Science.gov

Sample records for forest production responses

  1. Responses of temperate forest productivity to insect and pathogen disturbances

    NASA Astrophysics Data System (ADS)

    Flower, C. E.; Gonzalez-Meler, M. A.

    2014-12-01

    Climate forcing factors have been documented to directly (e.g. CO2 fertilization) or indirectly (e.g. temperature and vapor pressure deficit) affect net primary productivity (NPP) of forests. Climate variations can also affect the vulnerability of forests to pests and pathogens, causing diffuse or widespread mortality. The introduction of novel pests is causing rapid mortality of targeted species with undetermined effects on forest productivity: NPP could decrease or increase depending on the severity (proportion of basal area impacted) and species diversity. We attempted to document the impact of diffuse mortality caused by insect outbreaks on North American temperate forests through synthesis of literature. Despite the large number of studies (>500) only a few (12) documented NPP in a systematic manner. The magnitude of insect and pathogen disturbance was larger in western than eastern forests due to the redundancy and functional diversity of temperate deciduous and mixed deciduous forests. Recovery from disturbance was more rapid from diffuse short duration defoliation events relative to the long lasting impacts of wood boring insects. Forest resilience may decrease as insect disturbance increases, particularly with generalist invasive pests that target a variety of species. We conclude that these biotic interactions, particularly when caused by invasive pests, impose biological forcing to forest NPP at similar magnitude and time scales than climate forcing.

  2. Responses of temperate forest productivity to insect and pathogen disturbances.

    PubMed

    Flower, Charles E; Gonzalez-Meler, Miquel A

    2015-01-01

    Pest and pathogen disturbances are ubiquitous across forest ecosystems, impacting their species composition, structure, and function. Whereas severe abiotic disturbances (e.g., clear-cutting and fire) largely reset successional trajectories, pest and pathogen disturbances cause diffuse mortality, driving forests into nonanalogous system states. Biotic perturbations that disrupt forest carbon dynamics either reduce or enhance net primary production (NPP) and carbon storage, depending on pathogen type. Relative to defoliators, wood borers and invasive pests have the largest negative impact on NPP and the longest recovery time. Forest diversity is an important contributing factor to productivity: NPP is neutral, marginally enhanced, or reduced in high-diversity stands in which a small portion of the canopy is affected (temperate deciduous or mixed forests) but very negative in low-diversity stands in which a large portion of the canopy is affected (western US forests). Pests and pathogens reduce forest structural and functional redundancy, affecting their resilience to future climate change or new outbreaks. Therefore, pests and pathogens can be considered biotic forcing agents capable of causing consequences of similar magnitude to climate forcing factors. PMID:25580836

  3. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Voigt, M.; Liu, H.

    2015-01-01

    During the past several decades, observational data have shown a faster increase in hot temperature extremes than the change in mean temperature. Increasingly high extreme temperatures are expected to affect terrestrial ecosystem function. The ecological impact of hot extremes on vegetation production, however, remains uncertain across biomes in natural climatic conditions. In this study, we investigated the effects of hot temperature extremes on vegetation production by combining the MODIS enhanced vegetation index (EVI) data set and in situ climatic records during the period 2000 to 2009 from 12 long-term experimental sites across biomes and climate. Our results show that higher mean annual maximum temperatures (Tmax) greatly reduced grassland production, and yet enhanced forest production after removing the effect of precipitation. The relative decrease in vegetation production was 16% for arid grassland and 7% for mesic grassland, and the increase was 5% for forest. We also observed a significantly positive relationship between interannual aboveground net primary production (ANPP) and Tmax for the forest biome (R2 = 0.79, P < 0.001). This line of evidence suggests that hot temperature extremes lead to contrasting ecosystem-level responses of vegetation production between grassland and forest biomes. Given that many terrestrial ecosystem models use average daily temperature as input, predictions of ecosystem production should consider such contrasting responses to increasingly hot temperature extreme regimes associated with climate change.

  4. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Voigt, M.; Liu, H.

    2014-04-01

    Observational data during the past several decades show faster increase of hot temperature extremes over land than changes in mean temperature. Towards more extreme temperature is expected to affect terrestrial ecosystem function. However, the ecological impacts of hot extremes on vegetation production remain uncertain across biomes in natural climatic conditions. In this study, we investigated the effects of hot temperature extremes on aboveground net primary production (ANPP) by combining MODIS EVI dataset and in situ climatic records during 2000 to 2009 from 12 long-term experimental sites across biomes and climates. Our results showed that higher mean annual maximum temperatures (Tmax) greatly reduced grassland production, and yet enhanced forest production after removing the effects of precipitation. Relative decreases in ANPP were 16% for arid grassland and 7% for mesic grassland, and the increase were 5% for forest. We also observed a significant positive relationship between interannual ANPP and Tmax for forest biome (R2 = 0.79, P < 0.001). This line of evidence suggests that hot temperature extreme leads to contrasting ecosystem-level response of vegetation production to warming climate between grassland and forest. Given that many terrestrial ecosystem models use average daily temperature as input, predictions of ecosystem production should consider these contrasting responses to more hot temperature extreme regimes associated with climate change.

  5. Microbial nitrogen cycling response to forest-based bioenergy production.

    PubMed

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  6. Forest response to elevated CO2 is conserved across a broad range of productivity

    SciTech Connect

    Norby, Richard J; DeLucia, E. H.; Gielen, Birgit; Califapietra, Carlo; Giardina, Christian P; King, John S.; Childs, Joanne; McCarthy, Heather R; Moore, D J; Ceulemans, Reinhart; DeAngelis, Paolo; Finzi, Adrien C; Karnosky, David; Kubiske, Mark E; Lukac, Martin; Pregitzer, Kurt; Scarascia-Mugnozza, Giuseppe E; Oren, Ram; Schlesinger, William H

    2005-12-01

    Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO2] ('CO2 fertilization'), thereby slowing the rate of increase in atmospheric [CO2]. Carbon exchanges between the terrestrial biosphere and atmosphere are often first represented in models as net primary productivity (NPP). However, the contribution of CO2 fertilization to the future global C cycle has been uncertain, especially in forest ecosystems that dominate global NPP, and models that include a feedback between terrestrial biosphere metabolism and atmospheric [CO2] are poorly constrained by experimental evidence. We analyzed the response of NPP to elevated CO2 ({approx}550 ppm) in four free-air CO2 enrichment experiments in forest stands. We show that the response of forest NPP to elevated [CO2] is highly conserved across a broad range of productivity, with a stimulation at the median of 23 {+-} 2%. At low leaf area indices, a large portion of the response was attributable to increased light absorption, but as leaf area indices increased, the response to elevated [CO2] was wholly caused by increased light-use efficiency. The surprising consistency of response across diverse sites provides a benchmark to evaluate predictions of ecosystem and global models and allows us now to focus on unresolved questions about carbon partitioning and retention, and spatial variation in NPP response caused by availability of other growth limiting resources.

  7. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    USGS Publications Warehouse

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  8. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment.

    PubMed

    Norby, Richard J; Ledford, Joanne; Reilly, Carolyn D; Miller, Nicole E; O'Neill, Elizabeth G

    2004-06-29

    Fine-root production and turnover are important regulators of the biogeochemical cycles of ecosystems and key components of their response to global change. We present a nearly continuous 6-year record of fine-root production and mortality from minirhizotron analysis of a closed-canopy, deciduous sweetgum forest in a free-air CO(2) enrichment experiment. Annual production of fine roots was more than doubled in plots with 550 ppm CO(2) compared with plots in ambient air. This response was the primary component of the sustained 22% increase in net primary productivity. Annual fine-root mortality matched annual production, and the mean residence time of roots was not altered by elevated CO(2), but peak fine-root standing crop in midsummer was significantly higher in CO(2)-enriched plots, especially deeper in the soil profile. The preferential allocation of additional carbon to fine roots, which have a fast turnover rate in this species, rather than to stemwood reduces the possibility of long-term enhancement by elevated CO(2) of carbon sequestration in biomass. However, sequestration of some of the fine-root carbon in soil pools is not precluded, and there may be other benefits to the tree from a seasonally larger and deeper fine-root system. Root-system dynamics can explain differences among ecosystems in their response to elevated atmospheric CO(2); hence, accurate assessments of carbon flux and storage in forests in a globally changing atmosphere must account for this unseen and difficult-to-measure component. PMID:15210962

  9. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment

    PubMed Central

    Norby, Richard J.; Ledford, Joanne; Reilly, Carolyn D.; Miller, Nicole E.; O'Neill, Elizabeth G.

    2004-01-01

    Fine-root production and turnover are important regulators of the biogeochemical cycles of ecosystems and key components of their response to global change. We present a nearly continuous 6-year record of fine-root production and mortality from minirhizotron analysis of a closed-canopy, deciduous sweetgum forest in a free-air CO2 enrichment experiment. Annual production of fine roots was more than doubled in plots with 550 ppm CO2 compared with plots in ambient air. This response was the primary component of the sustained 22% increase in net primary productivity. Annual fine-root mortality matched annual production, and the mean residence time of roots was not altered by elevated CO2, but peak fine-root standing crop in midsummer was significantly higher in CO2-enriched plots, especially deeper in the soil profile. The preferential allocation of additional carbon to fine roots, which have a fast turnover rate in this species, rather than to stemwood reduces the possibility of long-term enhancement by elevated CO2 of carbon sequestration in biomass. However, sequestration of some of the fine-root carbon in soil pools is not precluded, and there may be other benefits to the tree from a seasonally larger and deeper fine-root system. Root-system dynamics can explain differences among ecosystems in their response to elevated atmospheric CO2; hence, accurate assessments of carbon flux and storage in forests in a globally changing atmosphere must account for this unseen and difficult-to-measure component. PMID:15210962

  10. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2014-11-01

    Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from

  11. Rational forest productivity decline.

    PubMed

    MacLellan, James I; Carleton, T J

    2003-01-01

    A whole forest optimisation model was employed to examine economic behaviour as it relates to long term, forest productivity decline in the boreal forests of Ontario, Canada. Our productivity investment model (PIM) incorporated a choice between productivity decline as represented by a drop in forest Site Class, and a fee to 'maintain' site productivity. Sensitivity analysis was used to determine the point at which these fees exceeded the value of the differential in timber volume between upper and lower site classes. By varying discount rate, 'productivity investment frontiers' were constructed, which highlight the effects of the magnitude in productivity decline, maintenance fees, and harvest flow constraints upon the occurrence and schedule of productivity declines. In presenting this simple approach to exploring the effects of economic choice upon forest productivity decline, the phenomena of 'natural capital divestment' within forestry is described. PMID:12859006

  12. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2015-04-01

    Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model - CLM3.5-DGVM; Ecosystem Demography model version 2 - ED2; the Joint UK Land Environment Simulator version 2.1 - JULES; Simple Biosphere model version 3 - SiB3; and the soil-plant-atmosphere model - SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model-data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest

  13. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity.

    PubMed

    Stuart-Haëntjens, Ellen J; Curtis, Peter S; Fahey, Robert T; Vogel, Christoph S; Gough, Christopher M

    2015-09-01

    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand- replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP,) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPPw, and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production. PMID:26594704

  14. Forest response to elevated CO2 is conserved across a broad range of productivity

    SciTech Connect

    Norby, Richard J; DeLucia, E. H.; Gielen, Birgit; Califapietra, Carlo; Giardina, Christian P; King, John S.; Childs, Joanne; McCarthy, Heather R; Moore, D J; Ceulemans, Reinhart; DeAngelis, Paolo; Finzi, Adrien C; Karnosky, David; Kubiske, Mark E; Lukac, Martin; Pregitzer, Kurt; Scarascia-Mugnozza, Giuseppe E; Schlesinger, William H; Oren, Ram

    2005-11-01

    Climate change predictions derived from coupled carbon-climate models are highly dependent on assumptions about feedbacks between the biosphere and atmosphere. One critical feedback occurs if C uptake by the biosphere increases in response to the fossil-fuel driven increase in atmospheric [CO{sub 2}] ('CO{sub 2} fertilization'), thereby slowing the rate of increase in atmospheric [CO{sub 2}]. Carbon exchanges between the terrestrial biosphere and atmosphere are often first represented in models as net primary productivity (NPP). However, the contribution of CO{sub 2} fertilization to the future global C cycle has been uncertain, especially in forest ecosystems that dominate global NPP, and models that include a feedback between terrestrial biosphere metabolism and atmospheric [CO{sub 2}] are poorly constrained by experimental evidence. We analyzed the response of NPP to elevated CO{sub 2} ({approx}550 ppm) in four free-air CO{sub 2} enrichment experiments in forest stands. We show that the response of forest NPP to elevated [CO{sub 2}] is highly conserved across a broad range of productivity, with a stimulation at the median of 23 {+-} 2%. At low leaf area indices, a large portion of the response was attributable to increased light absorption, but as leaf area indices increased, the response to elevated [CO{sub 2}] was wholly caused by increased light-use efficiency. The surprising consistency of response across diverse sites provides a benchmark to evaluate predictions of ecosystem and global models and allows us now to focus on unresolved questions about carbon partitioning and retention, and spatial variation in NPP response caused by availability of other growth limiting resources.

  15. Hybrid poplar and forest soil response to municipal and industrial by-products: a greenhouse study.

    PubMed

    Cavaleri, Molly A; Gilmore, Daniel W; Mozaffari, Morteza; Rosen, Carl J; Halbach, Thomas R

    2004-01-01

    Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers. PMID:15224944

  16. Forest fine-root production and nitrogen use under elevated CO2: Contrasting responses explained by a common principle

    SciTech Connect

    Franklin, Oscar; McMurtrie, Ross E; Iversen, Colleen M; Crous, Kristine; Finzi, Adrien C; Tissue, David Thomas; Ellsworth, David; Oren, Ram; Norby, Richard J

    2009-01-01

    Despite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO2 concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO2 (eCO2) and soil N availability on forest productivity and C allocation, we hypothesized that 1) trees maximize fitness by allocating N and C to maximize their net growth, and 2) that N uptake is controlled by root exploration for N. We tested this model using data collected in FACE sites dominated by evergreen (Pinus taeda; Duke Forest) and deciduous (Liquidambar styraciflua; Oak Ridge National Laboratory ORNL) trees. The model explained 80-95% of variation in productivity and N-uptake data among eCO2, N fertilization and control treatments over six years. The model explains why fine-root production increased, and why N uptake increased despite reduced soil N availability under eCO2 at ORNL and Duke. In agreement with observations at other sites, soil N availability reduced below a critical level diminishes all eCO2 responses. At Duke, a negative feedback between reduced soil N availability and N uptake counteracted progressive reduction in soil N availability at eCO2. At ORNL, decreasing soil N availability was perpetuated as it generated no reduction in N uptake, due to strongly increased production of fast turnover fine-roots. This implies that species with fast root turnover could be more prone to progressive N limitation of carbon sequestration in woody biomass than species with slow root turnover, such as evergreens.

  17. Forest Products Industry Technology Roadmap

    SciTech Connect

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  18. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Forest products. 780.159 Section 780.159 Labor Regulations... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in forests and the lumber derived therefrom are not agricultural or horticultural commodities, for...

  19. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the...

  20. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the...

  1. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Forest products. 780.159 Section 780.159 Labor Regulations... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in forests and the lumber derived therefrom are not agricultural or horticultural commodities, for...

  2. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the...

  3. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Forest products. 780.159 Section 780.159 Labor Regulations... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in forests and the lumber derived therefrom are not agricultural or horticultural commodities, for...

  4. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Forest products. 780.159 Section 780.159 Labor Regulations... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in forests and the lumber derived therefrom are not agricultural or horticultural commodities, for...

  5. 29 CFR 780.159 - Forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Forest products. 780.159 Section 780.159 Labor Regulations... Other Unlisted Practices Which May Be within Section 3(f) § 780.159 Forest products. Trees grown in forests and the lumber derived therefrom are not agricultural or horticultural commodities, for...

  6. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the...

  7. 29 CFR 780.115 - Forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Forest products. 780.115 Section 780.115 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... Agricultural Or Horticultural Commodities § 780.115 Forest products. Trees grown in forests and the...

  8. Method of determining forest production from remotely sensed forest parameters

    DOEpatents

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  9. A Novel Tropical Dry Forests: A Response to Environmental Change.

    NASA Astrophysics Data System (ADS)

    Lugo, A. E.; Molina, S.

    2015-12-01

    Dry Forest environments are favorable to human settlement and activities, leading to deforestation, agricultural enterprises, land degradation, and abandonment. As a result, tropical dry forests are vulnerable and experience a high rate of cover loss, which often requires restoration activities. We have studied the natural regeneration of dry forests in Puerto Rico following a variety of human activities including farming, cattle pasturing, charcoal production, and human dwellings. Our results show a high level of forest resilience to anthropogenic disturbances but also a change of species composition relative to undisturbed native forests. This novelty of forest composition represents a natural response to environmental changes induced by human activity and pre-adapts forests to conditions in the Anthropocene.

  10. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST...

  11. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST...

  12. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST...

  13. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST...

  14. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST...

  15. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST...

  16. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST...

  17. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST...

  18. Climate Change Impacts on Forest Succession and Future Productivity

    NASA Astrophysics Data System (ADS)

    Mohan, J. E.; Melillo, J. M.; Clark, J. S.; Schlesinger, W. H.

    2012-12-01

    Change in ecosystem carbon (C) dynamics with forest succession is a long-studied topic in ecology, and secondary forests currently comprise a significant proportion of the global land base. Although mature forests are generally more important for conserving species and habitats, early successional trees and stands typically have higher rates of productivity, including net ecosystem productivity (NEP), which represents carbon available for sequestration. Secondary forests undergoing successional development are thus major players in the current global carbon cycle, yet how forests will function in the future under warmer conditions with higher atmospheric carbon dioxide (CO2) concentrations is unknown. Future forest C dynamics will depend, in part, on future species composition. Data from "Forests of the Future" research in a number of global change experiments provide insights into how forests may look in terms of dominant species composition, and thus function, in a future world. Studies at Free-Air Carbon Dioxide (FACE) experiments at Duke Forest and other facilities, plus climate warming experiments such as those at the Harvard Forest, suggest a common underlying principle of vegetation responses to environmental manipulation: Namely, that shade-tolerant woody species associating with arbuscular mycorrhizal (AM) fungi show greater growth stimulation than ectomycorrhizal-associating (ECM) trees which are more common in temperate and boreal forests (Fig. 1 of relative growth rates standardized by pre-treatment rates). This may be due in part to the role of AM fungi in obtaining soil phosphorus and inorganic forms of nitrogen for plant associates. In combination, these results suggest a shift in future forest composition towards less-productive tree species that generally acquire atmospheric CO2 at lower annual rates, as well as a competitive advantage extended to woody vines such as poison ivy. Due to higher atmospheric CO2 and warmer temperatures, forests of the

  19. Response of the Fine Root Production, Phenology, and Turnover Rate of Six Shrub Species from a Subtropical Forest to a Soil Moisture Gradient and Shading

    NASA Astrophysics Data System (ADS)

    Fu, X.; Dai, X.; Wang, H.

    2015-12-01

    Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics

  20. Forest response and recovery following disturbance (Invited)

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Clark, K. L.; Renninger, H. J.; Carlo, N.; Medvigy, D.

