern Oregon), USA. Our method combines a mass balance model of element addition/ depletion with a procedure for quantifying fixed N in rock minerals, enabling quantification of rock N inputs to bioavailable reservoirs in soil and regolith. Across all sites, -37% to 48% of the initial bedrock N content has undergone long-term weathering in the soil. Combined with regional denudation estimates (sum of physical + chemical erosion), these weathering fractions translate to 1.6-10.7 kg x ha(-1) x yr(-1) of rock N input to these forest ecosystems. These N input fluxes are substantial in light of estimates for atmospheric sources in these sites (4.5-7.0 kg x ha(-1) x yr(-1)). In addition, N depletion from rock minerals was greater than sodium, suggesting active biologically mediated weathering of growth-limiting nutrients compared to nonessential elements. These results point to regional tectonics, biologically mediated weathering effects, and rock N chemistry in shaping the magnitude of rock N inputs to the forest ecosystems examined.

  6. Variation in phenolic root exudates and rhizosphere carbon cycling among tree species in temperate forest ecosystems

    NASA Astrophysics Data System (ADS)

    Zwetsloot, Marie; Bauerle, Taryn; Kessler, André; Wickings, Kyle

    2017-04-01

    Temperate forest tree species composition has been highly dynamic over the past few centuries and is expected to only further change under current climate change predictions. While aboveground changes in forest biodiversity have been widely studied, the impacts on belowground processes are far more challenging to measure. In particular, root exudation - the process through which roots release organic and inorganic compounds into the rhizosphere - has received little scientific attention yet may be the key to understanding root-facilitated carbon cycling in temperate forest ecosystems. The aim of this study was to analyze the extent by which tree species' variation in phenolic root exudate profiles influences soil carbon cycling in temperate forest ecosystems. In order to answer this question, we grew six temperate forest tree species in a greenhouse including Acer saccharum, Alnus rugosa, Fagus grandifolia, Picea abies, Pinus strobus, and Quercus rubra. To collect root exudates, trees were transferred to hydroponic growing systems for one week and then exposed to cellulose acetate strips in individual 800 mL jars with a sterile solution for 24 hours. We analyzed the methanol-extracted root exudates for phenolic composition with high-performance liquid chromatography (HPLC) and determined species differences in phenolic abundance, diversity and compound classes. This information was used to design the subsequent soil incubation study in which we tested the effect of different phenolic compound classes on rhizosphere carbon cycling using potassium hydroxide (KOH) traps to capture soil CO2 emissions. Our findings show that tree species show high variation in phenolic root exudate patterns and that these differences can significantly influence soil CO2 fluxes. These results stress the importance of linking belowground plant traits to ecosystem functioning. Moreover, this study highlights the need for research on root and rhizosphere processes in order to improve

  7. Armillaria species: Primary drivers of forest ecosystem processes and potential impacts of climate change

    Treesearch

    Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Amy L. Ross-Davis; Sara M. Ashiglar; Geral I. McDonald

    2012-01-01

    Species of the fungal genus Armillaria are pervasive in forest soils and are associated with widely ranging tree species of diverse forests worldwide (Baumgartner et al., 2011). As primary decay drivers of ecosystem processes, Armillaria species exhibit diverse ecological behaviors, ranging from virulent root and/or butt pathogens of diverse woody hosts, such as timber...

  8. A simple method for estimating gross carbon budgets for vegetation in forest ecosystems.

    PubMed

    Ryan, Michael G.

    1991-01-01

    Gross carbon budgets for vegetation in forest ecosystems are difficult to construct because of problems in scaling flux measurements made on small samples over short periods of time and in determining belowground carbon allocation. Recently, empirical relationships have been developed to estimate total belowground carbon allocation from litterfall, and maintenance respiration from tissue nitrogen content. I outline a method for estimating gross carbon budgets using these empirical relationships together with data readily available from ecosystem studies (aboveground wood and canopy production, aboveground wood and canopy biomass, litterfall, and tissue nitrogen contents). Estimates generated with this method are compared with annual carbon fixation estimates from the Forest-BGC model for a lodgepole pine (Pinus contorta Dougl.) and a Pacific silver fir (Abies amabilis Dougl.) chronosequence.

  9. Native and exotic insects and diseases in forest ecosystems in the Hoosier-Shawnee ecological assessment area

    Treesearch

    Dwight Scarbrough; Jennifer Juzwik

    2004-01-01

    Various native and exotic insects and diseases affect the forest ecosystems of the Hoosier-Shawnee Ecological Assessment Area. Defoliating insects have had the greatest effects in forests where oak species predominate. Increases in oak decline are expected with the imminent establishment of the European gypsy moth. Insects and pathogens of the pine forests are...

  10. Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project

    Treesearch

    Maria K. Janowiak; Louis R. Iverson; David J. Mladenoff; Emily Peters; Kirk R. Wythers; Weimin Xi; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; P. Danielle Shannon; Chris Swanston; Linda R. Parker; Amy J. Amman; Brian Bogaczyk; Christine Handler; Ellen Lesch; Peter B. Reich; Stephen Matthews; Matthew Peters; Anantha Prasad; Sami Khanal; Feng Liu; Tara Bal; Dustin Bronson; Andrew Burton; Jim Ferris; Jon Fosgitt; Shawn Hagan; Erin Johnston; Evan Kane; Colleen Matula; Ryan O' Connor; Dale Higgins; Matt St. Pierre; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; David Neitzel; Michael Notaro; Adena Rissman; Chadwick Rittenhouse; Robert Ziel

    2014-01-01

    Forest ecosystems across the Northwoods will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Laurentian Mixed Forest Province of northern Wisconsin and western Upper Michigan under a range of future climates. Information on current forest conditions, observed climate...

  11. Ecosystem services and opportunity costs shift spatial priorities for conserving forest biodiversity.

    PubMed

    Schröter, Matthias; Rusch, Graciela M; Barton, David N; Blumentrath, Stefan; Nordén, Björn

    2014-01-01

    Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.

  12. Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity

    PubMed Central

    Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn

    2014-01-01

    Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951

  13. Modeling the Effects of Drought Events on Forest Ecosystem Functioning Historically and Under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Ren, J.; Hanan, E. J.; Kolden, C.; Abatzoglou, J. T.; Tague, C.; Liu, M.; Adam, J. C.

    2017-12-01

    Drought events have been increasing across the western United States in recent years. Many studies have shown that, in the context of climate change, droughts will continue to be stronger, more frequent, and prolonged in the future. However, the response of forest ecosystems to droughts, particularly multi-year droughts, is not well understood. The objectives of this study are to examine how drought events of varying characteristics (e.g. intensity, duration, frequency, etc.) have affected the functioning of forest ecosystems historically, and how changing drought characteristics (including multi-year droughts) may affect forest functioning in a future climate. We utilize the Regional Hydro-Ecological Simulation System (RHESSys) to simulate impacts of both historical droughts and scenarios of future droughts on forest ecosystems. RHESSys is a spatially-distributed and process-based model that captures the interactions between coupled biogeochemical and hydrologic cycles at catchment scales. Here our case study is the Trail Creek catchment of the Big Wood River basin in Idaho, the Northwestern USA. For historical simulations, we use the gridded meteorological data of 1979 to 2016; for future climate scenarios, we utilize downscaled data from GCMs that have been demonstrated to capture drought events in the Northwest of the USA. From these climate projections, we identify various types of drought in intensity and duration, including multi-year drought events. We evaluate the following responses of ecosystems to these events: 1) evapotranspiration and streamflow; 2) gross primary productivity; 3) the post-drought recovery of plant biomass; and 4) the forest functioning and recovery after multi-year droughts. This research is part of an integration project to examine the roles of drought, insect outbreak, and forest management activities on wildfire activity and its impacts. This project will provide improved information for forest managers and communities in the wild

  14. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    USGS Publications Warehouse

    Cannicci, Stefano; Burrows, Damien; Fratini, Sara; Smith, Thomas J.; Offenberg, Joachim; Dahdouh-Guebas, Farid

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about the great importance of these herbivorous crabs in structuring and functioning Old world ecosystems. Although Sesarmidae are still considered very important in shaping mangrove structure and functioning, recent literature emphasizes the significance of other invertebrates. The Ocypodidae have now been shown to have the same role as Sesarmidae in terms of retention of forest products and organic matter processing in New world mangroves. In both New and Old world mangroves, crabs process large amounts of algal primary production, contribute consistently to retention of mangrove production and as ecosystem engineers, change particle size distribution and enhance soil aeration. Our understanding of the strong impact of gastropods, by means of high intake rates of mangrove products and differential consumption of propagules, has changed only recently. The role of insects must also be stressed. It is now clear that older techniques used to assess herbivory rates by insects strongly underestimate their impact, both in case of leaf eating and wood boring species and that

  15. Using a Forest Health Index as an Outreach Tool for Improving Public Understanding of Ecosystem Dynamics and Research-Based Management

    NASA Astrophysics Data System (ADS)

    Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.

    2015-12-01

    An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.

  16. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  17. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems.

    PubMed

    Sicard, Pierre; Augustaitis, Algirdas; Belyazid, Salim; Calfapietra, Carlo; de Marco, Alessandra; Fenn, Mark; Bytnerowicz, Andrzej; Grulke, Nancy; He, Shang; Matyssek, Rainer; Serengil, Yusuf; Wieser, Gerhard; Paoletti, Elena

    2016-06-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and

  18. Immediate, landscape-scale impacts of even-aged and uneven-aged forest management on herpetofaunal communities of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Rochelle B. Renken; Debby K. Frantz

    2002-01-01

    We examined the immediate, landscape-scale impacts of even-aged and uneven-aged forest management on the species composition, species richness, and relative abundance of herpetofaunal communities and selected focal groups of species during the second and third years following initial tree harvest on Missouri Ozark Forest Ecosystem Project (MOFEP) sites in southern...

  19. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    NASA Astrophysics Data System (ADS)

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (p<0.01), and their distribution differed between the two systems (p<0.001) and reflected the dominant vegetation input. Our results indicate that further research is required to clarify the influence of vegetation or disturbance on the signature of very long chain n-alkanes in SOM; however, the use of n-alkanes as biomarkers of ecosystem development is a promising method.

  20. The OpenForest Portal as an Open Learning Ecosystem: Co-Developing in the Study of a Multidisciplinary Phenomenon in a Cultural Context

    ERIC Educational Resources Information Center

    Liljeström, Anu; Enkenberg, Jorma; Vanninen, Petteri; Vartiainen, Henriikka; Pöllänen, Sinikka

    2014-01-01

    This paper discusses the OpenForest portal and its related multidisciplinary learning project. The OpenForest portal is an open learning environment and ecosystem, in which students can participate in co-developing and co-creating practices. The aim of the OpenForest ecosystem is to create an extensive interactive network of diverse learning…

  1. Forest ecosystem changes from annual methane source to sink depending on late summer water balance

    Treesearch

    Julie K. Shoemaker; Trevor F. Keenan; David Y. Hollinger; Andrew D. Richardson

    2014-01-01

    Forests dominate the global carbon cycle, but their role in methane (CH4) biogeochemistry remains uncertain. We analyzed whole-ecosystem CH4 fluxes from 2 years, obtained over a lowland evergreen forest in Maine, USA. Gross primary productivity provided the strongest correlation with the CH4 flux in...

  2. Woody vegetation following even-aged, uneven-aged, and no-harvest treatments on the Missouri Ozark Forest Ecosystem Project Sites

    Treesearch

    John M. Kabrick; Randy G. Jensen; Stephen R. Shifley; David R. Larsen

    2002-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) experimentally tests forest ecosystem response to (a) even-aged management with clearcutting, (b) uneven-aged management with single-tree and group selection, and (c) no-harvesting. The nine MOFEP experimental sites in the southeast Missouri Ozarks are small landscapes ranging from 772 ac (312 ha) to 1,271 ac (514 ha...

  3. Past is prologue: a synthesis of state forest management activities and hardwood ecosystem experiment pre-treatment results

    Treesearch

    G. Scott Haulton

    2013-01-01

    Disturbance plays an important role in forest development processes. Present-day forest condition can be viewed as the cumulative result of various historical disturbance events; therefore, an understanding of disturbance history is important when describing overall forest condition. Pre-treatment studies of the Hardwood Ecosystem Experiment (HEE) have described...

