Science.gov

Sample records for forest fires detected

  1. Early forest fire detection using radio-acoustic sounding system.

    PubMed

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  2. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  3. The technology of forest fire detection based on infrared image

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-guo; Liu, Guo-juan; Wang, Ming-jia; Wang, Suo-jian

    2013-09-01

    According to infrared imaging features of forest fire, we use image processing technology which is conducive to early detection and prevention of forest fires. We use image processing technology based on infrared imaging features of forest fire which is conducive to early detection and prevention of forest fires. In order to the timeliness and accuracy of fire detection, this paper proposes a forest fire detection method based on infrared image technology. We take gray histogram analysis to collected Cruising image. The image which will be detected is segmented by the adaptive dynamic threshold. Then the suspected ignitions are extracted in the image after segmentation. The ignition of forest fire which form image in the infrared image is almost circular. We use the circular degree of suspected ignition as the decision basis of the fire in the infrared image. Through the analysis of position correlation which is the same suspected ignition between adjacent frames, we judge whether there is a fire in the image. In order to verify the effectiveness of the method, we adopt image sequences of forest fire to do experiment. The experimental results show that the proposed algorithm under the conditions of different light conditions and complex backgrounds, which can effectively eliminate distractions and extract the fire target. The accuracy fire detection rate is above 95 percent. All fire can be detected. The method can quickly identify fire flame and high-risk points of early fire. The structure of method is clear and efficient which processing speed is less than 25 frames per second. So it meets the application requirement of real-time processing.

  4. Application of Infrared Scanners to Forest Fire Detection

    NASA Technical Reports Server (NTRS)

    Hirsch, S. N.

    1971-01-01

    The potential of using infrared scanners for the detection of forest fires is discussed. An experiment is described in which infrared and visual detection systems were used jointly to study timber fire detection. Many fires were detected visually but missed by the airborne IR system, and many fires were detected by the IR system but missed visually. Until more is learned about the relationship between heat output and smoke output from latent fires, the relative effectiveness of visual and IR systems cannot be determined. The 1970 tests indicated that IR used in combination with visual detection will result in a more efficient system than visual alone. Even with limited knowledge of the relative effectiveness of the two systems, operational use of a combined system can be used to substantially reduce total firefighting costs.

  5. LIDAR detection of forest fire smoke above Sofia

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivan; Deleva, Atanaska; Stoyanov, Dimitar; Kolev, Nikolay; Kolarov, Georgi

    2015-01-01

    The distribution of aerosol load in the atmosphere due to two forest fires near Sofia (the capital city of Bulgaria) was studied using two aerosol lidars which operated at 510.6 nm and 1064 nm. Experimental data is presented as 2D-heatmaps of the evolution of attenuated backscatter coefficient profiles and mean profile of the aerosol backscatter coefficient, calculated for each lidar observation. Backscatter related Angstrom exponent was used as a criterion in particle size estimation of detected smoke layers. Calculated minimal values at altitudes where the aerosol layer was observed corresponded to predominant fraction of coarse aerosol. Dust-transport forecast maps and calculations of backward trajectories were employed to make conclusions about aerosol's origin. They confirmed the local transport of smoke aerosol over the city and lidar station. DREAM forecast maps predicted neither cloud cover, nor Saharan load in the air above Sofia on the days of measurements. The results of lidar observations are discussed in conjunction with meteorological situation, aiming to better explain the reason for the observed aerosol stratification. The data of regular radio sounding of the atmosphere showed a characteristic behavior with small differences of the values between the air temperature and dew-point temperature profiles at aerosol smoke layer altitude. So the resulting stratification revealed the existence of atmospheric layers with aerosol trapping properties.

  6. Detection of smoke plume for a land-based early forest fire detection system

    NASA Astrophysics Data System (ADS)

    Saghri, John; Jacobs, John; Davenport, Tim; Garges, David

    2015-09-01

    A promising daytime smoke plume detection for a land-based early forest fire detection system is proposed. The visible video imagery from a land-based monitoring camera is processed to detect the smoke which likely rises in an early stage of a forest fire. Unlike the fire core and its surrounding heat which are detected via day/night infrared imaging, the relatively cold smoke plume can only be captured in the visible spectrum of light. The smoke plume is detected via exploitation of its temporal signature. This is accomplished via Principal Component Transformation (PCT) operations on consecutive sequences of visible video frames followed by spatial filtering of one of the resulting low-order Principal Component (PC) images. It is shown that the blue channel of the Red, Green, Blue (RGB) color camera is most effective in detecting the smoke plume. Smoke plume is clearly detected and isolated via simple blurring, thresholding, and median filtering of one of the resulting low-order principle component (PC) images. The robustness of this PCA-based method relative to simple temporal frame differencing and use of color, i.e., visible spectral signature of smoke, are discussed. Various parameters of the system including the required observation time and number of frames to retain for PCT, selection of which low-order PC to use, and types and sizes of the filters applied to the selected PC image to detect and isolate the smoke plume, are discussed.

  7. Forest Fire Mapping

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Fire Logistics Airborne Mapping Equipment (FLAME) system, mounted in a twin-engine and airplane operated by the U.S. Forest Service (USFS) of the U.S. Department of Agriculture (USDA), is an airborne instrument for detecting and pinpointing forest fires that might escape ground detection. The FLAME equipment rack includes the operator interface, a video monitor, the system's control panel and film output. FLAME's fire detection sensor is an infrared line scanner system that identifies fire boundaries. Sensor's information is correlated with the aircraft's position and altitude at the time the infrared imagery is acquired to fix the fire's location on a map. System can be sent to a fire locale anywhere in the U.S. at the request of a regional forester. USFS felt a need for a more advanced system to deliver timely fire information to fire management personnel in the decade of the 1990s. The Jet Propulsion Laboratory (JPL) conducted a study, jointly sponsored by NASA and USDA, on what advanced technologies might be employed to produce an end-to-end thermal infrared fire detection and mapping system. That led to initiation of the Firefly system, currently in development at JPL and targeted for operational service beginning in 1992. Firefly will employ satellite-reference position fixing and provide performance superior to FLAME.

  8. Fire detection system using random forest classification for image sequences of complex background

    NASA Astrophysics Data System (ADS)

    Kim, Onecue; Kang, Dong-Joong

    2013-06-01

    We present a fire alarm system based on image processing that detects fire accidents in various environments. To reduce false alarms that frequently appeared in earlier systems, we combined image features including color, motion, and blinking information. We specifically define the color conditions of fires in hue, saturation and value, and RGB color space. Fire features are represented as intensity variation, color mean and variance, motion, and image differences. Moreover, blinking fire features are modeled by using crossing patches. We propose an algorithm that classifies patches into fire or nonfire areas by using random forest supervised learning. We design an embedded surveillance device made with acrylonitrile butadiene styrene housing for stable fire detection in outdoor environments. The experimental results show that our algorithm works robustly in complex environments and is able to detect fires in real time.

  9. Raman water vapour concentration measurements for reduction of false alarms in forest fire detection

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Malizia, A.; Richetta, M.; Ventura, P.

    2009-09-01

    Forest fires can be the cause of environmental catastrophe, with the natural outcomes of serious ecological and economic damages, together with the possibility to endanger human safety. At the aim to reduce this catastrophe several author have been shown that the Laser light scattering can be uses to reveals the particulate emitted in the smoke. Infact experimental and theoretical investigations have shown that lidar is a powerful tool to detect the tenuous smoke plumes produced by forest fires at an early stage. In early 90's Arbolino and Andreucci have shown the theoretical possibility to detect the particulate emitted in atmosphere from smoke forest fire. Vilar at all have shown experimentally the possibility to measure the density variation in atmosphere due to plume emitted in forest fire event. Gaudio at all. have already shown that it is possible to evaluate water vapor emitted in smoke of vegetable fuel using a CO2 dial system. In this paper a theoretical model to evaluate the capabilities of a lidar system in fire surveillance of wooded areas will be presented. In particular we intend propose a technique to minimizing the false alarm in the detection of forest fire by lidar based on a measurement of second components emitted in a combustion process. Usually to detect a fire alarm a rapid increase of aerosol amount is measured. If the backscattering signal report a peak, the presences of a forest fire will be probable. Our idea to confirm this hypothesis is measure the second components emitted in a forest fire at the aim to minimize the false alarm. The simulated measurements of the humidity amount within the smoke plume will be carried out by means of Raman analysis. Fixing the burning rate of the vegetable-fuels, the maximum range of detection will be evaluated.

  10. [An improved method for forest fire spot detection based on variance between-class].

    PubMed

    Xiao, Xia; Song, Wei-guo; Wang, Yan; Tu, Ran; Liu, Shi-xing; Zhang, Yong-ming

    2010-08-01

    An improved method using variance between-class and smoke plume mask is described. The brightness temperature threshold of potential fire pixels was adjusted to be 305 K. Based on the variance between-class of TIR channel brightness temperature and a smoke plume detection algorithm, the improved algorithm can separate the hot fire spots from the background and seek out the cool fire spots, respectively, with suitable thresholds of variance between-class. This algorithm has been used in the forest fires that happened in Fujian province and Heilongjiang province. Study shows that detection results with the algorithm are more satisfactory. It is adapted in different environments and can be more accurately detected the high-temperature fire spot and the smoder at low temperature. It increases the ability and accuracy to detect fire spots. PMID:20939308

  11. A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification

    PubMed Central

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra

    2009-01-01

    Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533

  12. The Economical Microbolometer-Based Environmental Radiometer Satellite (EMBERSat) Designed for Forest Fire Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Skillman, David R.; Welch, Wayne C.; Spinhirne, James D.; Manizade, Katherine F.; Beecken, Brian P.

    2004-01-01

    Thermal infrared imagery from several satellite instruments, such as the NOAA AVHRR and the NASA MODIS, is presently used to detect and map forest fires. But while these radiometers can identify fires they are designed and optimized for cloud detection, providing relatively low spatial resolution and quickly saturating even for small fires. Efforts to detect and monitor forest fires from space would benefit from the development of single-sensor satellites designed specifically for this purpose. With the advent of uncooled thermal detectors, and thus the absence of aggressive cooling, the possibility of developing small satellites for the purpose of fire detection and monitoring becomes practical and cost-effective. Thus is the case with the Economical Microbolometer Based Environmental Radiometer Satellite (EMBERSat) program. The objective of this program is to develop a single, prototype satellite that will provide multiband thermal imagery with a spatial resolution of 250m and a dynamic range of 300-1000K. The thermal imaging payload has flight heritage in the Infrared Spectral Imaging Radiometer that flew aboard mission STS-85 and the spacecraft is a variant of the SimpleSat bus launched from the shuttle Columbia as part of STS-105. The EMBERSat program is a technology demonstration initiative with the eventual goal of providing high-resolution thermal imagery to both the scientific community and the public.

  13. The Economical Microbolometer-Based Environmental Radiometer Satellite (EMBERSAT) Designed for Forest Fire Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Skillman, David R.; Welch, Wayne; Spinhirne, James D.; Manizade, Kathrine F.; Beecken, Brian P.

    2003-01-01

    Thermal infrared imagery from several satellite instruments, such as the NOAA AVHRR and the NASA MODIS, is presently used to detect and map forest fires. But while these radiometers can identify fires they are designed and optimized for cloud detection, providing relatively low spatial resolution and quickly saturating even for small fires. Efforts to detect and monitor forest fires from space would benefit from the development of single-sensor satellites designed specifically for this purpose. With the advent of uncooled thermal detectors, and thus the absence of aggressive cooling, the possibility of developing small satellites for the purpose of fire detection and monitoring becomes practical and cost-effective. Thus is the case with the Economical Microbolometer Based Environmental Radiometer Satellite (EMBERSat) program. The objective of this program is to develop a single, prototype satellite that will provide multiband thermal imagery with a spatial resolution of 250m and a dynamic range of 300-1000K. The thermal imaging payload has flight heritage in the Infrared Spectral Imaging Radiometer that flew aboard mission STS-85 and the spacecraft is a variant of the SimpleSat bus launched from the shuttle Columbia as part of STS-109. The EMBERSat program is a technology demonstration initiative with the eventual goal of providing high-resolution thermal imagery to both the scientific community and the public.

  14. Early forest fire detection using principal component analysis of infrared video

    NASA Astrophysics Data System (ADS)

    Saghri, John A.; Radjabi, Ryan; Jacobs, John T.

    2011-09-01

    A land-based early forest fire detection scheme which exploits the infrared (IR) temporal signature of fire plume is described. Unlike common land-based and/or satellite-based techniques which rely on measurement and discrimination of fire plume directly from its infrared and/or visible reflectance imagery, this scheme is based on exploitation of fire plume temporal signature, i.e., temperature fluctuations over the observation period. The method is simple and relatively inexpensive to implement. The false alarm rate is expected to be lower that of the existing methods. Land-based infrared (IR) cameras are installed in a step-stare-mode configuration in potential fire-prone areas. The sequence of IR video frames from each camera is digitally processed to determine if there is a fire within camera's field of view (FOV). The process involves applying a principal component transformation (PCT) to each nonoverlapping sequence of video frames from the camera to produce a corresponding sequence of temporally-uncorrelated principal component (PC) images. Since pixels that form a fire plume exhibit statistically similar temporal variation (i.e., have a unique temporal signature), PCT conveniently renders the footprint/trace of the fire plume in low-order PC images. The PC image which best reveals the trace of the fire plume is then selected and spatially filtered via simple threshold and median filter operations to remove the background clutter, such as traces of moving tree branches due to wind.

  15. The Relationship of Forest Fires Detected by MODIS and SRTM Derived Topographic Features in Central Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, Jon K.; Kovacs, Katalin; Kharuk, Viatcheslav; Burke, Erin

    2006-01-01

    Fires are a common occurrence in the Siberian boreal forest. The MOD14 Thermal anomalies product of the Terra MODIS Moderate Resolution Spectroradiometer) product set is designed to detect thermal anomalies (i.e. hotspots or fires) on the Earth's surface. Recent field studies showed a dependence of fire occurrence on topography. In this study MODIS thermal anomaly data and SRTM topography data were merged and analyzed to evaluate if forest fires are more likely to occur at certain combinations of elevation, slope and aspect. Using the satellite data over a large area can lead to better understanding how topography and forest fires are related. The study area covers a 2.5 Million krn(exp 2) portion of the Central Siberian southern taiga from 72 deg to 110 deg East and from 50 deg to 60 deg North. About 57% of the study area is forested and 80% of the forest grows between 200 and 1000 m. Forests with pine (Pinus sylvestris), larch (Larix sibirica, L. gmelinii), Siberian pine (Pinus sibirica), spruce (Picea obovata.) and fir (Abies sibirica) cover most of the landscape. Deciduous stands with birch (Betula pendula, B. pubescens) and aspen (Populus tremula) cover the areas of lower elevation in this region. The climate of this area is distinctly continental with long, cold winters and short hot summers. The tree line in this part of the world is around 1500 m in elevation with alpine tundra, snow and ice fields and rock outcrops extending up to over 3800 m. A 500 m resolution landcover map was developed using 2001 MODIS MOD13 Normalized Vegetation Index (NDVI) and Middle Infrared (MIR) products for seven 16-day periods. The classification accuracy was over 87%. The SRTM version 2 data, which is distributed in 1 degree by 1 degree tiles were mosaiced using the ENVI software. In this study, only those MODIS pixels were used that were flagged as "nominal or high confidence fire" by the MODIS fire product team. Using MODIS data from the years 2000 to 2005 along with the

  16. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs)

    PubMed Central

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  17. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).

    PubMed

    Cruz, Henry; Eckert, Martina; Meneses, Juan; Martínez, José-Fernán

    2016-01-01

    This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI), developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs) with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs), with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people's safety. On-going work includes implementation into a commercially available drone. PMID:27322264

  18. Chisholm Forest Fire

    Atmospheric Science Data Center

    2013-04-17

    ... Larger Image A new look at smoke from the Chisholm forest fire, which ignited on May 23, 2001 about 160 kilometers north of ... in detail by M. Fromm and R. Servranckx, "Transport of forest fire smoke above the tropopause by supercell convection", Geophys. Res. ...

  19. Fighting Forest Fires

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Firefly is an airborne system for imaging forest fires. It uses satellite-based navigation for greater positioning accuracy and offers timeliness in fire location data delivery with on board data processing and a direct aircraft-to-fire camp communications link. Developed by Jet Propulsion Laboratory and the USFS, it has an infrared line scanner to identify fire boundaries and an infrared sensor system that can penetrate smoke to image the ground. Firefly is an outgrowth of a previous collaboration that produced FLAME, an airborne fire mapping instrument. Further refinements are anticipated by NASA and the United States Forest Service (USFS).

  20. Airborne forest fire research

    NASA Technical Reports Server (NTRS)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  1. Forest Fire Ecology.

    ERIC Educational Resources Information Center

    Zucca, Carol; And Others

    1995-01-01

    Presents a model that integrates high school science with the needs of the local scientific community. Describes how a high school ecology class conducted scientific research in fire ecology that benefited the students and a state park forest ecologist. (MKR)

  2. Boreal forest fires in 1997 and 1998: satellite detection and transport modelling

    NASA Astrophysics Data System (ADS)

    Spichtinger, N.; Stohl, A.; Damoah, R.; Beirle, S.

    2003-04-01

    Forest fires have strong impact on the composition of trace gases and aerosols both in the troposphere and in the stratosphere. To quantify the influence of boreal forest fires, the fire seasons of 1997 and 1998 are compared. In contrast to 1997, fire activity in 1998 was very strong especially over Canada and Eastern Siberia. Our analysis was done in 3 steps: First, Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI), Global Ozone Monitoring Experiment (GOME) tropospheric NO2 columns, Stratospheric Aerosol and Gas Experiment II (SAGEII) and Polar Ozone and Aerosol Measurement III (POAMIII) aerosol data were inspected to determine biomass burning effects during the seasons 1997 and 1998. Second, transport of forest fire emissions was simulated with the tracer transport model FLEXPART over the whole burning season 1998. Aerosols, CO and NOx tracers were emitted in these simulations from Siberian and Canadian forest fires accord ing to the fire information from ATSR (Along Track Scanning Radiometer) to investigate transport patterns of forest fire emissions. Third, to combine FLEXPART simulation results and satellite data directly, case studies of strong burning events were analysed. These case studies show good agreement of satellite data and the transport model. Data from all platforms display enhanced signals during 1998's burning season.

  3. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    PubMed Central

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  4. The detection and interpretation of fire-disturbed boreal forest ecosystems in Alaska using spaceborne SAR data

    SciTech Connect

    Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F. )

    1993-06-01

    There is great interest in the ability to remotely monitor changes in boreal forest ecosystems for the understanding and balancing of the global carbon budget. The purpose of this study is to evaluate the utility of spaceborne synthetic aperture radar (SAR), particularly the ERS-1 C-VV SAR, for the detection and interpretation of fire-disturbed boreal forest ecosystems in the state of Alaska. The Alaska Fire Service has provided fire maps and records for comparison with the SAR data. Preliminary results have found that the following all have an influence on the detectability of a fire-scar (1) the time elapsed since the fire occurred, (2) the season in which the SAR data is collected, and (3) the geomorphology of the landscape in which the fire occurred. This paper demonstrates the usefulness of SAR in the estimation of the areal extent of fires. It also evaluates the potential usefulness of SAR in providing information on the spatial variability of bum intensity.

  5. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades—An Overview

    PubMed Central

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.

    2011-01-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  6. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.

    PubMed

    Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K

    2011-08-01

    Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297

  7. Forest Fire Observation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Conditions on the perimeter of a forest fire can be obtained by use of airborne remote sensing techniques demonstrated by Ames Research Center. An Ames U-2 high-altitude survey aircraft served as an aerial fire observation system. Equipped with two types of sensors, the U-2 produces real-time infrared images of fireground scenes. Information acquired by the U-2's scanners defines the fire boundary and aids fire management decisions by showing the size, shape and direction of burn and the locations of hot spots in the fire zone. U-2 sends sensor date in digital form to an antenna at Ames Research Center. There the data is computer processed into images which are overlaid on U.S. Geological Survey topographical maps of the fire area. Maps are then transmitted by telecopy machine directly to fire control center. Whole process takes less than 10 minutes and the U-2 can provide information for up to five hours. Ames antenna can pick up signals from the U-2 anywhere within a 300 mile radius from Ames.

  8. GIS applied to location of fires detection towers in domain area of tropical forest.

    PubMed

    Eugenio, Fernando Coelho; Rosa Dos Santos, Alexandre; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; Juvanhol, Ronie Silva; Schettino, Vitor Roberto; Marcatti, Gustavo Eduardo; Domingues, Getúlio Fonseca; Alves Dos Santos, Gleissy Mary Amaral Dino; Pezzopane, José Eduardo Macedo; Pedra, Beatriz Duguy; Banhos, Aureo; Martins, Lima Deleon

    2016-08-15

    In most countries, the loss of biodiversity caused by the fires is worrying. In this sense, the fires detection towers are crucial for rapid identification of fire outbreaks and can also be used in environmental inspection, biodiversity monitoring, telecommunications mechanisms, telemetry and others. Currently the methodologies for allocating fire detection towers over large areas are numerous, complex and non-standardized by government supervisory agencies. Therefore, this study proposes and evaluates different methodologies to best location of points to install fire detection towers considering the topography, risk areas, conservation units and heat spots. Were used Geographic Information Systems (GIS) techniques and unaligned stratified systematic sampling for implementing and evaluating 9 methods for allocating fire detection towers. Among the methods evaluated, the C3 method was chosen, represented by 140 fire detection towers, with coverage of: a) 67% of the study area, b) 73.97% of the areas with high risk, c) 70.41% of the areas with very high risk, d) 70.42% of the conservation units and e) 84.95% of the heat spots in 2014. The proposed methodology can be adapted to areas of other countries. PMID:27110968

  9. Using Space Technologies for a timely detection of forest fires: the experience of end-users in 3 Italian Regions

    NASA Astrophysics Data System (ADS)

    Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio

    2013-04-01

    Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite

  10. Arizona Forest Fire

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These ASTER images cover an area of 11 x 14 km on the north rim of the Grand Canyon, Arizona, and were acquired May 12, 2000. The left image displays bands 3,2,1 in RGB, displaying vegetation as red. The large dark area is burned forest, and small smoke plumes can be seen at the edges where active fires are burning. The right display substitutes SWIR band 8 for band 3. The bright red spots are the active fires, visible because the SWIR wavelength region has the capability to penetrate through the smoke. This image is located at 35.9 degrees north latitude and 113.4 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  11. Detecting forest damage after a low-severity fire using remote sensing at multiple scales

    NASA Astrophysics Data System (ADS)

    Arnett, John T. T. R.; Coops, Nicholas C.; Daniels, Lori D.; Falls, Robert W.

    2015-03-01

    Remote sensing technologies are an ideal platform to examine the extent and impact of fire on the landscape. In this study we assess that capacity of the RapidEye constellation and Landsat (Thematic Mapper and Operational Land Imager to map fine-scale burn attributes for a small, low severity prescribed fire in a dry Western Canadian forest. Estimates of burn severity from field data were collated into a simple burn index and correlated with a selected suite of common spectral vegetation indices. Burn severity classes were then derived to map fire impacts and estimate consumed woody surface fuels (diameter ≥2.6 cm). All correlations between the simple burn index and vegetation indices produced significant results (p < 0.01), but varied substantially in their overall accuracy. Although the Landsat Soil Adjusted Vegetation Index provided the best regression fit (R2 = 0.56), results suggested that RapidEye provided much more spatially detailed estimates of tree damage (Soil Adjusted Vegetation Index, R2 = 0.51). Consumption estimates of woody surface fuels ranged from 3.38 ± 1.03 Mg ha-1 to 11.73 ± 1.84 Mg ha-1, across four derived severity classes with uncertainties likely a result of changing foliage moisture between the before and after fire images. While not containing spectral information in the short wave infrared, the spatial variability provided by the RapidEye imagery has potential for mapping and monitoring fine scale forest attributes, as well as the potential to resolve fire damage at the individual tree level.

  12. Fire Detection Organizing Questions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.

  13. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration. PMID:11087028

  14. Forest Fires in a Random Forest

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael; Kanevski, Mikhaïl; Vega Orozco, Carmen D.