    2013-12-01

    Forest management and global climate change may modulate forest responses to disturbances such as drought, insect infestation or windthrow. Forest responses to drought and gypsy moth defoliation measured from 2005 to present in an oak/pine ecosystem in the Atlantic Coastal Plain (New Jersey Pinelands) show a relative conservatism of water use but longer lasting effects on carbon balance. While post-defoliation transpiration and evapotranspiration were similar to pre-defoliation levels, post-defoliation carbon fluxes have not returned to pre-disturbance levels even after five years of recovery due to a 25% reduction in basal area following tree mortality. Defoliation frequency also affects recovery with modeled carbon fluxes under various defoliation scenarios, showing pronounced reduction in productivity under frequent defoliation, but no effect if defoliation occurs at a rate of less than 15 years. Despite a relatively consistent seasonal water use through various disturbances, defoliation and drought affect water use differently. For example, canopy transpiration (EC) after defoliation and subsequent re-sprouting, was reduced by 25% compared to pre-defoliation levels, even though only half of the leaf area was replaced. However under severe drought conditions in 2006 and 2010, EC was only reduced by 8% and 18% respectively. Therefore, prolonged drought had a lesser effect on EC than reduced foliage or episodic defoliation, suggesting these trees have access to deeper soil moisture. These data also suggest that defoliation may make trees more sensitive to drought as evidenced by the higher reduction of Ec in 2010 compared to 2006 (pre-defoliation). Differential physiological responses of the various oak species as well as pitch pine may also create a species shift in an ecosystem that is also prone to fire. In this ecosystem, Quercus prinus showed consistently lower stomatal conductance, photosynthesis and maximum carboxylation rate compared to Quercus velutina

  1. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip

    2011-01-01

    U.S. forests occupy approx. 751 million acres (approx. 1/3 of total land). These forests are exposed to multiple biotic and abiotic threats that collectively damage extensive acreages each year. Hazardous forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest monitoring products are needed to aid forest management and decision making by the US Forest Service and its state and private partners. Daily MODIS data products provide a means to monitor regional forest disturbances on a weekly basis. In response, we began work in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat early warning system (EWS)

  2. Forest biogeochemistry in response to drought.

    PubMed

    Schlesinger, William H; Dietze, Michael C; Jackson, Robert B; Phillips, Richard P; Rhoades, Charles C; Rustad, Lindsey E; Vose, James M

    2016-07-01

    Trees alter their use and allocation of nutrients in response to drought, and changes in soil nutrient cycling and trace gas flux (N2 O and CH4 ) are observed when experimental drought is imposed on forests. In extreme droughts, trees are increasingly susceptible to attack by pests and pathogens, which can lead to major changes in nutrient flux to the soil. Extreme droughts often lead to more common and more intense forest fires, causing dramatic changes in the nutrient storage and loss from forest ecosystems. Changes in the future manifestation of drought will affect carbon uptake and storage in forests, leading to feedbacks to the Earth's climate system. We must improve the recognition of drought in nature, our ability to manage our forests in the face of drought, and the parameterization of drought in earth system models for improved predictions of carbon uptake and storage in the world's forests. PMID:26403995

  3. 36 CFR 223.277 - Forest botanical products definition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Forest botanical products definition. 223.277 Section 223.277 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Forest Botanical Products § 223.277...

  4. 36 CFR 223.216 - Special Forest Products definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Special Forest Products definitions. 223.216 Section 223.216 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Special Forest Products § 223.216...

  5. Classifying forest productivity at different scales

    SciTech Connect

    Graham, R.L.

    1991-01-01

    Spatial scale is an important consideration when evaluating, using, or constructing forest productivity classifications. First, the factors which dominate spatial variability in forest productivity are scale dependent. For example, within a stand, spatial variability in productivity is dominated by microsite differences; within a national forest such as the Cherokee National Forest, spatial variability is dominated by topography and land-use history (e.g., years since harvest); within a large region such as the southeast, spatial variability is dominated by climatic patterns. Second, classifications developed at different spatial scales are often used for different purposes. For example, stand-level classifications are often keys or rules used in the field to judge the quality or potential of a site. National-forest classifications are often presented as maps or tables and may be used in forest land planning. Regional classifications may be maps or tables and may be used to quantify or predict resource availability. These scale-related differences in controlling factors and purposes will affect both the methods and the data used to develop classifications. In this paper, I will illustrate these points by describing and comparing three forest productivity classifications, each developed for a specific purpose at a specific scale. My objective is not to argue for or against any of these particular classifications but rather to heighten awareness of the critical role that spatial scale plays in the use and development of forest productivity classifications. 8 refs., 2 figs., 1 tab.

  6. Water management and productivity in planted forests

    NASA Astrophysics Data System (ADS)

    Nettles, J. E.

    2014-09-01

    As climate variability endangers water security in many parts of the world, maximizing the carbon balance of plantation forestry is of global importance. High plant water use efficiency is generally associated with lower plant productivity, so an explicit balance in resources is necessary to optimize water yield and tree growth. This balance requires predicting plant water use under different soil, climate, and planting conditions, as well as a mechanism to account for trade-offs in ecosystem services. Several strategies for reducing the water use of forests have been published but there is little research tying these to operational forestry. Using data from silvicultural and biofuel feedstock research in pine plantation ownership in the southeastern USA, proposed water management tools were evaluated against known treatment responses to estimate water yield, forest productivity, and economic outcomes. Ecosystem impacts were considered qualitatively and related to water use metrics. This work is an attempt to measure and compare important variables to make sound decisions about plantations and water use.

  7. Comparison of simulated forest responses to biosolids application

    SciTech Connect

    Luxmoore, R.J.; Tharp, M.L.; Efroymson, R.A.

    1999-12-01

    Organic matter and N are added to humus pools of the LINKAGES simulator of forest growth and N cycling at a range of application rates to investigate long-term effects of biosolids (sewage sludge) on forest productivity. Two conifer plantations (Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii], loblolly pine [Pinus taeda L.]) and a northern hardwood forest located in contrasting climatic regions are investigated. Single applications of biosolids are given at 0.5, 10, 20, and 40 Mg/ha, and multiple applications are given on seven occasions at 3-yr intervals of rates of 5 and 10 Mg/ha. Highly significant increases in aboveground phytomass and net primary productivity of Douglas-fir plantations are obtained in a 100-yr simulation with increasing biosolids application rates. Results for loblolly pine from a 50-yr simulation produced about half the growth response of Douglas-fir. Long-term simulations of northern hardwoods showed modest growth responses and small increases in NPP with added biosolids. The phytomass of one overstory and three understory species in the hardwood forest changed in response to different biosolids applications and varying species sensitivity to N supply. Biosolids are a significant resource for enhancing forest productivity, particularly in conifer plantations. Estimates of N leaching losses from simulated forest sites combined with a literature review of leaching losses suggest that biosolids applications at 3-yr intervals with rates less than 8.5 Mg/ha (0.4 Mg N/ha) during active forest growth may pose little off-site contamination risk to ground water or surface waters.

  8. 78 FR 34031 - Burned Area Emergency Response, Forest Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Response activities on National Forest System lands. Agency regulations at 36 CFR 220.6(d)(2) (73 FR 43093...; ] DEPARTMENT OF AGRICULTURE Forest Service RIN 0596-AC73 Burned Area Emergency Response, Forest Service AGENCY: Forest Service, USDA. ACTION: Notice of interim directive; request for public comment. SUMMARY:...

  9. Modeling Forest Productivity Using Envisat MERIS Data

    PubMed Central

    Berberoglu, Suha; Evrendilek, Fatih; Ozkan, Coskun; Donmez, Cenk

    2007-01-01

    The aim of this study was to derive land cover products with a 300-m pixel resolution of Envisat MERIS (Medium Resolution Imaging Spectrometer) to quantify net primary productivity (NPP) of conifer forests of Taurus Mountain range along the Eastern Mediterranean coast of Turkey. The Carnegie-Ames-Stanford approach (CASA) was used to predict annual and monthly regional NPP as modified by temperature, precipitation, solar radiation, soil texture, fractional tree cover, land cover type, and normalized difference vegetation index (NDVI). Fractional tree cover was estimated using continuous training data and multi-temporal metrics of 47 Envisat MERIS images of March 2003 to September 2005 and was derived by aggregating tree cover estimates made from high-resolution IKONOS imagery to coarser Landsat ETM imagery. A regression tree algorithm was used to estimate response variables of fractional tree cover based on the multi-temporal metrics. This study showed that Envisat MERIS data yield a greater spatial detail in the quantification of NPP over a topographically complex terrain at the regional scale than those used at the global scale such as AVHRR.

  10. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  11. Sustainable Harvest and marketing of rain forest products

    SciTech Connect

    Plotkin, M.J.; Famolare, L.M.

    1992-01-01

    The economics of nontimber rainforest products often make a strong case for forest protection and prevention of deforestation. This book contains 33 diverse papers falling into three catagories: tropical rainforests are underutilized sources of new plant products; increased use of tropical forest products should benefit human inhabitants of the rainforest; nontimber forest products many not be the panacea that some suggest.

  12. Where No (Observed) Forest has Gone Before: New Patterns in Forest Response to Climate Change and Variability

    NASA Astrophysics Data System (ADS)

    McNulty, S.; Sun, G.; Boggs, J. L.; Ward, E. J.

    2014-12-01

    Insect outbreaks, wildfire, and drought have directly or indirectly impacted forest health, productivity and water use long before the advent of modern forestry practices. However, climate change may be acerbating these impacts are causing land managers to reconsider the use and timing of management tools. However, even as new methods are being devised to combat negative drought impacts, the forest response to chronic and increasingly severe episodic drought may be changing. Historically, the weakest (e.g., suppressed, understory) trees were the first to succumb to stress while the strongest (e.g., dominant, fast growing). However, recent studies have suggested that a combination of chronic and increasingly extreme episodic stress may be causing hereunto unobserved patterns in forest mortality with the more vigorously growing trees having higher rates of mortality than slower growing, more generally stressed individuals. I suggest that the forests have not altered their response to stress, but only that the level of stress, and the forest response to that stress has not previously been observed in recorded history. This extension of the forest stress response continuum has very significant implications to forest management under drought and associated disturbance. Therefore, this paper explores the causes and implications for maintaining forest resilience and sustainability under an increasingly variable climate.

  13. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    PubMed

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  14. Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests

    PubMed Central

    Pec, Gregory J.; Karst, Justine; Sywenky, Alexandra N.; Cigan, Paul W.; Erbilgin, Nadir; Simard, Suzanne W.; Cahill, James F.

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown. PMID:25859663

  15. Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Graham, William; Smoot, James

    2009-01-01

    This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was

  16. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of 1990 (16 U.S.C. 620, et seq.), or its implementing regulations at 36 CFR 223.185-223.203... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Timber and other forest products. 261.6 Section 261.6 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  17. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of 1990 (16 U.S.C. 620, et seq.), or its implementing regulations at 36 CFR 223.185-223.203... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Timber and other forest products. 261.6 Section 261.6 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  18. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of 1990 (16 U.S.C. 620, et seq.), or its implementing regulations at 36 CFR 223.185-223.203... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Timber and other forest products. 261.6 Section 261.6 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  19. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of 1990 (16 U.S.C. 620, et seq.), or its implementing regulations at 36 CFR 223.185-223.203... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Timber and other forest products. 261.6 Section 261.6 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  20. 36 CFR 261.6 - Timber and other forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of 1990 (16 U.S.C. 620, et seq.), or its implementing regulations at 36 CFR 223.185-223.203... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Timber and other forest products. 261.6 Section 261.6 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF...

  1. Integrated Forest Products Refinery (IFPR)

    SciTech Connect

    van Heiningen, Adriaan R. P.

    2010-05-29

    about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the “near-neutral” green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose

  2. Extreme warm temperatures alter forest phenology and productivity in Europe.

    PubMed

    Crabbe, Richard A; Dash, Jadu; Rodriguez-Galiano, Victor F; Janous, Dalibor; Pavelka, Marian; Marek, Michal V

    2016-09-01

    Recent climate warming has shifted the timing of spring and autumn vegetation phenological events in the temperate and boreal forest ecosystems of Europe. In many areas spring phenological events start earlier and autumn events switch between earlier and later onset. Consequently, the length of growing season in mid and high latitudes of European forest is extended. However, the lagged effects (i.e. the impact of a warm spring or autumn on the subsequent phenological events) on vegetation phenology and productivity are less explored. In this study, we have (1) characterised extreme warm spring and extreme warm autumn events in Europe during 2003-2011, and (2) investigated if direct impact on forest phenology and productivity due to a specific warm event translated to a lagged effect in subsequent phenological events. We found that warmer events in spring occurred extensively in high latitude Europe producing a significant earlier onset of greening (OG) in broadleaf deciduous forest (BLDF) and mixed forest (MF). However, this earlier OG did not show any significant lagged effects on autumnal senescence. Needleleaf evergreen forest (NLEF), BLDF and MF showed a significantly delayed end of senescence (EOS) as a result of extreme warm autumn events; and in the following year's spring phenological events, OG started significantly earlier. Extreme warm spring events directly led to significant (p=0.0189) increases in the productivity of BLDF. In order to have a complete understanding of ecosystems response to warm temperature during key phenological events, particularly autumn events, the lagged effect on the next growing season should be considered. PMID:27152990

  3. 29 CFR 780.1015 - Other forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... means any plant of the forest and includes, of course, deciduous plants as well. ... 29 Labor 3 2012-07-01 2012-07-01 false Other forest products. 780.1015 Section 780.1015 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1015 Other forest products. The...

  4. 29 CFR 780.1015 - Other forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... means any plant of the forest and includes, of course, deciduous plants as well. ... 29 Labor 3 2014-07-01 2014-07-01 false Other forest products. 780.1015 Section 780.1015 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1015 Other forest products. The...

  5. 29 CFR 780.1015 - Other forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... means any plant of the forest and includes, of course, deciduous plants as well. ... 29 Labor 3 2011-07-01 2011-07-01 false Other forest products. 780.1015 Section 780.1015 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1015 Other forest products. The...

  6. 29 CFR 780.1015 - Other forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... means any plant of the forest and includes, of course, deciduous plants as well. ... 29 Labor 3 2010-07-01 2010-07-01 false Other forest products. 780.1015 Section 780.1015 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1015 Other forest products. The...

  7. 29 CFR 780.1015 - Other forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means any plant of the forest and includes, of course, deciduous plants as well. ... 29 Labor 3 2013-07-01 2013-07-01 false Other forest products. 780.1015 Section 780.1015 Labor... Provisions Under Section 13(d) Requirements for Exemption § 780.1015 Other forest products. The...

  8. 75 FR 64617 - National Forest Products Week, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Independence of the United States of America the two hundred and thirty-fifth. (Presidential Sig.) [FR Doc... Documents#0;#0; ] Proclamation 8587 of October 15, 2010 National Forest Products Week, 2010 By the President... anniversary of National Forest Products Week, we recognize the enduring value of forests as...

  9. 25 CFR 163.14 - Sale of forest products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Sale of forest products. 163.14 Section 163.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.14 Sale of forest products. (a) Consistent with the economic objectives...

  10. 25 CFR 163.14 - Sale of forest products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Sale of forest products. 163.14 Section 163.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.14 Sale of forest products. (a) Consistent with the economic objectives...

  11. 25 CFR 163.26 - Forest product harvesting permits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Forest product harvesting permits. 163.26 Section 163.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.26 Forest product harvesting permits. (a) Except as provided...

  12. 25 CFR 163.22 - Payment for forest products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Payment for forest products. 163.22 Section 163.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.22 Payment for forest products. (a) The basis of...

  13. 25 CFR 163.14 - Sale of forest products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Sale of forest products. 163.14 Section 163.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.14 Sale of forest products. (a) Consistent with the economic objectives...

  14. 25 CFR 163.22 - Payment for forest products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Payment for forest products. 163.22 Section 163.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.22 Payment for forest products. (a) The basis of...

  15. 25 CFR 163.16 - Forest product sales without advertisement.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Forest product sales without advertisement. 163.16 Section 163.16 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.16 Forest product sales without...

  16. 25 CFR 163.14 - Sale of forest products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Sale of forest products. 163.14 Section 163.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.14 Sale of forest products. (a) Consistent with the economic objectives...

  17. 25 CFR 163.22 - Payment for forest products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Payment for forest products. 163.22 Section 163.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.22 Payment for forest products. (a) The basis of volume determination...

  18. 25 CFR 163.26 - Forest product harvesting permits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Forest product harvesting permits. 163.26 Section 163.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.26 Forest product harvesting permits. (a) Except as provided...

  19. 25 CFR 163.14 - Sale of forest products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Sale of forest products. 163.14 Section 163.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.14 Sale of forest products. (a) Consistent with the economic objectives...

  20. 25 CFR 163.22 - Payment for forest products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Payment for forest products. 163.22 Section 163.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.22 Payment for forest products. (a) The basis of...

  1. 25 CFR 163.26 - Forest product harvesting permits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Forest product harvesting permits. 163.26 Section 163.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.26 Forest product harvesting permits. (a) Except as provided...

  2. 25 CFR 163.22 - Payment for forest products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Payment for forest products. 163.22 Section 163.22 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.22 Payment for forest products. (a) The basis of...

  3. 25 CFR 163.26 - Forest product harvesting permits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Forest product harvesting permits. 163.26 Section 163.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.26 Forest product harvesting permits. (a) Except as provided...

  4. 25 CFR 163.26 - Forest product harvesting permits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Forest product harvesting permits. 163.26 Section 163.26 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.26 Forest product harvesting permits. (a) Except as provided...

  5. 25 CFR 163.16 - Forest product sales without advertisement.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Forest product sales without advertisement. 163.16 Section 163.16 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.16 Forest product sales without advertisement. (a) Sales...

  6. 25 CFR 163.16 - Forest product sales without advertisement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Forest product sales without advertisement. 163.16 Section 163.16 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.16 Forest product sales without...

  7. 25 CFR 163.16 - Forest product sales without advertisement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Forest product sales without advertisement. 163.16 Section 163.16 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.16 Forest product sales without...

  8. 25 CFR 163.16 - Forest product sales without advertisement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Forest product sales without advertisement. 163.16 Section 163.16 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.16 Forest product sales without...

  9. Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle

    NASA Astrophysics Data System (ADS)

    Delucia, E. H.; Moore, D. J.; Norby, R. J.

    2005-09-01

    In two parallel but independent experiments, Free Air CO2 Enrichment (FACE) technology was used to expose plots within contrasting evergreen loblolly pine (Pinus taeda L.) and deciduous sweetgum (Liquidambar styraciflua L.) forests to the level of CO2 anticipated in 2050. Net primary production (NPP) and net ecosystem production (NEP) increased in both forests. In the year 2000, after exposing pine and sweetgum to elevated CO2 for approximately 5 and 3 years, a complete budget calculation revealed increases in net ecosystem production (NEP) of 41% and 44% in the pine forest and sweetgum forest, respectively, representing the storage of an additional 174 gC m-2 and 128 gC m-2 in these forests. The stimulation of NPP without corresponding increases in leaf area index or light absorption in either forest resulted in 23-27% stimulation in radiation-use efficiency, defined as NPP per unit absorbed photosynthetically active radiation. Greater plant respiration contributed to lower NPP in the loblolly pine forest than in the sweetgum forest, and these forests responded differently to CO2 enrichment. Where the pine forest added C primarily to long-lived woody tissues, exposure to elevated CO2 caused a large increase in the production of labile fine roots in the sweetgum forest. Greater allocation to more labile tissues may cause more rapid cycling of C back to the atmosphere in the sweetgum forest compared to the pine forest. Imbalances in the N cycle may reduce the response of these forests to experimental exposure to elevated CO2 in the future, but even at the current stimulation observed for these forests, the effect of changes in land use on C sequestration are likely to be larger than the effect of CO2-induced growth stimulation.

  10. Key canopy traits drive forest productivity.

    PubMed

    Reich, Peter B

    2012-06-01

    Quantifying the mechanistic links between carbon fluxes and forest canopy attributes will advance understanding of leaf-to-ecosystem scaling and its potential application to assessing terrestrial ecosystem metabolism. Important advances have been made, but prior studies that related carbon fluxes to multiple canopy traits are scarce. Herein, presenting data for 128 cold temperate and boreal forests across a regional gradient of 600 km and 5.4°C (from 2.4°C to 7.8°C) in mean annual temperature, I show that stand-scale productivity is a function of the capacity to harvest light (represented by leaf area index, LAI), and to biochemically fix carbon (represented by canopy nitrogen concentration, %N). In combination, LAI and canopy %N explain greater than 75 per cent of variation in above-ground net primary productivity among forests, expressed per year or per day of growing season. After accounting for growing season length and climate effects, less than 10 per cent of the variance remained unexplained. These results mirror similar relations of leaf-scale and canopy-scale (eddy covariance) maximum photosynthetic rates to LAI and %N. Collectively, these findings indicate that canopy structure and chemistry translate from instantaneous physiology to annual carbon fluxes. Given the increasing capacity to remotely sense canopy LAI, %N and phenology, these results support the idea that physiologically based scaling relations can be useful tools for global modelling. PMID:22279168

  11. Forest turnover rates follow global and regional patterns of productivity

    USGS Publications Warehouse

    Stephenson, N.L.; van Mantgem, P.J.

