Science.gov

Sample records for forest ecosystem health

  1. [Approaches for assessing forest ecosystem health].

    PubMed

    Chen, Gao; Deng, Hongbing; Wang, Qingli; Dai, Limin; Hao, Zhanqing

    2003-06-01

    Assessment and indicator system become the key issues in the research on ecosystem health in 21st century. Assessing forest ecosystem health gradually attach much attention because it is an important component of terrestrial ecosystem. The definition, measurement, evaluation and its management had been discussed broadly, and some theories, assessing methods and frameworks had been proposed, which provides a new concept and a serial research approaches for dealing with the crisis of terrestrial ecosystems, even the environment problems in the world. Now, the common operational models for assessing forest ecosystem health do not exist owing to the manifold limitations. This paper discussed forest ecosystem health problem, and brought forward three preconditions for assessing forest ecosystem health: 1) a clear conceptual framework; 2) adequate data sets; 3) proper research and analysis techniques. The issues of three preconditions were discussed, and the possible approaches for the assessing research on forest ecosystem health, e.g., long-term studies and environment monitoring, space-for-time substation studies, e.g., history approaches, economics valuation and others were expariated. PMID:12974013

  2. Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health.

    PubMed

    Wike, Lynn D; Martin, F Douglas; Paller, Michael H; Nelson, Eric A

    2010-01-01

    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests. PMID:20673195

  3. Impact of Forest Seral Stage on use of Ant Communities for Rapid Assessment of Terrestrial Ecosystem Health

    PubMed Central

    Wike, Lynn D.; Martin, F. Douglas; Paller, Michael H.; Nelson, Eric A.

    2010-01-01

    Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests. PMID:20673195

  4. ECOSYSTEM HEALTH: ENERGY INDICATORS

    EPA Science Inventory

    1. Ecosystem Health and Ecological Integrity
    2. Historical Background on Ecosystem Health
    3. Energy Systems Analysis, Health and Emergy
    4. Energy and Ecosystems
    5. Direct Measures of Ecosystem Health
    6. Indirect Measures of Ecosystem Health

  5. SULFUR DYNAMICS OF FOREST ECOSYSTEMS

    EPA Science Inventory

    There has been considerable advancement in the understanding of the S biogeochemistry of forested ecosystems. any recent studies have focused on ascertaining the impacts of acidic deposition of forest vegetation, soils and surface waters. ulfur dynamics effects the flux of both H...

  6. Using a Forest Health Index as an Outreach Tool for Improving Public Understanding of Ecosystem Dynamics and Research-Based Management

    NASA Astrophysics Data System (ADS)

    Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.

    2015-12-01

    An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.

  7. Ecosystem health: I. Measuring ecosystem health

    NASA Astrophysics Data System (ADS)

    Schaeffer, David J.; Herricks, Edwin E.; Kerster, Harold W.

    1988-07-01

    Ecosystem analysis has been advanced by an improved understanding of how ecosystems are structured and how they function. Ecology has advanced from an emphasis on natural history to consideration of energetics, the relationships and connections between species, hierarchies, and systems theory. Still, we consider ecosystems as entities with a distinctive character and individual characteristics. Ecosystem maintenance and preservation form the objective of impact analysis, hazard evaluation, and other management or regulation activities. In this article we explore an approach to ecosystem analysis which identifies and quantifies factors which define the condition or state of an ecosystem in terms of health criteria. We relate ecosystem health to human/nonhuman animal health and explore the difficulties of defining ecosystem health and suggest criteria which provide a functional definition of state and condition. We suggest that, as has been found in human/nonhuman animal health studies, disease states can be recognized before disease is of clinical magnitude. Example disease states for ecosystems are functionally defined and discussed, together with test systems for their early detection.

  8. Ecosystem Health: Energy Indicators.

    EPA Science Inventory

    Just as for human beings health is a concept that applies to the condition of the whole organism, the health of an ecosystem refers to the condition of the ecosystem as a whole. For this reason, the study and characterization of ecosystems is fundamental to establishing accurate ...

  9. Forest health and global change.

    PubMed

    Trumbore, S; Brando, P; Hartmann, H

    2015-08-21

    Humans rely on healthy forests to supply energy, building materials, and food and to provide services such as storing carbon, hosting biodiversity, and regulating climate. Defining forest health integrates utilitarian and ecosystem measures of forest condition and function, implemented across a range of spatial scales. Although native forests are adapted to some level of disturbance, all forests now face novel stresses in the form of climate change, air pollution, and invasive pests. Detecting how intensification of these stresses will affect the trajectory of forests is a major scientific challenge that requires developing systems to assess the health of global forests. It is particularly critical to identify thresholds for rapid forest decline, because it can take many decades for forests to restore the services that they provide. PMID:26293952

  10. Management to conserve forest ecosystems

    USGS Publications Warehouse

    Robbins, C.S.

    1984-01-01

    Historically, management of forests for wildlife has emphasized creation of openings and provision for a maximum of edge habitats. Wildlife managers have believed, quite logically, that increased sunlight enhances productivity among plants and insects, resulting in greater use by game animals and other wildlife. Recent studies comparing breeding bird populations of extensive forests with those of isolated woodlots have shown that the smaller woodlots, especially those under 35 ha (about 85 acres), lack many species that are typical of the larger tracts. The missing species can be predicted, and basically are the neotropical migrants. These long-distance migrants share several characteristics that make them especially vulnerable to reproductive failure in situations where predation and cowbird parasitism are high: they are primarily single-brooded, open nesters that lay small clutches on or near the ground. Edge habitats and forest openings attract cowbirds and predators. The edge species of birds, which are mostly permanent residents or short-distance migrants, are well adapted to survive and reproduce in small isolated woodlands without the benefit of special habitat management. The obligate forest interior species, on the other hand, are decreasing in those parts of North America where extensive forests are being replaced by isolated woodlands. If we are to preserve ecosystems intact for the benefit of future generations, and maintain a viable gene pool for the scarcer species, we must think in terms of retaining large, unbroken tracts of forest and of limiting disturbance in the more remote portions of these tracts.

  11. Acid Precipitation and the Forest Ecosystem

    ERIC Educational Resources Information Center

    Dochinger, Leon S.; Seliga, Thomas A.

    1975-01-01

    The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)

  12. Modeling the forest transition: forest scarcity and ecosystem service hypotheses.

    PubMed

    Satake, Akiko; Rudel, Thomas K

    2007-10-01

    An historical generalization about forest cover change in which rapid deforestation gives way over time to forest restoration is called "the forest transition." Prior research on the forest transition leaves three important questions unanswered: (1) How does forest loss influence an individual landowner's incentives to reforest? (2) How does the forest recovery rate affect the likelihood of forest transition? (3) What happens after the forest transition occurs? The purpose of this paper is to develop a minimum model of the forest transition to answer these questions. We assume that deforestation caused by landowners' decisions and forest regeneration initiated by agricultural abandonment have aggregated effects that characterize entire landscapes. These effects include feedback mechanisms called the "forest scarcity" and "ecosystem service" hypotheses. In the forest scarcity hypothesis, forest losses make forest products scarcer, which increases the economic value of forests. In the ecosystem service hypothesis, the environmental degradation that accompanies the loss of forests causes the value of ecosystem services provided by forests to decline. We examined the impact of each mechanism on the likelihood of forest transition through an investigation of the equilibrium and stability of landscape dynamics. We found that the forest transition occurs only when landowners employ a low rate of future discounting. After the forest transition, regenerated forests are protected in a sustainable way if forests regenerate slowly. When forests regenerate rapidly, the forest scarcity hypothesis expects instability in which cycles of large-scale deforestation followed by forest regeneration repeatedly characterize the landscape. In contrast, the ecosystem service hypothesis predicts a catastrophic shift from a forested to an abandoned landscape when the amount of deforestation exceeds the critical level, which can lead to a resource degrading poverty trap. These findings imply

  13. Connecting forest ecosystem and microwave backscatter models

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Christensen, Norman L., Jr.

    1990-01-01

    A procedure is outlined to connect data obtained from active microwave remote sensing systems with forest ecosystem models. The hierarchy of forest ecosystem models is discussed, and the levels at which microwave remote sensing data can be used as inputs are identified. In addition, techniques to utilize forest ecosystem models to assist in the validation of theoretical microwave backscatter models are identified. Several examples to illustrate these connecting processes are presented.

  14. [Ecosystem health and human health].

    PubMed

    Cecchi, Giuliano; Mancini, Laura

    2005-01-01

    The study of ecosystem health is a relatively recent discipline that has already provided new insights into numerous aspects of environmental management. One of the most interesting fields of study is the one investigating the relationships between ecosystem and human heath. In this paper some basic terms of reference are given in order to help the understanding of this new approach. One definition of ecosystem health is given, possible causes of degradation are indicated and links with human health are addressed. The ecosystem approach to human health stresses the importance of cultural and social values in shaping the concept of health, both at human and at ecosystem level. Two case-studies showing man-ecosystem interactions are described: mining activities, that provide a suitable field of application of the ecosystem approach, and the case of malaria and DDT, that shows the risks of certain policies neglecting basic human expectations such as health. As a conclusion, some suggestions for possible research activities are given and a few recommendations for sound public health policies are indicated. PMID:16552117

  15. Air pollutants effects on forest ecosystems

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on the effects of acid rain on forests. The conference was sponsored by the National Acid Precipitation Assessment Program (NAPAP). Topics considered at the conference included the status of US research on acid deposition and its effects contributing factors to the decline of forests, evidence for effects on ecosystems, the effects of air pollutants on forest ecosystems in North America and Europe, forest management, and future scientific research programs and management approaches.

  16. Forest health in the Blue Mountains: Science perspectives. A management strategy for fire-adapted ecosystems. Forest Service general technical report

    SciTech Connect

    Mutch, R.W.; Arno, S.F.; Brown, J.K.; Carlson, C.E.; Ottmar, R.D.

    1993-02-01

    The fire-adapted forests of the Blue Mountains are suffering from a forest health problem of catastrophic proportions. The composition of the forest at lower elevations has shifted from historically open-growth stands of primarily ponderosa pine and western larch to stands with dense understories of Douglas-fir and grand fir. Epidemic levels of insect infestations and large wildfires adversely affect visual quality, wildlife habitat, stream sedimentation, and timber values. A management strategy to restore forest health at lower elevations will require that the seral ponderosa pine and western larch stands be managed for much lower tree densities and a more open coniferous understory. A combination of silvicultural partial cutting and prescribed fire on a large scale will be needed to produce the desired future condition of healthy, open, and park-like forests.

  17. Forest Health Detectives

    ERIC Educational Resources Information Center

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  18. Forest ecosystems in the Alaskan taiga

    SciTech Connect

    Van Cleve, K.; Chapin, F.S. III; Flanagan, P.W.; Viereck, L.A.

    1986-01-01

    This volume in the series ''Ecological Studies'' provides an overview and synthesis of research on the structure and function of taiga forest ecosystems of interior Alaska. The first section discusses the nature of the taiga environment and covers climate, forest ecosystem distribution, natural regeneration of vegetation, and the role of fire. The second edition focuses on environmental controls over organism activity with discussions on growth and nutrient use, nitrogen fixation, physiological ecology of mosses, and microbial activity and element availability. The final section considers environmental controls over ecosystem processes with discussions of processes, plant-animal interactions, and a model of forest growth and yield.

  19. Ca isotope cycling in a forested ecosystem

    NASA Astrophysics Data System (ADS)

    Holmden, Chris; Bélanger, Nicolas

    2010-02-01

    the increase in δ 44Ca with depth found in forest floor and upper B soil waters. Transient model runs show that the forest Ca cycle is sensitive to changes in plant Ca uptake rate, such as would occur during ontogeny or disturbance. Accordingly, secular records of δ 44Ca in tree ring cellulose have the potential to monitor changes in the forest Ca cycle through time, thus providing a new tool for evaluating natural and anthropogenic impacts on forest health. Another model run shows that by changing the size of the isotope fractionation factor and adjusting for differences in forest productivity, that the range in Ca isotope fractionation in forested ecosystems reported in the literature, thus far, is reproduced. As a quantitative tool, the Ca cycling model produces a reasonable set of relative Ca fluxes for the La Ronge site, consistent with Environment Canada's measurements for wet deposition in the region and simulated Ca release from soil mineral weathering using the PROFILE model. But the sensitivity of the model is limited by the small range of fractionation observed in this boreal shield setting of ˜1‰, which limits accuracy. If the model were applied to a site with a greater range in δ 44Ca values among the principal Ca fluxes, it is capable of producing robust and reliable estimations of Ca fluxes that are otherwise difficult to measure in forested ecosystems.

  20. Ecosystem carbon fluxes and Amazonian forest metabolism

    NASA Astrophysics Data System (ADS)

    Saleska, Scott; da Rocha, Humberto; Kruijt, Bart; Nobre, Antonio

    Long-term measurements of ecosystem-atmosphere exchanges of carbon, water, and energy, via eddy flux towers, give insight into three key questions about Amazonian forest function. First, what is the carbon balance of Amazon forests? Some towers give accurate site-specific carbon balances, as validated by independent methods, but decisive resolution of the large-scale question will also require integration of remote sensing techniques (to detect and encompass the distribution of naturally induced disturbance states across the landscape of old growth forests) with eddy flux process studies (to characterize the association between carbon balance and forest disturbance states). Second, what is the seasonality of ecosystem metabolism in Amazonian forests? Models have historically simulated dry season declines in photosynthetic metabolism, a consequence of modeled water limitation. Tower sites in equatorial Amazonian forests, however, show that photosynthetic metabolism increases during dry seasons ("green up"), perhaps because deep roots buffer trees from dry season water stress, while phenological rhythms trigger leaf flush, associated with increased solar irradiance. Third, how does ecosystem metabolism vary across biome types and land use patterns? As dry season length increases from equatorial forest, to drier southern forests, to savanna, fluxes show seasonal patterns consistent with increasing water stress, including a switch from dry season green up to "brown down." Land use change in forest ecosystems removes deep roots, artificially inducing the same trend toward brown down. In the final part, this review suggests that eddy tower network and satellite-based insights into seasonal responses provide a model for detecting responses to extreme interannual climate variations that can test whether forests are vulnerable to model-simulated Amazonian forest collapse under climate change.

  1. Forest restoration, biodiversity and ecosystem functioning

    PubMed Central

    2011-01-01

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  2. Insect pest management in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Dahlsten, Donald L.; Rowney, David L.

    1983-01-01

    Understanding the role of insects in forest ecosystems is vital to the development of environmentally and economically sound pest management strategies in forestry Most of the research on forest insects has been confined to phytophagous species associated with economically important tree species The roles of most other insects in forest environments have generally been ignored, including the natural enemies and associates of phytophagous species identified as being important In the past few years several investigations have begun to reevaluate the role of phytophagous species responsible for perturbation in forest ecosystems, and it appears that these species may be playing an important role in the primary productivity of those ecosystems Also, there is an increasing awareness that forest pest managers have been treating the symptoms and not the causes of the problems in the forest Many insect problems are associated with poor sites or sites where trees are growing poorly because of crowding As a result, there is considerable emphasis on the hazard rating of stands of trees for their susceptibility to various phytophagous insects The next step is to manipulate forest stands to make them less susceptible to forest pest complexes A thinning study in California is used as an example and shows that tree mortality in ponderosa pine ( Pinus ponderosa) attributable to the western pine beetle ( Dendroctonus brevicomis) can be reduced by commercial thinning to reduce stocking

  3. Examining the ecosystem health and sustainability of the world's largest mangrove forest using multi-temporal MODIS products.

    PubMed

    Ishtiaque, Asif; Myint, Soe W; Wang, Chuyuan

    2016-11-01

    Sweeping across Bangladesh and India, the Sundarbans forest is the world's largest contiguous mangrove forest. Although the human population density is high at the edge, Sundarbans has not encountered significant areal transformation in the last four decades. However, we argue that forest degradation can occur discontinuously within the forest without alteration of the entire forest area. In this paper, we used MODIS land products to compare the spatiotemporal ecological dynamics of the Bangladesh and Indian part of this mangrove forest between 2000 and 2010. We used the following 5 ecological parameters for our analysis: the Percent Tree Cover (PTC), Enhanced Vegetation Index (EVI), Net Primary Productivity (NPP), Leaf Area Index (LAI), and Evapotranspiration (ET). Our pixel-based time-series trend analysis for each MODIS image stack, using an ordinary least square (OLS) regression method, showed that forest degradation is happening in fragmented parcels within the forest. The degradation rate is comparatively higher in the Bangladesh part than in the Indian part of Sundarbans. Compartments 8, 10, 12, and 15 in the Bangladesh part, in particular, show high degradation, while compartment 48 and the southern edge of 45 show slight increases in PTC or EVI. Forest degradation in the Indian part of the forest is evident in the National Park and Reserve Forest blocks; however, no substantial degradation is evident in the western section. We have identified certain anthropogenic stressors (i.e., oil pollution, shrimp farming) and natural stressors (i.e., increased salinity, cyclones, forest fire) which might be responsible for the observed degradation. We have provided sustainable planning options and policy transformation alternatives for those areas under pressure from these stressors. We anticipate that our analysis of forest degradation will help management agencies, conservators, and policy makers achieve better management of this world's largest mangrove forest for

  4. Neighbourhood-scale urban forest ecosystem classification.

    PubMed

    Steenberg, James W N; Millward, Andrew A; Duinker, Peter N; Nowak, David J; Robinson, Pamela J

    2015-11-01

    Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape ecosystem conditions into logical and relatively homogeneous management units, making the potential for ecosystem-based decision support available to urban planners. The purpose of this study is to develop and propose a framework for urban forest ecosystem classification (UFEC). The multifactor framework integrates 12 ecosystem components that characterize the biophysical landscape, built environment, and human population. This framework is then applied at the neighbourhood scale in Toronto, Canada, using hierarchical cluster analysis. The analysis used 27 spatially-explicit variables to quantify the ecosystem components in Toronto. Twelve ecosystem classes were identified in this UFEC application. Across the ecosystem classes, tree canopy cover was positively related to economic wealth, especially income. However, education levels and homeownership were occasionally inconsistent with the expected positive relationship with canopy cover. Open green space and stocking had variable relationships with economic wealth and were more closely related to population density, building intensity, and land use. The UFEC can provide ecosystem-based information for greening initiatives, tree planting, and the maintenance of the existing canopy. Moreover, its use has the potential to inform the prioritization of limited municipal resources according to ecological conditions and to concerns of social equity in the access to nature and distribution of ecosystem service supply. PMID:26311086

  5. NITROGEN SATURATION IN NORTHERN FOREST ECOSYSTEMS

    EPA Science Inventory

    In this article we provide a formal definition of nitrogen saturation and set forth a series of testable hypotheses regarding the states of forest ecosystem response to chronic nitrogen deposition. hese hypotheses are used to suggest early indicators of nitrogen saturation and to...

  6. Hydrologic Modeling of Boreal Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  7. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    PubMed

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. PMID:20036449

  8. Ecosystem approaches to human health.

    PubMed

    Nielsen, N O

    2001-01-01

    The promotion of human health must be embedded in the wider pursuit of ecosystem health. Interventions will be impaired if ecosystem-linked determinants of health are not taken into account. In the extreme case, if ecosystems lose their capacity for renewal, society will lose life support services. Essential features of ecosystem health are the capacity to maintain integrity and to achieve reasonable and sustainable human goals. An ecosystem approach to research and management must be transdisciplinary and assure participation of stakeholders. These requisites provide a means for science to better deal with the complexity of ecosystems, and for policy-makers and managers to establish and achieve reasonable societal goals. The ecosystem approach can determine links between human health and activities or events which disturb ecosystem state and function. Examples are: landscape disturbance in agriculture, mining, forestry, urbanization, and natural disasters. An understanding of these links can provide guidance for management interventions and policy options that promote human health. An ecosystem approach to management must be adaptive because of irreducible uncertainty in ecosystem function. PMID:11426267

  9. Urban Forest Ecosystem Service Optimization, Tradeoffs, and Disparities

    NASA Astrophysics Data System (ADS)

    Bodnaruk, E.; Kroll, C. N.; Endreny, T. A.; Hirabayashi, S.; Yang, Y.

    2014-12-01

    Urban land area and the proportion of humanity living in cities is growing, leading to increased urban air pollution, temperature, and stormwater runoff. These changes can exacerbate respiratory and heat-related illnesses and affect ecosystem functioning. Urban trees can help mitigate these threats by removing air pollutants, mitigating urban heat island effects, and infiltrating and filtering stormwater. The urban environment is highly heterogeneous, and there is no tool to determine optimal locations to plant or protect trees. Using spatially explicit land cover, weather, and demographic data within biophysical ecosystem service models, this research expands upon the iTree urban forest tools to produce a new decision support tool (iTree-DST) that will explore the development and impacts of optimal tree planting. It will also heighten awareness of environmental justice by incorporating the Atkinson Index to quantify disparities in health risks and ecosystem services across vulnerable and susceptible populations. The study area is Baltimore City, a location whose urban forest and environmental justice concerns have been studied extensively. The iTree-DST is run at the US Census block group level and utilizes a local gradient approach to calculate the change in ecosystem services with changing tree cover across the study area. Empirical fits provide ecosystem service gradients for possible tree cover scenarios, greatly increasing the speed and efficiency of the optimization procedure. Initial results include an evaluation of the performance of the gradient method, optimal planting schemes for individual ecosystem services, and an analysis of tradeoffs and synergies between competing objectives.

  10. The 1990 forest ecosystem dynamics multisensor aircraft campaign

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon

    1991-01-01

    The overall objective of the Forest Ecosystem Dynamics (FED) research activity is to develop a better understanding of the dynamics of forest ecosystem evolution over a variety of temporal and spatial scales. Primary emphasis is being placed on assessing the ecosystem dynamics associated with the transition zone between northern hardwood forests in eastern North America and the predominantly coniferous forests of the more northerly boreal biome. The approach is to combine ground-based, airborne, and satellite observations with an integrated forest pattern and process model which is being developed to link together existing models of forest growth and development, soil processes, and radiative transfer.

  11. Quantification of soil respiration in forest ecosystems across China

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan

    2014-09-01

    We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.

  12. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments.

    PubMed

    Roesch-McNally, Gabrielle E; Rabotyagov, Sergey S

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at $217.59 per household/year under a mandatory tax mechanism and $160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different. PMID:26661136

  13. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments

    NASA Astrophysics Data System (ADS)

    Roesch-McNally, Gabrielle E.; Rabotyagov, Sergey S.

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at 217.59 per household/year under a mandatory tax mechanism and 160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  14. [Forest health ecological risk assessment in China].

    PubMed

    Xiao, Fengjin; Ouyang, Hua; Cheng, Shulan; Zhang, Qiang

    2004-02-01

    Forest health ecological risk assessment is an important factor in forest resources management. In this paper, we selected forest fire, forest disease-pest disasters and acid rain as main risk sources, described the risk resources by probability, intensity and distributing, and mapped each risk source. The endpoints were the damages that the risk acceptor might and these damages might cause ecosystems' organization and function changing under the uncertainty risk sources. Endpoints of forest might compose of productivity descent, reducing biodiversity, forest degrading, forest ecological function declining, furthermore, forest disappearing. We described exposure in terms of intensity, space, and time. In the exposure and hazard analysis, we used fragile index to show frangibility or resistibility (resistibility is reverse to frangibility), and analyzed the damages by different risk sources. Risk assessment and management was the integrated phase of the research. Because of the spatial heterogeneity of risk sources, all risk index were overlaid in the China map by GIS, which divided the region into 30 ecological risk sub-zones (provinces), according to risk index of each risk sub-zone, and the forest in China was divided into six levels of risk zones. In every level of risk zones, we also put forward the countermeasures for forest health ecological risk management. The result of assessment could provide scientific basis for forest management. PMID:15146655

  15. Patterns in potassium dynamics in forest ecosystems.

    PubMed

    Tripler, Christopher E; Kaushal, Sujay S; Likens, Gene E; Walter, M Todd

    2006-04-01

    significance warrant further study. We suggest that knowledge about the dynamics of this understudied element is imperative for our understanding patterns and processes in forest ecosystems. PMID:16623731

  16. Forest health in the Blue Mountains: A plant ecologist`s perspective on ecosystem processes and biological diversity. Forest Service general technical report

    SciTech Connect

    Johnson, C.G.

    1994-09-01

    Natural disturbances are important to ecosystem processes. Disturbances historically have occurred in the vegetation of the Blue Mountain area of northeastern Oregon and southeastern Washington. The primary modifying events that historically have cycled through most of its plant communities are fire, grazing and browsing, insect and disease epidemics, windthrow, flooding, and erosion. Knowledge of plant successional pathways enables managers to predict the probable course of community development for a disturbance regime. Recommendations for restoring the Blue Mountains area are to reintroduce fire into the ecosystem, restore rangeland, and enhance biological diversity by practicing landscpe ecological management and by emulating natural patterns on the landscape. Periodic and timely sampling after these activities is critical to assessing the results by adaptive management needs.

  17. Northern Forest Ecosystem Dynamics Using Coupled Models and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Knox, R. G.; Levine, E. R.; Weishampel, J. F.; Fifer, S. T.

    1999-01-01

    Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical information system (GIS) were used together to determine the possible growth and development of a northern forest in Maine, USA. Field measurements and airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover type and above ground biomass. These forest attribute maps, along with a conventional soils map, were used to identify the initial conditions for forest ecosystem model simulations. Using this information along with ecosystem model results enabled the development of predictive maps of forest development. The results obtained were consistent with observed forest conditions and expected successional trajectories. The study demonstrated that ecosystem models might be used in a spatial context when parameterized and used with georeferenced data sets.

  18. [Evaluation of economic forest ecosystem services in China].

    PubMed

    Wang, Bing; Lu, Shao-Wei

    2009-02-01

    This paper quantitatively evaluated the economic forest ecosystem services in the provinces of China in 2003, based on the long-term and continuous observations of economic forest ecosystems in this country, the sixth China national forest resources inventory data, and the price parameter data from the authorities in the world, and by applying the law of market value, the method of substitution of the expenses, and the law of the shadow project. The results showed that in 2003, the total value of economic forest ecosystem services in China was 11763.39 x 10(8) yuan, and the total value of the products from economic forests occupied 19.3% of the total ecosystem services value, which indicated that the economic forests not only provided society direct products, but also exhibited enormous eco-economic value. The service value of the functions of economic forests was in the order of water storage > C fixation and O2 release > biodiversity conservation > erosion control > air quality purification > nutrient cycle. The spatial pattern of economic forest ecosystem services in the provinces of China had the same trend with the spatial distribution of water and heat resources and biodiversity. To understand the differences of economic forest ecosystem services in the provinces of China was of significance in alternating the irrational arrangement of our present forestry production, diminishing the abuses of forest management, and establishing high grade, high efficient, and modernized economic forests. PMID:19459385

  19. Beyond deforestation: restoring forests and ecosystem services on degraded lands.

    PubMed

    Chazdon, Robin L

    2008-06-13

    Despite continued forest conversion and degradation, forest cover is increasing in countries across the globe. New forests are regenerating on former agricultural land, and forest plantations are being established for commercial and restoration purposes. Plantations and restored forests can improve ecosystem services and enhance biodiversity conservation, but will not match the composition and structure of the original forest cover. Approaches to restoring forest ecosystems depend strongly on levels of forest and soil degradation, residual vegetation, and desired restoration outcomes. Opportunities abound to combine ambitious forest restoration and regeneration goals with sustainable rural livelihoods and community participation. New forests will require adaptive management as dynamic, resilient systems that can withstand stresses of climate change, habitat fragmentation, and other anthropogenic effects. PMID:18556551

  20. A review of malaria transmission dynamics in forest ecosystems

    PubMed Central

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  1. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    USGS Publications Warehouse

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  2. Forest Ecosystem Services and Eco-Compensation Mechanisms in China

    NASA Astrophysics Data System (ADS)

    Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin

    2011-12-01

    Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.

  3. Forest ecosystem services and eco-compensation mechanisms in China.

    PubMed

    Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin

    2011-12-01

    Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence. PMID:21882001

  4. Maintaining ecosystem function and services in logged tropical forests.

    PubMed

    Edwards, David P; Tobias, Joseph A; Sheil, Douglas; Meijaard, Erik; Laurance, William F

    2014-09-01

    Vast expanses of tropical forests worldwide are being impacted by selective logging. We evaluate the environmental impacts of such logging and conclude that natural timber-production forests typically retain most of their biodiversity and associated ecosystem functions, as well as their carbon, climatic, and soil-hydrological ecosystem services. Unfortunately, the value of production forests is often overlooked, leaving them vulnerable to further degradation including post-logging clearing, fires, and hunting. Because logged tropical forests are extensive, functionally diverse, and provide many ecosystem services, efforts to expand their role in conservation strategies are urgently needed. Key priorities include improving harvest practices to reduce negative impacts on ecosystem functions and services, and preventing the rapid conversion and loss of logged forests. PMID:25092495

  5. Forest health in a changing world.

    PubMed

    Pautasso, Marco; Schlegel, Markus; Holdenrieder, Ottmar

    2015-05-01

    Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps. PMID:25502075

  6. Effects of Forest Harvesting on Ecosystem Health in the Headwaters of the New York City Water Supply, Catskill Mountains, New York

    USGS Publications Warehouse

    McHale, Michael R.; Murdoch, Peter S.; Burns, Douglas A.; Baldigo, Barry P.

    2008-01-01

    The effects of forest clearcutting and selective harvesting on forest soils, soil and stream water chemistry, forest regrowth, and aquatic communities were studied in four small headwater catchments. This research was conducted to identify the sensitivity of forested ecosystems to forest disturbance in the northeastern United States. The study area was in the headwaters of the Neversink Reservoir watershed, part of the New York City water supply system, in the Catskill Mountains of southeastern New York. Two sub-catchments of the Shelter Creek watershed were selectively harvested, one in its northern half and one more heavily in its southern half in 1995?96, the Dry Creek watershed was clearcut in the winter of 1996?97, and the Clear Creek watershed was left undisturbed and monitored as a control site. Monitoring was conducted from 4 years before the harvests until 4 years after the harvests. Clearcutting caused a large release of nitrate (NO3-) from watershed soils and a concurrent release of inorganic monomeric aluminum (Alim), which is toxic to some aquatic biota. The increased soil NO3- concentrations measured after the harvest could be completely accounted for by the decrease in nitrogen (N) uptake by watershed trees, rather than an increase in N mineralization and nitrification. The large increase in stream water NO3- and Alim concentrations caused 100-percent mortality of caged brook trout (Salvelinus fontinalis) during the first year after the clearcut and adversely affected macroinvertebrate communities for 2 years after the harvest. Nutrient uptake and biomass accumulation increased in uncut mature trees after the two selective harvests. There was no increase in stream-water NO3- or Alim concentrations, and so there were no adverse affects on macroinvertebrate or trout communities. The amount of tree biomass that can be removed without causing a sharp increase in stream-water NO3- and Alim stream-water concentrations is unknown, but probably depends on

  7. [Forest ecosystem service and its evaluation in China].

    PubMed

    Fang, Jin; Lu, Shaowei; Yu, Xinxiao; Rao, Liangyi; Niu, Jianzhi; Xie, Yuanyuan; Zhag, Zhenming

    2005-08-01

    Facing the relative lag of forest ecosystem service and estimation in China, this paper proposed to quickly carry out the research on the evaluation of forest ecosystem service. On the basis of the classification of forest ecosystem types in China, the service of artificial and semi-artificial forest ecosystems was investigated, which was divided into eight types, i.e., timber and other products, recreation and eco-tourism, water storage, C fixation and O2 release, nutrient cycling, air quality purifying, erosion control, and habitat provision. According to the assessment index system for global ecosystem service proposed by Costanza et al., a series of assessment index system suitable for Chinese forest ecosystem service was set up, by which, the total value of forest ecosystem service in China was estimated to be 30 601.20 x 10(8) yuan x yr(-1), including direct and indirect economic value about 1 920.23 x 10(8) and 28 680.97 x 10(8) yuan x yr(-1), respectively. The indirect value was as 14.94 times as the direct one. The research aimed to bring natural resources and environment factors into the account system of national economy quickly, and to realize the green GDP at last, which would be helpful to realize sustainable development and environment protection. PMID:16262073

  8. A tool for assessing ecological status of forest ecosystem

    NASA Astrophysics Data System (ADS)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  9. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    PubMed

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a

  10. Learning in Virtual Forest: A Forest Ecosystem in the Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Jussila, Terttu; Virtanen, Viivi

    2014-01-01

    Virtual Forest is a web-based, open-access learning environment about forests designed for primary-school pupils between the ages of 10 and 13 years. It is pedagogically designed to develop an understanding of ecology, to enhance conceptual development and to give a holistic view of forest ecosystems. Various learning tools, such as concept maps,…

  11. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    NASA Astrophysics Data System (ADS)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also

  12. POLLUTION AND ECOSYSTEM HEALTH - ASSESSING ECOLOGICAL CONDITION OF COASTAL ECOSYSTEMS

    EPA Science Inventory

    Summers, Kevin. 2004. Pollution and Ecosystem Health - Assessing Ecological Condition of Coastal Ecosystems. Presented at the White Water to Blue Water (WW2BW) Miami Conference, 21-26 March 2004, Miami, FL. 1 p. (ERL,GB R973).

    Throughout the coastal regions and Large Mari...

  13. Boreal forest health and global change.

    PubMed

    Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G

    2015-08-21

    The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions. PMID:26293953

  14. Forest health conditions in North America.

    PubMed

    Tkacz, Borys; Moody, Ben; Castillo, Jaime Villa; Fenn, Mark E

    2008-10-01

    Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several regions of North America. Long-term monitoring of forest health indicators has facilitated the assessment of forest health and sustainability in North America. By linking a nationwide network of forest health plots with the more extensive forest inventory, forest health experts in the US have evaluated current trends for major forest health indicators and developed assessments of future risks. Canada and Mexico currently lack nationwide networks of forest health plots. Development and expansion of these networks is critical to effective assessment of future forest health impacts. PMID:18479794

  15. Drought in forest understory ecosystems - a novel rainfall reduction experiment

    NASA Astrophysics Data System (ADS)

    Gimbel, K. F.; Felsmann, K.; Baudis, M.; Puhlmann, H.; Gessler, A.; Bruelheide, H.; Kayler, Z.; Ellerbrock, R. H.; Ulrich, A.; Welk, E.; Weiler, M.

    2015-02-01

    Precipitation patterns across Central Europe are expected to change over the 21st century due to climate change. This may reduce water availability during the plant-growing season and hence affect the performance and vitality of forest ecosystems. We established a novel rainfall reduction experiment on nine sites in Germany to investigate drought effects on soil-forest-understory ecosystems. A realistic, but extreme annual drought with a return period of 40 years, which corresponds to the 2.5% percentile of the annual precipitation, was imposed. At all sites, we were able to reach the target values of rainfall reduction, while other important ecosystem variables like air temperature, humidity, and soil temperature remained unaffected due to the novel design of a flexible roof. The first year of drought showed considerable changes in the soil moisture dynamics relative to the control sites, which affected leaf stomatal conductance of understory species as well as evapotranspiration rates of the forest understory.

  16. PHOTOCHEMICAL OXIDANT AIR POLLUTION EFFECTS ON A MIXED CONIFER FOREST FOREST ECOSYSTEM - A PROGRESS REPORT

    EPA Science Inventory

    Since 1972, twelve scientists representing several research disciplines have collaborated in integrated studies to determine the chronic effects of photochemical oxidant air pollutants on a western mixed conifer forest ecosystem. An enormous amount of data has been collected, des...

  17. Monitoring Change in Temperate Coniferous Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Williams, Darrel (Technical Monitor); Woodcock, Curtis E.

    2004-01-01

    The primary goal of this research was to improve monitoring of temperate forest change using remote sensing. In this context, change includes both clearing of forest due to effects such as fire, logging, or land conversion and forest growth and succession. The Landsat 7 ETM+ proved an extremely valuable research tool in this domain. The Landsat 7 program has generated an extremely valuable transformation in the land remote sensing community by making high quality images available for relatively low cost. In addition, the tremendous improvements in the acquisition strategy greatly improved the overall availability of remote sensing images. I believe that from an historical prespective, the Landsat 7 mission will be considered extremely important as the improved image availability will stimulate the use of multitemporal imagery at resolutions useful for local to regional mapping. Also, Landsat 7 has opened the way to global applications of remote sensing at spatial scales where important surface processes and change can be directly monitored. It has been a wonderful experience to have participated on the Landsat 7 Science Team. The research conducted under this project led to contributions in four general domains: I. Improved understanding of the information content of images as a function of spatial resolution; II. Monitoring Forest Change and Succession; III. Development and Integration of Advanced Analysis Methods; and IV. General support of the remote sensing of forests and environmental change. This report is organized according to these topics. This report does not attempt to provide the complete details of the research conducted with support from this grant. That level of detail is provided in the 16 peer reviewed journal articles, 7 book chapters and 5 conference proceedings papers published as part of this grant. This report attempts to explain how the various publications fit together to improve our understanding of how forests are changing and how to

  18. Different cesium-137 transfers to forest and stream ecosystems.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N; Iwamoto, Aimu; Okada, Kengo

    2016-02-01

    Understanding the mechanisms of (137)Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of (137)Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of (137)Cs in stream litter was significantly lower than in forest litter, the result of (137)Cs leaching from litter in stream water. The difference in (137)Cs concentrations between the two types of litter was reflected in the (137)Cs concentrations in the animal community. While the importance of (137)Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of (137)Cs through terrestrial and aquatic ecosystems, and that (137)Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem. PMID:26629645

  19. Temperate forest health in an era of emerging megadisturbance.

    PubMed

    Millar, Constance I; Stephenson, Nathan L

    2015-08-21

    Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services. PMID:26293954

  20. Bifurcation analysis of a forest-grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Russo, Lucia; Spiliotis, Konstantinos G.

    2016-06-01

    The nonlinear analysis of a forest-grassland ecosystem is performed as the main system parameters are changed. The model consists of a couple of nonlinear ordinary differential equations which include dynamically the human perceptions of forest/grassland value. The system displays multiple steady states corresponding to different forest densities as well as periodic regimes characterized by oscillations in time. We performed the bifurcation analysis of the system as the parameter relative to the human opinions influence is changed. We found that the main mechanisms which regulate the transitions occurring between different states or the appearance of new steady and dynamic regimes are transcritical, saddle/node and Hopf bifurcations.

  1. Gross primary production of global forest ecosystems has been overestimated

    PubMed Central

    Ma, Jianyong; Yan, Xiaodong; Dong, Wenjie; Chou, Jieming

    2015-01-01

    Coverage rate, a critical variable for gridded forest area, has been neglected by previous studies in estimating the annual gross primary production (GPP) of global forest ecosystems. In this study, we investigated to what extent the coverage rate could impact forest GPP estimates from 1982 to 2011. Here we show that the traditional calculation without considering the coverage rate globally overestimated the forest gross carbon dioxide uptake by approximately 8.7%, with a value of 5.12 ± 0.23 Pg C yr−1, which is equivalent to 48% of the annual emissions from anthropogenic activities in 2012. Actually, the global annual GPP of forest ecosystems is approximately 53.71 ± 4.83 Pg C yr−1 for the past 30 years by taking the coverage rate into account. Accordingly, we argue that forest annual GPP calculated by previous studies has been overestimated due to the exaggerated forest area, and therefore, coverage rate may be a required factor to further quantify the global carbon cycle. PMID:26027557

  2. Forest health status in North America.

    PubMed

    Tkacz, Borys; Moody, Ben; Villa Castillo, Jaime

    2007-01-01

    The forests of North America provide a variety of benefits including water, recreation, wildlife habitat, timber, and other forest products. However, they continue to face many biotic and abiotic stressors including fires, native and invasive pests, fragmentation, and air pollution. Forest health specialists have been monitoring the health of forests for many years. This paper highlights some of the most damaging forest stressors affecting North American forests in recent years and provides some projections of future risks. PMID:17450278

  3. Sustainable carbon uptake - important ecosystem service within sustainable forest management

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Anić, Mislav; Paladinić, Elvis; Alberti, Giorgio; Marjanović, Hrvoje

    2016-04-01

    Even-aged forest management with natural regeneration under continuous cover (i.e. close to nature management) is considered to be sustainable regarding the yield, biodiversity and stability of forest ecosystems. Recently, in the context of climate change, there is a raising question of sustainable forest management regarding carbon uptake. Aim of this research was to explore whether current close to nature forest management approach in Croatia can be considered sustainable in terms of carbon uptake throughout the life-time of Pedunculate oak forest. In state-owned managed forest a chronosequence experiment was set up and carbon stocks in main ecosystem pools (live biomass, dead wood, litter and mineral soil layer), main carbon fluxes (net primary production, soil respiration (SR), decomposition) and net ecosystem productivity were estimated in eight stands of different age (5, 13, 38, 53, 68, 108, 138 and 168 years) based on field measurements and published data. Air and soil temperature and soil moisture were recorded on 7 automatic mini-meteorological stations and weekly SR measurements were used to parameterize SR model. Carbon balance was estimated at weekly scale for the growing season 2011 (there was no harvesting), as well as throughout the normal rotation period of 140 years (harvesting was included). Carbon stocks in different ecosystem pools change during a stand development. Carbon stocks in forest floor increase with stand age, while carbon stocks in dead wood are highest in young and older stands, and lowest in middle-aged, mature stands. Carbon stocks in mineral soil layer were found to be stable across chronosequence with no statistically significant age-dependent trend. Pedunculate Oak stand, assuming successful regeneration, becomes carbon sink very early in a development phase, between the age of 5 and 13 years, and remains carbon sink even after the age of 160 years. Greatest carbon sink was reached in the stand aged 53 years. Obtained results

  4. Forest ecosystem carbon on public lands of the United States

    SciTech Connect

    Heath, L.S.

    1995-06-01

    Increasing concentration of greenhouse gases in the atmosphere has prompted nations to investigate strategies to mitigate emissions. One set of strategies involves sequestering carbon in forests, and this requires a way to estimate and project the forest ecosystem carbon budget for all forestland under a range of potential policy options. Carbon was estimated and projected using the FORCARB model, linked to ATLAS, the Aggregate Timberland Assessment System. FORCARB estimates carbon in live trees, detrital wood, forest floor, and soil, and ATLAS tracks timber inventory in terms of volume and land area. Together, these models account for the effects of existing forest inventories, forest growth, land use changes, and harvesting on carbon sequestered on public lands. Forests on both federal and non-federal public lands comprise at least 40% of the forests in the U.S. by land area, and contain a significant portion of the forest carbon budget. Changes in harvesting and fire suppression strategies on public lands noticeably affect the forest carbon budget of the U.S.

  5. RESPONSE AND FEEDBACKS OF FOREST ECOSYSTEMS TO GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    The accumulation of greenhouse gases in the atmosphere over the past century is projected to cause a warming of the Earth. Climate Change predictions vary by region and terrestrial biosphere response, and feedbacks will be ecosystem specific. Forests play a major role in the Eart...

  6. Mechanisms of nitrogen retention in forest ecosystems - A field experiment

    NASA Technical Reports Server (NTRS)

    Vitousek, P. M.; Matson, P. A.

    1984-01-01

    Intensive forest management led to elevated losses of nitrogen from a recently harvested loblolly pine plantation in North Carolina. Measurements of nitrogen-15 retention in the field demonstrated that microbial uptake of nitrogen during the decomposition of residual organic material was the most important process retaining nitrogen. Management practices that remove this material cause increased losses of nitrogen to aquatic ecosystems and the atmosphere.

  7. Molecular changes of DOM cycling in forest ecosystem

    NASA Astrophysics Data System (ADS)

    Hara, M.; Ohashi, M.; Piirainen, S.; Kortelainen, P.; Finer, L.; Kumagai, T.; Takahashi, K.; Sugiyama, Y.

    2011-12-01

    Fresh water is essential for sustaining all the life on the earth. Most of the fresh water available for human is stored in forest ecosystem in the forms of soil and ground water. Therefore, the chemical compositions of fresh water could be controlled by the forest ecosystem. Dissolved Organic Matter (DOM) is one of the main dissolved components of water. Since it controls the cycling processes of both organic and inorganic matters in water by variety of physical, chemical, and biochemical interactions, chatacterization of DOM in both qualitatively and quantitatively is very important. However, molecular-level study in DOM has been behind due to technological difficulties. Over the past years, high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) which enables us to identify individual molecular species of DOM had been hugely developed and brought radical changes to the analysis of many different substances in molecular level. The purpose of this study is to observe the cycling and alteration process of DOM in the forest ecosystem substantially using FT-ICR MS. We analyzed DOM samples by FT-ICR MS to determine the molecular-level characteristics of DOM. We also analyzed dissolved organic carbon (DOC) and characteristics of fluorescence spectra to elucidate the bulk characteristics of DOM in the forest ecosystem. In forest ecosystem, DOC increased from bulk deposition (1.0~3.3 mgC/L) and throughfall (0.8~3.6 mgC/L) to soil water of the A- (4.7~28.6 mgC/L) and B-horizon (4.5~29.2 mgC/L). DOC decreased as the water percolated through the soil deeper to ground water (0.3~1.7 mgC/L). In the whole forest ecosystem, fluorescence spectra showed strong humic-like fluorescence peaks rather than protein-like peaks. Each sample's result of FT-ICR MS including bulk deposition, throughfall, soil waters in different depths, and groundwater showed different molecular characteristics between one another. These results suggest that DOM in water is

  8. Soil microbial community successional patterns during forest ecosystem restoration.

    PubMed

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  9. FOREST HEALTH MONITORING FIELD METHODS GUIDE

    EPA Science Inventory

    This EMAP-FHM methods Guide is intended to instruct forest Health Monitors when collecting data on forest health indicators; site condition, growth and regeneration, crown condition, tree damage and mortality assessment, photosynthetically active radiation, vegetation structure, ...

  10. Identifying the spatial scale of land use that most strongly influences overall river ecosystem health score.

    PubMed

    Sheldon, Fran; Peterson, Erin E; Boone, Ed L; Sippel, Suzanne; Bunn, Stuart E; Harch, Bronwyn D

    2012-12-01

    Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active near-stream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close

  11. Characterizing forest fragments in boreal, temperate, and tropical ecosystems.

    PubMed

    Meddens, Arjan J H; Hudak, Andrew T; Evans, Jeffrey S; Gould, William A; González, Grizelle

    2008-12-01

    An increased ability to analyze landscapes in a spatial manner through the use of remote sensing leads to improved capabilities for quantifying human-induced forest fragmentation. Developments of spatially explicit methods in landscape analyses are emerging. In this paper, the image delineation software program eCognition and the spatial pattern analysis program FRAGSTATS were used to quantify patterns of forest fragments on six landscapes across three different climatic regions characterized by different moisture regimes and different influences of human pressure. Our results support the idea that landscapes with higher road and population density are more fragmented; however, there are other, equally influential factors contributing to fragmentation, such as moisture regime, historic land use, and fire dynamics. Our method provided an objective means to characterize landscapes and assess patterns of forest fragments across different forested ecosystems by addressing the limitations of pixel-based classification and incorporating image objects. PMID:19205180

  12. [Ancientness and maturity: two complementary qualities of forest ecosystems].

    PubMed

    Cateau, Eugénie; Larrieu, Laurent; Vallauri, Daniel; Savoie, Jean-Marie; Touroult, Julien; Brustel, Hervé

    2015-01-01

    Ancientness and maturity are two major qualities of forest ecosystems. They are components of naturalness and are affected by human impact. These qualities and the associated terms are often mixed up and incorrectly used. We have carried out a synthesis in order to propose an adapted French terminology based on international literature. The topics of ancientness and maturity for biodiversity and soil characteristics are explained. This review leads us to submit different potential thresholds for ancientness and maturity. An analysis on ancientness and maturity on forest data for France leads to the conclusion that about 29% of all forests can be considered "ancient woodland", and less than 3% of the even-age forest is older than the harvesting age. PMID:25455000

  13. The impact of intensive forest management on carbon stores in forest ecosystems

    SciTech Connect

    Krankina, O.N.; Harmon, M.E. . Dept. of Forest Science)

    1994-06-01

    The expansion of intensive management of forest resources for timber production with the human population growth may have a profound effect on the role forests play in the global carbon cycle. First, the transition from old-growth to intensively managed second-growth forest with short rotations entails major long-term ecosystems changes including the reduction of total woody biomass. Although the biomass of living trees can be restored within a relatively short period of time, dead wood biomass takes considerably longer to reach pre-harvest levels; therefore commonly used rotations are too short for the latter part of ecosystem to recover fully. As dead trees account for 14--18% of the total woody biomass stores in a natural forest, a considerable amount of carbon can be released if this material is not replaced. Second, economically efficient, intensive forest management systems that include commercial thinning and wood salvage can further reduce the total biomass loading of second-growth forests. Long-term study of live and dead wood in thinning trials in the Pacific Northwest and in northwestern Russia suggest that intensive practices can reduce total woody biomass averaged over rotation to 10--25% that found in a natural old-growth forest. Therefore intensive forest management practices may maximize the supply of raw materials, but they may also generate a major carbon flux into the atmosphere. This flux may be significant despite the fact the land-use type remains the same. Effect of intensive forest management practices should be included in future carbon budgets and in developing forest management strategies aimed at increasing carbon storage in forest ecosystems.