  4. Herbicides--Protecting Long-Term Sustainability and Water Quality in Forest Ecosystems

    Treesearch

    Daniel G. Neary; Jerry L. Michael

    1996-01-01

    World-wide, sediment is the major water quality problem. The use of herbicides for controllingcompeting vegetation during stand establishment can be benciicial to forest ecosystem sustainability and water quality by minimising off-site soil loss, reducing onsite soil and organic matter displacement, and preventing deterioration of soil physical properties. Sediment...

  5. The allocation of ecosystem net primary productivity in tropical forests

    PubMed Central

    Malhi, Yadvinder; Doughty, Christopher; Galbraith, David

    2011-01-01

    The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of that ecosystem, and an important feature to correctly represent in terrestrial ecosystem models. Here, we collate and analyse a global dataset of NPP allocation in tropical forests, and compare this with the representation of NPP allocation in 13 terrestrial ecosystem models. On average, the data suggest an equal partitioning of allocation between all three main components (mean 34 ± 6% canopy, 39 ± 10% wood, 27 ± 11% fine roots), but there is substantial site-to-site variation in allocation to woody tissue versus allocation to fine roots. Allocation to canopy (leaves, flowers and fruit) shows much less variance. The mean allocation of the ecosystem models is close to the mean of the data, but the spread is much greater, with several models reporting allocation partitioning outside of the spread of the data. Where all main components of NPP cannot be measured, litterfall is a good predictor of overall NPP (r2 = 0.83 for linear fit forced through origin), stem growth is a moderate predictor and fine root production a poor predictor. Across sites the major component of variation of allocation is a shifting allocation between wood and fine roots, with allocation to the canopy being a relatively invariant component of total NPP. This suggests the dominant allocation trade-off is a ‘fine root versus wood’ trade-off, as opposed to the expected ‘root–shoot’ trade-off; such a trade-off has recently been posited on theoretical grounds for old-growth forest stands. We conclude by discussing the systematic biases in estimates of allocation introduced by missing NPP components, including herbivory, large leaf litter and root exudates production. These biases have a moderate effect on overall carbon allocation estimates, but are smaller than the observed range in allocation values across sites. PMID

  6. FOREST ECOLOGY. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models.

    PubMed

    Anderegg, W R L; Schwalm, C; Biondi, F; Camarero, J J; Koch, G; Litvak, M; Ogle, K; Shaw, J D; Shevliakova, E; Williams, A P; Wolf, A; Ziaco, E; Pacala, S

    2015-07-31

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of stem growth in trees after severe drought at 1338 forest sites across the globe, comprising 49,339 site-years, and compared the results with simulated recovery in climate-vegetation models. We found pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1 to 4 years after severe drought. Legacy effects were most prevalent in dry ecosystems, among Pinaceae, and among species with low hydraulic safety margins. In contrast, limited or no legacy effects after drought were simulated by current climate-vegetation models. Our results highlight hysteresis in ecosystem-level carbon cycling and delayed recovery from climate extremes. Copyright © 2015, American Association for the Advancement of Science.

  7. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.

    PubMed

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha; Thompson, Jill; Zimmerman, Jess K; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate. © 2017 John

  8. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    USGS Publications Warehouse

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  9. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems

    Treesearch

    Changsheng Li; Jianbo Cui

    2004-01-01

    A process- based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices fe.g., forest harvest, chopping, burning, water management, fertilization, and tree planting),...

  10. A Prospectus on Restoring Late Successional Forest Structure to Eastside Pine Ecosystems Through Large-Scale, Interdisciplinary Research

    Treesearch

    Steve Zack; William F. Laudenslayer; Luke George; Carl Skinner; William Oliver

    1999-01-01

    At two different locations in northeast California, an interdisciplinary team of scientists is initiating long-term studies to quantify the effects of forest manipulations intended to accelerate andlor enhance late-successional structure of eastside pine forest ecosystems. One study, at Blacks Mountain Experimental Forest, uses a split-plot, factorial, randomized block...

  11. Climate change impact on peatland and forest ecosystems of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondrasheva, N.Yu.; Kobak, K.I.; Turchinovich, I.Ye.

    1996-12-31

    Paleoclimatic and paleobotanic reconstructions allow a conclusion that ecosystems and natural zones significantly changed due to climate fluctuations. The average long-term carbon accumulation in peatlands of Russia was estimated as 45.6 mln tons of carbon per year. During the Holocene the rate of peat accumulation changed. During the Subboreal period the rate of peat accumulation gradually decreased to 17 gC/m2 yr, reaching its lowest value in the Subatlantic period. Apparently, the rate of peat accumulation decreased in Subboreal period due to sharp cooling and precipitation decrease. Future rates of peat accumulation might be higher than the present one. Forest ecosystemsmore » of north-western Russia also significantly changed during the Holocene. In Atlantic time the boundary between middle and south taiga was located 500 km northward compared to the present and broad-leaved forest occupied large areas. According to their forecast, a mean global air temperature increase by 1.4 C is expected to result in a considerable decrease in coniferous forest area and an increase in mixed and broad-leaved forest area.« less

  12. Age-dependent changes in ecosystem carbon fluxes in managed forests in Northern Wisconsin, USA

    Treesearch

    Asko Noormets; Jiquan Chen; Thomas R. Crow

    2007-01-01

    The age-dependent variability of ecosystem carbon (C) fluxes was assessed by measuring the net ecosystem exchange of C (NEE) in five managed forest stands in northern Wisconsin, USA. The study sites ranged in age from 3-year-old clearcut to mature stands (65 years). All stands, except the clearcut, accumulated C over the study period from May to October 2002. Seasonal...

  13. Biological forest ecosystems diversity and there impact in semi arid land, analysis and followed by remote sensing (Alsat-1 data, Steppe of Algeria)

    NASA Astrophysics Data System (ADS)

    Zegrar, A.

    2008-05-01

    The Algerian forests present an important ecological diversity, due to the different type of weather, from the sub humid to arid. These type of weather have a direct influence on the forests ecosystem and condition the flours composition of these forests as well as their regeneration. The ecological diversity of some forests as part as it's constitution, plays an important role in the natural regeneration, following some natural curses (Forest fire, phenomenon of Chablis, stroke of wood...). The conservation of the biologic diversity and the bets in permanent value of some Forests ecosystem take moreover importance. Because the forest ecosystem have the aspect of uniting the biologic wealth of forests, some interior waters, some agricultural earths and some arid and sub humid earths. In this survey, the utilization of remote sensing data respectively satellite ALSAT-1 and satellite LANDSAT TM in different dates, inform us about impact of arid weather on the ecological diversity in the middle of some vegetal steppe formations and in particular on the regressive evolution of some forests ecosystem under the name of the DEFORESTATION. We have used data of satellite LANDSAT TM of the year 1989 and those of satellite ALSAT-1 of the year 2007, for a multistage study of the regressive evolution of forests ecosystem. an application of the specific treatments especially the classification supervised by the method of maximum of verisimilitude is used in order to identify the most important formations of the zone of survey. The index: NDVI, MSAVI2 and the index of IV verdure is used for characterized and determined the forests formations changes. The arithmetic combinations are used in the system of information geographical IDRISI. And after application of the method of the rations we obtained a picture of the changes. A map of the Vulnerability of the forests ecosystem was realized, this map informs us on the process of deforestation in the natural forests following the

  14. Belowground processes regulate ecosystem nitrogen retention during a multi-year forest dieback event

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Le Moine, J.; Gough, C. M.; Vogel, C.; Nadelhoffer, K. J.; Curtis, P.

    2013-12-01

    In the absence of disturbances, forests typically have strong retention capacity for nitrogen (N), which is internally recycled between soil, microbial and plant pools. However, disturbances that trigger senescence or mortality of forest vegetation may alter internal N cycling processes and lead to the loss of ecosystem N retention capacity. Here, we present an assessment of the role played by belowground processes in governing ecosystem N cycling and retention during an experimental disturbance that killed the dominant canopy taxa in a Great Lakes forest over a 4-year period. After applying stem girdling to hasten the age-related senescence of the dominant taxa (Populus and Betula spp.; ~35% of the basal area), we observed a 38% decrease in stand-level allocation of nonstructural carbohydrates to fine roots, which triggered a tenfold increase in the rate of fine root turnover and increased soil NH4+ and NO3- availability. Elevated soil N availability decreased mycorrhizal hyphal foraging and N uptake, effectively down-regulating the role of symbiotic fungi in the N nutrition of the residual (longer-lived) tree taxa. However, even as residual trees took up less N from mycorrhizal sources, their overall N uptake increased and served to offset the loss of the dominant taxa. The net result of this offset was that canopy N stocks remained constant through the disturbance period and there was no appreciable loss of ecosystem N stocks due to leaching or gaseous export. In sum, the cascade of changes in root, microbial, and soil processes during this experiment indicates that these interdependent components of the belowground system comprised a mechanism responsible for retention and redistribution of ecosystem N stocks during the disturbance period.

  15. Forest aesthetics, biodiversity, and the perceived appropriateness of ecosystem management practices

    Treesearch

    Paul H. Gobster

    1996-01-01

    The social acceptability of 'ecosystem management' and related new forestry programs hinges on how people view the forest environment and what it means to them. For many, these conceptions are based on a 'scenic aesthetic" that is dramatic and visual, where both human and natural changes are perceived negatively. In contrast, appreciation of...

  16. Carbon dioxide fluxes in a central hardwoods oak-hickory forest ecosystem

    Treesearch

    Stephen G. Pallardy; Lianhong Gu; Paul J. Hanson; Tilden Myers; Stan D. Wullschleger; Bai Yang; Jeffery S. Riggs; Kevin P. Hosman; Mark Heuer

    2007-01-01

    A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km2) canopy gas exchange (measured by eddy-covariance methods), vertical CO2 profile sampling and soil respiration along with...

  17. Climatic and pollution influences on ecosystem processes in northern hardwood forests

    Treesearch

    Kurt S. Pregitzer; David D. Reed; Glenn D. Mroz; Andrew J. Burton; John A. Witter; Donald A. Zak

    1996-01-01

    The Michigan gradient study was established in 1987 to examine the effects of climate and atmospheric deposition on forest productivity and ecosystem processes in the Great Lakes region. Four intensively-monitored northern hardwood study sites are located along a climatic and pollutant gradient extending from southern lower Michigan to northwestern upper Michigan. The...

  18. Acorn Production on the Missouri Ozark Forest Ecosystem Project Study Sites: Pre-treatment Data

    Treesearch

    Larry D. Vangilder

    1997-01-01

    In the pre-treatment phase of a study to determine if even- and uneven-aged forest management affects the production of acorns on the Missourt Forest Ecosystem Project (MOFEP) study sites, acorn production was measured on the nine study sites by randomly placing from 2 to 6 plots in each of four ecological land type (ELT) groupings (N=130 plots). A split-plot...