    2013-04-01

    Forest fires in Canton Ticino (Switzerland) are very complex phenomena. Meteorological data can explain some occurrences of fires in time, but not necessarily in space. Using anthropogenic and geographical feature data with the random forest algorithm, this study tries to highlight factors that most influence the fire-ignition and to identify areas under risk. The fundamental scientific problem considered in the present research deals with an application of random forest algorithms for the analysis and modeling of forest fires patterns in a high dimensional input feature space. This study is focused on the 2,224 anthropogenic forest fires among the 2,401 forest fire ignition points that have occurred in Canton Ticino from 1969 to 2008. Provided by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), the database characterizes each fire by their location (x,y coordinates of the ignition point), start date, duration, burned area, and other information such as ignition cause and topographic features such as slope, aspect, altitude, etc. In addition, the database VECTOR25 from SwissTopo was used to extract information of the distances between fire ignition points and anthropogenic structures like buildings, road network, rail network, etc. Developed by L. Breiman and A. Cutler, the Random Forests (RF) algorithm provides an ensemble of classification and regression trees. By a pseudo-random variable selection for each split node, this method grows a variety of decision trees that do not return the same results, and thus by a committee system, returns a value that has a better accuracy than other machine learning methods. This algorithm incorporates directly measurement of importance variable which is used to display factors affecting forest fires. Dealing with this parameter, several models can be fit, and thus, a prediction can be made throughout the validity domain of Canton Ticino. Comprehensive RF analysis was carried out in order to 1

  15. Integrated services to support detection, prevention and planning of the agricultural-forest-rural land against fires

    NASA Astrophysics Data System (ADS)

    Scipioni, A.; Tagliaferri, F.

    2009-04-01

    Objective of the document is to define lines of development and distribution of the services to support detection, prevention and planning of the agricultural-forest-rural land against fire. The services will be a valid support on hand of the Regional and National Administrations involved in the agricultural-forest-rural activities (Ministry of Agricultural and Forestry Policies, National Forest Police, ecc..), through the employment of the SIAN "National Agricultural Informative System", that is the integrated national information system for the entire agriculture, forestry and fisheries Administration. The services proposals would be distributed through the GIS (Geographic Information Systems) of the SIAN: the GIS database is a single nation-wide digital graphic database consisting of: - Ortophotos: Aerial images of approz. 45 km2 each with ground resolution of 50 cm; - Cadastral maps: Land maps; - Thematic layers: Land use and crops identification The GIS services can take full advantage of the benefits of SIAN architectural model designed for best integration and interoperability with other Central and Local P.A. bodies whose main items are: - Integration of information from different sources; - Maintainance of the internal coeherence of any integrated information; - Flexibility with respect to technical or organizational changes The "innovative "services described below could be useful to support the development of institutional tasks of public Agencies and Administrations (es. Regions or Civil Protection agencies) according to than previewed from the D.Lgs. 173/98. Services of support to the management of the phenomenon of wildland fires The activities outlined in below figure, don't have a linear and defined temporal sequence, but a dynamic and time integration. It guarantees not only the integrated use of the various information, but also the value of every product, for level of accuracy, coherence and timeliness of the information. Description of four main

  16. Assessment of the Proximity of MODIS Active Fire Detections to Roads and Navigable Rivers in the Brazilian Tropical Moist Forest Biome

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Roy, D. P.; Souza, C., Jr.; Cochrane, M. A.; Boschetti, L.

    2011-12-01

    The Brazilian tropical moist forest biome supports the world's largest contiguous area of tropical forests and is experiencing high rates of deforestation. Fires are proxy indicators of human pressure and deforestation. Previous studies using satellite active fire detections and the official Brazilian road vector data (IBGE- Brazilian Institute of Geography and Statistics), including state, federal and some private roads, indicate that the majority of fires occur close to roads. In this quantitative study a new data set that also includes unofficial roads and navigable rivers acquired from Imazon (a non-profit research institution with a mission to promote sustainable development in the Amazon) are used to quantify annual distance distributions of MODIS Aqua and Terra satellite active fire detections for 2003 to 2009. The majority (> 93%) of active fire detections are within 10 km of a road or a navigable river bank. Inter-state and inter-annual differences in the distance distributions, that may capture inter-annual rates of road expansion and fire variability, are also presented. These results may be useful for improvement of regional fire prediction models.

  17. Atmospheric effects of a Canadian forest fire smoke plume

    NASA Technical Reports Server (NTRS)

    Westphal, Douglas L.; Toon, Owen B.; Mckie, William R.

    1988-01-01

    In 1982, a northern British Columbia forest fire created a massive smoke plume that could be detected for several days in satellite imagery. The radiative and dynamical impacts of this large forest fire smoke plume are investigated using interactive prognostic models of atmospheric circulation, aerosol microphysics and transport, and radiative heat transfer.

  18. Catastrophic Fires in Russian Forests

    NASA Astrophysics Data System (ADS)

    Sukhinin, A. I.; McRae, D. J.; Stocks, B. J.; Conard, S. G.; Hao, W.; Soja, A. J.; Cahoon, D.

    2010-12-01

    We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001, 2010), and Irkutsk, Chita, Amur regions, Buryat, Agin national districts (2003, 2007-08). We define a catastrophic fire as a single high-severity fire that covers more than 10,000 ha and results in total consumption of the litter and humus layers and in high tree mortality, or the simultaneous occurrence of several high-severity fires in a given region with a total area exceeding 10,000 km2. Fires on this scale can cause substantial economic, social and environmental effects, with regional to global impacts. We hypothesize that there is a positive feedback between anticyclone growth and energy release from wildfires burning over large areas. Usually the first blocking anticyclone appears in June in Russia, bringing with it dry weather that increases fire hazard. The anticyclonic pattern has maximum activity in the end of July and disappears around the middle of August. When high fire activity occurs, the anticyclone may strengthen and develop a blocking character that prevents cyclonic patterns from moving into anticyclone-dominated areas, where the fire danger index may be more than six times the average maximum. The likelihood of uncontrolled fire situations developing increases greatly when the fire number and burned area exceed critical values as a function of conditions that favor high intensity fires. In such situations fire suppression by regional forest protection services becomes impossible and federal resources are required. If the appearance of a blocking anticyclone is forecast, active fire prevention and suppression of small fires (most of which appear to be human caused) is critical

  19. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    USGS Publications Warehouse

    Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H.

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas. ?? 2011 Taylor & Francis.

  20. A forest-fire model with natural fire resistance

    NASA Astrophysics Data System (ADS)

    Yoder, M. R.; Turcotte, D. L.; Rundle, J. B.; Glasscoe, M. T.; Donnellan, A.

    2010-12-01

    It is widely believed that contemporary wildfire suppression practices in the United States have contributed to conditions that facilitate large, destructive fires. We introduce a forest-fire model with natural fire-resistance that supports this theory. The model yields power-law frequency-size distributions of model fires with scaling exponent values 1.2 ≤ b ≤ 1.75, consistent with distributions of wildfires observed in the United States. We show a direct relationship between a fire's intensity and its burn area, and we show that aggressive suppression of small early season fires can compromise a region's natural fire-resistance, increasing the rate of large fires.

  1. Animation of Sequoia Forest Fire

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Continued hot, dry weather in the American west contributed to the spread of numerous fires over the weekend of July 29-30, 2000. This is the most active fire season in the United States since 1988, when large portions of Yellowstone National Park burned. One of the largest fires currently burning has consumed more than 63,000 acres in Sequoia National Forest. This NOAA Geostationary Operational Environmental Satellite (GOES) image shows the fire on the afternoon of July 30, 2000. Note the clouds above the smoke plume. These often form during large fires because updrafts lift warm air near the ground high into the atmosphere, cooling the air and causing the water vapor it contains to condense into droplets. The soot particles in the smoke also act as condensation nuclei for the droplets. View the animation of GOES data to see the smoke forming clouds. Image and Animation by Robert Simmon and Marit-Jentoft Nilsen, NASA GSFC, based on data from NOAA.

  2. Remote, unattended, forest fire detector

    NASA Technical Reports Server (NTRS)

    Winslow, D. J.

    1976-01-01

    Instruments for land tract scanning and fire detection include: temperature sensor capable of detecting distant match flame; elevated television camera with automatic controls for light balance, position, filter, and focus; and scanner equipped with photocell to sense intensity of flying spot brought to it by sweep-and-scan mechanism.

  3. [Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].

    PubMed

    Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai

    2012-07-01

    Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%. PMID:23173444

  4. Forest-fire model with natural fire resistance

    NASA Astrophysics Data System (ADS)

    Yoder, Mark R.; Turcotte, Donald L.; Rundle, John B.

    2011-04-01

    Observations suggest that contemporary wildfire suppression practices in the United States have contributed to conditions that facilitate large, destructive fires. We introduce a forest-fire model with natural fire resistance that supports this theory. Fire resistance is defined with respect to the size and shape of clusters; the model yields power-law frequency-size distributions of model fires that are consistent with field observations in the United States, Canada, and Australia.

  5. Fire and forest history at Mount Rushmore.

    PubMed

    Brown, Peter M; Wienk, Cody L; Symstad, Amy J

    2008-12-01

    Mount Rushmore National Memorial in the Black Hills of South Dakota is known worldwide for its massive sculpture of four of the United States' most respected presidents. The Memorial landscape also is covered by extensive ponderosa pine (Pinus ponderosa) forest that has not burned in over a century. We compiled dendroecological and forest structural data from 29 plots across the 517-ha Memorial and used fire behavior modeling to reconstruct the historical fire regime and forest structure and compare them to current conditions. The historical fire regime is best characterized as one of low-severity surface fires with occasional (> 100 years) patches (< 100 ha) of passive crown fire. We estimate that only approximately 3.3% of the landscape burned as crown fire during 22 landscape fire years (recorded at > or = 25% of plots) between 1529 and 1893. The last landscape fire was in 1893. Mean fire intervals before 1893 varied depending on spatial scale, from 34 years based on scar-to-scar intervals on individual trees to 16 years between landscape fire years. Modal fire intervals were 11-15 years and did not vary with scale. Fire rotation (the time to burn an area the size of the study area) was estimated to be 30 years for surface fire and 800+ years for crown fire. The current forest is denser and contains more small trees, fewer large trees, lower canopy base heights, and greater canopy bulk density than a reconstructed historical (1870) forest. Fire behavior modeling using the NEXUS program suggests that surface fires would have dominated fire behavior in the 1870 forest during both moderate and severe weather conditions, while crown fire would dominate in the current forest especially under severe weather. Changes in the fire regime and forest structure at Mount Rushmore parallel those seen in ponderosa pine forests from the southwestern United States. Shifts from historical to current forest structure and the increased likelihood of crown fire justify the need for

  6. Forest fire simulation using PHOENICS

    NASA Astrophysics Data System (ADS)

    Naeslund, Erik

    1991-02-01

    Computational fluid dynamics (CFD) is used as a tool to study the dispersion of the airborne pollutants that are originating from a forest fire. The set of relevant fluid dynamic equations is solved with the aid of the general equation solver (PHOENICS), whose graphical capability is used to display the results of the computation. The main objectives of the simulation are to show that such a dispersion model is possible to carry out, and that it gives physically reasonable results. CFD in general, and PHOENICS in particular, are shown to be a useful tool in this context.

  7. Time fluctuation analysis of forest fire sequences

    NASA Astrophysics Data System (ADS)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value

  8. Forest fires in the insular Caribbean.

    PubMed

    Robbins, A Marcus J; Eckelmann, Claus-Martin; Quiñones, Maya

    2008-12-01

    This paper presents a summary of the forest fire reports in the insular Caribbean derived from both management reports and an analysis of publicly available Moderate Resolution Imaging Spectrodiometer (MODIS) satellite active fire products from the region. A vast difference between the amount of fires reported by land managers and fire points in the MODIS Fire Information for Resource Management System data can be observed. Future research is recommended to better understand the nature of these differences. While there is a general lack of available statistical data on forest fires in the Caribbean, a few general observations can be made: Forest fires occur mainly in dry forest types (500 to 1000 mm of mean annual rainfall). These are also the areas where most human settlements are located. Lowland high forests and montane forests with higher rainfall (1000 and more mm y(-1)) are less susceptible to forest fire, but they can burn in exceptionally dry years. Most of the dry forest ecosystems in the Caribbean can be considered to be fire-sensitive ecosystems, while the pine forests in the Caribbean (Cuba, Dominican Republic, and the Bahamas) are maintained by wildfires. In fire-sensitive ecosystems, uncontrolled burning often encourages the spread of alien invasive species. A Caribbean Fire Management Cooperation Strategy was developed between 2005 and 2006 under auspices of the Food and Agriculture Organization of the United Nations. This regional strategy aims to strengthen Caribbean fire management networking by encouraging closer collaboration among countries with similar ecological conditions. The strategy for the Caribbean identifies a number of research, training, and management activities to improve wildfire management capacity in the Caribbean. PMID:19205174

  9. Fire Characterization and Fire-Related Land Cover Classification Using Hyperion Data over Selected Alaskan Boreal Forest Fires

    NASA Astrophysics Data System (ADS)

    Waigl, C. F.; Prakash, A.; Stuefer, M.; Dennison, P. E.

    2014-12-01

    In this study, NIR and SWIR EO-1 Hyperion data acquired over two large Alaskan forest fires are used to detect active fires, map their immediate vicinity, and retrieve fire temperatures. The study sites are located in black spruce stands within the 2004 Boundary fire (215,000 ha total affected area) and the 2009 Wood River 1 fire (50,000 ha). Even though fires in the North American boreal forest ecosystem contribute greatly to global carbon cycling and large-scale air pollution, they have been less studied so far using satellite-borne imaging spectroscopy. We adapted the Hyperspectral Fire Detection Index (HFDI) so that it worked well for the high-latitude Hyperion data. This involved selecting suitable bands which best separated fire from non-fire pixels and averaging them to further improve the detection signal. Resulting fire detection maps compare favorably to uniform radiance thresholding of the Hyperion data and are consistent with fires detected on near-simultaneous Landsat 7 ETM+ data. Unsupervised classification of the vicinity of the active fire zones served to delineate 5 to 6 well separated classes: high- and low-intensity fire, various unburnt vegetation classes, recent fire scar, and a transitional zone ahead of the active fire front that shows evidence of fire impact but no emitted radiance component. Furthermore, MODTRAN5 was used for atmospheric correction to retrieve fire temperatures by modeling a mixture of emitted and reflected radiance signatures of the fire and background areas, respectively. As most of the carbon consumption and subsequent emissions in boreal forest fires stem from the combustion of dead plant material on the forest floor, estimates on fire intensities and high/low intensity burn areas provide valuable insight into the amount of carbon cycling in the system. Imaging spectroscopy can therefore contribute an important step forward in quantitative studies of boreal fires and their impacts. These techniques are set to advance

  10. Investigating the Spatial Characteristics of Forest Fire in North Korea using Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    RI, J.; Lee, K. S.

    2015-12-01

    Forest fires cause billions of dollar damage to property and the environment in the world every year. In North Korea (NK) forest fire occurred frequently in the entire region with the exception of the western plains and massive forest fires broke out throughout NK in May 2004. Furthermore, few researches focused on NK forest fire because of data unavailability and inaccessibility to the region. Operational fire monitoring over large areas can be approached through satellite remote sensing (RS). Thus, it is necessary to investigate the area damaged by forest fire and get information of damaged area for restoration of forest in NK after reunification. Therefore, the purpose of this study is to identify the location of forest fire and to estimate the damaged area by forest fire and finally to detect the landscape change after forest fire in Gangwon and South Hamgyong Province, NK using satellite RS data. In this study, we will investigate the area damaged by forest fire and investigate the spatial characteristics of forest fire in Gangwon and South Hamgyong Province using RS. Landsat data from USGS Were preprocessed (band composition), NBR and dNBR are calculated for figuring out the burned area and investigating the burn severity (BS) in burned area. NBR and dNBR (differenced NBR) are mostly useful to estimate BS by forest fires damage from RS data. The dNBR was then calculated by subtracting the post-fire NBR from the pre-fire NBR: The burned area from Landsat data processing were stored in GIS database to be retrieved and analyzed to figure out the chronological change pattern of forest fire damaged area. Finally, the spatiotemporal characteristics of forest fire in NK were analyzed and discussed to provide the information for restoring forest fire damaged area after reunification.

  11. Techniques for fire detection

    NASA Technical Reports Server (NTRS)

    Bukowski, Richard W.

    1987-01-01

    An overview is given of the basis for an analysis of combustable materials and potential ignition sources in a spacecraft. First, the burning process is discussed in terms of the production of the fire signatures normally associated with detection devices. These include convected and radiated thermal energy, particulates, and gases. Second, the transport processes associated with the movement of these from the fire to the detector, along with the important phenomena which cause the level of these signatures to be reduced, are described. Third, the operating characteristics of the individual types of detectors which influence their response to signals, are presented. Finally, vulnerability analysis using predictive fire modeling techniques is discussed as a means to establish the necessary response of the detection system to provide the level of protection required in the application.

  12. 29 CFR 570.54 - Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., timber tract occupations, forestry service occupations, logging occupations, and occupations in the... § 570.54 Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry... forest fire fighting and forest fire prevention, in timber tracts, in forestry services, logging, and...

  13. 29 CFR 570.54 - Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., timber tract occupations, forestry service occupations, logging occupations, and occupations in the... § 570.54 Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry... forest fire fighting and forest fire prevention, in timber tracts, in forestry services, logging, and...

  14. 29 CFR 570.54 - Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., timber tract occupations, forestry service occupations, logging occupations, and occupations in the... § 570.54 Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry... forest fire fighting and forest fire prevention, in timber tracts, in forestry services, logging, and...

  15. 29 CFR 570.54 - Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., timber tract occupations, forestry service occupations, logging occupations, and occupations in the... § 570.54 Forest fire fighting and forest fire prevention occupations, timber tract occupations, forestry... forest fire fighting and forest fire prevention, in timber tracts, in forestry services, logging, and...

  16. Remotely Sensed Fire Type Classification of the Brazilian Tropical Moist Forest Biome

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Roy, D. P.

    2012-12-01

    Vegetation fires in the Brazilian Tropical Moist Forest Biome can be broadly classified into three types: i) Deforestation fires, lit to aid deforestation by burning of slashed, piled and dried forest biomass, ii) Maintenance fires, lit on agricultural fields or pasture areas to maintain and clear woody material and to rehabilitate degraded pasture areas, iii) Forest fires, associated with escaped anthropogenic fires or, less frequently, caused by lightning. Information on the incidence and spatial distribution of fire types is important as they have widely varying atmospheric emissions and ecological impacts. Satellite remote sensing offers a practical means of monitoring fires over areas as extensive as the Brazilian Tropical Moist Forest Biome which spans almost 4 million square kilometers. To date, fire type has been inferred based on the geographic context and proximity of satellite active fire detections relative to thematic land cover classes, roads, and forest edges, or by empirical consideration of the active fire detection frequency. In this paper a classification methodology is presented that demonstrates a way to classify the fire type of MODerate Resolution Imaging Spectroradiometer (MODIS) active fire detections. Training and validation fire type data are defined conservatively for MODIS active fire detections using a land cover transition matrix that labels MODIS active fires by consideration of the PRODES 120m land cover for the previous year and the year of fire detection. The training data are used with a random forest classifier and remotely sensed predictor variables including the number of MODIS Aqua and Terra satellite detections, the maximum and median Fire Radiative Power (FRP) [MW km-2], the scaling parameter of the FRP power law distribution, the number of day and night detections, and the fire surrounding "background" surface brightness temperature [K]. In addition, the total rainfall over periods from 1 to 24 months prior to fire

  17. Forest-fire model with immune trees

    NASA Astrophysics Data System (ADS)

    Drossel, B.; Schwabl, F.

    1993-10-01

    We present a generalization of the forest-fire model of P. Bak et al. by including the immunity g which is the probability that a tree is not ignited although one of its neighbors is burning. When g reaches a critical value gc( p), which depends on the tree growth rate p, the fire cannot survive any more, i.e. a continuous phase transition takes place from a steady state with fire to a steady state without fire. We present results of computer simulations and explain them by analytic calculations. The fire spreading at the phase transition represents a new type of percolation which is called “fluctuating site percolation”.

  18. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  19. Geostatistical Analysis of Spatio-Temporal Forest Fire Data

    NASA Astrophysics Data System (ADS)

    Vega Orozco, Carmen D.; Kanevski, Mikhail; Tonini, Marj; Conedera, Marc

    2010-05-01

    Forest fire is one of the major phenomena causing degradation of environment, landscape, natural ecosystems, human health and economy. One of the main topic in forest fire data studies deals with the detection, analysis and modelling of spatio-temporal patterns of clustering. Spatial patterns of forest fire locations, their sizes and their sequence in time are of great interest for fire prediction and for forest fire management planning and distribution in optimal way necessary resources. Currently, fires can be analyzed and monitored by using different statistical tools, for example, Ripley's k-function, fractals, Allan factor, scan statistics, etc. Some of them are adapted to temporal or spatial data and are either local or global. In the present study the main attention is paid to the application of geostatistical tools - variography and methods for the analysis of monitoring networks (MN) clustering techniques (topological, statistical and fractal measures), in order to detect and to characterize spatio-temporal forest fire patterns. The main studies performed include: a) analysis of forest fires temporal sequences; b) spatial clustering of forest fires; c) geostatistical spatial analysis of burnt areas. Variography was carried out both for temporal and spatial data. Real case study is based on the forest-fire event data from Canton of Ticino (Switzerland) for a period of 1969 to 2008. The results from temporal analysis show the presence of clustering and seasonal periodicities. Comprehensive analysis of the variograms shows an anisotropy in the direction 30° East-North where smooth changes are detected, while on the direction 30° North-West a greater variability was identified. The research was completed with an application of different MN analysis techniques including, analysis of distributions of distances between events, Morisita Index (MI), fractal dimensions (sandbox counting and box counting methods) and functional fractal dimensions, adapted and

  20. Analysis of zone of vulnurability and impact of forest fires in forest ecosystems in north algeria by susing remote sensing

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2010-05-01

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), witch leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region named TLEMCEN in the north west of Algeria. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a GIS according to a very determined logic allowed classifying the zones in degree of risk of fire in semi arid zone witch forest zone not encouraging the regeneration but permitting the installation of cash of steppe which encourages the desertification.

  1. Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Randerson, J. T.

    2014-01-01

    Climate-driven changes in the fire regime within boreal forest ecosystems are likely to have important effects on carbon cycling and species composition. In the context of improving fire management options and developing more realistic scenarios of future change, it is important to understand how meteorology regulates different fire processes, including ignition, daily fire spread rates, and cumulative annual burned area. Here we combined MODIS active fires (MCD14ML), MODIS imagery (MOD13A1) and ancillary historic fire perimeter information to produce a dataset of daily fire spread maps of Alaska for the period 2002-2011. This approach provided a spatial and temporally continuous representation of fire progression and a precise identification of ignition and extinction locations and dates for each wildfire. The fire-spread maps were analyzed together with daily vapor pressure deficit (VPD) observations from the North American Regional Reanalysis (NARR) and lightning strikes from the Alaska Lightning Detection Network (ALDN). We found a significant relationship between daily VPD and probability that a lightning strike would develop into a fire ignition. In the first 5 days after ignition, above average VPD increased the probability that fires would grow to large or very large sizes. Strong relationships also were identified between VPD and burned area at several levels of temporal and spatial aggregation. As a consequence of regional coherence in meteorology, ignition, daily fire spread rates, and fire extinction events were often synchronized across different fires in interior Alaska. At a regional scale, the sum of positive VPD anomalies during the fire season was positively correlated with annual burned area during the NARR era (1979-2011; R2 = 0.45). Some of the largest fires we mapped had slow initial growth, indicating opportunities may exist for suppression efforts to adaptively manage these forests for climate change. The results of our spatiotemporal

  2. Temporal variations and change of forest fire danger in Europe in 1960-2012

    NASA Astrophysics Data System (ADS)

    Venäläinen, A.; Korhonen, N.; Koutsias, N.; Xystrakis, F.; Urbieta, I. R.; Moreno, J. M.

    2013-11-01

    Understanding how fire-weather danger indices changed in the past, and detecting how changes affected forest fire activity is important in changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis datasets, ERA 40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960-2012. Additionally, we used national forest-fires statistical data from Greece and Spain to relate fire danger and fire activity. There is no obvious trend in fire danger for the time period covered by ERA 40 (1960-1999) whereas for the period 1980-2012 covered by ERA Interim, the mean FWI and the number of high fire risk days shows an increasing trend which is significant at the 99% confidence level for South and East Europe. The cross-correlation calculated at national level in Greece and Spain between mean yearly area burned and mean FWI of the current season is of the order 0.5-0.6, and demonstrates the importance of the fire-season weather on forest fires. Our results show that, fire risk is multifaceted, and factors like changes in fire fighting capacity, ignition patterns, or landscapes might have played a role in forest fires trends. However, weather trends remain as important determinants of forest fires.