  14. Potential climate change impacts on temperate forest ecosystem processes

    USGS Publications Warehouse

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  15. Ecosystem adaptation to scarce nutrient resources: Do forest ecosystems shift from acquisition to recycling of phosphorus?

    NASA Astrophysics Data System (ADS)

    Lang, F.; Kaupenjohann, M.

    2011-12-01

    Friederike Lang(1, Nicole Wellbrock(2, Martin Kaupenjohann(1 (1) Department of Soil Science, TU Berlin, 10587 Berlin, Germany; (2) vTI Eberswalde Agricultural food production is essential to our existence, yet we are using up the Earths stocks of phosphorus (P) for the fertilizer production (Cordell, 2009). Forest ecosystems that developed on marginal soil have developed highly efficient strategies for the uptake, usage and recycling of P, which might inspire solutions for the problem of P scarcity in agriculture. However, these efficient forest strategies are hardly investigated yet. Current literature concepts on the adaptation to low soil-P supply are mainly refined to individual organisms (e.g. the concept of uptake efficiency, Sattelmacher et al., 1994, and utilisation efficiency of plants, Compton and Cole, 1998). At the ecosystem level, however, low mineral-P supply requires an evolution of the system towards closed biogeochemical cycling (the concept of cycling efficiency). At the ecosystem level nutrient efficiency becomes rather a matter of transfer and distribution of resources among species, generations and soil components than of the capability of single organisms to acquire P sources. We plead for introducing the term ecosystem nutrition to cover this topic. Our general hypothesis is that P depletion of soils drives the development of forest ecosystems from geochemical P acquiring systems (mobilisation of P from the mineral phase) to biogeochemical P recycling systems (recycling of P from soil organic matter). We conclude that fundamental knowledge in the area of ecosystem nutrition is essential for forestry to mitigate the consequences of increasing N deposition, climate change and intensification of forest usage, which most likely interfere with essential nutrition strategies of forest ecosystems. Transfer of the knowledge on nutrition strategies and resource management of near-natural ecosystems to/in agricultural systems may finally contribute to

  16. Estimating key forest ecosystem parameters through remote sensing

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Aber, John D.; Peterson, David L.

    1987-01-01

    Forest canopy chemistry and biomass indicators of ecosystem photosynthesis and decomposition processes are presently studied in view of Airborne Imaging Spectrometer data, which generated spectra from averaged 3 x 3 pixel areas for each of 20 sites for mutual qualitative comparison. Vegetation spectra were strongly differentiated from other cover types by an apparent absorption feature at 1500-1700 nm. Preliminary work with stepwise regression suggests that lignin may play a role in canopy reflectance, and that there is potential for remote detection of forest canopy lignin.

  17. A sensor fusion field experiment in forest ecosystem dynamics

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ranson, K. Jon; Williams, Darrel L.; Levine, Elissa R.; Goltz, Stewart M.

    1990-01-01

    The background of the Forest Ecosystem Dynamics field campaign is presented, a progress report on the analysis of the collected data and related modeling activities is provided, and plans for future experiments at different points in the phenological cycle are outlined. The ecological overview of the study site is presented, and attention is focused on forest stands, needles, and atmospheric measurements. Sensor deployment and thermal and microwave observations are discussed, along with two examples of the optical radiation measurements obtained during the experiment in support of radiative transfer modeling. Future activities pertaining to an archival system, synthetic aperture radar, carbon acquisition modeling, and upcoming field experiments are considered.

  18. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yu, G.-R.; Zhang, L.-M.; Sun, X.-M.; Wen, X.-F.; Han, S.-J.; Yan, J.-H.

    2010-02-01

    Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE) in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS) and a subtropical evergreen broad-leaved forest at Dinghushan (DHS), based on the flux data obtained during June-August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR) differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max) at CBS under cloudy skies during mid-growing season (from June to August) increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt) ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD) and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP) and greater increase in ecosystem respiration (Re) at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in cloudiness is an important factor that should be included in evaluating regional carbon budgets under climate change

  19. Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration

    NASA Astrophysics Data System (ADS)

    Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.

    2009-04-01

    The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation

  20. Alaska Interagency Ecosystem Health Work Group

    USGS Publications Warehouse

    Shasby, Mark

    2009-01-01

    The Alaska Interagency Ecosystem Health Work Group is a community of practice that recognizes the interconnections between the health of ecosystems, wildlife, and humans and meets to facilitate the exchange of ideas, data, and research opportunities. Membership includes the Alaska Native Tribal Health Consortium, U.S. Geological Survey, Alaska Department of Environmental Conservation, Alaska Department of Health and Social Services, Centers for Disease Control and Prevention, U.S. Fish and Wildlife Service, Alaska Sea Life Center, U.S. Environmental Protection Agency, and Alaska Department of Fish and Game.

  1. Budgeting Ecosystem - Atmosphere Carbon Exchange in a Subarctic Birch Forest

    NASA Astrophysics Data System (ADS)

    Heliasz, M.; Johansson, T.; Mastepanov, M.; Callaghan, T. V.; Christensen, T. R.

    2008-12-01

    The overarching objective of this project is to work towards a better understanding of ecosystem-atmosphere interactions in a composite subarctic landscape with a focus on measurements and modeling of carbon cycling in birch forest environments. In this presentation we document the interactions between the birch forest (Betula pubescens ssp. czerepanovii) ecosystem and the atmosphere both in terms of greenhouse gas and energy exchanges. The study provides new information on climatic controls of interannual variability in annual carbon and energy exchange. This information is complimented with studies of the effects of insect outbreak disturbance on these annual budgets. Carbon flux data produced since 2003 shows that during the first year of measurements the forest acted as a large net sink of atmospheric carbon. However, during the growing season of 2004 the area was severely affected by an extreme outbreak of the autumnal moth (Epirrita autumnata) resulting in total defoliation of the forest over large areas. This caused the same forest stand to act as a net source of CO2 even during the peak growing season. During the summer of 2008, as part of a special campaign under the International Polar Year, the larger scale variability of the subarctic birch forest carbon fluxes was documented. A mobile eddy covariance tower provided seasonal measurements from six different locations in the catchment of lake Tornetrask which can be compared with longer term, inter-annual data from two permanent flux towers operating continuously in the vicinity of the village of Abisko. The sites were chosen to document possible differences in CO2 fluxes depending on the time since last defoliation which was in 2004 in some areas. Also sites were chosen with different types of birch forest (monocormic, polycormic) and at greatly varying distances to the oceanic influence from the Norwegian coast. This poster will present and discuss preliminary CO2 flux data from all these different

  2. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  3. Study of the radiocesium dynamics in the Fukushima forest ecosystems

    NASA Astrophysics Data System (ADS)

    Yoschenko, Vasyl; Konoplev, Alexei; Takase, Tsugiko; Nanba, Kenji; Onda, Yuichi; Zheleznyak, Mark; Kivva, Sergii

    2016-04-01

    Accident at Fukushima Dai-ichi NPP on March 11, 2011, has resulted in release into the environment of large amounts of radiocesium (134Cs and 137Cs) and in radioactive contamination of terrestrial and aquatic ecosystems. Up to 2/3 of the most contaminated territory in Fukushima prefecture is covered with forests, and efforts aimed at revitalization of this territory should include, therefore, elaboration of the forestry strategy. In particular, understanding of the radiocesium dynamics in the ecosystem compartments is necessary for the reliable long-term prognosis. Numerous studies revealed and quantified the key processes governing radiocesium redistribution in Fukushima forests at the early stage after the accident, when initially intercepted radiocesium was gradually transported from the trees' crowns to the soil surface and profile with precipitations and litterfall, and the general trend was a decrease of the radiocesium total inventory in the forest biomass. However, at the later stage, the radiocesium activities in the biomass compartments can increase due to its root uptake from the soil profile; the two major processes, radionuclide root uptake and its return to soil, will determine the future radiocesium levels in the forest compartments. Objectives of our study were characterization of the radiocesium distribution at the beginning of the late stage, revealing its dynamics and parameterization of the above-mentioned fluxes for prognosis of the radiocesium long-term redistribution in the typical Fukushima forest ecosystems. The study started at one experimental site (Yamakiya district, Kawamata town, Fukushima Prefecture) in the spring of 2014; to the moment, it has been continuing at several experimental sites in the Fukushima zone characterized by different species composition and soil-landscape conditions. For the typical Japanese cedar (Cryptomeria japonica) and Japanese red pine (Pinus Densiflora) forests, we determined distributions of radiocesium in

  4. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS)

    PubMed Central

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  5. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    PubMed

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  6. Methane uptake in forest and agro-ecosystems in Australia

    NASA Astrophysics Data System (ADS)

    Arndt, S. K.; Livesley, S. J.; Fest, B. J.; Weston, C. J.; Butterbach-Bahl, K.

    2007-12-01

    Oxidation of methane by methanotrophic bacteria in aerated soils does provide a considerable global sink for greenhouse gases (-30 Tg CH4/yr). The form of land-use can have a significant impact on the methane uptake capacity of a soil. We investigated the sink strength for methane uptake of forest ecosystems and agro- ecosystems in Australia using automated measurement systems and manual chamber methods. Our results demonstrate large differences in the methane uptake capacity of Australian soils. Data from Western Australia showed that CH4 uptake rates increased with stand age of plantations and were greatest in an undisturbed native forest and lowest in an improved pasture. Measurements in differently aged forest ecosystems indicated that sites with the most recent fire disturbance had the lowest methane uptake rates. Generally, native forest ecosystems showed the greatest methane uptake rates (up to 130 kg CO2-e ha yr). Plantations (eucalyptus/pine) showed significantly lower methane uptake rates (around 15 kg CO2-e ha yr). Grazed pastures in Australia had the lowest uptake rates (6 kg CO2-e ha yr) and were occasional methane sources. The methane uptake rates of soils were only marginally influenced by environmental parameters over the course of a year. Between sites the methane uptake rates were not related to soil parameters such as soil bulk density. Experiments with excavated soil cores demonstrated that diffusivity of methane through the upper soil layer was the rate limiting step. Our results indicate that the community structure of methanotrophic bacteria and substrate diffusivity are the most important factor influencing methane uptake rates in soils. Disturbance events such as change of land-use or vegetation structure can have significant impacts on the capacity of soils to take up methane.

  7. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    NASA Astrophysics Data System (ADS)

    Band, Larry

    2010-05-01

    Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a

  8. Climate change impact on peatland and forest ecosystems of Russia

    SciTech Connect

    Kondrasheva, N.Yu.; Kobak, K.I.; Turchinovich, I.Ye.

    1996-12-31

    Paleoclimatic and paleobotanic reconstructions allow a conclusion that ecosystems and natural zones significantly changed due to climate fluctuations. The average long-term carbon accumulation in peatlands of Russia was estimated as 45.6 mln tons of carbon per year. During the Holocene the rate of peat accumulation changed. During the Subboreal period the rate of peat accumulation gradually decreased to 17 gC/m2 yr, reaching its lowest value in the Subatlantic period. Apparently, the rate of peat accumulation decreased in Subboreal period due to sharp cooling and precipitation decrease. Future rates of peat accumulation might be higher than the present one. Forest ecosystems of north-western Russia also significantly changed during the Holocene. In Atlantic time the boundary between middle and south taiga was located 500 km northward compared to the present and broad-leaved forest occupied large areas. According to their forecast, a mean global air temperature increase by 1.4 C is expected to result in a considerable decrease in coniferous forest area and an increase in mixed and broad-leaved forest area.

  9. Whole-ecosystem experimental manipulations of tropical forests.

    PubMed

    Fayle, Tom M; Turner, Edgar C; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech

    2015-06-01

    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments. PMID:25896491

  10. Lake ecosystem health assessment: indicators and methods.

    PubMed

    Xu, F L; Tao, S; Dawson, R W; Li, P G; Cao, J

    2001-09-01

    A set of ecological indicators including structural, functional, and system-level aspects were proposed for a lake ecosystem health assessment, according to the structural, functional, and system-level responses of lake ecosystems to chemical stresses including acidification, eutrophication and copper, oil and pesticide contamination. The structural indicators included phytoplankton cell size and biomass, zooplankton body size and biomass, species diversity, macro- and micro-zooplankton biomass, the zooplankton phytoplankton ratio, and the macrozooplankton microzooplankton ratio. The functional indicators encompassed the algal C assimilation ratio, resource use efficiency, community production, gross production/respiration (i.e. P/R) ratio, gross production standing crop biomass (i.e. P/B) ratio, and standing crop biomass unit energy flow (i.e. B/E) ratio. The ecosystem-level indicators conisisted of ecological buffer capacities, energy, and structural energy. Based on these indicators, a direct measurement method (DMM) and an ecological modeling method (EMM) for lake ecosystem health assessment were developed. The DMM procedures were designed to: (1) identify key indicators; (2) measure directly or calculate indirectly the selected indicators; and, (3) assess ecosystem health on the basis of the indicator values. The EMM procedures were designed to: (1) determine the structure and complexity of the ecological model according to the lake's ecosystem structure; (2) establish an ecological model by designing a conceptual diagram, establishing model equations, and estimating model pararmeters; (3) compare the simulated values of important state variables and process rates with actual observations; (4) calculate ecosystem health indicators using the ecological model; and, (5) assess lake ecosystem health according to the values of the ecological indicators. The results of a case study demonstrated that both methods provided similar results which corresponded with the

  11. Ecosystem-Level Carbon Stocks in Costa Rican Mangrove Forests

    NASA Astrophysics Data System (ADS)

    Cifuentes, M.

    2012-12-01

    Tropical mangroves provide a wide variety of ecosystem services, including atmospheric carbon sequestration. Because of their high rates of carbon accumulation, the large expected size of their total stocks (from 2 to 5 times greater than those of upland tropical forests), and the alarming rates at which they are being converted to other uses (releasing globally from 0.02 to 0.12 Pg C yr-1), mangroves are receiving increasing attention as additional tools to mitigate climate change. However, data on whole ecosystem-level carbon in tropical mangroves is limited. Here I present the first estimate of ecosystem level carbon stocks in mangrove forests of Central America. I established 28, 125 m-long, sampling transects along the 4 main rivers draining the Térraba-Sierpe National Wetland in the southern Pacific coast of Costa Rica. This area represents 39% of all remaining mangroves in the country (48300 ha). A circular nested plot was placed every 25 m along each transect. Carbon stocks of standing trees, regeneration, the herbaceous layer, litter, and downed wood were measured following internationally-developed methods compatible with IPCC "Good Practice Guidelines". In addition, total soil carbon stocks were determined down to 1 m depth. Together, these carbon estimates represent the ecosystem-carbon stocks of these forests. The average aboveground carbon stocks were 72.5 ± 3.2 MgC ha-1 (range: 9 - 241 MgC ha-1), consistent with results elsewhere in the world. Between 74 and 92% of the aboveground carbon is stored in trees ≥ 5cm dbh. I found a significant correlation between basal area of trees ≥ 5cm dbh and total aboveground carbon. Soil carbon stocks to 1 m depth ranged between 141 y 593 MgC ha-1. Ecosystem-level carbon stocks ranged from 391 MgC ha-1 to 438 MgC ha-1, with a slight increase from south to north locations. Soil carbon stocks represent an average 76% of total ecosystem carbon stocks, while trees represent only 20%. These Costa Rican mangroves

  12. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    PubMed

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation

  13. Models for Forest Ecosystem Management: A European Perspective

    PubMed Central

    Pretzsch, H.; Grote, R.; Reineking, B.; Rötzer, Th.; Seifert, St.

    2008-01-01

    Background Forest management in Europe is committed to sustainability. In the face of climate change and accompanying risks, however, planning in order to achieve this aim becomes increasingly challenging, underlining the need for new and innovative methods. Models potentially integrate a wide range of system knowledge and present scenarios of variables important for any management decision. In the past, however, model development has mainly focused on specific purposes whereas today we are increasingly aware of the need for the whole range of information that can be provided by models. It is therefore assumed helpful to review the various approaches that are available for specific tasks and to discuss how they can be used for future management strategies. Scope Here we develop a concept for the role of models in forest ecosystem management based on historical analyses. Five paradigms of forest management are identified: (1) multiple uses, (2) dominant use, (3) environmentally sensitive multiple uses, (4) full ecosystem approach and (5) eco-regional perspective. An overview of model approaches is given that is dedicated to this purpose and to developments of different kinds of approaches. It is discussed how these models can contribute to goal setting, decision support and development of guidelines for forestry operations. Furthermore, it is shown how scenario analysis, including stand and landscape visualization, can be used to depict alternatives, make long-term consequences of different options transparent, and ease participation of different stakeholder groups and education. Conclusions In our opinion, the current challenge of forest ecosystem management in Europe is to integrate system knowledge from different temporal and spatial scales and from various disciplines. For this purpose, using a set of models with different focus that can be selected from a kind of toolbox according to particular needs is more promising than developing one overarching model

  14. Sustainable development and use of ecosystems with non-forest trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  15. Green Infrastructure, Ecosystem Services, and Human Health

    PubMed Central

    Coutts, Christopher; Hahn, Micah

    2015-01-01

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture—in the form of a primer—of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being. PMID:26295249

  16. Green Infrastructure, Ecosystem Services, and Human Health.

    PubMed

    Coutts, Christopher; Hahn, Micah

    2015-08-01

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture-in the form of a primer-of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being. PMID:26295249

  17. Remote sensing of forest ecosystem dynamics: Measurements and modeling

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Ranson, K. Jon; Knox, Robert G.; Levine, Elissa R.

    1994-01-01

    The development of an integrated approach to the modeling of forest dynamics encompassing submodels of forest growth and succession, soil processes and radiation interactions, is reported. Remote sensing technology is a key element of this study in that it provides data for developing, initializing, updating, and validating the models. The objectives are reviewed, the data collected and models in use are discussed, and a framework for studying interactions between the forest growth, soil process and energy interaction components, is described. Remote sensing technology used in the study includes optical and microwave field, aircraft and satellite borne instruments. The types of data collected during intensive field and aircraft campaigns included bidirectional reflectance, thermal emittance and multifrequency, multipolarization synthetic aperture radar backscatter. Synthetic imagery of derived products such as forest biomass and NDVI (Normalized Difference Vegetative Index), and collections of ground data are being assembled in a georeferenced data base. These data are used to drive or test multidiscipline simulations of forested ecosystems. Enhancements to the modeling environment permit considerable flexibility in configuring simulations and selecting results for reporting and graphical display.

  18. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    USGS Publications Warehouse

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, James R.; Wondzell, Steven M.; Dunham, Jason; Johnson, Sherri L.; Reeves, Gordon H.

    2016-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  19. Carbon Budget and its Dynamics over Northern Eurasia Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian; Maksyutov, Shamil

    2016-04-01

    The presentation contains an overview of recent findings and results of assessment of carbon cycling of forest ecosystems of Northern Eurasia. From a methodological point of view, there is a clear tendency in understanding a need of a Full and Verified Carbon Account (FCA), i.e. in reliable assessment of uncertainties for all modules and all stages of FCA. FCA is considered as a fuzzy (underspecified) system that supposes a system integration of major methods of carbon cycling study (land-ecosystem approach, LEA; process-based models; eddy covariance; and inverse modelling). Landscape-ecosystem approach 1) serves for accumulation of all relevant knowledge of landscape and ecosystems; 2) for strict systems designing the account, 3) contains all relevant spatially distributed empirical and semi-empirical data and models, and 4) is presented in form of an Integrated Land Information System (ILIS). The ILIS includes a hybrid land cover in a spatially and temporarily explicit way and corresponding attributive databases. The forest mask is provided by utilizing multi-sensor remote sensing data, geographically weighed regression and validation within GEO-wiki platform. By-pixel parametrization of forest cover is based on a special optimization algorithms using all available knowledge and information sources (data of forest inventory and different surveys, observations in situ, official statistics of forest management etc.). Major carbon fluxes within the LEA (NPP, HR, disturbances etc.) are estimated based on fusion of empirical data and aggregations with process-based elements by sets of regionally distributed models. Uncertainties within LEA are assessed for each module and at each step of the account. Within method results of LEA and corresponding uncertainties are harmonized and mutually constrained with independent outputs received by other methods based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000

  20. A case for using Plethodontid salamanders for monitoring biodiversity and ecosystem integrity of North American forests

    USGS Publications Warehouse

    Welsh, H.H., Jr.; Droege, S.

    2001-01-01

    Terrestrial salamanders of the family P!ethodontidae have unique attributes that make them excellent indicators of biodiversity and ecosystem integrity in forested habitats. Their longevity, small territory size, site fidelity, sensitivity to natural and anthropogenic perturbations, tendency to occur in high densities, and low sampling costs mean that counts of plethodontid salamanders provide numerous advantages over counts of other North American forest organisms for indicating environmental change. Furthermore, they are tightly linked physiologically to microclimatic and successional processes that influence the distribution and abundance of numerous other hydrophilic but difficult-to-study forest-dwelling plants and animals. Ecosystem processes such as moisture cycling, food-web dynamics, and succession, with their related structural and microclimatic variability, all affect forest biodiversity and have been shown to affect salamander populations as well. We determined the variability associated with sampling for plethodontid salamanders by estimating the coefficient of variation (CV) from available time-series data. The median coefficient of variation indicated that variation in counts of individuals among studies was much lower in plethodonticis (27%) than in lepidoptera (93%), passerine birds (57%), small mammals (69%), or other amphibians (37-46%), which means plethodontid salamanders provide an important statistical advantage over other species for monitoring long-term forest health.

  1. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    PubMed Central

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  2. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.

    PubMed

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869

  3. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica

    PubMed Central

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales. PMID:27390869

  4. Use of AIRS, OMI, MLS, and TES Data in Assessing Forest Ecosystem Exposure to Ozone

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.

    2007-01-01

    Ground-level ozone at high levels poses health threats to exposed flora and fauna, including negative impacts to human health. While concern is common regarding depletion of ozone in the stratosphere, portions of the urban and rural United States periodically have high ambient levels of tropospheric ozone on the ground. Ozone pollution can cause a variety of impacts to susceptible vegetation (e.g., Ponderosa and Jeffrey pine species in the southwestern United States), such as stunted growth, alteration of growth form, needle or leaf chlorosis, and impaired ability to withstand drought-induced water stress. In addition, Southern Californian forests with high ozone exposures have been recently subject to multiyear droughts that have led to extensive forest overstory mortality from insect outbreaks and increased incidence of wildfires. Residual forests in these impacted areas may be more vulnerable to high ozone exposures and to other forest threats than ever before. NASA sensors collect a wealth of atmospheric data that have been used recently for mapping and monitoring regional tropospheric ozone levels. AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), MLS (Microwave Limb Sounder), and TES (Tropospheric Emission Spectrometer) data could be used to assess forest ecosystem exposure to ozone. Such NASA data hold promise for providing better or at least complementary synoptic information on ground-level ozone levels that Federal agency partners can use to assess forest health trends and to mitigate the threats as needed in compliance with Federal laws and mandates. NASA data products on ozone concentrations may be able to aid applications of DSTs (decision support tools) adopted by the USDA FS (U.S. Department of Agriculture Forest Service) and by the NPS (National Park Service), such as the Ozone Calculator, in which ground ozone estimates are employed to assess ozone impacts to forested vegetation.

  5. Forest health monitoring: Field methods guide

    SciTech Connect

    Tallent-Halsell, N.G.

    1994-10-01

    This guide is intended to instruct Forest Health Monitors when collecting data on forest health indicators; site condition, growth and regeneration, crown condition, tree damage and mortality assessment, photosynthetically active radiation, vegetation structure, ozone bioindicator species, lichen community structure and field logistics. This guide contains information on measuring, observing and recording data related to the above listed forest health indicators. Pertinent quality assurance information is also included.

  6. Unresolving the "real age" of fine roots in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Brunner, Ivano; Herzog, Claude; Schöning, Ingo; Schrumpf, Marion; Schweigruber, Fritz; Trumbore, Susan; Hagedorn, Frank

    2016-04-01

    Estimating the turnover time of tree fine roots is crucial for modelling soil organic matter dynamics, but it is one of the biggest challenges in soil ecology and one of the least understood aspects of the belowground carbon cycle. The methods used - ranging from radiocarbon to ingrowth cores and root cameras (minirhizotrons) - yield very diverse pictures of fine root dynamics in forest ecosystems with turnover rates reaching from less than one year to decades. These have huge implications on estimates of carbon allocation to root growth and maintenance and on the persistence of root carbon in soils before it is decomposed or leached. We will present a new approach, involving techniques to study plant anatomy, which unravels the "real age" of fine roots. For a range of forests with diverse water and nutrient limitations located at different latitudes, we investigated the annual growth rings in the secondary xylem of thin transversal sections of fine roots belonging to tree species which form distinct growth rings. In temperate forests we find mean root "ring ages" of 1-2 years while in sub-arctic forests living fine roots can also persist for several years. The robustness of these results were tested by counting the maximum yearly growth rings in tree seedlings of known age and by counting the maximum number of growth rings of fine roots grown in ingrowth cores which were kept in temperate forest soils for one and two years. Radiocarbon estimates of mean "carbon ages", which define the time elapsed since structural carbon was fixed from the atmosphere, instead average around a decade in root systems of temperate forests (mixture of newly produced and older living roots). This dramatic difference may not be related to methodological bias, but to a time lag between C assimilation and production of a portion of fine root tissues due to the storage of older carbon components. The time lag depends very likely on tree species and environmental conditions. We further

  7. Effects of atmospheric pollutants on forests, wetlands, and agricultural ecosystems

    SciTech Connect

    Hutchinson, T.C.; Meema, K.M.

    1987-01-01

    This book reports on the knowledge of the sensitivities and responses of forests, wetlands and crops to airborne pollutants. Pollutants examined include: acidic depositions, heavy metal particulates, sulphur dioxide, ozone, nitrogen oxides, acid fogs, and mixtures of these. Various types of ecosystem stresses and physiological mechanisms pertinent to acid deposition are also discussed. Related subjects, such as the effects of ethylene on vegetation, the physiology of drought in trees, the ability of soils to generate acidity naturally, the role of Sphagnum moss in natural peatland acidity, the use of lichens as indicators of changing air quality, and the magnitude of natural emissions of reduced sulphur gases from tropical rainforests and temperate deciduous forests, are covered.

  8. Heterogeneity of hemiboreal forests in relation to ecosystems functioning.

    NASA Astrophysics Data System (ADS)

    Krasnov, Dmitrii; Noe, Steffen M.; Krasnova, Alisa; Niinemets, Ülo

    2015-04-01

    Heterogeneity is one of the key components of sustainable development of every living system. It provides the source for restocking of ecosystem living components, irregular distribution of nutrients and habitats. Main components of forest horizontal heterogeneity are related with horizontal distribution of dominant species, soil properties, topography and as natural as human disturbances. Soil as the main source for nutrients supply plays essential role in functioning terrestrial ecosystems. The understanding of spatial distribution principles of such soil properties as soil acidity, nutrients available for living organisms, soil moisture and temperature, soil density and the role of tree dominant and co-dominant species can give deeper knowledge about ecosystem functioning. Models based on this knowledge can be more precise and give possibilities to predict more exactly the behavior of ecosystem in terms of global climate changing. The aim of the project is to assess spatial distribution and changes in soil properties related to spatial distribution of vegetation, microtopography and landscape position. For this purpose we used 3D modelling of sample plots and soil profiles using photogrammetry. PhotoModelerScanner software from EOS System Inc. was used to create 3D models from photogrammetric images and GIS technology was used for soil mapping. The project was done in the frame of SMEAR Estonia.

  9. Heterogeneity of hemiboreal forests related to ecosystems functioning.

    NASA Astrophysics Data System (ADS)

    Krasnov, Dmitrii; Noe, Steffen M.; Krasnova, Alisa; Niinemets, Ülo

    2014-05-01

    Heterogeneity is one of the key components of sustainable development of every living system. Boreal and hemiboreal terrestrial systems have less biodiversity compared to tropical (or more southern). Heterogeneity provides the source for restocking of ecosystem living components, irregular distribution of nutrients, places for living (medium for living). Main components of forest horizontal heterogeneity are related to: horizontal distribution of dominant species, soil properties, topography and as natural as human disturbances. Soil as a main source for nutrient supply plays important role in the functioning of terrestrial ecosystems. The understanding of principles (regularity) of spatial distribution of such soil properties as soil acidity, available for living organisms nutrients, soil moisture and temperature, soil density and the role of tree dominant and co-dominate species can give deeper knowledge about ecosystem functioning. The models based on this knowledge can be more precise and give possibilities to predict behavior of ecosystem in terms of global climate change. The aim of the project is to assess spatial distribution and changing of soil properties related to spatial distribution of vegetation, microtopography and landscape position. The project was done in the frame of SMEAR Estonia.

  10. Value orientation and forest management: the forest health debate.

    PubMed

    Abrams, Jesse; Kelly, Erin; Shindler, Bruce; Wilton, James

    2005-10-01

    Among both forest practitioners and the general public, "forest health" has become an issue of contention. Whereas the debate over which treatments will best achieve healthy forests has been framed largely by the popular media and politicians as a struggle between industry and environmentalists, the views of the general public remain unexplored. Survey results from Oregon and Washington residents were used to assess the relationships between respondents' self-described environmental or economic priorities and the following two variables: (1) acceptability of forest management practices and (2) perceived threats to forest health. Findings indicate that active management was generally accepted by a majority of respondents regardless of their environmental or economic orientation. Disagreement emerged, however, when the appropriateness of specific management practices within specific forest conditions was examined. Additionally, strong evidence was found for a relationship between self-described environmental or economic orientation and perceived threats to forest health. Those with an environmentally oriented viewpoint tended to perceive human-caused factors as the largest threats, whereas those with an economic orientation saw naturally occurring processes as the greatest threats. These findings suggest that the issue of contention is not active management per se. Rather, the major divisions in the forest health debate are defined by specific contexts and circumstances, as well as the management practices used. PMID:16222459

  11. Forest cover associated with improved child health and nutrition: evidence from the Malawi Demographic and Health Survey and satellite data.

    PubMed

    Johnson, Kiersten B; Jacob, Anila; Brown, Molly E

    2013-08-01

    Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every year, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest cover, to explore and better understand this relationship. Our analysis finds that forest cover is associated with improved health and nutrition outcomes among children in Malawi. Children living in areas with net forest cover loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in areas with no net change in forest cover. Conversely, children living in communities with higher percentages of forest cover were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest cover over the 10-year period was associated with a 34% decrease in the odds of children experiencing diarrhea (P = .002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest cover and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystem services of forests are important factors in improving human health and nutrition outcomes. PMID:25276536

  12. Forest Cover Associated with Improved Child Health and Nutrition: Evidence from the Malawi Demographic and Health Survey and Satellite Data

    NASA Technical Reports Server (NTRS)

    Johnson, Kiersten B.; Jacob, Anila; Brown, Molly Elizabeth

    2013-01-01

    Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every year, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest cover, to explore and better understand this relationship. Our analysis finds that forest cover is associated with improved health and nutrition outcomes among children in Malawi. Children living in areas with net forest cover loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in areas with no net change in forest cover. Conversely, children living in communities with higher percentages of forest cover were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest cover over the 10-year period was associated with a 34% decrease in the odds of children experiencing diarrhea (P5.002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest cover and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystems services of forests are important factors in improving human health and nutrition outcomes.

  13. Transport and fate of trifluoroacetate in upland forest and wetland ecosystems

    SciTech Connect

    Likens, G.E.; Tartowski, S.L.; Berger, T.W.

    1997-04-29

    Although trifluoroacetate (TFA), a breakdown product of chlorofluorocarbon replacements, is being dispersed widely within the biosphere, its ecological fate is largely unknown. TFA was added experimentally to an upland, northern hardwood forest and to a small forest wetland ecosystem within the Hubbard Brook Experimental Forest in New Hampshire. Inputs of TFA were not transported conservatively through these ecosystems; instead, significant amounts of TFA were retained within the vegetation and soil compartments. More TFA was retained by the wetland ecosystem than by the upland forest ecosystem. Using simulation modeling, TFA concentrations were predicted for soil and drainage water until the year 2040. 32 refs., 5 figs., 1 tab.

  14. The role of forest floor and trees to the ecosystem scale methane budget of boreal forests

    NASA Astrophysics Data System (ADS)

    Pihlatie, Mari; Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Urban, Otmar; Machacova, Katerina

    2016-04-01

    Boreal forests are considered as a sink of atmospheric methane (CH4) due to the activity of CH4 oxidizing bacteria (methanotrophs) in the soil. This soil CH4 sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH4 production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH4 fluxes has until recently been neglected due to the perception that trees do not contribute to the CH4 exchange, and also due to difficulties in measuring the CH4 exchange from trees. Findings of aerobic CH4 formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH4 cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH4 fluxes from trees in boreal region. We measured the CH4 exchange of tree-stems and tree-canopies from pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens, Betula pendula) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH4 fluxes from trees to forest-floor CH4 exchange, both measured by static chambers, and to CH4 fluxes measured above the forest canopy by a flux gradient technique. We link the CH4 fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO2 net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH4 producing methanogens and CH4 oxidizing methanotrophs in trees or soil. The above canopy CH4 flux measurements show that the whole forest ecosystem was a small source of CH4 over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH4, with variation

  15. An Early Warning System for Identification and Monitoring of Disturbances to Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Marshall, A. A.; Hoffman, F. M.; Kumar, J.; Hargrove, W. W.; Spruce, J.; Mills, R. T.

    2011-12-01

    Forest ecosystems are susceptible to damage due to threat events like wildfires, insect and disease attacks, extreme weather events, land use change, and long-term climate change. Early identification of such events is desired to devise and implement a protective response. The mission of the USDA Forest Service is to sustain the health, diversity, and productivity of the nation's forests. However, limited resources for aerial surveys and ground-based inspections are insufficient for monitoring the large areas covered by the U.S. forests. The USDA Forest Service, Oak Ridge National Laboratory, and NASA Stennis Space Center are developing an early warning system for the continuous tracking and long-term monitoring of disturbances and responses in forest ecosystems using high resolution satellite remote sensing data. Geospatiotemporal data mining techniques were developed and applied to normalized difference vegetation index (NDVI) products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD 13 data at 250 m resolution on eight day intervals. Representative phenologically similar regions, or phenoregions, were developed for the conterminous United States (CONUS) by applying a k-means clustering algorithm to the NDVI data spanning the full eight years of the MODIS record. Annual changes in the phenoregions were quantitatively analyzed to identify the significant changes in phenological behavior. This methodology was successfully applied for identification of various forest disturbance events, including wildfire, tree mortality due to Mountain Pine Beetle, and other insect infestation and diseases, as well as extreme events like storms and hurricanes in the United States. Where possible, the results were validated and quantitatively compared with aerial and ground-based survey data available from different agencies. This system was able to identify most of the disturbances reported by aerial and ground-based surveys, and it also identified

  16. Managing forests as ecosystems: A success story or a challenge ahead?

    SciTech Connect

    Dale, V.H.

    1997-10-01

    To manage forests as ecosystems, the many values they hold for different users must be recognized, and they must be used so that those assets are not destroyed. Important ecosystem features of forests include nutrient cycling, habitat, succession, and water quality. Over time, the ways in which humans value forests have changed as forest uses have altered and as forests have declined in size and quality. Both ecosystem science and forest ecology have developed approaches that are useful to manage forests to retain their value. A historical perspective shows how changes in ecology, legislation, and technology have resulted in modern forest-management practices. However, current forest practices are still a decade or so behind current ecosystem science. Ecologists have done a good job of transferring their theories and approaches to the forest manager classroom but have done a poor job of translating these concepts into practice. Thus, the future for ecosystem management requires a closer linkage between ecologists and other disciplines. For example, the changing ways in which humans value forests are the primary determinant of forest-management policies. Therefore, if ecologists are to understand how ecosystem science can influence these policies, they must work closely with social scientists trained to assess human values.

  17. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    PubMed Central

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the

  18. Forest Forecasting with Multiple Ecosystem Models in the Boreal forests of Russia

    NASA Astrophysics Data System (ADS)

    Shuman, Jacquelyn; Tchebakova, Nadezhda; Parfenova, Elena; Soja, Amber; Shugart, Herman; Ershov, Dmitry; Holcomb, Katherine

    2014-05-01

    Forest modeling is an important tool in forecasting land cover response to changing climate and disturbance patterns, and individual tree species are an essential piece. Global simulations have demonstrated profound potential for future climate to impact the distribution of terrestrial ecosystems and individual species. A large scale bioclimatic model (RuBCliM) and a detailed individual based forest gap model (UVAFME) were used to simulate the forests across Russia for current as well as future climate for the A1B scenario from the NCAR CCSM and GEOS CCM. RuBCliM utilizes climate indices to indicate presence and response of the forest to changing conditions over time. UVAFME utilizes climate and site conditions with direct competition between individual trees within a mixed species forest to track forest response over time. Following assessment of modelling for current climate against inventory data, the models are used to forecast the effects of changing climate on the distribution of forests and species. Comparisons measured with Kappa statistic between the models and forest species distribution as shown by the models and inventory data indicates fair to good agreement for species of Pinus slyvestris, Abies sibirica, Picea spp., Pinus sibirica, and Larix spp. (Kappa values from 0.58 to 0.45). For future climate conditions both models indicate a dramatic shift in the dominant biomes of the region and a significant change in biomass in response to changing climate conditions for the NCAR CCSM scenario. Agreement between these different modelling techniques provides increased confidence in the projected forest response to changing climate.

  19. Overlaps among phenological phases in flood plain forest ecosystem

    NASA Astrophysics Data System (ADS)

    Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk

    2015-04-01

    There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.

  20. Storm Effects on Net Ecosystem Productivity in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Vestin, Patrik; Grelle, Achim; Lagergren, Fredrik; Hellström, Margareta; Langvall, Ola; Lindroth, Anders

    2010-05-01

    Regional carbon budgets are to some extent determined by disturbance in ecosystems. Disturbance is believed to be partly responsible for the large inter-annual variability of the terrestrial carbon balance. When neglecting anthropogenic disturbance, forest fires have been considered the most important kind of disturbance. However, also insect outbreaks and wind-throw may be major factors in regional carbon budgets. The effects of wind-throw on CO2 fluxes in boreal forests are not well known due to lack of data. Principally, the reduced carbon sequestration capacity, increased substrate availability and severe soil perturbation following wind-throw are expected to result in increased CO2 fluxes from the forest to the atmosphere. In January 2005, the storm Gudrun hit Sweden, which resulted in approx. 66 × 106m3storm-felled stem wood distributed over an area of approx. 272 000 ha. Eddy covariance flux measurements started at storm-felled areas in Asa and Toftaholm in central Sweden during summer 2005. Data from the first months suggests increased CO2 fluxes by a factor of 2.5-10, as compared to normal silviculture (clear-cutting). An important question is how long such enhanced CO2 fluxes persist. The BIOME-BGC model will be calibrated against measured CO2 fluxes from both sites for 2005 through 2009. Modeled data will be used to fill gaps in the data sets and annual carbon balances will be calculated. Data from Asa and Toftaholm will be presented at the conference.

  1. Assessing the ecosystem service potential of Tucson AZ's urban forest

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.

    2011-12-01

    canopy photos) to asses growth of the trees in the urban environment. These growth rates, and associated ecosystem services (C-sequestration, energy savings, pollution mitigation, etc.) are evaluated using US Forest Service models (Tree Carbon Calculator and i-tree software) to determine how the performance of trees in the Tucson urban environment perform vs. model predictions. We hypothesize that the models overestimate tree performance as Tucson differs in water availability relative to the cities the model was parameterized in (e.g. Glendale), both in terms of soil water holding capacities and also city "water culture." This preliminary study will provide a data collection framework for a citizen science urban forestry project which will provide data to improve environmental decision making related to the interaction of plants, water, and energy balance in this arid city.

  2. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems.

    PubMed

    Sicard, Pierre; Augustaitis, Algirdas; Belyazid, Salim; Calfapietra, Carlo; de Marco, Alessandra; Fenn, Mark; Bytnerowicz, Andrzej; Grulke, Nancy; He, Shang; Matyssek, Rainer; Serengil, Yusuf; Wieser, Gerhard; Paoletti, Elena

    2016-06-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and

  3. FOREST ECOLOGY. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models.

    PubMed

    Anderegg, W R L; Schwalm, C; Biondi, F; Camarero, J J; Koch, G; Litvak, M; Ogle, K; Shaw, J D; Shevliakova, E; Williams, A P; Wolf, A; Ziaco, E; Pacala, S

    2015-07-31

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of stem growth in trees after severe drought at 1338 forest sites across the globe, comprising 49,339 site-years, and compared the results with simulated recovery in climate-vegetation models. We found pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1 to 4 years after severe drought. Legacy effects were most prevalent in dry ecosystems, among Pinaceae, and among species with low hydraulic safety margins. In contrast, limited or no legacy effects after drought were simulated by current climate-vegetation models. Our results highlight hysteresis in ecosystem-level carbon cycling and delayed recovery from climate extremes. PMID:26228147

  4. Ecosystem Health Assessment in the Pearl River Estuary of China by Considering Ecosystem Coordination

    PubMed Central

    Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng

    2013-01-01

    Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3–16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health. PMID:23894670

  5. Passive nighttime warming facility for forest ecosystem research.

    PubMed

    Luxmoore, R. J.; Hanson, P. J.; Beauchamp, J. J.; Joslin, J. D.

    1998-01-01

    A nighttime warming experiment is proposed. Over the last four decades a significant rise in nighttime minimum temperature has been determined from analysis of meteorological records from a global distribution of locations. The experiment involves nighttime deployment of infrared (IR) reflecting curtains around four sides of a forest canopy and across the top of the forest to mimic the top-down warming effect of cloud cover. The curtains are deployed with cable and pulley systems mounted on a tower and scaffolding structure built around the selected forest site. The trunk space is not enclosed except as an optional manipulation. The curtains reflect long-wave radiation emitted from the forest and ground back into the forest warming the trees, litter, and soil. Excellent infrared reflection can be obtained with commercially available fabrics that have aluminum foil bonded to one side. A canopy warming of 3 to 5 degrees C is expected on cloudless nights, and on cloudy nights, a warming of 1 to 3 degrees C is anticipated relative to a control plot. The curtains are withdrawn by computer control during the day and also at night during periods with precipitation or excessive wind. Examples of hypothesized ecosystem responses to nighttime warming include: (1) increase in tree maintenance respiration (decreasing carbon reserves and ultimately tree growth), (2) increase in the length of the growing season (increasing growth), (3) increase in soil respiration, (4) increase in litter decomposition, (5) increase in mineralization of N and other nutrients from soil organic matter, (6) increase in nutrient uptake (increasing growth), and (7) increase in N immobilization in litter. Hypothesis 1 has the opposite consequence for tree growth to Hypotheses 2 and 6, and thus opposite consequences for the feedback regulation that vegetation has on net greenhouse gas releases to the atmosphere. If Hypothesis 1 is dominant, warming could lead to more warming from the additional CO(2

  6. Significant Increase in Ecosystem C Can Be Achieved with Sustainable Forest Management in Subtropical Plantation Forests

    PubMed Central

    Wei, Xiaohua; Blanco, Juan A.

    2014-01-01

    Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500–2500 trees ha−1. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir – Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr−1, offsetting 1.9% of China’s annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber

  7. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    PubMed

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  8. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems

    PubMed Central

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  9. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests.

    PubMed

    Susaeta, Andres; Adams, Damian C; Carter, Douglas R; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine (Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production. PMID:27263100

  10. Climate Change and Ecosystem Services Output Efficiency in Southern Loblolly Pine Forests

    NASA Astrophysics Data System (ADS)

    Susaeta, Andres; Adams, Damian C.; Carter, Douglas R.; Dwivedi, Puneet

    2016-09-01

    Forests provide myriad ecosystem services that are vital to humanity. With climate change, we expect to see significant changes to forests that will alter the supply of these critical services and affect human well-being. To better understand the impacts of climate change on forest-based ecosystem services, we applied a data envelopment analysis method to assess plot-level efficiency in the provision of ecosystem services in Florida natural loblolly pine ( Pinus taeda L.) forests. Using field data for n = 16 loblolly pine forest plots, including inputs such as site index, tree density, age, precipitation, and temperatures for each forest plot, we assessed the relative plot-level production of three ecosystem services: timber, carbon sequestered, and species richness. The results suggested that loblolly pine forests in Florida were largely inefficient in the provision of these ecosystem services under current climatic conditions. Climate change had a small negative impact on the loblolly pine forests efficiency in the provision of ecosystem services. In this context, we discussed the reduction of tree density that may not improve ecosystem services production.

  11. ECOSYSTEM SERVICES OF SECONDARY FORESTS IN THE MATA ATLÂNTICA OF BRAZIL

    EPA Science Inventory

    Land use history can be an important driver of many ecosystem services. Carbon storage and species richness of primary forests likely will exceed that of secondary forests. Productivity of secondary forests may be limited by nitrogen and/or phosphorus because of nutrient re...

  12. USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH

    SciTech Connect

    Wike, L; Doug Martin, D; Michael Paller, M; Eric Nelson, E

    2007-01-12

    Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here. This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.