  19. Measuring ecosystem capacity to provide regulating services: forest removal and recovery at Hubbard Brook (USA).

    PubMed

    Beier, Colin M; Caputo, Jesse; Groffman, Peter M

    2015-10-01

    In this study, by coupling long-term ecological data with empirical proxies of societal demand for benefits, we measured the capacity of forest watersheds to provide ecosystem services over variable time periods, to different beneficiaries, and in response to discrete perturbations and drivers of change. We revisited one of the earliest ecosystem experiments in North America: the 1963 de-vegetation of a forested catchment at Hubbard Brook Experimental Forest in New Hampshire, USA. Potential benefits of the regulation of water flow, water quality, greenhouse gases, and forest growth were compared between experimental (WS 2) and reference (WS 6) watersheds over a 30-year period. Both watersheds exhibited similarly high capacity for flow regulation, in part because functional loads remained low (i.e., few major storm events) during the de-vegetation period. Drought mitigation capacity, or the maintenance of flows sufficient to satisfy municipal water consumption, was higher in WS 2 due to reduced evapotranspiration associated with loss of plant cover. We also assessed watershed capacity to regulate flows to satisfy different beneficiaries, including hypothetical flood averse and drought averse types. Capacity to regulate water quality was severely degraded during de-vegetation, as nitrate concentrations exceeded drinking water standards on 40% of measurement days. Once forest regeneration began, WS 2 rapidly recovered the capacity to provide safe drinking water, and subsequently mitigated the eutrophication potential of rainwater at a marginally higher level than WS 6. We estimated this additional pollution removal benefit would have to accrue for approximately 65-70 years to offset the net eutrophication cost incurred during forest removal. Overall, our results affirmed the critical role of forest vegetation in water regulation, but also indicated trade-offs associated with forest removal and recovery that partially depend on larger-scale exogenous changes in climate

  20. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale

    NASA Astrophysics Data System (ADS)

    Cusack, Daniela F.; Karpman, Jason; Ashdown, Daniel; Cao, Qian; Ciochina, Mark; Halterman, Sarah; Lydon, Scott; Neupane, Avishesh

    2016-09-01

    Government and international agencies have highlighted the need to focus global change research efforts on tropical ecosystems. However, no recent comprehensive review exists synthesizing humid tropical forest responses across global change factors, including warming, decreased precipitation, carbon dioxide fertilization, nitrogen deposition, and land use/land cover changes. This paper assesses research across spatial and temporal scales for the tropics, including modeling, field, and controlled laboratory studies. The review aims to (1) provide a broad understanding of how a suite of global change factors are altering humid tropical forest ecosystem properties and biogeochemical processes; (2) assess spatial variability in responses to global change factors among humid tropical regions; (3) synthesize results from across humid tropical regions to identify emergent trends in ecosystem responses; (4) identify research and management priorities for the humid tropics in the context of global change. Ecosystem responses covered here include plant growth, carbon storage, nutrient cycling, biodiversity, and disturbance regime shifts. The review demonstrates overall negative effects of global change on all ecosystem properties, with the greatest uncertainty and variability in nutrient cycling responses. Generally, all global change factors reviewed, except for carbon dioxide fertilization, demonstrate great potential to trigger positive feedbacks to global warming via greenhouse gas emissions and biogeophysical changes that cause regional warming. This assessment demonstrates that effects of decreased rainfall and deforestation on tropical forests are relatively well understood, whereas the potential effects of warming, carbon dioxide fertilization, nitrogen deposition, and plant species invasions require more cross-site, mechanistic research to predict tropical forest responses at regional and global scales.

  1. Unresolving the "real age" of fine roots in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Brunner, Ivano; Herzog, Claude; Schöning, Ingo; Schrumpf, Marion; Schweigruber, Fritz; Trumbore, Susan; Hagedorn, Frank

    2016-04-01

    Estimating the turnover time of tree fine roots is crucial for modelling soil organic matter dynamics, but it is one of the biggest challenges in soil ecology and one of the least understood aspects of the belowground carbon cycle. The methods used - ranging from radiocarbon to ingrowth cores and root cameras (minirhizotrons) - yield very diverse pictures of fine root dynamics in forest ecosystems with turnover rates reaching from less than one year to decades. These have huge implications on estimates of carbon allocation to root growth and maintenance and on the persistence of root carbon in soils before it is decomposed or leached. We will present a new approach, involving techniques to study plant anatomy, which unravels the "real age" of fine roots. For a range of forests with diverse water and nutrient limitations located at different latitudes, we investigated the annual growth rings in the secondary xylem of thin transversal sections of fine roots belonging to tree species which form distinct growth rings. In temperate forests we find mean root "ring ages" of 1-2 years while in sub-arctic forests living fine roots can also persist for several years. The robustness of these results were tested by counting the maximum yearly growth rings in tree seedlings of known age and by counting the maximum number of growth rings of fine roots grown in ingrowth cores which were kept in temperate forest soils for one and two years. Radiocarbon estimates of mean "carbon ages", which define the time elapsed since structural carbon was fixed from the atmosphere, instead average around a decade in root systems of temperate forests (mixture of newly produced and older living roots). This dramatic difference may not be related to methodological bias, but to a time lag between C assimilation and production of a portion of fine root tissues due to the storage of older carbon components. The time lag depends very likely on tree species and environmental conditions. We further

  2. Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Treesearch

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...

  3. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model

    Treesearch

    Jianbo Cui; Changsheng Li; Carl Trettin

    2005-01-01

    A comprehensive biogeochemical model, Wetland-DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools,...

  4. Mechanisms of nitrogen retention in forest ecosystems - A field experiment

    NASA Technical Reports Server (NTRS)

    Vitousek, P. M.; Matson, P. A.

    1984-01-01

    Intensive forest management led to elevated losses of nitrogen from a recently harvested loblolly pine plantation in North Carolina. Measurements of nitrogen-15 retention in the field demonstrated that microbial uptake of nitrogen during the decomposition of residual organic material was the most important process retaining nitrogen. Management practices that remove this material cause increased losses of nitrogen to aquatic ecosystems and the atmosphere.

  5. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability

  6. Evaluating the responses of forest ecosystems to climate change and CO2 using dynamic global vegetation models.

    PubMed

    Song, Xiang; Zeng, Xiaodong

    2017-02-01

    The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO 2 , and few studies have considered how and to what extent climate change and CO 2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP-DGVM coupled with CLM3 and CLM4-CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO 2 concentration. In the temperature sensitivity tests, warming reduced the global area-averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (Δ F tree ; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether Δ F tree was positive or negative, while the tree fractional coverage ( F tree ; %) played a decisive role in the amplitude of Δ F tree around the globe, and the dependence was more remarkable in IAP-DGVM. In cases with precipitation change, F tree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% <  F tree  < 60%) for IAP-DGVM and in semiarid and arid regions for CLM4-CNDV. Moreover, Δ F tree had a stronger dependence on F tree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO 2 concentration.

  7. Reach-scale effects of riparian forest cover on urban stream ecosystems

    USGS Publications Warehouse

    Roy, A.H.; Faust, C.L.; Freeman, Mary C.; Meyer, J.L.

    2005-01-01

    We compared habitat and biota between paired open and forested reaches within five small streams (basin area 10?20 km2) in suburban catchments (9%?49% urban land cover) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest cover corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals?m?2) versus forested (4.9 individuals?m?2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy cover. In urbanizing areas where catchment land cover drives habitat and biotic quality, management practices that rely exclusively on forested riparian areas for stream protection are unlikely to be effective at maintaining ecosystem integrity.

  8. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Treesearch

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  9. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems

    Treesearch

    Nathaly R. Guerrero-Ramírez; Dylan Craven; Peter B. Reich; John J. Ewel; Forest Isbell; Julia Koricheva; John A. Parrotta; Harald Auge; Heather E. Erickson; David I. Forrester; Andy Hector; Jasmin Joshi; Florencia Montagnini; Cecilia Palmborg; Daniel Piotto; Catherine Potvin; Christiane Roscher; Jasper van Ruijven; David Tilman; Brian Wilsey; Nico Eisenhauer

    2017-01-01

    The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity–ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests...

  10. EO Underpinning the Quality of Ecosystem Services with Geospatial Data- The Case of Sustainable Forest Management

    NASA Astrophysics Data System (ADS)

    Crosthwaite Eyre, Charles

    2010-12-01

    Payments for Ecosystem Services (PES) is an exciting and expanding opportunity for sustainably managed forests. PES are derived from a range of ecosystem benefits from forests including climate change mitigation through afforestation and avoided deforestation, green power generation, wetland and watershed rehabilitation, water quality improvement, marine flood defence and the reduction in desertification and soil erosion. Forests are also the ancestral home to many vulnerable communities which need protection. Sustainable forest management plays a key role in many of these services which generates a potentially critical source of finance. However, for forests to realise revenues from these PES, they must meet demanding standards of project validation and service verification. They also need geospatial data to manage and monitor operational risk. In many cases the data is difficult to collect on the ground - in some cases impossible. This will create a new demand for data that must be impartial, timely, area wide, accurate and cost effective. This presentation will highlight the unique capacity of EO to provide these geospatial inputs required in the generation of PES from forestry and demonstrate products with practical examples.

  11. Understanding ecosystem service preferences across residential classifications near Mt. Baker Snoqualmie National Forest, Washington (USA).

    Treesearch

    Katherine Williams; Kelly Biedenweg; Lee Cerveny

    2017-01-01

    Ecosystem services consistently group together both spatially and cognitively into “bundles”. Understanding socio-economic predictors of these bundles is essential to informing a management approach that emphasizes equitable distribution of ecosystem services. We received 1796 completed surveys from stakeholders of the Mt. Baker-Snoqualmie National Forest (WA, USA)...

  12. Decision support for evaluating the U.S. national criteria and indicators for forest ecosystem sustainability

    Treesearch

    Keith M. Reynolds

    2006-01-01

    This paper describes and illustrates the use of the Ecosystem Management Decision Support (EMDS) system for evaluating the U.S. national criteria and indicators for forest ecosystem sustainability at the scale of Resource Planning Act (RPA) regions. The evaluation component of EMDS uses a logic engine to evaluate landscape condition, and the RPA-scale application...

  13. Fisher research and the Kings River Sustainable Forest Ecosystem Project: current results and future efforts

    Treesearch

    Brian B. Boroski; Richard T. Golightly; Amie K. Mazzoni; Kimberly A. Sager

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project was initiated on the Kings River Ranger District of the Sierra National Forest, California, in 1993, with fieldwork beginning in 1994. Knowledge of the ecology of the fisher (Martes pennanti) in the Project area, and in the Sierra Nevada of California in general, is insufficient to develop...

  14. Effects of ice storm on forest ecosystem of southern China in 2008 Shaoqiang Wang1, Lei Zhou1, Weimin Ju2, Kun Huang1 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Beijing, 10010

    NASA Astrophysics Data System (ADS)

    Wang, Shaoqiang

    2014-05-01

    Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and

  15. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management.

    PubMed

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  16. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    NASA Astrophysics Data System (ADS)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  17. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.

    PubMed

    Antonarakis, Alexander S; Saatchi, Sassan S; Chazdon, Robin L; Moorcroft, Paul R

    2011-06-01

    Insights into vegetation and aboveground biomass dynamics within terrestrial ecosystems have come almost exclusively from ground-based forest inventories that are limited in their spatial extent. Lidar and synthetic-aperture Radar are promising remote-sensing-based techniques for obtaining comprehensive measurements of forest structure at regional to global scales. In this study we investigate how Lidar-derived forest heights and Radar-derived aboveground biomass can be used to constrain the dynamics of the ED2 terrestrial biosphere model. Four-year simulations initialized with Lidar and Radar structure variables were compared against simulations initialized from forest-inventory data and output from a long-term potential-vegtation simulation. Both height and biomass initializations from Lidar and Radar measurements significantly improved the representation of forest structure within the model, eliminating the bias of too many large trees that arose in the potential-vegtation-initialized simulation. The Lidar and Radar initializations decreased the proportion of larger trees estimated by the potential vegetation by approximately 20-30%, matching the forest inventory. This resulted in improved predictions of ecosystem-scale carbon fluxes and structural dynamics compared to predictions from the potential-vegtation simulation. The Radar initialization produced biomass values that were 75% closer to the forest inventory, with Lidar initializations producing canopy height values closest to the forest inventory. Net primary production values for the Radar and Lidar initializations were around 6-8% closer to the forest inventory. Correcting the Lidar and Radar initializations for forest composition resulted in improved biomass and basal-area dynamics as well as leaf-area index. Correcting the Lidar and Radar initializations for forest composition and fine-scale structure by combining the remote-sensing measurements with ground-based inventory data further improved

  18. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    NASA Astrophysics Data System (ADS)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  19. 15N NATURAL ABUNDANCE AND 15N LABELLING STUDIES IN FOREST ECOSYSTEMS

    EPA Science Inventory

    The relative amounts of the two stable isotopes of Nitrogen (N), 15N, and N, vary predictably in soils and plant tissues of forests and other non-cultivated ecosystems. light fractionations, or discriminations against the heavier N isotope, that can occur as N cycles through vege...