    2005-01-01

    Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.

  12. 78 FR 44523 - Burned Area Emergency Response, Forest Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ..., (78 FR 34031). This correction adds the Web site that was inadvertently omitted from the interim... Federal Register of June 6, 2013, in FR Doc. 2013-13459, on page 34031, column 3, after the first... Forest Service RIN 0596-AC73 Burned Area Emergency Response, Forest Service AGENCY: Forest Service,...

  13. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Sustainable harvest of special forest products. 223.219 Section 223.219 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special...

  14. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Sustainable harvest of special forest products. 223.219 Section 223.219 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special...

  15. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Sustainable harvest of special forest products. 223.219 Section 223.219 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special...

  16. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Sustainable harvest of special forest products. 223.219 Section 223.219 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL PRODUCTS Special...

  17. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.

    2011-12-01

    maintained by the National Environmental Modeling and Analysis Center. The FCAV EWS has been used to aid multiple Federal and State agency forest management activities, including aerial disturbance detection surveys, as well as rapid response preliminary assessments of timber loss due to tornadoes, regional drought studies, and fire damage assessments. The FCAV allows end-users to assess the context of apparent forest vegetation change with respect to ancillary data, such as land cover, topography, hydrology, climate variables, and administrative boundaries. Such change products are being evaluated through case studies involving comparison with higher spatial resolution satellite, aerial, and field data. The presentation will include multiple examples in which regionally evident forest disturbances were successfully detected and monitored with the MODIS-based change products, as part of the FCAV. FCAV's MODIS forest change products enable end-users (e.g., resource managers) to view and monitor forest hazards at regional scales throughout the year and across the nation.

  18. Comparison of growth response to thinning in oak forests managed as coppice with standards and high forest

    NASA Astrophysics Data System (ADS)

    Gautam, S.; Hasenauer, H.; Pietsch, S. A.

    2009-04-01

    The BIOME-BGC model integrates the main physical, biological and physiological processes based on current understanding of ecophysiology to assess forest ecosystem dynamics. This study evaluates the application of the model to assess the thinning effects on coppiced oak forests in Austria. We analyze the growth response, i.e. growth efficiency (GE), nitrogen use efficiency (NUE), water use efficiency (WUE) and radiation use efficiency (RUE) of oak forests to thinning. The results of coppice with standards and high forests simulations are analysed for differences in simulated growth response after thinning. The forest field data of the year 2006 and the respective model runs are used to evaluate model application. Strong positive relationship (r2 = 0.90) with unbiased results and statistically insignificant differences between predicted and observed volume allows the use of the model as a diagnostic tool to assess management effects. Results indicate that the coppice with standards exhibits a significantly higher yield by 2.97% (i.e. 10 cubic meters per hectare in one rotation), a higher harvest (49.9%) but a lower growing stock (19.69%) than the high forests. The higher growing stock and the lower extraction in the high forests confirm that the high forest sequestrates significantly more carbon than the coppice with standards. Results show that thinning leads to an increase in the GE, the NUE and the WUE, and to a decrease in the RUE. Although the coppice with standards forest ecosystem exhibits higher values in all studied growth parameters, only the difference in the NUE was statistically significant. This verifies that the difference in the yield between the coppice with standards and the high forests is mainly governed by the NUE difference in stands after thinning. The coppice with standards system produces an equal amount of net primary production while consuming significantly less nitrogen (16%) compared to the high forest system. In the coppice with

  19. Forest Products Industry of the Future

    SciTech Connect

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  20. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Glasser, Jerry; Kuper, Philip D.

    2011-01-01

    FCAV EWS has been used to aid multiple Federal and State agency forest management activities, including aerial disturbance detection surveys, as well as rapid response preliminary assessments of timber loss due to tornadoes, regional drought studies, and fire damage assessments. The FCAV allows end-users to assess the context of apparent forest vegetation change with respect to ancillary data, such as land cover, topography, hydrology, climate variables, and administrative boundaries. Such change products are being evaluated through case studies involving comparison with higher spatial resolution satellite, aerial, and field data. The presentation will include multiple examples in which regionally evident forest disturbances were successfully detected and monitored with the MODIS-based change products, as part of the FCAV. FCAV's MODIS forest change products enable end-users (e.g., resource managers) to monitor forest hazards at regional scales throughout the year and across the nation.

  1. Soil production in forested landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Roering, J. J.; Booth, A. M.

    2009-12-01

    One of the most fundamental characteristics that defines landscapes is the presence or absence of a soil mantle. In actively eroding terrain, soil (and other natural resources that depend on it) persists only when the rate of soil production is not eclipsed by denudation. Despite successful efforts to empirically estimate long-term rates of soil production, little predictive capability exists as soil formation results from a complex interplay of biological, physical, and chemical processes. Here, we synthesize a suite of observations from the steep, forested Oregon Coast Range (OCR) and anlayze the role of trees in the conversion of bedrock to soil. Pit/mound topography on forest floors attests to the persistent, wholesale overturning of soil by tree root activity. Using airborne LiDAR data for our study site in the western Oregon Coast Range, we calculated how terrain roughness varies with spatial scale. At scales greater than 10m, the well-established ridge/valley structure of the landscape defines the topography; whereas for scales less than 7m, terrain roughness increases rapidly reflecting the stochastic nature of bioturbation associated with large, coniferous trees. Empirical estimates of soil production in the OCR by Heimsath et al (2001, ESPL) reveal that production rates decrease exponentially with depth and the decay constant is 2.68 (1/m). From dozens of soil pits in the OCR, we show that the density of trees roots declines exponentially with depth at a similar rate, 2.57 (1/m). In other words, rates of soil production appear to be well-correlated with root density. Bedrock is often excavated during tree turnover events and we documented that the volume of bedrock incorporated in overturned coniferous rootwads increases rapidly for tree diameters greater than 0.5m (which correponds to a 60-80 yr old Douglas fir tree in Western Oregon). Smaller (and thus younger) trees entrain negligible bedrock when overturned, suggesting that their root systems are

  2. Changes in Soil Nitrogen Storage and Dynamics in Response to Forest Management in Southeastern Pine Forest

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Foote, J. A.; Scott, D. A.

    2013-12-01

    , root N varied significantly through time. Soil δ15N was significantly impacted by harvest intensity and time. Soil δ15N values were always lowest (1.21-1.96‰) in the bole only treatment, while those in the more intensely harvested treatments were higher (1.41-2.72‰). Higher soil δ15N values suggest that N-losses following tree harvest were greater in the more intense harvest treatments, consistent with the smaller soil N pool sizes observed in those treatments. Neither soil compaction nor the harvest method x soil compaction interaction had an effect on any response variables. Results indicate that more severe forest harvest practices that maximized biomass and litter removal resulted in significant ecosystem N-losses that have not yet been replenished even 15 yrs following treatment. Since N is a limiting nutrient for tree growth in the sandy soils of the Gulf Coastal Plain, tree harvest practices that favor N-retention will help ensure the continuity of key ecosystem services and sustain the productivity of forestlands in this region.

  3. Forests of opportunities and mischief: disentangling the interactions between forests, parasites and immune responses.

    PubMed

    Renner, Swen C; Lüdtke, Bruntje; Kaiser, Sonja; Kienle, Julia; Schaefer, H Martin; Segelbacher, Gernot; Tschapka, Marco; Santiago-Alarcon, Diego

    2016-08-01

    Habitat characteristics determine the presence of individuals through resource availability, but at the same time, such features also influence the occurrence of parasites. We analyzed how birds respond to changes in interior forest structures, to forest management regimes, and to the risk of haemosporidian infections. We captured and took blood samples from blackcaps (Sylvia atricapilla) and chaffinches (Fringilla coelebs) in three different forest types (beech, mixed deciduous, spruce). We measured birds' body asymmetries, detected avian haemosporidians, and counted white blood cells as an immune measure of each individual per forest type. We used, to our knowledge for the first time, continuous forest structural parameters to quantify habitat structure, and found significant effects of habitat structure on parasite prevalence that previously have been undetected. We found three times higher prevalence for blackcaps compared with chaffinches. Parasite intensity varied significantly within host species depending on forest type, being lowest in beech forests for both host species. Structurally complex habitats with a high degree of entropy had a positive effect on the likelihood of acquiring an infection, but the effect on prevalence was negative for forest sections with a south facing aspect. For blackcaps, forest gaps also had a positive effect on prevalence, but canopy height had a negative one. Our results suggest that forest types and variations in forest structure influence the likelihood of acquiring an infection, which subsequently has an influence on host health status and body condition; however, responses to some environmental factors are host-specific. PMID:27247106

  4. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    NASA Technical Reports Server (NTRS)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age

  5. 43 CFR 9265.4 - Sales of forest products, general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Sales of forest products, general. 9265.4 Section 9265.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND... Vegetative Resources Management § 9265.4 Sales of forest products, general. Commission of any of the...

  6. 43 CFR 9265.4 - Sales of forest products, general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Sales of forest products, general. 9265.4 Section 9265.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND... Vegetative Resources Management § 9265.4 Sales of forest products, general. Commission of any of the...

  7. 43 CFR 9265.4 - Sales of forest products, general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Sales of forest products, general. 9265.4 Section 9265.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND... Vegetative Resources Management § 9265.4 Sales of forest products, general. Commission of any of the...

  8. 43 CFR 9265.4 - Sales of forest products, general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Sales of forest products, general. 9265.4 Section 9265.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND... Vegetative Resources Management § 9265.4 Sales of forest products, general. Commission of any of the...

  9. Forest Fruit Production Is Higher on Sumatra Than on Borneo

    PubMed Central

    Wich, Serge A.; Vogel, Erin R.; Larsen, Michael D.; Fredriksson, Gabriella; Leighton, Mark; Yeager, Carey P.; Brearley, Francis Q.; van Schaik, Carel P.; Marshall, Andrew J.

    2011-01-01

    Background Various studies have shown that the population densities of a number of forest vertebrates, such as orangutans, are higher on Sumatra than Borneo, and that several species exhibit smaller body sizes on Borneo than Sumatra and mainland Southeast Asia. It has been suggested that differences in forest fruit productivity between the islands can explain these patterns. Here we present a large-scale comparison of forest fruit production between the islands to test this hypothesis. Methodology/Principal Findings Data on fruit production were collated from Sumatran and Bornean sites. At six sites we assessed fruit production in three forest types: riverine, peat swamp and dryland forests. We compared fruit production using time-series models during different periods of overall fruit production and in different tree size classes. We examined overall island differences and differences specifically for fruiting period and tree size class. The results of these analyses indicate that overall the Sumatran forests are more productive than those on Borneo. This difference remains when each of the three forest types (dryland, riverine, and peat) are examined separately. The difference also holds over most tree sizes and fruiting periods. Conclusions/Significance Our results provide strong support for the hypothesis that forest fruit productivity is higher on Sumatra than Borneo. This difference is most likely the result of the overall younger and more volcanic soils on Sumatra than Borneo. These results contribute to our understanding of the determinants of faunal density and the evolution of body size on both islands. PMID:21738627

  10. Forestry/Forest Products. Subject Matter Update 1986-87.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Div. of Vocational Education.

    This publication recognizes the constantly changing requirements of the forestry/forest products industry and varying conditions for employment opportunities. It addresses the goal of relevance in education by enabling the educator to make timely adjustments in the subject matter of the forestry/forest products curriculum. There are six sections…

  11. 78 FR 62957 - National Forest Products Week, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... thirty- eighth. (Presidential Sig.) [FR Doc. 2013-24990 Filed 10-22-13; 8:45 am] Billing code 3295-F4 ... Documents#0;#0; ] Proclamation 9044 of October 18, 2013 National Forest Products Week, 2013 By the President... recreation for workers and families across our country. During National Forest Products Week, we...

  12. 76 FR 65097 - National Forest Products Week, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... thirty-sixth. (Presidential Sig.) [FR Doc. 2011-27319 Filed 10-19-11; 8:45 am] Billing code 3295-F2-P ... Documents#0;#0; ] Proclamation 8738 of October 14, 2011 National Forest Products Week, 2011 By the President... important part of our economy. During National Forest Products Week, we celebrate the value of our...

  13. FOREST RESPONSE PROGRAM: NATIONAL RESEARCH ON FOREST DECLINE AND AIR POLLUTION

    EPA Science Inventory

    The Forest Response Program (FRP) is a major research undertaking. t is fortunate to have the support of many of the nation's top scientists. he involvement of the Forest Service, the Environmental Protection Agency, and the broader scientific community gives the program a unique...

  14. Seasonal and multi-year ecohydrologic responses to forest thinning

    NASA Astrophysics Data System (ADS)

    Tague, C.; Dugger, A. L.; Moritz, M.

    2014-12-01

    In the water-limited forested watersheds of the Western US, a critical eco-hydrology question is how does thinning influence streamflow and water-stress for remaining vegetation. We summarize recent literature on field-based examples of analyses which show both increases and decreases in streamflow following moderate thinning either through drought-related mortality or forest management. We use RHESSys, a coupled eco-hydrologic model, to disentangle the controls that may influence thinning responses. We examine both within watershed (topography, water holding capacity) and between watersheds differences in climate and their influence on thinning effects. We use the model to develop probability distributions of streamflow and productivity responses across inter-annual variation in meteorology forcing in the year following thinning. We also look at longer-term, multi-year response to examine potential impact of thinning on subsequent drought vulnerability and mortality risk. A somewhat surprising result from this analysis is that there are scenarios where thinning can actually increase subsequent vulnerability of water resources to drought stress.

  15. Are Tropical Forest Responses to Rising Atmospheric CO2 Nutrient-Limited?

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Wright, S. J.; Turner, B. L.

    2013-12-01

    Tropical forests are responsible for a large proportion of terrestrial gross primary production and are thought to be especially sensitive to climate change, suggesting that their responses and subsequent feedbacks to the global climate system are likely to be large. However, a critical gap in our knowledge is the extent to which nutrients limit the ability of tropical forest vegetation to increase carbon gain from increasing atmospheric CO2 (the concentration-carbon feedback). We present data from the only long-term nutrient addition experiment in a lowland tropical forest to anticipate tropical forest responses to changes in climate and atmospheric chemistry and the corresponding vegetation feedback to climate. We investigated the consequences of nitrogen, phosphorus and potassium limitation of forest productivity, microbial biomass and tree growth, in a full factorial fertilization experiment at the Barro Colorado Nature Monument in Panama. The 16 years of nutrient addition at have taught us important lessons regarding the function of tropical forest. We now know that fine root biomass decreases by up to 50% with K addition. We have also learned that tree growth is most enhanced by N and K addition, and that litterfall and microbial biomass were most enhanced by P addition. Different components of the ecosystem are limited by contrasting elements. Overall, the results demonstrate the potential for nutrients to limit the responses of tropical forests to rising atmospheric CO2.

  16. USE OF SEWAGE SLUDGE FOR FOREST-TREE SEEDLING PRODUCTION

    EPA Science Inventory

    Research was undertaken to determine the beneficial and harmful effects of using dewatered, digested sewage sludge in: (1) containerized production of forest tree seedlings, (2) tree seedling production in a conventional outdoor nursery, (3) establishment and growth of transplant...

  17. RESPONSE OF FOREST TREES TO SULFUR, NITROGEN, AND ASSOCIATED POLLUTANTS

    EPA Science Inventory

    The National Acid Precipitation Assessment Program created Forest Response Program (FRP) to assess the effects of acidic deposition on trees and forests in regions of the United States. esearch front the FRP and other programs is summarized in four Major Program Output documents ...

  18. Impacts of insect-related forest mortality on hydrologic partitioning and forest productivity in the Southern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.

    2014-12-01

    Recent large-scale changes in forest cover over Western North America associated with insect-related forest mortality may have widespread impacts on water availability. These changes have potentially varied impacts on water availability as forest mortality influences rates of snow accumulation, snowmelt, and evapotranspiration. These changes may significantly alter runoff production and gross primary productivity in mountain forests. Analysis of remotely sensed vegetation greenness data indicate strong forest and understory growth dependencies associated with snow accumulation and snowmelt with peak snow water equivalent explaining 40-50% of inter-annual greenness variability in the Rocky Mountains. Examples of these dependencies will be presented based on the 2012 drought in the Southwestern US whereby near record low snow accumulation and record high potential evapotranspiration have resulted in record low forest greening as evident in the 30+ year satellite record. Forest response to aridity in 2012 was exacerbated by forest disturbance with greenness anomalies 90% greater in magnitude in Bark Beetle and Spruce Budworm affected areas versus undisturbed areas and 182% greater in magnitude in areas impacted by fire. Growing season length was inversely proportional to peak greenness with record high Normalized Difference Vegetation Index (NDVI) values in April (14% above average) corresponding with record low NDVI values in July (7% below average). Gross primary productivity (GPP) estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Niwot Ridge, Colorado Ameriflux tower indicate record high April GPP (30% and 90% above average for MODIS and the tower, respectively) correspodning with record low July GPP (19% and 30% below average, respectively). Differences in these energy, water, ecosystem relationships among difference distrurbance regimes indicate that the sensitivity of ecosystems to changes in climate is heavily dependent on

  19. 36 CFR 223.217 - Authority to dispose of special forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Authority to dispose of special forest products. 223.217 Section 223.217 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Special Forest Products §...

  20. 36 CFR 223.217 - Authority to dispose of special forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Authority to dispose of special forest products. 223.217 Section 223.217 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS,...

  1. 36 CFR 223.217 - Authority to dispose of special forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Authority to dispose of special forest products. 223.217 Section 223.217 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS,...

  2. 36 CFR 223.217 - Authority to dispose of special forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Authority to dispose of special forest products. 223.217 Section 223.217 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS,...

  3. 36 CFR 223.217 - Authority to dispose of special forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Authority to dispose of special forest products. 223.217 Section 223.217 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS,...

  4. 36 CFR 223.219 - Sustainable harvest of special forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Sustainable harvest of special forest products. 223.219 Section 223.219 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Special Forest Products § 223.219 Sustainable harvest of special...

  5. Factors affecting the remotely sensed response of coniferous forest plantations

    SciTech Connect

    Danson, F.M. ); Curran, P.J. )

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response of a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.

  6. Forest stand structure, productivity, and age mediate climatic effects on aspen decline.

    PubMed

    Bell, David M; Bradford, John B; Lauenroth, William K

    2014-08-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline. PMID:25230455

  7. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  8. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    SciTech Connect

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C., Jr.

    2002-01-02

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community.

  9. Forestry/Forest Products Cluster Brief. Vocational Education in Oregon.

    ERIC Educational Resources Information Center

    Brock, Howard

    This guide sets forth minimum approval criteria for vocational forestry/forest products training programs in Oregon. The curriculum emphasizes the basic skills of forest management, harvesting, and manufacturing. The information in the guide is intended for use by district-level curriculum planners, teachers, regional coordinators, or state…

  10. Scaling Stream Flow Response to Forest Disturbance: the SID Project

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.

    2004-05-01

    We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.

  11. Regional carbon dioxide implications of forest bioenergy production

    NASA Astrophysics Data System (ADS)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-11-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2-14% (46-405TgC) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30-60gCm-2yr-1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.

  12. Information system of forest growth and productivity by site quality type and elements of forest

    NASA Astrophysics Data System (ADS)

    Khlyustov, V.