  13. Microbial denitrification dominates nitrate losses from forest ecosystems.

    PubMed

    Fang, Yunting; Koba, Keisuke; Makabe, Akiko; Takahashi, Chieko; Zhu, Weixing; Hayashi, Takahiro; Hokari, Azusa A; Urakawa, Rieko; Bai, Edith; Houlton, Benjamin Z; Xi, Dan; Zhang, Shasha; Matsushita, Kayo; Tu, Ying; Liu, Dongwei; Zhu, Feifei; Wang, Zhenyu; Zhou, Guoyi; Chen, Dexiang; Makita, Tomoko; Toda, Hiroto; Liu, Xueyan; Chen, Quansheng; Zhang, Deqiang; Li, Yide; Yoh, Muneoki

    2015-02-01

    Denitrification removes fixed nitrogen (N) from the biosphere, thereby restricting the availability of this key limiting nutrient for terrestrial plant productivity. This microbially driven process has been exceedingly difficult to measure, however, given the large background of nitrogen gas (N2) in the atmosphere and vexing scaling issues associated with heterogeneous soil systems. Here, we use natural abundance of N and oxygen isotopes in nitrate (NO3 (-)) to examine dentrification rates across six forest sites in southern China and central Japan, which span temperate to tropical climates, as well as various stand ages and N deposition regimes. Our multiple stable isotope approach across soil to watershed scales shows that traditional techniques underestimate terrestrial denitrification fluxes by up to 98%, with annual losses of 5.6-30.1 kg of N per hectare via this gaseous pathway. These N export fluxes are up to sixfold higher than NO3 (-) leaching, pointing to widespread dominance of denitrification in removing NO3 (-) from forest ecosystems across a range of conditions. Further, we report that the loss of NO3 (-) to denitrification decreased in comparison to leaching pathways in sites with the highest rates of anthropogenic N deposition. PMID:25605898

  14. Microbial denitrification dominates nitrate losses from forest ecosystems

    PubMed Central

    Fang, Yunting; Koba, Keisuke; Makabe, Akiko; Takahashi, Chieko; Zhu, Weixing; Hayashi, Takahiro; Hokari, Azusa A.; Urakawa, Rieko; Bai, Edith; Houlton, Benjamin Z.; Xi, Dan; Zhang, Shasha; Matsushita, Kayo; Tu, Ying; Liu, Dongwei; Zhu, Feifei; Wang, Zhenyu; Zhou, Guoyi; Chen, Dexiang; Makita, Tomoko; Toda, Hiroto; Liu, Xueyan; Chen, Quansheng; Zhang, Deqiang; Li, Yide; Yoh, Muneoki

    2015-01-01

    Denitrification removes fixed nitrogen (N) from the biosphere, thereby restricting the availability of this key limiting nutrient for terrestrial plant productivity. This microbially driven process has been exceedingly difficult to measure, however, given the large background of nitrogen gas (N2) in the atmosphere and vexing scaling issues associated with heterogeneous soil systems. Here, we use natural abundance of N and oxygen isotopes in nitrate (NO3−) to examine dentrification rates across six forest sites in southern China and central Japan, which span temperate to tropical climates, as well as various stand ages and N deposition regimes. Our multiple stable isotope approach across soil to watershed scales shows that traditional techniques underestimate terrestrial denitrification fluxes by up to 98%, with annual losses of 5.6–30.1 kg of N per hectare via this gaseous pathway. These N export fluxes are up to sixfold higher than NO3− leaching, pointing to widespread dominance of denitrification in removing NO3− from forest ecosystems across a range of conditions. Further, we report that the loss of NO3− to denitrification decreased in comparison to leaching pathways in sites with the highest rates of anthropogenic N deposition. PMID:25605898

  15. Cadmium in forest ecosystems around lead smelters in Missouri.

    PubMed Central

    Gale, N L; Wixson, B G

    1979-01-01

    The development of Missouri's new lead belt within the past decase has provided an excellent opportunity to study the dissemination and effects of heavy metals in a deciduous forest ecosystem. Primary lead smelters within the new lead belt have been identified as potential sources of cadmium as well as lead, zinc, and copper. Sintering and blast furnace operations tend to produce significant quantities of small particulates highly enriched in cadmium and other heavy metals. At one smelter, samples of stack particulate emissions indicate that as ms accompanied by 0.44 lb zinc, 4.66 lb lead, and 0.01 lb copper/hr. These point-source emissions, as well as a number of other sources of fugitive (wind blown) and waterborne emissions contribute to a significant deposition of cadmium in the surrounding forest and stream beds. Mobilization of vagrant heavy metals may be significantly increased by contact of baghouse dusts or scrubber slurries with acidic effluents emanating from acid plants designed to produce H2SO4 as a smelter by-product. Two separate drainage forks within the Crooked Creek watershed permit some comparisons of the relative contributions of cadmium by air-borne versus water-borne contaminants. Cadmium and other heavy metals have been found to accumulate in the forest litter and partially decomposed litter along stream beds. Greater solubility, lower levels of complexation with organic ligands in the litter, and greater overall mobility of cadmium compared with lead, zinc, and copper result in appreciable contributions of dissolved cadmium to the watershed runoff. The present paper attempts to define the principle sources and current levels of heavy metal contamination and summarizes the efforts undertaken by the industry to curtail the problem. PMID:488037

  16. The human microbiome: ecosystem resilience and health

    PubMed Central

    Relman, David A.

    2012-01-01

    Given the importance of the microbiome for human health, the stability of the microbiome and its response to disturbance are crucial issues. Yet we have an insufficient understanding of them. Early data suggest that there is relative stability in the microbial ecosystem of adults in the absence of gross perturbation, and that long-term stability of human communities is not maintained by inertia, but by the action of restoring forces within a dynamic system. After brief exposures to some antibiotics, there is an immediate and substantial perturbation, and at least a partial recovery of taxonomic composition. Responses to antibiotics are individualized, and influenced by prior experience with the same antibiotic. These findings suggest that the human microbiome has properties of resilience. Besides serving to reveal critical underlying functional attributes, microbial interactions, and keystone species within the indigenous microbiota, responses to disturbance may have value in predicting future instability and disease, and in managing the human microbial ecosystem. PMID:22861804

  17. Ecological health of river basins in forested regions of eastern Washington and Oregon. Forest Service general technical report

    SciTech Connect

    Wissmar, R.C.; Smith, J.E.; McIntosh, B.A.; Li, H.W.; Reeves, G.H.

    1994-02-01

    A retrospective examination of the history of the cumulative influences of past land water uses on the ecological health of select river basins in forest regions of eastern Washington and Oregon indicates the loss of fish and riparian habitat diversity and quality since the 19th century. The study focuses on impacts of timber harvest, fire management, live stock grazing, mining and irrigation management practices on stream and riparian ecosystems. An examination of past environmental management approaches for assessing stream, riparian, and watershed conditions in forest regions shows numerous advantages and shortcomings. Rcommendations for ecosystem management with emphasis on monitoring and restoration activities are provided.

  18. Forest site-quality estimation using Forest Ecosystem Classification in Northwestern Ontario.

    PubMed

    Carmean, W H

    1996-01-01

    Site index for jack pine, black spruce and trembling aspen was found to be poorly related to soil types described in the Northwestern Ontario Forest Ecosystem Classification (NWO FEC). Statistical analyses showed that average site indices for most soil types and groupings of soil types were not significantly different from each other.Site index varies greatly within presently defined NWO FEC soil types because certain soil and topographic features that are closely related to site index vary greatly within soil types or are not well described by the NWO FEC soil types. These critical soil features have been identified by soil-site studies that show features most closely related to site index usually are surface soil features found within the effective rooting zone of forest trees. These critical features include depth to bedrock, depth to root restricting soil layers, and coarse fragment content and texture of surface soil horizons.Site-quality research in Northwestern Ontario is closely integrated with the NWO FEC program, thus future NWO FEC soil classifications probably will use results from our soil-site research as a basis for soil type revisions. The result will be future soil types that are more closely related to forest site quality and thus to the capability of forest land to produce tree growth. PMID:24198025

  19. Simulating net ecosystem productivity and the sensitivity of a sub-arctic boreal forest ecosystem

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Harazono, Y.; Kim, Y.; Tanaka, N.

    2005-12-01

    BIOME-BGC was used to examine how air temperature and precipitation affect NEP in a sub-arctic black spruce forest. The model was tuned using data from the eddy correlation measurement site in UAF black spruce forest during 2003 and 2004. The climate dataset of Fairbanks airport between 1949 and 2004 was used for the model spin-up. The model almost reproduced the observed NEE, in which climate in 2003 was normal and that in 2004 was drought in summer. The model, however, failed to simulate the late winter NEE, during which obvious daytime uptake were observed under extreme low temperature. Annual simulation of GPP and ecosystem respiration was 2.2 and 1.8 kg CO2 m-2 yr-1 in 2003 and 2.4 and 1.9 kg CO2 m-2 yr-1 in 2004. While warm growing season temperature enhanced the photosynthesis and respiration in 2004, significant drought in August 2004 were restricted both the photosynthesis and heterotrophic respiration. Simulated annual NEE was 0.2 kg CO2 m-2 yr-1 in 2003 and 0.3 kg CO2 m-2 yr-1 in 2004. The simulation explored the impact of seasonal warmer (+5oC), wetter (120% of precipitation) and drier (80% of precipitation) spells on net ecosystem productivity, comparing the long term Fairbanks weather between 1980 and 2000. Wetter condition in either season did not significantly affect annual NEP. While drought summer decreased annual NEP by 30% mainly due to reduction in GPP by 9%, low snowfall winter also reduced the annual NEP by 19%, in which low snow water brought drought stress in following summer and then suppressed both GPP to 93% and ecosystem respiration to 96%. Warmer summer and autumn decreased annual NEP to 37% and 65%. In this case, GPP did not increase and maintenance and heterotrophic respiration were enhanced to 120% and 126%, respectively, in warmer summer and 103% and 107%, respectively, in warmer autumn. The simulation unambiguously showed productivity of the sub-arctic boreal forest was significantly sensitive to warmer temperature in summer and

  20. Avian wildlife as sentinels of ecosystem health.

    PubMed

    Smits, Judit E G; Fernie, Kimberly J

    2013-05-01

    Birds have been widely used as sentinels of ecosystem health reflecting changes in habitat quality, increased incidence of disease, and exposure to and effects of chemical contaminants. Numerous studies addressing these issues focus on the breeding period, since hormonal, behavioural, reproductive, and developmental aspects of the health can be observed over a relatively short time-span. Many body systems within individuals are tightly integrated and interdependent, and can be affected by contaminant chemicals, disease, and habitat changes in complex ways. Animals higher in the food web will reflect cumulative effects of multiple stressors. Such features make birds ideal indicators for assessing environmental health in areas of environmental concern. Five case studies are presented, highlighting the use of different species which have provided insight into ecosystem sustainability, including (i) the consequences of anthropogenic disturbances of sagebrush habitat on the greater northern sage grouse Centrocercus urophasianus; (ii) the high prevalence of disease in very specific passerine species in the Canary Islands closely paralleling deterioration of formerly productive desert habitat and ensuing interspecific stressors; (iii) fractures, abnormal bone structure, and associated biochemical aberrations in nestling storks exposed to acidic tailings mud from a dyke rupture at an iron pyrite mine near Sevilla, Spain; (iv) newly presented data demonstrating biochemical changes in nestling peregrine falcons Falco peregrinus and associations with exposure to major chemical classes in the Great Lakes Basin of Canada; and (v) the variability in responses of tree swallows Tachycineta bicolor to contaminants, biological and meteorological challenges when breeding in the Athabasca oil sands. PMID:23260372

  1. Analysis of zone of vulnurability and impact of forest fires in forest ecosystems in north algeria by susing remote sensing

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2010-05-01

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.

  2. Tree diversity does not always improve resistance of forest ecosystems to drought.

    PubMed

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future. PMID:25267642

  3. Tree diversity does not always improve resistance of forest ecosystems to drought

    PubMed Central

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien

    2014-01-01

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ13CS). Δδ13CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future. PMID:25267642

  4. AN ENERGY SYSTEMS PERPECTIVE OF ECOLOGICAL INTEGRITY AND ECOSYSTEM HEALTH

    EPA Science Inventory

    The integrity and health of society's life-supporting ecosystems establishes a fundamental constraint on economic growth and development. Energy Systems Theory provides a theoretical basis for defining, measuring and interpreting the concepts of ecological integrity and ecosystem...

  5. [A review on carbon and water interactions of forest ecosystem and its impact factors].

    PubMed

    Song, Chun-lin; Sun, Xiang-yang; Wang, Gen-xu

    2015-09-01

    Interaction between carbon and water in forest ecosystem is a coupling process in terrestrial ecosystem, which is an indispensable aspect for the study of forest carbon pool, ecohydrological processes and the responses to global change. In the context of global change, the interaction and coupling of carbon and water in forest ecosystem has attracted much attention among scientists. In this paper, we reviewed the process mechanism of forest carbon and water relationships based on previous studies, which consisted of advance in forest water use efficiency, carbon and water interactions at different scales, scaling, and model simulation. We summed up the factors affecting for- est water and carbon interaction, including water condition, carbon dioxide enrichment, warming, nitrogen deposition, ozone concentration variation, solar radiation, and altitudinal gradients. Finally, we discussed the problems in the previous studies, and prospected the possible future research fields, among which we thought the inherent dynamics mechanism and scaling of forest carbon and water interactions should be enhanced. PMID:26785576

  6. Forest restoration and forest communities: have local communities benefited from forest service contracting of ecosystem management?

    PubMed

    Moseley, Cassandra; Reyes, Yolanda E

    2008-08-01

    Conservation-based development programs have sought to create economic opportunities for people negatively impacted by biological diversity protection. The USDA Forest Service, for example, developed policies and programs to create contracting opportunities for local communities to restore public lands to replace jobs lost from reduced timber harvest. This article examines 12 years of Forest Service land management contracting in western Oregon, Washington, and northern California to evaluate if contractors located in communities near national forests have been awarded more land management contracts and contract value over time. We find that land management contracting spending has declined dramatically and, once we control for intervening factors, we find that local contractors have received a smaller proportion of land management contracts over time. PMID:18521660

  7. Forest Restoration and Forest Communities: Have Local Communities Benefited from Forest Service Contracting of Ecosystem Management?

    NASA Astrophysics Data System (ADS)

    Moseley, Cassandra; Reyes, Yolanda E.

    2008-08-01

    Conservation-based development programs have sought to create economic opportunities for people negatively impacted by biological diversity protection. The USDA Forest Service, for example, developed policies and programs to create contracting opportunities for local communities to restore public lands to replace jobs lost from reduced timber harvest. This article examines 12 years of Forest Service land management contracting in western Oregon, Washington, and northern California to evaluate if contractors located in communities near national forests have been awarded more land management contracts and contract value over time. We find that land management contracting spending has declined dramatically and, once we control for intervening factors, we find that local contractors have received a smaller proportion of land management contracts over time.

  8. Urban Ecosystem Health Assessment: Perspectives and Chinese Practice

    PubMed Central

    Su, Meirong; Zhang, Yan; Liu, Gengyuan; Xu, Linyu; Zhang, Lixiao; Yang, Zhifeng

    2013-01-01

    The concept of ecosystem health is a way to assess the holistic operations and development potential of urban ecosystems. Accelerated by the practical need for integrated ecosystem management, assessment of urban ecosystem health has been greatly developed and extensively applied in urban planning and management. Development is aimed at comprehensively evaluating the performance of urban ecosystems, identifying the limiting factors, and providing suggestions for urban regulation. The time has come for reviewing and establishing an instructional framework for urban ecosystem health assessment to shed light on certain essential issues of urban ecosystem health. Based on literature reviews and series of practice, a holistic framework of urban ecosystem health assessment is proposed. The framework covers the essential elements of urban ecosystem health and integrates three dimensions: theoretical foundation, assessment method, and practical application. Concrete assessment methods are also established, focusing on both external performance and internal metabolic processes. The practice of urban ecosystem health assessment in China is illustrated to briefly demonstrate the application of the established framework and methods. Some prospects are discussed for urban ecosystem health assessment and its application in urban planning and management. PMID:24201094

  9. Urban ecosystem health assessment: perspectives and Chinese practice.

    PubMed

    Su, Meirong; Zhang, Yan; Liu, Gengyuan; Xu, Linyu; Zhang, Lixiao; Yang, Zhifeng

    2013-11-01

    The concept of ecosystem health is a way to assess the holistic operations and development potential of urban ecosystems. Accelerated by the practical need for integrated ecosystem management, assessment of urban ecosystem health has been greatly developed and extensively applied in urban planning and management. Development is aimed at comprehensively evaluating the performance of urban ecosystems, identifying the limiting factors, and providing suggestions for urban regulation. The time has come for reviewing and establishing an instructional framework for urban ecosystem health assessment to shed light on certain essential issues of urban ecosystem health. Based on literature reviews and series of practice, a holistic framework of urban ecosystem health assessment is proposed. The framework covers the essential elements of urban ecosystem health and integrates three dimensions: theoretical foundation, assessment method, and practical application. Concrete assessment methods are also established, focusing on both external performance and internal metabolic processes. The practice of urban ecosystem health assessment in China is illustrated to briefly demonstrate the application of the established framework and methods. Some prospects are discussed for urban ecosystem health assessment and its application in urban planning and management. PMID:24201094

  10. Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Yang, Yuanhe; Li, Pin; Shen, Haihua; Fang, Jingyun

    2014-09-01

    Forest ecosystems function as a significant carbon sink for atmospheric carbon dioxide. However, our understanding of global patterns of forest carbon fluxes remains controversial. Here we examined global patterns and environmental controls of forest carbon balance using biometric measurements derived from 243 sites and synthesized from 81 publications around the world. Our results showed that both production and respiration increased with mean annual temperature and exhibited unimodal patterns along a gradient of precipitation. However, net ecosystem production (NEP) initially increased and subsequently declined along gradients of both temperature and precipitation. Our results also indicated that ecosystem production increased during stand development but eventually leveled off, whereas respiration was significantly higher in mature and old forests than in young forests. The residual variation of carbon flux along climatic and age gradients might be explained by other factors such as atmospheric CO2 elevation and disturbances (e.g., forest fire, storm damage, and selective harvest). Heterotrophic respiration (Rh) was positively associated with net primary production (NPP), but the Rh-NPP relationship differed between natural and planted forests: Rh increased exponentially with NPP in natural forests but tended toward saturation with increased NPP in planted forests. Comparison of biometric measurements with eddy covariance observations revealed that ecosystem carbon balance derived from the latter generated higher overall NEP estimates. These results suggest that the eddy covariance observations may overestimate the strength of carbon sinks, and thus, biometric measurements need to be incorporated into global assessments of the forest carbon balance.

  11. Biomass carbon pool of forest ecosystems and carbon-containing gas emission from biomass burning in China

    SciTech Connect

    Xiaoke Wang; Yahui Zhuang; Zongwei Feng

    1997-12-31

    With the increasing study on global climatic change, scientists have paid more attention to the role of forest ecosystem in global carbon cycle, especially to the uncertainty of atmospheric carbon source and sink involved in forest ecosystems. However, to date it is lack of the information of forest carbon cycle in China for many studies of global carbon cycle. By investigations of forest ecosystem biomass and experiment of chamber combustion, in this paper it was estimated that the carbon pool of forest ecosystem and the carbon-containing gases released from forest biomass burning in China.

  12. Fast rendering of forest ecosystems with dynamic global illumination

    NASA Astrophysics Data System (ADS)

    Steele, Jay Edward

    Real-time rendering of large-scale, forest ecosystems remains a challenging problem, in that important global illumination effects, such as leaf transparency and inter-object light scattering, are difficult to capture, given tight timing constraints and scenes that typically contain hundreds of millions of primitives. We propose a new lighting model, adapted from a model previously used to light convective clouds and other participating media, together with GPU ray tracing, in order to achieve these global illumination effects while maintaining near real-time performance. The lighting model is based on a lattice-Boltzmann method in which reflectance, transmittance, and absorption parameters are taken from measurements of real plants. The lighting model is solved as a preprocessing step, requires only seconds on a single GPU, and allows dynamic lighting changes at run-time. The ray tracing engine, which runs on one or multiple GPUs, combines multiple acceleration structures to achieve near real-time performance for large, complex scenes. Both the preprocessing step and the ray tracing engine make extensive use of NVIDIA's Compute Unified Device Architecture (CUDA).

  13. Ca cycling and isotopic fluxes in forested ecosystems in Hawaii

    USGS Publications Warehouse

    Wiegand, B.A.; Chadwick, O.A.; Vitousek, P.M.; Wooden, J.L.

    2005-01-01

    Biogeochemical processes fractionate Ca isotopes in plants and soils along a 4 million year developmental sequence in the Hawaiian Islands. We observed that plants preferentially take up 40Ca relative to 44Ca, and that biological fractionation and changes in the relative contributions from volcanic and marine sources produce a significant increase in 44Ca in soil exchangeable pools. Our results imply moderate fluxes enriched in 44Ca from strongly nutrient-depleted old soils, in contrast with high 40Ca fluxes in young and little weathered environments. In addition, biological fractionation controls divergent geochemical pathways of Ca and Sr in the plant-soil system. While Ca depletes progressively with increasing soil age, Sr/Ca ratios increase systematically. Sr isotope ratios provide a valuable tracer for provenance studies of alkaline earth elements in forested ecosystems, but its usefulness is limited when deciphering biogeochemical processes involved in the terrestrial Ca cycle. Ca isotopes in combination with Sr/ Ca ratios reveal more complex processes involved in the biogeochemistry of Ca and Sr. Copyright 2005 by the American Geophysical Union.

  14. Climate Change and Ecosystem Disruption: The Health Impacts of the North American Rocky Mountain Pine Beetle Infestation

    PubMed Central

    Remais, Justin V.; Hess, Jeremy

    2012-01-01

    In the United States and Canada, pine forest ecosystems are being dramatically affected by an unprecedented pine beetle infestation attributed to climate change. Both decreased frequency of extremely cold days and warmer winter temperature averages have led to an enphytotic devastating millions of acres of pine forest. The associated ecosystem disruption has the potential to cause significant health impacts from a range of exposures, including increased runoff and water turbidity, forest fires, and loss of ecosystem services. We review direct and indirect health impacts and possible prevention strategies. The pine beetle infestation highlights the need for public health to adopt an ecological, systems-oriented view to anticipate the full range of potential health impacts from climate change and facilitate effective planned adaptation. PMID:22420788

  15. A decision framework for identifying models to estimate forest ecosystem services gains from restoration

    USGS Publications Warehouse

    Christin, Zachary; Bagstad, Kenneth J.; Verdone, Michael

    2016-01-01

    Restoring degraded forests and agricultural lands has become a global conservation priority. A growing number of tools can quantify ecosystem service tradeoffs associated with forest restoration. This evolving “tools landscape” presents a dilemma: more tools are available, but selecting appropriate tools has become more challenging. We present a Restoration Ecosystem Service Tool Selector (RESTS) framework that describes key characteristics of 13 ecosystem service assessment tools. Analysts enter information about their decision context, services to be analyzed, and desired outputs. Tools are filtered and presented based on five evaluative criteria: scalability, cost, time requirements, handling of uncertainty, and applicability to benefit-cost analysis. RESTS uses a spreadsheet interface but a web-based interface is planned. Given the rapid evolution of ecosystem services science, RESTS provides an adaptable framework to guide forest restoration decision makers toward tools that can help quantify ecosystem services in support of restoration.

  16. Effects of productivity on biodiversity in forest ecosystems across the United States and China.

    PubMed

    Liang, Jingjing; Watson, James V; Zhou, Mo; Lei, Xiangdong

    2016-04-01

    In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem-wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground-sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump-shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity-biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts. PMID:26954431

  17. Climate change effects on groundwater dependent temperate forest ecosystems

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Brolsma, R. J.; van Beek, R. L.; van Vliet, M. T.

    2008-12-01

    Models developed to predict the influence of changing climate on ecosystems often concentrate on vegetation in connection with soil moisture, but usually omit groundwater. However in temperate climate zones, groundwater can have a profound effect on the reaction of vegetation to climate change, because it strongly influences the spatio-temporal distribution of soil moisture and therefore water and oxygen stress of vegetation. Here we focus on the qualitative and quantitative effects of climate change on the zonation of vegetation and groundwater dynamics along a hill slope. To study this we developed a fully coupled hydrological-vegetation model, for a groundwater influenced temperate forest ecosystem. The vegetation model is based on the carbon assimilation model of Farquhar et al. (1980) and the extension of Daly et al. (2004), which includes transpiration of vegetation and accounts for the response to low soil moisture content. We modified this model to account for vegetation response to high soil moisture contents due to high groundwater levels, and we extended the model to include light competition, phenology and vegetation growth. To simulate the hydrological system the saturated-unsaturated flow model by van Beek (2002) is used. The coupled model was first compared to measured semi-hourly flux tower data of H2O and CO2, showing good results. Than simulation runs of 1000 years were performed to study the effect of climate change on soil water, groundwater and vegetation. We performed simulation runs with competition between wet and dry adapted species under current conditions and after climate change. Meteorological time series for the 2100 climate (SRESA2) were obtained from downscaling 6 different regional climate model runs from the ENSEMBLES project with a stochastic weather generator (Kilby et al., 2007). Results show that in the zones were the groundwater system is close to the surface, climate change causes large shifts in vegetation zonation of the

  18. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective

    PubMed Central

    Morris, Rebecca J.

    2010-01-01

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318

  19. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective.

    PubMed

    Morris, Rebecca J

    2010-11-27

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity. PMID:20980318

  20. Simulation of the effect of air pollution on forest ecosystems in a region

    SciTech Connect

    Tarko, A.M.; Bykadorov, A.V.; Kryuchkov, V.V. ||

    1995-03-01

    This article describes a model of air pollution effects on spruce in forests of the northern taiga regions which have been exposed to air pollution from a large metallurgical industrial complex. Both the predictions the model makes about forest ecosystem degradation zones and the limitations of the model are discussed. 5 refs., 1 fig.

  1. IMPACTS OF AIR POLLUTION AND CLIMATE CHANGE ON FOREST ECOSYSTEMS - EMERGING RESEARCH NEEDS

    EPA Science Inventory

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure - Effects of Air Pollution, Climate Change and Urban Development", September 10-16, 2006, Riverside, CA, USA are summarized. Tropospheric ozone is st...

  2. Colville study: Wood utilization for ecosystem management. Preliminary results of study of product potential from small-diameter stands. Forest Service research paper

    SciTech Connect

    Willits, S.; Barbour, R.J.; Tesch, S.; Ryland, D.; McNeel, J.

    1996-12-01

    The Colville Study was developed in 1994 to identify and evaluate a series of management options for achieving ecosystem objectives in dense stands of small diameter trees while also producing wood products. The Colville National Forest selected the Rocky II Timber Sale as an example of this type of stand that needed management to achieve the following goals: (1) create late successional forest structure, (2) decrease forest health risk from fire, insects, and disease, (3) improve wildlife habitat by providing large green trees and snags, and (4) improve stand aesthetics by decreasing stand density. The Colville Study was divided into four technical focus areas: Silviculture and Ecology, Forest Operations, Timber Conversion, and Economics.

  3. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: the complexity challenge.

    PubMed

    Kuuluvainen, Timo

    2009-09-01

    Recent research in northern Europe has revised many long-held conceptions of the complexity of forest ecosystems and their natural structure and dynamics. The unveiling of the picture of natural characteristics of forest ecosystem structure and dynamics reveals much more diversity than its traditional complement, highlighting the importance of non-stand-replacing disturbances and the associated heterogeneous and dynamic stand and landscape structures. This increasing detail is a reflection of a fundamental change in the ecological understanding of forests as complex ecosystems. In particular, the generalization that the boreal forest is regulated by fierce stand-replacing disturbances, leading to the dominance of even-aged stand successions, has been disproved. However, this misconception has, until now, been repeated and used to legitimize the dominant practice of clear-cutting as a nature-based way to manage the forest. The practical conclusion of this review paper is that the dominating forest management model in North European boreal forests, which is based on the clear-cut harvesting of timber and growing of even-aged stands, is in contradiction with the variable and complex characteristics of the disturbance-succession cycle observed in naturally dynamic forests with negligible human impact. As a consequence, the structural variation of the boreal forest under management has been grossly truncated compared with its natural range. Because of this, and due to the scarcity of protection areas in many regions of northern Europe, it is not likely that the conservation of native biodiversity and ecological sustainability will be attained, assuming that the model of forest management remains unchanged. Thus, there is a strong incentive for change in the prevailing forest management model toward one that is based on natural ecosystem dynamics and an understanding of forests as complex systems. PMID:19860154

  4. [Forest ecosystem services and their ecological valuation--a case study of tropical forest in Jianfengling of Hainan Island].

    PubMed

    Xiao, H; Ouyang, Z; Zhao, J; Wang, X

    2000-08-01

    This paper attempts to present forest ecosystem services and their indirect economic value of Jianfengling tropical forest in Hainan Island. The results show that average annual integrated ecosystem service value of Jianfengling tropical forest, which covers 44667.00 hm2, adds up to 664.38 million yuan(Chinese RMB), of which, about 71.64 million yuan is of the output of standing trees and other forest products, about 394.29 million yuan of water-holding, about 2.47 million yuan of soil conservation against erosion, about 13.16 million yuan of carbon fixation for reducing green house effect, about 4.29 million yuan of nutrient retention for N, P, K, Ca and Mg, about 178.53 million yuan of air purification. PMID:11767660

  5. CARBON POOL AND FLUX OF GLOBAL FOREST ECOSYSTEMS

    EPA Science Inventory

    Forest systems cover more than 4.1 x 10 9 hectares of the Earth's land area. lobally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent in high lati...

  6. Health of North American forests: Stress and risk assessment

    SciTech Connect

    Smith, W.H. )

    1990-01-01

    The 1980s will be remembered by forest professionals as a decade of intense and widespread societal concern for the vitality and integrity of forest systems. Daily reports of tropical deforestation and temperate forest decline have heightened social consciousness of forest health. It is therefore appropriate, as we enter the 1990s, to assess the health of our forests and propose new initiatives in this critically important area. Making generalizations about the health of North American forests is difficult because of the extraordinary diversity of forests, management regimes, and stress factors. This overview article summarizes forest health fundamentals, significant health risks, and priorities in future forest health management for temperate forests of the United States.

  7. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China.

    PubMed

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989-1993, 1994-1998, 1999-2003, and 2004-2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  8. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China

    PubMed Central

    Cui, Gaoyang; Chen, Yunming; Cao, Yang

    2015-01-01

    The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change. PMID:26353011

  9. Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany

    PubMed Central

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835

  10. Steps towards a digital health ecosystem.

    PubMed

    Serbanati, Luca Dan; Ricci, Fabrizio L; Mercurio, Gregorio; Vasilateanu, Andrei

    2011-08-01

    In the paper an IT infrastructure for supporting the shift from organization-centric to patient-centric model of healthcare service delivery to facilitate collaborative, multidisciplinary and cross-organizational healthcare delivery processes is presented. The core of this infrastructure is an internet platform that provides e-services and promotes the interoperability by enabling not only inter-communication among authorized healthcare professionals, but also sharing the Virtual Healthcare Record, an authoritative, multi-dimensional view on the patient health state. The platform is implemented in the LuMiR project for Basilicata, an Italian region where integration of healthcare applications is required. The LUMIR approach, its origin and peculiarities are briefly presented. The project's final target is the regional health digital ecosystem that interacts with the healthcare system for better supporting it. The agent-oriented paradigm emerges as a promising approach to map the autonomic healthcare systems and their users in virtual entities, and to add values such as flexibility, adaptability, and reusability. over traditional object- or service-oriented approaches. PMID:21362497

  11. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  12. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    PubMed Central

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  13. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    PubMed

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-01-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning. PMID:25766381

  14. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    NASA Astrophysics Data System (ADS)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  15. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  16. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    PubMed Central

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems. PMID:26781165

  17. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems.

    PubMed

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m(2) quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems. PMID:26781165

  18. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales

    NASA Astrophysics Data System (ADS)

    Powers, Jennifer; Becklund, Kristen; Gei, Maria; Iyengar, Siddarth; Meyer, Rebecca; O'Connell, Christine; Schilling, Erik; Smith, Christina; Waring, Bonnie; Werden, Leland

    2015-06-01

    Humans have more than doubled inputs of reactive nitrogen globally and greatly accelerated the biogeochemical cycles of phosphorus and metals. However, the impacts of increased element mobility on tropical ecosystems remain poorly quantified, particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by marked seasonality, relatively little precipitation, and high heterogeneity in plant functional diversity and soil chemistry. For these reasons, increased nutrient deposition may affect tropical dry forests differently than wet tropical or temperate forests. Here we review studies that investigated how nutrient availability affects ecosystem and community processes from the microsite to ecosystem scales in tropical dry forests. The effects of N and P addition on ecosystem carbon cycling and plant and microbial dynamics depend on forest successional stage, soil parent material and rainfall regime. Responses may depend on whether overall productivity is N- versus P-limited, although data to test this hypothesis are limited. These results highlight the many important gaps in our understanding of tropical dry forest responses to global change. Large-scale experiments are required to resolve these uncertainties.

  19. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau.

    PubMed

    Yue, Kai; Yang, Wanqin; Peng, Changhui; Peng, Yan; Zhang, Chuan; Huang, Chunping; Tan, Yu; Wu, Fuzhong

    2016-10-01

    Litter decomposition is a biological process fundamental to element cycling and a main nutrient source within forest meta-ecosystems, but few studies have looked into this process simultaneously in individual ecosystems, where environmental factors can vary substantially. A two-year field study conducted in an alpine forest meta-ecosystem with four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana) that varied widely in chemical traits showed that both litter species and ecosystem type (i.e., forest floor, stream and riparian zone) are important factors affecting litter decomposition, and their effects can be moderated by local-scale environmental factors such as temperature and nutrient availability. Litter decomposed fastest in the streams followed by the riparian zone and forest floor regardless of species. For a given litter species, both the k value and limit value varied significantly among ecosystems, indicating that the litter decomposition rate and extent (i.e., reaching a limit value) can be substantially affected by ecosystem type and the local-scale environmental factors. Apart from litter initial acid unhydrolyzable residue (AUR) concentration and its ratio to nitrogen concentration (i.e., AUR/N ratio), the initial nutrient concentrations of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also important litter traits that affected decomposition depending on the ecosystem type. PMID:27220105

  20. Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle

    NASA Astrophysics Data System (ADS)

    Delucia, E. H.; Moore, D. J.; Norby, R. J.

    2005-09-01

    In two parallel but independent experiments, Free Air CO2 Enrichment (FACE) technology was used to expose plots within contrasting evergreen loblolly pine (Pinus taeda L.) and deciduous sweetgum (Liquidambar styraciflua L.) forests to the level of CO2 anticipated in 2050. Net primary production (NPP) and net ecosystem production (NEP) increased in both forests. In the year 2000, after exposing pine and sweetgum to elevated CO2 for approximately 5 and 3 years, a complete budget calculation revealed increases in net ecosystem production (NEP) of 41% and 44% in the pine forest and sweetgum forest, respectively, representing the storage of an additional 174 gC m-2 and 128 gC m-2 in these forests. The stimulation of NPP without corresponding increases in leaf area index or light absorption in either forest resulted in 23-27% stimulation in radiation-use efficiency, defined as NPP per unit absorbed photosynthetically active radiation. Greater plant respiration contributed to lower NPP in the loblolly pine forest than in the sweetgum forest, and these forests responded differently to CO2 enrichment. Where the pine forest added C primarily to long-lived woody tissues, exposure to elevated CO2 caused a large increase in the production of labile fine roots in the sweetgum forest. Greater allocation to more labile tissues may cause more rapid cycling of C back to the atmosphere in the sweetgum forest compared to the pine forest. Imbalances in the N cycle may reduce the response of these forests to experimental exposure to elevated CO2 in the future, but even at the current stimulation observed for these forests, the effect of changes in land use on C sequestration are likely to be larger than the effect of CO2-induced growth stimulation.

  1. Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China

    NASA Astrophysics Data System (ADS)

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Liu, Yingchun; Wang, Qiufeng; Chen, Zhi; Zhang, Li

    2014-02-01

    The regional determining factors underlying inter- and intra-site variation of 15N natural abundance in foliage, O horizon and mineral soil were investigated in eastern China.15N natural abundance values for these forest ecosystems were in the middle of the range of values previously found for global forest ecosystems. In contrast to commonly reported global patterns, temperate forest ecosystems were significantly more15N-enriched than tropical forest ecosystems, and foliage δ15N was negatively correlated with increasing mean annual temperature and net soil N mineralisation in eastern China. Tight N cycling in forest ecosystems and the use of atmospheric N deposition by trees might underlie the δ15N distribution patterns in eastern China. The existence of mycorrhizal fungi and root distribution profiles in the soil may also influence the15N natural abundance patterns in forest ecosystems of eastern China.

  2. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    PubMed Central

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-01-01

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759

  3. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    PubMed

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-01-01

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759

  4. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Barr, A. G.; Barr, J. G.; Black, T. A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K. L.; Davis, K. J.; Desai, A. R.; Dore, S.; Engel, V.; Fuentes, J. D.; Goldstein, A. H.; Goulden, M. L.; Kolb, T. E.; Lavigne, M. B.; Law, B. E.; Margolis, H. A.; Martin, T.; McCaughey, J. H.; Misson, L.; Montes-Helu, M.; Noormets, A.; Randerson, J. T.; Starr, G.; Xiao, J.

    2010-10-01

    Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m-2y-1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m-2y-1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

  5. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    NASA Astrophysics Data System (ADS)

    Amiro, B. D.; Barr, A. G.; Barr, J. G.; Black, T. A.; Bracho, R.; Brown, M.; Chen, J.; Clark, K. L.; Davis, K. J.; Desai, A. R.; Dore, S.; Engel, V.; Fuentes, J. D.; Goldstein, A. H.; Goulden, M. L.; Kolb, T. E.; Lavigne, M. B.; Law, B. E.; Margolis, H. A.; Martin, T.; McCaughey, J. H.; Misson, L.; Montes-Helu, M.; Noormets, A.; Randerson, J. T.; Starr, G.; Xiao, J.

    2010-12-01

    Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m-2y-1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m-2y-1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

  6. Comparative behavior of three long-lived radionuclides in forest ecosystems

    SciTech Connect

    Auerbach, S.I.

    1986-01-01

    This paper deals with studies in three forest ecosystems in eastern Tennessee, an area of rich temperate deciduous forests, sometimes referred to as mixed mesophytic forests. Two of these forest ecosystems were contaminated as a result of waste disposal operations. The third was experimentally tagged with millicurie quantities of /sup 137/Cs. One of these ecosystems is a floodplain forest that is typical of this region. This forest has been growing on alluvial soils since 1944. Prior to that time the area was a temporary holding pond within White Oak Creek which received radioactive effluents from ORNL. Radiocesium was deposited in the pond sediments as were /sup 90/Sr, /sup 239/Pu, /sup 241/Am, and other radionuclides. The dam which created the pond failed in late 1944, and the area was allowed to revert to natural conditions. The result was the development of a floodplain forest consisting of three different forest communities. The soils are fertile alluvials representative of bottomlands. The overstory tree species are principally ash, sycamore, boxelder, willow, and sweetgum (Fraxinus americana L., Plantanus occidentalis L., Acer negundo L., Salix nigra Marsh, and Liquidambar styraciflua L., respectively).

  7. Characterization of Canopy Layering in Forested Ecosystems Using Full Waveform Lidar

    NASA Technical Reports Server (NTRS)

    Whitehurst, Amanda S.; Swatantran, Anu; Blair, J. Bryan; Hofton, Michelle A.; Dubayah, Ralph

    2013-01-01

    Canopy structure, the vertical distribution of canopy material, is an important element of forest ecosystem dynamics and habitat preference. Although vertical stratification, or "canopy layering," is a basic characterization of canopy structure for research and forest management, it is difficult to quantify at landscape scales. In this paper we describe canopy structure and develop methodologies to map forest vertical stratification in a mixed temperate forest using full-waveform lidar. Two definitions-one categorical and one continuous-are used to map canopy layering over Hubbard Brook Experimental Forest, New Hampshire with lidar data collected in 2009 by NASA's Laser Vegetation Imaging Sensor (LVIS). The two resulting canopy layering datasets describe variation of canopy layering throughout the forest and show that layering varies with terrain elevation and canopy height. This information should provide increased understanding of vertical structure variability and aid habitat characterization and other forest management activities.

  8. Chemical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Simultaneous physical and chemical characteristics of clouds amid and above the trees of a montane forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the chemical characteristics of the cloud droplets amid the trees. The ionic composition and pH of the analyzed amid-canopy cloud water samples are generally consistent with those of previous above-canopy cloud water samples obtained at this site. Magnesium, sodium, and calcium are highly correlated to each other amid the canopy as compared to above the canopy. Above-canopy and amid-canopy cloud-only episodes, with concurrent event-averaged cloud water pH values at or below 3.1, generally contain more magnesium, sodium, and calcium in the amid-canopy cloud water samples compared to concurrent above-canopy cloud water samples. The observed chemical differences between the amid-canopy cloud and the above- canopy cloud suggest an unhealthier environment for the tree canopy when the cloud water traversing this site has a pH value at or below 3.1. The predominant ion deposition fluxes were calculated to provide preliminary data for studies designed to explicitly quantify how the chemical composition of cloud water affects tree health. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Current net ecosystem exchange of CO2 in a young mixed forest: any heritage from the previous ecosystem?

    NASA Astrophysics Data System (ADS)

    Violette, Aurélie; Heinesch, Bernard; Erpicum, Michel; Carnol, Monique; Aubinet, Marc; François, Louis

    2013-04-01

    For 15 years, networks of flux towers have been developed to determine accurate carbon balance with the eddy-covariance method and determine if forests are sink or source of carbon. However, for prediction of the evolution of carbon cycle and climate, major uncertainties remain on the ecosystem respiration (Reco, which includes the respiration of above ground part of trees, roots respiration and mineralization of the soil organic matter), the gross primary productivity (GPP) and their difference, the net ecosystem exchange (NEE) of forests. These uncertainties are consequences of spatial and inter-annual variability, driven by previous and current climatic conditions, as well as by the particular history of the site (management, diseases, etc.). In this study we focus on the carbon cycle in two mixed forests in the Belgian Ardennes. The first site, Vielsalm, is a mature stand mostly composed of beeches (Fagus sylvatica) and douglas fir (Pseudotsuga menziesii) from 80 to 100 years old. The second site, La Robinette, was covered before 1995 with spruces. After an important windfall and a clear cutting, the site was replanted, between 1995 and 2000, with spruces (Piceas abies) and deciduous species (mostly Betula pendula, Aulnus glutinosa and Salix aurita). The challenge here is to highlight how initial conditions can influence the current behavior of the carbon cycle in a growing stand compared to a mature one, where initial conditions are supposed to be forgotten. A modeling approach suits particularly well for sensitivity tests and estimation of the temporal lag between an event and the ecosystem response. We use the forest ecosystem model ASPECTS (Rasse et al., Ecological Modelling 141, 35-52, 2001). This model predicts long-term forest growth by calculating, over time, hourly NEE. It was developed and already validated on the Vielsalm forest. Modelling results are confronted to eddy-covariance data on both sites from 2006 to 2011. The main difference between both

  10. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region

    PubMed Central

    Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin

    2014-01-01

    Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529

  11. Monoterpene Compositions of Three Forested Ecosystems in the Central Amazon Basin

    NASA Astrophysics Data System (ADS)

    Jardine, A.; Fuentes, J. D.; Manzi, A. O.; Higuchi, N.; Chambers, J. Q.; Jardine, K.

    2014-12-01

    Monoterpenes play fundamental roles as secondary metabolites in forested ecosystems and as gas and liquid phase secondary organic aerosol (SOA) precursors in their surrounding atmospheres. While the chemical pathways involved in ozonolysis driven SOA formation from individual monoterpene precursors is known, local and regional chemical transport models are still lacking observations of speciated monoterpenes from forested atmospheres. Here, we present high vertically resolved mixing ratio profiles of speciated monoterpenes from the ambient air of three neighboring forested ecosystems in the central Amazon Basin. Two well-drained plateau primary forests and one seasonally flooded valley forest were sampled during the afternoon hours (13:00 - 16:30) on walkup towers from the initiation of the 2013-14 wet season through the onset of the 2014 dry season (Nov 2013 - Jul 2014). Ambient mixing ratios in all three ecosystems were greatest in the upper canopy with secondary sources of some monoterpenes within the sub-canopies. Relative vertical compositions of monoterpenes did not change significantly throughout the seasons for either ecosystem type. Both ecosystem types were dominated by d-limonene (up to 1.6 ppb) with equally strong mixing ratios of alpha-pinene in the valley compared to the much weaker a-pinene mixing ratios on the plateaus (up to 200 ppt). The highly reactive cis- and trans-beta-ocimene were consistently present in both ecosystems (up to 250 ppt) with the addition of equally high camphene mixing ratios in the valley forest (up to 200 ppt) which is present in the plateau ecosystems in low quantities (50 ppt). With respect to clean atmosphere mixing ratios of 10 ppb ozone, lifetimes are below 2 hours for camphene and below 30 minutes for ocimene, suggesting a potentially large impact on local and possibly regional ozonolysis and subsequent SOA composition.

  12. The Importance of Uncertainty and Sensitivity Analyses in Process-Based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they ...

  13. FOREST SOIL CARBON SEQUESTRATION: ACCOUNTING FOR THIS VITAL ECOSYSTEM SERVICE

    EPA Science Inventory

    Forests play a crucial role in supplying many goods and services that society depends upon on a daily basis including water supply, production of oxygen, soil protection, building materials, wildlife habitat and recreation. Forests also provide a significant amount of carbon seq...

  14. Studies on Interpretive Structural Model for Forest Ecosystem Management Decision-Making

    NASA Astrophysics Data System (ADS)

    Liu, Suqing; Gao, Xiumei; Zen, Qunying; Zhou, Yuanman; Huang, Yuequn; Han, Weidong; Li, Linfeng; Li, Jiping; Pu, Yingshan

    Characterized by their openness, complexity and large scale, forest ecosystems interweave themselves with social system, economic system and other natural ecosystems, thus complicating both their researches and management decision-making. According to the theories of sustainable development, hierarchy-competence levels, cybernetics and feedback, 25 factors have been chosen from human society, economy and nature that affect forest ecosystem management so that they are systematically analyzed via developing an interpretive structural model (ISM) to reveal their relationships and positions in the forest ecosystem management. The ISM consists of 7 layers with the 3 objectives for ecosystem management being the top layer (the seventh layer). The ratio between agricultural production value and industrial production value as the bases of management decision-making in forest ecosystems becomes the first layer at the bottom because it has great impacts on the values of society and the development trends of forestry, while the factors of climatic environments, intensive management extent, management measures, input-output ratio as well as landscape and productivity are arranged from the second to sixth layers respectively.

  15. Radiocesium distributions and fluxes in the forest ecosystems of Chernobyl and Fukushima

    NASA Astrophysics Data System (ADS)

    Yoschenko, Vasyl; Nanba, Kenji; Konoplev, Alexei; Takase, Tsugiko; Kashparov, Valery; Zheleznyak, Mark

    2015-04-01

    Institute of Environmental Radioactivity (IER) of Fukushima University and Ukrainian Institute of Agricultural Radiology (UIAR) of NUBiP of Ukraine have started the long-term monitoring programs for characterization of the radiocesium distributions and fluxes in the typical forest ecosystems of the Fukushima and Chernobyl zones, respectively. Realization of the programs will enable identification of the key processes governing the radionuclides cycling in the forest ecosystems at the intermediate (Fukushima) and late (Chernobyl) stages of the two accidents and will provide the empirical data needed for modelling the radionuclide long-term behavior in the Fukushima and Chernobyl forests. At the present stage in the Chernobyl zone root uptake of radionuclides plays the main role in the forest biomass contamination with 137Cs. In the typical Scots pine forests its inventories in the aboveground biomass and litter may reach several percents of the total radionuclide activity in the ecosystem. The radionuclides biogenic fluxes (root uptake and return to soil with litterfall and throughfall) in the Chernobyl forests are comparable or exceed their geochemical migration fluxes in the root-inhabited soil layer, which leads to stabilization of the radionuclide distributions in the soil profile and to the gradual decrease of the apparent vertical migration rates. For example, the main part (about 80%) of the radiocesium activity in soil is still localized in the 0-5 cm topsoil layer; the radiocesium uptake flux may reach 0.n % year-1 of its total activity in the ecosystem, while the geochemical migration flux from the root-inhabited layer is estimated as 0.1 % year-1. In the studied typical forest ecosystem at the territory contaminated as a result of the Fukushima accident (Sugi forest) about 20% of the total radiocesium activity in the soil profile is localized in the forest litter, and similarly to the Chernobyl forest, major part of the activity, about 70% of the total in

  16. How does wind-throw disturbance affect the carbon budget of an upland spruce forest ecosystem?

    NASA Astrophysics Data System (ADS)

    Lindauer, Matthias; Schmid, Hans Peter; Grote, Rüdiger; Mauder, Matthias; Wolpert, Benjamin; Steinbrecher, Rainer

    2014-05-01

    Forests, especially in mid-latitudes are generally designated as large carbon sinks. However, stand-replacing disturbance events like fires, insect-infestations, or severe wind-storms can shift an ecosystem from carbon sink to carbon source within short time and keep it as this for a long time. In Addition, extreme weather situations which promote the occurrence of ecosystem disturbances are likely to increase in the future due to climate change. The development and competition of different vegetation types (spruce vs. grass) as well as soil organic matter (SOM), and their contribution to the net ecosystem exchange (NEE), in such disturbed forest ecosystems are largely unknown. In a large wind-throw area (ca. 600 m diameter, due to cyclone Kyrill in January 2007) within a mature upland spruce forest, where dead-wood has not been removed, in the Bavarian Forest National Park (Lackenberg, 1308 m a.s.l., Bavaria, Germany), fluxes of CO2, water vapor and energy have been measured with the Eddy Covariance (EC) method since 2009. Model simulations (MoBiLE) were used to estimate the GPP components from trees and grassland as well as to differentiate between soil and plant respiration, and to get an idea about the long term behavior of the ecosystems carbon exchange. For 2009, 2010, 2011, 2012, and 2013 estimates of annual Net Ecosystem Exchange (NEE) showed that the wind-throw was a marked carbon source. However, the few remaining trees and newly emerging vegetation (grass, sparse young spruce, etc.) lead to an already strong Gross Ecosystem Production (GEP). Model simulations conformed well with the measurements. To our knowledge, we present the worldwide first long-term measurements of NEE within a non-cleared wind-throw-disturbed forest ecosystem.