  20. Interannual influence of spring phenological transitions on the water use efficiency of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Jin, Jiaxin; Wang, Ying

    2017-04-01

    Climate change has significantly influenced the productivity of terrestrial ecosystems through water cycles. Understanding the phenological regulation mechanisms underlying coupled carbon-water cycles is important for improving ecological assessments and projecting terrestrial ecosystem responses and feedback to climate change. In this study, we present an analysis of the interannual relationships among flux-based spring phenological transitions (referred as photosynthetic onset) and water use efficiency (WUE) in North America and Europe using 166 site-years of data from 22 flux sites, including 10 deciduous broadleaf forest (DBF) and 12 evergreen needleleaf forest (ENF) ecosystems. We found that the WUE responses to variations in spring phenological transitions differed substantially across plant functional types (PFTs) and growth periods. During the early spring (defined as one month from spring onset) in the DBF ecosystem, photosynthetic onset dominated changes in WUE by dominating gross primary production (GPP), with one day of advanced onset increasing the WUE by 0.037 gC kg-1H2O in early spring. For the ENF sites, although advanced photosynthetic onset also significantly promoted GPP, earlier onset did not have a significant positive impact on WUE in early spring because it was not significantly correlated to evapotranspiration (ET), which is a more dominant factor for WUE than GPP across the ENF sites. Statistically significant correlations were not observed between interannual variability in photosynthetic onset and WUE for either the DBF or ENF ecosystems following a prolonged period after photosynthetic onset. For the DBF sites, the interannual variability of photosynthetic onset provided a better explanation of the variations in WUE (ca. 51.4%) compared with climatic factors, although this was only applicable to the early spring. For the ENF sites, photosynthetic onset variations did not provide a better explanation of the interannual WUE variations

  1. Past and future effects of atmospheric deposition on the forest ecosystem at the Hubbard Brook Experimental Forest: simulations with the dynamic model ForSAFE

    Treesearch

    Salim Belyazid; Scott Bailey; Harald Sverdrup

    2010-01-01

    The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...

  2. Does Acacia dealbata express shade tolerance in Mediterranean forest ecosystems of South America?

    PubMed Central

    Aguilera, Narciso; Sanhueza, Carolina; Guedes, Lubia M; Becerra, José; Carrasco, Sebastián; Hernández, Víctor

    2015-01-01

    The distribution of Acacia dealbata Link (Fabaceae) in its non-native range is associated with disturbed areas. However, the possibility that it can penetrate the native forest during the invasion process cannot be ruled out. This statement is supported by the fact that this species has been experimentally established successfully under the canopy of native forest. Nonetheless, it is unknown whether A. dealbata can express shade tolerance traits to help increase its invasive potential. We investigated the shade tolerance of A. dealbata under the canopy of two native forests and one non-native for three consecutive years, as well as its early growth and photosynthetic performance at low light intensities (9, 30, and 70 μmol m−2sec−1) under controlled conditions. We found many A. dealbata plants surviving and growing under the canopy of native and non-native forests. The number of plants of this invasive species remained almost constant under the canopy of native forests during the years of study. However, the largest number of A. dealbata plants was found under the canopy of non-native forest. In every case, the distribution pattern varied with a highest density of plants in forest edges decreasing progressively toward the inside. Germination and early growth of A. dealbata were slow but successful at three low light intensities tested under controlled conditions. For all tested light regimes, we observed that in this species, most of the energy was dissipated by photochemical processes, in accordance with the high photosynthetic rates that this plant showed, despite the really low light intensities under which it was grown. Our study reveals that A. dealbata expressed shade tolerance traits under the canopy of native and non-native forests. This behavior is supported by the efficient photosynthetic performance that A. dealbata showed at low light intensities. Therefore, these results suggest that Mediterranean forest ecosystems of South America can become

  3. Multi-trophic resilience of boreal lake ecosystems to forest fires.

    PubMed

    Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R

    2014-05-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  4. Multi-trophic resilience of boreal lake ecosystems to forest fires

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Bertram, M.R.

    2014-01-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  5. Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Treesearch

    John R. Butnor; John L. Campbell; James B. Shanley; Stanley Zarnoch

    2014-01-01

    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...

  6. An Early Warning System for Identification and Monitoring of Disturbances to Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Marshall, A. A.; Hoffman, F. M.; Kumar, J.; Hargrove, W. W.; Spruce, J.; Mills, R. T.

    2011-12-01

    Forest ecosystems are susceptible to damage due to threat events like wildfires, insect and disease attacks, extreme weather events, land use change, and long-term climate change. Early identification of such events is desired to devise and implement a protective response. The mission of the USDA Forest Service is to sustain the health, diversity, and productivity of the nation's forests. However, limited resources for aerial surveys and ground-based inspections are insufficient for monitoring the large areas covered by the U.S. forests. The USDA Forest Service, Oak Ridge National Laboratory, and NASA Stennis Space Center are developing an early warning system for the continuous tracking and long-term monitoring of disturbances and responses in forest ecosystems using high resolution satellite remote sensing data. Geospatiotemporal data mining techniques were developed and applied to normalized difference vegetation index (NDVI) products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD 13 data at 250 m resolution on eight day intervals. Representative phenologically similar regions, or phenoregions, were developed for the conterminous United States (CONUS) by applying a k-means clustering algorithm to the NDVI data spanning the full eight years of the MODIS record. Annual changes in the phenoregions were quantitatively analyzed to identify the significant changes in phenological behavior. This methodology was successfully applied for identification of various forest disturbance events, including wildfire, tree mortality due to Mountain Pine Beetle, and other insect infestation and diseases, as well as extreme events like storms and hurricanes in the United States. Where possible, the results were validated and quantitatively compared with aerial and ground-based survey data available from different agencies. This system was able to identify most of the disturbances reported by aerial and ground-based surveys, and it also identified

  7. Effects of harvesting forest biomass on water and climate regulation services: A synthesis of long-term ecosystem experiments in eastern North America

    USGS Publications Warehouse

    Caputo, Jesse; Beier, Colin D; Groffman, Peter M; Burns, Douglas A.; Beall, Frederick D; Hazlett, Paul W.; Yorks, Thad E

    2016-01-01

    Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.

  8. Overlaps among phenological phases in flood plain forest ecosystem

    NASA Astrophysics Data System (ADS)

    Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk

    2015-04-01

    There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.

  9. The Northwest Forest Plan as a model for broad-scale ecosystem management: a social perspective.

    Treesearch

    Susan Charnley

    2006-01-01

    I evaluated the Northwest Forest Plan as a model for ecosystem management to achieve social and economic goals in communities located around federal forests in the US. Pacific Northwest. My assessment is based on the results of socioeconomic monitoring conducted to evaluate progress in achieving the plan's goals during its past 10 years. The assessment criteria I...

  10. The Northwest Forest Plan as a model for broad-scale ecosystem management: a social perspective.

    Treesearch

    Susan Charnely

    2006-01-01

    I evaluated the Northwest Forest Plan as a model for ecosystem management to achieve social and economic goals in communities located around federal forests in the U.S. Pacific Northwest. My assessment is based on the results of socioeconomic monitoring conducted to evaluate progress in achieving the plan's goals during its past 10 years. The assessment criteria I...

  11. Practical Strategies for Integrating Final Ecosystem Goods and Services into Community Decision-Making.

    EPA Science Inventory

    The concept of Final Ecosystem Goods and Services (FEGS) explicitly connects ecosystem services to the people that benefit from them. This report presents a number of practical strategies for incorporating FEGS, and more broadly ecosystem services, into the decision-making proces...

  12. Relevance of Lick Creek ecosystem-based management treatments to National Forest management

    Treesearch

    Cathy Stewart

    1999-01-01

    Treatments applied at Lick Creek were the first landscape-scale applications of ecosystem management on the Bitterroot National Forest. The coordinated effort between educators, researchers, resource managers, and the public helped gain acceptance and understanding of new approaches to management, both internally and externally. The longer skidding distances, high...

  13. Effects of anhydrous ammonia on a forest ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, E.E. Jr.

    1976-01-01

    A forest ecosystem covering 26 square miles was exposed to anhydrous ammonia following a pipeline rupture in June, 1971. Initial effects included death or defoliation of vegetation and high nitrate accumulations in plant tissues, soils, and natural waters. Deciduous trees and herbaceous species had recovered one year after exposure and soil and water conditions were near normal, but Pinus echinata and Juniperous virginiana showed loss of needles, abnormal twig growth and low cone production after three years. Ammonia or ammonium hydroxide entered plants primarily through stomates and caused injury by desiccation, nutritional imbalances, and other alterations in cell conditions.

  14. The impacts of disturbance on the spatial and temporal variations of carbon balance in forest ecosystems on Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Hirata, R.; Ito, A.; Saigusa, N.

    2013-12-01

    Carbon balance in a forest ecosystem can be quite variable if the forest ecosystem structure and function change abruptly as a result of disturbance and subsequent recovery processes. A map of forest age is useful for upscaling carbon balance from the site level to a regional scale because it provides information about when disturbance occurred and how it spread over a wide area. In this study, we used maps of forest age to help evaluate spatial and temporal variations in the carbon balance of forest ecosystems with a process-based ecosystem model. Forests less than 60 years old account for more than 70% of Japanese forests because forest stands have been quickly replaced after disturbance caused by thinning, harvesting, plantations, fires, typhoons, and insect damage. However, few studies have attempted to quantify how much disturbance affects the spatial and temporal variations of carbon balance. In this study, we focused on how disturbance and subsequent re-growth affected the spatial and temporal variations of the carbon balance of forests. We adapted the Vegetation Integrative SImulator for Trace Gases (VISIT) model in order to simulate carbon balance on Hokkaido, which is the northernmost island of Japan. The model was validated with tower flux data obtained from forests with ages between 0 and 43 years. Simulations of the carbon balance were conducted for the period 1948-2010 after a 1000-year spin-up at a spatial resolution of 1 km × 1 km. We investigated two case studies of simulated carbon balance: one that took into account the spatial distribution of forest ages derived from forest inventory data, and another that ignored the impact of disturbance (i.e., no disturbance and a homogeneous distribution of ages). We first focused on the difference from 2000-2010 in the spatial distribution of net ecosystem production (NEP) between the disturbance and non-disturbance cases. In the non-disturbance case, the temporal and spatial changes in NEP were gradual

  15. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    NASA Astrophysics Data System (ADS)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with <2 Mg C ha-1 yr-1 variation across the range of inputs. However, the sequestration of particular carbon pool(s) varies with assimilated biomass information. Assimilation of repeated biomass observations reduces uncertainty and/or bias in all ecosystem C pools not just wood, compared to analyses using single or no stock information. As verification, our repeated biomass analysis explains 78-86% of variation in litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  16. How Visualizing Ecosystem Land Management Assessments (VELMA) modeling quantifies co-benefits and tradeoffs in Community Forest management

    EPA Science Inventory

    The Northwest Community Forest Coalition invited EPA-WED Research Scientist Bob McKane to present the Keynote Address for the 2018 Northwest Community Forest Forum on May 9‐11 in Astoria, OR. His address will describe "How Visualizing Ecosystem Land Management Assessme...

  17. Assessing the protection function of Alpine forest ecosystems using BGC modelling theory

    NASA Astrophysics Data System (ADS)

    Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.

    2009-04-01

    The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (

  18. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem.

    PubMed

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-03-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.

  19. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    PubMed Central

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  20. Evaluating management tradeoffs between economic fiber production and other ecosystem services in a Chinese-fir dominated forest plantation in Fujian Province.

    PubMed

    Kang, Haijun; Seely, Brad; Wang, Guangyu; Innes, John; Zheng, Dexiang; Chen, Pingliu; Wang, Tongli; Li, Qinglin

    2016-07-01

    Chinese fir (Cunninghamia lanceolata) is not only a valuable timber species, but also plays an important role in the provision of ecosystem services. Forest management decisions to increase the production of fiber for economic gain may have negative impacts on the long-term flow of ecosystem services from forest resources. Such tradeoffs should be taken into account to fulfill the requirements of sustainable forest management. Here we employed an established, ecosystem-based, stand-level model (FORECAST) in combination with a simplified harvest-scheduling model to evaluate the potential tradeoffs among indicators of provisional, regulating and supporting ecosystem services in a Chinese-fir-dominated landscape located in Fujian Province as a case study. Indicators included: merchantable volume harvested, biomass harvested, ecosystem carbon storage, CO2 fixation, O2 released, biomass nitrogen content, pollutant absorption, and soil fertility. A series of alternative management scenarios, representing different combinations of rotation length and harvest intensity, were simulated to facilitate the analysis. Results from the analysis were summarized in the form of a decision matrix designed to provide a method for forest managers to evaluate management alternatives and tradeoffs in the context of key indicators of ecosystem services. The scenario analysis suggests that there are considerable tradeoffs in terms of ecosystem services associated with stand and landscape-level management decisions. Longer rotations and increased retention tended to favor regulating and supporting services while the opposite was true for provisional services. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Assessing ecosystem restoration alternatives in eastern deciduous forests: the view from belowground

    Treesearch

    Ralph E.J. Boerner; Adam T. Coates; Daniel A. Yaussy; Thomas A. Waldrop

    2008-01-01

    Both structural and functional approaches to restoration of eastern deciduous forests are becoming more common as recognition of the altered state of these ecosystems grows. In our study, structural restoration involves mechanically modifying the woody plant assemblage to a species composition, density, and community structure specified by the restoration goals....