  3. Avian community responses to post-fire forest structure: Implications for fire management in mixed conifer forests

    USGS Publications Warehouse

    White, Angela M.; Manley, Patricia N.; Tarbill, Gina; Richardson, T.L.; Russell, Robin E.; Safford, Hugh D.; Dobrowski, Solomon Z.

    2015-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire burned 1243 hectares of mixed conifer forest in South Lake Tahoe, California. We conducted avian point counts for the first 3 years following the fire in burned and unburned areas to investigate which habitat characteristics are most important for re-establishing or maintaining the native avian community in post-fire landscapes. We used a multi-species occurrence model to estimate how avian species are influenced by the density of live and dead trees and shrub cover. While accounting for variations in the detectability of species, our approach estimated the occurrence probabilities of all species detected including those that were rare or observed infrequently. Although all species encountered in this study were detected in burned areas, species-specific modeling results predicted that some species were strongly associated with specific post-fire conditions, such as a high density of dead trees, open-canopy conditions or high levels of shrub cover that occur at particular burn severities or at a particular time following fire. These results indicate that prescribed fire or managed wildfire which burns at low to moderate severity without at least some high-severity effects is both unlikely to result in the species assemblages that are unique to post-fire areas or to provide habitat for burn specialists. Additionally, the probability of occurrence for many species was associated with high levels of standing dead trees indicating that intensive post-fire harvest of these structures could negatively impact habitat of a considerable proportion of the avian community.

  4. A decision support system for managing forest fire casualties.

    PubMed

    Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos

    2007-09-01

    Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns. PMID:16928418

  5. Remote Sensing of Forest Fires from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    1999-01-01

    Forest fires, and fires used for deforestation and agriculture are sporadic. Some may last an hour others several days. It is difficult to find the fires or to estimate their effect on atmospheric pollution without an "eye in the sky" a satellite or an array of satellites that monitors them routinely from space. Since fires have a significant effect on the quality of air that we breath, on the surface vegetation, on clouds and precipitation and even on climate, NASA and other space agencies try to develop fire monitoring capability from space. Presently satellites were not designed to monitor fires. But the AVHRR and GOES satellites were used for fire monitoring. AVHRR is an orbiter that passes over the same area twice a day with detailed observations of fires from a distance of 800 km, GOES is a stationary satellite located above the equator, and observes the larger fires from a distance of 20,000 km. Field experiments, such as the "SCAR-B" experiment in Brazil conducted in 1995 by INPE, NASA and Universities of Sao Paulo, Washington and Wisconsin, were used to determine the ability of satellites to observe fires and the emitted pollution. They are the basis of a new system of satellites designed by NASA to observe fires and pollution, the Earth Observing System AM1 and PM1. NASA plans to use the information for four observations a day of the fires and the emitted smoke. The information can be used to determine the location of the fires, to distinguish between small and large fires and monitor their development. The satellites will measure the emitted smoke and with trajectory models can be used to predict the density and spread of the smoke.

  6. Forest Fires in Russia and Northern China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Smoke plumes from forest fires scattered along the border between the Russian Far East and northern China are clearly visible in this true-color image from the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) on June 16, 2000. Fires in Siberia occur every summer, and severe outbreaks occur every ten years or so, with the most recent in 1998. The fires are ignited by lightning, and are so remote that it is impossible to fight them effectively. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  7. Emissions from Forest Fires near Mexico City

    NASA Technical Reports Server (NTRS)

    Yokelson, R.; Urbanski, S.; Atlas, E.; Toohey, D.; Alvarado, E.; Crounse, J.; Wennberg, P.; Fisher, M.; Wold, C.; Campos, T.; Adachi, K.; Buseck, P. R.; Hao, W. M.

    2007-01-01

    The emissions of NOx (defined as NO (nitric oxide) + NO2 (nitrogen dioxide)) and hydrogen cyanide (HCN), per unit amount of fuel burned, from fires in the pine forests that dominate the mountains surrounding Mexico City (MC) are about 2 times higher than normally observed for forest burning. The ammonia (NH3) emissions are about average for forest burning. The upper limit for the mass ratio of NOX to volatile organic compounds (VOC) for these MC-area mountain fires was approximately 0.38, which is similar to the NOx/VOC ratio in the MC urban area emissions inventory of 0.34, but much larger than the NOx/VOC ratio for tropical forest fires in Brazil (approximately 0.068). The nitrogen enrichment in the fire emissions may be due to deposition of nitrogen-containing pollutants in the outflow from the MC urban area. This effect may occur worldwide wherever biomass burning coexists with large urban areas (e.g. the tropics, southeastern US, Los Angeles Basin). The molar emission ratio of HCN to carbon monoxide (CO) for the mountain fires was 0.012 +/- 0.007, which is 2-9 times higher than widely used literature values for biomass burning. The ambient molar ratio HCN/CO in the MC-area outflow is about 0.003 +/- 0.0003. Thus, if only mountain fires emit significant amounts of HCN, these fires may be contributing about 25% of the CO production in the MCarea (approximately 98-100 W and 19-20 N). Comparing the PM10/CO and PM2.5/CO mass ratios in the MC Metropolitan Area emission inventory (0.01 15 and 0.0037) to the PM1/CO mass ratio for the mountain fires (0.133) then suggests that these fires could produce as much as approximately 79-92% of the primary fine particle mass generated in the MC-area. Considering both the uncertainty in the HCN/CO ratios and secondary aerosol formation in the urban and fire emissions implies that about 50 +/- 30% of the "aged" fine particle mass in the March 2006 MC-area outflow could be from these fires.

  8. Forest Fire: A Crisis Reality for Camp.

    ERIC Educational Resources Information Center

    Brown, Don; Mickelson, Rhonda

    2002-01-01

    Two camp directors were interviewed about evacuations from their camps due to forest fires. Topics covered include descriptions of the events; actions taken; aspects of advance planning that proved helpful; unexpected portions of the experience and resultant changes made in plans; relations with outside agencies, the media, and parents; working…

  9. Climate change and forest fires in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Turco, Marco; Llasat, Maria-Carmen; von Hardenberg, Jost; Provenzale, Antonello

    2014-05-01

    The Mediterranean region is a "hot-spot" of climate change and wildfires, where about 50000 fires burn 500000 hectares every year. However, in spite of the growing concerns of the climate change impacts on Mediterranean wildfires, there are aspects of this topic that remain largely to be investigated. The main scientific objective of this study is to investigate the climate-driven changes on fires in a typical Mediterranean environment (Catalonia, NE of Spain). To achieve this goal, the following specific aims have been identified: (1) Analysis of the recent evolution of fires; (2) Evaluation of the climate-fire relationship; (3) Estimation of the impacts of observed and future climate change. First, we examine a homogeneous series of forest fires in the period 1970-2010. Our analysis shows that both the burned area and number of fire series display a decreasing trend. After the large fires of 1986 and 1994, the increased effort in fire prevention and suppression could explain part of this decreasing trend. Although it is often stated that fires have increased in Mediterranean regions, the higher efficiency in fire detection could have led to spurious trends and misleading conclusions [1]. Secondly, we show that the interannual variability of summer fires is significantly related to antecedent and concurrent climate conditions, highlighting the importance of climate not only in regulating fuel flammability, but also fuel load. On the basis of these results, we develop a simple regression model that produces reliable out-of-sample predictions of the impact of climate variability on summer forest fires [2]. Finally we apply this model to estimate the impacts of observed climate trends on summer fires and the possible fire response to different regional climate change scenarios. We show that a transition toward warmer conditions has already started to occur and it is possible that they continue by mid-century (under the A1B scenario), and that these changes promote

  10. A feasibility study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Mcleod, R. G.; Martin, T. Z.; Warren, J.

    1983-01-01

    The National Aeronautics and Space Administration/Jet Propulsion Laboratory and the United States Department of Agriculture Forest Service completed a feasibility study that examined the potential uses of advanced technology in forest fires mapping and detection. The current and future (1990's) information needs in forest fire management were determined through interviews. Analysis shows that integrated information gathering and processing is needed. The emerging technologies that were surveyed and identified as possible candidates for use in an end to end system include ""push broom'' sensor arrays, automatic georeferencing, satellite communication links, near real or real time image processing, and data integration. Matching the user requirements and the technologies yielded a ""strawman'' system configuration. The feasibility study recommends and outlines the implementation of the next phase for this project, a two year, conceptual design phase to define a system that warrants continued development.

  11. Mitigating Large Fires in Drossel-Schwabl Forest Fire Models

    NASA Astrophysics Data System (ADS)

    Yoder, M.; Turcotte, D.; Rundle, J.; Morein, G.

    2008-12-01

    We employ variations of the traditional Drossel-Schwabl cellular automata Forest Fire Models (FFM) to study wildfire dynamics. The traditional FFM produces a very robust power law distribution of events, as a function of size, with frequency-size slope very close to -1. Observed data from Australia, the US and northern Mexico suggest that real wild fires closely follow power laws in frequency size with slopes ranging from close to -2 to -1.3 (B.D. Malamud et al. 2005). We suggest two models that, by fracturing and trimming large clusters, reduce the number of large fires while maintaining scale invariance. These fracturing and trimming processes can be justified in terms of real physical processes. For each model, we achieve slopes in the frequency-size relation ranging from approximately -1.77 to -1.06.

  12. Incipient fire detection system

    DOEpatents

    Brooks, Jr., William K.

    1999-01-01

    A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.

  13. Forecasting method of nationak-level forest fire risk rating

    NASA Astrophysics Data System (ADS)

    Qin, Xian-lin; Zhang, Zi-hui; Li, Zeng-yuan; Yi, Hao-ruo

    2008-11-01

    The risk level of forest fire not only depends on weather, topography, human activities, socio-economic conditions, but is also closely related to the types, growth, moisture content, and quantity of forest fuel on the ground. How to timely acquire information about the growth and moisture content of forest fuel and climate for the whole country is critical to national-level forest fire risk forecasting. The development and application of remote sensing (RS), geographic information system (GIS), databases, internet, and other modern information technologies has provided important technical means for macro-regional forest fire risk forecasting. In this paper, quantified forecasting of national-level forest fire risk was studied using Fuel State Index (FSI) and Background Composite Index (BCI). The FSI was estimated using Moderate Resolution Imaging Spectroradiaometer (MODIS) data. National meteorological data and other basic data on distribution of fuel types and forest fire risk rating were standardized in ArcGIS platform to calculate BCI. The FSI and the BCI were used to calculate the Forest Fire Danger Index (FFDI), which is regarded as a quantitative indicator for national forest fire risk forecasting and forest fire risk rating, shifting from qualitative description to quantitative estimation. The major forest fires occurred in recent years were taken as examples to validate the above method, and results indicated that the method can be used for quantitative forecasting of national-level forest fire risks.

  14. Multifractal analysis of forest fires in complex regions

    NASA Astrophysics Data System (ADS)

    Vega Orozco, C. D.; Kanevski, M.; Golay, J.; Tonini, M.; Conedera, M.

    2012-04-01

    Forest fires can be studied as point processes where the ignition points represent the set of locations of the observed events in a defined study region. Their spatial and temporal patterns can be characterized by their fractal properties; which quantify the global aspect of the geometry of the support data. However, a monofractal dimension can not completely describe the pattern structure and related scaling properties. Enhancements in fractal theory had developed the multifractal concept which describes the measures from which interlinked fractal sets can be retrieved and characterized by their fractal dimension and singularity strength [1, 2]. The spatial variability of forest fires is conditioned by an intermixture of human, topographic, meteorological and vegetation factors. This heterogeneity makes fire patterns complex scale-invariant processes difficult to be depicted by a single scale. Therefore, this study proposes an exploratory data analysis through a multifractal formalism to characterize and quantify the multiscaling behaviour of the spatial distribution pattern of this phenomenon in a complex region like the Swiss Alps. The studied dataset is represented by 2,401 georeferenced forest fire ignition points in canton Ticino, Switzerland, in a 40-years period from 1969 to 2008. Three multifractal analyses are performed: one assesses the multiscaling behaviour of fire occurrence probability of the support data (raw data) and four random patterns simulated within three different support domains; second analysis studies the multifractal behavior of patterns from anthropogenic and natural ignited fires (arson-, accident- and lightning-caused fires); and third analysis aims at detecting scale-dependency of the size of burned area. To calculate the generalized dimensions, Dq, a generalization of the box counting methods is carried out based on the generalization of Rényi information of the qth order moment of the probability distribution. For q > 0, Dq

  15. View of forest fires in South America

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This view, acquired with a Hasselblad camera equipped with a 250mm lens, shows only a small portion of forest fires that marked the Earth photography taken over Bolivia, Brazil, Paraguay, and Argentina during this mission. Numerous fires are visible in this late-dry-season scene of the areas between the Parana and Uruguay Rivers. Most of this burning is usually associated with agricultural preparations. The nadir point of the Space Shuttle at the time this photograph was taken (2018 GMT, September 16, 1993) was 28.5 degrees South, 60.0 degrees West. The view is to the west.

  16. Monitoring Fires in Southwestern Amazonia Rain Forests

    NASA Astrophysics Data System (ADS)

    Brown, I. Foster; Schroeder, Wilfrid; Setzer, Alberto; de Los Rios Maldonado, Monica; Pantoja, Nara; Duarte, Alejandro; Marengo, Jose

    2006-06-01

    From mid-July to mid-October 2005, an environmental disaster unfolded in the trinational region of Madre de Dios, Peru; Acre, Brazil; and Pando, Bolivia (the MAP region), in southwestern Amazonia. A prolonged dry season and human-initiated fires resulted in smoke pollution affecting more than 400,000 persons, fire damage to over 300,000 hectares of rain forest, and over US$50 million of direct economic losses. Indicators suggest that anomalous drought conditions could occur again this year.

  17. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation

  18. Fire Regime and Stability of the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2014-12-01

    Ecological discussions concerning alternative stable states theory suggest that tropical forest ecosystems could shift to qualitatively different alternative states upon catastrophic disturbances which exceed forest resilience. In this regard, it is expected that changes in the fire regime facilitated by climate and land use alterations could lead to rapid forest cover loss, creating conditions likely to push tropical forests to tipping points, beyond which forest resilience is lost. However, there is a dearth of empirical examples of fire-driven alternative stable states involving tropical forests. Key among the constraints for this scarcity are the requirements for large scale disturbances and long-term data, both of which are scarce. However, in the West African tropical forest (referred to as the Upper Guinean forest, UGF) a number of protected areas were impacted by large fire events during the 1980s El Niño-driven droughts, providing an opportunity for testing hypotheses concerning alternative stable states in tropical forest ecosystems. This paper aims to demonstrate fire-driven alternative stable states in the deciduous forest zone of the UGF by analyzing fire activity and forest recovery in fire-impacted forest reserves. We analyzed historical Landsat and MODIS imagery to map and quantify vegetation cover change, fire frequency and fire severity patterns. Our analyses suggest that the historic fires in the 1980s were catastrophic enough to remove forest canopy, thereby triggering a landscape-scale alternative stable states. Forest cover declined substantially becoming replaced by a novel ecosystem with low tree density. Our results also indicate the establishment of a positive fire-vegetation feedback effect, such that the new vegetation which displaced severely burned forests is more pyrogenic and maintained through frequent burns. This study expands our knowledge on the vulnerability of tropical forest ecosystems to state transitions in response to fire

  19. A second-order impact model for forest fire regimes.

    PubMed

    Maggi, Stefano; Rinaldi, Sergio

    2006-09-01

    We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems. PMID:16723147

  20. Gaseous emissions from Canadian boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1990-01-01

    CO2-normalized emission ratios for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were determined from smoke samples collected during low-altitude helicopter flights over two prescribed fires in northern Ontario, Canada. The emission ratios determined from these prescribed boreal forest fires are compared to emission ratios determined over two graminoid (grass) wetlands fires in central Florida and are found to be substantially higher (elevated levels of reduced gas production relative to CO2) during all stages of combustion. These results argue strongly for the need to characterize biomass burning emissions from the major global vegetation/ecosystems in order to couple combustion emissions to their vegetation/ecosystem type.

  1. Forest Fires Produce Dense Smoke over Alaska

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On August 14, 2005, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this stunning image of forest fires raging across the width of Alaska. Smoke from scores of fires (marked in red) filled the state's broad central valley and poured out to sea. Hemmed in by mountains to the north and the south, the smoke spreads westward and spills out over the Bering and Chukchi Seas (image left). More than a hundred fires were burning across the state as of August 14. Air quality warnings have been issued for about 90 percent of the Interior, according to the August 12 report from the Alaska Department of Environmental Conservation's Division of Air Quality. Conditions have ranged from 'very unhealthy' to 'hazardous' over the weekend in many locations, including Fairbanks. A large area of high atmospheric pressure spread over much of the state, keeping temperatures high and reducing winds that would clear the air.

  2. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  3. Forest fire scenario and challenges of mitigation during fire season in North East India

    NASA Astrophysics Data System (ADS)

    Chakraborty, K.; Mondal, P. P.; Chabukdhara, M.; Sudhakar, S.

    2014-11-01

    Forest fires are a major environmental problem in North East Region (NER) with large tracts of forest areas being affected in every season. Forest fires have become a major threat to the forest ecosystems in the region, leading to loss of timber, biodiversity, wildlife habitat and loss to other natural resources. Studies on forest fire have reported that about 50% of forest fire in the country takes place in NE region. The forest fire in NER is anthropogenic in nature. The forest fire hazard map generated based on appropriate weightage given to the factors affecting fire behavior like topography, fuel characteristic and proximity to roads, settlements and also historical fire locations helped to demarcate the fire prone zones. Whereas, during fire season the weather pattern also governs the fire spread in the given area. Therefore, various data on fuel characteristics (land use/land cover, forest type map, forest density map), topography (DEM, slope, aspect) proximity to settlement, road, waterbodies, meteorological data from AWS on wind speed, wind direction, dew point have been used for each fire point to rank its possible hazard level. Near real time fire location data obtained from MODIS/FIRMSwere used to generate the fire alerts. This work demonstrates dissemination of information in the form of maps and tables containing information of latitude and longitude of fire location, fire occurrence date, state and district name, LULC, road connectivity, slope and aspect, settlements/water bodies and meteorological data and the corresponding rating of possibility of fire spread to the respective fire control authorities during fire season.

  4. Roadless Areas and Forest Fires in the Western United States

    NASA Astrophysics Data System (ADS)

    Eastman, J.; Townshend, J.; Justice, C.; Sohlberg, R.

    2002-05-01

    During the past two years, forest fires in the western United States have been analyzed and discussed in depth because of the severity of the fires and the associated damage to personal property. The number and extent of forest fires has been increasing, and many scientists believe that this increase will continue in the future. Forest management practices have been under close inspection because of their role in contributing to the current situation and the potential impact of management changes on fire mitigation and control. Industrialists and conservationists debate whether management (ie. road building, timber extraction, fire suppression) or conservation (ie. no new roads or logging) results in fewer fires that burn lesser extents. One example of a federal change in forest management practice is the Roadless Area Conservation Rule, enacted in 2001, which prohibited road construction in roadless National Forests. Opposition to the Rule is based in part on the assumption that roadless National Forests are more prone to forest fires, or conversely, managed forests are less prone to forest fires. Our analysis using data from the U.S. Forest Service Historic Fire Database and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument contradicts this view. We found that average annual fire frequency during the period 1986 to 2000 was 10% lower in roadless forests than in managed forests and that average annual burn extent was 31% lower in roadless forest. Thus, opening roadless forest to road construction in the western U.S. is sure to lead to an increase in number and extent of forest fires in the region.

  5. Holocene Charcoal Deposition From Brazilian Forest Fires

    NASA Astrophysics Data System (ADS)

    Turcq, B.; Cordeiro, R. C.; Albuquerque, A. S.; Simoes, F. L.; Sifeddine, A.

    2004-12-01

    Determination of charcoal accumulation rate in lacustrine sediments allows to reconstruct the fire history of the region surrounding the lake. Our studies have been achieved in three Amazonian sites and one site in Atlantic rainforest. Charcoal fragments are identified and counted under a microscope. Typical size of these charcoals is around ten micrometers and they probably have been subject to eolian transport. The highest charcoal accumulation rates were obtained in sediments from Middle Holocene in Carajás region, eastern Amazonia. These rates are on the same order than the present day charcoal accumulation rate in Alta Floresta, a region of Amazonia which is being submited to intense slash and burn. The lowest values were found in Lagoa da Pata in Sao Gabriel da Cachoeira, a very humid area in western Amazon. We observed from the D. Helvécio record, in the Atlantic rainforest, fire occurrences from 8,400 to 6,400 cal years BP. For Carajás lake, surrounded by tropical rain forest, we had identified fires during the period between 8,000 and 5,300 cal years BP. Finally, the lake Caracarana, which is surrounded by grass savanna, showed a record of main fire occurrence phase at 9,750 cal yrs BP and a second phase marked by charcoal peaks at 7,680, 6,990 and 6,460 cal yrs BP. The synchronism of the fire occurrence periods in different Brazilian regions is related to the Middle Holocene dry climate phase provoked by the low summer insolation. Differences in the accumulation rates can be attributed to differences in biomass availability and fire return time. The carbon released in the atmosphere by this fires must have contributed to the observed increase of CO2, poorer in 13C, during the middle Holocene.

  6. Contribution of agricultural and forest fires in Ukraine to impact of Eurasian burnings on Arctic

    NASA Astrophysics Data System (ADS)

    Zibtsev, S.; Goldammer, J. G.; Gilitukha, D.

    2012-04-01

    Burning potentially can occur on major part of lands of Ukraine (total 57.93 million ha) and, first of all, on agricultural ones - that occupy 71% of total area of the country. Forests occupy 17.6% of the area of country, where from 2 to 4 thousands fires happens annually. Good wildfire statistics, as well as proper fire management system only for part of forest lands of Ukraine - 68% is established, in particularly, for forests that managed by State Agency of Forest Resources of Ukraine. While other 2 million ha of forests that managed by other Ministries are out of regular fire management action, detection and protection. There are no reliable detection and accounting of wildfires, outdated or absent fire engines, lack of fire crews and facilities on most part of agricultural, grass, abandoned lands, pastures. During emergency wildfires situation in Ukraine in August 2010 only full mobilization of forest personal together with forces of internal affairs (police) for patrolling of wildfire situation nationwide allows to avoid catastrophic scenario in spite of general low preparedness and unsatisfactory technical provision of fire management on agricultural lands. That year in forest lands totally 3065 cases of fires were registered with total area burned 8916 ha (fire season 2010) and 3145 cases of wildfires on agricultural lands (August 2010). There are no reliable statistics and effective fire management system on grass and agricultural lands in Ukraine even agricultural fires burned much larger area of lands then forest fires and produce significant amount of black carbon both during spring and summer fire events. Results of analysis of wildfire cases in Ukraine at 1x1 km spatial resolution for the period 2006-2008 based on active detection of thermals anomaly by MODIS shows that annually, during the period nearly 20,000 cases of wildfires were detected. In extreme years like 2008, amount of fires doubled. Wildfires in Ukraine make important input in total

  7. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  8. Temperate and boreal forest mega-fires: characteristics and challenges

    USGS Publications Warehouse

    Stephens, Scott L.; Burrows, Neil; Buyantuyev, Alexander; Gray, Robert W.; Keane, Robert E.; Kubian, Rick; Liu, Shirong; Seijo, Francisco; Shu, Lifu; Tolhurst, Kevin G.; Van Wagtendonk, Jan W.

    2014-01-01

    Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors – climate change, fire exclusion, and antecedent disturbance, collectively referred to as the “mega-fire triangle” – likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate historical fire regimes and can therefore sustain healthy fire-prone ecosystems, but other attributes decrease ecosystem resiliency. A good example of a program that seeks to mitigate mega-fires is located in Western Australia, where prescribed burning reduces wildfire intensity while conserving ecosystems. Crown-fire-adapted ecosystems are likely at higher risk of frequent mega-fires as a result of climate change, as compared with other ecosystems once subject to frequent less severe fires. Fire and forest managers should recognize that mega-fires will be a part of future wildland fire regimes and should develop strategies to reduce their undesired impacts.

  9. Identifying the location of fire refuges in wet forest ecosystems.

    PubMed

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential

  10. Modeling Forest Understory Fires in an Eastern Amazonian Landscape

    NASA Technical Reports Server (NTRS)

    Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.