  17. Interactive effects between N addition and disturbance on boreal forest ecosystem structure and function

    NASA Astrophysics Data System (ADS)

    Nordin, Annika; Strengbom, Joachim; From, Fredrik

    2014-05-01

    In management of boreal forests, nitrogen (N) enrichment from atmospheric deposition or from forest fertilization can appear in combination with land-use related disturbances, i.e. tree harvesting by clear-felling. Long-term interactive effects between N enrichment and disturbance on boreal forest ecosystem structure and function are, however, poorly known. We investigated effects of N enrichment by forest fertilization done > 25 years ago on forest understory species composition in old-growth (undisturbed) forests, and in forests clear-felled 10 years ago (disturbed). In clear-felled forests we also investigated effects of the previous N addition on growth of tree saplings. The results show that the N enrichment effect on the understory species composition was strongly dependent on the disturbance caused by clear-felling. In undisturbed forests, there were small or no effects on understory species composition from N addition. In contrast, effects were large in forests first exposed to N addition and subsequently disturbed by clear-felling. Effects of N addition differed among functional groups of plants. Abundance of graminoids increased (+232%) and abundance of dwarf shrubs decreased (-44%) following disturbance in N fertilized forests. For vascular plants, the two perturbations had contrasting effects on α-(within forests) and β-diversity (among forests): in disturbed forests, N addition reduced, or had no effect on α-diversity, while β-diversity increased. For bryophytes, negative effects of disturbance on α-diversity were smaller in N fertilized forests than in forests not fertilized, while neither N addition nor disturbance had any effects on β-diversity. Moreover, sapling growth in forests clear-felled 10 years ago was significantly higher in previously N fertilized forests than in forests not fertilized. Our study show that effects of N addition on plant communities may appear small, short-lived, or even absent until exposed to a disturbance. This

  18. Integrating remotely sensed land cover observations and a biogeochemical model for estimating forest ecosystem carbon dynamics

    USGS Publications Warehouse

    Liu, J.; Liu, S.; Loveland, T.R.; Tieszen, L.L.

    2008-01-01

    Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.

  19. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    PubMed

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects. PMID:25900601

  20. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    NASA Astrophysics Data System (ADS)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  1. Ecosystem Consequences of Tree Monodominance for Nitrogen Cycling in Lowland Tropical Forest

    PubMed Central

    Brookshire, E. N. Jack; Thomas, Steven A.

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system. PMID:23936215

  2. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    PubMed

    Brookshire, E N Jack; Thomas, Steven A

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system. PMID:23936215

  3. CO2 soil fluxes at bog and forest ecosystems in southern taiga of European Russia

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitrii; Ivanov, Aleksey; Vasenev, Ivan; Kurbatova, Juliya

    2015-04-01

    Bogs and spruce forests are typical natural ecosystems of the southern taiga of European Russia. They play an important role in carbon balance between soil and atmosphere. In the Central Forest Reserve (33°00' E, 56°30' N) for over 15 years conduct research of these processes. One of the research methods of CO2 emissions is the chamber method, which allows to analyze the local variation of the intensity of fluxes and its depending of the type of vegetation, microrelief and meteorological parameters. Period of measurements was 5 months - from June to November 2013-2014. In the bog were investigated 3 areas - pine boggy forest, as well as hummocks and hollows in the middle of bog. As the forest ecosystem was chosen paludified shallow-peat spruce forest. From the data obtained it can be concluded that in all ecosystems were observed 2 periods with a minimum values of CO2 emission: the first - in early July, associated with a high level of ground water and decrease the intensity of decomposition of organic matter, and the second - in November, associated with natural processes and seasonal cooling. The average intensity of CO2 emissions in summer-autumn season between all ecosystems varied greatly: in the boggy pine forest - 500 mgCO2/m2*h), hummocks - 550 mgCO2/m2*h, hollows - 290 mgCO2/m2*h) and paludified shallow-peat spruce forest - 750 mgCO2/m2*h. Based on these researches, it was found that the intensity of CO2 emissions significantly below in the bog than in paludified shallow-peat spruce forest because it is limited by the level of ground water. In the paludified shallow-peat spruce forest, fluxes are more depend on soil temperature and less on the groundwater level.

  4. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  5. (Lichens as a bioindicator in the forest ecosystem)

    SciTech Connect

    Sigal, L.L.

    1989-09-06

    Prior to a field trip of Estonia, an introductory meeting was held at the Tallinn Botanical Garden. Overviews of existing forest air pollution research in the eastern United States and Estonia were presented by American and Soviet scientists. Subsequently, potential forest monitoring sites were visited at (1) the Kurtna Landscape Sanctuary and the Pikasilla Forest near Kohtla-Jaerve, (2) the Tipu-Kopu Forest near Viljandi, and (3) a site on the western part of the island of Saaremaa. The next part of the trip was to Georgia where we met with the Director and staff of the Institute of Mountain Forestry in Tbilisi. The goals of the exchange program were explained, and the local forest management practices were discussed. A field trip was taken to the spruce-fir forests of Borzhomi. The final part of the trip was to the Central Republic of Botanical Gardens at Kiev where a preliminary experiment on the uptake of organic gases by lichens was done, a manuscript on a retrospective study of element content in lichens from the Great Smoky Mountains National Park was completed, and a seminar was given on the effects of air pollutants on forest vegetation. The seminar included an overview of air pollution facilities at Oak Ridge National Laboratory (ORNL), field study methods for determining the effects of air pollutants on lichens, and a description of techniques used to determine the effects of air pollutants on the intracellular constituents of loblolly pine protoplasts.

  6. Monitoring gradual ecosystem change using Landsat time series analyses: case studies in selected forest and rangeland ecosystems

    USGS Publications Warehouse

    Vogelmann, James E.; Xian, George; Homer, Collin G.; Tolk, Brian

    2012-01-01

    The focus of the study was to assess gradual changes occurring throughout a range of natural ecosystems using decadal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM +) time series data. Time series data stacks were generated for four study areas: (1) a four scene area dominated by forest and rangeland ecosystems in the southwestern United States, (2) a sagebrush-dominated rangeland in Wyoming, (3) woodland adjacent to prairie in northwestern Nebraska, and (4) a forested area in the White Mountains of New Hampshire. Through analyses of time series data, we found evidence of gradual systematic change in many of the natural vegetation communities in all four areas. Many of the conifer forests in the southwestern US are showing declines related to insects and drought, but very few are showing evidence of improving conditions or increased greenness. Sagebrush communities are showing decreases in greenness related to fire, mining, and probably drought, but very few of these communities are showing evidence of increased greenness or improving conditions. In Nebraska, forest communities are showing local expansion and increased canopy densification in the prairie–woodland interface, and in the White Mountains high elevation understory conifers are showing range increases towards lower elevations. The trends detected are not obvious through casual inspection of the Landsat images. Analyses of time series data using many scenes and covering multiple years are required in order to develop better impressions and representations of the changing ecosystem patterns and trends that are occurring. The approach described in this paper demonstrates that Landsat time series data can be used operationally for assessing gradual ecosystem change across large areas. Local knowledge and available ancillary data are required in order to fully understand the nature of these trends.

  7. Ecosystem Consequences of Forest Fragmentation in the Pacific Northwest: Biogeochemical Edge Effects within Old-Growth Forest Remnants

    NASA Astrophysics Data System (ADS)

    Hayes, T. D.; Swanson, A.; D'Antonio, C. M.; Griffiths, R. P.

    2005-12-01

    Our research includes quantifying the long term impact of clear-cut edges on biogeochemical processes affecting carbon and nitrogen retention within fragmented old-growth Douglas-fir/western hemlock forests in the Pacific Northwest. In addition to quantifying the magnitude and depth of influence of edge effects on soil processes, this research seeks broader application to conservation biology, using a mechanistic approach. Along 360-m gradients spanning clear-cut to forest at nine sites, long-term monitoring of edge effects integrates microclimate, above-ground structure, litter fall, decomposition, and soil nitrogen dynamics. Abrupt changes in height and structure at edges induce increased microclimatic variability in adjacent forest, which, in turn, alters rates of nitrogen and carbon cycling in soils. Field and laboratory assays reveal increases in litter decomposition and nitrogen availability in near edge (0-30 m from edge) forest, and higher rates of litter fall and soil organic matter storage within far edge (30-120 m from edge) forest, relative to interior forest (more than 120 m from edge). Abiotic structural effects, by modulating microclimatic variability, change the complex biotic interactions involved in biogeochemical cycling in forest soils within 120 m of edges. Due to such interactions, organic-matter and nitrogen pool sizes in soil and vegetation, and net ecosystem production, vary in a nonlinear, but predictable, manner with distance into forest from edge. Mixed-effects statistical models most precisely quantify depth of influence for over 100 microclimatic, structural, and biogeochemical variables.

  8. A critique of ecosystem health concepts and indexes

    SciTech Connect

    Suter, G.W. II . Environmental Sciences Div.)

    1993-09-01

    Because people wish to preserve their health and do something equivalent for ecosystems, the metaphor of ecosystem health springs to mind. This paper presents the argument that it is a mistake for environmental scientists to treat this metaphor as reality. First, the metaphor fails because it misrepresents both ecology and health science. Ecosystems are not organisms, so they do not behave like organisms and do not have properties of organisms such as health. Also, health is not an operational concept for physicians or health risk assessors because they must predict, diagnose, and treat specific states called diseases or injuries; they do not calculate indexes of health. Second, attempts to operationally define ecosystem health result in the creation of indexes of heterogeneous variables. Such indexes have no meaning; they cannot be predicted, so they are not applicable to most regulatory problems; they have no diagnostic power; effects on one component are eclipsed by responses of other components; and the reason for a high or low index value is unknown. Their only virtue is that they reduce the complex array of ecosystem responses to various disturbances to one number with a reassuring name. A better alternative is to assess the real array of ecosystem responses so that causes can be diagnosed, future states can be predicted, and benefits of treatments can be compared.

  9. FOREST HEALTH MONITORING PLOT DESIGN AND LOGISTICS STUDY

    EPA Science Inventory

    Concern over the condition of forests in relation to natural and manmade stresses has led to an interagency Forest Health Monitoring program. o improve the efficiency of forest monitoring, the forest group of EPA's Environmental Monitoring and Assessment Program conducted a field...

  10. Recent Forest Disturbance History in the Greater Yellowstone Ecosystem Reconstructed using Remote Sensing and Management Record

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Huang, C.; Zhu, Z.

    2014-12-01

    The Greater Yellowstone Ecosystem (GYE), located in Central Rocky Mountains of United States, is of complex ecological and land management histories along with different land ownerships. What are effects of the different land management practices (such as those by national parks vs. national forests) on ecosystem disturbances and carbon balance? We present here the methods and results of a study on forest disturbance history over the GYE from 1984 to 2010 reconstructed from Landsat time series stacks and local management records. Annual forest fire, harvest and other disturbances were tracked and separated by integrating a model called Vegetation Change Tracker and the Support Vector Machine algorithm. Local management records were separated into training and validation data for the disturbance maps. Area statistics and rates of disturbances were quantified and compared across GYE land ownership over the multi-decade period and interpreted for implications of these changes for forest management and carbon analysis. Our results indicate that during the study interval (1984 - 2010), GYE National Parks (NPs) and Wilderness Area (WA) had higher percentages of area of forests disturbed compared to GYE National Forests (NF). Within the GYE NPs, over 45% of the forest lands were disturbed at least once during the study period, the majority (37%) was by wildfire. For GYE wilderness area, the total disturbance was 30% of forest with 19.4% by wildfire and 10.6% by other disturbances. In Bridger-Teton NF, 14.7% of forest was disturbed and 3.6%, 0.5% and 10.6% of forest were disturbed by fire, harvest and other disturbances, respectively. For Caribou-Targhee NF, 25% of total forest was disturbed during this time interval and 1.5%, 6.4% and 17.1% of forest were disturbed by fire, harvest and other disturbances, respectively.

  11. Improving SWAT for simulating water and carbon fluxes of forest ecosystems.

    PubMed

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. PMID:27401278

  12. Higher levels of multiple ecosystem services are found in forests with more tree species.

    PubMed

    Gamfeldt, Lars; Snäll, Tord; Bagchi, Robert; Jonsson, Micael; Gustafsson, Lena; Kjellander, Petter; Ruiz-Jaen, María C; Fröberg, Mats; Stendahl, Johan; Philipson, Christopher D; Mikusiński, Grzegorz; Andersson, Erik; Westerlund, Bertil; Andrén, Henrik; Moberg, Fredrik; Moen, Jon; Bengtsson, Jan

    2013-01-01

    Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000 km(2), we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests. PMID:23299890

  13. Higher levels of multiple ecosystem services are found in forests with more tree species

    PubMed Central

    Gamfeldt, Lars; Snäll, Tord; Bagchi, Robert; Jonsson, Micael; Gustafsson, Lena; Kjellander, Petter; Ruiz-Jaen, María C.; Fröberg, Mats; Stendahl, Johan; Philipson, Christopher D.; Mikusiński, Grzegorz; Andersson, Erik; Westerlund, Bertil; Andrén, Henrik; Moberg, Fredrik; Moen, Jon; Bengtsson, Jan

    2013-01-01

    Forests are of major importance to human society, contributing several crucial ecosystem services. Biodiversity is suggested to positively influence multiple services but evidence from natural systems at scales relevant to management is scarce. Here, across a scale of 400,000 km2, we report that tree species richness in production forests shows positive to positively hump-shaped relationships with multiple ecosystem services. These include production of tree biomass, soil carbon storage, berry production and game production potential. For example, biomass production was approximately 50% greater with five than with one tree species. In addition, we show positive relationships between tree species richness and proxies for other biodiversity components. Importantly, no single tree species was able to promote all services, and some services were negatively correlated to each other. Management of production forests will therefore benefit from considering multiple tree species to sustain the full range of benefits that the society obtains from forests. PMID:23299890

  14. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-08-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  15. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-04-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability, and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  16. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-09-01

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere. PMID:21886160

  17. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    USGS Publications Warehouse

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  18. Calcium depletion in a Southeastern United States forest ecosystem

    USGS Publications Warehouse

    Huntington, T.G.; Hooper, R.P.; Johnson, C.E.; Aulenbach, Brent T.; Cappellato, R.; Blum, A.E.

    2000-01-01

    Forest soil Ca depletion through leaching and vegetation uptake may threaten long-term sustainability of forest productivity in the southeastern USA. This study was conducted to assess Ca pools and fluxes in a representative southern Piedmont forest to determine the soil Ca depletion rate. Soil Ca storage, Ca inputs in atmospheric deposition, and outputs in soil leaching and vegetation uptake were investigated at the Panola Mountain Research Watershed (PMRW) near Atlanta, GA. Average annual outputs of 12.3 kg ha-1 yr-1 in uptake into merchantable wood and 2.71 kg ha-1 yr-1 soil leaching exceeded inputs in atmospheric deposition of 2.24 kg ha-1 yr-1. The annual rate of Ca uptake into merchantable wood exceeds soil leaching losses by a factor of more than five. The potential for primary mineral weathering to provide a substantial amount of Ca inputs is low. Estimates of Ca replenishment through mineral weathering in the surface 1 m of soil and saprolite was estimated to be 0.12 kg ha-1 yr-1. The weathering rate in saprolite and partially weathered bedrock below the surface 1 m is similarly quite low because mineral Ca is largely depleted. The soil Ca depletion rate at PMRW is estimated to be 12.7 kg ha-1 yr-1. At PMRW and similar hardwood-dominated forests in the Piedmont physiographic province, Ca depletion will probably reduce soil reserves to less than the requirement for a merchantable forest stand in ???80 yr. This assessment and comparable analyses at other southeastern USA forest sites suggests that there is a strong potential for a regional problem in forest nutrition in the long term.Forest soil Ca depletion through leaching and vegetation uptake may threaten long-term sustainability of forest productivity in the southeastern USA. This study was conducted to assess Ca pools and fluxes in a representative southern Piedmont forest to determine the soil Ca depletion rate. Soil Ca storage, Ca inputs in atmospheric deposition, and outputs in soil leaching and

  19. Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems.

    PubMed

    Blum, Joel D; Klaue, Andrea; Nezat, Carmen A; Driscoll, Charles T; Johnson, Chris E; Siccama, Thomas G; Eagar, Christopher; Fahey, Timothy J; Likens, Gene E

    2002-06-13

    The depletion of calcium in forest ecosystems of the northeastern USA is thought to be a consequence of acidic deposition and to be at present restricting the recovery of forest and aquatic systems now that acidic deposition itself is declining. This depletion of calcium has been inferred from studies showing that sources of calcium in forest ecosystems namely, atmospheric deposition and mineral weathering of silicate rocks such as plagioclase, a calcium-sodium silicate do not match calcium outputs observed in forest streams. It is therefore thought that calcium is being lost from exchangeable and organically bound calcium in forest soils. Here we investigate the sources of calcium in the Hubbard Brook experimental forest, through analysis of calcium and strontium abundances and strontium isotope ratios within various soil, vegetation and hydrological pools. We show that the dissolution of apatite (calcium phosphate) represents a source of calcium that is comparable in size to known inputs from atmospheric sources and silicate weathering. Moreover, apatite-derived calcium was utilized largely by ectomycorrhizal tree species, suggesting that mycorrhizae may weather apatite and absorb the released ions directly, without the ions entering the exchangeable soil pool. Therefore, it seems that apatite weathering can compensate for some of the calcium lost from base-poor ecosystems, and should be considered when estimating soil acidification impacts and calcium cycling. PMID:12066181

  20. Forest ecological classification and mapping: Their application for ecosystem management in Newfoundland.

    PubMed

    Moores, L J; Pittman, B; Kitchen, G

    1996-01-01

    A prerequisite to sustaining ecosystems is the inventory and classification of landscape structure and composition. Ecological classification and mapping involves the delineation of landscapes into easily recognizable units. Topography, soils, vegetation, physical landscape form, and successional pathways are delineation criteria commonly used.Damman (1967) developed a forest type classification system for Newfoundland using vegetation, soil and landforms as the defining criteria. Damman's forest types were used in combination with mensurational data to assign forest types to timber volume productivity classes. Since each of the Damman forest types is associated with characteristic soils, parent materials, moisture regime and topographic position, the mapping units are similar to Canada Land Inventory (CLI) mapping units. Field work to confirm the correlation between Damman forest types and CLI capability classes was initiated in 1993. CLI maps were recoded in 1994 and Damman forest types were determined; resulting ecosystem-based maps provide a common framework to assess forestry/wildlife interactions in an ecosystem planning process. PMID:24198030

  1. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    PubMed

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. PMID:26921563

  2. Late Holocene history of the forest ecosystems from Gabon

    NASA Astrophysics Data System (ADS)

    Ngomanda, A.; Maley, J.

    2003-04-01

    In Gabon sediment cores were collected in three sites close to the equator (PALEOFORGA Program). First in the lake Maridor inside the coastal forest/savanna mosaic, second in the lake Nguène at the foot of the Monts de Cristal which is characterized by very rich and diverse rain forests, and third in the lake Kamalété inside of the forest/savanna mosaic of the Lopé Réserve, located in the central part of Gabon. Until now two cores were pollen analyzed : 38 samples in the core KAM-1 from Kamalété and 42 samples in NGUE-1 from Nguène. The base of core KAM-1 is dated at ca. 1400 C/14 years BP and ca. 5000 C/14 years BP for base of the core NGUE-1. For the time span between the present day and ca.1400 C/14 years BP the main results are similar in these two cores, showing a phase of forest extension. In Kamalété, between ca. 1400 and 500 C/14 years BP one observes a strong increase of the pionnier forest taxa, then until the present day time an increase of more mature forest taxa. In the lowest part of the Nguène core, between ca. 5000 and 4000 C/14 years BP one observes the end of an important phase of mature forest, characterized by large percentages of Caesalpiniaceae tree taxa and other primary taxa, and between ca. 4000 and 1400 C/14 years BP, two sucessive phase characterized by important extensions of pionnier tree taxa. During the 20 th century in south Cameroon, CentreAfrique, Gabon and Congo, the main result of the ECOFIT Program has shown a widespread phenomenon of forest transgression upon the savannas. Such result are apparently the continuation of the forest extension evidenced above in Kamalété and Nguène. (Presentation and attendance to the Congress by only Alfred NGOMANDA, student/ thésard)

  3. Hubbard Brook Ecosystem Study: biogeochemistry of lead in the northern hardwood forest

    SciTech Connect

    Smith, W.; Siccama, T.G.

    1981-09-01

    The average annual Pb input to the northern hardwood forest at the Hubbard Brook Experimental Forest in central New Hampshire was 266 g ha/sup -1/ year /sup -1/ based on 4 years of records. Lead output via streamwater and eroded particulate matter was 5.0 and 1.1 g ha/sup -1/ year/sup -1/, respectively. Lead concentration in precipitation averaged 22 ..mu..g liter/sup -1/ and showed a significant decline over the 4 sample years (1975 to 1978). Lead input to the ecosystem via meteorological vectors is accumulated in the forest floor. Total current Pb content of the forest floor was 8.6 kg ha/sup -1/ and showed no significant differences along the elevation gradient of the watershed (400 to 800 m). Lead concentration in the forest floor was maximum on the ridge due to a minimum forest floor mass relative to the rest of the watershed. Within the forest floor, maximum Pb concentration is in the fermented (F) layer. Total Pb content of the forest biomass (stems greater than or equal to 10 cm dbh) was 1248 g ha/sup -1/. Lead concentration in the biota was in the following order: lichens (213 ..mu..g g/sup -1/) > mosses (190 ..mu..g g/sup -1/) tree twigs (26 ..mu..g g/sup -1/) > roots (20 ..mu..g g/sup -1/) > bark (19 ..mu..g g/sup -1/) > leaves (7 ..mu..g g/sup -1/) = bracket fungi (7 ..mu..g g/sup -1/) > wood (0.7 ..mu..g g/sup -1/). Disturbance of the forest ecosystem through harvest cutting, other than through increased runoff, increased erosion, and transport of particulate matter, does not alter the biogeochemistry of Pb and does not result in increased mobility and export of Pb due to gross or subtle alterations of the behavior of Pb in the ecosystem.

  4. Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.

    2013-03-01

    Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.

  5. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Aber, John D.; Peterson, David L.; Melillo, Jerry M.

    1988-01-01

    The use of images acquired by the Airborne Imaging Spectrometer, an experimental high-spectral resolution imaging sensor developed by NASA, to estimate the lignin concentration of whole forest canopies in Wisconsin is reported. The observed strong relationship between canopy lignin concentration and nitrogen availability in seven undisturbed forest ecosystems on Blackhawk Island, Wisconsin, suggests that canopy lignin may serve as an index for site nitrogen status. This predictive relationship presents the opportunity to estimate nitrogen-cycling rates across forested landscapes through remote sensing.

  6. Alternative Modelling Approach to Spatial Harvest Scheduling with Respect to Fragmentation of Forest Ecosystem

    NASA Astrophysics Data System (ADS)

    Marušák, Róbert; Kašpar, Jan; Hlavatý, Robert; Kotek, Václav; Kuželka, Karel; Vopěnka, Petr

    2015-11-01

    Fragmentation of the forests affects forest ecosystems by changing the composition, shape, and configuration of the resulting patches. Subsequently, the prevailing conditions vary between patches. The exposure to the sun decreases from the patch boundary to the patch interior and this forms core and edge areas within each patch. Forest harvesting and, in particular, the clear-cut management system which is still preferred in many European countries has a significant impact on forest fragmentation. There are many indices of measuring fragmentation: non-spatial and spatial. The non-spatial indices measure the composition of patches, while the spatial indices measure both the shape and configuration of the resulting patches. The effect of forest harvesting on fragmentation, biodiversity, and the environment is extensively studied; however, the integration of fragmentation indices in the harvest scheduling model is a new, novel approach. This paper presents a multi-objective integer model of harvest scheduling for clear-cut management system and presents a case study demonstrating its use. Harvest balance and sustainability are ensured by the addition of constraints from the basic principle of the regulated forest model. The results indicate that harvest balance and sustainability can be also achieved in minimizing fragmentation of forest ecosystems. From the analyses presented in this study, it can be concluded that integration of fragmentation into harvest scheduling can provide better spatial structure. It depends on the initial spatial and age structure. It was confirmed that it is possible to find compromise solution while minimizing fragmentation and maximizing harvested area.

  7. Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems.

    PubMed

    Corona, Piermaria

    2016-01-01

    Forests provide a wide range of ecosystem services from which people benefit, and upon which all life depends. However, any rational decision related to the maintenance and enhancement of the multiple functions provided by the forests needs to be based on objective, reliable information. As such, forest monitoring and assessment are rapidly evolving as new information needs arise or new techniques and tools become available. Global change issues and utilities from ecosystem management are distinctively to be considered, so that forest inventory and mapping are broadening their scope towards multipurpose resources surveys. Recent changes in forest management perspective have promoted the consideration of forests as complex adaptive systems, thereby highlighting the need to account that such approaches actually work: forest monitoring and assessment are then expected to address and fully incorporate this perspective at global scale, seeking to support planning and management decisions that are evidence-based. This contribution provides selected considerations on the above mentioned issues, in the form of a commented discussion with examples from the literature produced in the last decade. PMID:26514075

  8. PHOTOCHEMICAL OXIDANT AIR POLLUTION EFFECTS ON A MIXED CONIFER FOREST ECOSYSTEM

    EPA Science Inventory

    EPA contract 68-03-2442 provided support for three years of the studies to determine the chronic effects of photochemical oxidant air pollutants on a western mixed conifer forest ecosystem. This report deals with the year 1976-77 and is the final publication on EPA contract 68-03...

  9. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Voigt, M.; Liu, H.

    2015-01-01

    During the past several decades, observational data have shown a faster increase in hot temperature extremes than the change in mean temperature. Increasingly high extreme temperatures are expected to affect terrestrial ecosystem function. The ecological impact of hot extremes on vegetation production, however, remains uncertain across biomes in natural climatic conditions. In this study, we investigated the effects of hot temperature extremes on vegetation production by combining the MODIS enhanced vegetation index (EVI) data set and in situ climatic records during the period 2000 to 2009 from 12 long-term experimental sites across biomes and climate. Our results show that higher mean annual maximum temperatures (Tmax) greatly reduced grassland production, and yet enhanced forest production after removing the effect of precipitation. The relative decrease in vegetation production was 16% for arid grassland and 7% for mesic grassland, and the increase was 5% for forest. We also observed a significantly positive relationship between interannual aboveground net primary production (ANPP) and Tmax for the forest biome (R2 = 0.79, P < 0.001). This line of evidence suggests that hot temperature extremes lead to contrasting ecosystem-level responses of vegetation production between grassland and forest biomes. Given that many terrestrial ecosystem models use average daily temperature as input, predictions of ecosystem production should consider such contrasting responses to increasingly hot temperature extreme regimes associated with climate change.

  10. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Voigt, M.; Liu, H.

    2014-04-01

    Observational data during the past several decades show faster increase of hot temperature extremes over land than changes in mean temperature. Towards more extreme temperature is expected to affect terrestrial ecosystem function. However, the ecological impacts of hot extremes on vegetation production remain uncertain across biomes in natural climatic conditions. In this study, we investigated the effects of hot temperature extremes on aboveground net primary production (ANPP) by combining MODIS EVI dataset and in situ climatic records during 2000 to 2009 from 12 long-term experimental sites across biomes and climates. Our results showed that higher mean annual maximum temperatures (Tmax) greatly reduced grassland production, and yet enhanced forest production after removing the effects of precipitation. Relative decreases in ANPP were 16% for arid grassland and 7% for mesic grassland, and the increase were 5% for forest. We also observed a significant positive relationship between interannual ANPP and Tmax for forest biome (R2 = 0.79, P < 0.001). This line of evidence suggests that hot temperature extreme leads to contrasting ecosystem-level response of vegetation production to warming climate between grassland and forest. Given that many terrestrial ecosystem models use average daily temperature as input, predictions of ecosystem production should consider these contrasting responses to more hot temperature extreme regimes associated with climate change.

  11. OXIDANT AIR POLLUTANT EFFECTS ON A WESTERN CONIFEROUS FOREST ECOSYSTEM: TASK A, PLANNING CONFERENCE

    EPA Science Inventory

    This is a report on a planning conference to develop a protocol for a study on the impact of oxidant air pollution from an urban area on a forest ecosystem and recreational area. The conference was held July 21-23, 1971 at the Arrowhead Conference Center in California to discuss ...

  12. Managing pinon-juniper ecosystems for sustainability and social needs. Forest Service general technical report (Final)

    SciTech Connect

    Aldon, E.F.; Shaw, D.W.

    1993-10-01

    The purpose of the symposium was to assist the USDA Forest Service, other federal land management agencies, and the New Mexico State Land Office in the future development and management of the pinon-juniper ecosystem in the Southwest. Authors assessed the current state of knowledge about the pinon-juniper resources and helped develop future research and management goals.

  13. Measuring ecosystem capacity to provide regulating services: forest removal and recovery at Hubbard Brook (USA).

    PubMed

    Beier, Colin M; Caputo, Jesse; Groffman, Peter M

    2015-10-01

    In this study, by coupling long-term ecological data with empirical proxies of societal demand for benefits, we measured the capacity of forest watersheds to provide ecosystem services over variable time periods, to different beneficiaries, and in response to discrete perturbations and drivers of change. We revisited one of the earliest ecosystem experiments in North America: the 1963 de-vegetation of a forested catchment at Hubbard Brook Experimental Forest in New Hampshire, USA. Potential benefits of the regulation of water flow, water quality, greenhouse gases, and forest growth were compared between experimental (WS 2) and reference (WS 6) watersheds over a 30-year period. Both watersheds exhibited similarly high capacity for flow regulation, in part because functional loads remained low (i.e., few major storm events) during the de-vegetation period. Drought mitigation capacity, or the maintenance of flows sufficient to satisfy municipal water consumption, was higher in WS 2 due to reduced evapotranspiration associated with loss of plant cover. We also assessed watershed capacity to regulate flows to satisfy different beneficiaries, including hypothetical flood averse and drought averse types. Capacity to regulate water quality was severely degraded during de-vegetation, as nitrate concentrations exceeded drinking water standards on 40% of measurement days. Once forest regeneration began, WS 2 rapidly recovered the capacity to provide safe drinking water, and subsequently mitigated the eutrophication potential of rainwater at a marginally higher level than WS 6. We estimated this additional pollution removal benefit would have to accrue for approximately 65-70 years to offset the net eutrophication cost incurred during forest removal. Overall, our results affirmed the critical role of forest vegetation in water regulation, but also indicated trade-offs associated with forest removal and recovery that partially depend on larger-scale exogenous changes in climate

  14. Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia

    NASA Astrophysics Data System (ADS)

    Achat, D. L.; Bakker, M. R.; Zeller, B.; Derrien, D.; Barsukov, P.; Nikitich, P.

    2011-12-01

    Phosphorus is one of the most limiting nutrients in many ecosystems and mineral reserves available for fertilizer production are forecasted to last for no more than 100 yrs. Crop requirements for P are often lower in forests than in agriculture and P fertilization to forest ecosystems is not very common on a global scale. In southern Siberia, expected climate change would lead to higher overall precipitation, higher temperatures and subsequently to changes in land use (i.e. agricultural land could increase on detriment of forests). In the present work we evaluated P status in four forested ecosystems in southwestern Siberia including 1 site with lowland Populus tremula, and 3 upland sites in the Salair mountains with Populus tremula, Abies siberica or with small forest openings. The upland sites feature twice higher productivity than the lowland sites and it was suggested that thick snow cover on those sites would enable winter activity of microbial communities leading to faster soil degradation processes and higher nutrient availability. We thus wanted to test whether biological processes in the upland sites were of larger impact on P status than in the lowland sites. We combined 32P isotopic dilution techniques (for diffusive P), chemical extractions (for total P, organic P) and fumigation/incubation/respiration methods (for microbial P) to test this hypothesis. Additional soil analyses (C, N and othes) were performed. Results will be interpreted in the light of the exising knowledge on botany, climate, pedology and expected implications for future land use, would this occur to change.

  15. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning

    PubMed Central

    Seidl, Rupert; Rammer, Werner; Spies, Thomas A.

    2015-01-01

    Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average

  16. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    PubMed Central

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  17. Estimating Daytime Ecosystem Respiration to Improve Estimates of Gross Primary Production of a Temperate Forest

    PubMed Central

    Sun, Jinwei; Wu, Jiabing; Guan, Dexin; Yao, Fuqi; Yuan, Fenghui; Wang, Anzhi; Jin, Changjie

    2014-01-01

    Leaf respiration is an important component of carbon exchange in terrestrial ecosystems, and estimates of leaf respiration directly affect the accuracy of ecosystem carbon budgets. Leaf respiration is inhibited by light; therefore, gross primary production (GPP) will be overestimated if the reduction in leaf respiration by light is ignored. However, few studies have quantified GPP overestimation with respect to the degree of light inhibition in forest ecosystems. To determine the effect of light inhibition of leaf respiration on GPP estimation, we assessed the variation in leaf respiration of seedlings of the dominant tree species in an old mixed temperate forest with different photosynthetically active radiation levels using the Laisk method. Canopy respiration was estimated by combining the effect of light inhibition on leaf respiration of these species with within-canopy radiation. Leaf respiration decreased exponentially with an increase in light intensity. Canopy respiration and GPP were overestimated by approximately 20.4% and 4.6%, respectively, when leaf respiration reduction in light was ignored compared with the values obtained when light inhibition of leaf respiration was considered. This study indicates that accurate estimates of daytime ecosystem respiration are needed for the accurate evaluation of carbon budgets in temperate forests. In addition, this study provides a valuable approach to accurately estimate GPP by considering leaf respiration reduction in light in other ecosystems. PMID:25419844

  18. IMPACT OF GLOBAL CHANGE OF TERRESTRIAL ECOSYSTEMS: FRAMEWORKS FOR EVALUATING AGROECOSYSTEM AND FOREST ECOSYSTEM EFFECTS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) Global Climate Research Program (GCRP) is determining the effects of climate change on terrestrial ecosystems. his paper describes a general ecological risk assessment model as well as specific conceptual models for urrent...

  19. Modelling Net Ecosystem Exchange and LUE in Mediterranean Oak Forest by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Tramontana, Gianluca; Papale, Dario

    2011-01-01

    Net Ecosystem Exchange (NEE) is a key factor defining CO2 fluxes between atmosphere and ecosystems and CO2 flux measurements at individual eddy covariance flux sites provide valuable information on the seasonal dynamics of NEE. In this work, we developed and validated a satellite-based Light Use Efficiency (LUE) model to estimate NEE for a typical oak forest located in Central Italy. Satellite data were acquired by Moderate resolution spectroradiometer (MODIS) sensor installed on board Terra satellite. Oak forest studied is coppice managed; 2 eddy-covariance towers are located inside two forests parcels having different ages. We proposed to estimate LUE like function of mean brightness temperature, Normalized Difference Water Index (NDWI) and Photochemical Reflectance Index (PRI). Empirical multiple regressions models (MR) and Artificial Neural Network (ANN) were parameterized and validated using subset of data acquired by both the stations. Daily, 8-day and monthly temporal resolutions were investigated and accuracy estimation in space and time was performed.

  20. A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems.

    PubMed Central

    Dietze, Michael C; Matthes, Jaclyn Hatala

    2014-01-01

    Forest insects and pathogens (FIPs) have enormous impacts on community dynamics, carbon storage and ecosystem services, however, ecosystem modelling of FIPs is limited due to their variability in severity and extent. We present a general framework for modelling FIP disturbances through their impacts on tree ecophysiology. Five pathways are identified as the basis for functional groupings: increases in leaf, stem and root turnover, and reductions in phloem and xylem transport. A simple ecophysiological model was used to explore the sensitivity of forest growth, mortality and ecosystem fluxes to varying outbreak severity. Across all pathways, low infection was associated with growth reduction but limited mortality. Moderate infection led to individual tree mortality, whereas high levels led to stand-level die-offs delayed over multiple years. Delayed mortality is consistent with observations and critical for capturing biophysical, biogeochemical and successional responses. This framework enables novel predictions under present and future global change scenarios. PMID:25168168

  1. A general ecophysiological framework for modelling the impact of pests and pathogens on forest ecosystems.

    PubMed

    Dietze, Michael C; Matthes, Jaclyn Hatala

    2014-11-01

    Forest insects and pathogens (FIPs) have enormous impacts on community dynamics, carbon storage and ecosystem services, however, ecosystem modelling of FIPs is limited due to their variability in severity and extent. We present a general framework for modelling FIP disturbances through their impacts on tree ecophysiology. Five pathways are identified as the basis for functional groupings: increases in leaf, stem and root turnover, and reductions in phloem and xylem transport. A simple ecophysiological model was used to explore the sensitivity of forest growth, mortality and ecosystem fluxes to varying outbreak severity. Across all pathways, low infection was associated with growth reduction but limited mortality. Moderate infection led to individual tree mortality, whereas high levels led to stand-level die-offs delayed over multiple years. Delayed mortality is consistent with observations and critical for capturing biophysical, biogeochemical and successional responses. This framework enables novel predictions under present and future global change scenarios. PMID:25168168

  2. Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S.: Final Report

    SciTech Connect

    Munger, J. William; Foster, David R.; Richardson, Andrew D.

    2014-10-01

    This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbon uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.

  3. Preliminary analysis of ERS-1 SAR for forest ecosystem studies

    NASA Technical Reports Server (NTRS)

    Dobson, M. G.; Pierce, Leland; Sarabandi, Kamal; Ulaby, Fawwaz T.; Sharik, Terry

    1992-01-01

    An image obtained by the C-band VV-polarized ERS-1 SAR is examined with respect to potential land applications. A scene obtained near noon on August 15, 1991, along the U.S.-Canadian border near Sault Ste. Marie is calibrated relative to an array of trihedral corner reflectors and active radar calibrators distributed across the swath. Extensive contemporaneous ground observations of forest stands are used to predict the radar backscattering coefficient sigma at the time of the SAR overpass using a first-order vector radiative transfer model. These predictions generally agree with the calibrated ERS-1 data to within 1 dB. It is demonstrated that the dynamic range of sigma is sufficient to perform limited discrimination of various forest and grassland communities even for a single-date observation. Furthermore, retrieval of near-surface soil moisture is feasible for grass-covered soils when plant biomass is less than 1 tonne/ha.

  4. Modelling forest ecosystem dynamics using multitemporal multispectral scanner (MSS) data

    NASA Astrophysics Data System (ADS)

    Jarvis, C.

    1994-03-01

    An empirical model of forest succession was developed using MSS data. Images from 1976 and 1987 were classified and registered to assess vegetation change. Data were analyzed to determine the proportion of each landscape class that changed, and these proportions were used to develop a Markov Model. The simulation model was run to produce forest cover for 99 years. MSS data were classified into six classes with an overall accuracy of 93%. The landscape composition remained relatively constant, but over half the individual units changed, indicating a dynamic equilibrium. Results of the Markov model show a theoretical climax community that stabilizes rapidly. Over 60% of the area was composed of conifer, supporting the concept of a conifer dominated climax. However, continuous levels of other classes were maintained, indicating an inherently heterogeneous landscape.

  5. Identifying the location of fire refuges in wet forest ecosystems.

    PubMed

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential

  6. Tipping point of a conifer forest ecosystem under severe drought

    NASA Astrophysics Data System (ADS)

    Huang, Kaicheng; Yi, Chuixiang; Wu, Donghai; Zhou, Tao; Zhao, Xiang; Blanford, William J.; Wei, Suhua; Wu, Hao; Ling, Du; Li, Zheng

    2015-02-01

    Drought-induced tree mortality has recently received considerable attention. Questions have arisen over the necessary intensity and duration thresholds of droughts that are sufficient to trigger rapid forest declines. The values of such tipping points leading to forest declines due to drought are presently unknown. In this study, we have evaluated the potential relationship between the level of tree growth and concurrent drought conditions with data of the tree growth-related ring width index (RWI) of the two dominant conifer species (Pinus edulis and Pinus ponderosa) in the Southwestern United States (SWUS) and the meteorological drought-related standardized precipitation evapotranspiration index (SPEI). In this effort, we determined the binned averages of RWI and the 11 month SPEI within the month of July within each bin of 30 of RWI in the range of 0-3000. We found a significant correlation between the binned averages of RWI and SPEI at the regional-scale under dryer conditions. The tipping point of forest declines to drought is predicted by the regression model as SPEItp = -1.64 and RWItp = 0, that is, persistence of the water deficit (11 month) with intensity of -1.64 leading to negligible growth for the conifer species. When climate conditions are wetter, the correlation between the binned averages of RWI and SPEI is weaker which we believe is most likely due to soil water and atmospheric moisture levels no longer being the dominant factor limiting tree growth. We also illustrate a potential application of the derived tipping point (SPEItp = -1.64) through an examination of the 2002 extreme drought event in the SWUS conifer forest regions. Distinguished differences in remote-sensing based NDVI anomalies were found between the two regions partitioned by the derived tipping point.

  7. Assessment and forecast of Beijing and Shanghai's urban ecosystem health.

    PubMed

    Li, Yongfa; Li, Dong

    2014-07-15

    In this paper, we first analyze the 5 most cited papers with the title containing "Urban ecosystem health" in Chinese academic journals, and 5 newer papers retrieved from the CSSCI (Chinese Social Sciences Citation Index). The results show that the number of indicators to be used together in more than three papers is 28, and then we select 27 of them to assess Beijing and Shanghai's urban ecosystem health from 2000 to 2011. Secondly, when we standardize the original data, the worst value adjustment coefficient is introduced innovatively. Thirdly, using the entropy method, the weights of concrete indicators of Beijing and Shanghai in the different adjustment coefficients are calculated respectively. Fourthly, based on the fuzzy matter-element method, using the Hamming approach degree, the two cities' ecosystem health index and the contribution value to overall health index from each component are calculated. Lastly, using gray prediction model, the evolutionary time response sequence function of Beijing and Shanghai's urban ecosystem health index is identified, and thus both cities' urban ecosystem health is predicted. PMID:24784740

  8. Fusion of imaging spectroscopy and airborne laser scanning data for characterization of forest ecosystems - A review

    NASA Astrophysics Data System (ADS)

    Torabzadeh, Hossein; Morsdorf, Felix; Schaepman, Michael E.

    2014-11-01

    Forest ecosystems play an important role in the global carbon cycle and it is largely unknown how this role might be altered by transients imposed by global change and deforestation. Remote sensing can provide information on ecosystem state and functioning and, among others, two remote sensing techniques, airborne laser scanning (ALS) and imaging spectroscopy (IS), have been used to characterize forest ecosystems, both independently and combined in fusion approaches. However, the fusion of these datasets should make the best use of the complementarity of both sensors and provide better and more robust vegetation products in forested ecosystems. Similar to other data fusion approaches, satisfying results depend on choosing appropriate fusion levels and methods. In this review paper, we summarize and classify relevant studies that focused on forest characterization using combined ALS and IS data, limited to the last decade. We classified the approaches by fusion level (data or product level) and by choice of methods (physical or empirical methods). Five different categories of products (landcover maps, aboveground biomass, biophysical parameters, gross/net primary productivity and biochemical parameters), have been found as the main aspects of forest ecosystems studied so far. A qualitative accuracy analysis of the products exposed that currently landcover maps are profiting the most from ALS and IS data fusion, while there is room for improvements in respect to the other products, such as biophysical parameters. Only few studies using physical approaches were found, but we expect the use of such approaches will increase with the growing availability of physically based radiative transfer models that can simulate both, ALS and IS data.

  9. [Quantitative estimation of evapotranspiration from Tahe forest ecosystem, Northeast China].

    PubMed

    Qu, Di; Fan, Wen-Yi; Yang, Jin-Ming; Wang, Xu-Peng

    2014-06-01

    Evapotranspiration (ET) is an important parameter of agriculture, meteorology and hydrology research, and also an important part of the global hydrological cycle. This paper applied the improved DHSVM distributed hydrological model to estimate daily ET of Tahe area in 2007 using leaf area index and other surface data extracted TM remote sensing data, and slope, aspect and other topographic indices obtained by using the digital elevation model. The relationship between daily ET and daily watershed outlet flow was built by the BP neural network, and a water balance equation was established for the studied watershed, together to test the accuracy of the estimation. The results showed that the model could be applied in the study area. The annual total ET of Tahe watershed was 234.01 mm. ET had a significant seasonal variation. The ET had the highest value in summer and the average daily ET value was 1.56 mm. The average daily ET in autumn and spring were 0.30, 0.29 mm, respectively, and winter had the lowest ET value. Land cover type had a great effect on ET value, and the broadleaf forest had a higher ET ability than the mixed forest, followed by the needle leaf forest. PMID:25223020

  10. The effect of increased air humidity on northern deciduous forest ecosystem - a FAHM study.

    NASA Astrophysics Data System (ADS)

    Ostonen, Ivika; Rosenvald, Katrin; Tullus, Arvo; Parts, Kaarin; Sellin, Arne; Kupper, Priit; Sõber, Jaak; Sõber, Anu; Uri, Veiko; Aosaar, Jürgen; Varik, Mats; Lõhmus, Krista

    2013-04-01

    At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. In 2006 an unique experimental facility for free air humidity manipulation (FAHM) was established in Estonia to study the functioning of deciduous forest ecosystem under altered humidity conditions. The experimental site contains humidified and control plots, each includes four types of forest ecosystem: two overstorey species (planted hybrid aspen (Populus tremula L. × P. tremuloides Michx. and silver birch (Betula pendula Roth.)) both split into two types according to understorey vegetation (diverse "forest" understory and early successional grasses). We investigated the productivity, biomass allocation and functioning of silver birch forest ecosystem in response to elevated atmospheric humidity (on average 7% over the ambient level) during four growing seasons (2008-2011). We hypothesized that elevated air humidity facilitates both above- and below-ground growth and accumulation of plant biomass. During the first three experimental seasons height, stem diameter, and stem volume (D2H) increments of trees, biomass of understory in aboveground and fine root biomass in belowground were similar or significantly reduced in humidified plots. Only the fine root and rhizome biomass of the understory was twice higher in humidified plots. However, fine root turnover speeded up for both tree and understory roots. The trends in above-ground growth changed in 2011, when current annual increments of trees height, diameter, stem volume and fine root biomass were higher in humidified plots. Functionally, trees hydraulic conductance was significantly higher and stem sap flux lower for humidified trees coinciding with significantly higher biomass of primary (in majority ectomycorrhizal) roots, morphologically thinner and longer root tips and higher specific root length. Humidification caused a shift in the root tips colonizing fungal community towards the

  11. Integrating Ecosystem Services Into Health Impact Assessment

    EPA Science Inventory

    Health Impact Assessment (HIA) provides a methodology for incorporating considerations of public health into planning and decision-making processes. HIA promotes interdisciplinary action, stakeholder participation, and timeliness and takes into account equity, sustainability, and...

  12. Application of BIOME-BGC to Managed Forest Ecosystems in Europe

    NASA Astrophysics Data System (ADS)

    Pietsch, S. A.; Petritsch, R.; Hasenauer, H.