  2. Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey

    NASA Astrophysics Data System (ADS)

    Bektas Balcik, F.

    2012-12-01

    Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.

  3. Minimal ecosystem uptake of selenium from Westland petrels, a forest-breeding seabird.

    PubMed

    Hawke, David J; Gamlen-Greene, Roseanna; Harding, Jon S; Leishman, Dana

    2017-01-01

    Endemic Westland petrels (Procellaria westlandica) are a remnant of extensive seabird populations that occupied the forested hill country of prehuman New Zealand. Because seabird guano is rich in Se, an often-deficient essential element, we proposed that Westland petrels enhance Se concentrations in ecosystems associated with their breeding grounds. We sampled terrestrial (soil, plants, riparian spiders) and freshwater (benthic invertebrates, fish) components from Westland petrel-enriched and non-seabird forests on the western coast of New Zealand's South Island, an area characterised by highly leached, nutrient-poor soils. Median seabird soil Se was an order of magnitude higher than soil from non-seabird sites (2.2mgkg -1 compared to 0.2mgkg -1 ), but corresponding plant foliage concentrations (0.06mgkg -1 ; 0.05mgkg -1 ) showed no difference between seabird and non-seabird sites. In streams, Se ranged from 0.05mgkg -1 (riparian foliage) to 3.1mgkg -1 (riparian spiders and freshwater mussels). However, there was no difference between seabird and non-seabird streams. Stoichiometric ratios (N:Se, P:Se) showed Se loss across all ecosystem components relative to seabird guano, except in seabird colony soil where N was lost preferentially. Seabirds therefore did not enrich the terrestrial plants and associated stream ecosystems in Se. We conclude that incorporation of trace elements brought ashore by seabirds cannot be assumed, even though seabirds are a significant source of marine-derived nutrients and trace elements to coastal ecosystems world-wide. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health.

    PubMed

    Wike, Lynn D; Martin, F Douglas; Paller, Michael H; Nelson, Eric A

    2010-01-01

    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests.

  5. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  6. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  7. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    PubMed Central

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  8. Total Nitrogen Concentrations in Surface Water of Typical Agro- and Forest Ecosystems in China, 2004-2009

    PubMed Central

    Xu, Zhiwei; Zhang, Xinyu; Xie, Juan; Yuan, Guofu; Tang, Xinzhai; Sun, Xiaomin; Yu, Guirui

    2014-01-01

    We assessed the total nitrogen (N) concentrations of 28 still surface water (lake and pond), and 42 flowing surface water (river), monitoring sites under 29 typical terrestrial ecosystems of the Chinese Ecosystem Research Network (CERN) using monitoring data collected between 2004 and 2009. The results showed that the median total N concentrations of still surface water were significantly higher in the agro- (1.5 mg·L−1) and oasis agro- ecosystems (1.8 mg·L−1) than in the forest ecosystems (1.0 mg·L−1). This was also the case for flowing surface water, with total N concentrations of 2.4 mg·L−1, 1.8 mg·L−1 and 0.5 mg·L−1 for the agro-, oasis agro- and forest ecosystems, respectively. In addition, more than 50% of the samples in agro- and oasis agro- ecosystems were seriously polluted (>1.0 mg·L−1) by N. Spatial analysis showed that the total N concentrations in northern and northwestern regions were higher than those in the southern region for both still and flowing surface waters under agro- and oasis agro- ecosystems, with more than 50% of samples exceeding 1.0 mg·L−1 (the Class III limit of the Chinese National Quality Standards for Surface Waters) in surface water in the northern region. Nitrogen pollution in agro- ecosystems is mainly due to fertilizer applications, while the combination of fertilizer and irrigation exacerbates nitrogen pollution in oasis agro- ecosystems. PMID:24667701

  9. Implementing ecosystem management in public agencies: lessons from the U.S. Bureau of Land Management and the Forest Service.

    PubMed

    Koontz, Tomas M; Bodine, Jennifer

    2008-02-01

    Ecosystem management was formally adopted over a decade ago by many U.S. natural resource agencies, including the Forest Service and the Bureau of Land Management. This approach calls for management based on stakeholder collaboration; interagency cooperation; integration of scientific, social, and economic information; preservation of ecological processes; and adaptive management. Results of previous studies indicate differences in the extent to which particular components of ecosystem management would be implemented within the U.S. Forest Service and the Bureau of Land Management and suggest a number of barriers thought to impede implementation. Drawing on survey and interview data from agency personnel and stakeholders, we compared levels of ecosystem-management implementation in the Forest Service and Bureau of Land Management and identified the most important barriers to implementation. Agency personnel perceived similarly high levels of implementation on many ecosystem-management components, whereas stakeholders perceived lower levels. Agencies were most challenged by implementation of preservation of ecological processes, adaptive management, and integration of social and economic information, whereas the most significant barriers to implementation were political, cultural, and legal.

  10. An agent architecture for an integrated forest ecosystem management decision support system

    Treesearch

    Donald Nute; Walter D. Potter; Mayukh Dass; Astrid Glende; Frederick Maier; Hajime Uchiyama; Jin Wang; Mark Twery; Peter Knopp; Scott Thomasma; H. Michael Rauscher

    2003-01-01

    A wide variety of software tools are available to support decision in the management of forest ecosystems. These tools include databases, growth and yield models, wildlife models, silvicultural expert systems, financial models, geographical informations systems, and visualization tools. Typically, each of these tools has its own complex interface and data format. To...

  11. Effects of long-term use by big game and livestock in the Blue Mountains forest ecosystems.

    Treesearch

    Larry L. Irwin; John G. Cook; Robert A. Riggs; Jon M. Skovlin

    1994-01-01

    The effects on eastside forest ecosystems from long-term grazing by large mammals are assessed, because long-term herbivory can reduce or increase ecosystem productivity. The assessment emphasizes elk and cattle in the Blue Mountains of northeast Oregon and southeast Washington. Histories of populations of large mammals and their effects in the Blue Mountains are...

  12. [Small rodents in the forest ecosystem as infectious disease reservoirs].

    PubMed

    Margaletić, Josip

    2003-01-01

    Due to numerousness of populations and width of ecologic valence, small rodents are important parts of almost any forest ecosystem. The represent an important animal group, which connects primary makers with higher trophic levels. They transmit various infectious diseases dangerous for the health of people and domestic and wild animals (trichinosis, leptospirosis, tick encephalitis, Lyme disease, hemorrhagic fever with renal syndrome, etc.). The following species of small rodents live in forest ecosystems of Croatia: Chletrionomys glareolus Schreib., Arvicola terrestris L, M. subterraneus de Sel., M. arvalis Pall., M. agrestis L, M. multiplex Fat., Apodemus agrarius Pall., A. sylvaticus L. and A. flavicollis Melch. Small rodents transmit causative agents of diseases in active (excretion products) of passive (ectoparasites and endoparasites) ways. Their multiplication potential is quite high. Transmission of certain disease sometimes takes place extremely fast due to the high number of rodents, their high movability and distribution, and the fact that they easily get in touch with men and domestic and wild animals. The number of population of each species is directly influenced by abiotic and biotic factors and changes during one year and in a several year period. In a year when the influence of ecologic factors is favorable, it is presumed that the number of these rodents will significantly increase, by which the danger of their damaging effect also increases. The following factors influence the increase of a small rodent population: number and physiologic condition of the population, meteorologic conditions, habitat, food sources, natural enemies, and diseases. The occurrence of an epidemic is closely connected to the number and infectivity of causative agents. Regular control of the number of rodent population and their infectivity can help in planning preventive epidemiologic and sanitary measures to preclude the occurrence of epidemics and individual cases of

  13. Statistical uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange at Howland Forest, Maine

    Treesearch

    S.C. Hagen; B.H. Braswell; E. Linder; S. Frolking; A.D. Richardson; David Hollinger. D.Y; Hollinger. D.Y

    2006-01-01

    We present an uncertainty analysis of gross ecosystem carbon exchange (GEE) estimates derived from 7 years of continuous eddy covariance measurements of forest atmosphere CO2 fluxes at Howland Forest, Maine, USA. These data, which have high temporal resolution, can be used to validate process modeling analyses, remote sensing assessments, and field surveys. However,...

  14. Bottom-up assessment of the Net Ecosystem Carbon Balance of Russian forests in 2010 for comparison to Top-down estimates.

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Shvidenko, A.; Shchepashchenko, D.

    2014-12-01

    The verified full carbon assessment of Russian forests (FCA) is based on an Integrated Land Information System (ILIS) that includes a multi-layer and multi-scale GIS with basic resolution of 1 km and corresponding attributive databases. The ILIS aggregates all available information about ecosystems and landscapes, sets of empirical and semi-empirical data and aggregations, data of different inventories and surveys, and multi-sensor remote sensing data. The ILIS serves as an information base for application of the landscape-ecosystem approach (LEA) of the FCA and as a systems design for comparison and mutual constraints with other methods of study of carbon cycling of forest ecosystems (eddy covariance; process models; inverse modeling; and multi-sensor application of remote sensing). The LEA is based on a complimentary use of the flux-based method with some elements of the pool-based method. Introduction of climatic parameters of individual years in the LEA, as well as some process-based elements, allows providing a substantial decrease of the uncertainties of carbon cycling yearly indicators of forest ecosystems. Major carbon pools (live biomass, coarse woody debris, soil organic carbon) are estimated based on data on areas, distribution and major biometric characteristics of Russian forests presented in form of the ILIS for the country. The major fluxes accounted for include Net Primary Production (NPP), Soil Heterotrophic Respiration (SHR), as well as fluxes caused by decomposition of Coarse Woody Debris (CWD), harvest and use of forest products, fluxes caused by natural disturbances (fire, insect outbreaks, impacts of unfavorable environment) and lateral fluxes to hydrosphere and lithosphere. Use of landscape-ecosystem approach resulted in the NECB at 573±140 Tg C yr-1 (CI 0.9). While the total carbon sink is high, large forest areas, particularly on permafrost, serve as a carbon source. The ratio between net primary production and soil heterotrophic

  15. Ecohydrology of permafrost-affected boreal forest ecosystems: sources of water utilized by plants and fluxed by ecosystems

    NASA Astrophysics Data System (ADS)

    Cable, J. M.; Ogle, K.; Cable, B.; Welker, J. M.

    2010-12-01

    The interior Alaskan boreal forest ecosystem is underlain by permafrost and thus has complex soil moisture and soil thermal properties, and this complexity is further amplified by its dry climate with low snow in winter and minimal summer rain. This combination of climate, cryosphere, and hydrology characteristics impact vegetation ecophysiological and ecohydrological processes, such as the distribution of plant-available water sources and the temporal dynamics of evapotranspiration (ET). As a major component of ET, plant transpiration is typically sustained throughout a variety of climatic conditions. The water sources (rain, thawing ground ice, etc) supporting plant transpiration are relatively unquantified, particularly on a seasonal time scale. In this study, we ask: what are the seasonal dynamics of plant water use in the boreal forest, and how are the trends at the plant scale translated into ecosystem-level water fluxes? Thus, the objective of this study was to characterize the spatial and temporal dynamics of boreal plant water use and water flux throughout the growing season. To do this, we measured the stable isotope (δ18O and δD) composition of water from precipitation, ground ice, soils, plants, and vapor from 5 heights in the ecosystem during the growing season in a boreal system near Fairbanks, Alaska underlain by permafrost. We analyzed the plant water, soil water, and vapor isotope data in a Bayesian framework to quantify the plant water uptake profiles and to explore the implications of shifting water sources for ecosystem ET. The vapor isotope data (across all heights) ranged from -216 to -190 ‰ (δD) and -27 to -21 ‰ (δ18O) in late July to slightly more depleted in late August, with values ranging from -232 to -203 ‰ (δD) and -29 to -20 ‰ (δ18O). Diurnal trends are such that the isotope composition of vapor became more enriched over the day as ET rates increased, and vapor at the 0.25 m height was generally more enriched relative to

  16. The Missouri Ozark Forest Ecosystem Project: the effects of forest management on the forest ecosystem

    Treesearch

    Brian Brookshire; Carl Hauser

    1993-01-01

    The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...

