Sample records for formation final technical

  1. Final Technical Report

    SciTech Connect

    John Tanis


    This document comprises the final technical report for atomic collisions research supported by DOE grant No. DE-FG02-87ER13778 from September 1, 2001 through August 31, 2004. The research involved the experimental investigation of excitation and charge-changing processes occurring in ion-atom and ion-molecule collisions. Major emphases of the study were: (1) interference effects resulting from coherent electron emission in H2, (2) production of doubly vacant K-shell (hollow ion) states due to electron correlation, and (3) formation of long-lived metastable states in electron transfer processes. During the period of the grant, this research resulted in 23 publications, 12 invited presentations, and 39 contributed presentations at national and international meetings and other institutions. Brief summaries of the completed research are presented below.

  2. Final Technical Report

    SciTech Connect

    Maxwell, Mike, J., P.E.


    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  3. Final Technical Report

    SciTech Connect

    Klein, Stephen A.


    In this final technical report, a summary of work is provided. Work toward an improved representation of frontal clouds in global climate models occurred. This involved analysis of cloud variability in ARM observations and the careful contrast of single column model solutions with ARM data. In addition, high resolution simulations of frontal clouds were employed to diagnosis processes that are important for the development of frontal clouds.

  4. Kinetics of elementary processes relevant to incipient soot formation. Final technical report

    SciTech Connect

    Lin, M.C.


    In order to better understand the mechanism of soot formation (one of the most challenging problems in the study of hydrocarbon combustion chemistry), reliable rate constants for the key reaction steps involved in the formation and polymerization of aromatic hydrocarbons in the inception stage are required for kinetic modeling. In this DOE sponsored work, the authors have developed three new experimental methods: cavity ring-down (CRD) spectrometry, pyrolysis/Fourier transform infrared spectrometry (p/FTIRS) and pulsed laser photolysis/mass spectrometry (PLP/MS) for kinetic measurements of C{sub 6}H{sub 5} reactions pivotal to incipient soot formation chemistry. In addition, the authors have also carried out ab initio molecular orbital (MO) calculations for several key elementary combustion reactions relevant to soot formation. The results are briefly summarized in the report using selected examples for more detailed discussion. 84 refs.

  5. Final Technical Report

    SciTech Connect

    Sobecky, Patricia A; Taillefert, Martial


    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.


    SciTech Connect

    McDonald, Henry; Singh, Suminderpal


    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  7. Final Technical Report

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes


    OAK B202 Final Technical Report. The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  8. Final Technical Report

    SciTech Connect

    Aristos Aristidou Natureworks); Robert Kean; Tom Schechinger; Stuart Birrell; Jill Euken


    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  9. Final Technical Report

    SciTech Connect

    Bohdan W. Oppenheim; Rudolf Marloth


    Executive Summary The document contains Final Technical Report on the Industrial Assessment Center Program at Loyola Marymount University in Los Angeles, covering the contract period of 9/1/2002 to 11/30/2006, under the contract DE-FC36-02GO 12073. The Report describes six required program tasks, as follows: TASK 1 is a summary of the assessments performed over the life of the award: 77 assessments were performed, 595 AR were recommended, covering a very broad range of manufacturing plants. TASK 2 is a description of the efforts to promote and increase the adoption of assessment recommendations and employ innovative methods to assist in accomplishing these goals. The LMU IAC has been very successful in accomplishing the program goals, including implemented savings of $5,141,895 in energy, $10,045,411 in productivity and $30,719 in waste, for a total of $15,218,025. This represents 44% of the recommended savings of $34,896,392. TASK 3 is a description of the efforts promoting the IAC Program and enhancing recruitment efforts for new clients and expanded geographic coverage. LMU IAC has been very successful recruiting new clients covering Southern California. Every year, the intended number of clients was recruited. TASK 4 describes the educational opportunities, training, and other related activities for IAC students. A total of 38 students graduated from the program, including 2-3 graduate students every semester, and the remainder undergraduate students, mostly from the Mechanical Engineering Department. The students received formal weekly training in energy (75%) and productivity (25). All students underwent extensive safety training. All students praised the IAC experience very highly. TASK 5 describes the coordination and integration of the Center activities with other Center and IAC Program activities, and DOE programs. LMU IAC worked closely with MIT, and SDSU IAC and SFSU IAC, and enthusiastically supported the SEN activities. TASK 6 describes other tasks