    2007-05-01

    European forests have been severely modified by humans resulting in a reduction of forest covered land area, a change in tree species distribution and the deterioration of forest soils. One option to assess forest management impacts on the cycling of carbon, nitrogen and water is the use of BGC-Models. Such models are considered as diagnostic tools for studying sustainability of forest ecosystems and have been used for climate change impact studies on forest growth and carbon sequestration issues. In our efforts to develop an appropriate diagnostic tool to assess the dynamics of carbon, nitrogen, water and energy flux for sustainable forest ecosystem management and climate change studies, we have selected BIOME-BGC. The main reason was that the general model structure is flexible enough to integrate large scale, regional as well as forest stand level information. During the last years we worked on the following extensions: (1) Tested and extended algorithms to interpolate daily climate input data as they are needed to run the model for any location within the country; (2) We developed a set of species specific parameters for all major tree species in Central Europe: Norway spruce (two variants highland and lowlands), Scots pine, Stone pine, larch, common beech and oak forests. These parameters sets are important since in BIOME-BGC vegetation is distinguished in biomes or plant functional types but the impacts of forest management (e.g. changes in stand density) may differ substantially among the tree species assigned to a single biome. (3) We extended the model to cover the full variation ranging from conditions including temperature extremes at the timberline to periodic ground water access or flooding in lowlands. (4) We adapted the spinup procedure to ensure unbiased predictions on forest status in the absence of past and present management impacts. (5) Explicitly addressed the effects of past and present forest management as they may differ by species and

  13. Application of sewage sludge to non-agricultural ecosystems: Impacts of nitrogen on forests

    SciTech Connect

    Efroymson, R.A.; Tharp, M.L.; Luxmoore, R.J.; Sample, B.E.; Barnthouse, L.W.; Daniel, F.B.

    1995-12-31

    The Clean Water Act (CWA) of 1977 directed EPA to establish standards for use and disposal of sewage sludge (biosolids). This report is part of a larger study evaluating nutrient and contaminant impacts associated with the land application of biosolids in non-agricultural ecosystems. Ecological risk assessments rarely focus on nutrients as stressors. The nutrient components of municipal sewage sludge may impact tree community composition, growth and production, habitat and forage quality for wildlife, and nutrient cycling. The focus here is on three forest ecosystems: northwestern Douglas-fir forest (Pack Forest, WA), southeastern loblolly pine plantation (Athens, GA), and eastern deciduous forest (Hubbard Brook, NH). A model called LINKAGES has been developed at ORNL to examine the relationships between nitrogen cycling and long-term forest stand dynamics, limited by climate and soil water status. Plant-available nitrogen from biosolids is added in several application scenarios and compared to the no-amendment case. All changes are noted, even if they may be viewed as benefits rather than risks. Model outputs include: above-ground biomass, individual species biomass, net above-ground production, leaf litter, evapotranspiration, available nitrogen, and dead trunks. The changes in plant community composition and production are dependent on the rate, frequency, and duration of sludge application and on the age of the stand at the time of application. Model outputs are compared to empirical studies of forests where biosolids have been applied.

  14. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective

    PubMed Central

    Smale, Dan A; Burrows, Michael T; Moore, Pippa; O'Connor, Nessa; Hawkins, Stephen J

    2013-01-01

    Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps. PMID:24198956

  15. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate

    NASA Astrophysics Data System (ADS)

    Sun, Ge; Duan, Kai; Sun, Shanlei; Caldwell, Peter; Cohen, Erika; McNulty, Steven; Zhang, Yang

    2016-04-01

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This modeling study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in forest productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m-2 yr-1 (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr-1 (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 ℃) and precipitation (+17 ~ +51 mm yr-1). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.

  16. Managing for Climate Change in Western Forest Ecosystems; The Role of Refugia in Adaptation Strategies (Invited)

    NASA Astrophysics Data System (ADS)

    Millar, C. I.; Morelli, T.

    2009-12-01

    Managing forested ecosystems in western North America for adaptation to climate change involves options that depend on resource objectives, landscape conditions, sensitivity to change, and social desires. Strategies range from preserving species and ecosystems in the face of change (resisting change); managing for resilience to change; realigning ecosystems that have been severely altered so that they can adapt successfully; and enabling species to respond to climate changes. We are exploring one extreme in this range of strategies, that is, to manage locations, species, communities, or ecosystems as refugia. This concept is familiar from the Quaternary literature as isolated locations where climates remained warm during cold glacial intervals and wherein species contracted and persisted in small populations. References to refugia have been made in the climate-adaptation literature but little elaborated, and applications have not been described. We are addressing this gap conceptually and in case-studies from national forest and national park environments in California. Using a classification of refugium categories, we extend the concept beyond the original use to include diverse locations and conditions where plant or animal species, or ecosystems of concern, would persist during future changing climatic backgrounds. These locations may be determined as refugial for reasons of local microclimate, substrate, elevation, topographic context, paleohistory, species ecology, or management capacity. Recognizing that species and ecosystems respond to climate change differently, refugium strategies are appropriate in some situations and not others. We describe favorable conditions for using refugium strategies and elaborate specific approaches in Sierra Nevada case studies.

  17. Experimental warming studies on tree species and forest ecosystems: a literature review.

    PubMed

    Chung, Haegeun; Muraoka, Hiroyuki; Nakamura, Masahiro; Han, Saerom; Muller, Onno; Son, Yowhan

    2013-07-01

    Temperature affects a cascade of ecological processes and functions of forests. With future higher global temperatures being inevitable it is critical to understand and predict how forest ecosystems and tree species will respond. This paper reviews experimental warming studies in boreal and temperate forests or tree species beyond the direct effects of higher temperature on plant ecophysiology by scaling up to forest level responses and considering the indirect effects of higher temperature. In direct response to higher temperature (1) leaves emerged earlier and senesced later, resulting in a longer growing season (2) the abundance of herbivorous insects increased and their performance was enhanced and (3) soil nitrogen mineralization and leaf litter decomposition were accelerated. Besides these generalizations across species, plant ecophysiological traits were highly species-specific. Moreover, we showed that the effect of temperature on photosynthesis is strongly dependent on the position of the leaf or plant within the forest (canopy or understory) and the time of the year. Indirect effects of higher temperature included among others higher carbon storage in trees due to increased soil nitrogen availability and changes in insect performance due to alterations in plant ecophysiological traits. Unfortunately only a few studies extrapolated results to forest ecosystem level and considered the indirect effects of higher temperature. Thus more intensive, long-term studies are needed to further confirm the emerging trends shown in this review. Experimental warming studies provide us with a useful tool to examine the cascade of ecological processes in forest ecosystems that will change with future higher temperature. PMID:23689840

  18. Drought tolerance in the equatorial Amazon forest: Implications for ecosystem models

    NASA Astrophysics Data System (ADS)

    Harper, A. B.; Baker, I. T.; Denning, A.; Fisher, R. A.; Markewitz, D.; Meir, P.

    2011-12-01

    In the Amazon forest, transpiration and photosynthesis rates are often higher during the dry season than during the wet season. However, multiyear or particularly strong droughts affect ecosystem productivity and tree mortality, as indicated by recent droughts during 2005 and 2010. A majority of climate models predict decreased rainfall in tropical South America throughout the 21st century, especially during the dry season. Using observed meteorology from two rainfall exclusion experiments in the Amazon (Tapajós and Caxiuanã), we examine forest response to drought in an ecosystem model (SiB3 - the Simple Biosphere model). The exclusion experiments prevented ~50% of precipitation from reaching the forest floor. The observed forest was more resilient at Tapajós, but the simulations showed stronger resiliency at Caxiuanã. To explain the model-observation difference we focus on annual precipitation and seasonal cycle and depth to water table, which could influence deep root development. We run SiB3 with variable rooting depth, with improved simulations of the drought response in both cases (the default root depth in SiB3 is 10 m). These results suggest that a "one size fits all" approach to modeling tropical forest drought response is not adequate. We therefore define a "stress resilience index", which can be used to create a map of tropical forest root depth. The index is based on the results of SiB3 at the exclusion sites, precipitation climatology, and percent forest cover in a grid cell. Using spatially variable root depth in a global version of SiB3 results in an improved simulation of ecosystem drought response.

  19. Effects of Stand age Structure on Regional Carbon Budgets of Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Song, C.; Woodcock, C. E.

    2002-12-01

    This study has developed a two-stage modeling scheme to investigate the importance of age structure on regional carbon fluxes for the forests in the Pacific Northwest of the United States. In the first stage, an individual-based forest ecosystem carbon flux model (IntCarb) at stand scale is developed. IntCarb combines components from the ZELIG and CENTURY models to simulate forest growth and development, and heterotrophic respiration, respectively. Stand scale carbon fluxes simulated by IntCarb strongly depend on stand age. Due to its high variablity over large areas, forest age structure has to be taken into account for realistic estimation of carbon budgets. The RegCarb model is developed to estimate regional scale carbon fluxes based on forest age structure and adjusting for the nonrespiratory carbon losses, such as harvesting. Our initial estimate with RegCarb for the Pacific Northwest of the United States found that this region was a tremendous carbon source to the atmosphere from 1890 to 1990 due to intensive logging of old-growth forest, and is becoming a carbon sink since the last decade. Projections for the role of forests in this region in the global carbon cycle in the future strongly depend on the amount of timber to be harvested, i.e. how the age structure of forests in this region is to be altered.

  20. The Price of Snow: Valuing Albedo as an Ecosystem Service in Northeastern Forests

    NASA Astrophysics Data System (ADS)

    Lutz, D. A.; Howarth, R. B.

    2013-12-01

    Surface albedo is a property of forests that provides an important climate regulating ecosystem service, particularly in environments where snow is frequent. In some cases, the influence of albedo can equal and surpass the climatic benefits of carbon sequestration from forest growth. However, no current climate mitigation platforms consider albedo in their framework. Therefore, it is essential to integrate these two climatic services in an economic context for the effective design and implementation of forestry climate projects. Here we place an economic value on albedo-related shortwave radiation through the use of shadow prices derived from an integrated assessment model (DICE). We then examine the potential impact of this value on optimal forest rotation in the White Mountain National Forest in New Hampshire using an ecological and economic forest model. Our results suggest that including albedo can shorten optimal rotation periods significantly compared to scenarios where only timber and carbon are considered. For instance, in spruce-fir stands, very short rotation periods of just 25 years become economically optimal. Annual snowfall and productivity were important variables in assessing the net benefits of albedo in forested environments. Therefore, in high latitude forests with low carbon storage and high snowfall, we expect optimal rotation periods to approach zero, indicating that these forests should be maintained instead as open fields for optimal climatic benefits, which may have serious implications for biodiversity and biogeochemical cycling in these areas.

  1. Soil organic matter cycling in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Norris, C. E.; Mercier Quideau, S.

    2013-12-01

    The uplands of the western boreal forest of Canada are characterized by a mosaic of pure and mixed stands of aspen (Populus tremuloides Michx.) and spruce (Picea glauca (Moench) Voss). In addition to natural ecosystems, the region is now home to novel ecosystems; i.e., ecosystems composed of reclaimed stands formed from trees planted on constructed anthropogenic soils. To understand potential differences in functioning of these novel ecosystems, we must first better understand the functioning of their natural counterparts. Here we present results on both the characterization and cycling of soil organic matter in novel and natural ecosystems found in the Athabasca oil sands region. Soil organic matter from 42 long term monitoring sites was evaluated for long chain (≥ C21) n-alkane composition. The survey showed that n-alkanes were more concentrated and had distinct signatures in natural compared to novel ecosystems. Mineral soils from reclaimed stands showed a distinct microbial community structure from natural aspen and spruce stands, as was demonstrated using phospholipid fatty acids (PLFAs) as microbial biomarkers following addition of 13C-glucose in a laboratory incubation. Further probing by compound specific analysis of the 13C-enriched PLFAs determined that microbial incorporation of 13C-glucose was different among soils. In a field incubation using 15N labeled aspen litter added to the forest floor of reclaimed, harvested and mature natural aspen stands, the microbial community readily incorporated the tracer and nitrogen was cycled to the above-ground vegetation on all sites. In addition, the amendment of leaf litter to the forest floor also increased soil moisture and soil microbial biomass on both the reclaimed and harvested sites. Utilizing stable isotope tracers in addition to a multi-faceted experimental approach has provided insightful results on the development of soil biogeochemical cycling in novel ecosystems.

  2. Effects of Past Climate Changes on Ecosystem Biogeochemical Cycles in Rocky Mountain Forests and Lakes

    NASA Astrophysics Data System (ADS)

    Shuman, B.; Mechenich, M. F.; Stefanova, I.; Henderson, A.; Donnelly, J. P.

    2007-12-01

    Ongoing climate trends will likely alter how forest ecosystems produce important goods and services, in part, by changing ecosystem responses to disturbances, such as fires and land-use. Disturbances induce forest succession and thus dramatically change the flow of water and nutrients through a given ecosystem. However, long-term ecosystem responses to disturbance, especially regarding nutrient pools and cycling rates, are poorly documented, and less is known about the effects of century-scale climate trends on these responses especially with respect to moisture. Here, we show biogeochemical responses to repeated (>20) episodes of disturbance and succession in a single ecosystem under a range of climatic conditions over 2000 years. Our lake sediment record shows regular fluctuations in the flux of base cations and other macronutrients from lodgepole pine ( Pinus contorta) forests in northern Colorado following catastrophic stand-replacing fires. Post-fire elemental fluctuations are consistent with ecosystem theory regarding the re-equilibration of biomass and nutrient pools during succession, but show systematic variation that has been previously undocumented. The time span of post-fire re-equilibration correlates positively with measures of fire severity, which is consistent with hypotheses that seed dispersal and soil recovery likely slow re-growth after large or severe fires. Likewise, dry conditions during the Medieval Climatic Anomaly (MCA, 1200-500 yrs BP) altered elemental fluctuations and, thus, generated post-fire pulses of lake eutrophication that were not evident during other periods. The interaction of climate and disturbance, therefore, has important consequences for ecosystem function and services, including the quality of aquatic environments.

  3. Human health impacts of ecosystem alteration.

    PubMed

    Myers, Samuel S; Gaffikin, Lynne; Golden, Christopher D; Ostfeld, Richard S; Redford, Kent H; Ricketts, Taylor H; Turner, Will R; Osofsky, Steven A

    2013-11-19

    Human activity is rapidly transforming most of Earth's natural systems. How this transformation is impacting human health, whose health is at greatest risk, and the magnitude of the associated disease burden are relatively new subjects within the field of environmental health. We discuss what is known about the human health implications of changes in the structure and function of natural systems and propose that these changes are affecting human health in a variety of important ways. We identify several gaps and limitations in the research that has been done to date and propose a more systematic and comprehensive approach to applied research in this field. Such efforts could lead to a more robust understanding of the human health impacts of accelerating environmental change and inform decision making in the land-use planning, environmental conservation, and public health policy realms. PMID:24218556

  4. Human health impacts of ecosystem alteration

    PubMed Central

    Myers, Samuel S.; Gaffikin, Lynne; Golden, Christopher D.; Ostfeld, Richard S.; H. Redford, Kent; H. Ricketts, Taylor; Turner, Will R.; Osofsky, Steven A.

    2013-01-01

    Human activity is rapidly transforming most of Earth’s natural systems. How this transformation is impacting human health, whose health is at greatest risk, and the magnitude of the associated disease burden are relatively new subjects within the field of environmental health. We discuss what is known about the human health implications of changes in the structure and function of natural systems and propose that these changes are affecting human health in a variety of important ways. We identify several gaps and limitations in the research that has been done to date and propose a more systematic and comprehensive approach to applied research in this field. Such efforts could lead to a more robust understanding of the human health impacts of accelerating environmental change and inform decision making in the land-use planning, environmental conservation, and public health policy realms. PMID:24218556

  5. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem

    USGS Publications Warehouse

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2016-01-01

    Drought has long been recognized as a driving mechanism in the forests of western North America and drought-induced mortality has been documented across genera in recent years. Given the frequency of these events are expected to increase in the future, understanding patterns of mortality and plant response to severe drought is important to resource managers. Drought can affect the functional, physiological, structural, and demographic properties of forest ecosystems. Remote sensing studies have documented changes in forest properties due to direct and indirect effects of drought; however, few studies have addressed this at local scales needed to characterize highly heterogeneous ecosystems in the forest-shrubland ecotone. We analyzed a 22-year Landsat time series (1985–2012) to determine changes in forest in an area that experienced a relatively dry decade punctuated by two years of extreme drought. We assessed the relationship between several vegetation indices and field measured characteristics (e.g. plant area index and canopy gap fraction) and applied these indices to trend analysis to uncover the location, direction and timing of change. Finally, we assessed the interaction of climate and topography by forest functional type. The Normalized Difference Moisture Index (NDMI), a measure of canopy water content, had the strongest correlation with short-term field measures of plant area index (R2 = 0.64) and canopy gap fraction (R2 = 0.65). Over the entire time period, 25% of the forested area experienced a significant (p-value < 0.05) negative trend in NDMI, compared to less than 10% in a positive trend. Coniferous forests were more likely to be associated with a negative NDMI trend than deciduous forest. Forests on southern aspects were least likely to exhibit a negative trend while north aspects were most prevalent. Field plots with a negative trend had a lower live density, and higher amounts of standing dead and down trees compared to plots with no

  6. Developing a Forest Health Index for public engagement and decision support using local climatic, ecological, and socioeconomic data

    NASA Astrophysics Data System (ADS)

    Arnott, J. C.; Katzenberger, J.; Cundiff, J.

    2013-12-01

    Forest health is an oft-used term without a generally accepted definition. Nonetheless, the concept of forest health continues to permeate scientific, resource management, and public discourse, and it is viewed as a helpful communication device for engagement on issues of concern to forests and their surrounding communities. Notwithstanding the challenges associated with defining the concept of 'forest health,' we present a model for assessing forest health at a watershed scale. Utilizing the Roaring Fork Valley, Colorado--a mountain watershed of 640,000 forested acres--as a case study, we have created a Forest Health Index that integrates a range of climatic, ecological, and socioeconomic data into an assessment organized along a series of public goals including, 1) Ecosystem Services, 2) Public Health & Safety, 3) Sustainable Use & Management, and 4) Ecological Integrity. Methods for this index were adopted from an earlier effort called the Ocean Health Index by Halpern et al, 2012. Indicators that represent drivers of change, such as temperature and precipitation, as well as effects of change, such as primary productivity and phenology, were selected. Each indicator is assessed by comparing a current status of that indicator to a reference scenario obtained through one of the following methods: a) statistical analysis of baseline data from the indicator record, b) commonly accepted normals, thresholds, limits, concentrations, etc., and c) subjective expert judgment. The result of this assessment is a presentation of graphical data and accompanying ratings that combine to form an index of health for the watershed forest ecosystem. We find this product to have potential merit for communities working to assess the range of conditions affecting forest health as well as making sense of the outcomes of those affects. Here, we present a description of the index methodology, data results from engagement with forest watershed stakeholders, example results of data

  7. Assimilation of high resolution satellite imagery into the 3D-CMCC forest ecosystem model

    NASA Astrophysics Data System (ADS)

    Natali, S.; Collalti, A.; Candini, A.; Della Vecchia, A.; Valentini, R.

    2012-04-01

    The use of satellite observations for the accurate monitoring of the terrestrial biosphere has been carried out since the very early stage of remote sensing applications. The possibility to observe the ground surface with different wavelengths and different observation modes (namely active and passive observations) has given to the scientific community an invaluable tool for the observation of wide areas with a resolution down to the single tree. On the other hand, the continuous development of forest ecosystem models has permitted to perform simulations of complex ("natural") forest scenarios to evaluate forest status, forest growth and future dynamics. Both remote sensing and modelling forest assessment methods have advantages and disadvantages that could be overcome by the adoption of an integrated approach. In the framework of the European Space Agency Project KLAUS, high resolution optical satellite data has been integrated /assimilated into a forest ecosystem model (named 3D-CMCC) specifically developed for multi-specie, multi-age forests. 3D-CMCC permits to simulate forest areas with different forest layers, with different trees at different age on the same point. Moreover, the model permits to simulate management activities on the forest, thus evaluating the carbon stock evolution following a specific management scheme. The model has been modified including satellite data at 10m resolution, permitting the use of directly measured information, adding to the model the real phenological cycle of each simulated point. Satellite images have been collected by the JAXA ALOS-AVNIR-2 sensor. The integration schema has permitted to identify a spatial domain in which each pixel is characterised by a forest structure (species, ages, soil parameters), meteo-climatological parameters and estimated Leaf Area Index from satellite. The resulting software package (3D-CMCC-SAT) is built around 3D-CMCC: 2D / 3D input datasets are processed iterating on each point of the

  8. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    PubMed Central

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  9. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    NASA Astrophysics Data System (ADS)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-03-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.

  10. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers.

    PubMed

    Hendy, Ian W; Michie, Laura; Taylor, Ben W

    2014-01-01

    Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505

  11. Avian, salamander, and forest floor mercury concentrations increase with elevation in a terrestrial ecosystem.

    PubMed

    Townsend, Jason M; Driscoll, Charles T; Rimmer, Christopher C; McFarland, Kent P

    2014-01-01

    High-elevation ecosystems of the northeastern United States are vulnerable to deposition and environmental accumulation of atmospheric pollutants, yet little work has been done to assess mercury (Hg) concentrations in organisms occupying montane ecosystems. The authors present data on Hg concentrations in ground-foraging insectivorous songbirds, a terrestrial salamander, and forest floor horizons sampled along a forested elevational gradient from 185 m to 1273 m in the Catskill Mountains, New York, USA. Mean Hg concentrations in Catharus thrushes and the salamander Plethodon cinereus increased with elevation, as did Hg concentrations in all forest floor horizons. Mean Hg concentrations in organic soils at approximately 1200 m elevation (503.5 ± 17.7 ng/g, dry wt) were 4.4-fold greater than those at approximately 200 m. Montane ecosystems of the northeastern United States, and probably elsewhere, are exposed to higher levels of atmospheric Hg deposition as reflected in accumulation patterns in the forest floor and associated high-elevation fauna. This information can be used to parameterize and test Hg transport and bioaccumulation models of landscape-specific patterns and may serve as a monitoring tool for decision makers considering future controls on Hg emissions. Further investigation is needed into the potential effects of increased Hg concentrations on high-elevation fauna. PMID:24302165

  12. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    PubMed Central

    Michie, Laura; Taylor, Ben W.

    2014-01-01

    Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505

  13. The environmental behaviour of polychlorinated phenols and its relevance to cork forest ecosystems: a review.

    PubMed

    McLellan, Iain; Carvalho, Mariana; Silva Pereira, Cristina; Hursthouse, Andrew; Morrison, Calum; Tatner, Paul; Martins, Isabel; San Romão, M Vitória; Leitão, Maria

    2007-10-01

    Pentachlorophenol (PCP) has been used as a herbicide, biocide and preservative worldwide since the 1930s and as a result, extensive and prolonged contamination exists. The environmental impact increases when its many degradation products are taken into consideration. A number of chloroanisols and their related chlorophenols have been found in cork slabs collected from Portuguese oak tree forests before stopper manufacturing, and contamination by PCP and polychlorinated anisole (PCA) has been detected in Canadian forests. It is suggested that the use of polychlorinated phenols, in particular PCP, is thought to be a cause of the cork taint problem in wine, a major socio-economic impact not only for industry but on sensitive and highly biodiverse ecosystems. It also highlights particular issues relating to the regional regulation of potentially toxic chemicals and global economics world wide. To fully understand the impact of contamination sources, the mechanisms responsible for the fate and transport of PCP and its degradation products and assessment of their environmental behaviour is required. This review looks at the current state of knowledge of soil sorption, fate and bioavailability and identifies the challenges of degradation product identification and the contradictory evidence from field and laboratory observations. The need for a systematic evaluation of PCP contamination in relation to cork forest ecosystems and transfer of PCP between trophic levels is emphasised by discrepancies in bioaccumulation and toxicity. This is essential to enable long term management of not only transboundary contaminants, but also the sustainable management of socially and economically important forest ecosystems. PMID:17909638

  14. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services

    PubMed Central

    Birch, Jennifer C.; Newton, Adrian C.; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-01-01

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761

  15. [Eco-value level classification model of forest ecosystem based on modified projection pursuit technique].

    PubMed

    Wu, Chengzhen; Hong, Wei; Hong, Tao

    2006-03-01

    To optimize the projection function and direction of projection pursuit technique, predigest its realization process, and overcome the shortcomings in long time calculation and in the difficulty of optimizing projection direction and computer programming, this paper presented a modified simplex method (MSM), and based on it, brought forward the eco-value level classification model (EVLCM) of forest ecosystem, which could integrate the multidimensional classification index into one-dimensional projection value, with high projection value denoting high ecosystem services value. Examples of forest ecosystem could be reasonably classified by the new model according to their projection value, suggesting that EVLCM driven directly by samples data of forest ecosystem was simple and feasible, applicable, and maneuverable. The calculating time and value of projection function were 34% and 143% of those with the traditional projection pursuit technique, respectively. This model could be applied extensively to classify and estimate all kinds of non-linear and multidimensional data in ecology, biology, and regional sustainable development. PMID:16724723

  16. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services.

    PubMed

    Birch, Jennifer C; Newton, Adrian C; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-12-14

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost-benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761

  17. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems.

    PubMed

    Hiers, J Kevin; O'Brien, Joseph J; Will, Rodney E; Mitchell, Robert J

    2007-04-01

    Longleaf pine (Pinus palustris) woodlands and savannas are among the most frequently burned ecosystems in the world with fire return intervals of 1-10 years. This fire regime has maintained high levels of biodiversity in terms of both species richness and endemism. Land use changes have reduced the area of this ecosystem by >95%, and inadequate fire frequencies threaten many of the remnants today. In the absence of frequent fire, rapid colonization of hardwoods and shrubs occurs, and a broad-leaved midstory develops. This midstory encroachment has been the focus of much research and management concern, largely based on the assumption that the midstory reduces understory plant diversity through direction competition via light interception. The general application of this mechanism of degradation is questionable, however, because midstory density, leaf area, and hardwood species composition vary substantially along a soil moisture gradient from mesic to extremely xeric sites. Reanalysis of recently reported data from xeric longleaf pine communities suggests that the development of the forest floor, a less conspicuous change in forest structure, might cause a decline in plant biodiversity when forests remain unburned. We report here a test of the interactions among fire, litter accumulation, forest floor development, and midstory canopy density on understory plant diversity. Structural equation modeling showed that within xeric sites, forest floor development was the primary factor explaining decreased biodiversity. The only effects of midstory development on biodiversity were those mediated through forest floor development. Boundary line analysis of functional guilds of understory plants showed sensitivity to even minor development of the forest floor in the absence of fire. These results challenge the prevailing management paradigm and suggest that within xeric longleaf pine communities, the primary focus of managed fire regime should be directed toward the

  18. Thermal Imaging of Forest Canopy Temperatures: Relationships with Biological and Biophysical Drivers and Ecosystem Fluxes

    NASA Astrophysics Data System (ADS)

    Still, C. J.; Kim, Y.; Hanson, C. V.; Law, B. E.; Kwon, H.; Schulze, M.; Pau, S.; Detto, M.

    2015-12-01

    Temperature is a primary environmental control on plant processes at a range of spatial and temporal scales, affecting enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with environmental drivers, and can be used to examine forest responses to stresses like droughts and heat waves. Direct measurements of plant canopy temperatures using thermocouple sensors have been challenging and offer limited information. Such measurements are usually conducted over short periods of time and a limited spatial extent of the canopy. By contrast, thermal infrared (TIR) imaging allows for extensive temporal and spatial measurement of canopy temperature regimes. We present results of TIR imaging of forest canopies at a range of well-studied forest sites in the United States and Panama. These forest types include temperate rainforests, a semi­arid pine forest, and a semi­deciduous tropical forest. Canopy temperature regimes at these sites are highly variable spatially and temporally and display frequent departures from air temperature, particularly during clear sky conditions. Canopy tissue temperatures are often warmer (daytime) and colder (nighttime) than air temperature, and canopy structure seems to have a large influence on the thermal regime. Additionally, comparison of canopy temperatures to eddy covariance fluxes of carbon dioxide, water vapor, and energy reveals relationships not apparent using air temperature. Initial comparisons between our forest canopy temperatures and remotely sensed skin temperature using Landsat and MODIS data show reasonably good agreement. We conclude that temporal and spatial changes in canopy temperature and its relationship to biological and environmental factors can improve our understanding of how

  19. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    USGS Publications Warehouse

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  20. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania

    PubMed Central

    2014-01-01

    Background In the past few decades, global climate change has accentuated the intensification of aridization in South-Western Romania, with direct and indirect consequences on the quality of forest ecosystems. In addition to qualitative deterioration, the quantitative changes brought about by intensive anthropic deforestation have created the conditions for a decline in the size of forest areas on vast tracts of land. The paper aims to analyze the qualitative and quantitative changes in the forest ecosystems in South-Western Romania, changes due to the synergic context of the global climate changes and the anthropic pressures of the past three decades. In order to capture the evolution of aridization in the study area, specific aridization indexes have been calculated, such as the De Martonne index and the UNEP aridity index. 1990 and 2011 satellite images have been used in order to quantify the qualitative changes. Results The results obtained indicated that, in the past two decades, the quality of the biomass declined as a result of the increase in the climatic aridity conditions (De Martonne si UNEP aridity index, indicating in the last decades, annual values under 15 mm/°C, and under 0.5 mm/mm, that means that the values situated under these thresholds, describe arid and semi-arid climate conditions). Also, the uncontrolled logging across vast surfaces caused the loss of forest ecosystems by 7% in the overall study area, during the last three decades. Conclusions The severe effects of aridization meant, first of all, a significant decline in the quality of the ecosystem services supplied by forests. In the absence of viable actions to correct the present situation, the extremely undesirable consequences of an ecological and social nature will arise in the near future. PMID:24393389

  1. Continental estimates of forest cover and forest cover changes in the dry ecosystems of Africa between 1990 and 2000

    PubMed Central

    Bodart, Catherine; Brink, Andreas B; Donnay, François; Lupi, Andrea; Mayaux, Philippe; Achard, Frédéric

    2013-01-01

    Aim This study provides regional estimates of forest cover in dry African ecoregions and the changes in forest cover that occurred there between 1990 and 2000, using a systematic sample of medium-resolution satellite imagery which was processed consistently across the continent. Location The study area corresponds to the dry forests and woodlands of Africa between the humid forests and the semi-arid regions. This area covers the Sudanian and Zambezian ecoregions. Methods A systematic sample of 1600 Landsat satellite imagery subsets, each 20 km × 20 km in size, were analysed for two reference years: 1990 and 2000. At each sample site and for both years, dense tree cover, open tree cover, other wooded land and other vegetation cover were identified from the analysis of satellite imagery, which comprised multidate segmentation and automatic classification steps followed by visual control by national forestry experts. Results Land cover and land-cover changes were estimated at continental and ecoregion scales and compared with existing pan-continental, regional and local studies. The overall accuracy of our land-cover maps was estimated at 87%. Between 1990 and 2000, 3.3 million hectares (Mha) of dense tree cover, 5.8 Mha of open tree cover and 8.9 Mha of other wooded land were lost, with a further 3.9 Mha degraded from dense to open tree cover. These results are substantially lower than the 34 Mha of forest loss reported in the FAO's 2010 Global Forest Resources Assessment for the same period and area. Main conclusions Our method generates the first consistent and robust estimates of forest cover and change in dry Africa with known statistical precision at continental and ecoregion scales. These results reduce the uncertainty regarding vegetation cover and its dynamics in these previously poorly studied ecosystems and provide crucial information for both science and environmental policies. PMID:23935237

  2. 77 FR 21721 - Sierra National Forest, Bass Lake Ranger District, California, Whisky Ecosystem Restoration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... purpose of this Project is to promote ecosystem resilience, sustainability, and health under current and... depleted soil moisture. Stocking levels (stand densities) have reached or are reaching density levels...

  3. Climate change, forest management and nitrogen deposition influence on carbon sequestration in forest ecosystems in Russia: simulation modelling approach

    NASA Astrophysics Data System (ADS)

    Komarov, Alexander; Kudeyarov, Valery; Shanin, Vladimir

    2014-05-01

    Russian land ecosystems occupy more than 1/9th global land area. Therefore its carbon budget is an essential contribution to the global carbon budget. The first rough estimate of carbon balance on Russian territory was made on comparison data on total soil respiration (Kudeyarov et. al., 1995) and NPP calculated on data on biological productivity of different ecosystems over Russia. The carbon balance was evaluated as a C-sink. Further estimates of Russian C budget by V.Kudeyarov et al., (2007) and I.Kurganova et al., (2010) were more correct and included soil microbial flux, and non-respiratory processes: fossil fuel, agriculture, forest fires and post-fire emissions, insect damage, etc. According to estimates the total C-sink of Russian territory for early nineties was about -0.8-1.0 Pg C per year. The later IIASA account developed by A.Shvidenko et al. (2010) has provided current estimates of C fluxes and storages in Russia and showed that its terrestrial ecosystems served as a net carbon sink of -0.5-0.7 PgC yr-1 during the last decade. Taking into account big uncertainties of determination of carbon balance constituents one can say that results by IIASA and our Institute are rather close. Resulting effect of two processes (sequestration and CO2 emission) can be analysed by mathematical modelling only. Corresponding system of models of organic matter dynamics in forest ecosystems EFIMOD was developed in our Institute last decade and applied in Russia and other countries for evaluation of impacts of climate changes, forest management and forest fires. The comparative simulations of carbon and nitrogen dynamics in the mixed forest ecosystems of Central Russia from different climatic zones and site conditions have been made. Three large forest areas with the total square of about 17,000 km2 distinct in environmental conditions were chosen. We used the data of the forest inventory for model initialization. Four simulation scenarios (without disturbances, with

  4. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems.

    PubMed

    St Louis, V L; Rudd, J W; Kelly, C A; Hall, B D; Rolfhus, K R; Scott, K J; Lindberg, S E; Dong, W

    2001-08-01

    The forest canopy was an important contributor to fluxes of methyl mercury (MeHg) and total mercury (THg) to the forest floor of boreal uplands and wetlands and potentially to downstream lakes, at the Experimental Lakes Area (ELA), northwestern Ontario. The estimated fluxes of MeHg and THg in throughfall plus litterfall below the forest canopy were 2 and 3 times greater than annual fluxes by direct wet deposition of MeHg (0.9 mg of MeHg ha(-1)) and THg (71 mg of THg ha(-1)). Almost all of the increased flux of MeHg and THg under the forest canopy occurred as litterfall (0.14-1.3 mg of MeHg ha(-1) yr(-1) and 110-220 mg of THg ha(-1) yr(-1)). Throughfall added no MeHg and approximately 9 mg of THg ha(-1) yr(-1) to wet deposition at ELA, unlike in other regions of the world where atmospheric deposition was more heavily contaminated. These data suggest that dry deposition of Hg on foliage as an aerosol or reactive gaseous Hg (RGM) species is low at ELA, a finding supported by preliminary measurements of RGM there. Annual total deposition from throughfall and litterfall under a fire-regenerated 19-yr-old jack pine/birch forest was 1.7 mg of MeHg ha(-1) and 200 mg of THg ha(-1). We found that average annual accumulation of MeHg and THg in the surficial litter/fungal layer of soils since the last forest fire varied between 0.6 and 1.6 mg of MeHg ha(-1) and between 130 and 590 mg of THg ha(-1) among sites differing in drainage and soil moisture. When soil Hg accumulation sites were matched with similar sites where litterfall and throughfall were collected, measured fluxes of THg to the forest floor (sources) were similar to our estimates of longterm soil accumulation rates (sinks), suggesting that the Hg in litterfall and throughfall is a new and not a recycled input of Hg to forested ecosystems. However, further research is required to determine the proportion of Hg in litterfall that is being biogeochemically recycled within forest and wetland ecosystems and, thus, does

  5. Water balances in intensively monitored forest ecosystems in Europe.

    PubMed

    van der Salm, C; Reinds, G J; de Vries, W

    2007-07-01

    A soil hydrological model based on Darcy's law was used to calculate hydrological fluxes for 245 intensively monitored forest plots in Europe. Local measured input data for the model were rather limited and input was partly based on generic data. To obtain the best results, the model was calibrated on measured throughfall at the plots. Median transpiration fluxes are 350 mm; median leaching fluxes are 150 mm yr(-1) with the highest values in areas with high rainfall. Uncertainty analyses indicate that the use of local meteorological data instead of generic data leads to lower leaching fluxes at 70% of the plots due to an overestimation of the wind speed on basis of main meteorological stations. The underestimation of the leaching fluxes is confirmed by the median Cl fluxes which were slightly positive for the considered plots. PMID:17227692

  6. Multitemporal diurnal AVIRIS images of a forested ecosystem

    NASA Technical Reports Server (NTRS)

    Ustin, Susan L.; Smith, Milton O.; Adams, John B.

    1992-01-01

    Both physiological and ecosystem structural information may be derived from diurnal images. Structural information may be inferred from changes in canopy shadows between images and from changes in spectral composition due to changes in proportions of subpixel mixing resulting from the differences in sun/view angles. Physiological processes having diurnal scales also may be measurable if a stable basis for spectral comparison can be established. Six diurnal images of an area east of Mt. Shasta, CA were acquired on 22 Sep. 1989. This unique diurnal data set provided an opportunity to test the consistency of endmember fractions and residuals. It was expected that shade endmember abundances would show the greatest change as lighting geometry changed and less change in the normalized fractional proportion of other endmembers. Diurnal changes in spectral features related to physiological characteristics may be identifiable as changes in wavelength specific residuals.

  7. Estimating Evapotranspiration in Three Contrasting Forest Ecosystems Using Eddy Covariance, Sapflow, and Soil Water Balance Methods

    NASA Astrophysics Data System (ADS)

    Sun, G.; Cao, W.; Gavazzi, M.; Noormets, A.; Chen, J.; Deforest, J.; Chescheir, C.; Amatya, D. M.; McNulty, S.

    2005-12-01

    Evapotranspiration (ET) represents the second largest flux in terrestrial ecosystem water budget. In recent years, much attention has been given to the coherent linkages among hydrological cycle, ecophysiological processes, disturbances, and ecosystem function. However, quantification of ET at various temporal and spatial scales remains challenging (e.g., continuous changes of ET with time of a forest). Large uncertainties and measurement errors exist in fully accounting the ET flux, a process that involves both the physical (atmospheric and soil water control) and biological processes (leaf stomata and stem conductance control). In 2004, we established three research sites to study the climatic and forest management effects on ecosystem carbon and water balances in three contrasting forests: an oak openings in NW Ohio, a recent plantation of loblolly pine in eastern North Carolina, and a 13 year-old loblolly pine stand in eastern NC. The oak-opening ecosystem in a dry, cold environment while the other two in eastern North Carolina's lower coastal plain represent loblolly pine plantations on drained soils. Field installation on each site includes an eddy flux tower to measure ecosystem water exchange at 30-minute interval. Forest canopy interception, soil water content, and groundwater table depth were monitored around the flux tower along with rainfall above the forest canopy to develop water balances at multiple temporal scales. Stand-level transpiration was estimated by scaling up sapflow flux of 6-16 trees. Estimated ET values from the three independent methods were compared to identify major controls of ET. We also applied the MIKE SHE hydrologic model with site specific stand and soil information to simulate ET and compare with the measured data at the daily temporal scale. From the one-year data, we found that: 1) Ecosystem ET had very high natural variability, thus any single method was insufficient to quantify and model it at a high temporal resolution; 2

  8. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    SciTech Connect

    Mazurek, M.A. ); Cofer, W.R. III; Levine, J.S. . Langley Research Center)

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  9. EO Underpinning the Quality of Ecosystem Services with Geospatial Data- The Case of Sustainable Forest Management

    NASA Astrophysics Data System (ADS)

    Crosthwaite Eyre, Charles

    2010-12-01

    Payments for Ecosystem Services (PES) is an exciting and expanding opportunity for sustainably managed forests. PES are derived from a range of ecosystem benefits from forests including climate change mitigation through afforestation and avoided deforestation, green power generation, wetland and watershed rehabilitation, water quality improvement, marine flood defence and the reduction in desertification and soil erosion. Forests are also the ancestral home to many vulnerable communities which need protection. Sustainable forest management plays a key role in many of these services which generates a potentially critical source of finance. However, for forests to realise revenues from these PES, they must meet demanding standards of project validation and service verification. They also need geospatial data to manage and monitor operational risk. In many cases the data is difficult to collect on the ground - in some cases impossible. This will create a new demand for data that must be impartial, timely, area wide, accurate and cost effective. This presentation will highlight the unique capacity of EO to provide these geospatial inputs required in the generation of PES from forestry and demonstrate products with practical examples.

  10. Understanding Environmental Change and Biodiversity in a Dryland Ecosystem through Quantification of Climate Variability and Land Modification: The Case of the Dhofar Cloud Forest, Oman

    NASA Astrophysics Data System (ADS)

    Galletti, Christopher S.

    The Dhofar Cloud Forest is one of the most diverse ecosystems on the Arabian Peninsula. As part of the South Arabian Cloud Forest that extends from southern Oman to Yemen, the cloud forest is an important center of endemism and provides valuable ecosystem services to those living in the region. There have been various claims made about the health of the cloud forest and its surrounding region, the most prominent of which are: 1) variability of the Indian Summer Monsoon threatens long-term vegetation health, and 2) human encroachment is causing deforestation and land degradation. This dissertation uses three independent studies to test these claims and bring new insight about the biodiversity of the cloud forest. Evidence is presented that shows that the vegetation dynamics of the cloud forest are resilient to most of the variability in the monsoon. Much of the biodiversity in the cloud forest is dominated by a few species with high abundance and a moderate number of species at low abundance. The characteristic tree species include Anogeissus dhofarica and Commiphora spp. These species tend to dominate the forested regions of the study area. Grasslands are dominated by species associated with overgrazing (Calotropis procera and Solanum incanum). Analysis from a land cover study conducted between 1988 and 2013 shows that deforestation has occurred to approximately 8% of the study area and decreased vegetation fractions are found throughout the region. Areas around the city of Salalah, located close to the cloud forest, show widespread degradation in the 21st century based on an NDVI time series analysis. It is concluded that humans are the primary driver of environmental change. Much of this change is tied to national policies and development priorities implemented after the Dhofar War in the 1970's.

  11. Hurricane impacts on tree mortality and carbon cycling in coastal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Chambers, J. Q.; Negron-Juarez, R. I.; Zeng, H.; Henkel, T. K.; Baker, D. B.; Saatchi, S. S.

    2008-12-01

    Forests recovering from land-use, the encroachment of woody vegetation, and other ecological processes, cause terrestrial ecosystems to act as a net sinks for atmospheric carbon dioxide. Changes in the strength and sign of this sink over the coming decades are difficult to predict. One process that can act to diminish the terrestrial carbon sink is an increase in disturbance frequency and intensity, which transfers greater amounts of biomass from live to dead respiring pools, and shifts the forest size distribution toward smaller average tree size and lower biomass stocks. A number of studies predict an increase in the frequency of extreme weather events and the intensity of tropical cyclones under a warming climate, which may ultimately result in elevated forest disturbance regimes. Here we present a novel synthetic approach combining detailed ecological field investigations with remote sensing image analysis to provide spatially explicit estimates of forest damage, tree mortality, and biomass loss for U.S. landfalling hurricanes. Analysis results for Hurricane Katrina predicted the death and severe structural damage to about 320 million trees, representing a 100 Tg carbon transfer from live to dead biomass. Under the same wind-field, forest susceptibility to damage was highly tree species dependent, with cypress-tupelo swamp forests exhibiting the greatest resistance. Statistical models were useful for separating storm surge from wind effects on coastal forests. Similar analyses are currently underway for Hurricane Gustav, and will also be presented.

  12. Reach-scale effects of riparian forest cover on urban stream ecosystems

    USGS Publications Warehouse

    Roy, A.H.; Faust, C.L.; Freeman, Mary C.; Meyer, J.L.

    2005-01-01

    We compared habitat and biota between paired open and forested reaches within five small streams (basin area 10?20 km2) in suburban catchments (9%?49% urban land cover) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest cover corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals?m?2) versus forested (4.9 individuals?m?2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy cover. In urbanizing areas where catchment land cover drives habitat and biotic quality, management practices that rely exclusively on forested riparian areas for stream protection are unlikely to be effective at maintaining ecosystem integrity.

  13. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.

    PubMed

    Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang

    2016-01-01

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services. PMID:27100360

  14. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate

    PubMed Central

    Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V.; Cohen, Erika C.; McNulty, Steven G.; Aldridge, Heather D.; Zhang, Yang

    2016-01-01

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m−2 yr−1 (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr−1 (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr−1). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services. PMID:27100360

  15. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate

    NASA Astrophysics Data System (ADS)

    Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V.; Cohen, Erika C.; McNulty, Steven G.; Aldridge, Heather D.; Zhang, Yang

    2016-04-01

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m‑2 yr‑1 (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr‑1 (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr‑1). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.

  16. Contrasting Patterns of Carbon Flux and Storage in Pine Forest Ecosystems of the Atlantic Coastal Plain: Implications for Ecosystem Restoration and Climate Change Mitigation.

    NASA Astrophysics Data System (ADS)

    Mitchell, S. R.; Christensen, N.; Cohen, S.; Cunningham, P.

    2015-12-01

    Forest ecosystems in the Southeastern US have high rates of productivity but are underutilized as a medium for the mitigation of atmospheric CO2. In the lower Atlantic coastal plain, three pine species (longleaf [Pinus palustris], loblolly [P. taeda] and pond [P. serotina]) are the dominant overstory trees in a variety of wetland and upland ecosystems. These forest types can exist in close proximity throughout coastal plain landscapes, but exhibit contrasting patterns of productivity, pyrogenic C emissions, and mortality, thereby creating contrasting patterns of C assimilation and long-term C storage. Here, we combine field-based estimates of forest C storage and pyrogenic C emissions with LiDAR-based estimates of forest canopy heights in three contrasting forest ecosystems to 1) model their respective patterns of forest growth, mortality, and decomposition, 2) estimate the contribution of pyrogenic C fluxes to the ecosystem C budget, 3) estimate their potential upper bounds of forest C storage, and 4) model the impacts of current forest management practices and disturbance regimes on long-term forest C storage. Our results suggest that even though longleaf pine forests store comparatively little C in soil or belowground biomass, these forests nevertheless have the highest capacity for long-term C storage, in part due to their longevity. By contrast, while pond pine ecosystems have the highest capacity for long-term belowground C storage, they also have the lowest capacity for long-term aboveground C storage, one that is rarely achieved due to infrequent, high-severity disturbance regimes. Loblolly pine forests, while capable of higher growth rates than either longleaf or pond pine when in early stages of succesion, lack the long-term C storage capabilities of longleaf pine due to earlier senescence. Pyrogenic C emissions in these ecosystems are dominated by the combustion of ground and duff materials and occur over timescales ranging from rapid combustion in fire

  17. Linking Ecosystem Services and Human Health: The Eco-Health Relationship Browser#

    EPA Science Inventory

    Ecosystems and the services they provide have been linked in the literature to multiple human health outcomes. Demonstrated and proposed mechanisms focus on hazard buffering and health-promotional aspects of ecosystems. Services such as air and water filtration, heat mitigation...

  18. The Ten-Ecosystem Study - Landsat ADP mapping of forest and rangeland in the United States

    NASA Technical Reports Server (NTRS)

    Kan, E. P.; Weber, F. P.

    1978-01-01

    The Ten-Ecosystem Study was designed to assess the maximum information content of Landsat data and its utility for large area classification using a uniform technical approach on the 10 generalized forest and rangeland ecosystems of the United States. Conclusions on the feasibility of using Landsat remote sensing automatic data processing methods, selecting the best seasons, analyzing costs and the effects of site complexity, miscellaneous analysis, problems, and recommendations were derived from 2 years of study, the project being three-fourths completed.

  19. Does complex terrain matter for global terrestrial ecosystem models? Forest ecosystem dynamics in the White Mountains, NH. (Invited)

    NASA Astrophysics Data System (ADS)

    Dietze, M. C.; Richardson, A. D.; Moorcroft, P. R.

    2010-12-01

    Environmental scientists have long recognized that vegetation varies consistently at a landscape-scale due to variation in soils, hydrology, and topography. We expect that this variation to interact with climate change in complex ways, potentially allowing some species to persist in refugia while shifting other species to locations that may be edaphically unfavorable. Despite the recognized importance of this variation, it has not been incorporated into global and regional scale models because this heterogeneity occurs at a finer spatial scale than can be captured explicitly by refining model resolution. Rather than represent landscape-scale variability explicitly, we develop a spatially implicit approach to capture variation in soils, lateral hydrologic flow, and the effects of topography on microclimate and radiation interception. This scheme is incorporated in the Ecosystem Demography model. We tested this approach by first calibrating the model to forest inventory data and eddy-covariance fluxes of carbon, water, and energy from the Bartlett Experimental Forest in central NH and then validating it against 40+ years of vegetation and hydrology data from the Hubbard Brook Ecosystem Study, located 40km in forests of similar composition. When applied to Hubbard Brook the model is able to capture watershed streamflow at monthly to interannual scales and the variation in growth rates with topography, soils, and hydrology, and reproduces observed NPP during the forest growth phase. Growth rates were overestimated during the latter portion of the record, likely due to the cumulative impacts of acid rain which are not yet accounted for in the model. By sequentially switching off each source of edaphic variation, we find that the effect of elevation on microclimate has the greatest impact on the within-watershed distribution of NEE and NPP. The effects of slope and aspect on radiation are strongest at mid-elevation while lateral hydrology is most important on ridges and

  20. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests.