  17. The environmental behaviour of polychlorinated phenols and its relevance to cork forest ecosystems: a review.

    PubMed

    McLellan, Iain; Carvalho, Mariana; Silva Pereira, Cristina; Hursthouse, Andrew; Morrison, Calum; Tatner, Paul; Martins, Isabel; San Romão, M Vitória; Leitão, Maria

    2007-10-01

    Pentachlorophenol (PCP) has been used as a herbicide, biocide and preservative worldwide since the 1930s and as a result, extensive and prolonged contamination exists. The environmental impact increases when its many degradation products are taken into consideration. A number of chloroanisols and their related chlorophenols have been found in cork slabs collected from Portuguese oak tree forests before stopper manufacturing, and contamination by PCP and polychlorinated anisole (PCA) has been detected in Canadian forests. It is suggested that the use of polychlorinated phenols, in particular PCP, is thought to be a cause of the cork taint problem in wine, a major socio-economic impact not only for industry but on sensitive and highly biodiverse ecosystems. It also highlights particular issues relating to the regional regulation of potentially toxic chemicals and global economics world wide. To fully understand the impact of contamination sources, the mechanisms responsible for the fate and transport of PCP and its degradation products and assessment of their environmental behaviour is required. This review looks at the current state of knowledge of soil sorption, fate and bioavailability and identifies the challenges of degradation product identification and the contradictory evidence from field and laboratory observations. The need for a systematic evaluation of PCP contamination in relation to cork forest ecosystems and transfer of PCP between trophic levels is emphasised by discrepancies in bioaccumulation and toxicity. This is essential to enable long term management of not only transboundary contaminants, but also the sustainable management of socially and economically important forest ecosystems.

  18. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective

    PubMed Central

    Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J

    2013-01-01

    Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps. PMID:24198956

  19. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective.

    PubMed

    Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J

    2013-10-01

    Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.

  20. FINAL ECOSYSTEM GOODS AND SERVICES CLASSIFICATION SYSTEM (FEGS-CS)

    EPA Science Inventory

    This document defines and classifies 338 Final Ecosystem Goods and Services (FEGS), each defined and uniquely numbered by a combination of environmental class or sub-class and a beneficiary category or sub-category. The introductory section provides the rationale and conceptual ...

  1. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    DOE PAGES

    Mikkelson, Kristin M.; Brouillard, Brent M.; Bokman, Chelsea M.; ...

    2017-12-05

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert withmore » surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique “tree-centric” approach, we were able to delineate plots with various tree mortality levels

  2. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest.

    PubMed

    Mikkelson, Kristin M; Brouillard, Brent M; Bokman, Chelsea M; Sharp, Jonathan O

    2017-12-05

    Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique "tree-centric" approach, we were able to delineate plots with various tree mortality levels within the same watershed

  3. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelson, Kristin M.; Brouillard, Brent M.; Bokman, Chelsea M.

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert withmore » surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique “tree-centric” approach, we were able to delineate plots with various tree mortality levels

  4. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Treesearch

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  5. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed

  6. Modelling and predicting the spatial distribution of tree root density in heterogeneous forest ecosystems

    PubMed Central

    Mao, Zhun; Saint-André, Laurent; Bourrier, Franck; Stokes, Alexia; Cordonnier, Thomas

    2015-01-01

    Background and Aims In mountain ecosystems, predicting root density in three dimensions (3-D) is highly challenging due to the spatial heterogeneity of forest communities. This study presents a simple and semi-mechanistic model, named ChaMRoots, that predicts root interception density (RID, number of roots m–2). ChaMRoots hypothesizes that RID at a given point is affected by the presence of roots from surrounding trees forming a polygon shape. Methods The model comprises three sub-models for predicting: (1) the spatial heterogeneity – RID of the finest roots in the top soil layer as a function of tree basal area at breast height, and the distance between the tree and a given point; (2) the diameter spectrum – the distribution of RID as a function of root diameter up to 50 mm thick; and (3) the vertical profile – the distribution of RID as a function of soil depth. The RID data used for fitting in the model were measured in two uneven-aged mountain forest ecosystems in the French Alps. These sites differ in tree density and species composition. Key Results In general, the validation of each sub-model indicated that all sub-models of ChaMRoots had good fits. The model achieved a highly satisfactory compromise between the number of aerial input parameters and the fit to the observed data. Conclusions The semi-mechanistic ChaMRoots model focuses on the spatial distribution of root density at the tree cluster scale, in contrast to the majority of published root models, which function at the level of the individual. Based on easy-to-measure characteristics, simple forest inventory protocols and three sub-models, it achieves a good compromise between the complexity of the case study area and that of the global model structure. ChaMRoots can be easily coupled with spatially explicit individual-based forest dynamics models and thus provides a highly transferable approach for modelling 3-D root spatial distribution in complex forest ecosystems. PMID:26173892

  7. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research

    Treesearch

    Michael G. Ryan

    2013-01-01

    Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway...

  8. Proceedings of a Symposium on the Kings River Sustainable Forest Ecosystem Project: Progress and Current Status

    Treesearch

    Jared Verner

    2002-01-01

    Ecosystem management aligns different uses of the land with ecological parameters and goals of environmental quality. An important USDA Forest Service mission is to balance the multiple uses of its lands in an ecologically sustainable way. This objective has been particularly challenging for National Forests of the Sierra Nevada in the face of heated controversies over...

  9. Quantifying Forest Ecosystem Services Tradeoff—Coupled Ecological and Economic Models

    NASA Astrophysics Data System (ADS)

    Haff, P. K.; Ling, P. Y.

    2015-12-01

    Quantification of the effect of carbon-related forestland management activities on ecosystem services is difficult, because knowledge about the dynamics of coupled social-ecological systems is lacking. Different forestland management activities, such as various amount, timing, and methods of harvesting, and natural disturbances events, such as wind and fires, create shocks and uncertainties to the forest carbon dynamics. A spatially explicit model, Landis-ii, was used to model the forest succession for different harvest management scenarios at the Grandfather District, North Carolina. In addition to harvest, the model takes into account of the impact of natural disturbances, such as fire and insects, and species competition. The result shows the storage of carbon in standing biomass and in wood product for each species for each scenario. In this study, optimization is used to analyze the maximum profit and the number of tree species that each forest landowner can gain at different prices of carbon, roundwood, and interest rates for different harvest management scenarios. Time series of roundwood production of different types were estimated using remote sensing data. Econometric analysis is done to understand the possible interaction and relations between the production of different types of roundwood and roundwood prices, which can indicate the possible planting scheme that a forest owner may make. This study quantifies the tradeoffs between carbon sequestration, roundwood production, and forest species diversity not only from an economic perspective, but also takes into account of the forest succession mechanism in a species-diverse region. The resulting economic impact on the forest landowners is likely to influence their future planting decision, which in turn, will influence the species composition and future revenue of the landowners.

  10. Proceedings of the second Missouri Ozark Forest Ecosystem Project Symposium: Post-treatment results of the landscape experiment

    Treesearch

    S.R. Shifley; J.M., eds. Kabrick

    2002-01-01

    Presents the short-term effects of even-aged, uneven-aged, and no-harvest management on forest ecosystems included in the Missouri Ozark Forest Project (MOFEP). Individual papers address study design, site history, species diversity, genetic diversity, woody vegetation, ground layer vegetation, stump sprouting, tree cavities, logging disturbance, avian communities,...

  11. From genes to ecosystems: Measuring evolutionary diversity and community structure with Forest Inventory and Analysis (FIA) data

    Treesearch

    Kevin M. Potter

    2009-01-01

    Forest genetic sustainability is an important component of forest health because genetic diversity and evolutionary processes allow for the adaptation of species and for the maintenance of ecosystem functionality and resilience. Phylogenetic community analyses, a set of new statistical methods for describing the evolutionary relationships among species, offer an...

  12. Endurance of larch forest ecosystems in eastern Siberia under warming trends

    NASA Astrophysics Data System (ADS)

    Sato, H.; Iwahana, G.; Ohta, T.

    2015-12-01

    The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. However, its existence depends on near-surface permafrost, which increases water availability for trees, and the boundary of the forest closely follows the permafrost zone. Therefore, the degradation of near-surface permafrost due to forecasted warming trends during the 21st century is expected to affect the larch forest in Siberia. However, predictions of how warming trends will affect this forest vary greatly, and many uncertainties remain about land-atmospheric interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology and showed that, under climatic conditions predicted by the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5, annual larch net primary production (NPP) increased about 2 and 3 times, respectively, by the end of 21st century compared with that in the 20th century. Soil water content during larch growing season showed no obvious trend, even after decay of surface permafrost and accompanying sub-surface runoff. A sensitivity test showed that the forecasted warming and pluvial trends extended leafing days of larches and reduced water shortages during the growing season, thereby increasing productivity.

  13. Climate change impacts detection in dry forested ecosystem as indicated by vegetation cover change in -Laikipia, of Kenya.

    PubMed

    M'mboroki, Kiambi Gilbert; Wandiga, Shem; Oriaso, Silas Odongo

    2018-03-29

    The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the

  14. Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age

    NASA Astrophysics Data System (ADS)

    Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.

    2013-12-01

    The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and

  15. Modeling forest ecosystem changes resulting from surface coal mining in West Virginia

    Treesearch

    John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella

    2012-01-01

    The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...

  16. The spatial extent of change in tropical forest ecosystem services in the Amazon delta

    NASA Astrophysics Data System (ADS)

    de Araujo Barbosa, C. C.; Atkinson, P.; Dearing, J.

    2014-12-01

    Deltas hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development activities in coastal deltas over the past five decades has also strained environmental resources and produced extensive economic and sociocultural impacts. The Amazon delta is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the Amazon delta is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, increasing pressure on ecosystem services is amplified by large fluxes of immigrants from other parts of the country, especially from the semi-arid zone in Northeast Brazil to the lowland forests of the Amazon delta. Here we present partial results from a bigger research project. Therefore, the focus will be on presenting an overview of the current state, and the extent of changes on forest related ecosystem services in the Amazon delta over the last three decades. We aggregated a multitude of datasets, from a variety of sources, for example, from satellite imagery such as the Advanced Very High Resolution Radiometer (AVHRR), the Global Inventory Modelling and Mapping Studies (GIMMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and climate datasets at meteorological station level from the Brazilian National Institute of Meteorology (INMET) and social and economic statistics data from the Brazilian Institute of Geography and Statistics (IBGE) and from the Brazilian Institute of Applied Economic Research (IPEA). Through analysis of socioeconomic and satellite earth observation data we were able to produce and present spatially-explicit information with the current state and transition in forest cover and its impacts to forest

  17. Complex trophic interactions in kelp forest ecosystems

    USGS Publications Warehouse

    Estes, J.A.; Danner, E.M.; Doak, D.F.; Konar, B.; Springer, A.M.; Steinberg, P.D.; Tinker, M. Tim; Williams, T.M.

    2004-01-01

    The distributions and abundances of species and populations change almost continuously. Understanding the processes responsible is perhaps ecology’s most fundamental challenge. Kelp-forest ecosystems in southwest Alaska have undergone several phase shifts between alga- and herbivore-dominated states in recent decades. Overhunting and recovery of sea otters caused the earlier shifts. Studies focusing on these changes demonstrate the importance of top-down forcing processes, a variety of indirect food-web interactions associated with the otter-urchin-kelp trophic cascade, and the role of food-chain length in the coevolution of defense and resistance in plants and their herbivores. This system unexpectedly shifted back to an herbivore-dominated state during the 1990s, because of a sea-otter population collapse that apparently was driven by increased predation by killer whales. Reasons for this change remain uncertain but seem to be linked to the whole-sale collapse of marine mammals in the North Pacific Ocean and southern Bering Sea. We hypothesize that killer whales sequentially "fished down" pinniped and sea-otter populations after their earlier prey, the great whales, were decimated by commercial whaling. The dynamics of kelp forests in southwest Alaska thus appears to have been influenced by an ecological chain reaction that encompassed numerous species and large scales of space and time.