    2012-04-01

    Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to

  13. A Bayesian Belief Network approach to assess the potential of non wood forest products for small scale forest owners

    NASA Astrophysics Data System (ADS)

    Vacik, Harald; Huber, Patrick; Hujala, Teppo; Kurtilla, Mikko; Wolfslehner, Bernhard

    2015-04-01

    It is an integral element of the European understanding of sustainable forest management to foster the design and marketing of forest products, non-wood forest products (NWFPs) and services that go beyond the production of timber. Despite the relevance of NWFPs in Europe, forest management and planning methods have been traditionally tailored towards wood and wood products, because most forest management models and silviculture techniques were developed to ensure a sustained production of timber. Although several approaches exist which explicitly consider NWFPs as management objectives in forest planning, specific models are needed for the assessment of their production potential in different environmental contexts and for different management regimes. Empirical data supporting a comprehensive assessment of the potential of NWFPs are rare, thus making development of statistical models particularly problematic. However, the complex causal relationships between the sustained production of NWFPs, the available ecological resources, as well as the organizational and the market potential of forest management regimes are well suited for knowledge-based expert models. Bayesian belief networks (BBNs) are a kind of probabilistic graphical model that have become very popular to practitioners and scientists mainly due to the powerful probability theory involved, which makes BBNs suitable to deal with a wide range of environmental problems. In this contribution we present the development of a Bayesian belief network to assess the potential of NWFPs for small scale forest owners. A three stage iterative process with stakeholder and expert participation was used to develop the Bayesian Network within the frame of the StarTree Project. The group of participants varied in the stages of the modelling process. A core team, consisting of one technical expert and two domain experts was responsible for the entire modelling process as well as for the first prototype of the network

  14. The effect of alder forest cover and alder forest conversion on site fertility and productivity

    SciTech Connect

    Van Miegroet, H.; Cole, D.W.; Homann, P.S.

    1988-01-01

    Red alder (Alnus rubra Bong.) is known for its ability to improve the status of soil N through symbiotic N fixation. The objective of this paper is to assess the effect of red alder forests and their removal on soil and solution chemistry and on the growth of trees subsequently established on such sites. This was achieved through a series of paired field comparisons at two locations in Washington, involving similar-aged pure alder and Douglas-fir forests on soils that were essentially the same prior to stand establishment. At Pack Forest alder and Douglas-fir stands on high- and low-productivity sites were subjected to three levels of harvesting: bore only removal, whole tree (aboveground) harvesting, and complete removal of all vegetation and forest floor. The effect of harvesting intensity was examined on nutrient removal with biomass and through leaching, and on subsequent seedling growth. At Thompson Research Center adjacent Douglas-fir and alder forests were harvested, and half of each area was replanted with either Douglas-fir or red alder seedlings, yielding four forest conversion units. Differences in growth patterns, tree nutrient status, and leaching losses between these conversion plots were examined. Compared with adjacent Douglas-fir forests, substantially more N, P, K, and Ca are tied up in aboveground vegetation and on the forest floor of alder forests, and these elements also cycle faster in alder ecosystems primarily due to the deciduous nature of alder.

  15. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Norman, S. P.

    2013-12-01

    Forest threats across the US have become increasingly evident in recent years. These include regionally extensive disturbances (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and result in extensive forest mortality. In addition, forests can be subject to ephemeral, sometimes yearly defoliation from various insects and types of storm damage. After prolonged severe disturbance, signs of forest recovery can vary in terms of satellite-based Normalized Difference Vegetation Index (NDVI) values. The increased extent and threat of forest disturbances in part led to the enactment of the 2003 Healthy Forest Restoration Act, which mandated that a national forest threat Early Warning System (EWS) be deployed. In response, the US Forest Service collaborated with NASA, DOE Oak Ridge National Laboratory, and the USGS Eros Data Center to build the near real time ForWarn forest threat EWS for monitoring regionally evident forest disturbances, starting on-line operations in 2010. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines used with current NDVI to derive a suite of six nationwide 'weekly' forest change products. ForWarn uses daily 232 meter MODIS Aqua and Terra satellite NDVI data, including MOD13 products for deriving historical baseline NDVIs and eMODIS products for compiling current NDVI. Separately pre-processing the current and historical NDVIs, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally reduce noise, fuse, and aggregate MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of forest change products per year. The 24 day compositing interval typically enables new disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. ForWarn's three standard forest change products compare current NDVI to that from the previous year, previous 3 years, and

  16. Modelling tropical forests response to logging

    NASA Astrophysics Data System (ADS)

    Cazzolla Gatti, Roberto; Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco

    2013-04-01

    Tropical rainforests are among the most threatened ecosystems by large-scale fragmentation due to human activity such as heavy logging and agricultural clearance. Although, they provide crucial ecosystem goods and services, such as sequestering carbon from the atmosphere, protecting watersheds and conserving biodiversity. In several countries forest resource extraction has experienced a shift from clearcutting to selective logging to maintain a significant forest cover and understock of living biomass. However the knowledge on the short and long-term effects of removing selected species in tropical rainforest are scarce and need to be further investigated. One of the main effects of selective logging on forest dynamics seems to be the local disturbance which involve the invasion of open space by weed, vines and climbers at the expense of the late-successional state cenosis. We present a simple deterministic model that describes the dynamics of tropical rainforest subject to selective logging to understand how and why weeds displace native species. We argue that the selective removal of tallest tropical trees carries out gaps of light that allow weeds, vines and climbers to prevail on native species, inhibiting the possibility of recovery of the original vegetation. Our results show that different regime shifts may occur depending on the type of forest management adopted. This hypothesis is supported by a dataset of trees height and weed/vines cover that we collected from 9 plots located in Central and West Africa both in untouched and managed areas.

  17. Conversion of Siberian Larch Forests in Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Shuman, J. K.; Shugart, H. H.

    2009-12-01

    The Northern Hemisphere’s boreal forests and, in particular, the Siberian boreal forest zone, may have a particularly strong effect on the Earth’s climate through changes in the regional surface albedo. Warmer climate has been identified as a potential driver of the conversion of Siberia’s larch forests to dark-conifer forests of spruce and fir. This suggests a positive feedback cycle: warmer climate creates a succession from deciduous larch to dark-conifer forest; the resultant albedo change can then promote additional climate warming. The individual based forest growth model, FAREAST, which simulates the composition of the Russian forest, is used to test the impact of warming on forest succession and mitigation of this potential climate/cover feedback. Utilization of FAREAST with climate station and soil data from across Siberia generates baseline biomass (tCha-1) and species composition values from year zero to mature forest for current climate conditions. IPCC climate output data from two of NCAR’s Community Climate System Model 3.0 (CCSM) SRES climate change scenarios, which have stabilization at 720ppm of CO2 associated with 2.6°C warming and 550ppm CO2 with 1.2°C warming, are used to evaluate dominant species change in response to climate change. To explore mitigation of albedo changes associated with the predicted shift from larch to dark-conifer forest, the results for the current and two warming scenarios are compared to a set of model runs which introduce European Larch (Larix decidua). This deciduous species is adapted to warmer climate conditions and its introduction to Siberia could slow the rate of conversion to dark-conifer forests. Evaluation of climate as the driver for conversion of larch to dark-conifer enhances our ability to identify drivers of land surface change in this complex region and focus future analysis.

  18. Estimating forest productivity with Thematic Mapper and biogeographical data

    NASA Technical Reports Server (NTRS)

    Cook, Elizabeth A.; Iverson, Louis R.; Graham, Robin L.

    1989-01-01

    Spectral data from the Landsat Thematic Mapper (TM) on three forest exosystems (the southern Illinois, the Great Smoky Mountains regions in Tennessee and North Carolina, and the central Adirondack Mountains in New York) were used in conjunction with ground-collected measures of forest productivity and such information as the area's slope, aspect, elevation, and soil and vegetation types, to develop models of regional forest productivity. It is shown that the models developed may be used to estimate the productivity of a region with a high degree of confidence, but that the reliability of single-pixel estimates is poor. The characteristics of a given ecosystem determine which spectral values are most closely related to forest productivity. Thus, mid-IR, NIR, and visible bands are most significant in Illinois and New York, while the thermal band is relatively more important in the Smokies.

  19. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests.

    PubMed

    Hesse, Cedar N; Mueller, Rebecca C; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D; Zak, Donald R; Kuske, Cheryl R

    2015-01-01

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact. PMID:25954263

  20. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    PubMed Central

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-01-01

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact. PMID:25954263

  1. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    SciTech Connect

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.

  2. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests

    DOE PAGESBeta

    Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.

    2015-04-23

    Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes)more » in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.« less

  3. Role of MODIS Vegetation Phenology Products in the U.S. for Warn Early Warning System for Forest Threats

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William; Norman, Steve; Gasser, Gerald; Smoot, James; Kuper, Philip

    2012-01-01

    U.S. forests occupy approx 751 million acres (approx 1/3 of total land). Several abiotic and biotic damage agents disturb, damage, kill, and/or threaten these forests. Regionally extensive forest disturbances can also threaten human life and property, bio-diversity and water supplies. timely regional forest disturbance monitoring products are needed to aid forest health management work at finer scales. daily MODIS data provide a means to monitor regional forest disturbances on a weekly basis, leveraging vegetation phenology. In response, the USFS and NASA began collaborating in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat Early Warning System (EWS).

  4. Historic Response of Forests to Disturbance; Hydrologic Implications (Invited)

    NASA Astrophysics Data System (ADS)

    Millar, C. I.

    2013-12-01

    Mountain hydrology is influenced by the composition, structure, and function of forests, which in turn are affected by patterns and types of disturbance, both ecological (insect, disease) and physical (fire, wind, avalanche/landslide, weather/climate). Paleo-historic data provide inferences about the natural roles of disturbance in governing forest condition at landscape scale (e.g., forest die-offs, widespread changes in composition, forest type, or structure), and offer insights for vegetation and hydrological management under conditions of current and future climate change. Millennial (Holocene), centennial, and decadal temporal scales are presented for analysis of forest responses in mountains of western North America. Examples focus on the long-term effects of short-term disturbance, beneficial effects of disturbance on forest health, importance of legacy (sequencing of events), pace of climate variability, topographic control on forest health, lag effects, and interactions of multiple stressors. Historic forest condition and hydrologic relations inferred through dendrochronological analysis are put into current context.

  5. Contrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle

    SciTech Connect

    Norby, Richard J; DeLucia, E. H.; Moore, D J

    2005-01-01

    In two parallel but independent experiments, Free Air CO2 Enrichment (FACE) technology was used to expose plots within contrasting evergreen loblolly pine (Pinus taeda L.) and deciduous sweetgum (Liquidambar styraciflua L.) forests to the level of CO2 anticipated in 2050. Net primary production (NPP) and net ecosystem production (NEP) increased in both forests. In the year 2000, after exposing pine and sweetgum to elevated CO2 for approximately 5 and 3 years, a complete budget calculation revealed increases in net ecosystem production (NEP) of 41% and 44% in the pine forest and sweetgum forest, respectively, representing the storage of an additional 174 gC m-2 and 128 gC m-2 in these forests. The stimulation of NPP without corresponding increases in leaf area index or light absorption in either forest resulted in 23-27% stimulation in radiation-use efficiency, defined as NPP per unit absorbed photosynthetically active radiation. Greater plant respiration contributed to lower NPP in the loblolly pine forest than in the sweetgum forest, and these forests responded differently to CO2 enrichment. Where the pine forest added C primarily to long-lived woody tissues, exposure to elevated CO2 caused a large increase in the production of labile fine roots in the sweetgum forest. Greater allocation to more labile tissues may cause more rapid cycling of C back to the atmosphere in the sweetgum forest compared to the pine forest. Imbalances in the N cycle may reduce the response of these forests to experimental exposure to elevated CO2 in the future, but even at the current stimulation observed for these forests, the effect of changes in land use on C sequestration are likely to be larger than the effect of CO2-induced growth stimulation.

  6. Relationships between net primary productivity and forest stand age in U.S. forests

    NASA Astrophysics Data System (ADS)

    He, Liming; Chen, Jing M.; Pan, Yude; Birdsey, Richard; Kattge, Jens

    2012-09-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four terms to calculate NPP: annual accumulation of live biomass, annual mortality of aboveground and belowground biomass, foliage turnover to soil, and fine root turnover in soil. For U.S. forests the first two terms can be reliably estimated from the Forest Inventory and Analysis (FIA) data. Although the last two terms make up more than 50% of total NPP, direct estimates of these fluxes are highly uncertain due to limited availability of empirical relationships between aboveground biomass and foliage or fine root biomass. To resolve this problem, we developed a new approach using maps of leaf area index (LAI) and forest age at 1 km resolution to derive LAI-age relationships for 18 major forest type groups in the USA. These relationships were then used to derive foliage turnover estimates using species-specific trait data for leaf specific area and longevity. These turnover estimates were also used to derive the fine root turnover based on reliable relationships between fine root and foliage turnover. This combination of FIA data, remote sensing, and plant trait information allows for the first empirical and reliable NPP-age relationships for different forest types in the USA. The relationships show a general temporal pattern of rapid increase in NPP in the young ages of forest type groups, peak growth in the middle ages, and slow decline in the mature ages. The predicted patterns are influenced by climate conditions and can be affected by forest management. These relationships were further generalized to three major forest biomes for use by continental-scale carbon cycle models in conjunction with

  7. Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry

    SciTech Connect

    1999-02-01

    The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

  8. Seasonal greenness variations in Amazon transitional forests in response to light, moisture, and land use

    NASA Astrophysics Data System (ADS)

    Ratana, P.; Huete, A. R.; Davies, K.; Restrepo-Coupe, N.

    2014-12-01

    The Amazon basin consists of structurally diverse tropical forest ecosystems resulting from unique functional responses to seasonal rainfall and radiation drivers, as well as fire and land use pressures. Dry season intensity and duration increase from the tropical wet rainforests at the equator to cerrado at the south, with transitional forests (dry forest, semi-deciduous forests, and cerradão) and the arc of deforestation between the two large biomes. Little known of this distinctive transitional forest composition and functional types, yet this zone is disappearing rapidly due to anthropological pressure and warming events. We hypothesize that these gradients in light, moisture, land use pressures, and forest functional types should be expressed in distinct canopy-level seasonal responses observable in satellite time series data. Yet, recent studies have raised concerns of concurrent seasonal sun geometry influences that confound the interpretation of satellite-derived greenness and suggest that observed tropical forest seasonality are optical artifacts of shifting sun- sensor view geometries. In this study we investigated forest seasonal variations and greenness dynamics across the transition zone, with 10+ years (2003-2013) of Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) data derived from the MCD43A1 product, for a fixed sun angle and fully corrected for sun- sensor view geometries. EVI values were extracted across two latitudinal transects across the Amazon transition zone sampling the eastern and central regions of the basin. We found a clear pattern of shifting forest greenness seasonality resulting from earlier onsets of the dry season from south to the north, irrespective of, and asynchronous with the solstice to equinox sun-earth geometry. From this seasonal profiles dry season greening in the wet forests and browning in the southern tropical dry forests could be observed. In many of the transitional forests, a

  9. 36 CFR 223.278 - Sale of forest botanical products and collection of fees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the sale of forest botanical products shall be governed under 36 CFR part 223 Subpart G. ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Sale of forest botanical products and collection of fees. 223.278 Section 223.278 Parks, Forests, and Public Property FOREST...

  10. 36 CFR 223.278 - Sale of forest botanical products and collection of fees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the sale of forest botanical products shall be governed under 36 CFR part 223 Subpart G. ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Sale of forest botanical products and collection of fees. 223.278 Section 223.278 Parks, Forests, and Public Property FOREST...

  11. 36 CFR 223.278 - Sale of forest botanical products and collection of fees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the sale of forest botanical products shall be governed under 36 CFR part 223 Subpart G. ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Sale of forest botanical products and collection of fees. 223.278 Section 223.278 Parks, Forests, and Public Property FOREST...

  12. 36 CFR 223.278 - Sale of forest botanical products and collection of fees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the sale of forest botanical products shall be governed under 36 CFR part 223 Subpart G. ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Sale of forest botanical products and collection of fees. 223.278 Section 223.278 Parks, Forests, and Public Property FOREST...

  13. The importance of intraspecific variation in tree responses to elevated [CO2]: breeding and management of future forests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One strategy for managing forests to sustain or increase productivity under global climate change is to initiate breeding programs which maximize responses to elevated [CO2] within species. The basis for any breeding program is intraspecific variation in the traits of interest, and for forests, grow...

  14. Idiosyncratic responses of Amazonian birds to primary forest disturbance.

    PubMed

    Moura, Nárgila G; Lees, Alexander C; Aleixo, Alexandre; Barlow, Jos; Berenguer, Erika; Ferreira, Joice; Mac Nally, Ralph; Thomson, James R; Gardner, Toby A

    2016-03-01

    As humans continue to alter tropical landscapes across the world, it is important to understand what environmental factors help determine the persistence of biodiversity in modified ecosystems. Studies on well-known taxonomic groups can offer critical insights as to the fate of biodiversity in these modified systems. Here we investigated species-specific responses of 44 forest-associated bird species with different behavioural traits to forest disturbance in 171 transects distributed across 31 landscapes in two regions of the eastern Brazilian Amazon. We investigated patterns of species occurrence in primary forests varyingly disturbed by selective-logging and fire and examined the relative importance of local, landscape and historical environmental variables in determining species occurrences. Within undisturbed and disturbed primary forest transects, we found that distance to forest edge and the biomass of large trees were the most important predictors driving the occurrence of individual species. However, we also found considerable variation in species responses to different environmental variables as well as inter-regional variation in the responses of the same species to the same environmental variables. We advocate the utility of using species-level analyses to complement community-wide responses in order to uncover highly variable and species-specific responses to environmental change that remain so poorly understood. PMID:26566810

  15. Forest Products: Apparatus for Removing Bark from Whole Logs

    SciTech Connect

    Poole, L; Recca, L.

    1999-01-29

    Order this fact sheet now to learn how replacing the ''closed drum'' debarking technology method used in the forest industry with the ''open drum'' method saves time and production costs, and increases the economic value of wood products by inflicting less damage on logs so that they can be used for high-value economic products.

  16. Andean grasslands are as productive as tropical cloud forests

    NASA Astrophysics Data System (ADS)

    Oliveras, I.; Girardin, C.; Doughty, C. E.; Cahuana, N.; Arenas, C. E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y.

    2014-11-01

    We aim to assess net primary productivity (NPP) and carbon cycling in Andean tropical alpine grasslands (puna) and compare it with NPP of tropical montane cloud forests. We ask the following questions: (1) how do NPP and soil respiration of grasslands vary over the seasonal cycle? (2) how do burning and grazing affect puna productivity? (3) if the montane forest expands into the puna, what will be the resulting change in productivity? The study sites are located at the South-eastern Peruvian Andes; one grassland site and the forest sites are in Wayqecha biological station, and another grassland site in Manu National Park. At each grassland site, we selected a burnt and an unburnt area, installed unfenced and fenced transects in each area, and monitored above-ground productivity (NPPAG), below-ground productivity (NPPBG) and soil respiration (Rs) for 2 yr. In the forest, we monitored NPPAG, NPPBG and Rs for 2-4 yr. Grassland NPP varied between 4.6 ± 0.25 (disturbed areas) to 15.3 ± 0.9 Mg C ha-1 yr-1 (undisturbed areas) and cloud forest NPP was between 7.05 ± 0.39 and 8.0 ± 0.47 Mg C ha-1 yr-1, while soil carbon stocks were in the range of 126 ± 22 to 285 ± 31 Mg C ha-1. There were no significant differences on NPP between the puna and forest sites. The most undisturbed site had significantly higher NPP than other grassland sites, but no differences were found when relating grazing and fire at other sites. There were lower residence times of above-ground biomass compared to below-ground biomass. There was a strong seasonal signal on grassland NPPAG and NPPBG, with a shift on allocation at the beginning of the austral summer. High elevation tropical grasslands can be as productive as adjacent cloud forests, but have very different carbon cycling and retention properties than cloud forests.