    2004-01-01

    Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition

  11. Differences in fire regimes and fire-climate feedbacks in North American and Eurasian boreal forests.

    NASA Astrophysics Data System (ADS)

    Rogers, B. M.; Randerson, J. T.; Soja, A. J.

    2012-12-01

    Boreal forests contribute 9% of current annual fire emissions and contain nearly 40% of the world's terrestrial carbon stocks. Temperatures are projected to increase by the greatest magnitudes in high latitudes and lead to increased frequencies of forest fires. However, because of variations in climate and species-driven forest structure, fire regimes of North American and Eurasian boreal forests are distinctly different. These differences are generally not accounted for in global models. We quantified variations in fire and burn severity between the two continents using MODIS fire radiative power, differenced Normalized Burn Ratio, and spring albedo. These metrics suggest that Eurasian boreal fires are on average less than half as severe as those in North America. We examine how boreal forest fires may respond to 21st century climate change using the Community Land Model, and consider how these regimes may feed back to climate through fire-emitted aerosols, greenhouse gas fluxes, and land surface characteristics.

  12. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  13. Forest fires impact in semi arid lands in Algeria, analysis and followed of desertification by using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    The Forest in steppe present ecological diversity, and seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. By elsewhere, where climatic conditions are favourable, the fire is an ecological and acted agent like integral part of evolution of the ecosystems, the specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), who leads to the recuperation of the vegetation of meadow- fire. In this survey we used the pictures ALSAT-1 for detection of zones with risk of forest fire and their impact on the naturals forests in region of Tlemcen. A thematic detailed analysis of forests well attended ecosystems some processing on the picture ALSAT-1, we allowed to identify and classifying the forests in there opinion components flowers. we identified ampleness of fire on this zone also. Some parameters as the slope, the proximity to the road and the forests formations were studied in the goal of determining the zones to risk of forest fire. A crossing of diaper of information in a SIG according to a very determined logic allowed to classify the zones in degree of risk of fire in a middle arid in a forest zone not encouraging the regeneration on the other hand permitting the installation of cash of steppe which encourages the desertification.

  14. Effects of Repeated Fires in the Forest Ecosystems of the Zabaikalye Region, Southern Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Buryak, L. V.; Conard, S. G.; Petkov, A.; Barrett, K.; Kalenskaya, O. P.; Ivanova, G.

    2014-12-01

    Fire is the main ecological disturbance controlling forest development in the boreal forests of Siberia and contributing substantially to the global carbon cycle. The warmer and dryer climate observed recently in the boreal forests is considered to be responsible for extreme fire weather, resulting in higher fire frequency, larger areas burned, and an increase of fire severity. Because of the increase of fire activity, boreal forests in some regions may not be able to reach maturity before they re-burn, which means less carbon will be stored in the ecosystem and more will remain in the atmosphere. Moreover, if one fire occurs within a few years of another, some stands will not re-grow at all, and even more carbon will accumulate in the atmosphere. Zabaikalye region located in the south of Siberia is characterized by the highest fire activity in Russia. With a use of the satellite-based fire product we found that there are about 7.0 million hectares in the region burned repeatedly during the last decade. We have investigated a number of sites in-situ in light-coniferous (Scots pine and larch) forests and evaluated the impacts of repeated fires on fuel loads, carbon emissions, and tree regeneration. Substantial decrease of carbon stocks, change of the vegetation structure and composition, and soil erosion were observed in many areas disturbed by repeated fires. At drier sites located in the southern regions repeated fires prohibited successful regeneration and resulted in forest conversion to grassland. Detection and monitoring of changes in the areas of Siberia where repeated fires have caused a major shift in ecosystem structure and function is required for the development of sustainable forest management strategies to mitigate climate change. The research was supported by NASA LCLUC Program.

  15. Recent Extreme Forest Fire Activity in Western Russia: Fire Danger Conditions, Fire Behavior and Smoke Transport

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M.; Goldammer, J.; Carr, R.; Sukhinin, A. I.

    2010-12-01

    During the summer of 2010, widespread forest and peatland fires in western Russia burned over hundreds of thousands of hectares, burning over croplands, destroying hundreds of homes, and directly causing the death of more than 50 people. Unprecedented drought conditions, combined with an extended heat wave, resulted in extreme fire danger conditions and explosive fire behavior in a region of Russia not noted for large fires. Several fires exhibited pyroconvection, injecting smoke directly into the upper troposphere and lower stratosphere, while deep-burning fires created major regional smoke problems. This smoke persisted in the heavily-populated areas around Moscow, exposing millions to high levels of ozone and particulate matter, and creating both immediate and longer-term health risks. This presentation will explore the drought conditions leading to the catastrophic fire behavior experienced in western Russia, and analyze fire behavior in terms of fuel consumption, smoke production, fire intensity levels, and pyroconvection. Impacts of regional and long-range smoke transport will also be discussed.

  16. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  17. Fire suppression and detection equipment

    SciTech Connect

    E.E. Bates

    2006-01-15

    Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

  18. Oak woodlands and forests fire consortium: A regional view of fire science sharing

    USGS Publications Warehouse

    Grabner, Keith W.; Stambaugh, Michael C.; Marschall, Joseph M.; Abadir, Erin R.

    2013-01-01

    The Joint Fire Science Program established 14 regional fire science knowledge exchange consortia to improve the delivery of fire science information and communication among fire managers and researchers. Consortia were developed regionally to ensure that fire science information is tailored to meet regional needs. In this paper, emphasis was placed on the Oak Woodlands and Forests Fire Consortium to provide an inside view of how one regional consortium is organized and its experiences in sharing fire science through various social media, conference, and workshop-based fire science events.

  19. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  20. Effects of fire on small mammal communities in frequent-fire forests in California

    USGS Publications Warehouse

    Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.

    2015-01-01

    Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.

  1. Forest Health Detectives

    ERIC Educational Resources Information Center

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  2. Fire severity influences the response of soil microbes to a boreal forest fire

    NASA Astrophysics Data System (ADS)

    Holden, Sandra R.; Rogers, Brendan M.; Treseder, Kathleen K.; Randerson, James T.

    2016-03-01

    Wildfire activity is projected to increase in boreal forests as a result of climate warming. The consequences of increased wildfire activity for soil carbon (C) storage in boreal forests may depend on the sensitivity of soil microbes to fire severity, but microbial responses to boreal forest fire severity are not well known. Here, we combine remote sensing of fire severity and field sampling to characterize the response of soil microbial biomass per g soil, microbial respiration of CO2 per g soil, and fungal groups to fire severity in a boreal forest ecosystem. We used remote sensing measurements of differenced normalized burn ratio from Landsat as a measure of fire severity. Our results demonstrate that fire severity controls soil microbial responses to boreal forest fires. In comparison to unburned stands, burned stands had a 52% and 56% reduction in soil microbial biomass and basal respiration, respectively. Within burned stands, we found that microbial biomass and basal respiration significantly declined with increasing fire severity. In addition, mycorrhizal taxa and basidiomycetes displayed particularly low tolerances for severe fire. Although wildfires result in the immediate loss of soil C, our study provides evidence that decreases in microbial biomass and respiration following high severity fires may reduce the capacity of the soil microbial community to decompose soil C over longer time scales. Therefore, models of C cycle responses to climate warming may need to represent the sensitivity of microbial biomass and fungal community composition to fire severity in boreal forests.

  3. Research Plan for Fire Signatures and Detection

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Viewgraphs on the prevention, suppression, and detection of fires aboard a spacecraft is presented. The topics include: 1) Fire Prevention, Detection, and Suppression Sub-Element Products; 2) FPDS Organizing Questions; 3) FPDS Organizing Questions; 4) Signatures, Sensors, and Simulations; 5) Quantification of Fire and Pre-Fire Signatures; 6) Smoke; 7) DAFT Hardware; 8) Additional Benefits of DAFT; 9) Development and Characterization of Sensors 10) Simulation of the Transport of Smoke and Fire Precursors; and 11) FPDS Organizing Questions.

  4. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  5. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    NASA Astrophysics Data System (ADS)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  6. Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.

  7. Economic vulnerability of timber resources to forest fires.

    PubMed

    y Silva, Francisco Rodríguez; Molina, Juan Ramón; González-Cabán, Armando; Machuca, Miguel Ángel Herrera

    2012-06-15

    The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is analyzed from criteria intrinsically associated to the forest characterization, and to the potential behavior of surface fires. Integrating a mapping process of fire potential and analytical valuation algorithms facilitates the implementation of fire prevention planning. The availability of cartography of economic vulnerability of the forest ecosystems is fundamental for budget optimization, and to help in the decision making process. PMID:22343614

  8. The EFFIS forest fire atmospheric emission model: Application to a major fire event in Portugal

    NASA Astrophysics Data System (ADS)

    Monteiro, A.; Corti, P.; San Miguel-Ayanz, J.; Miranda, A. I.; Borrego, C.

    2014-02-01

    Forest fires are a major contributor of gaseous and particulate compounds to the atmosphere, impairing air quality and affecting human health. A new forest fire emissions module was developed and integrated into the European Forest Fire Information System (EFFIS), which systematically compiles, since 2000, series of burnt area statistics mapped from satellite imagery. This new forest fire emission model was built on classical methodologies of fuel-map based emission estimation that were improved, especially on burning efficiency, fuel consumption estimation and emission factors. It makes the best use of EFFIS near-real time and detailed information on forest fires, mainly concerning products with a high temporal resolution, which is needed to simulate smoke dispersion and chemical transformation in the atmosphere.

  9. WebGIS Platform Adressed to Forest Fire Management Methodologies

    NASA Astrophysics Data System (ADS)

    André Ramos-Simões, Nuno; Neto Paixão, Helena Maria; Granja Martins, Fernando Miguel; Pedras, Celestina; Lança, Rui; Silva, Elisa; Jordán, António; Zavala, Lorena; Soares, Cristina

    2015-04-01

    Forest fires are one of the natural disasters that causes more damages in nature, as well as high material costs, and sometimes, a significant losses in human lives. In summer season, when high temperatures are attained, fire may rapidly progress and destroy vast areas of forest and also rural and urban areas. The forest fires have effect on forest species, forest composition and structure, soil properties and soil capacity for nutrient retention. In order to minimize the negative impact of the forest fires in the environment, many studies have been developed, e.g. Jordán et al (2009), Cerdà & Jordán (2010), and Gonçalves & Vieira (2013). Nowadays, Remote Sensing (RS) and Geographic Information System (GIS) technologies are used as support tools in fire management decisions, namely during the fire, but also before and after. This study presents the development of a user-friendly WebGIS dedicated to share data, maps and provide updated information on forest fire management for stakeholders in Iberia Peninsula. The WebGIS platform was developed with ArcGIS Online, ArcGIS for Desktop; HyperText Markup Language (HTML) and Javascript. This platform has a database that includes spatial and alphanumeric information, such as: origin, burned areas, vegetation change over time, terrain natural slope, land use, soil erosion and fire related hazards. The same database contains also the following relevant information: water sources, forest tracks and traffic ways, lookout posts and urban areas. The aim of this study is to provide the authorities with a tool to assess risk areas and manage more efficiently forest fire hazards, giving more support to their decisions and helping the populations when facing this kind of phenomena.

  10. Temporal variability of forest fires in eastern Amazonia.

    PubMed

    Alencar, Ane; Asner, Gregory P; Knapp, David; Zarin, Daniel

    2011-10-01

    Widespread occurrence of fires in Amazonian forests is known to be associated with extreme droughts, but historical data on the location and extent of forest fires are fundamental to determining the degree to which climate conditions and droughts have affected fire occurrence in the region. We used remote sensing to derive a 23-year time series of annual landscape-level burn scars in a fragmented forest of the eastern Amazon. Our burn scar data set is based on a new routine developed for the Carnegie Landsat Analysis System (CLAS), called CLAS-BURN, to calculate a physically based burn scar index (BSI) with an overall accuracy of 93% (Kappa coefficient 0.84). This index uses sub-pixel cover fractions of photosynthetic vegetation, non-photosynthetic vegetation, and shade/burn scar spectral end members. From 23 consecutive Landsat images processed with the CLAS-BURN algorithm, we quantified fire frequencies, the variation in fire return intervals, and rates of conversion of burned forest to other land uses in a 32 400 km2 area. From 1983 to 2007, 15% of the forest burned; 38% of these burned forests were subsequently deforested, representing 19% of the area cleared during the period of observation. While 72% of the fire-affected forest burned only once during the 23-year study period, 20% burned twice, 6% burned three times, and 2% burned four or more times, with the maximum of seven times. These frequencies suggest that the current fire return interval is 5-11 times more frequent than the estimated natural fire regime. Our results also quantify the substantial influence of climate and extreme droughts caused by a strong El Niño Southern Oscillation (ENSO) on the extent and likelihood of returning forest fires mainly in fragmented landscapes. These results are an important indication of the role of future warmer climate and deforestation in enhancing emissions from more frequently burned forests in the Amazon. PMID:22073631

  11. Landscape development, forest fires, and wilderness management.

    PubMed

    Wright, H E

    1974-11-01

    ' grand scheme of vegetational climax-created soon after Davis's model of landform development-can be evaluated in terms of modern knowledge. Disillusion with the climax model paralleled disillusion with Davis's model in the 1950's, but the climax model can be tested, because the record of vegetational history is accessible, datable, and decipherable. In the short term of a few decades, successional vegetation stages occur in variety of situations, as confirmed by observation or by techniques such as tree-ring analysis. The successional vegetation stages are reactions to nutrients, weather, competition, and consumption. Such succession implies long-term disequilibrium, or at least unidirectional development. The long-term controlling factor in Clements' model of vegetation development is climate. With climatic stability the succession will proceed to a climax. In the Appalachian Mountains, geomorphic, microclimatic, and edaphic conditions limit climax development, producing a polyclimax, which is generally sustained by the dominance of these factors. Death and regeneration of single forest trees is controlled mostly by windstorms. The distributional pattern may be locally transected by lightning fires, major windstorms, or washouts. However, the long-term stability of Appalachian forests is demonstrated by pollen stratigraphy. Although we can infer the long-term stability of Appalachian forests, the trends and mechanics of short-term vegetational succession are not fully understood, because lack of sizable areas of virgin forest limits investigations of natural conditions. In this respect, the eastern United States is already much like western Europe, where climatic and disturbance factors in vegetational history cannot be disentangled. In the Great Lakes region, a large area of virgin forest exists in the BWCA of northeastern Minnesota. Here short- and long-term studies show that for at least 9000 years the principal stabilizing factor has been the frequent occurrence of

  12. Assessment of post forest fire reclamation in Algarve, Portugal

    NASA Astrophysics Data System (ADS)

    Andrade, Rita; Panagopoulos, Thomas; Guerrero, Carlos; Martins, Fernando; Zdruli, Pandi; Ladisa, Gaetano

    2014-05-01

    Fire is a common phenomenon in Mediterranean landscapes and it plays a crucial role in its transformations, making the determination of its impact on the ecosystem essential for land management. During summer of 2012, a wildfire took place in Algarve, Portugal, on an area mainly covered by sclerophyllous vegetation (39.44%, 10080ha), broad-leaved forest (20.80%, 5300ha), agriculture land with significant areas of natural vegetation (17.40%, 4400ha) and transitional woodlands-shrubs (16.17%, 4100ha). The objective of the study was to determine fire severity in order to plan post-fire treatments and to aid vegetation recovery and land reclamation. Satellite imagery was used to estimate burn severity by detecting physical and ecological changes in the landscape caused by fire. Differenced Normalized Burn Ratio (DNBR) was used to measure burn severity with pre and post fire data of four Landsat images acquired in October 2011, February and August 2012 and April 2013. The initial and extended differenced normalized burn ratio (DiNBR and DeNBR) were calculated. The calculated burned area of 24291 ha was 552ha lower than the map data determined with field reports. The 19.5% of that area was burned with high severity, 45% with moderate severity and 28.3% with low severity. Comparing fire severity and regrowth with land use, it is shown in DiNBR that the most severely burned areas were predominantly sclerophyllous vegetation (37.6%) and broad-leaved forests (31.1%). From the DeNRB it was found that the reestablishment of vegetation was slower in mixed forests and higher in sclerophyllous vegetation and in land with significant areas of natural vegetation. Faster recovery was calculated for the land uses of sclerophyllous vegetation (46.7%) and significant regrowth in areas of natural vegetation and lands occupied by agriculture (25.4%). Next steps of the study are field validation and crossing with erosion risk maps before to take land reclamation decisions.

  13. Slash fire hazard analysis on the Siskiyou National Forest

    NASA Astrophysics Data System (ADS)

    Radloff, David L.; Schopfer, Walter C.; Yancik, Richard F.

    1982-11-01

    Potential increase in fire hazard as a result of timber harvesting is a concern of forest managers throughout the United States. Treating fuels can help reduce unacceptable fire hazards. To evaluate alternative fuel treatments, managers need to know their effects on fire hazard. A decision analysis approach to estimating fire hazard in terms of expected burned area was applied to a watershed in the Siskiyou National Forest (Oregon). Three treatment alternatives (do nothing and two levels of yarding unmerchantable material) were evaluated, and the effects of the treatments were projected over a 90-yr period. Initially, the effects of applying a treatment are small. After 50 years of treatment, the most intense alternative can be expected to show almost a 50% reduction in burned area compared to no treatment. The procedure also estimates burned are by fire size and fire intensity classes. Managers may find this useful for estimating expected fire effects associated with a particular fuel treatment regime.

  14. Forest fire autonomous decision system based on fuzzy logic

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Lu, Jianhua

    2010-11-01

    The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.

  15. Forest fire autonomous decision system based on fuzzy logic

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Lu, Jianhua

    2009-09-01

    The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.

  16. Nitrogen balance along a boreal forest fire chronosequence

    NASA Astrophysics Data System (ADS)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2016-04-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change in boreal regions. Because boreal forests comprise 30% of the global forest area, increases in the annual area burned may have significant implications for global carbon and nitrogen (N) cycles. The productivity of boreal forests is limited by low N availability. Fires cause N loss from ecosystems through oxidation and volatilization of N stored in biomass and soil. N balance may be poorly buffered against forest fires especially in sub-arctic ecosystems where atmospheric N deposition is low. Although forest fires alter N dynamics, there are little quantitative data available on N pools and fluxes through post-fire succession in sub-arctic boreal forests. We studied changes in N pools and fluxes, and the overall N balance across a 155-year forest fire chronosequence in sub-arctic Scots pine (Pinus sylvestris) forests in Värriö Strict Nature Reserve situated in Finnish Lapland (67°46' N, 29°35' E). Soil was the largest N pool in all forest age classes and comprised 69-82% of the total ecosystem N pool. The total ecosystem N pool varied from 622 kg ha-1 in the recently burned forest to 960 kg ha-1 in the 155-year-old forest. The forests were N sinks in all age classes the annual N accumulation rate being 2.28 kg ha-1 yr-1 which was distributed almost equally between soil and biomass. The observed changes in ecosystem N pools were consistent with the computed N balance 2.10 kg ha-1 yr-1 over the 155-year post-fire period (Balance= (atmospheric deposition + N fixation) - (leaching + N2O emissions)). The results indicated that N deposition is an important component of the N balance and the N outputs are small (13% of the inputs) in the studied ecosystems. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) compared to the other N fluxes. The biological N fixation increased with succession and constituted 9% of the total N

  17. Forest Fire Management: A Comprehensive And Operational Approach

    NASA Astrophysics Data System (ADS)

    Fabrizi, Roberto; Perez, Bruno; Gomez, Antonio

    2013-12-01

    Remote sensing plays an important role in obtaining rapid and complete information on the occurrence and evolution in space and time of forest fires. In this paper, we present a comprehensive study of fire events through Earth Observation data for early warning, crisis monitoring and post-event damage assessment or a synthesis of the fire event, both in a wide spatial range (local to regional) and temporal scale (short to long term). The fire products are stored and distributed by means of a WebGIS and a Geoportal with additional auxiliary geospatial data. These products allow fire managers to perform analysis and decision making in a more comprehensive manner.

  18. Forest construction infrastructures for the prevision, suppression, and protection before and after forest fires

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Daoutis, Christodoulos

    2014-08-01

    Climatic changes cause temperature rise and thus increase the risk of forest fires. In Greece the forests with the greatest risk to fire are usually those located near residential and tourist areas where there are major pressures on land use changes, while there are no currently guaranteed cadastral maps and defined title deeds because of the lack of National and Forest Cadastre. In these areas the deliberate causes of forest fires are at a percentage more than 50%. This study focuses on the forest opening up model concerning both the prevention and suppression of forest fires. The most urgent interventions that can be done after the fire destructions is also studied in relation to soil protection constructions, in order to minimize the erosion and the torrential conditions. Digital orthophotos were used in order to produce and analyze spatial data using Geographical Information Systems (GIS). Initially, Digital Elevation Models were generated, based on photogrammetry and forest areas as well as the forest road network were mapped. Road density, road distance, skidding distance and the opening up percentage were accurately measured for a forest complex. Finally, conclusions and suggestions have been drawn about the environmental compatibility of forest protection and wood harvesting works. In particular the contribution of modern technologies such as digital photogrammetry, remote sensing and Geographical Information Systems is very important, allowing reliable, effective and fast process of spatial analysis contributing to a successful planning of opening up works and fire protection.

  19. Mapping a recent forest fire with ERTS-1 MSS data

    NASA Technical Reports Server (NTRS)

    Hitchcock, H. C.; Hoffer, R. M.

    1974-01-01

    Accurate fire boundary delineation provides essential information to forest managers in allocating suppression costs and planning regeneration efforts. The objective of this study was to test the capability of computer-aided analysis of ERTS-1 MSS data to accurately define the boundary of a recent forest fire and to discriminate spectral classes within the perimeter. Two frames of ERTS-1 MSS data were selected for analysis of the Moccasin Mesa Fire in Mesa Verde National Park. Data sets were collected one-half growing season and one full growing season after the fire. Results indicate that computer-aided analysis of ERTS-1 MSS data has the capability for accurately delineating fire boundaries and determining acreage of the burned area. Distinct spectral classes may also be defined within the fire perimeter.

  20. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  1. Targeting Audiences and Content for Forest Fire Information Programs.

    ERIC Educational Resources Information Center

    Carpenter, Edwin H.; And Others

    1986-01-01

    Discusses opinion survey results for the purpose of improving the capabilities of forest managers to effectively communicate new fire management objectives and plans. Includes recommendations based on the analysis concerning the appropriate audiences and content to target in the design of fire information programs. (ML)

  2. Characterization of biomass burning aerosols from forest fire in Indonesia

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Iriana, W.; Okumura, M.; Lestari, P.; Tohno, S.; Akira, M.; Okuda, T.

    2012-12-01

    Biomass burning (forest fire, wild fire) is a major source of pollutants, generating an estimate of 104 Tg per year of aerosol particles worldwide. These particles have adverse human health effects and can affect the radiation budget and climate directly and indirectly. Eighty percent of biomass burning aerosols are generated in the tropics and about thirty percent of them originate in the tropical regions of Asia (Andreae, 1991). Several recent studies have reported on the organic compositions of biomass burning aerosols in the tropical regions of South America and Africa, however, there is little data about forest fire aerosols in the tropical regions of Asia. It is important to characterize biomass burning aerosols in the tropical regions of Asia because the aerosol properties vary between fires depending on type and moisture of wood, combustion phase, wind conditions, and several other variables (Reid et al., 2005). We have characterized PM2.5 fractions of biomass burning aerosols emitted from forest fire in Indonesia. During the dry season in 2012, PM2.5 aerosols from several forest fires occurring in Riau, Sumatra, Indonesia were collected on quartz and teflon filters with two mini-volume samplers. Background aerosols in forest were sampled during transition period of rainy season to dry season (baseline period). Samples were analyzed with several analytical instruments. The carbonaceous content (organic and elemental carbon, OC and EC) of the aerosols was analyzed by a thermal optical reflectance technique using IMPROVE protocol. The metal, inorganic ion and organic components of the aerosols were analyzed by X-ray Fluorescence (XRF), ion chromatography and gas chromatography-mass spectrometry, respectively. There was a great difference of chemical composition between forest fire and non-forest fire samples. Smoke aerosols for forest fires events were composed of ~ 45 % OC and ~ 2.5 % EC. On the other hand, background aerosols for baseline periods were

  3. Effects of fire on spotted owl site occupancy in a late-successional forest

    USGS Publications Warehouse

    Roberts, Susan L.; van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.