  10. Final Technical Report

    SciTech Connect

    Brizard, Alain J


    Final Technical Report for U.S. Department of Energy Grant No. DE-FG02-09ER55005 Nonlinear FLR Effects in Reduced Fluid Models Alain J. Brizard, Saint Michael's College The above-mentioned DoE grant was used to support research activities by the PI during a sabbatical leave from Saint Michael's College in 2009. The major focus of the work was the role played by guiding-center and gyrocenter (linear and nonlinear) polarization and magnetization effects in understanding transport processes in turbulent magnetized plasmas. The theoretical tools used for this work include Lie-transform perturbation methods and Lagrangian (variational) methods developed by the PI in previous work. The present final technical report lists (I) the peer-reviewed publications that were written based on work funded by the Grant; (II) invited and contributed conference presentations during the period funded by the Grant; and (III) seminars presented during the period funded by the Grant. I. Peer-reviewed Publications A.J. Brizard and N. Tronko, 2011, Exact momentum conservation for the gyrokinetic Vlasov- Poisson equations, Physics of Plasmas 18 , 082307:1-14 [ ]. J. Decker, Y. Peysson, A.J. Brizard, and F.-X. Duthoit, 2010, Orbit-averaged guiding-center Fokker-Planck operator for numerical applications, Physics of Plasmas 17, 112513:1-12 []. A.J. Brizard, 2010, Noether derivation of exact conservation laws for dissipationless reduced fluid models, Physics of Plasmas 17, 112503:1-8 []. F.-X. Duthoit, A.J. Brizard, Y. Peysson, and J. Decker, 2010, Perturbation analysis of trapped particle dynamics in axisymmetric dipole geometry, Physics of Plasmas 17, 102903:1-9 []. A.J. Brizard, 2010, Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations, Physics of Plasmas 17, 042303:1-11 []. A

  11. Final Technical Report

    SciTech Connect

    Gandy, Rex


    The technical goal of this collaborative effort is to measure electron temperature fluctuations using electron cyclotron emission on the Alcator-C tokamak. The physics goal is to understand the role that these fluctuations play in plasma transport; in particular, the influence of electron temperature fluctuations on anomalous transport. Measurement techniques and apparatus are discussed.

  12. Final Technical Report

    SciTech Connect

    Gilbert, Chris


    The project, Capital Investment to Fund Equipment Purchases and Facility Modifications to Create a Sustainable Future for EnergyXchange served to replace landfill gas energy with alternative energy resources, primarily solar and wood waste. This is the final project closeout report.

  13. Final Technical Report

    SciTech Connect

    Finlayson-Pitts, Barbara J.


    DOE has funded our work in three areas: (1) reactions of sea salt aerosols to form photochemically labile halogen gases that help to drive tropospheric chemistry; (2) oxidation of organics at interfaces and formation of SOA driven by oxides of nitrogen photochemistry; and (3) nucleation and growth of new particles in the troposphere from reactions of methanesulfonic acid with amines.

  14. Final Technical Report

    SciTech Connect

    Eckerlin, H, M, PhD PE; Leach, J, W, PhD PE; Terry, S, D, PhD PE


    The Industrial Assessment Center program at North Carolina State University has conducted one hundred industrial assessments of small and medium sized manufacturers in North Carolina, South Carolina, and Virginia. Reports were submitted to each facility that included a brief description of the plant, historical energy use, and a technical analysis of potential energy efficiency savings, waste reduction, and productivity savings. Seven hundred thirty eight conservation measures were recommended with total annual cost savings in excess of $18 million. The NCSU IAC has worked with other government and private entities to deliver energy efficiency and conservation services. We have worked closely with the NCSU Industrial Extension Service, the Manufacturer’s Extension Partnership (MEP), and the North Carolina State Energy Office to provide follow-up technical help and financial assistance in implementing conservation recommendations. In addition to these organizations, the NCSU IAC has also worked with the NC Department of Pollution Prevention and Environmental Assistance, the NC Solar Center, Advanced Energy Corporation, Duke Power, Progress Energy, Dominion Power, and the City of Danville, Virginia. Eighteen undergraduate and twenty graduate students were exposed to a variety of manufacturing processes, trained on plant safety, and taught the use of various types of data collection equipment. The students performed technical analyses of each recommendation, computed the potential savings from engineering relations and collected data, estimated the cost from vendor information, and communicated the findings in a compact, well written report to the client. The students have also been exposed to a variety of business personnel, including corporate presidents, engineering managers, plant managers, plant engineers, facility maintenance staff, and production workers – each with a unique perspective on the challenges faced in a modern manufacturing facility. The program