  17. Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Gasser, J.; Smoot, J.; Kuper, P.

    2010-01-01

    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009,. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were

  18. Use of Current 2010 Forest Disturbance Monitoring Products for the Conterminous United States in Aiding a National Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.

    2010-12-01

    This presentation discusses contributions of near real time (NRT) MODIS forest disturbance detection products for the conterminous United States to an emerging national forest threat early warning system (EWS). The latter is being developed by the USDA Forest Service’s Eastern and Western Environmental Threat Centers with help from NASA Stennis Space Center and the Oak Ridge National Laboratory. Building off work done in 2009, this national and regional forest disturbance detection and viewing capability of the EWS employs NRT MODIS NDVI data from the USGS eMODIS group and historical NDVI data from standard MOD13 products. Disturbance detection products are being computed for 24 day composites that are refreshed every 8 days. Products for 2010 include 42 dates of the 24 day composites. For each compositing date, we computed % change in forest maximum NDVI products for 2010 with respect to each of three historical baselines of 2009, 2007-2009, and 2003-2009. The three baselines enable one to view potential current, recent, and longer term forest disturbances. A rainbow color table was applied to each forest change product so that potential disturbances (NDVI drops) were identified in hot color tones and growth (NDVI gains) in cold color tones. Example products were provided to end-users responsible for forest health monitoring at the Federal and State levels. Large patches of potential forest disturbances were validated based on comparisons with available reference data, including Landsat and field survey data. Products were posted on two internet mapping systems for US Forest Service internal and collaborator use. MODIS forest disturbance detection products were computed and posted for use in as little as 1 day after the last input date of the compositing period. Such products were useful for aiding aerial disturbance detection surveys and for assessing disturbance persistence on both inter- and intra-annual scales. Multiple 2010 forest disturbance events were

  19. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain

    PubMed Central

    Schäfer, Karina V. R.; Renninger, Heidi J.; Carlo, Nicholas J.; Vanderklein, Dirk W.

    2014-01-01

    Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance. PMID:25018759

  20. Forest herb layer response to long-term light deficit along a forest developmental series

    NASA Astrophysics Data System (ADS)

    Plue, J.; Van Gils, B.; De Schrijver, A.; Peppler-Lisbach, C.; Verheyen, K.; Hermy, M.

    2013-11-01

    Temperate deciduous forest communities are slow-changing systems, with herbaceous understorey communities displaying a delayed response to overstorey canopy and light dynamics. While light availability constrains herbaceous understorey diversity and composition in space and time, its response in the long-term absence of light has seldom been quantified, particularly as it is often confounded by covariation in soil conditions. We studied a developmental high-forest series in two widespread NW-European temperate deciduous forest communities with different dominant canopy tree species: Stellario-Carpinetum (Oak-hornbeam canopy) and Milio-Fagetum (Beech canopy). All plots had soil conditions which were not significantly different, enabling investigation into the direct effects of the long-term absence of light on the herbaceous understorey, disentangled from the confounding effects of soil variation. Plant species richness measures declined with canopy cover continuity in the herb layer of the oak-hornbeam stands, whereas richness in the herb layer of the beech stands displayed a unimodal response. Nonetheless, in both plant communities, species richness and closed-forest species richness were negatively affected by the extended absence of light in stands with the longest period of continuous canopy cover. The long-term limitation or decline in quantitative and qualitative light availability as a result of extended periods of canopy cover was shown to be the primary driver behind losses in alpha-diversity, community composition turn-over and individual species dynamics. Heliophilous species were lost from both communities, while closed-forest species also declined, as a direct consequence of the prolonged period without ample light on the forest floor. This study demonstrates how the herb layer is affected by the absence of light on the forest floor mediated by long periods of continuous canopy cover. Despite different temporal responses in herb layer richness and

  1. Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica

    NASA Astrophysics Data System (ADS)

    Hofhansl, Florian; Kobler, Johannes; Ofner, Joachim; Drage, Sigrid; Pölz, Eva-Maria; Wanek, Wolfgang

    2014-12-01

    The productivity of tropical forests is driven by climate (precipitation, temperature, and light) and soil fertility (geology and topography). While large-scale drivers of tropical productivity are well established, knowledge on the sensitivity of tropical lowland net primary production to climate anomalies remains scarce. We here analyze seven consecutive years of monthly recorded tropical forest aboveground net primary production (ANPP) in response to a recent El Niño-Southern Oscillation (ENSO) anomaly. The ENSO transition period resulted in increased temperatures and decreased precipitation during the El Niño dry period, causing a decrease in ANPP. However, the subsequent La Niña wet period caused strong increases in ANPP such that drought-induced reductions were overcompensated. Most strikingly, the climatic controls differed between canopy production (CP) and wood production (WP). Whereas CP showed strong seasonal variation but was not affected by ENSO, WP decreased significantly in response to a 3°C increase in annual maximum temperatures during the El Niño period but subsequently recovered to above predrought levels during the La Niña period. Moreover, the climate sensitivity of tropical forest ANPP components was affected by local topography (water availability) and disturbance history (species composition). Our results suggest that projected increases in temperature and dry season length could impact tropical carbon sequestration by shifting ANPP partitioning toward decreased WP, thus decreasing the carbon storage of highly productive lowland forests. We conclude that the impact of climate anomalies on tropical forest productivity is strongly related to local site characteristics and will therefore likely prevent uniform responses of tropical lowland forests to projected global changes.

  2. Monitoring Regional Forest Disturbances across the US with near Real Time MODIS NDVI Products Resident to the ForWarn Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald

    2013-01-01

    Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are

  3. Forest and wood products role in carbon sequestration

    SciTech Connect

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  4. Forest Productivity and Diversity: Using Ecological Theory and Landscape Models to Guide Sustainable Forest Management

    SciTech Connect

    Huston, M.A.

    1998-11-01

    distribution of various plants and animals. These models can be, used to predict the patterns of forest type and structure that develop in response to variation in productivity and disturbance across complex landscapes, as well as species diversity and the distribution and population fluctuations of threatened species in specific regions.

  5. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    SciTech Connect

    Atalla, Rajai; Beecher, James; Caron, Robert; Catchmark, Jeffrey; Deng, Yulin; Glasser, Wolfgang; Gray, Derek; Haigler, Candace; Jones, Philip; Joyce, Margaret; Kohlman, Jane; Koukoulas, Alexander; Lancaster, Peter; Perine, Lori; Rodriguez, Augusto; Ragauskas, Arthur; Wegner, Theodore; Zhu, Junyong

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  6. 25 CFR 163.19 - Contracts for the sale of forest products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Contracts for the sale of forest products. 163.19 Section 163.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.19 Contracts for the sale of forest products. (a) In sales of forest products with an...

  7. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest

    PubMed Central

    Morante-Filho, José Carlos; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist. PMID:26083245

  8. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    PubMed

    Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist. PMID:26083245

  9. Gross primary production of global forest ecosystems has been overestimated

    PubMed Central

    Ma, Jianyong; Yan, Xiaodong; Dong, Wenjie; Chou, Jieming

    2015-01-01

    Coverage rate, a critical variable for gridded forest area, has been neglected by previous studies in estimating the annual gross primary production (GPP) of global forest ecosystems. In this study, we investigated to what extent the coverage rate could impact forest GPP estimates from 1982 to 2011. Here we show that the traditional calculation without considering the coverage rate globally overestimated the forest gross carbon dioxide uptake by approximately 8.7%, with a value of 5.12 ± 0.23 Pg C yr−1, which is equivalent to 48% of the annual emissions from anthropogenic activities in 2012. Actually, the global annual GPP of forest ecosystems is approximately 53.71 ± 4.83 Pg C yr−1 for the past 30 years by taking the coverage rate into account. Accordingly, we argue that forest annual GPP calculated by previous studies has been overestimated due to the exaggerated forest area, and therefore, coverage rate may be a required factor to further quantify the global carbon cycle. PMID:26027557

  10. Forest gradient response in Sierran landscapes: The physical template

    USGS Publications Warehouse

    Urban, D.L.; Miller, C.; Halpin, P.N.; Stephenson, N.L.

    2000-01-01

    Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches

  11. A Long Term View of Forest Response to Environmental Change: 25 Years of Studying Harvard Forest

    NASA Astrophysics Data System (ADS)

    Munger, J. W.; Wofsy, S. C.; Lindaas, J.; David, F.; David, O.

    2014-12-01

    Forests influence the budgets of greenhouse gases, and understanding how they will respond to environmental change is critical to accurately predicting future GHG trends. The time scale for climate change is long and forest growth is slow, thus very long measurement periods are required to observe meaningful forest response. We established an eddy flux tower within a mixed forest stand dominated by red oak and red maple at the Harvard Forest LTER site in 1989 where CO2, H2O and energy fluxes together with meteorological observations have been measured continuously. An array of plots for biometric measurements was established in 1993. Flux measurement at an adjacent hemlock stand began in 2000. Records of land use and disturbance and vegetation plot data extend back to 1907. The combined suite of measurements merges observations of instantaneous ecosystem responses to environmental forcing with details of vegetation dynamics and forest growth that represent the emergent properties relevant to long-term ecosystem change. Both the deciduous stand and hemlock stand are accumulating biomass. Each has added over 20 Mg-C ha-1 as woody biomass in trees >10cm dbh since 1990, even though the hemlock stand is older. Net carbon exchange shows enhanced uptake in early spring and late fall months in response to warmer temperatures and likely an increase in evergreen foliage at the deciduous site. Net carbon uptake efficiency at the deciduous stand has increased over time as well as indicated by peak NEE under optimum light conditions. The trend is only partly explained by variation in mean leaf area index and cannot be directly attributed to climate response. The combination of longer growing season and increased uptake efficiency yields a general trend of increasing annual NEE (Fig. 1). However, significant excursions in the trend highlight the sensitivity of forest carbon stocks. The pulse of high annual carbon uptake (peak 6 Mg-C ha-1y-1 in 2008) from 2000-2008 is only

  12. RESPONSE AND FEEDBACKS OF FOREST ECOSYSTEMS TO GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    The accumulation of greenhouse gases in the atmosphere over the past century is projected to cause a warming of the Earth. Climate Change predictions vary by region and terrestrial biosphere response, and feedbacks will be ecosystem specific. Forests play a major role in the Eart...

  13. An exploratory assessment of the attitudes of Chinese wood products manufacturers towards forest certification.

    PubMed

    Chen, Juan; Innes, John L; Kozak, Robert A

    2011-11-01

    Interviews with Chinese forest products manufacturers were conducted to explore their attitudes towards forest certification and related issues. Participants comprised owners, CEOs, and managers in 20 Chinese wood products companies, including producers of furniture, doors, flooring, and various engineered wood products. The interviews were used to analyze the extent to which participants were considering adopting forest certification and what might motivate such a decision. This was done by assessing their awareness and knowledge of certification. The results indicated that participants' understanding of forest certification was extremely low, despite major efforts in China to raise awareness of the issue. Potential economic benefits were the most frequently cited reason to adopt certification, including gaining or maintaining competitive advantage over their industry counterparts, improved access to both domestic and export markets, better customer recognition, and enhanced corporate responsibility practices. Some interviewees (3 out of 20) considered that certification would become a mandatory requirement or industry standard, and that this would be the only viable motivation for certification given that the financial benefits were potentially limited. According to the participants, the main differences between certified and uncertified wood products operations related to improved market access and public image. Interviewees felt that cooperation between and support from governments and the forest industry would enable the enhanced awareness of certification amongst manufacturers and the general public. This, in turn, could serve to stimulate demand for certified products. PMID:21816537

  14. How to manage oak forests for acorn production

    SciTech Connect

    Johnson, P.S.

    1994-03-01

    Oak forests are life support systems for the many animals that live in them. Acorns, a staple product of oak forests, are eaten by many species of birds and mammals including deer, bear, squirrels, mice, rabbits, foxes, raccoons, grackles, turkey, grouse, quail, blue jays, woodpeckers, and water-fowl. The population and health and wildlife often rise, and fall with the cyclic production of acorns. Acorns' importance to wildlife is related to several factors including their widespread occurrence, palatability, nutritiousness, and availability during the critical fall and winter period.

  15. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  16. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition.

    PubMed Central

    Clark, Deborah A

    2004-01-01

    How tropical rainforests are responding to the ongoing global changes in atmospheric composition and climate is little studied and poorly understood. Although rising atmospheric carbon dioxide (CO2) could enhance forest productivity, increased temperatures and drought are likely to diminish it. The limited field data have produced conflicting views of the net impacts of these changes so far. One set of studies has seemed to point to enhanced carbon uptake; however, questions have arisen about these findings, and recent experiments with tropical forest trees indicate carbon saturation of canopy leaves and no biomass increase under enhanced CO2. Other field observations indicate decreased forest productivity and increased tree mortality in recent years of peak temperatures and drought (strong El Niño episodes). To determine current climatic responses of forests around the world tropics will require careful annual monitoring of ecosystem performance in representative forests. To develop the necessary process-level understanding of these responses will require intensified experimentation at the whole-tree and stand levels. Finally, a more complete understanding of tropical rainforest carbon cycling is needed for determining whether these ecosystems are carbon sinks or sources now, and how this status might change during the next century. PMID:15212097

  17. Tropical forest responses to increasing [CO2]: current knowledge and opportunities for future research

    SciTech Connect

    Cernusak, Lucas; Winter, Klaus; Dalling, James; Holtum, Joseph; Jaramillo, Carlos; Korner, Christian; Leakey, Andrew D.B.; Norby, Richard J; Poulter, Benjamin; Turner, Benjamin; Wright, S. Joseph

    2013-01-01

    Elevated atmospheric [CO2] (ca) will undoubtedly affect the metabolism of tropical forests worldwide; however, critical aspects of how tropical forests will respond remain largely unknown. Here we review the current state of knowledge about physiological and ecological responses, with the aim of providing a framework that can help to guide future experimental research. Modelling studies have indicated that elevated ca can potentially stimulate photosynthesis more in the tropics than at higher latitudes, because suppression of photorespiration by elevated ca increases with temperature. However, canopy leaves in tropical forests could also potentially reach a high temperature threshold under elevated ca that will moderate the rise in photosynthesis. Belowground responses, including fine root production, nutrient foraging, and soil organic matter processing, will be especially important to the integrated ecosystem response to elevated CO2. Water-use efficiency will increase as ca rises, potentially impacting upon soil moisture status and nutrient availability. Recruitment may be differentially altered for some functional groups, potentially decreasing ecosystem carbon storage. Whole-forest CO2 enrichment experiments are urgently needed to test predictions of tropical forest functioning under elevated ca. Smaller scale experiments in the understory and in gaps would also be informative, and could provide stepping stones toward stand-scale manipulations.

  18. Streamflow response to increasing precipitation extremes altered by forest management

    NASA Astrophysics Data System (ADS)

    Kelly, Charlene N.; McGuire, Kevin J.; Miniat, Chelcy Ford; Vose, James M.

    2016-04-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the impact of the interaction between forest management and precipitation. We use daily long-term data from paired watersheds that have undergone forest harvest or species conversion. We find that interactive effects of climate change, represented by changes in observed precipitation trends, and forest management regime, significantly alter expected streamflow most often during extreme events, ranging from a decrease of 59% to an increase of 40% in streamflow, depending upon management. Our results suggest that vegetation might be managed to compensate for hydrologic responses due to climate change to help mitigate effects of extreme changes in precipitation.

  19. Forest response to heat waves at the dry timberline

    NASA Astrophysics Data System (ADS)

    Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.

    2012-04-01

    Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (<300 mm annual rainfall) we observe adjustments that improve carbon-, nitrogen- and water- use efficiencies. An important aspect in the ecosystem sustainability is its ability to rapidly recover from extreme conditions, both at the short-term and the seasonal scale. A remarkable example is provided by the episodes (usually 2-4 days) of Easterly dry and hot air that are common in spring (so-called "Hamsin" events). During these events air temperature increases and relative humidity decreases within hours by 10˚C and 40%, respectively. Net ecosystem CO2 exchange (NEE) and photosynthesis (GPP) sharply decline, predominantly in response to the drastic increase in vapor pressure deficit (up to 6kPa), but then show full recovery to the pre-stress values within 24 h past the event. Similarly, following 5-6 months of seasonal drought, the forest resumes high photosynthetic activity within ~5 days following the first rain episode of about 10 mm in the fall. We show that these transient responses are useful in partitioning between the ecosystem responses to short-term atmosphere-driven stress and longer-term soil moisture stress. An ecosystem model (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.

  20. Responses of aboveground and belowground forest carbon stocks to disturbances in boreal forests of Northeastern China

    NASA Astrophysics Data System (ADS)

    Huang, Chao; He, Hong S.; Hawbaker, Todd J.; Liang, Yu; Gong, Peng; Wu, Wuzhiwei; Zhu, Zhiliang

    2016-04-01

    Boreal forests represents about 1/3 of forest area and 1/3 of forest carbon on earth. Carbon dynamics of boreal forests are sensitive to climate change, natural (e.g., fire) and anthropogenic (e.g., harvest) disturbances. Field-based studies suggest that disturbances alter species composition, stand structure, and litter decomposition, and have significant effects on boreal forest carbon dynamics. Most of these studies, however, covered a relatively short period of time (e.g., few decades), which is limited in revealing such long-term effects of disturbances. Models are therefore developed as important tools in exploring the long-term (e.g., hundreds of years) effects of disturbances on forest carbon dynamics. In this study, we applied a framework of coupling forest ecosystem and landscape model to evaluating the effect of fire, harvest and their interactions on carbon stocks in a boreal forest landscape of Northeastern China. We compared the simulation results under fire, harvest and fire-harvest interaction scenarios with the simulated value of succession scenario at 26 landtypes over 150 years at a 10-year time step. Our results suggest that aboveground and belowground carbon are significantly reduced by fire and harvest over 150years. Fire reduced aboveground carbon by 2.3±0.6 ton/ha, harvest by 6.0±1.4 ton/ha, and fire and harvest interaction by 8.0±1.9 tons/ha. Fire reduced belowground carbon by 4.6±3.4 ton/ha, harvest by 5.0±3.5 ton/ha, and fire-harvest interaction by 5.7±3.7 tons/ha. The divergent response of carbon stocks among landtypes and between disturbance scenarios was due to the spatial interactions between fire, harvest, and species composition. Our results indicated that boreal forests carbon stocks prediction needs to consider the effects of fire and harvest for improving the estimation accuracy.

  1. Examining the ecosystem health and sustainability of the world's largest mangrove forest using multi-temporal MODIS products.

    PubMed

    Ishtiaque, Asif; Myint, Soe W; Wang, Chuyuan

    2016-11-01

    Sweeping across Bangladesh and India, the Sundarbans forest is the world's largest contiguous mangrove forest. Although the human population density is high at the edge, Sundarbans has not encountered significant areal transformation in the last four decades. However, we argue that forest degradation can occur discontinuously within the forest without alteration of the entire forest area. In this paper, we used MODIS land products to compare the spatiotemporal ecological dynamics of the Bangladesh and Indian part of this mangrove forest between 2000 and 2010. We used the following 5 ecological parameters for our analysis: the Percent Tree Cover (PTC), Enhanced Vegetation Index (EVI), Net Primary Productivity (NPP), Leaf Area Index (LAI), and Evapotranspiration (ET). Our pixel-based time-series trend analysis for each MODIS image stack, using an ordinary least square (OLS) regression method, showed that forest degradation is happening in fragmented parcels within the forest. The degradation rate is comparatively higher in the Bangladesh part than in the Indian part of Sundarbans. Compartments 8, 10, 12, and 15 in the Bangladesh part, in particular, show high degradation, while compartment 48 and the southern edge of 45 show slight increases in PTC or EVI. Forest degradation in the Indian part of the forest is evident in the National Park and Reserve Forest blocks; however, no substantial degradation is evident in the western section. We have identified certain anthropogenic stressors (i.e., oil pollution, shrimp farming) and natural stressors (i.e., increased salinity, cyclones, forest fire) which might be responsible for the observed degradation. We have provided sustainable planning options and policy transformation alternatives for those areas under pressure from these stressors. We anticipate that our analysis of forest degradation will help management agencies, conservators, and policy makers achieve better management of this world's largest mangrove forest for

  2. Sustainable forest management and impacts on forest responses to a changing climate

    NASA Astrophysics Data System (ADS)

    Stover, D. B.; Parker, G.; Riutta, T.; Capretz, R.; Murthy, I.; Haibao, R.; Bebber, D.