  18. Forests tend to cool the land surface in the temperate zone: An analysis of the mechanisms controlling radiometric surface temperature change in managed temperate ecosystems

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.

    2010-12-01

    Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of <1 °C. A 50-70% reduction in the aerodynamic resistance to sensible and latent heat exchange in the forests dominated the cooling effect. A grassland ecosystem that succeeded a stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case

  19. Vegetation analysis, environmental relationships, and potential successional trends in the Missouri forest ecosystem project

    Treesearch

    Stephen G. Pallardy

    1995-01-01

    The vegetation data set of the Missouri Forest Ecosystem Project (MOFEP, initiated by the Missouri Department of Conservation) in the Ozark Mountains of southeastern Missouri was ordinated by Detrended Correspondence Analysis (DCA) to identify vegetation gradients and potential environmental influences.

  20. A case for using Plethodontid salamanders for monitoring biodiversity and ecosystem integrity of North American forests

    USGS Publications Warehouse

    Welsh, H.H.; Droege, S.

    2001-01-01

    Terrestrial salamanders of the family P!ethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodonticis (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37-46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health.

  1. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    PubMed Central

    Brouillard, Brent M.; Bokman, Chelsea M.; Sharp, Jonathan O.

    2017-01-01

    ABSTRACT Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH4+ concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. PMID:29208740

  2. Thermal Imaging of Forest Canopy Temperatures: Relationships with Biological and Biophysical Drivers and Ecosystem Fluxes

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Kim, Y.; Hanson, C. V.; Law, B. E.; Kwon, H.; Schulze, M.; Pau, S.; Detto, M.

    2015-12-01

    Temperature is a primary environmental control on plant processes at a range of spatial and temporal scales, affecting enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with environmental drivers, and can be used to examine forest responses to stresses like droughts and heat waves. Direct measurements of plant canopy temperatures using thermocouple sensors have been challenging and offer limited information. Such measurements are usually conducted over short periods of time and a limited spatial extent of the canopy. By contrast, thermal infrared (TIR) imaging allows for extensive temporal and spatial measurement of canopy temperature regimes. We present results of TIR imaging of forest canopies at a range of well-studied forest sites in the United States and Panama. These forest types include temperate rainforests, a semi­arid pine forest, and a semi­deciduous tropical forest. Canopy temperature regimes at these sites are highly variable spatially and temporally and display frequent departures from air temperature, particularly during clear sky conditions. Canopy tissue temperatures are often warmer (daytime) and colder (nighttime) than air temperature, and canopy structure seems to have a large influence on the thermal regime. Additionally, comparison of canopy temperatures to eddy covariance fluxes of carbon dioxide, water vapor, and energy reveals relationships not apparent using air temperature. Initial comparisons between our forest canopy temperatures and remotely sensed skin temperature using Landsat and MODIS data show reasonably good agreement. We conclude that temporal and spatial changes in canopy temperature and its relationship to biological and environmental factors can improve our understanding of how

  3. Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.

    2009-04-01

    The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation

  4. Belowground ecosystems [chapter 9

    Treesearch

    Carole Coe Klopatek

    1995-01-01

    The USDA Forest Service defined ecosystem management as "an ecological approach to achieve multiple-use management of national forests and grasslands by blending the needs of people and environmental values in such a way that national forests and grasslands represent diverse, healthy, productive, and sustainable ecosystems" (June 4, 1992, letter from Chief FS...

  5. Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo

    2010-05-01

    In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach

  6. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems.

    PubMed

    Guerrero-Ramírez, Nathaly R; Craven, Dylan; Reich, Peter B; Ewel, John J; Isbell, Forest; Koricheva, Julia; Parrotta, John A; Auge, Harald; Erickson, Heather E; Forrester, David I; Hector, Andy; Joshi, Jasmin; Montagnini, Florencia; Palmborg, Cecilia; Piotto, Daniel; Potvin, Catherine; Roscher, Christiane; van Ruijven, Jasper; Tilman, David; Wilsey, Brian; Eisenhauer, Nico

    2017-11-01

    The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.

  7. Simulating Carbon cycle and phenology in complex forests using a multi-layer process based ecosystem model; evaluation and use of 3D-CMCC-Forest Ecosystem Model in a deciduous and an evergreen neighboring forests, within the area of Brasschaat (Be)

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Collalti, A.; Santini, M.; Valentini, R.

    2013-12-01

    3D-CMCC-Forest Ecosystem Model is a process based model formerly developed for complex forest ecosystems to estimate growth, water and carbon cycles, phenology and competition processes on a daily/monthly time scale. The Model integrates some characteristics of the functional-structural tree models with the robustness of the light use efficiency approach. It treats different heights, ages and species as discrete classes, in competition for light (vertical structure) and space (horizontal structure). The present work evaluates the results of the recently developed daily version of 3D-CMCC-FEM for two neighboring different even aged and mono specific study cases. The former is a heterogeneous Pedunculate oak forest (Quercus robur L. ), the latter a more homogeneous Scot pine forest (Pinus sylvestris L.). The multi-layer approach has been evaluated against a series of simplified versions to determine whether the improved model complexity in canopy structure definition increases its predictive ability. Results show that a more complex structure (three height layers) should be preferable to simulate heterogeneous scenarios (Pedunculate oak stand), where heights distribution within the canopy justify the distinction in dominant, dominated and sub-dominated layers. On the contrary, it seems that using a multi-layer approach for more homogeneous stands (Scot pine stand) may be disadvantageous. Forcing the structure of an homogeneous stand to a multi-layer approach may in fact increase sources of uncertainty. On the other hand forcing complex forests to a mono layer simplified model, may cause an increase in mortality and a reduction in average DBH and Height. Compared with measured CO2 flux data, model results show good ability in estimating carbon sequestration trends, on both a monthly/seasonal and daily time scales. Moreover the model simulates quite well leaf phenology and the combined effects of the two different forest stands on CO2 fluxes.

  8. 76 FR 41753 - Sierra National Forest, Bass Lake Ranger District, California, Grey's Mountain Ecosystem...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of... a series of ecological restoration treatments, north of the community of Bass Lake, California, south of Soquel Meadow, east of Nelder Grove Historical Area and west of Graham Mountain. Treatment...

  9. Expanding horizons of forest ecosystem management: proceedings of the third habitat futures workshop; 1992 October; Vernon, B.C.

    Treesearch

    Mark H. Huff; Lisa K. Norris; J. Brian Nyberg; Nancy L. Wilkin; coords.

    1994-01-01

    New approaches and technologies to evaluate wildlife-habitat relations, implement integrated forest management, and improve public participation in the process are needed to implement ecosystem management. Presented here are five papers that examine ecosystem management concepts at international, national, regional, and local scales. Two general management problems...

  10. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts.

    PubMed

    Longo, Marcos; Knox, Ryan G; Levine, Naomi M; Alves, Luciana F; Bonal, Damien; Camargo, Plinio B; Fitzjarrald, David R; Hayek, Matthew N; Restrepo-Coupe, Natalia; Saleska, Scott R; da Silva, Rodrigo; Stark, Scott C; Tapajós, Raphael P; Wiedemann, Kenia T; Zhang, Ke; Wofsy, Steven C; Moorcroft, Paul R

    2018-05-22

    The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km 2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    DOE PAGES

    Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...

    2013-07-01

    Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less

  12. Chapter 6 - Links between land cover and lichen species richness at large scales in forested ecosystems across the United States.

    Treesearch

    Susan Will-Wolf; Randall S. Morin; Mark J. Ambrose; Kurt Riitters; Sarah Jovan

    2014-01-01

    Lichen community composition is well known for exhibiting response to air pollution, and to macroenvironmental and microenvironmental variables. Lichens are useful indicators of air quality impact, forest health, and forest ecosystem integrity across the United States (McCune 2000, reviews in Nimis and others 2002, USDA Forest Service 2007).

  13. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    PubMed Central

    Paoletti, Elena; Bytnerowicz, Andrzej; Andersen, Chris; Augustaitis, Algirdas; Ferretti, Marco; Grulke, Nancy; Günthardt-Goerg, Madeleine S.; Innes, John; Johnson, Dale; Karnosky, Dave; Luangjame, Jesada; Matyssek, Rainer; McNulty, Steven; Müller-Starck, Gerhard; Musselman, Robert; Percy, Kevin

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest EcosystemsForests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits. PMID:17450274

  14. The public water supply protection value of forests: A watershed-scale ecosystem services based upon total organic carbon

    USDA-ARS?s Scientific Manuscript database

    We developed a cost-based methodology to assess the value of forested watersheds to improve water quality in public water supplies. The developed methodology is applicable to other source watersheds to determine ecosystem services for water quality. We assess the value of forest land for source wate...

  15. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire.

    PubMed

    Engle, Mark A; Sexauer Gustin, Mae; Johnson, Dale W; Murphy, James F; Miller, Wally W; Walker, Roger F; Wright, Joan; Markee, Melissa

    2006-08-15

    Mercury (Hg) concentration, reservoir mass, and Hg reservoir size were determined for vegetation components, litter, and mineral soil for two Sierran forest sites and one desert sagebrush steppe site. Mercury was found to be held primarily in the mineral soil (maximum depth of 60 to 100 cm), which contained more than 90% of the total ecosystem reservoir. However, Hg in foliage, bark, and litter plays a more dominant role in Hg cycling than the mineral soil. Mercury partitioning into ecosystem components at the Sierran forest sites was similar to that observed for other US forest sites. Vegetation and litter Hg reservoirs were significantly smaller in the sagebrush steppe system because of lower biomass. Data collected from these ecosystems after wildfire and prescribed burns showed a significant decrease in the Hg pool from certain reservoirs. No loss from mineral soil was observed for the study areas but data from fire severity points suggested that Hg in the upper few millimeters of surface soil may be volatilized due to exposure to elevated temperatures. Comparison of data from burned and unburned plots suggested that the only significant source of atmospheric Hg from the prescribed burn was combustion of litter. Differences in unburned versus burned Hg reservoirs at the forest wildfire site demonstrated that drastic reduction in the litter and above ground live biomass Hg reservoirs after burning had occurred. Sagebrush and litter were absent in the burned plots after a wildfire suggesting that both reservoirs were released during the fire. Mercury emissions due to fire from the forest prescribed burn, forest wildfire, and sagebrush steppe wildfire sites were roughly estimated at 2.0 to 5.1, 2.2 to 4.9, and 0.36+/-0.13 g ha(-1), respectively, with litter and vegetation being the most important sources.

  16. New England and northern New York forest ecosystem vulnerability assessment and synthesis: a report from the New England Climate Change Response Framework project

    Treesearch

    Maria K. Janowiak; Anthony W. D' Amato; Christopher W. Swanston; Louis Iverson; Frank R. Thompson; William D. Dijak; Stephen Matthews; Matthew P. Peters; Anantha Prasad; Jacob S. Fraser; Leslie A. Brandt; Patricia Butler-Leopold; Stephen D. Handler; P. Danielle Shannon; Diane Burbank; John Campbell; Charles Cogbill; Matthew J. Duveneck; Marla R. Emery; Nicholas Fisichelli; Jane Foster; Jennifer Hushaw; Laura Kenefic; Amanda Mahaffey; Toni Lyn Morelli; Nicholas J. Reo; Paul G. Schaberg; K. Rogers Simmons; Aaron Weiskittel; Sandy Wilmot; David Hollinger; Erin Lane; Lindsey Rustad; Pamela H. Templer

    2018-01-01

    Forest ecosystems will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems across the New England region (Connecticut, Maine, Massachusetts, New Hampshire, northern New York, Rhode Island, and Vermont) under a range of future climates. We synthesized and summarized information...

  17. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests.

    PubMed

    Bregman, Tom P; Lees, Alexander C; MacGregor, Hannah E A; Darski, Bianca; de Moura, Nárgila G; Aleixo, Alexandre; Barlow, Jos; Tobias, Joseph A

    2016-12-14

    Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. © 2016 The Author(s).