  15. Technical Report - FINAL

    SciTech Connect

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory


    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  16. Final Technical Report

    SciTech Connect

    Philip Malte


    The objective of the research is the reduction of emissions of NOx and carbon from wood waste combustion and dryer systems. Focus in on suspension (dust) burners, especially the cyclone burners that are widely used in the industry. Computational fluid dynamics (CFD) is used to help understand the details of combustion and pollutant formation in wood waste combustion systems, and to help determine the potential of combustion modification for reducing emissions. Field burners are examined with the modeling.

  17. Final Technical Report

    SciTech Connect

    Frederick J. Carranti, P.E.


    During the contract period noted above, the Syracuse University Industrial Assessment Center conducted 97.5 assessment days for 98 different industrial clients. These assessments developed 818 assessment recommendations with an overall implementation rate of 51 % (AR’s). Total recommended dollar savings for the period was $17,386,758.00, with $8,893,212.00 actually implemented, for a dollar implementation rate of 57%. The Center employed a total of sixteen undergraduate interns throughout the contract period. Nine of these students stayed on at Syracuse University for graduate study with Center support; five students pursued graduate study at other universities. Ten of these students have, or will, accept professional positions in the energy consulting field. The Center has successfully engaged with a wide variety of professional and development organizations, including the Manufacturers Association of Central New York, The Central New York Technical Development Organization, (the local MEP), the New York State Energy Research and Development Authority, The New York Power Authority, the Onondaga County Citizens Energy Committee, and the New York State Center of Excellence on Indoor Environmental Systems.


    SciTech Connect



    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  19. Final Technical Report

    SciTech Connect

    Stoessel, Chris


    This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency of a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.

  20. Final Technical Report

    SciTech Connect

    Joseph Junker; Greg Wheeler


    Since 1986 the Oregon State University Industrial Assessment Center (OSU IAC) has worked to increase the energy efficiency, productivity, sustainability, and competitiveness of US manufacturers; provide engineering students an education not available in the classroom; keep engineering faculty in contact with technology and challenges in Northwest industry; and reduce dependence on nonrenewable energy resources, both imported and domestic. Project Objective: Over the duration of this project (2002-2006), the OSU IAC worked to directly support and influence industrial decisions primarily regarding energy but also regarding sustainability and profitability through: Assessments & Follow-up: The OSU IAC performed 111 Industrial Assessments in Oregon, Washington, Idaho and Nevada to help industry identify and implement opportunities to increase energy efficiency, productivity, sustainability, and competitiveness Workshops Seminars Forums Etc: OSU IAC staff worked with regional peers to offer appropriate workshops and trainings as opportunities availed themselves. Graduating Excellent Energy Aware Professional Alumni: As technically capable, skilled written and verbal communicators, our alumni contributed to OSU IAC influence from their positions within industry, consulting organizations, utilities, and governmental and non governmental agencies. Tool Development: Analysis tools and guides originated at the OSU IAC extended our reach. The center continually worked to develop computer based analysis tools, evaluation checklists, analysis guide sheets for internal use and general sharing with industry, energy, and other professionals to assist them in efforts to improve US Industry. Impact: Over 20 years of activity the OSU IAC has typically performed 25 Industrial Assessments a year. On average, each year of 25 assessments has resulted in implemented projects that saved industry a total of: 25.3 TBTU in annual energy and $4.5 Million annually, with an average investment