    PubMed

    Thom, Dominik; Seidl, Rupert

    2016-08-01

    In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are expected to amplify this development further in the coming decades. These changes are increasingly challenging the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool- and warm-temperate biomes. Our objectives were to (i) synthesize the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate standardized effect sizes of disturbance for selected indicators via a quantitative meta-analysis. We screened a total of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning, regulating, and cultural services (P < 0.001). Indicators of biodiversity, i.e. species richness, habitat quality and diversity indices, on the other hand were found to be influenced positively by disturbance (P < 0.001). Our analyses thus

  1. Alternative Modelling Approach to Spatial Harvest Scheduling with Respect to Fragmentation of Forest Ecosystem.

    PubMed

    Marušák, Róbert; Kašpar, Jan; Hlavatý, Robert; Kotek, Václav; Kuželka, Karel; Vopěnka, Petr

    2015-11-01

    Fragmentation of the forests affects forest ecosystems by changing the composition, shape, and configuration of the resulting patches. Subsequently, the prevailing conditions vary between patches. The exposure to the sun decreases from the patch boundary to the patch interior and this forms core and edge areas within each patch. Forest harvesting and, in particular, the clear-cut management system which is still preferred in many European countries has a significant impact on forest fragmentation. There are many indices of measuring fragmentation: non-spatial and spatial. The non-spatial indices measure the composition of patches, while the spatial indices measure both the shape and configuration of the resulting patches. The effect of forest harvesting on fragmentation, biodiversity, and the environment is extensively studied; however, the integration of fragmentation indices in the harvest scheduling model is a new, novel approach. This paper presents a multi-objective integer model of harvest scheduling for clear-cut management system and presents a case study demonstrating its use. Harvest balance and sustainability are ensured by the addition of constraints from the basic principle of the regulated forest model. The results indicate that harvest balance and sustainability can be also achieved in minimizing fragmentation of forest ecosystems. From the analyses presented in this study, it can be concluded that integration of fragmentation into harvest scheduling can provide better spatial structure. It depends on the initial spatial and age structure. It was confirmed that it is possible to find compromise solution while minimizing fragmentation and maximizing harvested area. PMID:26092050

  2. Global patterns and predictors of stem CO2 efflux in forest ecosystems.

    PubMed

    Yang, Jinyan; He, Yujie; Aubrey, Doug P; Zhuang, Qianlai; Teskey, Robert O

    2016-04-01

    Stem CO2 efflux (ES) plays an important role in the carbon balance of forest ecosystems. However, its primary controls at the global scale are poorly understood and observation-based global estimates are lacking. We synthesized data from 121 published studies across global forest ecosystems and examined the relationships between annual ES and biotic and abiotic factors at individual, biome, and global scales, and developed a global gridded estimate of annual ES . We tested the following hypotheses: (1) Leaf area index (LAI) will be highly correlated with annual ES at biome and global scales; (2) there will be parallel patterns in stem and root CO2 effluxes (RA) in all forests; (3) annual ES will decline with forest age; and (4) LAI coupled with mean annual temperature (MAT) and mean annual precipitation (MAP) will be sufficient to predict annual ES across forests in different regions. Positive linear relationships were found between ES and LAI, as well as gross primary production (GPP), net primary production (NPP), wood NPP, soil CO2 efflux (RS), and RA . Annual ES was correlated with RA in temperate forests after controlling for GPP and MAT, suggesting other additional factors contributed to the relationship. Annual ES tended to decrease with stand age. Leaf area index, MAT and MAP, predicted 74% of variation in ES at global scales. Our statistical model estimated a global annual ES of 6.7 ± 1.1 Pg C yr(-1) over the period of 2000-2012 with little interannual variability. Modeled mean annual ES was 71 ± 43, 270 ± 103, and 420 ± 134 g C m(2) yr(-1) for boreal, temperate, and tropical forests, respectively. We recommend that future studies report ES at a standardized constant temperature, incorporate more manipulative treatments, such as fertilization and drought, and whenever possible, simultaneously measure both aboveground and belowground CO2 fluxes. PMID:26667780

  3. Effects of Repeated Fires in the Forest Ecosystems of the Zabaikalye Region, Southern Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Buryak, L. V.; Conard, S. G.; Petkov, A.; Barrett, K.; Kalenskaya, O. P.; Ivanova, G.

    2014-12-01

    Fire is the main ecological disturbance controlling forest development in the boreal forests of Siberia and contributing substantially to the global carbon cycle. The warmer and dryer climate observed recently in the boreal forests is considered to be responsible for extreme fire weather, resulting in higher fire frequency, larger areas burned, and an increase of fire severity. Because of the increase of fire activity, boreal forests in some regions may not be able to reach maturity before they re-burn, which means less carbon will be stored in the ecosystem and more will remain in the atmosphere. Moreover, if one fire occurs within a few years of another, some stands will not re-grow at all, and even more carbon will accumulate in the atmosphere. Zabaikalye region located in the south of Siberia is characterized by the highest fire activity in Russia. With a use of the satellite-based fire product we found that there are about 7.0 million hectares in the region burned repeatedly during the last decade. We have investigated a number of sites in-situ in light-coniferous (Scots pine and larch) forests and evaluated the impacts of repeated fires on fuel loads, carbon emissions, and tree regeneration. Substantial decrease of carbon stocks, change of the vegetation structure and composition, and soil erosion were observed in many areas disturbed by repeated fires. At drier sites located in the southern regions repeated fires prohibited successful regeneration and resulted in forest conversion to grassland. Detection and monitoring of changes in the areas of Siberia where repeated fires have caused a major shift in ecosystem structure and function is required for the development of sustainable forest management strategies to mitigate climate change. The research was supported by NASA LCLUC Program.

  4. Near Isometric Biomass Partitioning in Forest Ecosystems of China

    PubMed Central

    Hui, Dafeng; Wang, Jun; Shen, Weijun; Le, Xuan; Ganter, Philip; Ren, Hai

    2014-01-01

    Based on the isometric hypothesis, belowground plant biomass (MB) should scale isometrically with aboveground biomass (MA) and the scaling exponent should not vary with environmental factors. We tested this hypothesis using a large forest biomass database collected in China. Allometric scaling functions relating MB and MA were developed for the entire database and for different groups based on tree age, diameter at breast height, height, latitude, longitude or elevation. To investigate whether the scaling exponent is independent of these biotic and abiotic factors, we analyzed the relationship between the scaling exponent and these factors. Overall MB was significantly related to MA with a scaling exponent of 0.964. The scaling exponent of the allometric function did not vary with tree age, density, latitude, or longitude, but varied with diameter at breast height, height, and elevation. The mean of the scaling exponent over all groups was 0.986. Among 57 scaling relationships developed, 26 of the scaling exponents were not significantly different from 1. Our results generally support the isometric hypothesis. MB scaled near isometrically with MA and the scaling exponent did not vary with tree age, density, latitude, or longitude, but increased with tree size and elevation. While fitting a single allometric scaling relationship may be adequate, the estimation of MB from MA could be improved with size-specific scaling relationships. PMID:24466149

  5. Revegetation standards for floodplain forest ecosystems in western Washington, USA

    SciTech Connect

    Zamora, B.

    1996-12-31

    Mining activity within floodplain landforms of western Washington, USA, presents unique problems in terms of approaches to revegetation and the success standards to be use to quantitatively evaluate revegetation success. Persistent historical disturbance of floodplain areas of the region has left little undisturbed natural vegetation to use as reference sites for development of success standards. A strategy is proposed for use of an ecological model of succession within floodplain vegetation to both identify revegetation options and provide a quantifiable and ecologically dynamic framework of success standards for revegetation evaluation. The floodplain forest moasic of mined lands in western Washington is a combination of (1) aquatic sites of open surface, impounded or flowing waters, (2) minerotrophic wetlands, and (3) xeroriparian sites between wetlands and uplands. Seven distinct and persistent plant communities of three community types are present are common. These physiognomic groupings successionally linked as habitats change from one flooding regime to another. Remenant stands of floodplain vegetation were used to construct a successional model which will provide for revegetation guidelines and a framework of success standards.

  6. Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model

    NASA Astrophysics Data System (ADS)

    Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo

    2010-05-01

    In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach

  7. State Forest Practice Regulatory Programs: An Approach to ImplementingEcosystem Management on Private Forest Lands in the United States

    PubMed

    Ellefson; Cheng; Moulton

    1997-05-01

    / Implemented in the context of a long history ofintense public debate, forestry practices applied on private forest land areregulated in some form by 38 states. State regulatory activities can involvemany agencies implementing numerous regulatory laws, a single forestry agencyadministering a comprehensive regulatory program, or a combination of thetwo. Regulatory programs are designed to protect resources such as soils,water, wildlife, and scenic beauty. Program administration often involvesrule promulgation, harvest plan reviews, coordination of interagency reviews,and pre- and postharvest on-site inspections. Forest practice rules usuallyfocus on reforestation, forest roads, harvest procedures, and wildlifehabitat protection. Emerging regulatory trends include growth of multiagencyregulatory authority and associated jurisdictional conflicts, increasedtendencies to narrowly specify standards in statutes and rules, emergence ofcontingent regulations, growing sensitivity to processes enabling theadoption of new forest practice technologies and an ability to addresscumulative effects, interest in collaborative rule-making stemming fromheightened concern over legalization of administration processes, and growingconcern over the constitutional foundations for regulatory programs and thegovernment and private sector cost of implementing such programs.KEY WORDS: Ecosystem management; Forestry practices; Private landowners;Regulatory programs; State government PMID:9106415

  8. Ecosystem approaches to health for a global sustainability agenda.

    PubMed

    Charron, Dominique Frances

    2012-09-01

    International research agendas are placing greater emphasis on the need for more sustainable development to achieve gains in global health. Research using ecosystem approaches to health, and the wider field of ecohealth, contribute to this goal, by addressing health in the context of inter-linked social and ecological systems. We review recent contributions to conceptual development of ecosystem approaches to health, with insights from their application in international development research. Various similar frameworks have emerged to apply the approach. Most predicate integration across disciplines and sectors, stakeholder participation, and an articulation of sustainability and equity to achieve relevant actions for change. Drawing on several frameworks and on case studies, a model process for application of ecosystem approaches is proposed, consisting of an iterative cycles of participatory study design, knowledge generation, intervention, and systematization of knowledge. The benefits of the research approach include innovations that improve health, evidence-based policies that reduce health risks; empowerment of marginalized groups through knowledge gained, and more effective engagement of decision makers. With improved tools to describe environmental and economic dimensions, and explicit strategies for scaling-up the use and application of research results, the field of ecohealth will help integrate both improved health and sustainability into the development agenda. PMID:22961374

  9. Controls on Nitrogen Retention and Loss in Urban and Rural Forest Ecosystems.

    NASA Astrophysics Data System (ADS)

    Templer, P. H.

    2011-12-01

    Human activities, such as the burning of fossil fuels and production of fertilizer, have increased the amount of nitrogen deposited onto terrestrial ecosystems. In addition to changes in atmospheric deposition of nitrogen, other human-induced disturbances have led to dramatic shifts in forest composition of the United States over the last 100 years. Tree species composition of many forests is changing in response to introduced pests and pathogens, competition with introduced plant species and changes in climate. Understanding the combined effects of increased nitrogen inputs and changes in plant species composition on forest nitrogen cycling is critical to our understanding of forest biogeochemistry and nutrient budgets. Despite several decades of research on the effects of atmospheric nitrogen deposition, there is still significant uncertainty about the factors that regulate nitrogen retention and loss in forest ecosystems. The use of natural abundance stable isotopes of nitrogen and oxygen has proven to be a powerful tool for tracing the sources of nitrate in water, from inputs to leaching, as it moves through an ecosystem. The evaluation of natural abundance nitrogen values in atmospheric deposition has been used to partition sources of nitrogen, such as coal-fired power plants vs. tailpipe exhaust, since each of their isotopic signatures is distinct. Similarly, natural abundance oxygen values of nitrate in atmospheric inputs and soil leachate have been used as a tool to partition sources of nitrate between precipitation and nitrate produced microbially during nitrification. We measured the natural abundance isotopic composition of nitrate to quantify rates of nitrogen inputs to the forest and to determine rates of nitrogen losses from healthy, declining and preemptively cut eastern hemlock (Tsuga canadensis) stands in both an urban forest at the Arnold Arboretum in Boston, MA, and a rural forest at Harvard Forest in Petersham, MA. The hemlock woolly adelgid

  10. Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district

    NASA Astrophysics Data System (ADS)

    Hüttl, Reinhard F.; Weber, Edwin

    2001-08-01

    The restoration of surface mining landscapes requires the (re)creation of ecosystems. In Lusatia (eastern Germany), large-scale open-cast lignite mining operations generated spoil dumps widely consisting of acidified, phytotoxic substrates. Amelioration and rehabilitation measures have been developed and applied to these substrates since the 1950s. However, it is still not clear whether these approaches are sustainable. This paper reports on collaborative research work into the ecological potential of forest ecosystem development on typical minesites in the Lusatian lignite district. At first sight, pine stands on minesites along a chronosequence comprising about 35 years did not show differences when compared with stands on non-mined sites of the general region. Furthermore, with some modification, conceptual models for flora and fauna succession in forest stands on non-mined sites seem to be applicable, at least for the early stages of forest ecosystem development. For example, soil organism abundance and activity at minesites had already reached levels typical of non-mined sites after about 20-30 years. In contrast, mine soils are very different from non-mined soils of the test region. Chemically, mine soil development is dominated by processes originating from pyrite oxidation. Geogenic, i.e. lignitic, soil organic carbon was shown to substitute for some functions of pedogenic soil organic matter. Rooting was hampered but not completely impeded in strongly acidified soil compartments. Roots and mycorrhizae are apparently able to make use of the characteristic heterogeneity of young mine soils. Considering these recent results and the knowledge accumulated during more than 30 years of research on minesite rehabilitation internationally, it can be stated that minesite restoration might be used as an ideal case study for forest ecosystem development starting at "point zero" on " terra nova".

  11. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics.

    PubMed

    Lindroth, Richard L

    2010-01-01

    from this and related reviews is that the effects of elevated CO2 and O3 on plant chemistry and ecological interactions are highly context- and species-specific, thus frustrating attempts to identify general, global patterns. Many of the interactions that govern above- and below-ground community and ecosystem processes are chemically mediated, ultimately influencing terrestrial carbon sequestration and feeding back to influence atmospheric composition. Thus, the discipline of chemical ecology is fundamentally important for elucidating the impacts of humans on the health and sustainability of forest ecosystems. Future research should seek to increase the diversity of natural products, species, and biomes studied; incorporate long-term, multi-factor experiments; and employ a comprehensive “genes to ecosystems” perspective that couples genetic/genomic tools with the approaches of evolutionary and ecosystem ecology. PMID:20054619

  12. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  13. MULTIVARIATE ANALYSIS OF DIATOM ASSEMBLAGES IN STREAMS IN TWO HYDROGEOMORPHIC REGIONS WITHIN THE NORTHERN LAKES AND FOREST ECOSYSTEM

    EPA Science Inventory

    An ordination approach was used to explore relationships among macroinvertebrate, habitat and landscape variables associated with diatom assemblages in streams within the Northern Lakes and Forest Ecosystem in two different hydrogeomorphic regions (i.e. the North Shore Highlands ...

  14. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-06-01

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition.

  15. Influence of spring and autumn phenological transitions on forest ecosystem productivity

    PubMed Central

    Richardson, Andrew D.; Andy Black, T.; Ciais, Philippe; Delbart, Nicolas; Friedl, Mark A.; Gobron, Nadine; Hollinger, David Y.; Kutsch, Werner L.; Longdoz, Bernard; Luyssaert, Sebastiaan; Migliavacca, Mirco; Montagnani, Leonardo; William Munger, J.; Moors, Eddy; Piao, Shilong; Rebmann, Corinna; Reichstein, Markus; Saigusa, Nobuko; Tomelleri, Enrico; Vargas, Rodrigo; Varlagin, Andrej

    2010-01-01

    We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands. PMID:20819815

  16. Direct quantification of long-term rock nitrogen inputs to temperate forest ecosystems.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2016-01-01

    Sedimentary and metasedimentary rocks contain large reservoirs of fixed nitrogen (N), but questions remain over the importance of rock N weathering inputs in terrestrial ecosystems. Here we provide direct evidence for rock N weathering (i.e., loss of N from rock) in three temperate forest sites residing on a N-rich parent material (820-1050 mg N kg(-1); mica schist) in the Klamath Mountains (northern California and southern Oregon), USA. Our method combines a mass balance model of element addition/ depletion with a procedure for quantifying fixed N in rock minerals, enabling quantification of rock N inputs to bioavailable reservoirs in soil and regolith. Across all sites, -37% to 48% of the initial bedrock N content has undergone long-term weathering in the soil. Combined with regional denudation estimates (sum of physical + chemical erosion), these weathering fractions translate to 1.6-10.7 kg x ha(-1) x yr(-1) of rock N input to these forest ecosystems. These N input fluxes are substantial in light of estimates for atmospheric sources in these sites (4.5-7.0 kg x ha(-1) x yr(-1)). In addition, N depletion from rock minerals was greater than sodium, suggesting active biologically mediated weathering of growth-limiting nutrients compared to nonessential elements. These results point to regional tectonics, biologically mediated weathering effects, and rock N chemistry in shaping the magnitude of rock N inputs to the forest ecosystems examined. PMID:27008775

  17. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    PubMed Central

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-01-01

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition. PMID:26059183

  18. CLIMATE CHANGE EFFECTS ON ECOSYSTEM SERVICES AND HUMAN HEALTH

    EPA Science Inventory

    Human health and well-being are and will be affected by climate change, both directly through changes in extreme weather events and indirectly through weather induced changes in societal systems and their supporting ecosystems. The goal of this study was to develop and apply a b...

  19. Endurance of larch forest ecosystems in eastern Siberia under warming trends

    NASA Astrophysics Data System (ADS)

    Sato, H.; Iwahana, G.; Ohta, T.

    2015-12-01

    The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. However, its existence depends on near-surface permafrost, which increases water availability for trees, and the boundary of the forest closely follows the permafrost zone. Therefore, the degradation of near-surface permafrost due to forecasted warming trends during the 21st century is expected to affect the larch forest in Siberia. However, predictions of how warming trends will affect this forest vary greatly, and many uncertainties remain about land-atmospheric interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology and showed that, under climatic conditions predicted by the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5, annual larch net primary production (NPP) increased about 2 and 3 times, respectively, by the end of 21st century compared with that in the 20th century. Soil water content during larch growing season showed no obvious trend, even after decay of surface permafrost and accompanying sub-surface runoff. A sensitivity test showed that the forecasted warming and pluvial trends extended leafing days of larches and reduced water shortages during the growing season, thereby increasing productivity.

  20. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services

    PubMed Central

    Liang, Xinlian; Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Wang, Yunsheng

    2014-01-01

    A professional-quality, personal laser scanning (PLS) system for collecting tree attributes was demonstrated in this paper. The applied system, which is wearable by human operators, consists of a multi-constellation navigation system and an ultra-high-speed phase-shift laser scanner mounted on a rigid baseplate and consisting of a single sensor block. A multipass-corridor-mapping method was developed to process PLS data and a 2,000 m2 forest plot was utilized in the test. The tree stem detection accuracy was 82.6%; the root mean square error (RMSE) of the estimates of tree diameter at breast height (DBH) was 5.06 cm; the RMSE of the estimates of tree location was 0.38 m. The relative RMSE of the DBH estimates was 14.63%. The results showed, for the first time, the potential of the PLS system in mapping large forest plots. Further research on mapping accuracy in various forest conditions, data correction methods and multi-sensoral positioning techniques is needed. The utilization of this system in different applications, such as harvester operations, should also be explored. In addition to collecting tree-level and plot-level data for forest inventory, other possible applications of PLS for forest ecosystem services include mapping of canopy gaps, measuring leaf area index of large areas, documenting and visualizing forest routes feasible for recreation, hiking and berry and mushroom picking. PMID:24434879

  1. Possibilities of a personal laser scanning system for forest mapping and ecosystem services.

    PubMed

    Liang, Xinlian; Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Wang, Yunsheng

    2013-01-01

    A professional-quality, personal laser scanning (PLS) system for collecting tree attributes was demonstrated in this paper. The applied system, which is wearable by human operators, consists of a multi-constellation navigation system and an ultra-high-speed phase-shift laser scanner mounted on a rigid baseplate and consisting of a single sensor block. A multipass-corridor-mapping method was developed to process PLS data and a 2,000 m2 forest plot was utilized in the test. The tree stem detection accuracy was 82.6%; the root mean square error (RMSE) of the estimates of tree diameter at breast height (DBH) was 5.06 cm; the RMSE of the estimates of tree location was 0.38 m. The relative RMSE of the DBH estimates was 14.63%. The results showed, for the first time, the potential of the PLS system in mapping large forest plots. Further research on mapping accuracy in various forest conditions, data correction methods and multi-sensoral positioning techniques is needed. The utilization of this system in different applications, such as harvester operations, should also be explored. In addition to collecting tree-level and plot-level data for forest inventory, other possible applications of PLS for forest ecosystem services include mapping of canopy gaps, measuring leaf area index of large areas, documenting and visualizing forest routes feasible for recreation, hiking and berry and mushroom picking. PMID:24434879

  2. Influence of forest management systems on natural resource use and provision of ecosystem services in Tanzania.

    PubMed

    Strauch, Ayron M; Rurai, Masegeri T; Almedom, Astier M

    2016-09-15

    Social, religious and economic facets of rural livelihoods in Sub-Saharan Africa are heavily dependent on natural resources, but improper resource management, drought, and social instability frequently lead to their unsustainable exploitation. In rural Tanzania, natural resources are often governed locally by informal systems of traditional resource management (TRM), defined as cultural practices developed within the context of social and religious institutions over hundreds of years. However, following independence from colonial rule, centralized governments began to exercise jurisdictional control over natural resources. Following decades of mismanagement that resulted in lost ecosystem services, communities demanded change. To improve resource protection and participation in management among stakeholders, the Tanzanian government began to decentralize management programs in the early 2000s. We investigated these two differing management approaches (traditional and decentralized government) in Sonjo communities, to examine local perceptions of resource governance, management influences on forest use, and their consequences for forest and water resources. While 97% of households understood the regulations governing traditionally-managed forests, this was true for only 39% of households for government-managed forests, leading to differences in forest use. Traditional management practices resulted in improved forest condition and surface water quality. This research provides an essential case study demonstrating the importance of TRM in shaping decision frameworks for natural resource planning and management. PMID:27203700

  3. Carbon fluxes in tropical forest ecosystems: the value of Eddy-covariance data for individual-based dynamic forest gap models

    NASA Astrophysics Data System (ADS)

    Roedig, Edna; Cuntz, Matthias; Huth, Andreas

    2015-04-01

    The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.

  4. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    USGS Publications Warehouse

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  5. An ecosystem-scale model for the spread of a host-specific forest pathogen in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Hatala, J.A.; Dietze, M.C.; Crabtree, R.L.; Kendall, K.; Six, D.; Moorcroft, P.R.

    2011-01-01

    The introduction of nonnative pathogens is altering the scale, magnitude, and persistence of forest disturbance regimes in the western United States. In the high-altitude whitebark pine (Pinus albicaulis) forests of the Greater Yellowstone Ecosystem (GYE), white pine blister rust (Cronartium ribicola) is an introduced fungal pathogen that is now the principal cause of tree mortality in many locations. Although blister rust eradication has failed in the past, there is nonetheless substantial interest in monitoring the disease and its rate of progression in order to predict the future impact of forest disturbances within this critical ecosystem. This study integrates data from five different field-monitoring campaigns from 1968 to 2008 to create a blister rust infection model for sites located throughout the GYE. Our model parameterizes the past rates of blister rust spread in order to project its future impact on highaltitude whitebark pine forests. Because the process of blister rust infection and mortality of individuals occurs over the time frame of many years, the model in this paper operates on a yearly time step and defines a series of whitebark pine infection classes: susceptible, slightly infected, moderately infected, and dead. In our analysis, we evaluate four different infection models that compare local vs. global density dependence on the dynamics of blister rust infection. We compare models in which blister rust infection is: (1) independent of the density of infected trees, (2) locally density-dependent, (3) locally density-dependent with a static global infection rate among all sites, and (4) both locally and globally density-dependent. Model evaluation through the predictive loss criterion for Bayesian analysis supports the model that is both locally and globally density-dependent. Using this best-fit model, we predicted the average residence times for the four stages of blister rust infection in our model, and we found that, on average, whitebark

  6. Biological proliferation of cesium-137 through the detrital food chain in a forest ecosystem in Japan

    PubMed Central

    Murakami, Masashi; Ohte, Nobuhito; Suzuki, Takahiro; Ishii, Nobuyoshi; Igarashi, Yoshiaki; Tanoi, Keitaro

    2014-01-01

    Radionuclides, including 137Cs, were released from the disabled Fukushima Daiichi Nuclear Power Plant and had been deposited broadly over forested areas of north-eastern Honshu Island, Japan. In the forest, 137Cs was highly concentrated on leaf litters deposited in autumn 2010, before the accident. Monitoring of the distribution of 137Cs among functional groups clearly showed the role of the detrital food chain as the primary channel of 137Cs transfer to consumer organisms. Although many studies have reported the bioaccumulation (or dilution) of radioactive materials through trophic interactions, the present results highlight the importance of examining multiple possible pathways (e.g., grazing vs. detrital chains) in the proliferation of 137Cs through food webs. These results provide important insight into the future distribution and transfer of 137Cs within forest ecosystems. PMID:24398571

  7. Biological proliferation of cesium-137 through the detrital food chain in a forest ecosystem in Japan.

    PubMed

    Murakami, Masashi; Ohte, Nobuhito; Suzuki, Takahiro; Ishii, Nobuyoshi; Igarashi, Yoshiaki; Tanoi, Keitaro

    2014-01-01

    Radionuclides, including (137)Cs, were released from the disabled Fukushima Daiichi Nuclear Power Plant and had been deposited broadly over forested areas of north-eastern Honshu Island, Japan. In the forest, (137)Cs was highly concentrated on leaf litters deposited in autumn 2010, before the accident. Monitoring of the distribution of (137)Cs among functional groups clearly showed the role of the detrital food chain as the primary channel of (137)Cs transfer to consumer organisms. Although many studies have reported the bioaccumulation (or dilution) of radioactive materials through trophic interactions, the present results highlight the importance of examining multiple possible pathways (e.g., grazing vs. detrital chains) in the proliferation of (137)Cs through food webs. These results provide important insight into the future distribution and transfer of (137)Cs within forest ecosystems. PMID:24398571

  8. Long-term changes in soil pH across major forest ecosystems in China

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  9. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    NASA Astrophysics Data System (ADS)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  10. Pervasive Drought Legacy Effects in Forest Ecosystems and their Carbon Cycle Implications

    NASA Astrophysics Data System (ADS)

    Anderegg, W.; Schwalm, C.; Biondi, F.; Camarero, J. J.; Koch, G. W.; Litvak, M. E.; Ogle, K.; Shaw, J.; Shevliakova, E.; Williams, P.; Wolf, A.; Ziaco, E.; Pacala, S. W.

    2015-12-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. We examine the recovery of tree stem growth after severe drought at 1,338 forest sites globally comprising 49,339 site-years and compare it to simulated recovery in climate-vegetation models. We find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought. Our results highlight hysteresis in ecosystem carbon cycling and delayed recovery from climate extremes.

  11. The contribution of harvest residue to ecosystem carbon balance over the production cycle of managed forests

    NASA Astrophysics Data System (ADS)

    Noormets, A.; McNulty, S.; Domec, J.; Gavazzi, M. J.; Treasure, E.; Sun, G.; King, J. S.; Chen, J.

    2010-12-01

    It has been proposed that forests could be managed for carbon sequestration to mitigate the increase in atmospheric CO2. However, intensive management tends to deplete ecosystem resources (e.g. nutrients and soil organic matter) that make high productivity possible, thus potentially undermining the sustainability of such practices. In forest ecosystems, we have seen soil carbon loss exceed new litter inputs. While the cause of this loss is not clear, the increased frequency of disturbance associated with harvests and management practices likely contributes to the accelerated decomposition rates. Furthermore, the additional pulse of harvest residue of leaves, branches, roots, and coarse woody debris is likely to contribute to enhanced CO2 emissions. Here we evaluate the magnitude of emissions from post-harvest debris in relation to total ecosystem C budget in two loblolly pine plantations in SE-US, and compare our results to three other pine harvest chronosequences in North America. The initial magnitude of ecosystem respiration decreased and the duration of the source phase increased with latitude such that the integrated source phase emissions were proportional (130-140%) to the amount of CWD left at the site following the harvest. However, this relationship may vary by existing soil carbon and moisture availability. The results will be evaluated in the context of potential sources of uncertainty.

  12. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.

    PubMed

    Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide. PMID:23071486

  13. Interacting Factors Driving a Major Loss of Large Trees with Cavities in a Forest Ecosystem

    PubMed Central

    Lindenmayer, David B.; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E.; Franklin, Jerry F.; Laurance, William F.; Stein, John A. R.; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia – forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006–2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57–100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide. PMID:23071486

  14. The relationship between hurricane wind fields and the associated disturbance in US forest ecosystems

    NASA Astrophysics Data System (ADS)

    Negron Juarez, R. I.; Chambers, J. Q.; Hurtt, G. C.; Fisk, J. P.

    2011-12-01

    Tropical cyclones are recurrent in the U. S. Gulf Coast and produce drastic disturbance to the forest ecosystem by altering forest structure, species composition, nutrient cycling, biomass accumulation, etc. The recurrent characteristics of these events demand a rapid yet reliable assessment of forest disturbance in order to provide better management decisions, as well as to evaluate damage to the landscape, biomass loss and the associated impacts to the regional carbon budget. In this study we present a methodology for rapid assessment of forest disturbance produced by tropical cyclones based on maximum sustained wind swaths (H*wind), MODIS (Moderate Resolution Imaging Spectroradiometer)-derived disturbances and field-measured tree mortality collected in Gulf Coast forests. MODIS images in May (the month of maximum greenness) before the disturbance and in May of the year following the disturbance were processed using spectral mixture analysis (SMA) using image derived end-members. The changes in non-photosynthetic vegetation (ΔNPV, related to wood, dead vegetation and surface litter) from one year to the next was used as the disturbance metric. A strong correlation was found between H*wind and MODIS ΔNPV for hurricanes Charley (2004), Katrina (2005), Rita (2005), and Gustav (2008). In turn, MODIS ΔNPV was shown to have a strong correlation with field-measured mortality. The forest disturbance estimates based on hurricane wind-field and MODIS ΔNPV agree with those published in our previous studies. This study establishes an important relationship that could be incorporated into earth system models to improve our understanding of the effect of tropical cyclones on terrestrial ecosystems and their associated feedbacks within the climate system.

  15. Vegetation composition, dynamics, and management of a bracken-grassland and northern-dry forest ecosystem.

    PubMed

    Nielsen, Scott E; Haney, Alan

    2003-06-01

    We investigated differences in vegetation composition and dynamics for two globally rare ecosystems, bracken-grasslands and northern-dry forests of northern Wisconsin. These ecosystems commonly have been viewed as degraded pine barrens. Bracken-grasslands contained a high dominance of exotic species, low native richness, and no obvious prairie species, suggesting logging-era anthropogenic origins. Differences in cover for common plants among ecosystems were examined using Mann-Whitney U tests of equivalence. Cover of all 8 graminoid species, 4 of 5 Ericaceae and Myricaceae species, and 10 of 17 species of forbs were significantly different between ecosystems. Vegetation changes over a 4-year period were examined through detrended correspondence analysis (DCA) and analysis of variance (ANOVA) repeated measures. DCA analyses of community composition failed to detect significant temporal trends within individual management units, although differences were apparent between ecosystems, regardless of sample year. In addition, no apparent patterns could be detected between years when comparing dominant individual species to management history (prescribed fire). This is contrary to what would be expected for a degraded pine barrens and questions the efficacy of using repeated prescribed fire as a management tool in bracken-grasslands. Methods for conservation and restoration of xeric ecosystems of northern Wisconsin have historically relied heavily on single species (e.g., sharp-tailed grouse) wildlife models, without full consideration of other factors. We suggest that stakeholders involved in these restoration projects examine historic processes and reference conditions prior to formulating management goals. Greater attention to the differentiation and individual management needs of pine barrens, northern-dry forests, and bracken-grasslands is needed. PMID:14565700

  16. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    NASA Astrophysics Data System (ADS)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  17. Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity

    PubMed Central

    Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn

    2014-01-01

    Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951

  18. Recent drought-induced mortality of aspen forests along a water-balance tipping point for ecosystems in western Canada

    NASA Astrophysics Data System (ADS)

    Hogg, E.

    2009-05-01

    In western Canada, the boundary between boreal forest and prairie grasslands marks a dramatic change in nearly all aspects of ecosystem functioning. These include a steep spatial gradient in hydrological characteristics of the landscape (lake level variability, water runoff and stream flow patterns) that coincides with the southern range limit of peatlands and several species of boreal conifers. Previous studies indicate that the forest-grassland boundary in this region represents a critical "tipping point" (Lenton et al. 2008) where long-term water input by precipitation is barely sufficient to satisfy the water use demands of productive, closed-canopy forests. This concept is consistent with the observed, regional gradient in the character of forests dominated by aspen (Populus tremuloides), the most abundant and widespread deciduous tree in North America. Aspen-dominated forests are productive and continuous in the boreal zone, but are stunted and patchy in the boreal-grassland transition zone, often referred to as the aspen parkland. Based on the "tipping point" concept, there are concerns that aspen forests in this region are especially sensitive to the projected trend toward warmer and drier conditions under human-induced climate change. In response to these concerns, a large-scale study was established across west-central Canada in 2000, entitled "Climate Impacts on Productivity and Health of Aspen" (CIPHA). The study has hierarchical sampling design that is aimed at "scaling up" forest-climate responses from individual trees to the region. During 2001-2002, the region was affected by an exceptionally severe drought that subsequently led to massive dieback and mortality of aspen forests within the boreal-grassland transition zone. Drought severity and extent was quantified using a simple climate moisture index (CMI), and drought impacts were quantified using tree-ring analysis, in combination with plot-based and remotely-sensed measures. Results showed that

  19. Transfer of fallout radionuclides by Fukushima NPP accident from tree crown to forest ecosystem

    NASA Astrophysics Data System (ADS)

    Onda, Y.; Kato, H.; Wakahara, T.; Kawamori, A.; Tsujimura, M.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring prefectures due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami on 11 March 2011. The total deposition of radioactive materials in fallout samples for 137Cs ranged from 0.02to >10 M Bq/m2 for Cs-137. Experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima prefecture, located about 35 km from Fukushima power plant, and designated as the evacuated zone. Approximate Cs-137 fallout in this area is 200-600k Bq/m2. We established 3 forest sites: broad leaf tree forest and two Japanese cedar forest plantation (young and mature). In each site we installed towers of 8-12 meters. Using these towers, we sampled tree leaves, and measure Cs-137 and Cs-134 in the laboratory, and also we have measure Cs-137, Cs-134 content at various height in each forest using a portable High Purity Germanium (HPGe) detector (Ortech; Detective-EX). We also measured the throughfall, stem flow and litter fall inside of the forest. In each site, we establish the 20 m x 20 m plot to monitor the changes of fallout radionuclides through time with the portable HPGe detector. The monitoring is now ongoing but we found significant amount of Cs-134 and Cs-137 has been trapped by cedar forest plantations especially young trees, but not so much in broad leaf trees. The trapped Cs-137 and Cs-134 is then washed by rainfall and found into throughfall. Therefore, in forest ecosystems, the fallout has been still ongoing, and and effective remediation method in forested area (especially cedar plantation) can be removing the trees.

  20. Ecological and geochemical impacts of exotic earthworm dispersal in forest ecosystems of Eastern Canada

    NASA Astrophysics Data System (ADS)

    Drouin, Melanie; Fugere, Martine; Lapointe, Line; Vellend, Mark; Bradley, Robert L.

    2016-04-01

    In Eastern Canada, native earthworm species did not survive the Wisconsin glaciation, which ended over 11,000 years ago. Accordingly, the 17 known Lumbricidae species in the province of Québec were introduced in recent centuries by European settlers. Given that natural migration rates are no more than 5-10 m yr‑1, exotic earthworm dispersal across the landscape is presumed to be mediated by human activities, although this assertion needs further validation. In agroecosystems, earthworms have traditionally been considered beneficial soil organisms that facilitate litter decomposition, increase nutrient availability and improve soil structure. However, earthworm activities could also increase soil nutrient leaching and CO2 emissions. Furthermore, in natural forest ecosystems, exotic earthworms may reduce organic forest floors provoking changes in watershed hydrology and loss of habitat for some faunal species. Over the past decade, studies have also suggested a negative effect of exotic earthworms on understory plant diversity, but the underlying mechanisms remain elusive. Finally, there are no studies to our knowledge that have tested the effects of Lumbricidae species on the production of N2O (an important greenhouse gas) in forest ecosystems. We report on a series of field, greenhouse and laboratory studies on the human activities responsible for the dispersal of exotic earthworms, and on their ecological / geochemical impacts in natural forest ecosystems. Our results show: (1) Car tire treads and bait discarded by fishermen are important human vectors driving the dispersal of earthworms into northern temperate forests; (2) Exotic earthworms significantly modify soil physicochemical properties, nutrient cycling, microbial community structure and biomass; (3) Earthworm abundances in the field correlate with a decrease in understory plant diversity; (4) Lumbricus terrestris, an anecic earthworm species and favorite bait of fishermen, reduces seed germination and

  1. Environmental Controls of Ecosystem Evapotranspiration (ET): Why generalized ET models do not work for forests?

    NASA Astrophysics Data System (ADS)

    Sun, G.; Fang, Y.; Caldwell, P.; Noormets, A.; domec, J.; McNulty, S.; King, J. S.; McLaughlin, S.; Uddling, J.; Chen, J.

    2012-12-01

    Forests return large amount of fresh water back to the atmosphere through the evapotranspiration (ET) processes, and thus forests have enormous influences on global water, energy, and bigeochemical cycles. Accurately quantifying forest evapotranspiration (ET) is essential to understanding ecohydrological processes, developing regional-scale water and carbon balances, and projecting impacts of environmental changes on natural resources. However, measuring and modeling forest ET remain challenging. Traditional ET models are designed for reference crops (e.g. short green grasses) and not for forested conditions with much higher above and below ground biomass. The large spatial and temporal variability of forests, and complex interactions between physical (temperature and precipitation) and chemical (CO2, Ozone) climate and tree ecophysiological responses also contribute to ET measurement complexity. In this study, we examined environmental controls on ecosystem level ET including forests using multiple measurements (sapflow, watershed hydrologic records, eddy flux measurements, and controlled experiments) and statistical techniques (multivariate linear regressions, best subset regression, stepwise regression). In general, eddy flux data suggest that temperature-based potential ET (PET), measured precipitation (P), and remotely sensed Leaf Area Index (LAI) - a key parameter of ecosystem structure - explain most of the variability of observed monthly forest ET (R2=0.67-0.95) across a wide range of climatic and ecosystem types. VPD is a major driver of forest ET, but P is a rather weak predictor for forest ET. Solar radiation and LAI were highly correlated with ET in grasslands, croplands, and shrublands. Ozone effect was detected only in the mature forests in the Eastern USA where the O3 levels can reach relatively high values. The O3 effect varied with climatic conditions, but the increase in tree transpiration was always associated with reduced streamflow. As the

  2. Does Acacia dealbata express shade tolerance in Mediterranean forest ecosystems of South America?

    PubMed Central

    Aguilera, Narciso; Sanhueza, Carolina; Guedes, Lubia M; Becerra, José; Carrasco, Sebastián; Hernández, Víctor

    2015-01-01

    The distribution of Acacia dealbata Link (Fabaceae) in its non-native range is associated with disturbed areas. However, the possibility that it can penetrate the native forest during the invasion process cannot be ruled out. This statement is supported by the fact that this species has been experimentally established successfully under the canopy of native forest. Nonetheless, it is unknown whether A. dealbata can express shade tolerance traits to help increase its invasive potential. We investigated the shade tolerance of A. dealbata under the canopy of two native forests and one non-native for three consecutive years, as well as its early growth and photosynthetic performance at low light intensities (9, 30, and 70 μmol m−2sec−1) under controlled conditions. We found many A. dealbata plants surviving and growing under the canopy of native and non-native forests. The number of plants of this invasive species remained almost constant under the canopy of native forests during the years of study. However, the largest number of A. dealbata plants was found under the canopy of non-native forest. In every case, the distribution pattern varied with a highest density of plants in forest edges decreasing progressively toward the inside. Germination and early growth of A. dealbata were slow but successful at three low light intensities tested under controlled conditions. For all tested light regimes, we observed that in this species, most of the energy was dissipated by photochemical processes, in accordance with the high photosynthetic rates that this plant showed, despite the really low light intensities under which it was grown. Our study reveals that A. dealbata expressed shade tolerance traits under the canopy of native and non-native forests. This behavior is supported by the efficient photosynthetic performance that A. dealbata showed at low light intensities. Therefore, these results suggest that Mediterranean forest ecosystems of South America can become

  3. The public water supply protection value of forests: A watershed-scale ecosystem services based upon total organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a cost-based methodology to assess the value of forested watersheds to improve water quality in public water supplies. The developed methodology is applicable to other source watersheds to determine ecosystem services for water quality. We assess the value of forest land for source wate...

  4. Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey

    NASA Astrophysics Data System (ADS)

    Bektas Balcik, F.

    2012-12-01

    Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.

  5. The spatial extent of change in tropical forest ecosystem services in the Amazon delta

    NASA Astrophysics Data System (ADS)

    de Araujo Barbosa, C. C.; Atkinson, P.; Dearing, J.

    2014-12-01

    Deltas hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development activities in coastal deltas over the past five decades has also strained environmental resources and produced extensive economic and sociocultural impacts. The Amazon delta is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the Amazon delta is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, increasing pressure on ecosystem services is amplified by large fluxes of immigrants from other parts of the country, especially from the semi-arid zone in Northeast Brazil to the lowland forests of the Amazon delta. Here we present partial results from a bigger research project. Therefore, the focus will be on presenting an overview of the current state, and the extent of changes on forest related ecosystem services in the Amazon delta over the last three decades. We aggregated a multitude of datasets, from a variety of sources, for example, from satellite imagery such as the Advanced Very High Resolution Radiometer (AVHRR), the Global Inventory Modelling and Mapping Studies (GIMMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and climate datasets at meteorological station level from the Brazilian National Institute of Meteorology (INMET) and social and economic statistics data from the Brazilian Institute of Geography and Statistics (IBGE) and from the Brazilian Institute of Applied Economic Research (IPEA). Through analysis of socioeconomic and satellite earth observation data we were able to produce and present spatially-explicit information with the current state and transition in forest cover and its impacts to forest

  6. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    NASA Astrophysics Data System (ADS)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  7. Bryophyte-cyanobacteria associations contribute to ecosystem-N-budget of boreal forest

    NASA Astrophysics Data System (ADS)

    Salemaa, Maija; Lindroos, Antti-Jussi; Merilä, Päivi; Mäkipää, Raisa; Smolander, Aino

    2014-05-01

    Bryophytes frequently dominate the ground vegetation on the forest floor in boreal region. Northern ecosystems are often nitrogen limited, and therefore biological nitrogen (N2) fixation of bryophyte-associated microbes is an important source of new N. In this study we estimated the N stock of bryophyte layer and the N input rate by N2 fixation of bryophyte-cyanobacteria associations at the ecosystem level. We studied 12 intensively monitored forest ecosystem plots (ICP Forests Level II) along a latitudinal gradient in Finland during 2009-2013. The total biomass and N stock of the bryophytes varied 700-2000 kg ha-1 and 9-23 kg ha-1, respectively. N2 fixation rate associated to bryophytes increased towards the north and was at highest 1-2 kg N ha-1 year-1 (based on the bryophyte biomass in the monitoring plots). This N input was at the same level as the N deposition in the northern Finland (1.5 kg N ha-1 year-1). In comparison, via needle litterfall and other tree litter c.a. 5 kg N ha-1 is annually returned to the nutrient cycle. In southern Finland, very low rates of N2 fixation were found probably because of inhibition by the anthropogenic N deposition. The upper parts of the bryophyte shoots showed 2-3 times higher N2-fixing rate than the lower parts, but differences between Hylocomium splendens and Pleurozium schreberi were minor. However, Dicranum species showed much lower N2 fixation rates compared to these two species. The moisture level of bryophytes and light/temperature conditions regulated strongly the rate of N2-fixing activity. The results showed that the bryophyte layer significantly contributes to the N input and plays an important role in controlling the N and C balances of boreal forests.

  8. Carbon account of forest ecosystems as a fuzzy system: a case study for Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Shvidenko, A.; Shchepashchenko, D.; Kraxner, F.; Maksyutov, S. S.

    2015-12-01

    We consider practicality of a verified account of Net Ecosystem Carbon Budget for forest ecosystems (FCA) that supposes reliable assessment of uncertainties, i.e. understanding "uncertainty of uncertainties". The FCA is a fuzzy (underspecified) system, of which membership function is inherently stochastic. Thus, any individually used method of FCA is not able to estimate structural uncertainties and usually reported "within method" uncertainties are inevitably partial. Attempting at estimation of "full uncertainties" of the studied system we follow the requirements of applied systems analysis integrating the major methods of terrestrial ecosystems carbon account, assessing the uncertainties "within method" for intermediate and final indicators of FCA with their following mutual constrains. Landscape-ecosystem approach (LEA) 1) serves for strict systems designing the account, 2) contains all relevant spatially distributed empirical and semi-empirical data and models, and 3) is presented in form of an Integrated Land Information System (ILIS). By-pixel parametrization of forest cover is provided by utilizing multi-sensor remote sensing data (12 RS products used) within GEO-wiki platform and other relevant information based on special optimization algorithms. Major carbon fluxes within the LEA (NPP, HR, disturbances etc.) are estimated based on fusion of empirical data with process-based elements by sets of regionally distributed models. Uncertainties within LEA are assessed for each module and at each step of the account. "Within method" results and uncertainties (including LEA, process-based models, eddy covariance, and inverse modelling) are harmonized based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000-2010; uncertainties of the FCA for individual years were estimated in limits of 25%. We discussed strengths and weaknesses of the approach, system requirements to different methods of FCA, information

  9. Belowground processes regulate ecosystem nitrogen retention during a multi-year forest dieback event

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Le Moine, J.; Gough, C. M.; Vogel, C.; Nadelhoffer, K. J.; Curtis, P.

    2013-12-01

    In the absence of disturbances, forests typically have strong retention capacity for nitrogen (N), which is internally recycled between soil, microbial and plant pools. However, disturbances that trigger senescence or mortality of forest vegetation may alter internal N cycling processes and lead to the loss of ecosystem N retention capacity. Here, we present an assessment of the role played by belowground processes in governing ecosystem N cycling and retention during an experimental disturbance that killed the dominant canopy taxa in a Great Lakes forest over a 4-year period. After applying stem girdling to hasten the age-related senescence of the dominant taxa (Populus and Betula spp.; ~35% of the basal area), we observed a 38% decrease in stand-level allocation of nonstructural carbohydrates to fine roots, which triggered a tenfold increase in the rate of fine root turnover and increased soil NH4+ and NO3- availability. Elevated soil N availability decreased mycorrhizal hyphal foraging and N uptake, effectively down-regulating the role of symbiotic fungi in the N nutrition of the residual (longer-lived) tree taxa. However, even as residual trees took up less N from mycorrhizal sources, their overall N uptake increased and served to offset the loss of the dominant taxa. The net result of this offset was that canopy N stocks remained constant through the disturbance period and there was no appreciable loss of ecosystem N stocks due to leaching or gaseous export. In sum, the cascade of changes in root, microbial, and soil processes during this experiment indicates that these interdependent components of the belowground system comprised a mechanism responsible for retention and redistribution of ecosystem N stocks during the disturbance period.