    2011-01-01

    The spotted owl (Strix occidentalis) is a late-successional forest dependent species that is sensitive to forest management practices throughout its range. An increase in the frequency and spatial extent of standreplacing fires in western North America has prompted concern for the persistence of spotted owls and other sensitive late-successional forest associated species. However, there is sparse information on the effects of fire on spotted owls to guide conservation policies. In 2004-2005, we surveyed for California spotted owls during the breeding season at 32 random sites (16 burned, 16 unburned) throughout late-successional montane forest in Yosemite National Park, California. Our burned areas burned at all severities, but predominately involved low to moderate fire severity. Based on an information theoretic approach, spotted owl detection and occupancy rates were similar between burned and unburned sites. Nest and roost site occupancy was best explained by a model that combined total tree basal area (positive effect) with cover by coarse woody debris (negative effect). The density estimates of California spotted owl pairs were similar in burned and unburned forests, and the overall mean density estimate for Yosemite was higher than previously reported for montane forests. Our results indicate that low to moderate severity fires, historically common within montane forests of the Sierra Nevada, California, maintain habitat characteristics essential for spotted owl site occupancy. These results suggest that managed fires that emulate the historic fire regime of these forests may maintain spotted owl habitat and protect this species from the effects of future catastrophic fires.

  4. Fire protection for launch facilities using machine vision fire detection

    NASA Astrophysics Data System (ADS)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  5. Fire protection for launch facilities using machine vision fire detection

    NASA Technical Reports Server (NTRS)

    Schwartz, Douglas B.

    1993-01-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  6. Post-fire reconstructions of fire intensity from fire severity data: quantifying the role of spatial variability of fire intensity on forest dynamics

    NASA Astrophysics Data System (ADS)

    Baker, Patrick; Oborne, Lisa

    2015-04-01

    Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to

  7. Predicting Fire Susceptibility in the Forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Nepstad, Daniel C.; Brown, I. Foster; Setzer, Alberto

    2000-01-01

    Although fire is the single greatest threat to the ecological integrity of Amazon forests, our ability to predict the occurrence of Amazon forest fires is rudimentary. Part of the difficulty encountered in making such predictions is the remarkable capacity of Amazon forests to tolerate drought by tapping moisture stored in deep soil. These forests can avoid drought-induced leaf shedding by withdrawing moisture to depths of 8 meters and more. Hence, the absorption of deep soil moisture allows these forests to maintain their leaf canopies following droughts of several months duration, thereby maintaining the deep shade and high relative humidity of the forest interior that prevents these ecosystems from burning. But the drought- and fire-avoidance that is conferred by this deep-rooting phenomenon is not unlimited. During successive years of drought, such as those provoked by El Nino episodes, deep soil moisture can be depleted, and drought-induced leaf shedding begins. The goal of this project was to incorporate this knowledge of Amazon forest fire ecology into a predictive model of forest flammability.

  8. PCDD/F EMISSIONS FROM FOREST FIRE SIMULATIONS

    EPA Science Inventory

    Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emissions from combustion of forest biomass were sampled to obtain an estimated emission factor for forest fires. An equal composition of live shoot and litter biomass from Oregon and North Carolina was b...

  9. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure

    PubMed Central

    Miquelajauregui, Yosune; Cumming, Steven G.; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity. PMID:26919456

  10. Water evaporation particularities in the process of forest fire extinguishing

    NASA Astrophysics Data System (ADS)

    Strizhak, Pavel A.; Volkov, Roman S.; Vysokomornaya, Olga V.; Voytkov, Ivan S.

    2015-01-01

    Numerical simulation of water massif motion through the high temperature gases corresponding to the typical conditions of forest fires was carried out. Maximal values of part by volume of liquid evaporating from water massif under its motion through the flaming burning area were determined when solving the heat and mass transfer problem under the conditions of endothermic phase transformations. Influence of liquid phase transition heat on the heat and mass transfer conditions on the track of water massif was determined. The expediency of polydisperse interspaced in time and space atomization of water massifs under the large-scale (especially, forest fires) fire extinguishing was proved.

  11. Web service tools in the era of forest fire management and elimination

    NASA Astrophysics Data System (ADS)

    Poursanidis, Dimitris; Kochilakis, Giorgos; Chrysoulakis, Nektarios; Varella, Vasiliki; Kotroni, Vassiliki; Eftychidis, Giorgos; Lagouvardos, Kostas

    2014-10-01

    Wildfires in forests and forested areas in South Europe, North America, Central Asia and Australia are a diachronic threat with crucial ecological, economic and social impacts. Last decade the frequency, the magnitude and the intensity of fires have increased even more because of the climate change. An efficient response to such disasters requires an effective planning, with an early detection system of the ignition area and an accurate prediction of fire propagation to support the rapid response mechanisms. For this reason, information systems able to predict and visualize the behavior of fires, are valuable tools for fire fighting. Such systems, able also to perform simulations that evaluate the fire development scenarios, based on weather conditions, become valuable Decision Support Tools for fire mitigation planning. A Web-based Information System (WIS) developed in the framework of the FLIRE (Floods and fire risk assessment and management) project, a LIFE+ co-funded by the European Commission research, is presented in this study. The FLIRE WIS use forest fuel maps which have been developed by using generalized fuel maps, satellite data and in-situ observations. Furthermore, it leverages data from meteorological stations and weather forecast from numerical models to feed the fire propagation model with the necessary for the simulations inputs and to visualize the model's results for user defined time periods and steps. The user has real-time access to FLIRE WIS via any web browser from any platform (PC, Laptop, Tablet, Smartphone).

  12. Designing an infrared system to map and detect wildland fires

    NASA Astrophysics Data System (ADS)

    Nichols, J. David; Parks, Gary S.; Voss, Jeffrey M.; Mortensen, Robert A.; Logan, Thomas L.

    1989-09-01

    The 'Firefly' project is developing an infrared remote sensing system to provide near real-time wildland fire information for fire management and suppression. Recent technological advances in several areas now allow the design of an end-to-end, infrared system to map and detect wildland fires. The system components will include an airborne infrared sensor, automatic onboard signal and data processing, telecommunications link, and integration into a ground data terminal. The system will provide improved performance over current systems in terms of increased timeliness of data delivery, quantifiable accuracy, data consistency, reliability, and maintainability. The system will be the next generation of wildland fire mapping and detection system for the United States Forest Service.

  13. Designing an infrared system to map and detect wildland fires

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Parks, Gary S.; Voss, Jeffrey M.; Mortensen, Robert A.; Logan, Thomas L.

    1989-01-01

    The 'Firefly' project is developing an infrared remote sensing system to provide near real-time wildland fire information for fire management and suppression. Recent technological advances in several areas now allow the design of an end-to-end, infrared system to map and detect wildland fires. The system components will include an airborne infrared sensor, automatic onboard signal and data processing, telecommunications link, and integration into a ground data terminal. The system will provide improved performance over current systems in terms of increased timeliness of data delivery, quantifiable accuracy, data consistency, reliability, and maintainability. The system will be the next generation of wildland fire mapping and detection system for the United States Forest Service.

  14. Development of a fire detection algorithm for the COMS (Communication Ocean and Meteorological Satellite)

    NASA Astrophysics Data System (ADS)

    Kim, Goo; Kim, Dae Sun; Lee, Yang-Won

    2013-10-01

    The forest fires do much damage to our life in ecological and economic aspects. South Korea is probably more liable to suffer from the forest fire because mountain area occupies more than half of land in South Korea. They have recently launched the COMS(Communication Ocean and Meteorological Satellite) which is a geostationary satellite. In this paper, we developed forest fire detection algorithm using COMS data. Generally, forest fire detection algorithm uses characteristics of 4 and 11 micrometer brightness temperature. Our algorithm additionally uses LST(Land Surface Temperature). We confirmed the result of our fire detection algorithm using statistical data of Korea Forest Service and ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer) images. We used the data in South Korea On April 1 and 2, 2011 because there are small and big forest fires at that time. The detection rate was 80% in terms of the frequency of the forest fires and was 99% in terms of the damaged area. Considering the number of COMS's channels and its low resolution, this result is a remarkable outcome. To provide users with the result of our algorithm, we developed a smartphone application for users JSP(Java Server Page). This application can work regardless of the smartphone's operating system. This study can be unsuitable for other areas and days because we used just two days data. To improve the accuracy of our algorithm, we need analysis using long-term data as future work.

  15. Fire risk and adaptation strategies in Northern Eurasian forests

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry

    2013-04-01

    On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the

  16. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    PubMed

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  17. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    NASA Astrophysics Data System (ADS)

    Jalilzadeh Shadlouei, A.; Delavar, M. R.

    2013-09-01

    There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative

  18. Improved estimates of boreal Fire Radiative Energy using high temporal resolution data and a modified active fire detection algorithm

    NASA Astrophysics Data System (ADS)

    Barrett, Kirsten

    2016-04-01

    Reliable estimates of biomass combusted during wildfires can be obtained from satellite observations of fire radiative power (FRP). Total fire radiative energy (FRE) is typically estimated by integrating instantaneous measurements of fire radiative power (FRP) at the time of orbital satellite overpass or geostationary observation. Remotely-sensed FRP products from orbital satellites are usually global in extent, requiring several thresholding and filtering operations to reduce the number of false fire detections. Some filters required for a global product may not be appropriate to fire detection in the boreal forest resulting in errors of omission and increased data processing times. We evaluate the effect of a boreal-specific active fire detection algorithm and estimates of FRP/FRE. Boreal fires are more likely to escape detection due to lower intensity smouldering combustion and sub canopy fires, therefore improvements in boreal fire detection could substantially reduce the uncertainty of emissions from biomass combustion in the region. High temporal resolution data from geostationary satellites have led to improvements in FRE estimation in tropical and temperate forests, but such a perspective is not possible for high latitude ecosystems given the equatorial orbit of geostationary observation. The increased density of overpasses in high latitudes from polar-orbiting satellites, however, may provide adequate temporal sampling for estimating FRE.

  19. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used burned area estimates based on Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and Advanced Very High Resolution Radiometer (AVHRR) derived estimates of plant productivity during the same period. Average global fire carbon emissions were 2.0 Pg yr-1 with significant interannual variability during 1997-2001 (2.8 Pg/yr in 1998 and 1.6 Pg/yr in 2001). Emissions during 2002-2007 were relatively constant (around 2.1 Pg/yr) before declining in 2008 (1.7 Pg/yr) and 2009 (1.5 Pg/yr) partly due to lower deforestation fire emissions in South America and tropical Asia. During 2002-2007, emissions were highly variable from year-to-year in many regions, including in boreal Asia, South America, and Indonesia, but these regional differences cancelled out at a global level. During the MODIS era (2001-2009), most fire carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires

  20. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year-1 with significant interannual variability during 1997-2001 (2.8 Pg C year-1 in 1998 and 1.6 Pg C year-1 in 2001). Globally, emissions during 2002-2007 were relatively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg C year-1) and 2009 (1.5 Pg C year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and

  1. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-06-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used burned area estimates based on Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and Advanced Very High Resolution Radiometer (AVHRR) derived estimates of plant productivity during the same period. Average global fire carbon emissions were 2.0 Pg yr-1 with significant interannual variability during 1997-2001 (2.8 Pg yr-1 in 1998 and 1.6 Pg yr-1 in 2001). Emissions during 2002-2007 were relatively constant (around 2.1 Pg yr-1) before declining in 2008 (1.7 Pg yr-1) and 2009 (1.5 Pg yr-1) partly due to lower deforestation fire emissions in South America and tropical Asia. During 2002-2007, emissions were highly variable from year-to-year in many regions, including in boreal Asia, South America, and Indonesia, but these regional differences cancelled out at a global level. During the MODIS era (2001-2009), most fire carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland

  2. Remote fire detection using MMW radiometric sensor

    NASA Astrophysics Data System (ADS)

    Sadovnik, Lev S.; Manasson, Vladimir A.; Chapman, Robert E.; Mino, Robert M.; Kiseliov, Vladimir

    1998-08-01

    Lack of reliable fire warning and detection systems for urban/wildland interface, large area industrial facilities and transportation systems result each year in a loss of millions of dollars worth of property; it also endangers lives. Typical optical fire detection sensor do not work well under frequency encountered adverse atmospheric conditions and, in addition, are incapable of covering sizable areas. WaveBand has recently developed hardware to study the feasibility of fire detection using a millimeter wave (MMW) scanning radiometer. It has proven the advantages of remote fire detection even under adverse weather conditions and through fire-generated smoke, better immunity to false alarms than optical sensors, and larger area of coverage. Despite using a wavelength that is much longer than that of visible light, the MMW sensor can accurate pinpoint the location of a developing fire.

  3. Forest Interpreter's Primer on Fire Management.

    ERIC Educational Resources Information Center

    Zelker, Thomas M.

    Specifically prepared for the use of Forest Service field-based interpreters of the management, protection, and use of forest and range resources and the associated human, cultural, and natural history found on these lands, this book is the second in a series of six primers on the multiple use of forest and range resources. Following an…

  4. Forest-climate feedbacks mediated through fire in the Eastern boreal forests of Canada

    NASA Astrophysics Data System (ADS)

    Bernier, P. Y.; Girardin, M. P.; Desjardins, R. L.; Gauthier, S.; Karimi-Zindashty, Y.; Worth, D.; Beaudoin, A.; Luo, Y.; Wang, S.

    2010-12-01

    Boreal forests are one of the largest biomes on earth, covering 27% of the world’s forests. In Canada, the dynamics of the boreal forests are largely dominated by large scale disturbances, with crown fires being the most geographically and temporally common. The probability of fire occurrence is strongly coupled to climate, making fire regimes quite variable across the country. Recent trends in fire regimes as well as predicted trends under climate scenarios also vary spatially. We present the results of two studies in which we have evaluated the climate - fire - forest feedbacks in parts of the boreal forest. Results show that feedbacks can be substantial and can alter the importance and even the direction of forest impacts on the climate system. The first feedback investigated was the link between fire-driven changes in forest cover properties and albedo in the boreal forests of Eastern Canada. Repeated disturbances in closed canopy forest dominated by black spruce (Picea mariana) on coarse soils sometimes push stands into an alternate stable open lichen woodland state. These lichen woodlands have a high albedo on account of the pale ground cover. Calculations show that the increase in albedo due to the opening of the canopy has a greater radiative forcing effect than that of the CO2 emitted to the atmosphere on account of the burning of the original forest. In these regions, climate-driven fire regimes thus generate a negative feedback to the climate system through their effects on forest cover properties. The second feedback investigated is linked to a recent decrease in fire frequency in Eastern Canada, and how this decrease might be affecting the growth-enhancing effect of a warmer climate because of its impact on the age-class distribution of the forest. The fire regime drives the age class distribution of forest landscapes. Since age class distribution drives landscape-level productivity, we have studied how this effect interacts with climate warming in

  5. Infinity computations in cellular automaton forest-fire model

    NASA Astrophysics Data System (ADS)

    Iudin, D. I.; Sergeyev, Ya. D.; Hayakawa, M.

    2015-03-01

    Recently a number of traditional models related to the percolation theory has been considered by means of a new computational methodology that does not use Cantor's ideas and describes infinite and infinitesimal numbers in accordance with the principle 'The whole is greater than the part' (Euclid's Common Notion 5). Here we apply the new arithmetic to a cellular automaton forest-fire model which is connected with the percolation methodology and in some sense combines the dynamic and the static percolation problems and under certain conditions exhibits critical fluctuations. It is well known that there exist two versions of the model: real forest-fire model where fire catches adjacent trees in the forest in the step by step manner and simplified version with instantaneous combustion. Using new approach we observe that in both situations we deal with the same model but with different time resolution. We show that depending on the "microscope" we use the same cellular automaton forest-fire model reveals either instantaneous forest combustion or step by step firing. By means of the new approach it was also observed that as far as we choose an infinitesimal tree growing rate and infinitesimal ratio between the ignition probability and the growth probability we determine the measure or extent of the system size infinity that provides the criticality of the system dynamics. Correspondent inequalities for grosspowers are derived.

  6. Using the Canadian Forest Fire Weather Index (FWI) System to assess the performance of fire management in Portugal

    NASA Astrophysics Data System (ADS)

    Fernandes, P. M.; Pereira, M. G.

    2009-04-01

    The success of fire management policies can be gauged by changes on the fire regime characteristics. Climate, vegetation (fuel) and topography determine the fire regime, and exert their influences at distinct temporal and spatial scales whose relative importance is quite debated. Climate factors are expected to prevail at the regional scale, while the local control of fire behaviour is determined by fuel and terrain. Recent modifications - 2001-2005 versus 2006-2008 - in wildfire incidence in Portugal are quantified by eliminating the noise associated to fire weather conditions. The following indicators of fire management performance are used, each reflecting a distinct fire management activity: number of fires, proportion of fires larger than 1 ha, proportion of fires larger than 100 ha, and median size of wildfires larger than 100 ha. The performance indicators calculated on a daily basis were examined as a function of the Canadian Forest Fire Weather Index (FWI) System components. Analysis of covariance was used to identify differences in performance between the two study periods, and non-linear regression analysis was employed to model performance indicators from FWI components for 2001-2005. The resulting models were then applied to 2006-2008 and the deviation between observed and predicted values was determined. Least square means (adjusted for neutral weather conditions) revealed statistically significant differences between the two periods for all indicators but the median size of wildfires > 100 ha. The remaining indicators were in 2006-2008 reduced by 21% (no. fires), 37% (proportion of fires >1 ha) and 63% (proportion of fires >100 ha) in comparison with 2001-2005. The results indicate that the combined performance of fire prevention, fire detection, first intervention and initial attack have improved after 2005. Reduction in the number of large fires is especially relevant, given their impact and weight in total burned area. However, no evidences were

  7. Hydrogen Fire Detection System Features Sharp Discrimination

    NASA Technical Reports Server (NTRS)

    Bright, C. S.

    1966-01-01

    Hydrogen fire detection system discovers fires by detecting the flickering ultraviolet radiation emitted by the OH molecule, a short-lived intermediate combustion product found in hydrogen-air flames. In a space application, the system discriminates against false signals from sunlight and rocket engine exhaust plume radiation.

  8. Effects of fire on properties of forest soils: a review.

    PubMed

    Certini, Giacomo

    2005-03-01

    Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described. PMID:15688212

  9. Forest Fires in Southwestern Amazonia During 2005: Extent and Distribution in Eastern Acre State, Brazil

    NASA Astrophysics Data System (ADS)

    Brown, I.; Moulard, E. M.; Nakamura, J.; Schroeder, W.; Maldonado, M.; Vasconcelos, S. S.; Selhorst, D.

    2007-05-01

    The extended drought in western Amazonia during 2005 provided the conditions for wild fires that spread in old- growth rain forests and cleared areas of the contiguous areas of Madre de Dios, Peru, Acre, Brazil, and Pando, Bolivia, collectively known as the MAP Region. The greatest extent of the wild fires occurred in eastern Acre State with 60,000 km2 of diverse land uses that range from intensely occupied colonization areas, large cattle ranches, extractive and biological reserves and indigenous areas. At the request of the Public Ministry of Acre and other government agencies we analyzed Landsat 5 and CBERS 2 imagery for forests with canopies affected by fires, using visual interpretation and manual digitalization of polygons. Accuracy assessment was done with 180 aerial photos. The total area of forest with canopies affected by fires was 267,000 ha, roughly five times recent annual deforestation rates for Acre State. Omission and commission errors were 28% and 2%, respectively. Burn scars in non-forest areas were determined using ASTER and CBERS 2 imagery via supervised classification. Total open area with burn scars was 203,000 ha. The total of open area and forests affected by fires exceeded 470,000 ha due to three factors: (1) some images used did not include the last weeks of burning; (2) ground fires in forests that did not affect the canopy and therefore were not detected; and (3) concern of the interpreters to avoid commission errors. Of the twelve municipalities of eastern Acre, most affected were Acrelandia, Placido de Castro, Epitaciolandia with >31%, >19% and >17% of the municipality affected, respectively). The largest impact, >114,000 ha, occurred in the Rio Branco Municipality. Similar patterns of burning occurred in Pando and in Madre de Dios. The environmental, social and economic disaster that these fires produced may be a harbinger of future impacts in southwestern Amazonia if current climate predictions prove to be correct.

  10. Analysis of principal parameters of forest fires and identification of desertification process in semi-arid land in Algeria

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2013-10-01

    In semi arid land in Algeria the ecosystem of steppe presents a different vegetal formation, generally used for pasture, and the forest are in most time composed by species like Aleppo pine sparse. And seen climatic unfavourable conditions in zone and impact of forest fires; we notes deterioration of physical environment particularly, deterioration of natural forest. This deterioration of forests provokes an unbalance of environment witch provokes a process of deterioration advanced in the ultimate stadium is desertification. The specific regeneration of plants are influenced greatly by the regime of fire (season of fire, intensity, interval), who leads to the recuperation of the vegetation of meadow- fire, but in the most case there are unfavourable climatic conditions. In this survey we used satellite data for detection of zones with risk of forest fire and their influenced parameters witch permit generally a desertification process. A thematic detailed analysis of forests ecosystems well attended, some processing on the satellite data (2003) allowed us to identify and classifying the forests in there opinion components flowers. We identified ampleness of fire on this zone also. The parameters slope, the proximity to the road and the forests formations and fire regime were studied in the goal of determining the zones to risk of fire drill. A crossing of information in a geographic information system according to a very determined logic allowed us to classify the zones in degree of risk of fire. These results compared with image data (2011) permit to conclude that in semi arid land the forest ecosystem after fire becomes steppe courses permitting installation of process of desertification.

  11. Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.

    2006-01-01

    In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.

  12. Aerosol spectral optical depths - Jet fuel and forest fire smokes

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.

    1990-01-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  13. Solar activity as a possible cause of large forest fires--a case study: analysis of the Portuguese forest fires.

    PubMed

    Gomes, J F P; Radovanovic, M

    2008-05-01

    Fires of large dimension destroy forests, harvests and housing objects. Apart from that combustion products and burned surfaces become large ecological problems. Very often fires emerge simultaneously on different locations of a region so a question could be asked if they always have been a consequence of negligence, pyromania, high temperatures or maybe there has been some other cause. This paper is an attempt of establishing the possible connection between forest fires that numerous satellites registered and activities happening on the Sun immediately before fires ignite. Fires emerged on relatively large areas from Portugal and Spain on August 2005, as well as on other regions of Europe. The cases that have been analyzed show that, in every concrete situation, an emission of strong electromagnetic and thermal corpuscular energy from highly energetic regions that were in geo-effective position had preceded the fires. Such emissions have, usually, very high energy and high speeds of particles and come from coronary holes that also have been either in the very structure or in the immediate closeness of the geo-effective position. It should also be noted that the solar wind directed towards the Earth becomes weaker with deeper penetration towards the topographic surface. However, the results presented in this paper suggest that, there is a strong causality relationship between solar activity and the ignition of these forest fires taking place in South-western Europe. PMID:18291443

  14. Large forest fires in Canada, 1959-1997

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.

    2002-01-01

    A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ˜97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ˜2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

  15. Large forest fires in Canada, 1959-1997

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.

    2003-01-01

    A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ~97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ~2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

  16. Logging and Fire Effects in Siberian Boreal Forests

    NASA Astrophysics Data System (ADS)

    Kukavskaya, E.; Buryak, L.; Ivanova, G.; Kalenskaya, O.; Bogorodskaya, A.; Zhila, S.; McRae, D.; Conard, S. G.

    2013-12-01

    The Russian boreal zone supports a huge terrestrial carbon pool. Moreover, it is a tremendous reservoir of wood products concentrated mainly in Siberia. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and has potentially important climate feedbacks. In addition, both legal and illegal logging increase landscape complexity and fire hazard. We investigated a number of sites in different regions of Siberia to evaluate the impacts of fire and logging on fuel loads, carbon emissions, tree regeneration, soil respiration, and microbocenosis. We found large variations of fire and logging effects among regions depending on growing conditions and type of logging activity. Partial logging had no negative impact on forest conditions and carbon cycle. Illegal logging resulted in increase of fire hazard, and higher carbon emissions than legal logging. The highest fuel loads and carbon emissions were found on repeatedly burned unlogged sites where first fire resulted in total tree mortality. Repeated fires together with logging activities in drier conditions and on large burned sites resulted in insufficient regeneration, or even total lack of tree seedlings. Soil respiration was less on both burned and logged areas than in undisturbed forest. The highest structural and functional disturbances of the soil microbocenosis were observed on logged burned sites. Understanding current interactions between fire and logging is important for modeling ecosystem processes and for managers to develop strategies of sustainable forest management. Changing patterns in the harvest of wood products increase landscape complexity and can be expected to increase emissions and ecosystem damage from wildfires, inhibit recovery of natural ecosystems, and exacerbate impacts of wildland fire on changing climate and air quality. The research was supported by NASA LCLUC Program, RFBR grant # 12-04-31258, and Russian Academy of Sciences.