  1. Final Technical Report

    SciTech Connect

    Juan Camilo Serrano


    New and novel material and process technologies applied in wind blade designs and production are critical to increasing the competitiveness of wind power generation against traditional sources of energy. In this project, through collaboration between PPG Industries and MAG Industrial Automation Systems, the potential of using automated manufacturing for the production of fiber glass composite wind blades was evaluated from both technical and economic points of view. Further, it was demonstrated that by modifying the standard blade raw material forms through the use of cost effective pre-impregnated rovings coupled with using an automated fiber placement machine to lay up the parts, it is possible to produce state of the art composite laminates with significantly improved mechanical performance and with higher processing rates than standard blade production technology allows for today, thereby lowering the cost of energy over turbine blades made using traditional processes and materials. In conformity with the scope of work of the submitted proposal, the project team completed each task and documented and reported its findings on the appropriate quarterly report submitted to the DOE project team. The activities and this report are divided into 5 subtasks: (1) Material Investigation - Reviews traditional materials and key specifications and testing methods; (2) Manufacturing and Automation - Identifies new candidate material forms and automated layup processes; (3) Process Development - Performs trials of candidate materials and processes; (4) Predictive Analysis - Assesses impact of new material forms and automated processes on a model blade design; and (5) Feasibility Assessment - Compares traditional manufacturing processes and materials to new candidate material forms and automated processes.

  2. Final Technical Report

    SciTech Connect

    Velasco, Mayda


    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  3. Final Technical Report

    SciTech Connect

    Alexander Fridman


    This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental control business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.

  4. Final technical report.

    SciTech Connect

    Emmanuel J. Candes


    In the last two dcades or so, many multiscale algorthms have been proposed to enable large scale computations which were thought as nearly intractable. For example, the fast multipole algorithm and other similar ideas have allowed to considerably speed up fundamental computations in electromagnetism, and many other fields. The thesis underlying this proposal is that traditional multiscale methods have been well-developed and it is clear that we now need new ideas in areas where traditional spatial multiscaling is ill-suited. In this context, the proposal argues that clever phase-space computations is bound to plan a crucial role in advancing algorithms and high-performance scientific computing. Our research past accomplishments have shown the existence of ideas beyond the traditional scale-space viewpoint such as new multiscale geometric representations of phase-space. We have shown that these clever representations lead to enhanced sparsity. We have shown that enhanced sparsity has significant important implications both for analysis, and for numerical applications, where sparsity allows for faster algorithms. We have implemented these ideas and built computational tools to be used as new building blocks of a new generation of wave propagation solvers. Finally, we have deployed these ideas into novel algorithms. In this last year, we assembled all these techniques and made significant progress in solving a variety of computational problems, which we then applied in selected areas of considerable scientific interest.

  5. Final Technical Report

    SciTech Connect

    Alexander Pigarov


    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  6. Final Technical Report

    SciTech Connect

    Pilewskie, Peter


    During the 1-year duration of this project a new Shortwave Spectrometer (SWS) was designed and developed for deployment at the Southern Great Plains Central Facility to measure zenith solar spectral radiance. The SWS is comprised of two Zeiss miniature monolithic spectrometers (MMS-1 and MMS-NIR) for visible and near-infrared detection in the wavelength range between 350 and 2250 nm. Spectral resolution is 8 nm for the MMS-1 and 12 nm for the MMS-NIR. The light collector is a narrow field of view (±1.5 º) collimator at the front end of a high-grade custom-made fiber optic bundle. The data acquisition and control system is a 933 MHz Pentium based PC in a PC104 format with a USB interface between the computer and the spectrometers. Spectral sampling rate is approximately 1 Hz. A prototype SWS was deployed at SGP in November and December 2004 and it collected zenith-sky solar spectra at 1 Hz continuously over a 29 day period. Prior to deployment it was calibrated and characterized at the NASA Ames Airborne Sensor Facility (ASF) using a 30 inch Integrating Sphere. The SWS was also calibrated using a portable 12 inch integrating sphere at the Central Facility. The testing and calibration procedures were developed during this implementation. The planning and scheduling for permanent installation of the new SWS as well as data processing, calibration, archiving, and distribution was conducted.