    2009-12-01

    Impacts from human activities at varying scales and intensities have a profound influence on forest carbon dynamics in addition to interactions with climate. As such, forest carbon stocks and fluxes are among the least well-defined elements of the global carbon cycle, and great uncertainty remains in predicting the effect of climate change on forest dynamics. In some cases, these management-climate interactions are well known, but often represent a fundamental gap in our understanding of ecosystem responses and are likely to be important in improving modeling of climate change, and in valuing forest carbon. To improve understanding of human induced forest management-climate interactions, a network of permanent study plots has been established in five sites around the world - in the US, UK, Brazil, India and China. The sites are near larger global monitoring (Smithsonian CTFS) plots to facilitate comparisons. At each site, a series of 1-ha plots have been placed in forest stands with differing management regimes and histories. Utilizing citizen scientists from HSBC bank, all trees >5 cm dbh are tagged, mapped, identified to species, and diameter is recorded within each plot. A subset of trees have dendrometer bands attached, to record seasonal growth. Dead wood and litterfall samples are taken, and microclimate is recorded with automatic sensors. Serial measurements will allow correlation of forest dynamics with weather. Although the studies are at an early stage current results indicate above-ground biomass estimates are 102-288 Mg ha-1 for intermediate and mature Liriodendron tulipifera-dominated stands in the US, respectively. In India, mature semi-natural evergreen forests biomass estimates are 192-235 Mg ha-1 while plantation and semi-natural core forests in the UK are estimated at 211-292 Mg ha-1. Successional Atlantic forests in Brazil are estimated to contain 192-235 Mg ha-1. In the US, initial results have demonstrated dramatic differences in microclimate

  3. 29 CFR 780.1016 - Use of evergreens and forest products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Use of evergreens and forest products. 780.1016 Section 780... Labor Provisions Under Section 13(d) Requirements for Exemption § 780.1016 Use of evergreens and forest products. Harvesting of evergreens and other forest products is exempt only when these products will...

  4. 29 CFR 780.1016 - Use of evergreens and forest products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Use of evergreens and forest products. 780.1016 Section 780... Labor Provisions Under Section 13(d) Requirements for Exemption § 780.1016 Use of evergreens and forest products. Harvesting of evergreens and other forest products is exempt only when these products will...

  5. 29 CFR 780.1016 - Use of evergreens and forest products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Use of evergreens and forest products. 780.1016 Section 780... Labor Provisions Under Section 13(d) Requirements for Exemption § 780.1016 Use of evergreens and forest products. Harvesting of evergreens and other forest products is exempt only when these products will...

  6. 29 CFR 780.1016 - Use of evergreens and forest products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Use of evergreens and forest products. 780.1016 Section 780... Labor Provisions Under Section 13(d) Requirements for Exemption § 780.1016 Use of evergreens and forest products. Harvesting of evergreens and other forest products is exempt only when these products will...

  7. 29 CFR 780.1016 - Use of evergreens and forest products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Use of evergreens and forest products. 780.1016 Section 780... Labor Provisions Under Section 13(d) Requirements for Exemption § 780.1016 Use of evergreens and forest products. Harvesting of evergreens and other forest products is exempt only when these products will...

  8. Nut Production in Bertholletia excelsa across a Logged Forest Mosaic: Implications for Multiple Forest Use

    PubMed Central

    Rockwell, Cara A.; Guariguata, Manuel R.; Menton, Mary; Arroyo Quispe, Eriks; Quaedvlieg, Julia; Warren-Thomas, Eleanor; Fernandez Silva, Harol; Jurado Rojas, Edwin Eduardo; Kohagura Arrunátegui, José Andrés Hideki; Meza Vega, Luis Alberto; Revilla Vera, Olivia; Valera Tito, Jonatan Frank; Villarroel Panduro, Betxy Tabita; Yucra Salas, Juan José

    2015-01-01

    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich

  9. Nut Production in Bertholletia excelsa across a Logged Forest Mosaic: Implications for Multiple Forest Use.

    PubMed

    Rockwell, Cara A; Guariguata, Manuel R; Menton, Mary; Arroyo Quispe, Eriks; Quaedvlieg, Julia; Warren-Thomas, Eleanor; Fernandez Silva, Harol; Jurado Rojas, Edwin Eduardo; Kohagura Arrunátegui, José Andrés Hideki; Meza Vega, Luis Alberto; Revilla Vera, Olivia; Quenta Hancco, Roger; Valera Tito, Jonatan Frank; Villarroel Panduro, Betxy Tabita; Yucra Salas, Juan José

    2015-01-01

    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world's most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1-2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich

  10. Quantifying the missing link between albedo and productivity of boreal forests

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-04-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Several studies have examined the relation between forest structure and albedo in the boreal zone. Studies regarding FAPAR are fewer and the relations between albedo and FAPAR are still poorly understood. To study these relations we simulated shortwave black sky albedo and canopy FAPAR, using the FRT forest reflectance model. We used two sets of field plots as input data. The plots were located in Alaska, USA (N = 584) and in Finland (N = 506) between Northern latitudes of 60° and 68° , and they represent naturally grown and more intensively managed (regularly thinned) forests, respectively. The simulations were carried out with sun zenith angles (SZA) typical to the biome, ranging from 40° to 80° . The simulated albedos in coniferous plots decreased with increasing tree height, whereas canopy FAPAR showed an opposite trend. The albedo of broadleaved plots was notably higher than that of coniferous plots. No species differences in canopy FAPAR were seen, except for pine forests in Finland that showed lowest FAPAR among species. Albedo and canopy FAPAR were negatively correlated (r ranged from -0.93 to -0.69) in coniferous plots. The correlations were notably weaker (r ranged from -0.64 to 0.05) if plots with broadleaved trees were included. To show the influence of forest management, we further examined the response of albedo and FAPAR to forest density (basal area) and fraction of broadleaved trees. Plots with low basal area showed high albedos but also low canopy FAPAR. When comparing the sparse plots to dense ones, the relative decrease in canopy FAPAR was larger than the relative increase in albedo. However, at large SZAs the basal area could be lowered to approx. 20 m2 ha‑1 before FAPAR was notably reduced. Increasing the proportion of broadleaved trees from 0% to 100% increased the albedos to approximately

  11. N{sub 2}O production pathways in the subtropical acid forest soils in China

    SciTech Connect

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-07-15

    To date, N{sub 2}O production pathways are poorly understood in the humid subtropical and tropical forest soils. A {sup 15}N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N{sub 2}O production in four subtropical acid forest soils (pH<4.5) in China. The results showed that denitrification was the main source of N{sub 2}O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N{sub 2}O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N{sub 2}O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N{sub 2}O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N{sub 2}O product ratios from nitrification. The ratio of N{sub 2}O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: {yields} We studied N{sub 2}O production pathways in subtropical acid forest soil under aerobic conditions. {yields} Denitrification was the main source of N{sub 2}O production in subtropical acid forest soils. {yields} Heterotrophic nitrification accounted for 27.3%-41.8% of N{sub 2}O production. {yields} While, contribution of autotrophic nitrification to N{sub 2}O production was little. {yields} Ratios of N{sub 2}O-N emission from nitrification were higher than those in most previous references.

  12. Monitoring the Philippine Forest Cover Change Using Ndvi Products of Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Torres, R. C.; Mouginis-Mark, P.; Wright, R.; Garbeil, H.; Craig, B.

    2004-12-01

    The Philippines has one of the world's fastest disappearing forest cover, which is being lost to natural processes and landscape-modifying human activities. Currently, forested landscape covers 24% (i.e., 7.2 million hectares) of the Philippines' total land area, of which only 800,000 hectares are considered as old-growth forests. Occasionally, volcanic activities and earthquakes cause large-scale impacts on the forest cover, but the systematic reduction of the country's forest has been sustained through unregulated logging operations and other human-induced landscape modification. Reforestation and watershed protection have become important public policy programs as forest denudation is linked to recent devastating landslides, debris flows and flashfloods. However, many watershed areas that are at risk to deforestation are hardly accessible to ground-based monitoring. A spaced-based monitoring system facilitates an efficient and timely response to changes in the quality and extent of the Philippine forest cover. This monitoring system relies in the generation of Normalized Difference Vegetation Index (NDVI) products from the red and infrared bands of remote sensing data, which correlates with the amount of chlorophyll in the vegetation. Given the existing forest classification maps, non-forested regions are masked in the data analysis, so that only forest-related changes in the vegetation are shown in the NDVI image difference products. A combination of two MODIS-bearing satellites, i.e., Terra and Aqua, acquire high temporal and moderate spatial resolution data, enabling the countrywide detection of vegetation changes within a certain observation period. MODIS data are calibrated for setting the pixel quality thresholds, which minimize the artifact of clouds and haze in the analysis. Areas showing dramatic changes are further investigated using higher resolution data, such as ASTER and Landsat 7 ETM. Sequential NDVI products of remote sensing data provide

  13. Response of African humid tropical forests to recent rainfall anomalies

    PubMed Central

    Asefi-Najafabady, Salvi; Saatchi, Sassan

    2013-01-01

    During the last decade, strong negative rainfall anomalies resulting from increased sea surface temperature in the tropical Atlantic have caused extensive droughts in rainforests of western Amazonia, exerting persistent effects on the forest canopy. In contrast, there have been no significant impacts on rainforests of West and Central Africa during the same period, despite large-scale droughts and rainfall anomalies during the same period. Using a combination of rainfall observations from meteorological stations from the Climate Research Unit (CRU; 1950–2009) and satellite observations of the Tropical Rainfall Measuring Mission (TRMM; 1998–2010), we show that West and Central Africa experienced strong negative water deficit (WD) anomalies over the last decade, particularly in 2005, 2006 and 2007. These anomalies were a continuation of an increasing drying trend in the region that started in the 1970s. We monitored the response of forests to extreme rainfall anomalies of the past decade by analysing the microwave scatterometer data from QuickSCAT (1999–2009) sensitive to variations in canopy water content and structure. Unlike in Amazonia, we found no significant impacts of extreme WD events on forests of Central Africa, suggesting potential adaptability of these forests to short-term severe droughts. Only forests near the savanna boundary in West Africa and in fragmented landscapes of the northern Congo Basin responded to extreme droughts with widespread canopy disturbance that lasted only during the period of WD. Time-series analyses of CRU and TRMM data show most regions in Central and West Africa experience seasonal or decadal extreme WDs (less than −600 mm). We hypothesize that the long-term historical extreme WDs with gradual drying trends in the 1970s have increased the adaptability of humid tropical forests in Africa to droughts. PMID:23878335

  14. LiDAR remote sensing observations for forest assessment and recovery responses following disturbance

    NASA Astrophysics Data System (ADS)

    Rosette, J.; Suárez, J.; Fonweben, J.; North, P.

    2013-12-01

    LiDAR data covering 400 km2 in the Cowal and Trossacs Forest District, Scotland, U.K., were used to provide a low cost solution to update the database of public forests and to produce multi-scale cartographic products for supporting management decisions in the event of forest disturbance such as infestation or wind damage. All parameter estimates were directly obtained from the LiDAR data without the necessity of field calibration. This was achieved using a hybrid approach integrating current stand models for Sitka spruce (Picea sitchensis bong. Carr) and LiDAR analysis. More conventional field methods offer percentage sampling, permitting only a proportion of stands to be surveyed each year and aiming to represent stand-level conditions. The use of LiDAR is advantageous in allowing a complete observation-based assessment throughout the forest and greatly-improved spatial representation of important forest parameters. Time-series analysis was performed using LiDAR data collected in the past 10 years. This analysis allowed us to establish growth trajectories in the forest stands, automatically discriminating areas of growth, those whose growth had been affected by disease and the occurrence of windthrow gaps. The results were compared to the cartography produced by the Forest District after a severe wind storm that affected the area in 2012. This analysis showed the ability of LiDAR to create a more precise location and extent of catastrophic damage and windthrow gaps. In addition, once windthrow has occurred, progression of further damage in existing canopy gaps can be observed. This approach additionally allows the impact of disease on forest growth and subsequent recovery response to be monitored.

  15. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve

    2013-01-01

    U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.

  16. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    NASA Technical Reports Server (NTRS)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  17. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli.

    PubMed

    Lim, He Kyoung; Chung, Eu Jin; Kim, Jin-Cheol; Choi, Gyung Ja; Jang, Kyoung Soo; Chung, Young Ryun; Cho, Kwang Yun; Lee, Seon-Woo

    2005-12-01

    A microbial community analysis of forest soil from Jindong Valley, Korea, revealed that the most abundant rRNA genes were related to Acidobacteria, a major taxon with few cultured representatives. To access the microbial genetic resources of this forest soil, metagenomic libraries were constructed in fosmids, with an average DNA insert size of more than 35 kb. We constructed 80,500 clones from Yuseong and 33,200 clones from Jindong Valley forest soils. The double-agar-layer method allowed us to select two antibacterial clones by screening the constructed libraries using Bacillus subtilis as a target organism. Several clones produced purple or brown colonies. One of the selected antibacterial clones, pJEC5, produced purple colonies. Structural analysis of the purified pigments demonstrated that the metagenomic clone produced both the pigment indirubin and its isomer, indigo blue, resulting in purple colonies. In vitro mutational and subclonal analyses revealed that two open reading frames (ORFs) are responsible for the pigment production and antibacterial activity. The ORFs encode an oxygenase-like protein and a putative transcriptional regulator. Mutations of the gene encoding the oxygenase canceled both pigment production and antibacterial activity, whereas a subclone carrying the two ORFs retained pigment production and antibacterial activity. This finding suggests that these forest soil microbial genes are responsible for producing the pigment with antibacterial activity. PMID:16332749

  18. 36 CFR 223.278 - Sale of forest botanical products and collection of fees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be governed under 36 CFR part 223 Subpart G. ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Sale of forest botanical products and collection of fees. 223.278 Section 223.278 Parks, Forests, and Public Property FOREST...

  19. Forests and ozone: productivity, carbon storage, and feedbacks

    PubMed Central

    Wang, Bin; Shugart, Herman H.; Shuman, Jacquelyn K.; Lerdau, Manuel T.

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  20. Bird response to silviculture induced change in forest structure within bottomland hardwood forests

    USGS Publications Warehouse

    Twedt, D.J.; Somershoe, S.G.

    2008-01-01

    Silvicultural treatments prescribed to encourage development of desired stand structure (i.e., wildlife-forestry) should result in increased abundance of many bird species of management concern, especially species using dense understory habitat. Desired forest conditions within bottomland vary among sites, but average 60-70% overstory canopy that is heterogeneously distributed with >5 dominant trees/ha retained, and a basal area of 14-16 m2/ha. Desired mid-story and understory cover are between 25-40%. Cavity trees (small and large) as well as dead and/or stressed trees should be retained, ultimately providing >14 m3/ha coarse woody debris, and shade-intolerant tree regeneration should be present on 30-40% of the area. We assessed avian response to prescribed wildlife-forestry silviculture treatments via distance-adjusted point counts and constant effort mist-netting within forest stands on Tensas River National Wildlife Refuge in northeastern Louisiana. More species and individuals were detected within stands 1-13 years post-treatment than within untreated stands. Most species, especially species benefiting from disturbance, increased in density after treatment. A few species decreased in density, yet remained fairly relatively abundant post-treatment. Captures from netting suggested three generalized responses to wildlife-forestry silviculture: (1) species with rapid, short-duration positive response, (2) species with slower but more prolonged positive response, and (3) species which initially declined but had long-term positive population response. We recommend increased use of prescribed wildlife-forestry silvicultural prescriptions to enhance bottomland forest habitat for priority bird species.

  1. Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Braswell, Bobby H.

    2000-01-01

    Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity, We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal Normalized Difference Vegetation Index (NDVI) amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy-energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests.

  2. Decomposition of forest products buried in landfills

    SciTech Connect

    Wang, Xiaoming; Padgett, Jennifer M.; Powell, John S.; Barlaz, Morton A.

    2013-11-15

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than

  3. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. PMID:23942265

  4. When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback.

    PubMed

    Stursová, Martina; Snajdr, Jaroslav; Cajthaml, Tomáš; Bárta, Jiří; Santrůčková, Hana; Baldrian, Petr

    2014-09-01

    Coniferous forests cover extensive areas of the boreal and temperate zones. Owing to their primary production and C storage, they have an important role in the global carbon balance. Forest disturbances such as forest fires, windthrows or insect pest outbreaks have a substantial effect on the functioning of these ecosystems. Recent decades have seen an increase in the areas affected by disturbances in both North America and Europe, with indications that this increase is due to both local human activity and global climate change. Here we examine the structural and functional response of the litter and soil microbial community in a Picea abies forest to tree dieback following an invasion of the bark beetle Ips typographus, with a specific focus on the fungal community. The insect-induced disturbance rapidly and profoundly changed vegetation and nutrient availability by killing spruce trees so that the readily available root exudates were replaced by more recalcitrant, polymeric plant biomass components. Owing to the dramatic decrease in photosynthesis, the rate of decomposition processes in the ecosystem decreased as soon as the one-time litter input had been processed. The fungal community showed profound changes, including a decrease in biomass (2.5-fold in the litter and 12-fold in the soil) together with the disappearance of fungi symbiotic with tree roots and a relative increase in saprotrophic taxa. Within the latter group, successive changes reflected the changing availability of needle litter and woody debris. Bacterial biomass appeared to be either unaffected or increased after the disturbance, resulting in a substantial increase in the bacterial/fungal biomass ratio. PMID:24671082

  5. When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback

    PubMed Central

    Štursová, Martina; Šnajdr, Jaroslav; Cajthaml, Tomáš; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr

    2014-01-01

    Coniferous forests cover extensive areas of the boreal and temperate zones. Owing to their primary production and C storage, they have an important role in the global carbon balance. Forest disturbances such as forest fires, windthrows or insect pest outbreaks have a substantial effect on the functioning of these ecosystems. Recent decades have seen an increase in the areas affected by disturbances in both North America and Europe, with indications that this increase is due to both local human activity and global climate change. Here we examine the structural and functional response of the litter and soil microbial community in a Picea abies forest to tree dieback following an invasion of the bark beetle Ips typographus, with a specific focus on the fungal community. The insect-induced disturbance rapidly and profoundly changed vegetation and nutrient availability by killing spruce trees so that the readily available root exudates were replaced by more recalcitrant, polymeric plant biomass components. Owing to the dramatic decrease in photosynthesis, the rate of decomposition processes in the ecosystem decreased as soon as the one-time litter input had been processed. The fungal community showed profound changes, including a decrease in biomass (2.5-fold in the litter and 12-fold in the soil) together with the disappearance of fungi symbiotic with tree roots and a relative increase in saprotrophic taxa. Within the latter group, successive changes reflected the changing availability of needle litter and woody debris. Bacterial biomass appeared to be either unaffected or increased after the disturbance, resulting in a substantial increase in the bacterial/fungal biomass ratio. PMID:24671082

  6. Changes in Forest Production, Biomass and Carbon: Results From the 2015 UN FAO Global Forest Resource Assessment

    NASA Astrophysics Data System (ADS)

    Navar, J.