  17. Model gives a 3-month warning of Amazonian forest fires

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The widespread drought suffered by the Amazon rain forest in the summer of 2005 was heralded at the time as the drought of the century. Because of the dehydrated conditions, supplemented by slash and burn agricultural practices, the drought led to widespread forest fires throughout the western Amazon, a portion of the rain forest usually too lush to support spreading wildfires. Only 5 years later, the 2005 season was outdone by even more widespread drought, with fires decimating more than 3000 square kilometers of western Amazonian rain forest. Blame for the wildfires has been consistently laid on deforestation and agricultural practices, but a convincing climatological explanation exists as well. (Geophysical Research Letters, doi:10.1029/2011GL047392, 2011)

  18. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...) Each fire detection system must be divided into zones to limit the area covered by any particular...

  19. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...) Each fire detection system must be divided into zones to limit the area covered by any particular...

  20. Spatiotemporal dynamics of forest degradation by selective logging and forest fire in the Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Matricardi, Eraldo A. T.

    Selective logging and forest fires have increased at a rapid pace in tropical regions in recent decades. Forest disturbances caused by selective logging and forest fires may vary in scale, ranging from local damage to forest canopy, habitats, soils, and biodiversity, to global changes caused by logging-related release of carbon into the atmosphere. This study provides a regional assessment of forest impacts by selective logging and forest fires for 1992, 1996, and 1999. Multivariate statistical models, remote sensing approaches, Geographic Information System (GIS), and remotely sensed imagery combined with field data were applied to verify the scale of environmental changes associated with these processes of forest disturbance. In this regard, the study widens the current knowledge on land use and land cover classifications to include selectively logged and burned forests as additional thematic classes. These classes have not yet been properly accounted for by conventional remote sensing approaches of deforestation assessment, despite their relevance for the understanding of the changes affecting tropical forests. This study is the first multi-temporal and spatial assessment of the selective logging and forest fire impacts in the Brazilian Amazon. The resulting estimates show that at least 11800 km 2, 16500 km2, and 35600 km2 of natural forests were selectively logged and/or burned by 1992, 1996, and 1999, respectively. More than 60% of these forest disturbances observed in the Brazilian Amazon during those years were due to selective logging activities. However, forest fires were responsible for the greatest impacts on natural forests, causing an estimated loss of 18.8% of forest canopy in the study region. I also estimated that approximately 5467 km2, 7618 km2, and 17437 km2 were active areas of selective logging and/or forest fires in 1992, 1996, and 1999, respectively. In addition, approximately 4% of total forest disturbed by selective logging and forest fires

  1. Telemetry Speeds Forest-Fire Control

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Cherbonneaux, J. W.

    1984-01-01

    Airborne system rapidly delivers hard copy to firefighters. Sensors in airplane send data to ground station for image processing. Imagery immediately transferred to U.S. Geologic Survey (USGS) maps by photo interpreter. Maps transmitted by telecopies directly to fire-control camps. Receipt by fire camp less than 10 minutes. Information aids in decisions involving deployment of firefighters and equipment, flood control, monitoring oilspills, observing thermal currents, and pollutions monitoring.

  2. Multisensor cargo bay fire detection system

    NASA Astrophysics Data System (ADS)

    Snyder, Brian L.; Anderson, Kaare J.; Renken, Christopher H.; Socha, David M.; Miller, Mark S.

    2004-08-01

    Current aircraft cargo bay fire detection systems are generally based on smoke detection. Smoke detectors in modern aircraft are predominately photoelectric particle detectors that reliably detect smoke, but also detect dust, fog, and most other small particles. False alarms caused by these contaminants can be very costly to the airlines because they can cause flights to be diverted needlessly. To minimize these expenses, a new approach to cargo bay fire detection is needed. This paper describes a novel fire detection system developed by the Goodrich Advanced Sensors Technical Center. The system uses multiple sensors of different technologies to provide a way of discriminating between real fire events and false triggers. The system uses infrared imaging along with multiple, distributed chemical sensors and smoke detectors, all feeding data to a digital signal processor. The processor merges data from the chemical sensors, smoke detectors, and processed images to determine if a fire (or potential fire) is present. Decision algorithms look at all this data in real-time and make the final decision about whether a fire is present. In the paper, we present a short background of the problem we are solving, the reasons for choosing the technologies used, the design of the system, the signal processing methods and results from extensive system testing. We will also show that multiple sensing technologies are crucial to reducing false alarms in such systems.

  3. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... Forest Service Nationwide Aerial Application of Fire Retardant on National Forest System Lands AGENCY... aerial application of fire retardant on National Forest System lands. The responsible official for this.... Comments may also be sent via e- mail to FireRetardantEIS@fs.fed.us . FOR FURTHER INFORMATION CONTACT:...

  4. Fire history and fire-climate relationships in upper elevation forests of the southwestern United States

    NASA Astrophysics Data System (ADS)

    Margolis, Ellis Quinn

    Fire history and fire-climate relationships of upper elevation forests of the southwestern United States are imperative for informing management decisions in the face of increased crown fire occurrence and climate change. I used dendroecological techniques to reconstruct fires and stand-replacing fire patch size in the Madrean Sky Islands and Mogollon Plateau. Reconstructed patch size (1685-1904) was compared with contemporary patch size (1996-2004). Reconstructed fires at three sites had stand-replacing patches totaling > 500 ha. No historical stand-replacing fire patches were evident in the mixed conifer/aspen forests of the Sky Islands. Maximum stand-replacing fire patch size of modern fires (1129 ha) was greater than that reconstructed from aspen (286 ha) and spruce-fir (521 ha). Undated spruce-fir patches may be evidence of larger (>2000ha) stand-replacing fire patches. To provide climatological context for fire history I used correlation and regionalization analyses to document spatial and temporal variability in climate regions, and El-Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) teleconnections using 273 tree-ring chronologies (1732-1979). Four regions were determined by common variability in annual ring width. The component score time series replicate spatial variability in 20th century droughts (e.g., 1950's) and pluvials (e.g., 1910's). Two regions were significantly correlated with instrumental SOI and AMO, and three with PDO. Sub-regions within the southwestern U.S. varied geographically between the instrumental (1900-1979) and the pre-instrumental periods (1732-1899). Mapped correlations between ENSO, PDO and AMO, and tree-ring indices illustrate detailed sub-regional variability in the teleconnections. I analyzed climate teleconnections, and fire-climate relationships of historical upper elevation fires from 16 sites in 8 mountain ranges. I tested for links between Palmer

  5. Dynamic Analysis and Pattern Visualization of Forest Fires

    PubMed Central

    Lopes, António M.; Tenreiro Machado, J. A.

    2014-01-01

    This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns. PMID:25137393

  6. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  7. Predicting Forest Floor Consumption From Wildland Fire in Boreal forests of Alaska

    NASA Astrophysics Data System (ADS)

    Ottmar, R. D.

    2010-12-01

    Forest fires are one of the dominant ecological force shaping the distribution and structure of boreal ecosystems. Many areas of the boreal forests of Alaska often contain deep layers of moss, duff, and peat, resulting in large pools of sequestered carbon and biomass that potentially can burn and smolder for long periods of time during these wildfires creating hazardous smoke episodes for local residents and communities and causing detrimental landscape impacts. Research to quantify forest floor consumption is critical for effective modeling fire effects such as smoke emissions, regional haze, global warming, permafrost melting, erosion, and plant succession. Forest floor reduction was measured at 18 black and white spruce and birch-aspen prescribed fires between 1990-2004 and 24 black and white spruce sites on 6 wildfires during 2003 and 2004. Three of the sites were part of the large international Frostfire project near Fairbanks, Alaska, and were used as an independent test data set. Several forest floor reduction equations were developed, of which one is presented in this presentation. The double parameter equation uses upper forest floor fuel moisture content and preburn forest floor depth as independent variables. The fuel moisture content of the upper forest floor can be obtained from forest floor samples that are collected, oven dried, and weighed to determine gravimetric fuel moisture content. The preburn forest floor depths require onsite measurements to be collected. The forest floor consumption model has been incorporated into Consume, a software package used by land managers and scientists to predict fuel consumption during wildland fires.

  8. Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.

    2013-03-01

    Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.

  9. The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.

    PubMed

    Price, Owen F; Gordon, Christopher E

    2016-10-01

    Fuel load is a primary determinant of fire spread in Australian forests. In east Australian forests, litter and canopy fuel loads and hence fire hazard are thought to be highest at and beyond steady-state fuel loads 15-20 years post-fire. Current methods used to predict fuel loads often rely on course-scale vegetation maps and simple time-since-fire relationships which mask fine-scale processes influencing fuel loads. Here we use Light Detecting and Remote Sensing technology (LiDAR) and field surveys to quantify post-fire mid-story and crown canopy fuel accumulation and fire hazard in Dry Sclerophyll Forests of the Sydney Basin (Australia) at fine spatial-scales (20 × 20 m cell resolution). Fuel cover was quantified in three strata important for crown fire propagation (0.5-4 m, 4-15 m, >15 m) over a 144 km(2) area subject to varying fire fuel ages. Our results show that 1) LiDAR provided a precise measurement of fuel cover in each strata and a less precise but still useful predictor of surface fuels, 2) cover varied greatly within a mapped vegetation class of the same fuel age, particularly for elevated fuel, 3) time-since-fire was a poor predictor of fuel cover and crown fire hazard because fuel loads important for crown fire propagation were variable over a range of fire fuel ages between 2 and 38 years post-fire, and 4) fuel loads and fire hazard can be high in the years immediately following fire. Our results show the benefits of spatially and temporally specific in situ fuel sampling methods such as LiDAR, and are widely applicable for fire management actions which aim to decrease human and environmental losses due to wildfire. PMID:27558828

  10. New insights into halocarbon emissions in boreal regions: Forest fires and Alberta oil sands

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Barletta, B.; Meinardi, S.; Marrero, J.; Rowland, F. S.; Akagi, S. K.; Yokelson, R. J.; Blake, D. R.

    2011-12-01

    Boreal forest fires and Alberta oil sands represent two major co-located trace gas emission sources within the boreal ecosystem. During the airborne ARCTAS mission in summer 2008, UC-Irvine performed the most comprehensive characterization of halocarbon emissions from boreal forest fires to date. In summer 2008 and 2010 we also performed the first independent characterizations of halocarbon emissions from Alberta's oil sands industry. In both cases the measurements were made using whole air sampling followed by gas chromatography analysis using electron capture detection and mass spectrometer detection. In the case of boreal forest fires, of 26 speciated halocarbons that were measured, only the simplest halocarbons were emitted from the fires (CH3Cl, CH3Br, CH3I, 1,2-C2H4Cl2, C2H5Cl and CH2Br2) (Simpson et al., 2011). These compounds were released in relatively small quantities and together they represented <0.3% of the total carbon released from boreal forest fires in the form of non-methane volatile organic compounds (NMVOCs). Even though CH3Cl was the most abundantly emitted halocarbon, its average global emission from boreal forest fires (0.011 ± 0.003 Tg yr-1) was very small compared to its global source budget. The poly-chlorinated compounds CH2Cl2, CHCl3 and CH3CCl3 were not released from the fires. In the case of the Alberta oil sands, based on airborne measurements during the ARCTAS mission, 15 of 26 measured halocarbons were statistically enhanced over the oil sands compared to local background values (Simpson et al., 2010). The short-lived solvents C2HCl3, C2Cl4, C2H5Cl and CHCl3 were the most strongly enhanced halocarbons, with maximum values that were 1.5-34× the local background. A subsequent ground-based study in 2010 detected even stronger halocarbon enhancements downwind of upgraders and tailings sand at the oil sands surface mining sites. For example C2HCl3 and CHBrCl2 mixing ratios were up to 60-85× the local background values. Long

  11. Infrared-enhanced TV for fire detection

    NASA Technical Reports Server (NTRS)

    Hall, J. R.

    1978-01-01

    Closed-circuit television is superior to conventional smoke or heat sensors for detecting fires in large open spaces. Single TV camera scans entire area, whereas many conventional sensors and maze of interconnecting wiring might be required to get same coverage. Camera is monitored by person who would trip alarm if fire were detected, or electronic circuitry could process camera signal for fully-automatic alarm system.

  12. Droughts and forest fires in Mediterranean Europe

    NASA Astrophysics Data System (ADS)

    Turco, Marco; Llasat, Maria-Carmen; von Hardenberg, Jost; Provenzale, Antonello

    2015-04-01

    Most of the total burned area in Europe occurs in Mediterranean regions, with severe economic and environmental damage, life loss and an average of about 4500 km2 burned every year. A better understanding of the impacts on wildfires of environmental and socioeconomic changes is crucial to develop adequate measures of prevention, adaptation and mitigation in this area. Here we focus on the impact of droughts on fires in European Mediterranean regions (Portugal, Spain, the south of France, Italy, Greece). This goal will be achieved through three specific supporting objectives: (1) Understanding past changes in fires in this region (extending the study of [1]); (2) Comparing and analyzing different drought indices (e.g. SPI, SPEI and SSI; see [2, 3] for more details on those indices); (3) Modeling the interaction between drought and fires (following and extending the study of [4]). We develop relatively simple regression models that link the fire activity to the key climate drivers. These models could be used to estimate fire responses to different climate change projections and environmental and socioeconomic scenarios ([5]). *References [1] Turco M., Llasat M. C., Tudela A., Castro X., and Provenzale A. Brief communication Decreasing fires in a Mediterranean region (1970-2010, NE Spain). Natural Hazards and Earth System Science, 13(3):649-652, 2013. [2] Zengchao H., AghaKouchak A., Nakhjiri N., and Farahmand A. Global Integrated Drought Monitoring and Prediction System. Scientific Data, 1:1-10, 2014. [3] Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23:1696-1718, 2010. [4] Turco M., Llasat M. C., von Hardenberg J., and Provenzale A. Impact of climate variability on summer fires in a Mediterranean environment (northeastern Iberian Peninsula). Climatic Change, 116:665-678, 2013. [5] Turco M., Llasat M. C., von

  13. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. PMID:25747370

  14. Changing Boreal Fire Regimes: Impacts on Permafrost Soils and Forest Succession in Siberian Larch Forests

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Mack, M. C.; Natali, S.; Loranty, M. M.; Davydov, S. P.; Zimov, N.

    2014-12-01

    Fire activity has increased across the boreal forest biome in conjuction with climate warming and drying. Because these forests contain a large proportion of global terrestrial carbon (C) stocks, there has been great interest in understanding feedbacks between a changing fire regime and climate warming. An important mechanism by which increased fire activity may alter boreal C balance is by consuming the soil organic layer (SOL). Fire removal of the SOL may alter germination microsites and tree recruitment, thereby altering forest successional trajectories and C accumulation and storage. In permafrost soils, loss of the insulating SOL can increase soil temperature and active layer depth, impacting growth and survival conditions for both soil microbes and vegetation. To assess fire severity effects on permafrost soils and tree recruitment, we conducted plot-level experimental burns in July 2012 in a larch forest near Cherskii, Siberia. We achieved four burn severity treatments based on residual SOL depths: control, low (> 8 cm), moderate (5-8 cm), and high severity (2-5 cm). For two growing seasons post-fire, we measured thaw depth, soil moisture, and soil temperature. We sowed larch seeds in fall 2012 and 2013 and quantified seedling establishment and vegetation re-growth for two growing seasons. Immediately post-fire, thaw depth increased rapidly with increasing fire severity, and this trend has persisted for two years. In 2013 and 2014, thaw depth was ~ 40 cm deeper in high severity plots compared to controls, likely due to lower summer soil insulation, higher black char cover, and higher surface soil temperatures. We observed little to no larch recruitment in unburned and low severity plots, but new seedling density was ~5 seedlings m-2 in moderate and high severity plots, which had low cover of other vegetation types and high soil moisture. Findings suggest that increased fire severity may increase larch recruitment and provide favorable soil conditions for

  15. How forest fire affects the chemical properties of Andisols

    NASA Astrophysics Data System (ADS)

    Neris, Jonay; Hernández-Moreno, José Manuel; Tejedor, Marisa; Jiménez, Concepción

    2013-04-01

    Forest fires affect soil physical, chemical and mineralogical properties. However, the magnitude of these changes depends on both fire properties, such as the peak temperature reached and duration or depth achieved; and initial soil properties (soil type) as for example soil moisture, organic matter content or soil structure characteristics. Although many works have studied the effects of fire on the chemical properties of different soil types, its effects on Andisols properties have been omitted until now. Taking into account the high susceptibility to drying processes showed by the properties of Andisols affected by land use changes, it could be expected that the fire effects on their chemical properties may differ from those shown by other types of soil. In this study, the main chemical properties in addition to the specific andic properties of burned pine forest Andisols were compared to their unburned control. The chemical properties of ashes found after fire at the soil surface were also studied. The results show a slightly increase in EC and pH after the fire due mainly to the higher content of cations of the soil solution. Ashes derived from the vegetation and soil organic matter consumption by fire could be the main source of these elements in the soils after a fire, as they showed a high cation content. However, the rise in EC and pH is lower than the reported by most authors for other soil types. This behaviour could be related to the higher organic matter content of this soils, even after fire, and the buffering effect of organic compounds on the soil EC and pH changes after the fire. As other authors have shown, a decrease in both the total and active organic content after the fire was also observed as a result of the fire event. The specific andic properties of Andisols were also affected. The P retention of these soils slightly declines as a consequence of fire, while the content of short-range-order products was also modified, but no statistically

  16. Mapping Forest Fire Susceptibility in Temperate Mountain Areas with Expert Knowledge. A Case Study from Iezer Mountains, Romanian Carpathians

    NASA Astrophysics Data System (ADS)

    Mihai, Bogdan; Savulescu, Ionut

    2014-05-01

    help of forestry data, the wind regime data and the topographic features of the mountain area (elevation, slope declivity, slope aspect). The analysis also consider the insolation degree of mountain slopes, that creates favourable conditions for fire propagation between different canopies. These data layers are integrated within a simple GIS analysis in order to intersect the ignition zones with the fire propagation zones in order to obtain the potential areas to be affected by fire. The digital map show three levels of forest fire susceptibility, differenced on the basis of expert knowledge. The map can be validated from the statistical point of view with the polygons of the forest fire affected areas mapped from Landsat TM, ETM+ and OLI satellite imagery. The mapping results could be integrated within the forest management strategies and especially within the forest cadastre and development maps (updated every ten years). The result can confirm that the data gap in terms of forest fire events can be filled with expert knowledge. References Chuvieco, E, Aguado, I., Jurdao, S., Pettinari, M., Yebra, M., Salas, J., Hantson, S., de la Riva, J., Ibarra, P., Rodrigues, M., Echeverria, M., Azqueta, D., Roman, M., Bastarrika, A., Martinez, S., Recondo, C., Zapico, E., Martinez-Vega F.J. (2012) Integrating geospatial information into fire risk assessment, International Journal of Wildland Fire, 2,2, 69-86. Hantson, S., Padilla, M., Corti., D, Chuvieco, E. (2013) Strenghts and weaknesses of MODIS hotspots to characterize Global fire occurence, Remote Sensing of Environment, 131, 1, 152-159. Mihai, B., Savulescu, I.,Sandric, I. (2007) Change detection analysis (1986/2002) for the alpine, subalpine and forest landscape in Iezer Mountains (Southern Carpathians, Romania), Mountain Research and Development, 27, 250-258.

  17. Fire ant-detecting canines: a complementary method in detecting red imported fire ants.

    PubMed

    Lin, Hui-Min; Chi, Wei-Lien; Lin, Chung-Chi; Tseng, Yu-Ching; Chen, Wang-Ting; Kung, Yu-Ling; Lien, Yi-Yang; Chen, Yang-Yuan

    2011-02-01

    In this investigation, detection dogs are trained and used in identifying red imported fire ants, Solenopsis invicta Buren, and their nests. The methodology could assist in reducing the frequency and scope of chemical treatments for red imported fire ant management and thus reduce labor costs and chemical use as well as improve control and quarantine efficiency. Three dogs previously trained for customs quarantine were retrained to detect the scents of red imported fire ants. After passing tests involving different numbers of live red imported fire ants and three other ant species--Crematogaster rogenhoferi Mayr, Paratrechina longicornis Latreille, and Pheidole megacephala F.--placed in containers, ajoint field survey for red imported fire ant nests by detection dogs and bait traps was conducted to demonstrate their use as a supplement to conventional detection methods. The most significant findings in this report are (1) with 10 or more red imported fire ants in scent containers, the dogs had >98% chance in tracing the red imported fire ant. Upon the introduction of other ant species, the dogs still achieved on average, a 93% correct red imported fire ant indication rate. Moreover, the dogs demonstrated great competence in pinpointing emerging and smaller red imported fire ant nests in red imported fire ant-infested areas that had been previously confirmed by bait trap stations. (2) Along with the bait trap method, we also discovered that approximately 90% of red imported fire ants foraged within a distance of 14 m away from their nests. The results prove detection dogs to be most effective for red imported fire ant control in areas that have been previously treated with pesticides and therefore containing a low density of remaining red imported fire ant nests. Furthermore, as a complement to other red imported fire ant monitoring methods, this strategy will significantly increase the efficacy of red imported fire ant control in cases of individual mount treatment

  18. The improved Global Fire Emissions Database (GFED) version 3: contribution of savanna, forest, deforestation, and peat fires to the global fire emissions budget

    NASA Astrophysics Data System (ADS)

    van der Werf, Guido; Randerson, Jim; Giglio, Louis; Collatz, Jim; Kasibhatla, Prasad; Morton, Doug; Defries, Ruth

    2010-05-01

    Global fire activity is an important contributor to the atmospheric trace gas and aerosol burdens. New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates, but little is known about the contribution of deforestation, agricultural waste, peat, forest, and savanna fires to total global fire emissions. Here we used a revised version of the CASA biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2008 period on a 0.5°×0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODIS sensor. For this time period we also calculated the breakdown of emissions into different sources. We used TRMM-VIRS and ATSR data to extend our fire time series back in time, combined with AVHRR-derived plant productivity in the pre-MODIS era. Average global fire carbon emissions were 1.9 Pg C / year with significant interannual variability over 1997-2001 (2.6 Pg C / year in 1998 and 1.5 Pg C / year in 2001) while emissions over 2002-2007 were relatively constant (varying between 1.9 and 2.0 Pg C / year), before declining in 2008 (1.6 Pg C / year). Over 2002-2007, interannual variability was still large on regional scales but on a global scale high fire years in some regions were balanced by low fire years in other regions. In the MODIS era (2001 onwards), most carbon losses were the result of fires in (wooded) savannas (68%) with lower contributions from deforestation (13%), forest (12%), agricultural waste (4%), and tropical peat fires (3%). On regional scales, these contributions vary to a large degree, and the contribution of peat fires would increase when including the 1997/1998 El Niño period with record-high fire emissions in Equatorial Asia. For

  19. Use of an Eye-Safe, Portable LIDAR for Remote Wildland Fire and Smoke Detection

    SciTech Connect

    MATTHEW, PARKER

    2004-11-29

    During periods of drought when surface water supplies are severely limited, wildland forest fires tend to become more frequent and often can grow into major fires that threaten valuable timber, real estate, and even human lives. Fire-fighting crews are critically dependent upon accurate and timely weather data to help ensure that individuals are not inadvertently exposed to dangerous conditions and to enhance normal fire-fighting activities. To that end, the use of an eye-safe, portable lidar for remote wildland fire and smoke detection is described.

  20. Scalable lidar technique for fire detection

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Piedade, Fernando; Beixiga, Vasco; Mota, Pedro; Lousã, Pedro

    2014-08-01

    Lidar (light detection and ranging) presents better sensitivity than fire surveillance based on imaging. However, the price of conventional lidar equipment is often too high as compared to passive fire detection instruments. We describe possibilities to downscale the technology. First, a conventional lidar, capable of smoke-plume detection up to ~10 km, may be replaced by an industrially manufactured solid-state laser rangefinder. This reduces the detection range to about 5 km, but decreases the purchase price by one order of magnitude. Further downscaling is possible by constructing the lidar smoke sensor on the basis of a low-cost laser diode.