  7. Final Technical Report

    SciTech Connect

    Efthimios Kaxiras


    This research consisted of a theoretical investigation of the properties of surface-based nanostructures, having as a main goal the deeper understanding of the atomic-scale mechanisms responsible for the formation and stability of such structures. This understanding will lead to the design of improved systems for applications in diverse areas such as novel electronic devices, sensors, field-effect transistors, substrates with enhanced hydro-phobic (water repelling) or hydro-philic (water absorbing) behavior for coatings of various surfaces used in bioengineering, flexible displays, organic photovoltaics, etc. The research consisted of developing new theoretical methodologies and applying them to a wide range of interesting physical systems. Highlights of the new methodologies include techniques for bridging different scales, from the quantum-mechanical electronic level to the meso-scopic level of large molecular structures such as DNA, carbon nanotubes and two-dimensional assemblies of organic molecules. These methodologies were successfully applied to investigate interactions between systems that are large on the atomic scale (reaching the scale of microns in length or milliseconds in time), but still incorporating all the essential elements of the atomic-scale structure. While the research performed here did not address applications directly, the implications of its finding are important in guiding experimental searches and in coming up with novel solutions to important problems. In this sense, the results of this work can be incorporated in the design of many useful applications. Specifically, in addition to elucidating important physical principles on how nano-structures are stabilized on surfaces, we have used our theoretical investigations to make predictions for useful applications in the following fields: a) we proposed new types of nanotubes that can overcome the limitations of the carbon nanotubes whose properties depend sensitively on the structure which

  8. Final Technical Report

    SciTech Connect

    Lewis, Randolph


    materials and compare them to natural silk fibers. ? Develop x-ray and neutron diffraction techniques to better determine the structure in amorphous and semicrystalline biopolymers, such as spider silk fibers. ? Combine mechanical testing and structural x-ray and neutron diffraction data to develop a molecular understanding of the structure-function relationship in spider silk materials. ? Elucidate the role water plays in spider silk fiber formation and structure. Emphasis will be placed on combined neutron and NMR studies. ? Use solid-state Nuclear Magnetic Resonance (NMR) to characterize synthetic and natural spider silk materials that show potential as a biomimetic material or bio-inspired polymer architecture. ? Develop EPSCoR student and postdoctoral training and exposure to national laboratory facilities. ? Further develop scientific outreach and chemical education programs and research.

  9. Final technical report

    SciTech Connect

    Alan Myers; Martha James


    This project sought to develop new means of creating variation in the structure of starch that accumulates in maize seeds, through manipulation of the enzyme starch synthase III (SSIII). The central hypothesis was that SSIII is responsible for construction of certain lengths of linear glucan chains within the major starch component amylopectin, and that manipulation of this enzyme could create new varieties of starch that might have novel utilities as a renewable resource. The hypothesis was proven to be true through analysis of the effects of maize du1- mutations, which affect the structure and function of SSIII. SSIII was found to be required for the formation for two distinct groups of chain lengths in maize amylopectin, specifically those containing 7-9 glucose units and those containing 37-55 glucose units. Decrease in the frequency of these chains, as compared to wild type, is accompanied by an increase in chains of 11-15 glucose units. A hypothesis consistent with these data is that one of the other SS isoforms produces chains in the range of 11-15 units, and these are then elongated by SSIII to the range of 37-55 units. In order to try to manipulate the activity of SSIII in novel ways, transgenic maize plants were constructed in which the presumed regulatory part of the protein was detached from the known catalytic region responsible for synthesis of linear glucan chains within starch. Three different transgenes were introduced into maize, each containing different truncated versions of SSIII. Transgenic plants were followed over several generations, and their structure of their starches were analyzed. Novel structures were in fact observed. Specifically, there was a large increase in the frequency of chains containing 9-15 glucose units as compared two wild type maize starch, and a decrease in the frequency of those with 18-30 units. These structures of starch are distinct from those that caused by null mutations that eliminate SSIII, indicated a novel

  10. CEEM Final Technical Report

    SciTech Connect

    Bowers, John


    concentrating photovoltaic applications thathave substantially higher efficiency than single substrate cells made of elemental semiconductors such as silicon. This task required the development of new cell bonding methods with excellent coupling of both photons and electrons between the sub-cells. To accomplish this, we developed (1) GaInN solar cells with enhanced performance by using quantum-well absorbers and front-surface optical texturing, (2) a hybrid "pillar-array" bond which uses an array of metal pillars for electrical coupling, and (3) a "hybrid moth-eye" optical coating which combines the benefits of nano-imprinted moth-eye coatings and traditional multilayer coatings. The technical effectiveness was assessed by measurement of the photovoltaic efficiency of solar cells made using these techniques; the ultrahigh efficiencies targeted by this work are of compelling economic value for concentrating photovoltaics.