  10. Contrasting the patterns of aspen forest and sagebrush shrubland gross ecosystem exchange in montane Idaho, USA

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.

    2015-12-01

    We investigated the environmental controls on Gross Ecosystem Exchange (GEE) at an aspen forest and a sagebrush shrubland in southwest Idaho. The two sites were situated within a mosaic of vegetation that included temperate deciduous trees, shrublands, and evergreen conifer trees. The distribution of vegetation was presumably linked to water availability; aspen were located in wetter high-elevations sites, topographic drainages, or near snow drifts. Local temperatures have increased by ~2-3 °C over the past 50 years and less precipitation has arrived as snow. These ongoing changes in weather may impact snow water redistribution, plant-water availability, and plant-thermal stress, with associated impacts on vegetation health and production. We used eddy covariance to measure the exchange of water and carbon dioxide above the two sites and partitioned the net carbon flux to determine GEE. The sagebrush record was from 2003-2007 and the aspen record was from 2007-12. The region experienced a modest-to-severe drought in 2007, with ~73% of typical precipitation. We found that aspen were local "hotspots" for carbon exchange; peak rates of aspen GEE were ~ 60% greater than the peak rates of sagebrush GEE. Light, temperature, and water availability were dominant controls on the seasonality of GEE at both sites. Sagebrush and aspen were dormant during winter, limited by cold temperatures during winter and early spring, and water availability during mid-late summer. The onset of summer drought was typically later in the aspen than in the sagebrush. Drifting snow, lateral water redistribution, or increased rooting depths may have increased water availability in the aspen stand. Seasonal patterns of observed soil moisture and evaporation indicated aspen were rooted to >= 1 m. The sagebrush and aspen both responded strongly to the 2007 drought; peak GEE decreased by ~75%, peak GEE shifted to earlier parts of the year, and mid-summer GEE was decreased. We consider potential

  11. The OpenForest Portal as an Open Learning Ecosystem: Co-Developing in the Study of a Multidisciplinary Phenomenon in a Cultural Context

    ERIC Educational Resources Information Center

    Liljeström, Anu; Enkenberg, Jorma; Vanninen, Petteri; Vartiainen, Henriikka; Pöllänen, Sinikka

    2014-01-01

    This paper discusses the OpenForest portal and its related multidisciplinary learning project. The OpenForest portal is an open learning environment and ecosystem, in which students can participate in co-developing and co-creating practices. The aim of the OpenForest ecosystem is to create an extensive interactive network of diverse learning…

  12. Soil and water related forest ecosystem services and resilience of social ecological system in the Central Highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Tekalign, Meron; Muys, Bart; Nyssen, Jan; Poesen, Jean

    2014-05-01

    In the central highlands of Ethiopia, deforestation and forest degradation are occurring and accelerating during the last century. The high population pressure is the most repeatedly mentioned reason. However, in the past 30 years researchers agreed that the absence of institutions, which could define the access rights to particular forest resources, is another underlying cause of forest depletion and loss. Changing forest areas into different land use types is affecting the biodiversity, which is manifested through not proper functioning of ecosystem services. Menagesha Suba forest, the focus of this study has been explored from various perspectives. However the social dimension and its interaction with the ecology have been addressed rarely. This research uses a combined theoretical framework of Ecosystem Services and that of Resilience thinking for understanding the complex social-ecological interactions in the forest and its influence on ecosystem services. For understanding the history and extent of land use land cover changes, in-depth literature review and a GIS and remote sensing analysis will be made. The effect of forest conversion into plantation and agricultural lands on soil and above ground carbon sequestration, fuel wood and timber products delivery will be analyzed with the accounting of the services on five land use types. The four ecosystem services to be considered are Supporting, Provisioning, Regulating, and Cultural services as set by the Millennium Ecosystem Assessment. A resilience based participatory framework approach will be used to analyze how the social and ecological systems responded towards the drivers of change that occurred in the past. The framework also will be applied to predict future uncertainties. Finally this study will focus on the possible interventions that could contribute to the sustainable management and conservation of the forest. An ecosystem services trade-off analysis and an environmental valuation of the water

  13. Effects of introduced insects and diseases on forest ecosystems in the Catskill Mountains of New York.

    PubMed

    Lovett, Gary M; Arthur, Mary A; Weathers, Kathleen C; Griffin, Jacob M

    2013-09-01

    Repeated invasions of non-native insects and pathogens have altered the structure and function of forest ecosystems in the Catskill Mountains of New York State, and will continue to do so in the future. Gypsy moth, beech bark disease, and hemlock woolly adelgid are among the insects and diseases currently established in the Catskills that are having significant effects on forests. Many others, including emerald ash borer, Asian long-horned beetle, Phytophthora ramorum, and Sirex wood wasp, are either very recently established in the Catskills or have been found elsewhere in North America and threaten to spread to this region. Short-term disturbances associated with these pests include reduction of productivity, tree decline and mortality, disruption of nutrient cycles, and reduction of seed production. Longer-term impacts are associated with shifts in tree species composition that alter productivity, nutrient cycling, and biodiversity. Catskill forests at mid to high elevations, such as the New York State Forest Preserve lands, are dominated by sugar maple and are particularly vulnerable to pests that use maple as a host, including the Asian long-horned beetle. The simultaneous effects of multiple invading insects and pathogens, and their interactions with changing climate and air pollution regimes, make it very difficult to predict the future composition of Catskill forests. PMID:23844706

  14. [Dynamic Characteristics of Base Cations During Wet Deposition in Evergreen Broad-leaf Forest Ecosystem].

    PubMed

    An, Si-wei; Sun, Tao; Ma, Ming; Wang, Ding-yong

    2015-12-01

    Based on field tests and laboratory experiments, effects of precipitation, throughfall, litterfall, and groundwater runoff of the ever-green broad-leaf forest on the dynamic characteristics of base cations in Simian Mountain were investigated from September 2012 to August 2013. The results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.90 and maximum pH of 5.14. The soil and canopies could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy only had the function of interception on Na⁺. And precipitation could leach out Ca2⁺, Mg2⁺ and K⁺ of the canopies. Moreover, the degradation of litter was probably the main reason for the increase of base cations concentrations in the surface litter water. The litter water leached Ca2⁺, Mg2⁺ and Na⁺ of the forest soil through downward infiltration. The total retention rates of Ca²⁺, Mg²⁺, Na⁺ and K⁺ were 33.82%, -7.06%, 74.36% and 42.87%, respectively. Ca²⁺, Na⁺, K⁺ were found to be reserved in the forest ecosystem, and the highest interception rate was found for Na⁺. PMID:27011975

  15. The Eco-Health Relationship Browser: Linking Ecosystem Services and Human Health 11/6/13

    EPA Science Inventory

    Ecosystems provide multiple societal benefits from the production of nature-based goods and services. Many ecosystem services have been linked to a range of positive health outcomes through the buffering of pollutants and natural hazards and the promotion of healthy behaviors. A ...

  16. Linking Ecosystem Services and Human Health: The Eco-Health Relationship Browser (paper)

    EPA Science Inventory

    Objectives Ecosystems provide multiple services of benefit to society. Many of these ecosystem services have been linked to a range of positive health outcomes. The objectives of this review were to identify the set of literature related to this research topic and to subsequentl...

  17. Linking Ecosystem Services and Human Health: The Eco-Health Relationship Browser

    EPA Science Inventory

    Ecosystems provide multiple services associated with the provision of nature-based goods and services. Many of these ecosystem services have been linked to a range of positive health outcomes through buffering of pollutants, mitigation of natural hazards, and promotion of healthy...

  18. Carbon storage increases by major forest ecosystems in tropical South America since the Last Glacial Maximum and the early Holocene

    NASA Astrophysics Data System (ADS)

    Behling, Hermann

    2002-06-01

    To study the carbon storage increase of major forest ecosystems in tropical South America, such as Amazon rain forest, Atlantic rain forest, semideciduous forest, and Araucaria forest, the Last Glacial Maximum (LGM) and the early Holocene vegetation cover were reconstructed by pollen records. Marked forest expansion points to a significant total carbon storage increase by tropical forests in South America since the LGM and the early Holocene. The Amazon rain forest expansion, about 39% in area, had 28.3×10 9 tC (+20%), the highest carbon storage increase since the LGM. The expansion of the other much smaller forest areas also had a significant carbon storage increase since the LGM, the Atlantic rain forest with 4.9×10 9 tC (+55%), the semideciduous forest of eastern Brazil with 6.3×10 9 tC (+46%), the Araucaria forest with 3.4×10 9 tC (+108%). The estimated carbon storage increase of the four forest biomes since the early Holocene is also remarkable. The extensive deforestation in the last century strongly affected the carbon storage by tropical forests.

  19. Analysis of neighborhood dynamics of forest ecosystems using likelihood methods and modeling.

    PubMed

    Canham, Charles D; Uriarte, María

    2006-02-01

    Advances in computing power in the past 20 years have led to a proliferation of spatially explicit, individual-based models of population and ecosystem dynamics. In forest ecosystems, the individual-based models encapsulate an emerging theory of "neighborhood" dynamics, in which fine-scale spatial interactions regulate the demography of component tree species. The spatial distribution of component species, in turn, regulates spatial variation in a whole host of community and ecosystem properties, with subsequent feedbacks on component species. The development of these models has been facilitated by development of new methods of analysis of field data, in which critical demographic rates and ecosystem processes are analyzed in terms of the spatial distributions of neighboring trees and physical environmental factors. The analyses are based on likelihood methods and information theory, and they allow a tight linkage between the models and explicit parameterization of the models from field data. Maximum likelihood methods have a long history of use for point and interval estimation in statistics. In contrast, likelihood principles have only more gradually emerged in ecology as the foundation for an alternative to traditional hypothesis testing. The alternative framework stresses the process of identifying and selecting among competing models, or in the simplest case, among competing point estimates of a parameter of a model. There are four general steps involved in a likelihood analysis: (1) model specification, (2) parameter estimation using maximum likelihood methods, (3) model comparison, and (4) model evaluation. Our goal in this paper is to review recent developments in the use of likelihood methods and modeling for the analysis of neighborhood processes in forest ecosystems. We will focus on a single class of processes, seed dispersal and seedling dispersion, because recent papers provide compelling evidence of the potential power of the approach, and illustrate

  20. Tree Species Linked to Large Differences in Ecosystem Carbon Distribution in the Boreal Forest of Alaska

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A. G.; Genet, H.; McGuire, A. D.

    2014-12-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is altering plant-soil-microbial feedbacks and ecosystem carbon (C) dynamics. The boreal landscape has historically been dominated by black spruce (Picea mariana), a tree species associated with slow C turnover and large soil organic matter (SOM) accumulation. Historically, low severity fires have led to black spruce regeneration post-fire, thereby maintaining slow C cycling rates and large SOM pools. In recent decades however, an increase in high severity fires has led to greater consumption of the soil organic layer (SOL) during fire and subsequent establishment of deciduous tree species in areas previously dominated by black spruce. This shift to a more deciduous dominated landscape has many implications for ecosystem structure and function, as well as feedbacks to global C cycling. To improve our understanding of how boreal tree species affect C cycling, we quantified above- and belowground C stocks and fluxes in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1958 fire near Fairbanks, Alaska. Although total ecosystem C pools (aboveground live tree biomass + dead wood + SOL + top 10 cm of mineral soil) were similar for the two stand types, the distribution of C among pools was markedly different. In black spruce, 78% of measured C was found in soil pools, primarily in the SOL, where spruce contained twice the C stored in paper birch (4.8 ± 0.3 vs. 2.4 ± 0.1 kg C m-2). In contrast, aboveground biomass dominated ecosystem C pools in birch forest (6.0 ± 0.3 vs. 2.5 ± 0.2 kg C m-2 in birch and spruce, respectively). Our findings suggest that tree species exert a strong influence over plant-soil-microbial feedbacks and may have long-term effects on ecosystem C sequestration and storage that feedback to the climate system.

  1. Ecosystem services of boreal forests - Carbon budget mapping at high resolution.

    PubMed

    Akujärvi, Anu; Lehtonen, Aleksi; Liski, Jari

    2016-10-01

    The carbon (C) cycle of forests produces ecosystem services (ES) such as climate regulation and timber production. Mapping these ES using simple land cover -based proxies might add remarkable inaccuracy to the estimates. A framework to map the current status of the C budget of boreal forested landscapes was developed. The C stocks of biomass and soil and the annual change in these stocks were quantified in a 20 × 20 m resolution at the regional level on mineral soils in southern Finland. The fine-scale variation of the estimates was analyzed geo-statistically. The reliability of the estimates was evaluated by comparing them to measurements from the national multi-source forest inventory. The C stocks of forests increased slightly from the south coast to inland whereas the changes in these stocks were more uniform. The spatial patches of C stocks were larger than those of C stock changes. The patch size of the C stocks reflected the spatial variation in the environmental conditions, and that of the C stock changes the typical area of forest management compartments. The simulated estimates agreed well with the measurements indicating a good mapping framework performance. The mapping framework is the basis for evaluating the effects of forest management alternatives on C budget at high resolution across large spatial scales. It will be coupled with the assessment of other ES and biodiversity to study their relationships. The framework integrated a wide suite of simulation models and extensive inventory data. It provided reliable estimates of the human influence on C cycle in forested landscapes. PMID:27420172

  2. Quantifying Forest Ecosystem Services Tradeoff—Coupled Ecological and Economic Models

    NASA Astrophysics Data System (ADS)

    Haff, P. K.; Ling, P. Y.

    2015-12-01

    Quantification of the effect of carbon-related forestland management activities on ecosystem services is difficult, because knowledge about the dynamics of coupled social-ecological systems is lacking. Different forestland management activities, such as various amount, timing, and methods of harvesting, and natural disturbances events, such as wind and fires, create shocks and uncertainties to the forest carbon dynamics. A spatially explicit model, Landis-ii, was used to model the forest succession for different harvest management scenarios at the Grandfather District, North Carolina. In addition to harvest, the model takes into account of the impact of natural disturbances, such as fire and insects, and species competition. The result shows the storage of carbon in standing biomass and in wood product for each species for each scenario. In this study, optimization is used to analyze the maximum profit and the number of tree species that each forest landowner can gain at different prices of carbon, roundwood, and interest rates for different harvest management scenarios. Time series of roundwood production of different types were estimated using remote sensing data. Econometric analysis is done to understand the possible interaction and relations between the production of different types of roundwood and roundwood prices, which can indicate the possible planting scheme that a forest owner may make. This study quantifies the tradeoffs between carbon sequestration, roundwood production, and forest species diversity not only from an economic perspective, but also takes into account of the forest succession mechanism in a species-diverse region. The resulting economic impact on the forest landowners is likely to influence their future planting decision, which in turn, will influence the species composition and future revenue of the landowners.

  3. Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-09-01

    The invasion of exotic earthworms into northern temperate and boreal forests previously devoid of earthworms is an important driver of ecosystem change. Earthworm invasion can cause significant changes in soil structure and communities, nutrient cycles, and the diversity and abundance of herbaceous plants. However, the regional extent and patterns of this invasion are poorly known. We conducted a regional survey in the Chippewa and Chequamegon National Forests, in Minnesota and Wisconsin, U.S.A., respectively, to measure the extent and patterns of earthworm invasion and their relationship to potential earthworm introduction sites. We sampled earthworms, soils, and vegetation in 20 mature, sugar maple-dominated forest stands in each national forest and analyzed the relationship between the presence of five earthworm taxonomic groups, habitat variables, and distance to the nearest potential introduction site. Earthworm invasion was extensive but incomplete in the two national forests. Four of the six earthworm taxonomic groups occurred in 55-95% of transects; however 20% of all transects were invaded by only one taxonomic group that has relatively minor ecological effects. Earthworm taxonomic groups exhibited a similar sequence of invasion found in other studies: Dendrobaena > Aporrectodea = Lumbricus juveniles > L. rubellus > L. terrestris. Distance to the nearest road was the best predictor of earthworm invasion in Wisconsin while distance to the nearest cabin was the best predictor in Minnesota. These data allow us to make preliminary assessments of landscape patterns of earthworm invasion. As an example, we estimate that 82% of upland mesic hardwood stands in the Wisconsin region are likely invaded by most taxonomic groups while only 3% are unlikely to be invaded at present. Distance to roads and cabins provides a coarse-scale predictor of earthworm invasion to focus stand-level assessments that will help forest managers better understand current and potential

  4. Dynamics of novel forests of Castilla elastica in Puerto Rico: from species to ecosystems

    PubMed Central

    Fonseca da Silva, Jéssica

    2015-01-01

    Novel forests (NFs)—forests that contain a combination of introduced and native species—are a consequence of intense anthropogenic disturbances and the natural resilience of disturbed ecosystems. The extent to which NFs have similar forest function as comparable native secondary forests is a matter of debate in the scientific community. Little is known about the performance of individual species in those forests. This study focuses on the functional attributes of Castilla elastica NFs in Puerto Rico and on the differences between introduced and native species growing side by side in these forests. Rates of processes measured here were later compared with data from literature about NSFs. I hypothesize that juvenile plants of C. elastica in NFs have higher survival rate than those of native species and that C. elastica trees have faster biomass fluxes than native trees. To test the hypotheses, I measured survival rates of juvenile plants and tree growth and characterized the aboveground litter fluxes and storage. Although juvenile plants of native species displayed higher survival rates than those of C. elastica (53% vs. 28%), the latter was dominant in the understory (96%). Stand biomass growth rate was 2.0 ± 0.4 (average ± one standard deviation) Mg·ha−1·year−1 for the whole forest, and Guarea guidonia, a native species, exhibited the highest tree growth. Total litter fall was 9.6 ± 0.5 Mg·ha−1·year−1, and mean litter standing stock was 4.4 ± 0.1 Mg·ha−1. Castilla elastica litter fall decomposed twice as fast as that of native species (5.8 ± 1.1 vs. 3.03 ± 1 k·year−1). Literature comparisons show that the present NFs differ in some rates of processes from NSFs. This study brings unique and detailed supporting data about the ecological dynamics under mature novel forest stands. Further comprehensive studies about NFs are important to strengthen the body of knowledge about the wide range of variation of emerging tropical ecosystems. Due to

  5. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    NASA Astrophysics Data System (ADS)

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field

  6. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest

    PubMed Central

    Orwig, David A.; Barker Plotkin, Audrey A.; Davidson, Eric A.; Lux, Heidi; Savage, Kathleen E.

    2013-01-01

    Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50–100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%–70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3–4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes

  7. Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest.

    PubMed

    Orwig, David A; Barker Plotkin, Audrey A; Davidson, Eric A; Lux, Heidi; Savage, Kathleen E; Ellison, Aaron M

    2013-01-01

    Loss of foundation tree species rapidly alters ecological processes in forested ecosystems. Tsuga canadensis, an hypothesized foundation species of eastern North American forests, is declining throughout much of its range due to infestation by the nonnative insect Adelges tsugae and by removal through pre-emptive salvage logging. In replicate 0.81-ha plots, T. canadensis was cut and removed, or killed in place by girdling to simulate adelgid damage. Control plots included undisturbed hemlock and mid-successional hardwood stands that represent expected forest composition in 50-100 years. Vegetation richness, understory vegetation cover, soil carbon flux, and nitrogen cycling were measured for two years prior to, and five years following, application of experimental treatments. Litterfall and coarse woody debris (CWD), including snags, stumps, and fallen logs and branches, have been measured since treatments were applied. Overstory basal area was reduced 60%-70% in girdled and logged plots. Mean cover and richness did not change in hardwood or hemlock control plots but increased rapidly in girdled and logged plots. Following logging, litterfall immediately decreased then slowly increased, whereas in girdled plots, there was a short pulse of hemlock litterfall as trees died. CWD volume remained relatively constant throughout but was 3-4× higher in logged plots. Logging and girdling resulted in small, short-term changes in ecosystem dynamics due to rapid regrowth of vegetation but in general, interannual variability exceeded differences among treatments. Soil carbon flux in girdled plots showed the strongest response: 35% lower than controls after three years and slowly increasing thereafter. Ammonium availability increased immediately after logging and two years after girdling, due to increased light and soil temperatures and nutrient pulses from leaf-fall and reduced uptake following tree death. The results from this study illuminate ecological processes underlying

  8. Urban forest ecosystem analysis using fused airborne hyperspectral and lidar data

    NASA Astrophysics Data System (ADS)

    Alonzo, Mike Gerard

    Urban trees are strategically important in a city's effort to mitigate their carbon footprint, heat island effects, air pollution, and stormwater runoff. Currently, the most common method for quantifying urban forest structure and ecosystem function is through field plot sampling. However, taking intensive structural measurements on private properties throughout a city is difficult, and the outputs from sample inventories are not spatially explicit. The overarching goal of this dissertation is to develop methods for mapping urban forest structure and function using fused hyperspectral imagery and waveform lidar data at the individual tree crown scale. Urban forest ecosystem services estimated using the USDA Forest Service's i-Tree Eco (formerly UFORE) model are based largely on tree species and leaf area index (LAI). Accordingly, tree species were mapped in my Santa Barbara, California study area for 29 species comprising >80% of canopy. Crown-scale discriminant analysis methods were introduced for fusing Airborne Visible Infrared Imaging Spectrometry (AVIRIS) data with a suite of lidar structural metrics (e.g., tree height, crown porosity) to maximize classification accuracy in a complex environment. AVIRIS imagery was critical to achieving an overall species-level accuracy of 83.4% while lidar data was most useful for improving the discrimination of small and morphologically unique species. LAI was estimated at both the field-plot scale using laser penetration metrics and at the crown scale using allometry. Agreement of the former with photographic estimates of gap fraction and the latter with allometric estimates based on field measurements was examined. Results indicate that lidar may be used reasonably to measure LAI in an urban environment lacking in continuous canopy and characterized by high species diversity. Finally, urban ecosystem services such as carbon storage and building energy-use modification were analyzed through combination of aforementioned

  9. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    USGS Publications Warehouse

    Cannicci, Stefano; Burrows, Damien; Fratini, Sara; Smith, Thomas J., III; Offenberg, Joachim; Dahdouh-Guebas, Farid

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about the great importance of these herbivorous crabs in structuring and functioning Old world ecosystems. Although Sesarmidae are still considered very important in shaping mangrove structure and functioning, recent literature emphasizes the significance of other invertebrates. The Ocypodidae have now been shown to have the same role as Sesarmidae in terms of retention of forest products and organic matter processing in New world mangroves. In both New and Old world mangroves, crabs process large amounts of algal primary production, contribute consistently to retention of mangrove production and as ecosystem engineers, change particle size distribution and enhance soil aeration. Our understanding of the strong impact of gastropods, by means of high intake rates of mangrove products and differential consumption of propagules, has changed only recently. The role of insects must also be stressed. It is now clear that older techniques used to assess herbivory rates by insects strongly underestimate their impact, both in case of leaf eating and wood boring species and that

  10. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments.

    PubMed

    Bregman, Tom P; Lees, Alexander C; Seddon, Nathalie; Macgregor, Hannah E A; Darski, Bianca; Aleixo, Alexandre; Bonsall, Michael B; Tobias, Joseph A

    2015-10-01

    Competitive interactions among species with similar ecological niches are known to regulate the assembly of biological communities. However, it is not clear whether such forms of competition can predict the collapse of communities and associated shifts in ecosystem function in the face of environmental change. Here, we use phylogenetic and functional trait data to test whether communities of two ecologically important guilds of tropical birds (frugivores and insectivores) are structured by species interactions in a fragmented Amazonian forest landscape. In both guilds, we found that forest patch size, quality, and degree of isolation influence the phylogenetic and functional trait structure of communities, with small, degraded, or isolated forest patches having an increased signature of competition (i.e., phylogenetic and functional trait overdispersion in relation to null models). These results suggest that local extinctions in the context of fragmentation are nonrandom, with a consistent bias toward more densely occupied regions of niche space. We conclude that the loss of biodiversity in fragmented landscapes is mediated by niche-based competitive interactions among species, with potentially far-reaching implications for key ecosystem processes, including seed dispersal and plant damage by phytophagous insects. PMID:26649390

  11. Forest to reclaimed mine land use change leads to altered ecosystem structure and function

    SciTech Connect

    Simmons, J.A.; Currie, W.S.; Eshleman, K.N.; Kuers, K.; Monteleone, S.; Negley, T.L.; Pohlad, B.R.; Thomas, C.L.

    2008-01-15

    The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function.

  12. Forest to reclaimed mine land use change leads to altered ecosystem structure and function.

    PubMed

    Simmons, Jeffrey A; Currie, William S; Eshleman, Keith N; Kuers, Karen; Monteleone, Susan; Negley, Tim L; Pohlad, Bob R; Thomas, Carolyn L

    2008-01-01

    The United States' use of coal results in many environmental alterations. In the Appalachian coal belt region, one widespread alteration is conversion of forest to reclaimed mineland. The goal of this study was to quantify the changes to ecosystem structure and function associated with a conversion from forest to reclaimed mine grassland by comparing a small watershed containing a 15-year-old reclaimed mine with a forested, reference watershed in western Maryland. Major differences were apparent between the two watersheds in terms of biogeochemistry. Total C, N, and P pools were all substantially lower at the mined site, mainly due to the removal of woody biomass but also, in the case of P, to reductions in soil pools. Mineral soil C, N, and P pools were 96%, 79%, and 69% of native soils, respectively. Although annual runoff from the watersheds was similar, the mined watershed exhibited taller, narrower storm peaks as a result of a higher soil bulk density and decreased infiltration rates. Stream export of N was much lower in the mined watershed due to lower net nitrification rates and nitrate concentrations in soil. However, stream export of sediment and P and summer stream temperature were much higher. Stream leaf decomposition was reduced and macroinvertebrate community structure was altered as a result of these changes to the stream environment. This land use change leads to substantial, long-term changes in ecosystem capital and function. PMID:18372559

  13. N-15 tracing helps explaining N leaching losses from contrasting forest ecosystems

    NASA Astrophysics Data System (ADS)

    Staelens, J.; Rütting, T.; Huygens, D.; Müller, C.; Verheyen, K.; Boeckx, P.

    2009-04-01

    Despite chronically enhanced nitrogen (N) deposition to forest ecosystems in Europe and NE America, considerable N retention by forests has been observed, reducing N leaching losses. Organic and mineral soil layers typically immobilize more N than the aboveground biomass, but it is unclear which factors determine N retention in forest ecoystems. However, this knowledge is crucial to assess the impact of changing anthropogenic N emissions on future N cycling and N loss of forests. For coniferous and deciduous forest stands at comparable sites, it is known that both N deposition onto the forest floor as well as N loss by leaching below the rooting zone are significantly higher in coniferous stands. In addition, the N loss in coniferous stands is often more enhanced than can be explained by the higher N input only. This suggests lower N retention by coniferous stands, and may be related to differences in litter and soil characteristics, microbial activity, and N uptake by plant roots. To test this hypothesis, we studied the effect of forest type on N retention using 15N tracing techniques: a field tracer experiment and a combination of in situ isotope pool dilution and a tracing model. The N dynamics were examined for two adjacent forest stands (pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.)) on a well-drained sandy soil and with a similar stand history, located in a region with high N deposition (Belgium). Input-output N budgets were established by quantifying atmospheric deposition and leaching below the rooting zone, and confirmed the above finding of higher N deposition and disproportionately higher N loss for the pine stand compared to the oak stand. First, the fate of inorganic N within the ecosystems was studied by spraying three pulses of dissolved 15N, either as ammonium or as nitrate, onto the forest floor in 12 plots of 25 m2. The organic and mineral soil layers, tree roots, soil water percolate, ferns, and tree foliage were sampled

  14. Soil Carbon Turnover and the Net Ecosystem Carbon Balance of a Northern Hardwood Forest, Michigan, USA

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Biswas, S.; Vogel, C. S.; Curtis, P. S.

    2004-12-01

    Soils are a major reservoir of stored carbon (C) in forested ecosystems, containing up to 70% of total ecosystem C. Heterotrophic activity largely dictates the rate of soil C turnover and directly impacts ecosystem C balance. Reliable estimates of net ecosystem productivity (NEP) from ecophysiological and biometric data as well as the refinement of process-based models predicting belowground changes in C storage depend on accurate quantification and partitioning of autotrophic and heterotrophic soil C fluxes. We used field and laboratory measurements of root, microbial and soil respiration in a northern hardwood forest to (1) quantify the annual soil C efflux attributed to heterotrophs and autotrophs from 1999 to 2003; (2) identify the extent to which microclimatic drivers impact interannual variability in microbial activity of the mineral soil and O-horizon; and (3) evaluate the sensitivity of estimated annual NEP to heterotrophic respiration. The study was conducted in an 85-year-old aspen-dominated mixed deciduous forest at the University of Michigan Biological Station Ameriflux site (UMBS ˜Flux) in N. lower Michigan, USA. Soil respiration was monitored from 1999 to 2003. Laboratory incubations of roots, mineral soil and the O-horizon at different temperatures were used to examine the relationship between microclimate and autotrophic and heterotrophic respiration. Empirical models relating root and microbial respiration to temperature were used in combination with soil respiration models and site soil temperature, moisture and root biomass data to estimate the contribution of autotrophic and heterotrophic respiration to total soil C efflux. Heterotrophic soil respiration estimates were combined with other C flux data to calculate annual NEP from 1999 to 2003. Microbially-mediated C turnover was responsible for ˜half of the total annual soil C efflux. Heterotrophic respiration varied by more than 1 Mg C ha-1 yr-1 among years primarily due to interannual

  15. Projected dynamics of abiotic risks in boreal forest ecosystems (SRES A1B, B1)

    NASA Astrophysics Data System (ADS)

    Panferov, O.; Ahrends, B.; Doering, C.; Sogachev, A.

    2009-04-01

    The ongoing climate change causes an increasing frequency of weather extremes (Leckebusch et al., 2008), which can result in wide area damage events (drought, windthrows/breaks) within boreal forest ecosystem. The damage effects, however, depend not only on the strength of a driving force itself (e.g. wind speed) but also on combinations of effecting agents and forest structure. Thus, the present study investigates the projected future developments of abiotic risks in different boreal forests during the 21st Century under conditions of SRES scenarios A1B and B1. Climate scenario data of coupled ECHAM5-MPIOM were downscaled by the regional climate model (CLM) to the spatial resolution of 0.2° x 0.2°, using daily time- steps. With these input data the small-scale modelling with coupled process based sub-models (Jansen et al., 2008) was carried out e.g. for Solling region, (Germany) calculating the water and energy balance of forest ecosystems with modified BROOK 90 (Ahrends et al., 2009) and wind loading on trees with 3D ABL model SCADIS (Panferov and Sogachev, 2008). Norway spruce and Scots pine of various ages were chosen as typical tree species for boreal forest ecosystems and cambisols, podzolic cambisols and stagnosols as typical soil types. The risks of drought and windthrow/breaks for a certain forest stand result from daily combinations of soil water characteristics, static and gust wind loads and soil texture. Damaged stands show higher vulnerability and thus - positive feedback to climate forcing (Vygodskaya et al., 2008). Therefore differences of microclimatological conditions in the remaining stand after changes in forest structure (Radler et al, 2008) were taken into account. Modell output was aggregated to 30-years periods and compared to "present conditions" of 1981-2010. The results show an increment of drought risks towards 2100 caused by changes in precipitation pattern and increase of mean air temperature, whereas the A1B scenario is

  16. Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle

    SciTech Connect

    Norby, Richard J; DeLucia, E. H.; Moore, D J

    2005-01-01

    In two parallel but independent experiments, Free Air CO2 Enrichment (FACE) technology was used to expose plots within contrasting evergreen loblolly pine (Pinus taeda L.) and deciduous sweetgum (Liquidambar styraciflua L.) forests to the level of CO2 anticipated in 2050. Net primary production (NPP) and net ecosystem production (NEP) increased in both forests. In the year 2000, after exposing pine and sweetgum to elevated CO2 for approximately 5 and 3 years, a complete budget calculation revealed increases in net ecosystem production (NEP) of 41% and 44% in the pine forest and sweetgum forest, respectively, representing the storage of an additional 174 gC m-2 and 128 gC m-2 in these forests. The stimulation of NPP without corresponding increases in leaf area index or light absorption in either forest resulted in 23-27% stimulation in radiation-use efficiency, defined as NPP per unit absorbed photosynthetically active radiation. Greater plant respiration contributed to lower NPP in the loblolly pine forest than in the sweetgum forest, and these forests responded differently to CO2 enrichment. Where the pine forest added C primarily to long-lived woody tissues, exposure to elevated CO2 caused a large increase in the production of labile fine roots in the sweetgum forest. Greater allocation to more labile tissues may cause more rapid cycling of C back to the atmosphere in the sweetgum forest compared to the pine forest. Imbalances in the N cycle may reduce the response of these forests to experimental exposure to elevated CO2 in the future, but even at the current stimulation observed for these forests, the effect of changes in land use on C sequestration are likely to be larger than the effect of CO2-induced growth stimulation.

  17. Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health

    SciTech Connect

    Wike, L

    2005-06-01

    Measurement of ecosystem health is a very important but often difficult and sometimes fractious topic for applied ecologists. It is important because it can provide information about effects of various external influences like chemical, nuclear, and physical disturbance, and invasive species. Ecosystem health is also a measure of the rate or trajectory of degradation or recovery of systems that are currently suffering impact or those where restoration or remediation have taken place. Further, ecosystem health is the single best indicator of the quality of long term environmental stewardship because it not only provides a baseline condition, but also the means for future comparison and evaluation. Ecosystem health is difficult to measure because there are a nearly infinite number of variables and uncertainty as to which suites of variables are truly indicative of ecosystem condition. It would be impossible and prohibitively expensive to measure all those variables, or even all the ones that were certain to be valid indicators. Measurement of ecosystem health can also be a fractious topic for applied ecologists because there are a myriad of opinions as to which variables are the most important, most easily measured, most robust, and so forth. What is required is an integrative means of evaluating ecosystem health. All ecosystems are dynamic and undergo change either stochastically, intrinsically, or in response to external influences. The basic assumption about change induced by exogenous antropogenic influences is that it is directional and measurable. Historically measurements of surrogate parameters have been used in an attempt to quantify these changes, for example extensive water chemistry data in aquatic systems. This was the case until the 1980's when the Index of Biotic Integrity (IBI) (Karr et al. 1986), was developed. This system collects an array of metrics and fish community data within a stream ecosystem and develops a score or rating for the relative

  18. Wildfire effects on biological properties of soils in forest-steppe ecosystems of Russia

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2013-04-01

    Forest fires are regularly repeating natural phenomenon that disturb natural balance between separate components of ecosystems and influence on the type of vegetation and dynamics of plant communities. The soil, as a basic component of forest ecosystems, is affected by different impacts of wildfires. Independently of a type and intensity of a fire the plant cover and a upper soil horizon always burn. There is also a transformation of the top organo-mineral and mineral horizons of soils when it's strong influence of fire and full combustion of a laying. Complicated fire conditions in summer of 2010 were caused by extreme climatic effects and low precipitations. The area of soils affected by wildfires assessed as more than 744 000 ha. Forest fires have occupied Moscow, Yekaterinburg, Kaluga, Pskov, Samara and many other regions. The critical situation in the Samarskaya region around Togliatti city results in huge soil dergradation in forest-steppe pine forests. The analytical data obtained shows that wildfires lead to serious changes in a soil profile. The most intensive were the processes of humus losses that result from burning of a forest floor and sod (humic) horizon. Wildfires change a chemical composition of laying and raise their ash-content. Fires lead to increase of biogenic elements' content in the upper horizon - P and K. The content of phosphorus and potassium in 2011 decreased as a result of carrying out with an atmospheric precipitation. Thus, when it is burning the top horizons the ashes arriving on a surface of the soil enrich it with nutrients. Moreover, there is an increase of the calcium content. Calcium provides alkaline reaction of the top horizons. But the next year the content of calcium in upper soil horizons decreased. The soil unaffected by fire is characterized by the greatest content of soil microbial biomass in the top horizon and, respectively, the bigger index of bazal respiration whereas a reduction of both parameters is noted on

  19. Ecosystem Carbon Stock Influenced by Plantation Practice: Implications for Planting Forests as a Measure of Climate Change Mitigation

    PubMed Central

    Liao, Chengzhang; Luo, Yiqi; Fang, Changming; Li, Bo

    2010-01-01

    Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha−1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age (<25 years vs. ≥25 years), stand types (broadleaved vs. coniferous and deciduous vs. evergreen), tree species origin (native vs. exotic) of plantations, land-use history (afforestation vs. reforestation) and site preparation for plantations (unburnt vs. burnt), and study regions (tropic vs. temperate). The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation. PMID:20523733

  20. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    PubMed

    Liao, Chengzhang; Luo, Yiqi; Fang, Changming; Li, Bo

    2010-01-01

    Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1) in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age (< 25 years vs. > or = 25 years), stand types (broadleaved vs. coniferous and deciduous vs. evergreen), tree species origin (native vs. exotic) of plantations, land-use history (afforestation vs. reforestation) and site preparation for plantations (unburnt vs. burnt), and study regions (tropic vs. temperate). The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation. PMID:20523733

  1. Long-term increase in forest water-use efficiency observed across ecosystem carbon flux networks

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor; Bohrer, Gil; Dragoni, Danilo; Hollinger, David; Munger, James W.; Schmid, Hans Peter; Richardson, Andrew

    2014-05-01

    Terrestrial plants remove CO2 from the atmosphere through photo- synthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct, long-term measurements of whole-ecosystem carbon and water exchange. We find a substantial increase in water-use efficiency in temperate and boreal forests of the Northern Hemisphere over the past two decades. We systematically assess various competing hypotheses to explain this trend, and find that the observed increase is most consistent with a strong CO2 fertilization effect. The results suggest a partial closure of stomata - small pores on the leaf surface that regulate gas exchange - to maintain a near- constant concentration of CO2 inside the leaf even under continually increasing atmospheric CO2 levels. The observed increase in forest water-use efficiency is larger than that predicted by existing theory and 13 terrestrial biosphere models. The increase is associated with trends of increasing ecosystem-level photosynthesis and net carbon uptake, and decreasing evapotranspiration. Our findings demonstrate the utility of maintaining long-term eddy-covariance flux measurement sites. The results suggest a shift in the carbon- and water-based economics of terrestrial vegetation, which may require a reassessment of the role of stomatal control in regulating interactions between forests and climate change, and a re-evaluation of coupled vegetation-climate models.

  2. Whole-Ecosystem Labile Carbon Production in a North Temperate Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Flower, C. E.; Vogel, C. S.; Dragoni, D.; Curtis, P. S.

    2008-12-01

    Management for forest carbon (C) sequestration requires knowledge of the fate of photosynthetic C. Labile C is an essential intermediary between C assimilation and growth in deciduous forests, accumulating when photosynthetic C supply exceeds demand and later depleting when reallocated to growth during periods of depressed photosynthesis. We developed a new approach that combined meteorological and biometric C cycling data for a mixed deciduous forest in Michigan, USA, to provide novel estimates of whole-ecosystem labile C production (PLC) and reallocation to growth inferred from the temporal imbalance between carbon supply from canopy net C assimilation (Ac) and C demand for net primary production (NPP). We substantiated these estimates with measurements of Populus grandidentata and Quercus rubra wood non-structural carbohydrate (NSC) concentration and mass over two years. Our analysis showed that half of annual Ac was allocated to PLC rather than to immediate growth. Labile C produced during the latter half of summer later supported dormant-season growth and respiration, with 35% of NPP in a given year requiring labile C stored during previous years. Seasonal changes in wood NSC concentration and mass generally corroborated patterns of labile C production and reallocation to growth. We observed a negative relationship between current-year PLC and NPP, indicating that disparities between same-year meteorological and biometric net ecosystem production (NEP) estimates can arise when C assimilated via photosynthesis, a flux incorporated into meteorological NEP estimates, is diverted away from NPP, a flux included in biometric NEP estimates, and instead allocated to PLC. A large, annually recharging pool of labile C also may buffer growth from climate conditions that immediately affect Ac. We conclude that a broader understanding of labile C production and reallocation across ecosystems may be important to interpreting lagged canopy C cycling and growth processes.

  3. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    NASA Astrophysics Data System (ADS)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  4. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests.

    PubMed

    Metcalfe, Daniel B; Asner, Gregory P; Martin, Roberta E; Silva Espejo, Javier E; Huasco, Walter Huaraca; Farfán Amézquita, Felix F; Carranza-Jimenez, Loreli; Galiano Cabrera, Darcy F; Baca, Liliana Durand; Sinca, Felipe; Huaraca Quispe, Lidia P; Taype, Ivonne Alzamora; Mora, Luzmila Eguiluz; Dávila, Angela Rozas; Solórzano, Marlene Mamani; Puma Vilca, Beisit L; Laupa Román, Judith M; Guerra Bustios, Patricia C; Revilla, Norma Salinas; Tupayachi, Raul; Girardin, Cécile A J; Doughty, Christopher E; Malhi, Yadvinder

    2014-03-01

    The functional role of herbivores in tropical rainforests remains poorly understood. We quantified the magnitude of, and underlying controls on, carbon, nitrogen and phosphorus cycled by invertebrate herbivory along a 2800 m elevational gradient in the tropical Andes spanning 12°C mean annual temperature. We find, firstly, that leaf area loss is greater at warmer sites with lower foliar phosphorus, and secondly, that the estimated herbivore-mediated flux of foliar nitrogen and phosphorus from plants to soil via leaf area loss is similar to, or greater than, other major sources of these nutrients in tropical forests. Finally, we estimate that herbivores consume a significant portion of plant carbon, potentially causing major shifts in the pattern of plant and soil carbon cycling. We conclude that future shifts in herbivore abundance and activity as a result of environmental change could have major impacts on soil fertility and ecosystem carbon sequestration in tropical forests. PMID:24372865

  5. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests.

    PubMed

    Talhelm, Alan F; Pregitzer, Kurt S; Kubiske, Mark E; Zak, Donald R; Campany, Courtney E; Burton, Andrew J; Dickson, Richard E; Hendrey, George R; Isebrands, J G; Lewin, Keith F; Nagy, John; Karnosky, David F

    2014-08-01

    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2 ) and tropospheric ozone (O3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3 . Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r(2) = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m(-2) ) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆NPP/∆N) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2 . Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content. PMID:24604779

  6. Environmental Drivers of Whole-Ecosystem Methane Fluxes from a Lowland Evergreen Forest

    NASA Astrophysics Data System (ADS)

    Shoemaker, J. K.; Keenan, T. F.; Hollinger, D. Y.; Richardson, A. D.

    2013-12-01

    Forests dominate the global carbon cycle, but their role in methane (CH4) biogeochemistry remains uncertain. Limitations in mesoscale sampling approaches has led to gaps in our knowledge of the dynamics of CH4 uptake and release from forested ecosystems and the environmental drivers that control these fluxes. Methane, a more potent greenhouse gas than carbon dioxide (CO2) over short timescales, may have an important role to play in determining the total climate influence of a forest system. Here we examine a time series of methane fluxes, obtained over 2 years by eddy flux covariance, from a lowland evergreen forest in central Maine, USA. During 2011, a wetter than average year, the forest was a net source of CH4 from the beginning of the measurement period in July through October. In 2012, a drier than average year, the forest was a small source only from early June through mid-July after which it transitioned to a weak sink for the remainder of the year. Using both a multiple linear regression and an artificial neural network approach, we find gross primary productivity (GPP, estimated from eddy covariance CO2 fluxes) to provide the strongest correlation with the seasonal trend in CH4 flux. While GPP alone provides the majority of the models' correlation during 2011, including soil moisture at 10cm significantly improves the fit of the model during 2012. Using a linear model of GPP and soil moisture, combined with Monte-Carlo resampling, we estimate that the total annual CH4 fluxes for 2011 and 2012 at Howland forest were 6900 +/- 4600 and -18000 +/- 2700 umol m-2 yr-1, respectively (means +/- 1sd). While these fluxes are very small compared to the annual CO2 consumption at this site (~300 g m-2 yr-1), these forest CH4 fluxes may contribute significantly to both short- and long-term variability in regional CH4 emissions. Understanding how environmental drivers influence CH4 fluxes at the landscape scale is critical to developing appropriate model structures for

  7. Quantitative assessment of Vulnerability of Forest ecosystem to Climate Change in Korea

    NASA Astrophysics Data System (ADS)

    Byun, J.; Lee, W.; Choi, S.; Oh, S.; Climate Change Model Team

    2011-12-01

    The purpose of this study was to assess the vulnerability of forest ecosystem to climate change in Korea using outputs of vegetation models(HyTAG and MC1) and socio-ecological indicators. Also it suggested adaptation strategies in forest management through analysis of three vulnerability components: exposure, sensitivity and adaptive capacity. For the model simulation of past years(1971-2000), the climatic data was prepared by the Korea Meteorological Administration(KMA). In addition, for the future simulation, the Fifth-Generation NCAR/Penn State Mesoscale Model(MM5) coupling with atmosphere-ocean circulation model(ECHO-G) provide the future climatic data under the A1B scenarios. HyTAG (Hydrological and Thermal Analogy Groups), korean model of forest distribution on a regional-scale, could show extent of sensitivity and adaptive capacity in connection with changing frequency and changing direction of vegetation. MC1 model could provide variation and direction of NPP(Net Primary Production) and SCS(Soil Carbon Storage). In addition, the sensitivity and adaptation capacity were evaluated for each. Besides indicators from models, many other indicators such as financial affairs and number of officers were included in the vulnerability components. As a result of the vulnerability assessment, south western part and Je-ju island of Korea had relatively high vulnerability. This finding is considered to come from a distinctively adaptative capacity. Using these results, we could propose actions against climate change and develop decision making systems on forest management.

  8. High-Resolution Forest Canopy Height Estimation in an African Blue Carbon Ecosystem

    NASA Technical Reports Server (NTRS)

    Lagomasino, David; Fatoyinbo, Temilola; Lee, Seung-Kuk; Simard, Marc

    2015-01-01

    Mangrove forests are one of the most productive and carbon dense ecosystems that are only found at tidally inundated coastal areas. Forest canopy height is an important measure for modeling carbon and biomass dynamics, as well as land cover change. By taking advantage of the flat terrain and dense canopy cover, the present study derived digital surface models (DSMs) using stereophotogrammetric techniques on high-resolution spaceborne imagery (HRSI) for southern Mozambique. A mean-weighted ground surface elevation factor was subtracted from the HRSI DSM to accurately estimate the canopy height in mangrove forests in southern Mozambique. The mean and H100 tree height measured in both the field and with the digital canopy model provided the most accurate results with a vertical error of 1.18-1.84 m, respectively. Distinct patterns were identified in the HRSI canopy height map that could not be discerned from coarse shuttle radar topography mission canopy maps even though the mode and distribution of canopy heights were similar over the same area. Through further investigation, HRSI DSMs have the potential of providing a new type of three-dimensional dataset that could serve as calibration/validation data for other DSMs generated from spaceborne datasets with much larger global coverage. HSRI DSMs could be used in lieu of Lidar acquisitions for canopy height and forest biomass estimation, and be combined with passive optical data to improve land cover classifications.