  1. The 1987 forest fire disaster in California: Assessment of emergency room visits

    SciTech Connect

    Duclos, P.; Sanderson, L.M.; Lipsett, M. )

    1990-01-01

    During a 5-d period that commenced on August 30, 1987, dry lightning strikes ignited more than 1,500 fires that destroyed in excess of 600,000 acres of California forests. To evaluate the public health impact of the smoke on the general population, all hospital emergency rooms located in the six counties most severely affected by smoke or fire were surveyed. Selected hospital information was abstracted for a 2 1/2-wk period during the fires and during two reference periods. During the period of major forest fire activity, visits of persons with asthma and chronic obstructive pulmonary disease increased in number (observed/expected ratios of 1.4 and 1.3, respectively), as did visits of persons with sinusitis, upper respiratory infections, and laryngitis. A few patients with acute respiratory or eye irritation also visited the emergency rooms. Even recognizing the limited sensitivity of emergency room surveys, the overall public health impact was relatively modest. The increased respiratory morbidity detected in this survey, however, supports the notion that persons with pre-existing respiratory disease represent a sensitive subpopulation, who should be targeted for purposes of public health intervention when exposure to forest fire smoke is likely.

  2. Assessing skill of operational forest fire emissions model

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-10-01

    Across the continental United States, the BlueSky Smoke Modeling Framework provides hourly forest fire emissions forecasts and calculates the concentrations of hazardous compounds 72 hours in advance. Though a traditional computational model itself, the BlueSky Framework pulls together the results from a number of different independent models for fire and fuel information, combustion of fuel, and speciated emissions calculations to produce its operational forecasts of fire-related emissions and smoke dispersals. One aspect of forest fire emissions that is of particular concern is small particulate matter, particularly microscopic particles with diameters less than 2.5 micrometers. These particles, known as PM2.5, are small enough to penetrate lung tissue and cause serious health problems in high concentrations. To assess the skill of the BlueSky Gateway, a system that uses the BlueSky Framework and the Community MultiScale Air Quality (CMAQ) model to forecast PM2.5 surface concentrations, Strand et al. compared the modeled estimates for two Californian forest wildfire events against observations.

  3. Climatic stress increases forest fire severity across the western United States

    USGS Publications Warehouse

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorriane

    2013-01-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).

  4. Climatic stress increases forest fire severity across the western United States.

    PubMed

    van Mantgem, Phillip J; Nesmith, Jonathan C B; Keifer, MaryBeth; Knapp, Eric E; Flint, Alan; Flint, Lorriane

    2013-09-01

    Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire). PMID:23869626

  5. Calibration of FARSITE fire area simulator in Iranian northern forests

    NASA Astrophysics Data System (ADS)

    Jahdi, R.; Salis, M.; Darvishsefat, A. A.; Alcasena Urdiroz, F. J.; Etemad, V.; Mostafavi, M. A.; Lozano, O. M.; Spano, D.

    2014-09-01

    Wildfire simulators based on empirical or physical models need to be locally calibrated and validated when used under conditions that differ from those where the simulators were originally developed. This study aims to calibrate FARSITE fire spread model considering a set of recent wildfires occurred in Northern Iran forests. Site specific fuel models in the study areas were selected by sampling the main natural vegetation type complexes and assigning standard fuel models. Overall, simulated fires presented reliable outputs that accurately replicated the observed fire perimeters and behavior. Standard fuel models of Scott and Burgan (2005) afforded better accuracy in the simulated fire perimeters than the standard fuel models of Anderson (1982). The best match between observed and modeled burned areas was observed on herbaceous type fuel models. Fire modeling showed a high potential for estimating spatial variability in fire spread and behavior in the study areas. This work represents a first step in the application of fire spread modeling on Northern Iran for wildfire risk monitoring and management.

  6. Data in support of environmental controls on the characteristics of mean number of forest fires and mean forest area burned (1987-2007) in China.

    PubMed

    Chang, Yu; Zhu, Zhiliang; Bu, Rencang; Li, Yuehui; Hu, Yuanman

    2015-09-01

    Fire frequency and size are two important parameters describing fire characteristics. Exploring the spatial variation of fire characteristics and understanding the environmental controls are indispensable to fire prediction and sustainable forest landscape management. To illustrate the spatial variation of forest fire characteristics over China and to quantitatively determine the relative contribution of each of the environmental controls to this variation, forest fire characteristic data (mean number of forest fires and mean burned forest area) and environmental data (climate, land use, vegetation type and topography) at provincial level were derived. These data sets can potentially serve as a foundation for future studies relating to fire risk assessment, carbon emission by forest fires, and the impact of climate change on fire characteristics. This data article contains data related to the research article entitled "Environmental controls on the characteristics of mean number of forest fires and mean forest area burned (1987-2007) in China" by chang et al. [1]. PMID:26288802

  7. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    PubMed

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  8. Understorey fire frequency and the fate of burned forests in southern Amazonia

    PubMed Central

    Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  9. Modeling of multi-strata forest fire severity using Landsat TM Data

    NASA Astrophysics Data System (ADS)

    Meng, Qingmin; Meentemeyer, Ross K.

    2011-02-01

    Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which represents fire activities and ecological responses at different forest layers. In this study, using field measured fire severity across five forest strata of dominant tree, intermediate-sized tree, shrub, herb, substrate layers, and the aggregated measure of CBI as response variables, we fit statistical models with predictors of Landsat TM bands, Landsat derived NBR or dNBR, image differencing, and image ratioing data. We model multi-strata forest fire in the historical recorded largest wildfire in California, the Big Sur Basin Complex fire. We explore the potential contributions of the post-fire Landsat bands, image differencing, image ratioing to fire severity modeling and compare with the widely used NBR and dNBR. Models using combinations of post-fire Landsat bands perform much better than NBR, dNBR, image differencing, and image ratioing. We predict and map multi-strata forest fire severity across the whole Big Sur fire areas, and find that the overall measure CBI is not optimal to represent multi-strata forest fire severity.

  10. Fire dynamics and implications for nitrogen cycling in boreal forests

    USGS Publications Warehouse

    Harden, J.W.; Mack, M.; Veldhuis, H.; Gower, S.T.

    2003-01-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  11. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Randerson, J. T.

    2014-07-01

    Climate-driven changes in the fire regime within boreal forest ecosystems are likely to have important effects on carbon cycling and species composition. In the context of improving fire management options and developing more realistic scenarios of future change, it is important to understand how meteorology regulates different aspects of fire dynamics, including ignition, daily fire spread, and cumulative annual burned area. Here we combined Moderate-Resolution Imaging Spectroradiometer (MODIS) active fires (MCD14ML), MODIS imagery (MOD13A1) and ancillary historic fire perimeter information to produce a data set of daily fire spread maps for Alaska during 2002-2011. This approach provided a spatial and temporally continuous representation of fire progression and a precise identification of ignition and extinction locations and dates for each wildfire. The fire-spread maps were analyzed with daily vapor pressure deficit (VPD) observations from the North American Regional Reanalysis (NARR) and lightning strikes from the Alaska Lightning Detection Network (ALDN). We found a significant relationship between daily VPD and likelihood that a lightning strike would develop into a fire ignition. In the first week after ignition, above average VPD increased the probability that fires would grow to large or very large sizes. Strong relationships also were identified between VPD and burned area at several levels of temporal and spatial aggregation. As a consequence of regional coherence in meteorology, ignition, daily fire spread, and fire extinction events were often synchronized across different fires in interior Alaska. At a regional scale, the sum of positive VPD anomalies during the fire season was positively correlated with annual burned area during the NARR era (1979-2011; R2 = 0.45). Some of the largest fires we mapped had slow initial growth, indicating opportunities may exist for suppression efforts to adaptively manage these forests for climate change. The results

  12. Targeting Forest Management through Fire and Erosion Modeling

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; MacDonald, Lee H.

    2013-04-01

    Forests deliver a number of ecosystem services, including clean water. When forests are disturbed by wildfire, the timing and quantity of runoff can be altered, and the quality can be severely degraded. A modeling study for about 1500 km2 in the Upper Mokelumne River Watershed in California was conducted to determine the risk of wildfire and the associated potential sediment delivery should a wildfire occur, and to calculate the potential reduction in sediment delivery that might result from fuel reduction treatments. The first step was to predict wildfire severity and probability of occurrence under current vegetation conditions with FlamMap fire prediction tool. FlamMap uses current vegetation, topography, and wind characteristics to predict the speed, flame length, and direction of a simulated flame front for each 30-m pixel. As the first step in the erosion modeling, a geospatial interface for the WEPP model (GeoWEPP) was used to delineate approximately 6-ha hillslope polygons for the study area. The flame length values from FlamMap were then aggregated for each hillslope polygon to yield a predicted fire intensity. Fire intensity and pre-fire vegetation conditions were used to estimate fire severity (either unburned, low, moderate or high). The fire severity was combined with soil properties from the STATSGO database to build the vegetation and soil files needed to run WEPP for each polygon. Eight different stochastic climates were generated to account for the weather variability within the basin. A modified batching version of GeoWEPP was used to predict the first-year post-fire sediment yield from each hillslope and subwatershed. Estimated sediment yields ranged from 0 to more than 100 Mg/ha, and were typical of observed values. The polygons that generated the greatest amount of sediment or that were critical for reducing fire spread were identified, and these were "treated" by reducing the amount of fuel available for a wildfire. The erosion associated with

  13. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and... alarm and an audible alarm in the pilothouse or at a normally manned control station for the system....

  14. 46 CFR 108.405 - Fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and... alarm and an audible alarm in the pilothouse or at a normally manned control station for the system....

  15. 46 CFR 76.05-1 - Fire detecting systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Fire detecting systems. 76.05-1 Section 76.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 76.05-1 Fire detecting systems....

  16. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  17. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  18. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  19. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  20. 46 CFR 108.413 - Fusible element fire detection system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the...

  1. Parameterizing fire effects on the carbon balance of western United States (U.S.) forests: Accounting for variation across forest types, fire severity, and carbon pools

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Williams, C. A.; Collatz, G. J.

    2010-12-01

    Fires are known to alter the carbon balance of forests by direct/consumptive or indirect/non-consumptive effects, but detailed representation of fire-induced combustion and mortality is generally lacking in carbon cycle models. Existing approaches fail to incorporate details on the direct and indirect consumption of carbon in individual pools (e.g. foliage, stem, and roots), and ignore severity-dependence of these effects. The few studies that do incorporate detailed parameterization have focused only on localized areas or single fires. Still other studies lack representation of fire associated inter-pool carbon transfer processes needed to characterize post-fire carbon dynamics through time. This study reviews the existing literature (e.g. restoration ecology and post-fire mortality studies) on fires across the whole of western U.S. forests to derive a comprehensive and detailed parameterization of fire effects suitable for incorporation in the Carnegie Ames Stanford Approach (CASA) carbon cycle model. This study relies on a comprehensive integration of remote sensing, field observations and biogeochemical modeling based analysis. Post-fire carbon fluxes are derived as a function of forest type, productivity and fire severity using a technique based on merging Forest Inventory and Analysis (FIA) data, CASA carbon cycle modeling, 30 m spatial resolution Monitoring Trends in Burn Severity (MTBS) fire severity observations, and additional remotely sensed observations (e.g. temperature, precipitation and Fraction of Photosynthetically Active Radiation (FPAR)). As such, we obtain characteristic carbon trajectories and regional carbon flux estimates specific to forest types and fire severity levels in the western U.S. forests. This research elucidates new insights on carbon fluxes by performing an intensive and detailed literature survey of post-fire vegetation mortality studies in order to parameterize forest type and fire severity associated effects and processes in

  2. Evolving forest fire burn severity classification algorithms for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Harvey, Neal R.; Bloch, Jeffrey J.; Theiler, James P.; Perkins, Simon J.; Young, Aaron C.; Szymanski, John J.

    2001-08-01

    Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.

  3. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    PubMed

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin. PMID:26552259

  4. Estimating Fire-Caused Boreal Forest Disturbances Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Sukhinin, A. I.; Slinkina, O. A.; Soja, A. J.; Buryak, L. V.; Conard, S. G.; McRae, D.; Yurikova, E. Y.; Cahoon, D. R.

    2008-12-01

    Russia accounts for about half of the world's forests, most of which are in Siberia. Numerous forest fires, mostly human-caused, and extensive forest harvesting, including illegal logging, have resulted in considerable ecological damage and economic loss. At present, forest inventory agencies assess the effects of fire based on the known forest area burned. Due to potential cost and difficulty of access types and severity of fire effects are normally not assessed. The lack of reliable estimates of ecological and economic impacts of forest fires prevents development of effective approaches for forest management and forest fire protection. Remote sensing and GIS-based technologies provide for the development of fundamental new methods to assess and monitor forest condition and wildfire behavior and effects. Wildfire and insect and disease outbreaks are the main natural factors responsible for partial or complete mortality of forest stands in Siberia. Negative human influences include forest harvesting, mining, industrial pollution, and human-caused fires. Estimating the scale, rate, and severity of disturbance is of key importance for appraising the resulting ecological and economical damage. In this study, we developed a GIS- and satellite-based methodology to appraise forest damage by taking advantage of unique spectral signature of the underlying forest types. Our focus was on an area of intensive forest harvest in the Angara river basin, which includes the southern and central taiga zones. We have assessed the type, extent, and severity of disturbances in vegetation cover and mapped the current condition of disturbed forest sites.

  5. Boreal ditched forest and peatland are more vulnerable to forest fire than unditched areas

    NASA Astrophysics Data System (ADS)

    Köhler, Stephan J.; Granath, Gustav; Landahl, Anna; Fölster, Jens

    2016-04-01

    During summer of 2014 the largest wildfire in Swedish modern history occurred. The fire was ignited in a forest close to the Swedish town Sala and incinerated a total of 14 000 ha. The frequency of wildfires is expected to increase, due to effects of climate change such as increased temperature and decreased precipitation during the summer months. Wildfires can have a considerable impact on aquatic ecosystems and previous studies of wildfires have shown elevated concentrations of nutrients, cat- and anions. The area of the fire mainly consists of forestland, peatland and lakes and has been affected by acidification and intensive forestry. To assess the fire severity and the effects on the water chemistry, the fire severity were analyzed and classified using aerial phtographs and high resolution LIDAR data. The analysis indicated that increased fire intensity caused increased fire severity and that drained forested areas were more vulnerable to fire than undrained peatland. Measurements of water chemistry were conducted at nine streams and ten lakes inside the affected area. At two sites sensors for multiple parameters were deployed. During the initial three months of the post-fire period large peaks of ammonia-N and sulphate were observed in the streams and in a majority of the lakes while DOC was suppressed. In one stream Gärsjöbäcken the median concentrations of ammonia-N were 79 times higher after the fire. Due to nitrification the elevated concentrations of ammonia-N-nitrogen caused elevated concentrations of nitrate-nitrogen. The initial peak of sulphate caused a drop in ANC but after the peak had past ANC increased due to elevated concentrations of base cations. Correlation analysis of fire severity and water chemistry indicated that the maximum concentrations of ammonia-N increased with severely burned canopies in drained forested peatlands and in scorched open peatland. In a future climate with increased dry spells extensive ditching operations in

  6. Infrared Instrument for Detecting Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Ihlefeld, Curtis; Immer, Christopher; Oostdyk, Rebecca; Cox, Robert; Taylor, John

    2006-01-01

    The figure shows an instrument incorporating an infrared camera for detecting small hydrogen fires. The instrument has been developed as an improved replacement for prior infrared and ultraviolet instruments used to detect hydrogen fires. The need for this or any such instrument arises because hydrogen fires (e.g., those associated with leaks from tanks, valves, and ducts) pose a great danger, yet they emit so little visible light that they are mostly undetectable by the unaided human eye. The main performance advantage offered by the present instrument over prior hydrogen-fire-detecting instruments lies in its greater ability to avoid false alarms by discriminating against reflected infrared light, including that originating in (1) the Sun, (2) welding torches, and (3) deliberately ignited hydrogen flames (e.g., ullage-burn-off flames) that are nearby but outside the field of view intended to be monitored by the instrument. Like prior such instruments, this instrument is based mostly on the principle of detecting infrared emission above a threshold level. However, in addition, this instrument utilizes information on the spatial distribution of infrared light from a source that it detects. Because the combination of spatial and threshold information about a flame tends to constitute a unique signature that differs from that of reflected infrared light originating in a source not in the field of view, the incidence of false alarms is reduced substantially below that of related prior threshold- based instruments.

  7. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by

  8. Smoke detection in low-G fires

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Griffin, Devon W.; Gard, Melissa Y.; Hoy, Michael

    1995-01-01

    Fires in spacecraft are considered a credible risk. To respond to this risk, NASA flew fire detectors on Skylab and the Space Shuttle (STS) and included them in the design for International Space Station Alpha (ISSA). In previous missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was not considered credible that the astronauts could fail to observe a fire. The Skylab nodule included approximately 20 UV fire detectors. The space shuttle has 9 ionization detectors in the mid deck and flight deck and Spacelab has six additional ionization detectors. The planned detectors for ISSA are laser-diode, forward-scattering, smoke or particulate detectors. Current plans for the ISSA call for two detectors in the open area of the module and detectors in racks that have both cooling air flow and electrical power. Due to the complete absence of data concerning the nature of particulate and radiant emission from low-g fires, all three of these detector systems were designed based upon 1-g test data. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew independent, fire detection grows significantly. This requires more knowledge concerning low-gravity fires and how they might be detected. To date, no combustion-generated particulate samples have been collected for well-developed microgravity flames. All of the extant data come from drop tower tests and therefore only correspond to the early stages of a fire. The fuel sources were restricted to laminar gas-jet diffusion flames and rapidly overheated wire insulation. These gas-jet drop tower tests indicate, through thermophoretic sampling, that soot primaries and aggregates (groups of primary particles) in micro-g may be significantly larger than those in normal-g (ng). This raises new scientific questions about soot processes as well as practical issues for particulate detection/alarm threshold levels used in on

  9. Impacts of fire on forest age and runoff in mountain ash forests

    USGS Publications Warehouse

    Wood, S.A.; Beringer, J.; Hutley, L.B.; McGuire, A.D.; Van Dijk, A.; Kilinc, M.

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire - returning to pre-fire levels in the following centuries - owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8 mm day-1 with increasing forest age (an annual decrease of 657 mm) the understorey ET contributed between 1.2 and 1.5 mm day-1, 45% of the total ET (3 mm day-1) at the old growth forest. ?? CSIRO 2008.

  10. Satellite Analysis of the Severe 1987 Forest Fires in Northern China and Southeastern Siberia

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.

    1994-01-01

    Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.

  11. Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R, Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Pierson, Joseph M.

    1994-01-01

    Meteorological conditions, extremely conducive to fire development and spread in the spring of 1987, resulted in forest fires burning over extremely large areas in the boreal forest zone in northeastern China and the southeastern region of Siberia. The great China fire, one of the largest and most destructive forest fires in recent history, occurred during this period in the Heilongjiang Province of China. Satellite imagery is used to examine the development and areal distribution of 1987 forest fires in this region. Overall trace gas emissions to the atmosphere from these fires are determined using a satellite-derived estimate of area burned in combination with fuel consumption figures and carbon emission ratios for boreal forest fires.

  12. Avifaunal responses to fire in southwestern montane forests along a burn severity gradient

    USGS Publications Warehouse

    Kotliar, N.B.; Kennedy, P.L.; Ferree, K.

    2007-01-01

    The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17 351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986-1988, 1990) created a unique opportunity to quantify avifaunal changes in 13 pre-fire transects (resampled in 2002) and to compare two designs for analyzing the effects of unplanned disturbances: after-only analysis and before-after comparisons. Distance analysis was used to calculate densities. We analyzed after-only densities for 21 species using gradient analysis, which detected a broad range of responses to increasing burn severity: (I) large significant declines, (II) weak, but significant declines, (III) no significant density changes, (IV) peak densities in low- or moderate-severity patches, (V) weak, but significant increases, and (VI) large significant increases. Overall, 71% of the species included in the after-only gradient analysis exhibited either positive or neutral density responses to fire effects across all or portions of the severity gradient (responses III-VI). We used pre/post pairs analysis to quantify density changes for 15 species using before-after comparisons; spatiotemporal variation in densities was large and confounded fire effects for most species. Only four species demonstrated significant effects of burn severity, and their densities were all higher in burned compared to unburned forests. Pre- and post-fire community similarity was high except in high-severity areas. Species richness was similar pre- and post-fire across all burn severities. Thus, ecosystem restoration programs based on the assumption that recent severe fires in Southwestern ponderosa pine forests have overriding negative ecological effects are not supported by our study of post-fire avian communities. This study illustrates the

  13. Avifaunal responses to fire in southwestern montane forests along a burn severity gradient.

    PubMed

    Kotliar, Natasha B; Kennedy, Patricia L; Ferree, Kimberly

    2007-03-01

    The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986-1988, 1990) created a unique opportunity to quantify avifaunal changes in 13 pre-fire transects (resampled in 2002) and to compare two designs for analyzing the effects of unplanned disturbances: after-only analysis and before-after comparisons. Distance analysis was used to calculate densities. We analyzed after-only densities for 21 species using gradient analysis, which detected a broad range of responses to increasing burn severity: (I) large significant declines, (II) weak, but significant declines, (III) no significant density changes, (IV) peak densities in low- or moderate-severity patches, (V) weak, but significant increases, and (VI) large significant increases. Overall, 71% of the species included in the after-only gradient analysis exhibited either positive or neutral density responses to fire effects across all or portions of the severity gradient (responses III-VI). We used pre/post pairs analysis to quantify density changes for 15 species using before-after comparisons; spatiotemporal variation in densities was large and confounded fire effects for most species. Only four species demonstrated significant effects of burn severity, and their densities were all higher in burned compared to unburned forests. Pre- and post-fire community similarity was high except in high-severity areas. Species richness was similar pre- and post-fire across all burn severities. Thus, ecosystem restoration programs based on the assumption that recent severe fires in Southwestern ponderosa pine forests have overriding negative ecological effects are not supported by our study of post-fire avian communities. This study illustrates the

  14. Mathematical Modeling of Thermal Influence from Forest Fire Front on a Coniferous Tree Trunk

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Barakhnin, Vladimir B.; Andreeva, Ksenia N.

    2016-02-01

    Numerical research results of heat transfer in layered tree trunk influenced by heat flux from forest fire presented. The problem solved in two-dimensional statement in Cartesian system of co-ordinates. The typical range of influence parameters of heat flux from forest fire considered. Temperature distributions in different moments of time obtained. Condition of tree damage by forest fire influence is under consideration in this research.

  15. Adapting fire management to future fire regimes: impacts on boreal forest composition and carbon balance in Canadian National Parks

    NASA Astrophysics Data System (ADS)

    de Groot, W. J.; Flannigan, M. D.; Cantin, A.

    2009-04-01

    The effects of future fire regimes altered by climate change, and fire management in adaptation to climate change were studied in the boreal forest region of western Canada. Present (1975-90) and future (2080-2100) fire regimes were simulated for several National Parks using data from the Canadian (CGCM1) and Hadley (HadCM3) Global Climate Models (GCM) in separate simulation scenarios. The long-term effects of the different fire regimes on forests were simulated using a stand-level, boreal fire effects model (BORFIRE). Changes in forest composition and biomass storage due to future altered fire regimes were determined by comparing current and future simulation results. This was used to assess the ecological impact of altered fire regimes on boreal forests, and the future role of these forests as carbon sinks or sources. Additional future simulations were run using adapted fire management strategies, including increased fire suppression and the use of prescribed fire to meet fire cycle objectives. Future forest composition, carbon storage and emissions under current and adapted fire management strategies were also compared to determine the impact of various future fire management options. Both of the GCM's showed more severe burning conditions under future fire regimes. This includes fires with higher intensity, greater depth of burn, greater total fuel consumption and shorter fire cycles (or higher rates of annual area burned). The Canadian GCM indicated burning conditions more severe than the Hadley GCM. Shorter fire cycles of future fire regimes generally favoured aspen, birch, and jack pine because it provided more frequent regeneration opportunity for these pioneer species. Black spruce was only minimally influenced by future fire regimes, although white spruce declined sharply. Maintaining representation of pure and mixed white spruce ecosystems in natural areas will be a concern under future fire regimes. Active fire suppression is required in these areas. In

  16. Two-Band Pyrometers Detect Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Youngquist, Robert C.; Simmons, Stephen M.