  11. Final Technical Report

    SciTech Connect

    Stenzel, Reiner; Urrutia, J. Manuel


    emissions are only observed in whistler spheromaks and FRCs but not in mirrors or asymmetric configurations lacking magnetic null lines. The collisionless electron energization in a toroidal null line usually produces non-Maxwellian distributions. Off the null axis electrons gain more perpendicular than parallel energy. Distributions with T{sub {perpendicular}} > T{sub {parallel}} lead to whistler instabilities which have been observed. A whistler spheromak is a source of high-frequency whistler emissions. These are usually small amplitude whistlers propagating in a complicated background magnetic field. The waves are emitted from a moving source. High frequency whistlers propagate faster than the spheromak, thus partly move ahead of it and partly in the reverse direction. In test wave experiments wave growth opposite to the direction of the hot electron flow has been observed, confirming that Doppler-shifted cyclotron resonance instabilities account for the emission process. Propagating whistler mirrors produce no significant instabilities except when they interact with other fields which exhibit null lines. For example, a whistler mirror has been launched against a stationary FRC, resulting in strong FRC heating and whistler instabilities. In the whistler mirror configuration the antenna near-zone field produces a toroidal null line outside the coil which can also become a source for whistler emissions. Finally, nonlinear EMHD research has been extended to initially unmagnetized plasmas where a new nonlinear skin depth has been discovered. When a small-amplitude oscillating magnetic field is applied to a plasma the field penetration is governed by the skin depth, collisional or collisionless depending on frequency, collision frequency and plasma frequency. However, when the magnetic field increases the electrons become magnetized and the field penetration occurs in the whistler mode if the cyclotron frequency exceeds the oscillating frequency. This phenomenon has been

  12. Final Technical Report

    SciTech Connect

    Dr. Asok K. Ray


    of Am, initially for the dhcp and the fcc surfaces, can and have provided us with valuable information about chemical bonding in Am and the transitions from f-electron delocalization to f-electron localization in trans-uranium compounds. In particular, a comparative study of the electronic structures of the Pu and Am surfaces using the techniques of all-electron modern density functional theory and beyond can provide significant information about the role of 5f electrons in bond formation as also the localization of the 5f electrons, matters of considerable controversies. The change from metallic 5f bonding into local-moment nonbonding configurations that takes place between Pu and Am is rather unique in the periodic table and is at the very heart of our understanding of electronic structure. We believe that, considering the narrow bandwidth of surface states, any transition from itinerant to localized behavior first takes place at the actinide surfaces with possible reconstructions.

  13. Chemical mechanistic approaches for the suppression of soot formation in the combustion of high energy density fuels. Final technical report

    SciTech Connect

    Santoro, R.J.


    Significant advantages can be gained by the use of high energy density fuels in volume limited applications. However, excessive soot formation that accompanies the combustion of these fuels presently limits their application. Fuel additive approaches prove attractive as they require minimal modifications to already existing equipment. In the present study, a variety of flame configurations were used to study the additive effects on soot formation. Through tests conducted on laminar diffusion flames carbon disulfide (CS2) and methanol (CH3OH) were found to be the most effective soot suppressants. Chemical interaction by either additive was found to far surpass the physical influences. However, the exact nature of the chemical action could not be established with the current set of experiments. Additionally, both of these additives were found to reduce soot formation in at least one high energy density fuel - quadricyclane (C7H8). To further validate this approach, studies were conducted using droplet flames and high-pressure spray flames.

  14. Technical planning activity: Final report

    SciTech Connect

    Not Available


    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.