    2015-12-01

    Forests are important sources of livelihoods to millions of people and contribute to national economic development of many countries. In addition, they are vital sources and sinks of carbon and contribute to the rate of climate change. The UN Food and Agriculture Organization has been collecting and presenting data on global forest resources and forest cover since 1948. This paper builds on data from FAO's 2015 Global Forest Resource Assessment (FRA) and presents information on growing stock, biomass, carbon stock, wood removals, and changes of forest area primarily designated for production and multiple use of the world's forests. Between 1990 and 2015, the total growing stock volume has increased in East Asia, Caribbean, Western and Central Asia, North America, Europe (including the Russian Federation), and Oceania with the highest relative increase in East Asia and the Caribbean. In all other subregions the total growing stock volume decreased. North and Central America, Europe and Asia report forest C stock increases while South America and Africa report strong decreases and Oceania reports stable forest C stocks. The annual rate of decrease of forest C stock weakened between 1990 and 2015. The total volume of annual wood removals including wood fuel removals increased between 1990 and 2011, but shows a remarkable decline during the 2008-2009 economic crisis. Forest areas designated for production purposes differ considerably between subregions. The percentage of production area out of total forest area ranges between 16 percent in South America and 53 percent in Europe. Globally about one quarter of the forest area is designated to multiple use forestry. The balance between biomass growth and removals shows considerable sub-regional differences and related implications for the sustainable use of forests.

  7. Divergent phenological response to hydroclimate variability in forested mountain watersheds.

    PubMed

    Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P

    2014-08-01

    Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns

  8. Will Elevated CO2 Increase Forest Productivity? Evidence from an Australian FACE Experiment

    NASA Astrophysics Data System (ADS)

    Collins, L.

    2015-12-01

    Rising atmospheric CO2 may enhance forest productivity via CO2 fertilisation and increased soil moisture associated with water savings. Quantification of the response of forest productivity to rising CO2 concentrations is important, as increased forest productivity may contribute to the mitigation of anthropogenic climate change. Vegetation greenness indices derived from digital photographs have been correlated with a number of measures of ecosystem productivity including total biomass, leaf area index and gross primary productivity. Our study examines the effect of elevated CO2 on patterns in overstorey and understorey vegetation greenness at a Free Air CO2 Enrichment facility (EucFACE) situated within a temperate eucalypt forest in Sydney, Australia. EucFACE consists of six treatment areas, three subjected to ambient CO2 ('ambient') and three with ambient plus 150 ppm CO2 ('elevated'). Each treatment area had one camera monitoring canopy greenness for a 12 month period and four cameras monitoring one understorey vegetation plot (2.25 m2) each for a 15 month period. Vegetation greenness was measured daily using the green chromatic coordinate (GCC). Understorey and overstorey GCC and rates of understorey greening and browning were not affected by elevated CO2. Periodic differences in canopy greening and browning between CO2 treatments were observed, though these probably reflect an insect defoliation event in one treatment area. Increases in canopy and understorey GCC were associated with a combination of extended periods of high soil volumetric water content (VWC) (>0.1) and high maximum temperatures (>25 °C). Browning appeared to be associated with a combination of periods of high maximum temperatures and low VWC or low minimum temperatures. Our short term findings suggest that eucalypt forest productivity will be sensitive to changes in climate, but may be relatively insensitive to changes in CO2 in the near future.

  9. Forest products: Fiber loading for paper manufacturing

    SciTech Connect

    1999-09-29

    Fact sheet on manufacturing filler during paper manufacturing written for the NICE3 Program. With its new fiber loading process, Voith Sulzer, Inc., is greatly improving the efficiency of paper production and recycling. Fiber loading produces precipitated calcium carbonate (PCC) filler in the pulp recycling process at costs below conventional means. Fiber loading allows papermakers to use as much filler, like PCC, as possible because it costs 80% less than fiber. In addition, increased filler and fines retention due to fiber loading reduces the quantity of greenhouse gas emissions, deinking sludge, and other waste while substantially lowering energy costs. Currently, the most efficient way to produce PCC as filler is to make it in a satellite plant adjacent to a paper mill. Satellite plants exist near large scale paper mills (producing 700 tons per day) because the demand at large mills justifies building a costly ($15 million, average) satellite plant. This new fiber loading process combines the PCC manufacturing technology used in a satellite plant with the pulp processing operations of a paper mill. It is 33% less expensive to augment an existing paper mill with fiber loading technology than to build a satellite plant for the same purpose. This technology is applicable to the manufacturing of all printing and writing paper, regardless of the size or capacity of the paper mill.

  10. Operational Application of Envisat ASAR in Tropical Production Forest

    NASA Astrophysics Data System (ADS)

    Raimadoya, M.; Trisasongko, B.

    2003-04-01

    A joint research between European Space Agency (ESA) and Bogor Agricultural University (IPB), Indonesia, has been approved under Envisat AO (AO-ID 869). The research is intended to study the operational application of Advanced Synthetic-Aperture Radar (ASAR) for production forest management in Indonesia. Two test sites in forest plantation area of PT Riau Andalan Pulp and Paper (Riaupulp) in Riau Province, Central Sumatera, Indonesia, have been selected recently for the implementation of this joint research. This paper briefs the recent progress of this two-year research (2002-2004) activity. The main objective is to explore the potential of ASAR image analysis application, including POLINSAR, for better and more efficient operational management of tropical plantation forest and its environment. Several interesting operational applications have been identified for the test sites. First application is vegetative cover classification of Acacias, mixed hardwoods, shrubs, oil palms and bare lands. The second is biomass-related application, which study Envisat data on biomass monitoring related to forest plantation. The third is environmental study particularly for site degradation, including issues on monitoring of water bodies and burn site.

  11. Impact of climate change on forests, forest products and the carbon cycle in the Congo Basin.

    NASA Astrophysics Data System (ADS)

    Kruijt, Bart; Jans, Wilma; Franssen, Wietse; Ludwig, Fulco

    2014-05-01

    Africa is widely seen as the continent most vulnerable to climate change. Current climate variability already has a large impact on the economies of developing countries. Large parts of African economies are highly climate sensitive, in particular agriculture, infrastructure and water sector. In this study we performed an analysis of climate change impacts in the Congo Basin on Forest ecosystem functioning and carbon storage. We emphasise the methodologies and validation involved in modelling the basin-wide carbon budgets. We also studied the potential shifts in broad classes of vegetation types, resulting from climate change. Finally, we compared annual productivity of the Congo forests with statistics of wood fuel and charcoal use for each of the countries in the region. The model simulations suggest that the region's forests will see increasing productivity under future climate, however, the effect of rising CO2 concentrations, stimulating growth, is highly uncertain. From these findings it follows that the potential in the region to implement UNFCCC-REDD+ projects is still very uncertain, but probably sustainable and feasible. The analysis shows that, averaged over 10 years, wood fuel and charcoal use amount to 50% and in some countries up to 100% or even more of the yearly vegetation carbon increase. These percentages generally increases with population density.

  12. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    PubMed Central

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC’s Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation

  13. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    PubMed

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation

  14. Minnesota timber industry: An assessment of timber product output and use, 1990. Forest Service resource bulletin

    SciTech Connect

    Hackett, R.L.; Dahlman, R.A.

    1993-01-01

    The bulletin includes recent Minnesota forest industry trends and report the results of a detailed study of forest industry, industrial roundwood production, and associated primary mill wood and bark residue in Minnesota in 1990. Such detailed information is necessary for intelligent planning and decisionmaking in wood procurement, forest resource management, and forest industry development. Likewise, researchers need current forest industry and industrial roundwood information for planning projects.

  15. Wisconsin timber industry: An assessment of timber product output and use, 1994. Forest Service resource bulletin

    SciTech Connect

    Hackett, R.L.; Whipple, J.W.

    1997-09-21

    In this bulletin we discuss recent Wisconsin forest industry trends and report the results of a detailed study of forest indsutry, industrial roundwood production, and associated primary mill wood and bark residue in Wisconsin in 1994. Such detailed information is necessary for intelligent planning and decisionmaking in wood procurement, forest resource management, and forest industry development. Likewise, researchers need current forest industry and idustrial roundwood information for planning project.

  16. Minnesota timber industry. An assessment of timber product output and use, 1992. Forest Service resource bulletin

    SciTech Connect

    Hackett, R.L.; Dahlman, R.A.

    1997-09-19

    In this bulletin, the authors discuss recent Minnesota forest industry trends and report the results of a detailed study of forest industrial roundwood production, and associated primary mill wood and bark residue in Minnesota in 1992. Such detailed information is necessary for intelligent planning and decisionmaking in wood procurement, forest resource management, and forest industry development. Likewise, researchers need current forest industry and industrial roundwood information for planning projects.

  17. Forest responses to increasing aridity and warmth in the southwestern United States

    USGS Publications Warehouse

    Williams, A.P.; Allen, C.D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, Steven W.

    2010-01-01

    In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasingmortality inmany temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth.We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ???2.7% of southwestern forest and woodland area experienced substantialmortality due to wildfires from1984 to 2006, and???7. 6%experiencedmortality associated with bark beetles from 1997 to 2008. We estimate that up to ???18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests.

  18. Forest responses to increasing aridity and warmth in the southwestern United States

    PubMed Central

    Williams, A. Park; Allen, Craig D.; Millar, Constance I.; Swetnam, Thomas W.; Michaelsen, Joel; Still, Christopher J.; Leavitt, Steven W.

    2010-01-01

    In recent decades, intense droughts, insect outbreaks, and wildfires have led to decreasing tree growth and increasing mortality in many temperate forests. We compared annual tree-ring width data from 1,097 populations in the coterminous United States to climate data and evaluated site-specific tree responses to climate variations throughout the 20th century. For each population, we developed a climate-driven growth equation by using climate records to predict annual ring widths. Forests within the southwestern United States appear particularly sensitive to drought and warmth. We input 21st century climate projections to the equations to predict growth responses. Our results suggest that if temperature and aridity rise as they are projected to, southwestern trees will experience substantially reduced growth during this century. As tree growth declines, mortality rates may increase at many sites. Increases in wildfires and bark-beetle outbreaks in the most recent decade are likely related to extreme drought and high temperatures during this period. Using satellite imagery and aerial survey data, we conservatively calculate that ≈2.7% of southwestern forest and woodland area experienced substantial mortality due to wildfires from 1984 to 2006, and ≈7.6% experienced mortality associated with bark beetles from 1997 to 2008. We estimate that up to ≈18% of southwestern forest area (excluding woodlands) experienced mortality due to bark beetles or wildfire during this period. Expected climatic changes will alter future forest productivity, disturbance regimes, and species ranges throughout the Southwest. Emerging knowledge of these impending transitions informs efforts to adaptively manage southwestern forests. PMID:21149715

  19. Aerosol Production in a Mixed Deciduous/Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Slade, N.; Mielke, L.; Alaghmand, M.; Galloway, M.; Kammrath, A.; Keutsch, F.; Hansen, R.; Griffith, S.; Dusanter, S.; Stevens, P.; Carroll, M.; Bertman, S.; Shepson, P.

    2008-12-01

    Aerosols are of fundamental concern because of their impacts on air quality, human health and radiative forcing. Recent studies have focused on secondary organic aerosol (SOA) production due to oxidation of volatile organic compounds (VOCs), and more importantly biogenic-VOCs (BVOCs), in particular, isoprene. However, the SOA precursors are not well understood because the mechanisms have shown that isoprene oxidation can contribute to aerosol production through multiple generation oxidation products. For terpenes, it is more likely that primary or secondary oxidation products lead to particle formation. In the present study, we measured the aerosol size distribution, along with O3, HOx, NOx, NOy and BVOCs, in a mixed deciduous forest that is undergoing successional transition to a conifer-dominated species mix. This study was conducted in a rural forest environment in northern Michigan as a part of the summer 2008 PROPHET campaign at the University of Michigan Biological Station (UMBS). We examine here the potential BVOC contribution to aerosol formation. A TSI, inc. Scanning Mobility Particle Sizer (SMPS) was used to measure aerosol number density in the size range, 15 nm < x < 711 nm and a Proton Transfer Reaction - Linear Ion Trap (PTR-LIT) mass spectrometer for quantifying isoprene and other BVOCs, including methyl vinyl ketone and methacrolein, and total monoterpenes. Preliminary results show periods of new particle production. Here we use a unique set of BVOC, HOx, NOx, NOy, O3 and meteorological data to examine conditions leading to new particle production.

  20. Productivity of Northern Eurasian forests: Analysis of uncertainties

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; McCallum, Ian

    2010-05-01

    Indicators of biological productivity of forests (live and dead biomass, net primary production, net and gross growth) are crucial for both assessment of the impacts of terrestrial ecosystems on major biogeochemical cycles and practice of sustainable forest management. However, different information and the diversity of methods used in the assessments of forests productivity cause substantial variation in reported estimates. The paper contains a systems analysis of the existing methods, their uncertainties, and a description of available information. With respect to Northern Eurasian forests, the major reasons for uncertainties could be categorized as following: (1) significant biases that are inherent in a number of important sources of available information (e.g., forest inventory data, results of measurements of some indicators in situ); (2) inadequacy and oversimplification of models of different types (empirical aggregations, process-based models); (3) lack of data for some regions; and (4) upscaling procedure of 'point' observations. Based on as comprehensive as possible adherence to the principles of systems analysis, we made an attempt to provide a reanalysis of indicators of forests productivity of Russia aiming at obtaining the results for which uncertainties could be estimated in a reliable and transparent way. Within a landscape-ecosystem approach it has required (1) development of an expert system for refinement of initial data including elimination of recognized biases; (2) delineation of ecological regions based on gradients of major indicators of productivity; (3) transition to multidimensional models (e.g., for calculation of spatially distributed biomass expansion factors); (4) use of process-based elements in empirical models; and (5) development of some approaches which presumably do not have recognized biases. However, taking into account the fuzzy character of the problem, the above approach (as well as any other individually used method) is

  1. Forest floor vegetation response to nitrogen deposition in Europe.

    PubMed

    Dirnböck, Thomas; Grandin, Ulf; Bernhardt-Römermann, Markus; Beudert, Burkhardt; Canullo, Roberto; Forsius, Martin; Grabner, Maria-Theresia; Holmberg, Maria; Kleemola, Sirpa; Lundin, Lars; Mirtl, Michael; Neumann, Markus; Pompei, Enrico; Salemaa, Maija; Starlinger, Franz; Staszewski, Tomasz; Uziębło, Aldona Katarzyna

    2014-02-01

    Chronic nitrogen (N) deposition is a threat to biodiversity that results from the eutrophication of ecosystems. We studied long-term monitoring data from 28 forest sites with a total of 1,335 permanent forest floor vegetation plots from northern Fennoscandia to southern Italy to analyse temporal trends in vascular plant species cover and diversity. We found that the cover of plant species which prefer nutrient-poor soils (oligotrophic species) decreased the more the measured N deposition exceeded the empirical critical load (CL) for eutrophication effects (P = 0.002). Although species preferring nutrient-rich sites (eutrophic species) did not experience a significantly increase in cover (P = 0.440), in comparison to oligotrophic species they had a marginally higher proportion among new occurring species (P = 0.091). The observed gradual replacement of oligotrophic species by eutrophic species as a response to N deposition seems to be a general pattern, as it was consistent on the European scale. Contrary to species cover changes, neither the decrease in species richness nor of homogeneity correlated with nitrogen CL exceedance (ExCLemp N). We assume that the lack of diversity changes resulted from the restricted time period of our observations. Although existing habitat-specific empirical CL still hold some uncertainty, we exemplify that they are useful indicators for the sensitivity of forest floor vegetation to N deposition. PMID:24132996

  2. 3 CFR 8442 - Proclamation 8442 of October 23, 2009. National Forest Products Week, 2009

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Forest Products Week, 2009 8442 Proclamation 8442 Presidential Documents Proclamations Proclamation 8442 of October 23, 2009 Proc. 8442 National Forest Products Week, 2009By the President of the United States of America A Proclamation America’s forests have helped spur the growth and development that...

  3. 25 CFR 163.19 - Contracts for the sale of forest products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Contracts for the sale of forest products. 163.19 Section 163.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.19 Contracts for the sale of forest products. (a) In...

  4. 25 CFR 163.19 - Contracts for the sale of forest products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Contracts for the sale of forest products. 163.19 Section 163.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.19 Contracts for the sale of forest products. (a) In...

  5. 25 CFR 163.19 - Contracts for the sale of forest products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Contracts for the sale of forest products. 163.19 Section 163.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.19 Contracts for the sale of forest products. (a) In...

  6. 25 CFR 163.19 - Contracts for the sale of forest products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Contracts for the sale of forest products. 163.19 Section 163.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.19 Contracts for the sale of forest products. (a) In...

  7. Landscape and plant physiological controls on water dynamics and forest productivity within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, Jia; Jencso, Kelsey; Looker, Nathaniel; Martin, Justin; Hoylman, Zachary

    2015-04-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower

  8. Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.

    PubMed

    Hungate, Bruce A; Hart, Stephen C; Selmants, Paul C; Boyle, Sarah I; Gehring, Catherine A

    2007-07-01

    Forest management, climatic change, and atmospheric N deposition can affect soil biogeochemistry, but their combined effects are not well understood. We examined the effects of water and N amendments and forest thinning and burning on soil N pools and fluxes in ponderosa pine forests near Flagstaff, Arizona (USA). Using a 15N-depleted fertilizer, we also documented the distribution of added N into soil N pools. Because thinning and burning can increase soil water content and N availability, we hypothesized that these changes would alleviate water and N limitation of soil processes, causing smaller responses to added N and water in the restored stand. We found little support for this hypothesis. Responses of fine root biomass, potential net N mineralization, and the soil microbial N to water and N amendments were mostly unaffected by stand management. Most of the soil processes we examined were limited by N and water, and the increased N and soil water availability caused by forest restoration was insufficient to alleviate these limitations. For example, N addition caused a larger increase in potential net nitrification in the restored stand, and at a given level of soil N availability, N addition had a larger effect on soil microbial N in the restored stand. Possibly, forest restoration increased the availability of some other limiting resource, amplifying responses to added N and water. Tracer N recoveries in roots and in the forest floor were lower in the restored stand. Natural abundance delta15N of labile soil N pools were higher in the restored stand, consistent with a more open N cycle. We conclude that thinning and burning open up the N cycle, at least in the short-term, and that these changes are amplified by enhanced precipitation and N additions. Our results suggest that thinning and burning in ponderosa pine forests will not increase their resistance to changes in soil N dynamics resulting from increased atmospheric N deposition or increased

  9. Soil Biochemical Responses to Nitrogen Addition in a Bamboo Forest

    PubMed Central

    Tu, Li-hua; Chen, Gang; Peng, Yong; Hu, Hong-ling; Hu, Ting-xing; Zhang, Jian; Li, Xian-wei; Liu, Li; Tang, Yi

    2014-01-01

    Many vital ecosystem processes take place in the soils and are greatly affected by the increasing active nitrogen (N) deposition observed globally. Nitrogen deposition generally affects ecosystem processes through the changes in soil biochemical properties such as soil nutrient availability, microbial properties and enzyme activities. In order to evaluate the soil biochemical responses to elevated atmospheric N deposition in bamboo forest ecosystems, a two-year field N addition experiment in a hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis daii) plantation was conducted. Four levels of N treatment were applied: (1) control (CK, without N added), (2) low-nitrogen (LN, 50 kg N ha−1 year−1), (3) medium-nitrogen (MN, 150 kg N ha−1 year−1), and (4) high-nitrogen (HN, 300 kg N ha−1 year−1). Results indicated that N addition significantly increased the concentrations of NH4+, NO3−, microbial biomass carbon, microbial biomass N, the rates of nitrification and denitrification; significantly decreased soil pH and the concentration of available phosphorus, and had no effect on the total organic carbon and total N concentration in the 0–20 cm soil depth. Nitrogen addition significantly stimulated activities of hydrolytic enzyme that acquiring N (urease) and phosphorus (acid phosphatase) and depressed the oxidative enzymes (phenol oxidase, peroxidase and catalase) activities. Results suggest that (1) this bamboo forest ecosystem is moving towards being limited by P or co-limited by P under elevated N deposition, (2) the expected progressive increases in N deposition may have a potential important effect on forest litter decomposition due to the interaction of inorganic N and oxidative enzyme activities, in such bamboo forests under high levels of ambient N deposition. PMID:25029346

  10. 76 FR 50715 - Information Collection; Forest Products Removal Permits and Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ...In accordance with the Paperwork Reduction Act of 1995, the Forest Service is seeking comments from all interested individuals and organizations on the extension with no revision of a currently approved information collection, Forest Products Removal Permits and...