  9. Soil organic horizons as a major source for radiocesium biorecycling in forest ecosystems.

    PubMed

    Kruyts, Nathalie; Delvaux, Bruno

    2002-01-01

    Here we review some of the main processes and key parameters affecting the mobility of radiocesium in soils of semi-natural areas. We further illustrate them in a collection of soil surface horizons which largely differ in their organic matter contents. In soils, specific retention of radiocesium occurs in a very small number of sorbing sites, which are the frayed edge sites (FES) born out of weathered micaceous minerals. The FES abundance directly governs the mobility of trace Cs in the rhizosphere and thus its transfer from soil to plant. Here, we show that the accumulation of organic matter in topsoils can exert a dilution of FES-bearing minerals in the thick humus of some forest soils. Consequently, such accumulation significantly contributes to increasing 137Cs soil-to-plant transfer. Potassium depletion and extensive exploration of the organic horizons by plant roots can further enhance the contamination hazard. As humus thickness depends on both ecological conditions and forest management. our observations support the following ideas: (1) forest ecosystems can be classified according to their sensitivity to radiocesium bio-recycling, (2) specific forest management could be searched to decrease such bio-recycling. PMID:11814165

  10. Modeling gross primary production of deciduous forest using remotely sensed radiation and ecosystem variables

    NASA Astrophysics Data System (ADS)

    Jahan, Nasreen; Gan, Thian Yew

    2009-12-01

    We explored the potential application of two remotely sensed (RS) variables, the Global Vegetation Moisture Index (GVMI) and the near-infrared albedo (AlbedoNIR), in modeling the gross primary production (GPP) of three deciduous forests. For the Harvard Forest (deciduous) of Massachusetts, it was found that GPP is strongly correlated with GVMI (coefficient of determination, R2 = 0.60) during the growing season, and with AlbedoNIR (R2 = 0.82) throughout the year. Subsequently, a statistical model called the Remotely Sensed GPP (R-GPP) model was developed to estimate GPP using remotely sensed radiation (land surface temperature (LST), AlbedoNIR) and ecosystem variables (enhanced vegetation index (EVI) and GVMI). The R-GPP model, calibrated and validated against the GPP estimates derived from the eddy covariance flux tower of the Harvard Forest, could explain 95% and 92% of the observed GPP variability for the study site during the calibration (2000-2003) and the validation (2004-2005) periods, respectively. It outperformed the primary RS-based GPP algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS), which explained 80% and 77% of the GPP variability during 2000-2003 and 2004-2005, respectively. The calibrated R-GPP model also explained 93% and 94% of the observed GPP variation for two other independent validation sites, the Morgan Monroe State Forest and the University of Michigan Biological Station, respectively, which demonstrates its transferability to other deciduous ecoregions of northeastern United States.

  11. [Evaluation of ecosystem service values of the forests of Shennongjia Nature Reserve].

    PubMed

    Liu, Yong-Jie; Wang, Shi-Chang; Peng, Hao; Li, Zhen-Qing

    2014-05-01

    As an ecological protected area for rare animals and plants in a subtropical forest zone, Shennongjia National Reserve plays an important role in the study of biodiversity in China. By using the market value, shade-price and opportunity-cost methods, the forest ecosystem service values of Shennongjia National Nature Reserve were evaluated, including forest production, recreation and culture, water conservation, soil conservation, gas regulation, environment purification, nutrient circulation and biodiversity conservation. The total value of the Shennongjia Nature Reserve was approximately 204.33 x 10(8) yuan RMB x a(-1). The values of the different functions were in order of biodiversity conservation (68.5%) > soil conservation (12.7%) > recreation and culture (4.9%) > gas regulation (4.8%) > forest production (4.2%) > water conservation (3.9%) > environment purification (0.7%) > nutrient circulation (0.3%). The values with respect to utility were in sequence of unused value (68.5%) > indirect value in use (22.4% ) > direct value in use (9.1%). PMID:25129946

  12. Changes on albedo after a large forest fire in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Quintano, Carmen; Fernández-Manso, Alfonso; Fernández-García, Victor; Marcos, Elena; Calvo, Leonor

    2015-09-01

    Fires are one of the main causes of environmental alteration in Mediterranean forest ecosystems. Albedo varies and evolves seasonally based on solar illumination. It is greatly influenced by changes on vegetation: vegetation growth, cutting/planting forests or forest fires. This work analyzes albedo variations due to a large forest fire that occurred on 19- 21 September 2012 in northwestern Spain. From this area, albedo post-fire images (immediately and 1-year after fire) were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data. Specifically we considered total shortwave albedo, total-, direct-, and diffuse-visible, and near-infrared albedo. Nine to twelve weeks after fire, 111 field plots were measured (27 unburned plots, 84 burned plots). The relationship between albedo values and thematic class (burned/unburned) was evaluated by one-way analysis of variance. Our results demonstrate that albedo changes were related to burned/unburned variable with statistical significance, indicating the importance of forestry areas as regulators of land surface energy fluxes and revealing the potential of post-fire albedo for assessing burned areas. Future research, however, is needed to evaluate the persistence of albedo changes.

  13. Earthworms as ecosystem engineers and the most important detritivors in forest soils.

    PubMed

    Kooch, Yahya; Jalilvand, Hamid

    2008-03-15

    Earthworms are considered as soil engineers because of their effects on soil properties and their influence on the availability of resources for other organisms, including microorganisms and plants. However, the links between their impacts on the soil environment and the resulting modification of natural selection pressures on engineer as well as on other organisms have received little attention. Earthworms are known to have a positive influence on the soil fabric and on the decomposition and mineralization of litter by breaking down organic matter and producing large amounts of fasces, thereby mixing litter with the mineral soil. Therefore, they play an important part in changes from one humus from to another according to forest succession patterns. Consequently, they are also expected to be good bio-indicators for forest site quality and are thus useful when planning forest production improvement. Earthworm's populations are as indicator that in exploited regions is destruction indicator and reclamation plans is nature return indicator. In this study we summarized the current knowledge in relation to earthworm's ecology in forest soils as ecosystem engineers. PMID:18814642

  14. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests

    PubMed Central

    van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C.; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, ‘complementarity' and ‘selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the ‘jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity–multifunctionality relationships in many of the world's ecosystems. PMID:27010076

  15. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests.

    PubMed

    van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems. PMID:27010076

  16. Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model

    NASA Astrophysics Data System (ADS)

    De Weirdt, M.; Verbeeck, H.; Maignan, F.; Peylin, P.; Poulter, B.; Bonal, D.; Ciais, P.; Steppe, K.

    2012-09-01

    The influence of seasonal phenology on canopy photosynthesis in tropical evergreen forests remains poorly understood, and its representation in global ecosystem models is highly simplified, typically with no seasonal variation of canopy leaf properties taken into account. Including seasonal variation in leaf age and photosynthetic capacity could improve the correspondence of global vegetation model outputs with the wet-dry season CO2 patterns measured at flux tower sites in these forests. We introduced a leaf litterfall dynamics scheme in the global terrestrial ecosystem model ORCHIDEE based on seasonal variations in net primary production (NPP), resulting in higher leaf turnover in periods of high productivity. The modifications in the leaf litterfall scheme induce seasonal variation in leaf age distribution and photosynthetic capacity. We evaluated the results of the modification against seasonal patterns of three long-term in-situ leaf litterfall datasets of evergreen tropical forests in Panama, French Guiana and Brazil. In addition, we evaluated the impact of the model improvements on simulated latent heat (LE) and gross primary productivity (GPP) fluxes for the flux tower sites Guyaflux (French Guiana) and Tapajós (km 67, Brazil). The results show that the introduced seasonal leaf litterfall corresponds well with field inventory leaf litter data and times with its seasonality. Although the simulated litterfall improved substantially by the model modifications, the impact on the modelled fluxes remained limited. The seasonal pattern of GPP improved clearly for the Guyaflux site, but no significant improvement was obtained for the Tapajós site. The seasonal pattern of the modelled latent heat fluxes was hardly changed and remained consistent with the observed fluxes. We conclude that we introduced a realistic and generic litterfall dynamics scheme, but that other processes need to be improved in the model to achieve better simulations of GPP seasonal patterns

  17. Endurance of larch forest ecosystems in eastern Siberia under warming trends.

    PubMed

    Sato, Hisashi; Kobayashi, Hideki; Iwahana, Go; Ohta, Takeshi

    2016-08-01

    The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. Its persistence is considered to depend on near-surface permafrost, and thus, forecast warming over the 21st century and consequent degradation of near-surface permafrost is expected to affect the larch forest in Siberia. However, predictions of these effects vary greatly, and many uncertainties remain about land - atmosphere interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology, although it does not consider many processes those are considered to affect productivity response to a changing climate (e.g., nitrogen limitation, waterlogged soil, heat stress, and change in species composition). The model showed that, under climatic conditions predicted under gradual and rapid warming, the annual net primary production of larch increased about 2 and 3 times, respectively, by the end of the 21st century compared with that in the previous century. Soil water content during the larch-growing season showed no obvious trend, even when surface permafrost was allowed to decay and result in subsurface runoff. A sensitivity test showed that the forecast temperature and precipitation trends extended larch leafing days and reduced water shortages during the growing season, thereby increasing productivity. The integrated model also satisfactorily reconstructed latitudinal gradients in permafrost presence, soil moisture, tree leaf area index, and biomass over the entire larch-dominated area in eastern Siberia. Projected changes to ecosystem hydrology and larch productivity at this geographical scale were consistent with those from site-level simulation. This study reduces the uncertainty surrounding the impact of current climate trends on this globally important carbon reservoir, and it demonstrates the need

  18. A new framework to evaluate ecosystem health: a case study in the Wei River basin, China.

    PubMed

    Wu, Wei; Xu, Zongxue; Zhan, Chesheng; Yin, Xuwang; Yu, Songyan

    2015-07-01

    Due to the rapid growth of the population and the development of economies in the Guanzhong district, central China, the river ecosystem is gradually deteriorating, which makes it important to assess the aquatic ecosystem health and take measures to restore the damaged ecosystem. An index of catchment ecosystem health has been developed to assist large-scale management of watersheds by providing an integrated measure of ecosystem health, including aquatic and terrestrial ecosystem. Most researches focus on aquatic ecosystem or terrestrial ecosystem, but little research integrates both of them to assess the catchment ecosystem health. In this paper, we combine these two aspects into catchment ecosystem health. Ecosystem indicators derived from field samples and modeling are identified to integrate into ecosystem health. These included indicators of ecological landscape pattern (based on normalized difference vegetation index (NDVI), vegetation cover, dominance index, Shannon's diversity index, Shannon's evenness index, and fragmentation index), hydrology regime (based on 33 hydrological parameters), physical form condition (based on substrate, habitat complexity, velocity/depth regimes, bank stability, channel alteration), water quality (based on electrical conductivity (Cond), dissolved oxygen (DO), NH3_N, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand-permanganate (CODMn)), and biological quality (based on fish abundance). The index of ecosystem health is applied in the Guanzhong district, and the ecosystem health was fair. The ecosystem health in the upstream to Linjiacun (U-L) and Linjiacun to Weijiabao (L-W) reaches was in good situation, while that in Weijiabao to Xianyang (W-X), Xianyang-Weijiabao (X-W), and Weijiabao to Tongguan (W-T) reaches was in fair situation. There is a trend that the ecosystem health in the upstream was better than that in the downstream. The ecosystem health assessment is expected to play a key role in future

  19. Changes in dissolved organic carbon and total dissolved nitrogen fluxes across subtropical forest ecosystems at different successional stages

    NASA Astrophysics Data System (ADS)

    Yan, Junhua; Li, Kun; Wang, Wantong; Zhang, Deqiang; Zhou, Guoyi

    2015-05-01

    Lateral transports of carbon and nitrogen are important processes linking terrestrial ecosystems and aquatic systems. Most previous studies made in temperate forests found that fluxes of carbon and nitrogen by runoff water varied in different forests, but few studies have been made in subtropical forests. This study was to investigate dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) fluxes at the catchment scale along a subtropical forest succession gradient from pine forest (pioneer) to coniferous and broadleaved mixed forest (transitional) to broadleaved forest (mature). Our results showed that DOC concentration significantly decreased (p<0.001) while TDN concentration significantly increased (p<0.001) in runoff water from pioneer to mature forests, which in turn resulted in a decrease in DOC flux and an increase in TDN flux, as mean annual runoff did not vary significantly among three succession forest catchments. The mean (±standard deviation) annual DOC flux was 118.1±43.6, 88.3±16.7 and 77.2±11.7 kg ha-1 yr-1for pioneer, transitional and mature forest catchments, respectively; and the mean annual TDN flux was 9.9 ±2.7, 18.2±3.0 and 21.2 ±4.5 kg ha-1 yr-1for pioneer, transitional and mature forest catchments, respectively. The mature forest reduced DOC flux by increased soil chemical adsorption and physical protection. An increase in TDN flux from pioneer to mature forests was consistent with the previous finding that mature forest was nitrogen saturated while pioneer forest was nitrogen limited. Therefore large-scale conversion of pioneer forests to transitional or mature forests in subtropical China will reduce DOC concentration and increase TDN concentration in the down-stream water, which may have significant impact on its water quality and aquatic biological activities.

  20. Scaling up from traits to communities to ecosystems across broad climate gradients: Testing Metabolic Scaling Theories predictions for forests

    NASA Astrophysics Data System (ADS)

    Enquist, B. J.; Michaletz, S. T.; Buzzard, V.

    2015-12-01

    Key insights in global ecology will come from mechanistically linking pattern and process across scales. Macrosystems ecology specifically attempts to link ecological processes across spatiotemporal scales. The goal s to link the processing of energy and nutrients from cells all the way ecosystems and to understand how shifting climate influences ecosystem processes. Using new data collected from NSF funded Macrosystems project we report on new findings from forests sites across a broad temperature gradient. Our study sites span tropical, temperate, and high elevation forests we assess several key predictions and assumptions of Metabolic Scaling Theory (MST) as well as several other competing hypotheses for the role of climate, light, and plant traits on influencing forest demography and forest ecosystems. Specifically, we assess the importance of plant size, light limitation, size structure, and various climatic factors on forest growth, demography, and ecosystem functioning. We provide some of the first systematic tests of several key predictions from MST. We show that MST predictions are largely upheld and that new insights from assessing theories predictions yields new observations and findings that help modify and extend MST's predictions and applicability. We discuss how theory is critically needed to further our understanding of how to scale pattern and process in ecology - from traits to ecosystems - in order to develop a more predictive global change biology.

  1. Estimation of forest structure parameters in tropical dry forest ecosystems integrating MISR and MODIS image

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando

    Tropical woodland is the most widespread vegetation type in Africa and are considered among the most sensitive ecosystems to future climate change scenarios and land use changes. African tropical woodlands are spatial and temporally very dynamic. Their ecosystem processes produce subtle changes of land surfaces that are usually difficult to monitor with remote sensing technologies at medium spatial resolution. This research explores the combination of spectral, temporal and angular remote sensing domains at medium spatial resolution for an improved characterization of land surfaces in African tropical woodlands. Several information extraction schemes for land cover mapping at medium spatial resolution multitemporal MODIS data have been evaluated. These approaches use a limited number of satellite images and take advantage of the seasonal patterns of the vegetation for classification purposes. Their simplicity allows the consistent repetition of land cover assessments, which constitutes a departure from static towards a more dynamic representation of land surfaces. This represents a significant advantage over land cover information from global products and from high resolution sensors. The inclusion of multiangular remote sensing data takes advantage of the anisotropic reflectance of land surfaces. The relationship between MODIS and MISR data has been analyzed and simple and multiple ordinary least square regressions and artificial neural networks were applied for the estimation of tree densities. MISR multiangular data prove to be crucial for the estimation of continuous tree densities in spatially heterogeneous vegetation canopies. Furthermore, the superior performance of non-linear statistical models over linear models suggests the convenience of these models for the estimation of vegetation variables in heterogeneous canopies. Departing from purely empirical modeling frameworks, the potential of multiangular remote sensing for the extraction of subpixel canopy

  2. [Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region].

    PubMed

    Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan

    2016-02-01

    The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (P<0.05). However, to air and soil moisture, Re and GEP had different responses, that was, GEP was more vulnerable by the decrease of the soil moisture compared with Re. Besides, the raising of saturation vapour pressure promoted the Re modestly but inhibited the GEP, which was supposed to be the main reason for NEP decrease of bamboo forest ecosystem in Anji, from July to August in 2013. PMID:27396103

  3. Sustainable watersheds: integrating ecosystem services and public health.

    PubMed

    Jordan, Stephen J; Benson, William H

    2015-01-01

    Sustainable management of aquatic ecosystems is a worldwide priority; the integrity of these systems depends, in turn, on the integrity of the watersheds (catchments) in which they are embedded. In this article, we present the concepts, background, and scientific foundations for assessing, both nationally and at finer scales, the relationships between ecosystem services, human health, and socioeconomic values in the context of water quality, water quantity, landscapes, the condition of watersheds, and the connectivity of waters, from headwaters to estuaries and the coastal ocean. These assessments will be a foundation for what we have termed "watershed epidemiology," through which the connections between ecosystems and human health can be explored over broad spatial and temporal scales. Understanding and communicating these relationships should lead to greater awareness of the roles watersheds play in human well-being, and hence to better management and stewardship of water resources. The U.S. Environmental Protection Agency is developing the research, models, and planning tools to support operational national assessments of watershed sustainability, building upon ongoing assessments of aquatic resources in streams, rivers, lakes, wetlands and estuaries. PMID:25987844

  4. Sustainable Watersheds: Integrating Ecosystem Services and Public Health

    PubMed Central

    Jordan, Stephen J; Benson, William H

    2015-01-01

    Sustainable management of aquatic ecosystems is a worldwide priority; the integrity of these systems depends, in turn, on the integrity of the watersheds (catchments) in which they are embedded. In this article, we present the concepts, background, and scientific foundations for assessing, both nationally and at finer scales, the relationships between ecosystem services, human health, and socioeconomic values in the context of water quality, water quantity, landscapes, the condition of watersheds, and the connectivity of waters, from headwaters to estuaries and the coastal ocean. These assessments will be a foundation for what we have termed “watershed epidemiology,” through which the connections between ecosystems and human health can be explored over broad spatial and temporal scales. Understanding and communicating these relationships should lead to greater awareness of the roles watersheds play in human well-being, and hence to better management and stewardship of water resources. The U.S. Environmental Protection Agency is developing the research, models, and planning tools to support operational national assessments of watershed sustainability, building upon ongoing assessments of aquatic resources in streams, rivers, lakes, wetlands and estuaries. PMID:25987844

  5. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    NASA Astrophysics Data System (ADS)

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (< 1 km) where animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring

  6. Live and Dead Root Biomass in Alaskan Tundra and Boreal Forest Ecosystems.

    NASA Astrophysics Data System (ADS)

    McCulloch, L. A.; Loranty, M. M.; Natali, S.; Kholodov, A. L.

    2015-12-01

    High-latitude ecosystems are important sinks, as well as potentially large sources of carbon as the climate continues to change. Belowground biomass of vegetation can act as both a sink and source of carbon; with live root biomass acting as a sink of carbon stores, and dead root biomass acting as a source of carbon to the atmosphere. There is significant literature citing the large ratio of belowground to aboveground biomass in tundra ecosystems, yet understanding of allocation in forested regions of the artic is less understood. Arctic vegetation is investing more resources and energy into belowground biomass relative to aboveground biomass compared to other ecosystems. However, permafrost ecosystems have low decomposition rates as a result of their cold and saturated soils. This allows for the accumulation of a thick organic layer mainly composed of decomposing belowground biomass. Fine roots are of particular importance because their rapid turnover rates makes them important contributions to soil carbon pools. To quantify the ratio of dead to live roots in tundra and boreal forest ecosystems, soils were collected along a latitudinal gradient throughout Interior Alaska, the Arctic North Slope and Coastal Western Alaska. Several sites located in close proximity were chosen to control for geological and climatic differences among sites, allowing differences to be attributed to the proximal ecosystem. Soil samples were washed, sieved and the roots were sorted into the four categories, including fine-live, fine-dead, coarse-live, and coarse-dead. Classification of these roots followed well established protocols based on visual and physical cues with coarse roots being greater than 2mm. Dead to live ratios of root biomass varied from 4.91 to 45.98, averaging at 14.29 +/- 11.39. Belowground allocation of plant biomass and associated resources may not be significantly larger than aboveground allocation because the majority of the belowground biomass is dead and non

  7. Water, ecology and health: ecosystems as settings for promoting health and sustainability.

    PubMed

    Parkes, Margot W; Horwitz, Pierre

    2009-03-01

    Despite the proposed ecological and systems-based perspectives of the settings-based approach to health promotion, most initiatives have tended to overlook the fundamental nature of ecosystems. This paper responds to this oversight by proposing an explicit re-integration of ecosystems within the healthy settings approach. We make this case by focusing on water as an integrating unit of analysis. Water, on which all life depends, is not only an integral consideration for the existing healthy settings (schools, hospitals, workplaces) but also highlights the ecosystem context of health and sustainability. A focus on catchments (also know as watersheds and river basins) exemplifies the scaled and upstream/downstream nature of ecosystems and draws into sharp focus the cross-sectoral and transdisciplinary context of the social and environmental determinants of health. We position this work in relation to the converging agendas of health promotion and ecosystem management at the local, regional and global scales--and draw on evidence from international initiatives as diverse as the WHO Commission on Social Determinants of Health, and the Millennium Ecosystem Assessment. Using water as a vehicle for understanding the systemic context for human wellbeing, health promotion and disease prevention draws inevitable attention to key challenges of scale, intersectoral governance and the complementary themes of promoting resilience and preventing vulnerability. We conclude by highlighting the importance of building individual and institutional capacity for this kind of integration--equipping a new generation of researchers, practitioners and decision-makers to be conversant with the language of ecosystems, capable of systemic thought and focused on settings that can promote both health and sustainability. PMID:19171669

  8. Nitrogen fixation in moss-cyanobacteria associations in boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Rousk, Kathrin

    2014-05-01

    Nitrogen (N) limits the productivity in boreal forests. A major source of 'new' N for these forests is the fixation of atmospheric N2 preformed by cyanobacteria living in association with mosses and lichens. Mosses are a dominant feature in boreal forests, accounting for 60-90% of the groundcover in pristine boreal forests and have been found to be colonized by several N2-fixing cyanobacteria. Given the ubiquitous nature of mosses in these forests, their association with N2-fixing cyanobacteria could characterize the N cycle in these ecosystems. For instance, the feather moss Pleurozium schreberi with its associated cyanobacteria fixes 1-2 kg N ha-1 yr-1, which equals the amount that enters northern boreal forests via atmospheric N deposition. Nitrogen fixation in moss-cyanobacteria associations is affected by numerous abiotic factors that could modulate the N input to the system via the moss-cyanobacteria pathway. For instance, high N availability and dry conditions inhibit N2 fixation in moss-cyanobacteria associations while phosphorus availability and moist conditions promote N2 fixation. Further, N2fixation in moss-cyanobacteria associations is resilient, and can recover from increased N inputs (12 - 15 kg N ha-1 yr-1) as well as from drought stress (moss < 9% field moisture) upon removal of these stressors. Nevertheless, the question as to how important the N2 fixing capability of moss-cyanobacteria associations is as a source of 'new' N for the N cycle in boreal forests remains. For instance, mosses can retain acquired N over long periods of time (> 1 year) and the transfer of N from moss to soil in the short-term has so far only been shown to occur after disturbances (e.g. drying rewetting events, fires). I will present results from laboratory as well as field experiments aimed to elucidate the role moss-cyanobacteria associations play for the N cycle in boreal forests and how abiotic factors control the fixation of atmospheric N2.

  9. Net Ecosystem Carbon Exchange and Evapotranspiration After the Felling of an Eucalyptus Forest

    NASA Astrophysics Data System (ADS)

    Pita, Gabriel; Rodrigues, Abel; Mateus, Antonio; Pereira, Santos J.

    2011-01-01

    Espirra site (38o38’N,8o36’W) is located in a 300ha Eucalyptus globulus plantation, with a Mediterranean type climate with a mean annual precipitation of 709mm and a mean annual air temperature of 15.9oC. The plantation was established in 1986 with about 1100 trees ha-1. A 33m observation tower was installed in 2002, with an eddy covariance system. A harvesting of trees was made at the end of the 2nd rotation period, from November to December 2006. During the last four years of the second rotation the coppice were 20m height. Harvesting was planned in order to initiate a new 12 year productive cycle. In October 2008 a first thinning was made in three fourths of emerging stems from stumps. At this stage the forest trees had a mean height of 6m. During the period of analyses the total annual precipitation has varied between a minimum of 248mmYr-1 (2005) to a maximum of 796mm Yr-1 (2007), pattern typical of a Mediterranean climate. The diminution of precipitation (and also how it is distributed along the year) affects the forest uptake of Carbon .The GPP and the TER show lower values in dry years, both in the adult forest as in the young one. The GPP of the growing eucalyptus has been affected by the dry year but also by the thinning that took place in Oct 2008. The Ecosystem total respiration shows high values after the felling ( the same order of magnitude as the forest before the felling) due to the leaves and branches that were left over the soil after the harvesting. Three years after the felling the GPP of the young forest is 61% the value of the adult forest (mean value, excluding the dry year). The seasonal pattern of TER is similar before and after the felling, but in the young forest the GPP is lower and the NEE becomes positive in winter time. In an annual base the growing eucalyptus forest only in the first year after felling was a source of carbon.

  10. Effects and Feedbacks of Windthrow/breaks in Boreal Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Panferov, O.; Sogachev, A.; Radler, K.; Oltchev, A.; Gravenhorst, G.

    2008-12-01

    The increased frequency of severe storms (Leckebusch et al., 2007) as a result of ongoing climate change, results in a wide area damage events within boreal forest ecosystems. The damage occurs at exposed forest edges as well as inside forest stands creating the gaps. Once a windthrow/break gap occurs, it results in changes of surface albedo and microclimatological conditions and in increasing wind stress on remaining trees around the gap which in turn increase the risk of further wind damage. The self-induced growth of windthrow gap provides other positive as well as negative feedbacks to climate forcing at different spatial and temporal scales as shown in Vygodskaya et al., 2007, e.g. an increase of CO2 efflux (climate warming) and an increase of surface albedo (climate cooling). The present study characterizes the spatial variation of wind load and the changes in radiative regime (surface albedo) within the damaged forest stand. For description of wind field and load on trees the atmospheric boundary-layer two-equation closure model SCADIS based on transport equations for turbulent kinetic energy (E) and specific dissipation (omega) (E-omega model), which accounts for the flow dynamics within a plant canopy (Panferov and Sogachev, 2008; Sogachev and Panferov, 2006) was used. The radiative regime within the damaged forest is described by means of a three-dimensional radiation transfer model SPM3D (Panferov et al., 2005). A series of numerical experiments with circular and rectangular forest gaps with sizes from 3 to 75 tree heights, h, have been carried out for a modelled boreal forest. To evaluate the changes produced by gaps relatively to undisturbed forest all characteristics were normalized by their values for the latter. The results of the study show that the magnitude of wind load on trees surrounding the newly created forest gaps increases with gap size and is app. 7 times higher than the load on trees in an undisturbed forest. The gust component of wind

  11. Characterization of Forest Ecosystems by combined Radiative Transfer Modeling for Imaging Spectrometer and LiDAR

    NASA Astrophysics Data System (ADS)

    Koetz, B.; Sun, G.; Morsdorf, F.; Rubio, J.; Kimes, D.; Ranson, J.

    2009-04-01

    This research was motivated by the increased information dimensionality provided by current Earth Observation systems measuring the complex and dynamic medium of the vegetated surface of the Earth. Advanced and reliable algorithms that fully exploit this enhanced Earth Observation information are needed to deliver consistent data sets of the Earth vegetation condition describing its spatial distribution and change over time. Spectral observation provided by imaging spectrometers and the waveform from large-footprint LiDAR are now available from space for forest ecosystem studies. The imaging spectrometer data contains information about the biochemical composition of the canopy foliage, and is widely used to estimate biophysical canopy parameters such as LAI and fractional cover. LiDAR responds to the vertical distribution of scatters and permits inferences about the plant structures required to supply water and mechanical support to those surfaces. Various canopy height indices derived from LiDAR waveform have been successfully used to infer forest above-ground biomass and the characterization of canopy structure. The structure parameters derived from LiDAR data can improve the accuracy and robustness of canopy parameter retrieval from imaging spectrometer by reducing uncertainties related to the canopy structure. The specific information content, inherent to the observations of imaging spectrometry and LIDAR, assesses thus different but complementary characteristics of the complex vegetation canopy. The combination of these two information dimensions offers a unique and reliable canopy characterization including information relevant to different aspects of the biochemical and biophysical properties and thus understanding of processes within forest ecosystems. A comprehensive canopy characterization of a forest ecosystem is derived from the combined remote sensing signal of imaging spectrometry and large footprint LIDAR. The inversion of two linked physically based

  12. Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age

    NASA Astrophysics Data System (ADS)

    Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.

    2013-12-01

    The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and

  13. Burrowing mayflies (Hexagenia) as indicators of ecosystem health

    USGS Publications Warehouse

    Edsall, Thomas A.

    2001-01-01

    Three State of the Lakes Ecosystem Conferences have been held since 1996 to encourage the development of Great Lakes indicators of ecosystem health for use in reporting on progress in restoring and maintaining the chemical, physical and biological integrity of the Great Lakes ecosystem. Here we report on the development of an indicator based on burrowing mayflies, Hexagenia (Ephemeroptera: Ephemeridae), using production and biomass as the indicator metrics. Burrowing mayflies were selected because they (1) were historically abundant in unpolluted, soft-bottomed mesotrophic habitats throughout the Great Lakes, (2) are intolerant of and were extirpated by pollution in most of those habitats during the 1940s to 1950s, (3) have shown the ability to recover in one of those habitats following pollution abatement, (4) are ecologically important as bioturbators of lakebed sediments and as trophic integrators that link detrital energy resources directly to fishes that feed preferentially on them, and (5) have highly visible mating flights, which carry the message directly to an informed public that the source water body is healthy. In addition, their annual production can be estimated from their mean annual biomass by the size-frequency method. Productivity and biomass can also be estimated with a 'cohort-direct' method, using the biomass of mature nymphs collected in May or early June from the cohort that is about to emerge as subimagos in late June or early July. Although both the size-frequency and cohort-direct methods provide reliable estimates of productivity and biomass, the latter method greatly reduces sample collection and processing effort and thus makes it feasible to use Hexagenia as an indicator of ecosystem health in surveys requiring the collection of large numbers of samples.

  14. Primates as Predictors of Mammal Community Diversity in the Forest Ecosystems of Madagascar

    PubMed Central

    Muldoon, Kathleen M.; Goodman, Steven M.

    2015-01-01

    The geographic distribution of species is the typical metric for identifying priority areas for conservation. Since most biodiversity remains poorly studied, a subset of charismatic species, such as primates, often stand as surrogates for total biodiversity. A central question is therefore, how effectively do primates predict the pooled species richness of other mammalian taxa? We used lemurs as indicator species to predict total non-primate mammal community richness in the forest ecosystems of Madagascar. We combine environmental and species occurrence data to ascertain the extent to which primate diversity can predict (1) non-primate mammal α-diversity (species richness), (2) non-primate complementarity, and (3) non-primate β-diversity (species turnover). Our results indicate that primates are effective predictors of non-primate mammal community diversity in the forest ecosystems of Madagascar after controlling for habitat. When individual orders of mammals are considered, lemurs effectively predict the species richness of carnivorans and rodents (but not afrosoricids), complementarity of rodents (but not carnivorans or afrosoricids), and all individual components of β-diversity. We conclude that lemurs effectively predict total non-primate community richness. However, surrogate species alone cannot achieve complete representation of biodiversity. PMID:26334525

  15. Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) ecosystems.

    PubMed

    Yildiz, Oktay; Esen, Derya; Sarginci, Murat; Toprak, Bulent

    2010-01-01

    Fire is a long-standing and poorly understood component of the Mediterranean forestlands in Turkey. Fire can alter plant composition, destroy biomass, alter soil physical and chemical properties and reduce soil nutrient pools. However fire can also promote productivity of certain ecosystems by mineralizing soil nutrients and promoting fast growing nitrogen fixing plant species. Fire effects on soils and ecosystems in Turkey and Mediterranean regions are not well understood. This study uses a retrospective space-for-time substitution to study soil macro-nutrient changes on sites which were burned at different times during the last 8 years. The study sites are in the Fethiye Forest Management Directorate in the western Mediterranean Sea region of Turkey. Our samples show 40% less Soil C, and cation exchange capacity (CEC) at 0-20 cm soil depth two weeks after the fire. Soil C and CEC appear to recover to pre-fire level in one year. Concentrations of Mg were significantly lower on new-burn sites, but returned to pre-fire levels in one year. Total soil N concentrations one and two years after fire were 90% higher than other sites, and total P was 9 times higher on new-burn site than averages from other sites. Some implications of these results for forest managers are discussed. PMID:20648809

  16. An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China.

    PubMed

    Yang, Zhanbiao; Jin, Hongxi; Wang, Gang

    2010-05-01

    Using ecosystem attributes identified by the Society of Ecological Restoration International, we assessed three restoration projects in the loess plateau, northwestern China, including planting Larix principis-rupprechtii (LS) and Pinus tabulaeformis (PS) on shrubland, and planting L. principis-rupprechtii on open forest land (LO). The reestablishment of native species in LS and PS was poorer than LO because of the excessive stand density. Species diversity, seedling number, and seedling diversity were significantly higher in LO than in LS and PS. Soil nutrient was also significantly higher in the LO treatment. The vegetation composition, species diversity, and soil nutrient in LO, however, were more similar to these in the reference. Our results indicate that planting L. principis-rupprechtii on open forest land had accelerated the succession of the ecosystem for approximately 30 years. But the poor natural regeneration of L. principis-rupprechtii suggests that post-planting activities in LO are required after timber harvesting or the natural mortality of the L. principis-rupprechtii. Management operation such as selective thinning will be required in LS and PS to promote the true restoration of native species diversity in the future. PMID:19373438

  17. A Study of Effects of Acid Deposition on Pine Forest Ecosystem in Southwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Li, F.; Lv, Z.; Song, W.; Yang, S.

    2013-12-01

    We used a long-term soil acidification model (LTSAM) and a terrestrial biogeochemical model (CENTURY) coupled to simulate the effects of acid deposition on pine forest ecosystem in southwestern China, based on indoor experiment results of aluminum toxicity to individual plant growth. The results of indoor aluminum experiments show that high aluminum concentration may restrict the plant growth and the acidic condition may aggravate it. The behavior of restriction of plant growth includes decreases of pine seedling biomass, root elongation and the sorption of soil cations (e.g. Ca2+, Mg2+, Na+ and K+). The model simulation results about soil chemistry show that, as acid deposition increases more, the pH value decreases faster, the soil aluminum ion concentration increase more rapidly, and the nutrition ions in soil solution decrease more quickly. The increased acid deposition also has negative impacts on the forest ecosystem according to the biogeochemical model simulation, for example, decreases of vegetation biomass, net primary productivity (NPP) and net CO2 uptake. Furthermore, the decrease of plant biomass will result in the decrease of the soil organic carbon content for the limited decomposition material supply.

  18. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    USGS Publications Warehouse

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  19. Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest

    NASA Astrophysics Data System (ADS)

    Taipale, R.; Kajos, M. K.; Patokoski, J.; Rantala, P.; Ruuskanen, T. M.; Rinne, J.

    2010-11-01

    Monoterpene emissions from Scots pine have traditionally been assumed to originate as evaporation from specialized storage pools. More recently, the significance of de novo emissions, originating directly from monoterpene biosynthesis, has been recognized. To study the role of biosynthesis in the ecosystem scale, we measured monoterpene emissions from a Scots pine dominated forest in southern Finland using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The interpretation of the measurements was based on a hybrid emission algorithm describing both de novo and pool emissions. During the measurement period May-August 2007, the monthly medians of daytime emissions were 170, 280, 180, and 180 μg m-2 h-1. The emission potential for both de novo and pool emissions exhibited a decreasing summertime trend. The ratio of the de novo emission potential to the total emission potential varied between 30% and 46%. Although the monthly changes were not significant, the ratio always differed statistically from zero, i.e., the role of de novo biosynthesis was evident. The hybrid approach showed promising potential for the improvement of the ecosystem scale emission modelling. Given this feature and the significant role of biosynthesis, we recommend incorporating both de novo and pool emissions into the monoterpene emission algorithms for Scots pine dominated forests.

  20. Digging deeper: Fine root responses to rising atmospheric [CO2] in forested ecosystems

    SciTech Connect

    Iversen, Colleen M

    2010-01-01

    Experimental evidence from a diverse set of forested ecosystems indicates that CO2 enrichment may lead to deeper rooting distributions. While the causes of greater root production at deeper soil depths under elevated CO2 concentration ([CO2]) require further investigation, altered rooting distributions are expected to affect important ecosystem processes. The depth at which fine roots are produced may influence root chemistry, physiological function, and mycorrhizal infection, leading to altered nitrogen (N) uptake rates and slower turnover. Also, soil processes such as microbial decomposition are slowed at depth in the soil, potentially affecting the rate at which root detritus becomes incorporated into soil organic matter. Deeper rooting distributions under elevated [CO2] provide exciting opportunities to use novel sensors and chemical analyses throughout the soil profile to track the effects of root proliferation on carbon (C) and N cycling. Models do not currently incorporate information on root turnover and C and N cycling at depth in the soil, and modification is necessary to accurately represent processes associated with altered rooting depth distributions. Progress in understanding and modeling the interface between deeper rooting distributions under elevated [CO2] and soil C and N cycling will be critical in projecting the sustainability of forest responses to rising atmospheric [CO2].

  1. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability

  2. Effects of increased biomass removal on the biogeochemistry of two Norwegian forest ecosystems

    NASA Astrophysics Data System (ADS)

    Lange, H.; Clarke, N.; Kjønaas, O. J.; Aas, W.; Andreassen, K.; Børja, I.; Bratli, H.; Eich-Greatorex, S.; Eldhuset, T.; Holt-Hanssen, K.

    2009-04-01

    Increased removal of biomass from forested ecosystems for use as an alternative source of energy is an option in several countries. E.g., it is planned to double the use of bioenergy from all sources until 2020 in Norway. A large fraction of this increase is coming from forest resources, e.g. by removing harvest residues like branches and tops. This removal will reduce the supply of nutrients and organic matter to the forest soil, and may in the longer term increase the risk for future nutrient imbalance, soil erosion on steep slopes, reduced forest production, and changes in biodiversity and ground vegetation species composition. However, field experiments so far have found contrasting results in this respect. Soil effects of increased biomass removal will be closely related to soil organic matter (SOM) dynamics, litter quality, and turnover rates. Harvest intensity may affect the decomposition of existing SOM as well as the build-up of new SOM from litter and forest residues, by changing factors like soil temperature and moisture as well as amount and type of litter input. Changes in input of litter with different nutrient concentrations and decomposition patterns along with changes in SOM decomposition will affect the total storage of carbon, nitrogen and other vital nutrients in the soil. In the context of a Norwegian research project started in 2009, we will quantify how different harvesting regimes lead to different C addition to soil, and determine which factors have the greatest effect on decomposition of SOM under different environmental conditions. Two Norway spruce forest ecosystems will be investigated, one in eastern and one in western Norway, representing different climatic conditions and landscape types. At each location, two treatment regimes will be tested: (1) conventional harvesting (CH), with residues left on-site, and (2) aboveground whole-tree harvest (WTH), with branches, needles, and tops removed. Input of different forest residues will be

  3. Diversified forest ecosystems can grow on industrial waste residues: evidence from a multiproxy approach

    NASA Astrophysics Data System (ADS)

    Cortet, Jerome; Schwartz, Christophe; Echevarria, Guillaume; Nahmani, Johanne; Masfaraud, Jean-François; Ouvrard, Stéphanie; Sirguey, Catherine; Watteau, Francoise; Morel, Jean Louis

    2010-05-01

    Smelter activities in the Lorraine region (North-East France) have lead to the creation of flotation ponds that were used to eliminate wastes, mainly slag. After industrial decline, some of these flotation ponds were colonized by vegetation and evolved to forest ecosystems. One of these old flotation ponds, situated in Pompey, close to Nancy (North-East France), was studied by collecting information on several physico-chemical and biological indicators. The main objective was to understand the biological functioning of this system, whose soil can be classified as a pure Technosol, characterised by a very complex stratified profile created by successive slag deposits. Soil is characterized by its apparent heterogeneity, but also its high agronomic fertility and particularly high metal contents. Holorganic horizons can vary from one to several centimetres. Macrofauna is characterized by a very low abundance of earthworms and a dominance of millipedes. Furthermore, whereas earthworms do accumulate metals, this is not the case for millipedes. Mesofauna is typical of a temperate forest system, dominated by Collembola. Soil organo-mineral associations showed a high proportion of faecal pellets from Oribatid mites, Isopods and Diplopods. Furthermore, Mn, which is highly associated to metals (especially Zn and Pb) seems to play an important role in organo-mineral associations, including bacteria. An organic fraction is also directly associated to Calcium, Pb and Cu. Vegetation presents a high diversity, with more than 70 species, with very low metal transfer to plants. Results from soil respirometry are typical from temperate forest ecosystems. All this information has been combined to propose a model for the biochemical functioning of a such Technosol.

  4. Sensitivity of Southwestern US Mountain Ecosystems to Climate Variability: Interactions Among Forest Dieback, Fire, and Erosion

    NASA Astrophysics Data System (ADS)

    Allen, C. D.

    2004-12-01

    Millions of hectares in the upland landscapes of the Southwestern United States have been affected by forest dieback and severe fire activity since the late 1990s, a period of ongoing severe drought and unusual warmth. Climate regulates physiological plant stress that can directly cause vegetation mortality, and also influences associated insect outbreak dynamics. Climate also interacts with fuel conditions to drive regional fire activity. Current and historic patterns of forest dieback, fire activity, and erosion are described across landscape gradients in Southwestern mountains, particularly the Jemez Mountains of New Mexico. Methods used include inventory and dating of live and dead woody plants to assess demographic changes through time, long-term (since 1991) measurements of ponderosa pine tree-growth at three sites with dendrometer bands, monitoring of herbaceous vegetation along 3 km of permanent transects since 1991, aerial photograph analyses of insect outbreaks and forest dieback and fire activity, and hydrological measurements of runoff and erosion. Similarities and differences in vegetation dieback and regional fire activity patterns between the current drought and the 1950s (when regional drought last affected the Southwest) are explained by changes in climatic and vegetation conditions. The current climate-induced vegetation dieback and pulse of regional fire activity have strong feedbacks with various key ecosystem processes, including water budgets and soil erosion. For example, severe drought and fire both markedly reduce the surface cover of live plants and dead plant materials ("litter"), triggering nonlinear increases in erosion rates once the connectivity of bare soil patches exceeds critical threshold values, particularly during high-intensity summer rainfall events that characterize the Southwestern summer "monsoon". These observations highlight the magnitude, rapidity, and complexity of climate-induced disturbance processes, and provide an

  5. Molecular hydrogen uptake by soils in forest, desert, and marsh ecosystems in California

    NASA Astrophysics Data System (ADS)

    Smith-Downey, Nicole V.; Randerson, James T.; Eiler, John M.

    2008-09-01

    The mechanism and environmental controls on soil hydrogen (H2) uptake are not well understood but are essential for understanding the atmospheric H2 budget. Field observations of soil H2 uptake are limited, and here we present the results from a series of measurements in forest, desert, and marsh ecosystems in southern California. We measured soil H2 fluxes using flux chambers from September 2004 to July 2005. Mean H2 flux rates and standard deviations were -7.9 + -4.2, -7.6 + -5.3 and -7.5 + -3.4 nmol m-2 s-1 for the forest, desert, and marsh, respectively (corresponding to deposition velocities of 0.063 + -0.029, 0.051 + -0.036, 0.035 + -0.013 cm s-1). Soil profile measurements showed that H2 mixing ratios were between 3% and 51% of atmospheric levels at 10 cm and that the penetration of H2 into deeper soil layers increased with soil drying. Soil removal experiments in the forest demonstrated that the litter layer did not actively consume H2, the removal of this layer increased uptake by deeper soil layers, and the exposure of subsurface soil layers to ambient atmospheric H2 levels substantially increased their rate of uptake. Similar soil removal experiments at the desert site showed that extremely dry surface soils did not consume H2 and that fluxes at the surface increased when these inactive layers were removed. We present a model of soil H2 fluxes and show that the diffusivity of soils, along with the vertical distribution of layers that actively consume H2 regulate surface fluxes. We found that soil organic matter, CO2 fluxes, and ecosystem type were not strong controllers of H2 uptake. Our experiments highlight H2 diffusion into soils as an important limit on fluxes and that minimum moisture level is needed to initiate microbial uptake.

  6. Ottawa's urban forest: A geospatial approach to data collection for the UFORE/i-Tree Eco ecosystem services valuation model

    NASA Astrophysics Data System (ADS)

    Palmer, Michael D.

    The i-Tree Eco model, developed by the U.S. Forest Service, is commonly used to estimate the value of the urban forest and the ecosystem services trees provide. The model relies on field-based measurements to estimate ecosystem service values. However, the methods for collecting the field data required for the model can be extensive and costly for large areas, and data collection can thus be a barrier to implementing the model for many cities. This study investigated the use of geospatial technologies as a means to collect urban forest structure measurements within the City of Ottawa, Ontario. Results show that geospatial data collection methods can serve as a proxy for urban forest structure parameters required by i-Tree Eco. Valuations using the geospatial approach are shown to be less accurate than those developed from field-based data, but significantly less expensive. Planners must weigh the limitations of either approach when planning assessment projects.

  7. Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe

    PubMed Central

    Purahong, Witoon; Schloter, Michael; Pecyna, Marek J.; Kapturska, Danuta; Däumlich, Veronika; Mital, Sanchit; Buscot, François; Hofrichter, Martin; Gutknecht, Jessica L. M.; Krüger, Dirk

    2014-01-01

    The widespread paradigm in ecology that community structure determines function has recently been challenged by the high complexity of microbial communities. Here, we investigate the patterns of and connections between microbial community structure and microbially-mediated ecological function across different forest management practices and temporal changes in leaf litter across beech forest ecosystems in Central Europe. Our results clearly indicate distinct pattern of microbial community structure in response to forest management and time. However, those patterns were not reflected when potential enzymatic activities of microbes were measured. We postulate that in our forest ecosystems, a disconnect between microbial community structure and function may be present due to differences between the drivers of microbial growth and those of microbial function. PMID:25388562

  8. Disrupted seasonal biology impacts health, food security and ecosystems

    PubMed Central

    Stevenson, T. J.; Visser, M. E.; Arnold, W.; Barrett, P.; Biello, S.; Dawson, A.; Denlinger, D. L.; Dominoni, D.; Ebling, F. J.; Elton, S.; Evans, N.; Ferguson, H. M.; Foster, R. G.; Hau, M.; Haydon, D. T.; Hazlerigg, D. G.; Heideman, P.; Hopcraft, J. G. C.; Jonsson, N. N.; Kronfeld-Schor, N.; Kumar, V.; Lincoln, G. A.; MacLeod, R.; Martin, S. A. M.; Martinez-Bakker, M.; Nelson, R. J.; Reed, T.; Robinson, J. E.; Rock, D.; Schwartz, W. J.; Steffan-Dewenter, I.; Tauber, E.; Thackeray, S. J.; Umstatter, C.; Yoshimura, T.; Helm, B.

    2015-01-01

    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with potential consequences for industries relating to health, ecosystems and food security. Disconcertingly, human lifestyles under artificial conditions of eternal summer provide the most extreme example for disconnect from natural seasons, making humans vulnerable to increased morbidity and mortality. In this review, we introduce scenarios of seasonal disruption, highlight key aspects of seasonal biology and summarize from biomedical, anthropological, veterinary, agricultural and environmental perspectives the recent evidence for seasonal desynchronization between environmental factors and internal rhythms. Because annual rhythms are pervasive across biological systems, they provide a common framework for trans-disciplinary research. PMID:26468242

  9. Disrupted seasonal biology impacts health, food security and ecosystems.

    PubMed

    Stevenson, T J; Visser, M E; Arnold, W; Barrett, P; Biello, S; Dawson, A; Denlinger, D L; Dominoni, D; Ebling, F J; Elton, S; Evans, N; Ferguson, H M; Foster, R G; Hau, M; Haydon, D T; Hazlerigg, D G; Heideman, P; Hopcraft, J G C; Jonsson, N N; Kronfeld-Schor, N; Kumar, V; Lincoln, G A; MacLeod, R; Martin, S A M; Martinez-Bakker, M; Nelson, R J; Reed, T; Robinson, J E; Rock, D; Schwartz, W J; Steffan-Dewenter, I; Tauber, E; Thackeray, S J; Umstatter, C; Yoshimura, T; Helm, B

    2015-10-22

    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with