    SciTech Connect



    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  16. Soladigm DOE Final Technical Report

    SciTech Connect


    Soladigm's research has produced a fundamental improvement in the technology for dynamic windows by successfully transitioning a low-cost, high-performance dynamic glass fabrication process from a simple 2" research prototype into a full-scale manufacturing environment capable of producing commercial dynamic insulated glass units (IGUs), and developing and optimizing the production process to meet all specifications for mass commercial production. The technology developed under this project is a revolutionary process for fabricating electrochromic glass that today exceeds DOE's 2020 performance and reliability targets at a compelling consumer price point. Before this project, we had demonstrated 2" prototypes using our deposition process that met these performance targets. The goal of this project was to prove that we could transition this lab-scale process to a scalable, "inline" manufacturing process, leveraging existing manufacturing tools capable of achieving a commercially attractive pricepoint in the near-term. Under this project we demonstrated the technical effectiveness of our manufacturing process by achieving or exceeding all of our technical and performance targets for inline fabrication of electrochromic IGUs. These performance specifications exceed DOE's 2020 performance and reliability targets. We also demonstrated the economic feasibility of our manufacturing process by reaching an initial production process that will achieve our target costs, which are compatible with mass adoption.

  17. Final Scientific/Technical Report

    SciTech Connect

    Seinfeld, John H.


    This project addressed the following research need in the Atmospheric System Research (ASR) Science and Program Plan: "Measurements downwind of urban sources of aerosol particles and precursor gases have shown that the mass concentration of secondary organic aerosol (SOA) can be several-fold greater than can be explained on the basis of current model calculations using observed precursor concentrations. ASR will continue conducting laboratory experiments on both gas-phase and aqueous-phase SOA formation to characterize the particle formation and the organic gases that react to form new organic aerosol material on aerosol seeds. ASR will use these experiments to guide the development of comprehensive chemical mechanisms... to guide the development of parameterizations that are simple enough to be applied to aerosol life cycle models."

  18. Hydroprocessing SRC. Final technical report

    SciTech Connect

    Bronfenbrenner, J.C.; Garg, D.; Harris, C.F.; Znaimer, S.


    Catalyst activity and aging rate were studied in ICRC's process development unit (PDU) and at the Wilsonville Advanced Coal Liquefaction Facility under SRC-I Demonstration Plant hydroprocessing conditions. Similar studies using both high- and low-conversion modes were conducted by The Lummus Company. The studies determined variations in SRC conversion, hydrocarbon gas production, hydrogen consumption, and heteroatom removal. Samples of spent catalyst were analyzed to ascertain the reasons for catalyst deactivation. Finally, the ICRC PDU hydroprocessing results were compared with those generated at Lummus and Wilsonville pilot plants.

  19. Final Scientific/Technical Report

    SciTech Connect

    Chang, Yale


    JHU/APL conducted solid propellant fire characterization tests in warm, humid, ambient conditions near sea level. Yttria and ceria surrogate materials were placed in the fires. The substrates simulating ground surfaces were concrete from a Kennedy Space Center launch pad, and steel covered with a protective ablative material representing a launch platform. In-situ instrumentation consisted of witness materials, thermocouples, air handlers, filters, and cascade impactors; remote instrumentation consisted of optical cameras and spectrometers. Test and analysis team members included the Naval Air Warfare Center Aircraft Division, Sandia National Laboratories (SNL), Alliant Techsystems, and the Johns Hopkins University. Test data were analyzed, reported, and delivered, including plume rise and transport captured on video. Derivation of the alumina particle size distributions formed the basis for condensing vapor and agglomeration estimates. Assessment of alumina mass in the plume, along with the surrogate fraction from filter forensics, provided an estimate of airborne surrogate mass. Technical interchange meetings were held with SNL and the Jet Propulsion Laboratory. Specifications for the fire environment were developed and delivered. A thermochemistry model that simultaneously provides the maximum temperature and heat flux was developed and delivered. An SPIE paper on 3D pyrometry of the fire was written and presented.