  11. Redox potential: An indicator of site productivity in forest management

    NASA Astrophysics Data System (ADS)

    Sajedi, Toktam; Prescott, Cindy; Lavkulich, Les

    2010-05-01

    Redox potential (Eh) is an integrated soil measurement that reflects several environmental conditions in the soil associated with aeration, moisture and carbon (organic matter) dynamics. Its measurement can be related to water table fluctuations, precipitation and landscape gradients, organic matter decomposition rates, nutrient dynamics, biological diversity and plant species distribution. Redox is an excellent indicator of soil biological processes, as it is largely a reflection of microbial activities which to a large extent govern carbon dynamics and nutrient cycling. Redox thus serves as an ecological indicator of site productivity at the ecosystem scale and may be used for management purposes as its magnitude can be altered by activities such as harvesting and drainage. A threshold value of 300 mv has been documented as the critical value below which anaerobic conditions in the soil develop. However, redox measurements and its impacts on ecosystem processes such as nutrient cycling and productivity, especially in forest ecosystems, have not received the attention that this "master" variable deserves, On northern Vancouver Island, Canada, regenerating stands of western redcedar-western hemlock (CH) sites exhibit symptoms of nutrient deficiencies and slow growth, but this phenomenon does not occur on adjacent western hemlock- amabalis fir (HA) sites. We tested the hypothesis that differences in nutrient supply and distribution of plant species was caused by differences in moisture regime and redox potential. Redox potential, pH, soil aeration depth (steel rods), organic matter thickness, bulk density, soil carbon store, plant species distribution and richness were measured at five old-growth and five 10-year-old cutover blocks. Results of investigations confirmed that CH forests were wetter, had redox values lower than the critical 300mv and a shallower aerated zone, compared with adjacent regenerating HA sites. Fifty percent of the CH plots had redox values

  12. Multidisciplinary Research on Canopy Photosynthetic Productivity in a Cool-Temperate Deciduous Broadleaf Forest in Japan

    NASA Astrophysics Data System (ADS)

    Muraoka, H.; Noda, H. M.; Saitoh, T. M.; Nagai, S.

    2014-12-01

    Forest canopy has crucial roles in regulating energy and material exchange between the atmosphere and terrestrial ecosystems and in ecological processes with respect to carbon cycle and growth in the ecosystems. Challenges to the canopy of tall forests for such research involve the access to the leaves for ecophysiological observations, responses of leaves to the changing environments from seconds to years, and up-scaling the leaf-level phenomena to canopy and landscape-levels. A long-term, multidisciplinary approach has been conducted in a cool-temperate deciduous broadleaf forest in Takayama site (ca. 1400m a.s.l.) in central Japan. This forest canopy is dominated by Quercus crispula and Betula ermanii. We have been focusing on the phenology of photosynthetic productivity from a single leaf to canopy, and to landscape level, by combining leaf ecophysiological research, optical observations by spectroradiometers and time-laps cameras with the aid of "Phenological Eyes Network (PEN)", and process-based modellings. The canopy-level photosynthesis is then compared with the micrometeorolgical observation of CO2 flux at the site. So far we have been clarifying that (1) inter-annual variations in seasonal growth rate and senescence rate of leaf photosynthetic capacity and canopy leaf area are largely responsible for the inter-annual change in forest photosynthesis, and (2) spectral vegetation indices such as enhanced vegetation index (EVI) and chlorophyll index (CCI) can be the indicator to observe the phenology of forest canopy photosynthesis. In addition to these efforts since 2003, we established an open-field warming experiment on the branches of the canopy trees, to investigate the possible influence of temperature increase on leaf photosynthetic and optical properties and then to examine whether the optical satellite remote sensing can detect the changes in photosynthetic capacity and phenology by ongoing global warming.

  13. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation.

    PubMed

    Slade, Eleanor M; Merckx, Thomas; Riutta, Terhi; Bebber, Daniel P; Redhead, David; Riordan, Philip; Macdonald, David W

    2013-07-01

    How best to manage forest patches, mitigate the consequences of forest fragmentation, and enable landscape permeability are key questions facing conservation scientists and managers. Many temperate forests have become increasingly fragmented, resulting in reduced interior forest habitat, increased edge habitats, and reduced connectivity. Using a citizen science landscape-scale mark-release-recapture study on 87 macro-moth species, we investigated how both life-history traits and landscape characteristics predicted macro-moth responses to forest fragmentation. Wingspan, wing shape, adult feeding, and larval feeding guild predicted macro-moth mobility, although the predictive power of wingspan and wing shape depended on the species' affinity to the forest. Solitary trees and small fragments functioned as "stepping stones," especially when their landscape connectivity was increased, by being positioned within hedgerows or within a favorable matrix. Mobile forest specialists were most affected by forest fragmentation: despite their high intrinsic dispersal capability, these species were confined mostly to the largest of the forest patches due to their strong affinity for the forest habitat, and were also heavily dependent on forest connectivity in order to cross the agricultural matrix. Forest fragments need to be larger than five hectares and to have interior forest more than 100 m from the edge in order to sustain populations of forest specialists. Our study provides new insights into the movement patterns of a functionally important insect group, with implications for the landscape-scale management of forest patches within agricultural landscapes. PMID:23951712

  14. Examining the effects of forest thinning on runoff responses at different catchments scales in forested headwaters

    NASA Astrophysics Data System (ADS)

    Dung, B. X.; Gomi, T.; Onda, Y.; Kato, H.; Hiraoka, M.

    2012-12-01

    We conducted field observation in nested headwater catchments draining Japanese cypress (Chamaecyparis obtusa) and cedar (Cryptomeria japonica) forests at Tochigi prefectures for examining the effects of forest thinning on runoff generation at different catchment scales. 50% of the stems was removed with line thinning in catchment K2 (treatment catchment), while catchment K3 remained untreated as a control. We also monitored nested catchments within K2-1 (17.1 ha) as K2-2 (10.2 ha), K2-3 (3.7 ha) and K2-4 (5.1 ha), and within K3-1 (8.9 ha) as K3-2 (3.0 ha). Runoff from the catchments was monitored during the pre-thinning (from April, 2010 to May 2011), and the post-thinning periods (from June 2011 to July 2012). Paired-catchment and hydrograph separation analysis were used to evaluate the effects of forest thinning on runoff generation at different catchment scales. We developed the pre-thinning calibration equation for predicting post-thinning responses. Paired-catchment analysis revealed that annual catchment runoff increased 648 mm in K2-1, 414 mm in K2-2, 517 mm in K2-3 and 487 mm in K2-4 after the thinning. Both quick and delayed runoff components only increased significantly in the larger catchments of K2-1 and K2-2, while only delayed runoff components of smaller catchments (K2-3 and K2-4) increased significantly during the post-thinning period. Increases of quick runoff in large catchments could be associated with quick runoff response to soil surface compaction by line thinning and skid trail installation. Increases of delayed runoff in small catchment may be associated with increase in net precipitation and decrease in evapotranspiration. Our finding showed that changes in internal hydrological flow pathways and associated changes in runoff components due to forest harvesting differ depending on the catchment sizes.

  15. Storm Effects on Net Ecosystem Productivity in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Vestin, Patrik; Grelle, Achim; Lagergren, Fredrik; Hellström, Margareta; Langvall, Ola; Lindroth, Anders

    2010-05-01

    Regional carbon budgets are to some extent determined by disturbance in ecosystems. Disturbance is believed to be partly responsible for the large inter-annual variability of the terrestrial carbon balance. When neglecting anthropogenic disturbance, forest fires have been considered the most important kind of disturbance. However, also insect outbreaks and wind-throw may be major factors in regional carbon budgets. The effects of wind-throw on CO2 fluxes in boreal forests are not well known due to lack of data. Principally, the reduced carbon sequestration capacity, increased substrate availability and severe soil perturbation following wind-throw are expected to result in increased CO2 fluxes from the forest to the atmosphere. In January 2005, the storm Gudrun hit Sweden, which resulted in approx. 66 × 106m3storm-felled stem wood distributed over an area of approx. 272 000 ha. Eddy covariance flux measurements started at storm-felled areas in Asa and Toftaholm in central Sweden during summer 2005. Data from the first months suggests increased CO2 fluxes by a factor of 2.5-10, as compared to normal silviculture (clear-cutting). An important question is how long such enhanced CO2 fluxes persist. The BIOME-BGC model will be calibrated against measured CO2 fluxes from both sites for 2005 through 2009. Modeled data will be used to fill gaps in the data sets and annual carbon balances will be calculated. Data from Asa and Toftaholm will be presented at the conference.

  16. Soil Bacterial Community Structure Responses to Precipitation Reduction and Forest Management in Forest Ecosystems across Germany

    PubMed Central

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E.; Ellerbrock, Ruth; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas

    2015-01-01

    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season. PMID:25875835

  17. Chemical characteristics of two forested Ultisols and two forested Inceptisols relevant to anion production and mobility

    SciTech Connect

    Johnson, D.W.; Cole, D.W.; Horng, F.W.; Van Miegroet, H.; Todd, D.E.

    1981-06-01

    As a prelude to a basic program on soil leaching, some chemical characteristics of two forested Ultisols in eastern Tennessee and two forested Inceptisols in western Washington are discussed in relation to the production and mobility of anions. These soils were chosen in an attempt to provide a range of free iron (Fe) and aluminum (Al) contents (which are hypothesized to be related to anion adsorption) and carbon:nitrogen (C:N) ratios (which are hypothesized to be related to nitrate and bicarbonate production) for field experiments involving C, N, and anion salt additions. The Washington Inceptisols had high free Fe and Al in surface horizons and decreasing free Fe and Al levels with depth, whereas the reverse was true of the Tennessee Ultisols. The Alderwood-red alder and Tarklin (sinkhole) soils had higher N concentrations and lower C:N ratios in their surface horizons than the Alderwood-Douglas-fir and Fullerton soils, respectively, but the reverse was true of subsurface horizons. Patterns of and relationships among the above properties and pH, Bray phosphorus (No. 2); adsorbed and soluble SO/sub 4//sup 2 -/, Cl/sup -/ and NO/sub 3//sup -/; cation exchange capacity; and exchangeable cations are discussed.

  18. Chemical Characteristics of Two Forested Ultisols and Two Forested Inceptisols Relevant to Anion Production and Mobility

    SciTech Connect

    Johnson, D.W.

    2001-01-17

    As a prelude to a basic program on soil leaching, some chemical characteristics of two forested Ultisols in eastern Tennessee and two forested Inceptisols in western Washington are discussed in relation to the production and mobility of anions. These soils were chosen in an attempt to provide a range of free iron (Fe) and aluminum (Al) contents (which are hypothesized to be related to anion adsorption) and carbon:nitrogen (C:N) ratios (which are hypothesized to be related to nitrate and bicarbonate production) for field experiments involving C, N, and anion salt additions. The Washington Inceptisols had high free Fe and Al in surface horizons and decreasing free Fe and Al levels with depth, whereas the reverse was true of the Tennessee Ultisols. The alderwood-red alder and Tarklin (sinkhole) soils had higher N concentrations and lower C:N ratios in their surface horizons than the Alderwood-Douglas-fir and Fullerton soils, respectively, but the reverse was true of subsurface horizons. Patterns of and relationships among the above properties and pH, Bray phosphorus (No. 2); adsorbed and soluble SO{sub 4}{sup 2-}, Cl{sup -}, and NO{sub 3}{sup -}; cation exchange capacity; and exchangeable cations are discussed.

  19. Forest Watch: Using Student Data to Monitor Forest Response to Ground-Level Ozone

    NASA Astrophysics Data System (ADS)

    Spencer, S.; Rock, B. N.

    2006-12-01

    Forest Watch, a k-12 science outreach program begun at the University of New Hampshire (UNH) in 1991, has engaged pre-college students in providing UNH researchers with data on the annual response of white pine (Pinus strobus; a bio-indicator species for ozone exposure) to ground-level ozone across the New England region. Each year, student-collected growth and foliar symptomology data for 5 pine trees adjacent to their schools, along with first-year foliar samples, are submitted to UNH. Key foliar symptoms and student data are compared with summer monthly (JJA) maximum ozone concentrations collected by state and federal ozone monitoring stations across the region. To date, tree health indicators are inversely correlated (r2=0.83;p=0.10) with ozone concentrations: low ozone levels correlate with symptoms of good health (spectral indices diagnostic of high foliar chlorophyll levels and moisture content, normal incremental growth, low number of foliar symptoms), while summers characterized by high ozone concentrations correlate with symptoms of reduced health (low chlorophyll indices and moisture content, reduced incremental growth, increased number of foliar symptoms). In drought years (1999, 2001, 2002, 2003) few foliar symptoms of ozone damage are seen even though ozone levels were high, likely due to drought-induced stomatal closure. Based on student data since 1998, either low ozone summers, or drought summers have resulted in improved health in the sampled trees (n=30). Based on the success of Forest Watch in New England, we are exploring the extension of the program to Colorado as Front Range Forest Watch, operated from Colorado State University (CSU). The primary objective is to develop a student-scientist-local agency project that addresses real ecological issues in northern Colorado, including ozone pollution, and to provide pre-college students and teachers authentic science experiences. CSU runs a GK-12 program with Poudre School District in northern

  20. Belowground responses to elevation in a changing cloud forest.

    PubMed

    Looby, Caitlin I; Maltz, Mia R; Treseder, Kathleen K

    2016-04-01

    Few studies have investigated how soil fungal communities respond to elevation, especially within TMCF (tropical montane cloud forests). We used an elevation gradient in a TMCF in Costa Rica to determine how soil properties, processes, and community composition of fungi change in response to elevation and across seasons. As elevation increased, soil temperature and soil pH decreased, while soil moisture and soil C:N ratios increased with elevation. Responses of these properties varied seasonally. Fungal abundance increased with elevation during wet and dry seasons. Fungal community composition shifted in response to elevation, and to a lesser extent by season. These shifts were accompanied by varying responses of important fungal functional groups during the wet season and the relative abundance of certain fungal phyla. We suggest that elevation and the responses of certain fungal functional groups may be structuring fungal communities along this elevation gradient. TMCF are ecosystems that are rapidly changing due to climate change. Our study suggests that these changes may affect how fungal communities are structured. PMID:27066220

  1. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

    USGS Publications Warehouse

    Buongiorno, J.; Raunikar, R.; Zhu, S.

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country. ?? 2011 Department of Forest Economics, SLU Ume??, Sweden.

  2. Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia.

    PubMed

    Knorre, Anastasia A; Kirdyanov, Alexander V; Vaganov, Eugene A

    2006-02-01

    To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover. PMID:16163553

  3. Intertidal resource use over millennia enhances forest productivity.

    PubMed

    Trant, Andrew J; Nijland, Wiebe; Hoffman, Kira M; Mathews, Darcy L; McLaren, Duncan; Nelson, Trisalyn A; Starzomski, Brian M

    2016-01-01

    Human occupation is usually associated with degraded landscapes but 13,000 years of repeated occupation by British Columbia's coastal First Nations has had the opposite effect, enhancing temperate rainforest productivity. This is particularly the case over the last 6,000 years when intensified intertidal shellfish usage resulted in the accumulation of substantial shell middens. We show that soils at habitation sites are higher in calcium and phosphorous. Both of these are limiting factors in coastal temperate rainforests. Western redcedar (Thuja plicata) trees growing on the middens were found to be taller, have higher wood calcium, greater radial growth and exhibit less top die-back. Coastal British Columbia is the first known example of long-term intertidal resource use enhancing forest productivity and we expect this pattern to occur at archaeological sites along coastlines globally. PMID:27572157

  4. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar.

    PubMed

    Bolton, Douglas K; Coops, Nicholas C; Wulder, Michael A

    2013-08-01

    The structure and productivity of boreal forests are key components of the global carbon cycle and impact the resources and habitats available for species. With this research, we characterized the relationship between measurements of forest structure and satellite-derived estimates of gross primary production (GPP) over the Canadian boreal. We acquired stand level indicators of canopy cover, canopy height, and structural complexity from nearly 25,000 km of small-footprint discrete return Light Detection and Ranging (Lidar) data and compared these attributes to GPP estimates derived from the MODerate resolution Imaging Spectroradiometer (MODIS). While limited in our capacity to control for stand age, we removed recently disturbed and managed forests using information on fire history, roads, and anthropogenic change. We found that MODIS GPP was strongly linked to Lidar-derived canopy cover (r = 0.74, p < 0.01), however was only weakly related to Lidar-derived canopy height and structural complexity as these attributes are largely a function of stand age. A relationship was apparent between MODIS GPP and the maximum sampled heights derived from Lidar as growth rates and resource availability likely limit tree height in the prolonged absence of disturbance. The most structurally complex stands, as measured by the coefficient of variation of Lidar return heights, occurred where MODIS GPP was highest as productive boreal stands are expected to contain a wider range of tree heights and transition to uneven-aged structures faster than less productive stands. While MODIS GPP related near-linearly to Lidar-derived canopy cover, the weaker relationships to Lidar-derived canopy height and structural complexity highlight the importance of stand age in determining the structure of boreal forests. We conclude that an improved quantification of how both productivity and disturbance shape stand structure is needed to better understand the current state of boreal forests in

  5. Thermal Plasticity of Photosynthesis: the Role of Acclimation in Forest Responses to a Warming Climate

    SciTech Connect

    Gunderson, Carla A; O'Hara, Keiran H; Campion, Christina M; Walker, Ashley V; Edwards, Nelson T

    2010-01-01

    The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.

  6. Species richness and wood production: a positive association in Mediterranean forests.

    PubMed

    Vilà, Montserrat; Vayreda, Jordi; Comas, Lluís; Ibáñez, Joan Josep; Mata, Teresa; Obón, Berta

    2007-03-01

    A major debate in the study of biodiversity concerns its influence on ecosystem functioning. We compared whether wood production in forests was associated with tree functional group identity (i.e. deciduous, conifer or sclerophylous), tree species richness (1-> or = 5) and tree functional group richness (1-3) by comparing more than 5000 permanent plots distributed across Catalonia (NE Spain). Deciduous forests were more productive than coniferous and sclerophylous forests. Wood production increased with tree species richness. However, functional group richness increased wood production only in sclerophylous forests. When other forest structure, environmental variables and management practices were included in the analysis, tree functional group identity and species richness still remained significant, while functional species richness did not. Our survey indicates that across a regional scale, and across a broad range of environmental conditions, a significant positive association exists between local tree species richness and wood production at least in typical early successional Mediterranean-type forests. PMID:17305807

  7. 76 FR 48120 - Black Hills National Forest, Custer, SD-Mountain Pine Beetle Response Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Forest Service Black Hills National Forest, Custer, SD--Mountain Pine Beetle Response Project AGENCY...: This project proposes to treat areas newly infested by mountain pine beetles on approximately 325,000...-rocky-mountain-black-hills@fs.fed.us , with ``MPB Response Project'' in the subject line....

  8. Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change.

    PubMed

    Chambers, Jeffrey Q; Silver, Whendee L

    2004-03-29

    Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are

  9. Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change.

    PubMed Central

    Chambers, Jeffrey Q; Silver, Whendee L

    2004-01-01

    Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are

  10. Contrasting Taxonomic and Phylogenetic Diversity Responses to Forest Modifications: Comparisons of Taxa and Successive Plant Life Stages in South African Scarp Forest

    PubMed Central

    Grass, Ingo; Brandl, Roland; Botzat, Alexandra; Neuschulz, Eike Lena; Farwig, Nina

    2015-01-01

    The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different