  18. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests

    PubMed Central

    Bregman, Tom P.; Lees, Alexander C.; MacGregor, Hannah E. A.; Darski, Bianca; de Moura, Nárgila G.; Aleixo, Alexandre; Barlow, Jos

    2016-01-01

    Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. PMID:27928045

  19. Landscape context and long-term tree influences shape the dynamics of forest-meadow ecotones in mountain ecosystems

    Treesearch

    R.E. Haugo; C.B. Halpern; J.D. Bakker

    2011-01-01

    Forest-meadow ecotones are prominent and dynamic features of mountain ecosystems. Understanding how vegetation changes are shaped by long-term interactions with trees and are mediated by the physical environment is critical to predicting future trends in biological diversity across these landscapes. We examined 26 yr of vegetation change (1983-2009) across 20 forest-...

  20. If you take stand, how can you manage an ecosystem? The complex art of raising a forest.

    Treesearch

    Sally Duncan

    2000-01-01

    Managing whole ecosystem is a concept gaining considerable acceptance among forest managers throughout the Northwest, but it does not have a clear or simple definition. Terminology and definitions can be confusing. Forests are complex places, formed by complex processes, and the moment we try to simplify, we are likely to damage the healthy functioning of...

  1. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  2. The way to a healthy future for National Forest ecosystems in the West : what role can silviculture and prescribed fire play?

    Treesearch

    Douglas W. MacCleery

    1995-01-01

    The 1994 wildfires in the U.S. West have highlighted a problem of forest health and fuel buildups that has been increasing for decades. In many Western forest ecosystems, forest biomass per acre has risen substantially since the 1940s and many forests have dense, fire-prone understories. If current trends continue, there will be: 1) increasing risks to National Forest...

  3. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem

    Treesearch

    Alena K. Oliver; Mac A. Callaham; Ari Jumpponen

    2015-01-01

    Prescribed fire is an important management tool to reduce fuel loads, to remove non-fire adapted species and to sustain fire-adapted taxa in many forested ecosystems of the southeastern USA. Yet, the long-term effects of recurring prescribed fires on soil fungi and their communities in these ecosystems remain unclear. We Illumina MiSeq sequenced and analyzed fungal...

  4. Earthworms as ecosystem engineers and the most important detritivors in forest soils.

    PubMed

    Kooch, Yahya; Jalilvand, Hamid

    2008-03-15

    Earthworms are considered as soil engineers because of their effects on soil properties and their influence on the availability of resources for other organisms, including microorganisms and plants. However, the links between their impacts on the soil environment and the resulting modification of natural selection pressures on engineer as well as on other organisms have received little attention. Earthworms are known to have a positive influence on the soil fabric and on the decomposition and mineralization of litter by breaking down organic matter and producing large amounts of fasces, thereby mixing litter with the mineral soil. Therefore, they play an important part in changes from one humus from to another according to forest succession patterns. Consequently, they are also expected to be good bio-indicators for forest site quality and are thus useful when planning forest production improvement. Earthworm's populations are as indicator that in exploited regions is destruction indicator and reclamation plans is nature return indicator. In this study we summarized the current knowledge in relation to earthworm's ecology in forest soils as ecosystem engineers.

  5. The role of experimental forests and ranges in the development of ecosystem science and biogeochemical cycling research

    Treesearch

    James M. Vose; Wayne T. Swank; Mary Beth Adams; Devendra Amatya; John Campbell; Sherri Johnson; Frederick J. Swanson; Randy Kolka; Ariel E. Lugo; Robert Musselman; Charles Rhoades

    2014-01-01

    Forest Service watershed-based Experimental Forests and Ranges (EFRs) have significantly advanced scientific knowledge on ecosystem structure and function through long-term monitoring and experimental research on hydrologic and biogeochemical cycling processes. Research conducted in the 1940s and 1950s began as “classic” paired watershed studies. The emergence of the...

  6. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to

  7. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests

    PubMed Central

    van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C.; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, ‘complementarity' and ‘selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the ‘jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity–multifunctionality relationships in many of the world's ecosystems. PMID:27010076

  8. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests.

    PubMed

    van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-24

    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.

  9. Assimilation of high resolution satellite imagery into the 3D-CMCC forest ecosystem model

    NASA Astrophysics Data System (ADS)

    Natali, S.; Collalti, A.; Candini, A.; Della Vecchia, A.; Valentini, R.

    2012-04-01

    The use of satellite observations for the accurate monitoring of the terrestrial biosphere has been carried out since the very early stage of remote sensing applications. The possibility to observe the ground surface with different wavelengths and different observation modes (namely active and passive observations) has given to the scientific community an invaluable tool for the observation of wide areas with a resolution down to the single tree. On the other hand, the continuous development of forest ecosystem models has permitted to perform simulations of complex ("natural") forest scenarios to evaluate forest status, forest growth and future dynamics. Both remote sensing and modelling forest assessment methods have advantages and disadvantages that could be overcome by the adoption of an integrated approach. In the framework of the European Space Agency Project KLAUS, high resolution optical satellite data has been integrated /assimilated into a forest ecosystem model (named 3D-CMCC) specifically developed for multi-specie, multi-age forests. 3D-CMCC permits to simulate forest areas with different forest layers, with different trees at different age on the same point. Moreover, the model permits to simulate management activities on the forest, thus evaluating the carbon stock evolution following a specific management scheme. The model has been modified including satellite data at 10m resolution, permitting the use of directly measured information, adding to the model the real phenological cycle of each simulated point. Satellite images have been collected by the JAXA ALOS-AVNIR-2 sensor. The integration schema has permitted to identify a spatial domain in which each pixel is characterised by a forest structure (species, ages, soil parameters), meteo-climatological parameters and estimated Leaf Area Index from satellite. The resulting software package (3D-CMCC-SAT) is built around 3D-CMCC: 2D / 3D input datasets are processed iterating on each point of the

  10. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  11. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    PubMed

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  12. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA

    Treesearch

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik; Kris Verheyen

    2016-01-01

    Questions: Does the increase in disturbance associated with removing harvest residues negatively impact biodiversity and resilience in aspen-dominated forest ecosystems? How do responses of functional diversity measures relate to community recovery and standing biomass? Location: Aspen (Populus tremuloides, Michx.) mixedwood forests in Minnesota...

  13. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests.

    PubMed

    Selmants, Paul C; Litton, Creighton M; Giardina, Christian P; Asner, Gregory P

    2014-09-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above- and belowground live biomass and detritus across a well-constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha(-1) for each 1 °C rise in temperature - a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem-level carbon storage will respond to future warming. © 2014 John Wiley & Sons Ltd.

  14. Ecosystem services of boreal forests - Carbon budget mapping at high resolution.

    PubMed

    Akujärvi, Anu; Lehtonen, Aleksi; Liski, Jari

    2016-10-01

    The carbon (C) cycle of forests produces ecosystem services (ES) such as climate regulation and timber production. Mapping these ES using simple land cover -based proxies might add remarkable inaccuracy to the estimates. A framework to map the current status of the C budget of boreal forested landscapes was developed. The C stocks of biomass and soil and the annual change in these stocks were quantified in a 20 × 20 m resolution at the regional level on mineral soils in southern Finland. The fine-scale variation of the estimates was analyzed geo-statistically. The reliability of the estimates was evaluated by comparing them to measurements from the national multi-source forest inventory. The C stocks of forests increased slightly from the south coast to inland whereas the changes in these stocks were more uniform. The spatial patches of C stocks were larger than those of C stock changes. The patch size of the C stocks reflected the spatial variation in the environmental conditions, and that of the C stock changes the typical area of forest management compartments. The simulated estimates agreed well with the measurements indicating a good mapping framework performance. The mapping framework is the basis for evaluating the effects of forest management alternatives on C budget at high resolution across large spatial scales. It will be coupled with the assessment of other ES and biodiversity to study their relationships. The framework integrated a wide suite of simulation models and extensive inventory data. It provided reliable estimates of the human influence on C cycle in forested landscapes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The role of herbicides in protecting long-term sustainability and water quality in forest ecosystems

    Treesearch

    Daniel G. Neary; Jerry L. Michael

    1995-01-01

    The use of herbicides for controlling competing vegetation during stand establishment can be beneficial to forest ecosystem sustainability and water quality by minimizing off-site soil loss. In addition, the organic residues of forestry herbicides do not adversely impair water quality.

  16. Proceedings of the first international symposium on acid precipitation and the forest ecosystem

    Treesearch

    L.S. Dochinger; T.A. Seliga

    1976-01-01

    These Proceedings report on the results of The First International Symposium on Acid Precipitation and the Forest Ecosystem which was held at The Ohio State University, Columbus, Ohio, U.S.A., on May 12-15, 1975. The Symposium focused on four related topics: (1) atmospheric chemistry, transport and precipitation; and effects of acidic precipitation on (2) aquatic...

  17. Recognizing loss of open forest ecosystems by tree densification and land use intensification in the Midwestern USA

    Treesearch

    Brice B. Hanberry; Marc D. Abrams

    2018-01-01

    Forests and grasslands have changed during the past 200 years in the eastern USA, and it is now possible to quantify loss and conversion of vegetation cover at regional scales. We quantified historical (ca. 1786-1908) and current land cover and determined long-term ecosystem change to either land use or closed forests in eight states of the Great Lakes and Midwest....

  18. Vegetation cover and species richness after recurrent forest fires in the Eastern Mediterranean ecosystem of Mount Carmel, Israel.

    PubMed

    Tessler, Naama; Wittenberg, Lea; Greenbaum, Noam

    2016-12-01

    Fire is a common disturbance in Mediterranean ecosystems, and can have a destructive, influential, and even essential, effect on vegetation and wildlife. In recent decades there has been a general increase in the number of fires in the Mediterranean Basin, including in Mount Carmel, Israel. The effects of recurrent forest fires on vegetation cover and species richness were determined in the spring of 2009 and 2010 by field surveys. The results of this study showed that the vegetation cover changes after recurrent forest fires, and can serve as a good indicator of the influence of fire and the resulting ecosystem rehabilitation. The dominant cover in most fire-damaged areas was composed of shrubs and dwarf-shrubs, especially Cistus salviifolius and Calicotome villosa. Tree cover was severely damaged after recurrent fires, and in those areas there was a drastic decrease of the total plant cover. Species richness increased mainly in the first decade after the recurrent fires, and decreased when the forest canopy began to close. Fire recurrence with short intervals (4-6years) between fires may lower the rehabilitated processes of the ecosystem and change its equilibrium. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Decreases in net primary production and net ecosystem production along a repeated-fires induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, C. H.; Huang, Y. H.; Chung-Yu, L.; Menyailo, O.

    2016-12-01

    Fire is one of the most important disturbances in ecosystems. Fire rapidly releases stored carbon into atmosphere and also plays critical roles on soil properties, light and moisture regimes, and plant structures and communities. With the interventions of climate change and human activities, fire regimes become more severe and frequent. In many parts of world, forest fire regimes can be further altered by grass invasion because the invasive grasses create a positive feedback cycle through their rapid recovery after fires and their high flammability during dry periods and allow forests to be burned repeatedly in a relatively short time. For such invasive grass-fire cycle, a great change of native vegetation community can occur. In this study, we examined a C4 invasive grass () fire-induced forest/grassland gradient to quantify the changes of net primary production (NPP) and net ecosystem production (NEP) from an unburned forest to repeated fire grassland. Our results demonstrated negative effects of repeated fires on NPP and NEP. Within 4 years of the onset of repeated fires on the unburned forest, NPP declined by 14%, mainly due to the reduction in aboveground NPP but offset by increase of belowground NPP. Subsequent fires cumulatively caused reductions in both aboveground and belowground NPP. A total of 40% reduction in the long-term repeated fire induced grassland was found. Soil respiration rate were not significantly different along the forest/grassland gradient. Thus, a great reduction in NEP were shown in grassland, which shifted from 4.6 Mg C ha-1 yr-1 in unburnt forest to -2.6 Mg C ha-1 yr-1. Such great losses are critical within the context of forest carbon cycling and long-term sustainability. Forest management practices that can effectively reduce the likelihood of repeated fires and consequent likelihood of establishment of the grass fire cycle are essential for protecting the forest.

  20. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    NASA Astrophysics Data System (ADS)

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field