    1993-01-01

    Two-band infrared pyrometers detect small hydrogen fires at greater distances in full daylight being developed. Detectors utilize part of infrared spectrum in which signals from hydrogen flames 10 to the 3rd power to 10 to the 4th power times as intense as ultraviolet region of current detectors. Utilize low-loss infrared lenses for focusing and for limiting fields of view to screen out spurious signals from nearby sources. Working distances of as much as 100 meters possible. Portable, battery-powered unit gives audible alarm, in form of increase in frequency of tone, when aimed at hydrogen fire.

  17. The Tropical Forest and fire emissions experiment: overview and airborne fire emission factor measurements

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Karl, T.; Artaxo, P.; Blake, D. R.; Christian, T. J.; Griffith, D. W. T.; Guenther, A.; Hao, W. M.

    2007-05-01

    The Tropical Forest and Fire Emissions Experiment (TROFFEE) used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by uv absorbance, Fourier transform infrared spectroscopy (FTIR), and proton-transfer mass spectrometry (PTR-MS) to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC). The Brazilian smoke/haze layers extended to 2-3 km altitude, which is much lower than the 5-6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF) were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC). Our EF for PM10 (17.8±4 g/kg) is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The combined output of these fires created a massive "mega-plume" >500 km across that we sampled on September 8. The mega

  18. PCDD/F and Aromatic Emissions from Simulated Forest and Grassland Fires

    EPA Science Inventory

    Emissions of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) from simulated grassland and forest fires were quantitatively sampled to derive emission factors in support of PCDD/F inventory development. Grasses from Kentucky and Minnesota; forest shrubs fro...

  19. Spacecraft Fire Detection and Extinguishment: A Bibliography

    NASA Technical Reports Server (NTRS)

    Jason, Nora H.

    1988-01-01

    Pertinent fire detection and extinguishment references have been identified to further the knowledge of spacecraft fire safety. To broaden the scope of the bibliography, other unusual environments, e.g., aircraft, submarine, ship, have been included. In addition, for a more comprehensive view of the spacecraft fire safety problem, selected subjects are included, e.g., materials flammability, smoke, human behavior. The references will provide the researcher with access to state-of-the-art and historic works. Selected references from the 1960's have been included, but the emphasis is on references published from 1975 to 1987. The references are arranged by very broad categories. Often a paper will cover more than one topic, but for the purposes of this bibliography it will be cited only once.

  20. Management of forest fires to maximize carbon sequestration in temperate and boreal forests

    SciTech Connect

    Guggenheim, D.E. |

    1996-12-31

    This study examines opportunities for applying prescribed burning strategies to forest stands to enhance net carbon sequestration and compared prescribed burning strategies with more conventional forestry-based climate change mitigation alternatives, including fire suppression and afforestation. Biomass burning is a major contributor to greenhouse gas accumulation in the atmosphere. Biomass burning has increased by 50% since 1850. Since 1977, the annual extent of burning in the northern temperate and boreal forests has increased dramatically, from six- to nine-fold. Long-term suppression of fires in North America, Russia, and other parts of the world has led to accumulated fuel load and an increase in the destructive power of wildfires. Prescribed burning has been used successfully to reduce the destructiveness of wildfires. However, across vast areas of Russia and other regions, prescribed burning is not a component of forest management practices. Given these factors and the sheer size of the temperate-boreal carbon sink, increasing attention is being focused on the role of these forests in mitigating climate change, and the role of fire management strategies, such as prescribed burning, which could work alongside more conventional forestry-based greenhouse gas offset strategies, such as afforestation.

  1. The effects of fire severity on black carbon additions to forest soils - 10 years post fire

    NASA Astrophysics Data System (ADS)

    Poore, R.; Wessman, C. A.; Buma, B.

    2013-12-01

    Wildfires play an active role in the global carbon cycle. While large amounts of carbon dioxide are released, a small fraction of the biomass consumed by the fire is only partially combusted, yielding soot and charcoal. These products, also called black carbon (BC) make up only 1-5% of the biomass burnt, yet they can have a disproportionate effect on both the atmosphere and fluxes in long-term carbon pools. This project specifically considers the fraction that is sequestered in forest soils. Black carbon is not a specific compound, and exists along a continuum ranging from partially burned biomass to pure carbon or graphite. Increasing aromaticity as the result of partial combustion means charcoal is highly resistant to oxidation. Although debated, most studies indicate a turnover time on the order of 500-1,000 years in warm, wet, aerobic soils. Charcoal may function as a long-term carbon sink, however its overall significance depends on its rate of formation and loss. At the landscape level, fire characteristics are one of the major factors controlling charcoal production. A few studies suggest that charcoal production increases with cooler, less-severe fires. However, there are many factors to tease apart, partly because of a lack of specificity in how fire severity is defined. Within this greater context, our lab has been working on a landscape-level study within Routt National Forest, north of Steamboat Springs, Colorado. In 2002, a large fire swept through a subalpine spruce, fir and lodgepole pine forest. In 2011-2013 we sampled BC pools in 44 plots across a range of fire severities from unburned to severe crown We hypothesized that charcoal stocks will be higher in areas of low severity fire as compared to high severity because of decreased re-combustion of charcoal in the organic soil and increased overall charcoal production due to lower temperatures. In each of our plots we measured charcoal on snags and coarse woody debris, sampled the entire organic

  2. Saskatchewan Forest Fire Control Centre Surface Meteorological Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Funk, Barry; Strub, Richard

    2000-01-01

    The Saskatchewan Forest Fire Control Centre (SFFCC) provided surface meteorological data to BOREAS from its archive. This data set contains hourly surface meteorological data from 18 of the Meteorological stations located across Saskatchewan. Included in these data are parameters of date, time, temperature, relative humidity, wind direction, wind speed, and precipitation. Temporally, the data cover the period of May through September of 1994 and 1995. The data are provided in comma-delimited ASCII files, and are classified as AFM-Staff data. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  3. Wildfire Detection using by Multi Dimensional Histogram in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Honda, K.; Kimura, K.; Honma, T.

    2008-12-01

    forest in Kalimantan, Indonesia and around Chiang Mai, Thailand. But the ground truth data in these areas is lesser than the one in Alaska. Our method needs lots of accurate observed data to make multi-dimensional histogram in the same area. In this study, we can show the system to select wildfire data efficiently from satellite imagery. Furthermore, the development of multi-dimensional histogram from past fire data makes it possible to detect wildfires accurately.

  4. Wild forest fire regime following land abandonment in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Romano, Nunzio

    2014-12-01

    Land use, climate, and fire have markedly shaped Mediterranean ecosystems. While climate and land use are external forcing, wildfire is an integral component of ecosystem functioning which inevitably poses a threat to humans. With a view to gaining an insight into the mechanisms underlying fire dynamics, fire control, and prevention, we formulated a model that predicts the wildfire regime in fire-prone Mediterranean ecoregions. The model is based on the positive feedback between forest expansion following cropland abandonment, fuel abundance, and fire. Our results demonstrate that progressive land abandonment leads to different fire dynamics in the Mediterranean forest ecosystem. Starting at a no-fire regime when the land is almost completely cultivated, the ecosystem reaches a chaotic fire regime, passing through intermediate land development stages characterized by limit cycle fire dynamics. Wildfires are more devastating, albeit more predictable, in these intermediate stages when fire frequency is higher.

  5. In-cell measurements of smoke backscattering coefficients using a CO2 laser system for application to lidar-dial forest fire detection

    NASA Astrophysics Data System (ADS)

    Bellecci, Carlo; Gaudio, Pasquale; Gelfusa, Michela; Lo Feudo, Teresa; Murari, Andrea; Richetta, Maria; de Leo, Leonerdo

    2010-12-01

    In the lidar-dial method, the amount of the water vapor present in the smoke of the vegetable fuel is detected to reduce the number of false alarms. We report the measurements of the smoke backscattering coefficients for the CO2 laser lines 10R20 and 10R18 as determined in an absorption cell for two different vegetable fuels (eucalyptus and conifer). These experimental backscattering coefficients enable us to determine the error to be associated to the water vapor measurements when the traditional first-order approximation is assumed. We find that this first-order approximation is valid for combustion rates as low as 100 g/s.

  6. Factors Affecting Collective Action for Forest Fire Management: A Comparative Study of Community Forest User Groups in Central Siwalik, Nepal

    NASA Astrophysics Data System (ADS)

    Sapkota, Lok Mani; Shrestha, Rajendra Prasad; Jourdain, Damien; Shivakoti, Ganesh P.

    2015-01-01

    The attributes of social ecological systems affect the management of commons. Strengthening and enhancing social capital and the enforcement of rules and sanctions aid in the collective action of communities in forest fire management. Using a set of variables drawn from previous studies on the management of commons, we conducted a study across 20 community forest user groups in Central Siwalik, Nepal, by dividing the groups into two categories based on the type and level of their forest fire management response. Our study shows that the collective action in forest fire management is consistent with the collective actions in other community development activities. However, the effectiveness of collective action is primarily dependent on the complex interaction of various variables. We found that strong social capital, strong enforcement of rules and sanctions, and users' participation in crafting the rules were the major variables that strengthen collective action in forest fire management. Conversely, users' dependency on a daily wage and a lack of transparency were the variables that weaken collective action. In fire-prone forests such as the Siwalik, our results indicate that strengthening social capital and forming and enforcing forest fire management rules are important variables that encourage people to engage in collective action in fire management.

  7. Factors affecting collective action for forest fire management: a comparative study of community forest user groups in central Siwalik, Nepal.

    PubMed

    Sapkota, Lok Mani; Shrestha, Rajendra Prasad; Jourdain, Damien; Shivakoti, Ganesh P

    2015-01-01

    The attributes of social ecological systems affect the management of commons. Strengthening and enhancing social capital and the enforcement of rules and sanctions aid in the collective action of communities in forest fire management. Using a set of variables drawn from previous studies on the management of commons, we conducted a study across 20 community forest user groups in Central Siwalik, Nepal, by dividing the groups into two categories based on the type and level of their forest fire management response. Our study shows that the collective action in forest fire management is consistent with the collective actions in other community development activities. However, the effectiveness of collective action is primarily dependent on the complex interaction of various variables. We found that strong social capital, strong enforcement of rules and sanctions, and users' participation in crafting the rules were the major variables that strengthen collective action in forest fire management. Conversely, users' dependency on a daily wage and a lack of transparency were the variables that weaken collective action. In fire-prone forests such as the Siwalik, our results indicate that strengthening social capital and forming and enforcing forest fire management rules are important variables that encourage people to engage in collective action in fire management. PMID:25413128

  8. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  9. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  10. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  11. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  12. 14 CFR 460.13 - Smoke detection and fire suppression.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew....

  13. Do insect outbreaks reduce the severity of subsequent forest fires?

    NASA Astrophysics Data System (ADS)

    Meigs, Garrett W.; Zald, Harold S. J.; Campbell, John L.; Keeton, William S.; Kennedy, Robert E.

    2016-04-01

    Understanding the causes and consequences of rapid environmental change is an essential scientific frontier, particularly given the threat of climate- and land use-induced changes in disturbance regimes. In western North America, recent widespread insect outbreaks and wildfires have sparked acute concerns about potential insect–fire interactions. Although previous research shows that insect activity typically does not increase wildfire likelihood, key uncertainties remain regarding insect effects on wildfire severity (i.e., ecological impact). Recent assessments indicate that outbreak severity and burn severity are not strongly associated, but these studies have been limited to specific insect or fire events. Here, we present a regional census of large wildfire severity following outbreaks of two prevalent bark beetle and defoliator species, mountain pine beetle (Dendroctonus ponderosae) and western spruce budworm (Choristoneura freemani), across the US Pacific Northwest. We first quantify insect effects on burn severity with spatial modeling at the fire event scale and then evaluate how these effects vary across the full population of insect–fire events (n = 81 spanning 1987–2011). In contrast to common assumptions of positive feedbacks, we find that insects generally reduce the severity of subsequent wildfires. Specific effects vary with insect type and timing, but both insects decrease the abundance of live vegetation susceptible to wildfire at multiple time lags. By dampening subsequent burn severity, native insects could buffer rather than exacerbate fire regime changes expected due to land use and climate change. In light of these findings, we recommend a precautionary approach when designing and implementing forest management policies intended to reduce wildfire hazard and increase resilience to global change.

  14. Do insect outbreaks reduce the severity of subsequent forest fires?

    DOE PAGESBeta

    Meigs, Garrett W.; Zald, Harold S. J.; Campbell, John L.; Keeton, William S.; Kennedy, Robert E.

    2016-04-21

    In this study, we Understand the causes and consequences of rapid environmental change is an essential scientific frontier, particularly given the threat of climate-and land use-induced changes in disturbance regimes. In western North America, recent widespread insect outbreaks and wildfires have sparked acute concerns about potential insect-fire interactions. Although previous research shows that insect activity typically does not increase wildfire likelihood, key uncertainties remain regarding insect effects on wildfire severity (i.e., ecological impact). Recent assessments indicate that outbreak severity and burn severity are not strongly associated, but these studies have been limited to specific insect or fire events. Here, wemore » present a regional census of large wildfire severity following outbreaks of two prevalent bark beetle and defoliator species, mountain pine beetle (Dendroctonus ponderosae) and western spruce budworm (Choristoneura freemani), across the US Pacific Northwest. Wefirst quantify insect effects on burn severity with spatial modeling at the fire event scale and then evaluate how these effects vary across the full population of insect-fire events (n = 81 spanning 1987-2011). In contrast to common assumptions of positive feedbacks, we find that insects generally reduce the severity of subsequent wildfires. Specific effects vary with insect type and timing, but both insects decrease the abundance of live vegetation susceptible to wildfire at multiple time lags. By dampening subsequent burn severity, native insects could buffer rather than exacerbate fire regime changes expected due to land use and climate change. In light of these findings, we recommend a precautionary approach when designing and implementing forest management policies intended to reduce wildfire hazard and increase resilience to global change.« less

  15. Utilization of geoinformation tools for the development of forest fire hazard mapping system: example of Pekan fire, Malaysia

    NASA Astrophysics Data System (ADS)

    Mahmud, Ahmad; Setiawan, Iwan; Mansor, Shattri; Shariff, Abdul; Pradhan, Biswajeet; Nuruddin, Ahmed

    2009-12-01

    A study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.

  16. 29 CFR 1910.164 - Fire detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... suppression systems shall be designed to operate in time to control or extinguish a fire. (2) The employer... 29 Labor 5 2011-07-01 2011-07-01 false Fire detection systems. 1910.164 Section 1910.164 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Other Fire Protection Systems § 1910.164...

  17. 29 CFR 1910.164 - Fire detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... employer shall not delay alarms or devices initiated by fire detector actuation for more than 30 seconds... 29 Labor 5 2014-07-01 2014-07-01 false Fire detection systems. 1910.164 Section 1910.164 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Other Fire Protection Systems § 1910.164...

  18. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    NASA Technical Reports Server (NTRS)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  19. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests

    USGS Publications Warehouse

    Stephens, S.L.; Moghaddas, J.J.; Edminster, C.; Fiedler, C.E.; Haase, S.; Harrington, M.; Keeley, J.E.; Knapp, E.E.; Mciver, J.D.; Metlen, K.; Skinner, C.N.; Youngblood, A.

    2009-01-01

    Abstract. Forest structure and species composition in many western U.S. coniferous forests have been altered through fire exclusion, past and ongoing harvesting practices, and livestock grazing over the 20th century. The effects of these activities have been most pronounced in seasonally dry, low and mid-elevation coniferous forests that once experienced frequent, low to moderate intensity, fire regimes. In this paper, we report the effects of Fire and Fire Surrogate (FFS) forest stand treatments on fuel load profiles, potential fire behavior, and fire severity under three weather scenarios from six western U.S. FFS sites. This replicated, multisite experiment provides a framework for drawing broad generalizations about the effectiveness of prescribed fire and mechanical treatments on surface fuel loads, forest structure, and potential fire severity. Mechanical treatments without fire resulted in combined 1-, 10-, and 100-hour surface fuel loads that were significantly greater than controls at three of five FFS sites. Canopy cover was significantly lower than controls at three of five FFS sites with mechanical-only treatments and at all five FFS sites with the mechanical plus burning treatment; fire-only treatments reduced canopy cover at only one site. For the combined treatment of mechanical plus fire, all five FFS sites with this treatment had a substantially lower likelihood of passive crown fire as indicated by the very high torching indices. FFS sites that experienced significant increases in 1-, 10-, and 100-hour combined surface fuel loads utilized harvest systems that left all activity fuels within experimental units. When mechanical treatments were followed by prescribed burning or pile burning, they were the most effective treatment for reducing crown fire potential and predicted tree mortality because of low surface fuel loads and increased vertical and horizontal canopy separation. Results indicate that mechanical plus fire, fire-only, and mechanical

  20. Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests

    NASA Technical Reports Server (NTRS)

    Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.; Turetsky, M. R.

    2010-01-01

    A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.

  1. Alaska’s changing fire regime - Implications for the vulnerability of its boreal forests

    USGS Publications Warehouse

    Kasischke, Eric S.; Verbyla, David L.; Rupp, T. Scott; McGuire, Anthony; Murphy, Karen A.; Jandt, R.; Barnes, Jennifer L.; Hoy, E.; Duffy, Paul A; Calef, Monika; Turetsky, Merritt R.

    2010-01-01

    A synthesis was carried out to examine Alaska’s boreal forest fire regime. During the 2000s, an average of 767 000 ha·year–1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from human-ignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska’s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska’s boreal forests and land and fire management are discussed.

  2. Short- and long-term effects of fire on carbon in US dry temperate forest systems

    USGS Publications Warehouse

    Hurteau, Matthew D.; Brooks, Matthew L.

    2011-01-01

    Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  3. Civic Ecology Education and Resilient Societies: A Survey of Forest Fires in Greece

    ERIC Educational Resources Information Center

    Papaspiliou, Konstantina; Skanavis, Constantina; Giannoulis, Christos

    2014-01-01

    Forest fires, as all natural disasters, have the potential to seriously affect both the environment and the social structure of a local community. Unlike some of the natural disasters, such as hurricanes, tornados and tsunamis which are unpredictable, the phenomenon of forest fires could be easily predicted and controlled, since the causes are…

  4. EVALUATION OF EFFECTS OF FOREST-FIRE SMOKE/HAZE ON BASIN-WIDE STREAM TEMPERATURES

    EPA Science Inventory

    The effects of forest fires on ecological resources in the area experiencing the burn are well documented in the literature. What is not well known is the effect of smoke and haze generated from forest fires on ecological resources adjacent to or at great distances from the burn ...

  5. Simulating the Effects of Fire on Forests in the Russian Far East: Integrating a Fire Danger Model and the FAREAST Forest Growth Model Across a Complex Landscape

    NASA Astrophysics Data System (ADS)

    Sherman, N. J.; Loboda, T.; Sun, G.; Shugart, H. H.; Csiszar, I.

    2008-12-01

    The remaining natural habitat of the critically endangered Amur tiger (Panthera tigris altaica) and Amur leopard (Panthera pardus orientalis) is a vast, biologically and topographically diverse area in the Russian Far East (RFE). Although wildland fire is a natural component of ecosystem functioning in the RFE, severe or repeated fires frequently re-set the process of forest succession, which may take centuries to return the affected forests to the pre-fire state and thus significantly alters habitat quality and long-term availability. The frequency of severe fire events has increased over the last 25 years, leading to irreversible modifications of some parts of the species' habitats. Moreover, fire regimes are expected to continue to change toward more frequent and severe events under the influence of climate change. Here we present an approach to developing capabilities for a comprehensive assessment of potential Amur tiger and leopard habitat availability throughout the 21st century by integrating regionally parameterized fire danger and forest growth models. The FAREAST model is an individual, gap-based model that simulates forest growth in a single location and demonstrates temporally explicit forest succession leading to mature forests. Including spatially explicit information on probabilities of fire occurrence at 1 km resolution developed from the regionally specific remotely -sensed data-driven fire danger model improves our ability to provide realistic long-term projections of potential forest composition in the RFE. This work presents the first attempt to merge the FAREAST model with a fire disturbance model, to validate its outputs across a large region, and to compare it to remotely-sensed data products as well as in situ assessments of forest structure. We ran the FAREAST model at 1,000 randomly selected points within forested areas in the RFE. At each point, the model was calibrated for temperature, precipitation, slope, elevation, and fire

  6. Large-scale impoverishment of Amazonian forests by logging and fire

    NASA Astrophysics Data System (ADS)

    Nepstad, Daniel C.; Verssimo, Adalberto; Alencar, Ane; Nobre, Carlos; Lima, Eirivelthon; Lefebvre, Paul; Schlesinger, Peter; Potter, Christopher; Moutinho, Paulo; Mendoza, Elsa; Cochrane, Mark; Brooks, Vanessa

    1999-04-01

    Amazonian deforestation rates are used to determine human effects on the global carbon cycle and to measure Brazil's progress in curbing forest impoverishment,,. But this widely used measure of tropical land use tells only part of the story. Here we present field surveys of wood mills and forest burning across Brazilian Amazonia which show that logging crews severely damage 10,000 to 15,000km2yr-1 of forest that are not included in deforestation mapping programmes. Moreover, we find that surface fires burn additional large areas of standing forest, the destruction of which is normally not documented. Forest impoverishment due to such fires may increase dramatically when severe droughts provoke forest leaf-shedding and greater flammability; our regional water-balance model indicates that an estimated 270,000km2 of forest became vulnerable to fire in the 1998 dry season. Overall, we find that present estimates of annual deforestation for Brazilian Amazonia capture less than half of the forest area that is impoverished each year, and even less during years of severe drought. Both logging and fire increase forest vulnerability to future burning, and release forest carbon stocks to the atmosphere, potentially doubling net carbon emissions from regional land-use during severe El Niño episodes. If this forest impoverishment is to be controlled, then logging activities need to be restricted or replaced with low-impact timber harvest techniques, and more effective strategies to prevent accidental forest fires need to be implemented.

  7. Fire-mediated dieback and compositional cascade in an Amazonian forest.

    PubMed

    Barlow, Jos; Peres, Carlos A

    2008-05-27

    The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm. PMID:18267911

  8. Multivariate cluster analysis of forest fire events in Portugal

    NASA Astrophysics Data System (ADS)

    Tonini, Marj; Pereira, Mario; Vega Orozco, Carmen; Parente, Joana

    2015-04-01

    Portugal is one of the major fire-prone European countries, mainly due to its favourable climatic, topographic and vegetation conditions. Compared to the other Mediterranean countries, the number of events registered here from 1980 up to nowadays is the highest one; likewise, with respect to the burnt area, Portugal is the third most affected country. Portuguese mapped burnt areas are available from the website of the Institute for the Conservation of Nature and Forests (ICNF). This official geodatabase is the result of satellite measurements starting from the year 1990. The spatial information, delivered in shapefile format, provides a detailed description of the shape and the size of area burnt by each fire, while the date/time information relate to the ignition fire is restricted to the year of occurrence. In terms of a statistical formalism wildfires can be associated to a stochastic point process, where events are analysed as a set of geographical coordinates corresponding, for example, to the centroid of each burnt area. The spatio/temporal pattern of stochastic point processes, including the cluster analysis, is a basic procedure to discover predisposing factorsas well as for prevention and forecasting purposes. These kinds of studies are primarily focused on investigating the spatial cluster behaviour of environmental data sequences and/or mapping their distribution at different times. To include both the two dimensions (space and time) a comprehensive spatio-temporal analysis is needful. In the present study authors attempt to verify if, in the case of wildfires in Portugal, space and time act independently or if, conversely, neighbouring events are also closer in time. We present an application of the spatio-temporal K-function to a long dataset (1990-2012) of mapped burnt areas. Moreover, the multivariate K-function allowed checking for an eventual different distribution between small and large fires. The final objective is to elaborate a 3D

  9. Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2006-01-01

    This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.

  10. Technologies of Physical Monitoring and Mathematical Modeling for Estimation of Ground Forest Fuel Fire Condition

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Bazarov, Alexandr V.

    2016-02-01

    Description of new experimental installations for the control of parameters of environment with a view of monitoring of forest fires presented in article. Stationary and mobile variants developed. Typical results of operation of installations during a fire-dangerous season of 2015 in vicinities of Ulan-Ude (Republic Buryatiya, Russia) presented. One-dimensional mathematical model of forest fuel drying which can be used for monitoring of forest fire danger with attraction of environmental parameters data during fire-dangerous season offered. Verification of mathematical model with use of known experimental data spent.