  20. IRIS Final Technical Progress Report

    SciTech Connect

    M. D. Carelli


    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed in the first four


    SciTech Connect

    Satish Mohapatra


    Dynalene Inc has developed and patented a fuel cell coolant with the help of DOE SBIR Phase I and Phase II funding (Project DE-FG02-04ER83884). However, this coolant could only be produced in lab scale (500 ml to 2 L) due to problems in the optimization and scale-up of a nanoparticle ingredient. This project optimized the nanoparticle production process in 10 L and 100 L reactors (which translates to about 5000 gallons of coolant), optimized the filtration process for the nanoparticles, and develop a high throughput production as well as quality control method for the final coolant formulation. Scale-up of nanoparticle synthesis (using emulsion polymerization) is an extremely challenging task. Dynalene researchers, in collaboration with a university partner, identified all the parameters affecting the size, charge density and coagulation characteristics of the nanoparticles and then optimized these parameters to achieve the goals and the objectives of this project. Nanoparticle synthesis was demonstrated to be reproducible in the 10 L and 100 L scales.

  2. Final Scientific/Technical Report

    SciTech Connect

    Brown, R. C.; McCarley, T. M.


    . Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didn’t have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled “Renewable Resources and Clean Technology”).

  3. Santa Barbara Final Technical Report

    SciTech Connect

    Hacker, Angela; Hansen, Sherman; Watkins, Ashley


    This report serves as the Final Report for Santa Barbara County’s Energy Efficiency and Conservation Block Grant (EECBG) BetterBuildings Neighborhood Program (BBNP) award from the U.S. Department of Energy (DOE). This report explains how DOE BBNP funding was invested to develop robust program infrastructure designed to help property owners complete energy improvements, thereby generating substantial outcomes for the local environment and economy. It provides an overview of program development and design within the grant period, program accomplishments and challenges to date, and a plan for the future sustainability of emPower, the County’s innovative clean energy and building efficiency program. During the grant period, Santa Barbara County’s emPower program primarily targeted 32,000 owner occupied, single family, detached residential homes over 25 years old within the County. In order to help these homeowners and their contractors overcome market barriers to completing residential energy improvements, the program developed and promoted six voluntary, market-based service areas: 1) low cost residential financing (loan loss reserve with two local credit unions), 2) residential rebates, 3) local customer service, 4) expert energy advising, 5) workforce development and training, and 6) marketing, education and outreach. The main goals of the program were to lower building energy use, create jobs and develop a lasting regional building performance market. These services have generated important early outcomes and lessons after the program’s first two years in service. The DOE BBNP funding was extended through October 2014 to enable Santa Barbara County to generate continued outcomes. In fact, funding related to residential financing remains wholly available for the foreseeable future to continue offering Home Upgrade Loans to approximately 1,300 homeowners. The County’s investment of DOE BBNP funding was used to build a lasting, effective, and innovative

  4. Clean Energy Works Oregon Final Technical Report

    SciTech Connect

    Jacob, Andria; Cyr, Shirley


    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  5. Technical approach to groundwater restoration. Final report

    SciTech Connect

    Not Available


    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) and minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures.

  6. Energy Impact Illinois - Final Technical Report

    SciTech Connect

    Olson, Daniel; Plagman, Emily; Silberhorn, Joey-Lin


    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  7. Technical Education Demonstration Program. Final Report.

    ERIC Educational Resources Information Center

    Milwaukee Area Technical Coll., WI.

    The Technical Education Demonstration Program helped students aged 16-25 traditionally excluded from technical careers because of lack of training to attain academic and technical skills. Eighty-one teachers attended four-credit summer courses; 500 teachers, counselors, and administrators attended seminars. A demonstration model interfacing…

  8. Basic/Technical Literacy Project. Final Report.

    ERIC Educational Resources Information Center

    White River Vocational Technical School, Newport, AR.

    The Basic/Technical Literacy project at White River Vocational Technical School in Arkansas implemented a comprehensive curriculum to raise students' basic reading and technical literacy levels in their chosen skill area. During the project, master vocabulary lists for each skill area were developed, and self-test worksheets and study guides were…

  9. B.01 Final Scientific and Technical Report

    SciTech Connect

    Kenison, LaVesta; Flanigan, Thomas; Hagerty, Gregg; Gorrie, James; Leclerc, Mathieu; Lockwood, Frederick; Falla, Lyle; Fedak, Mathew; Yakle, Jeff; Williford, Mark; Wood, Paul


    future large demonstration projects. This Final Scientific and Technical Report describes the technology and engineering basis of the project, inclusive of process systems, performance, effluents and emissions, and controls. Further, the project cost estimate, schedule, and permitting requirements are presented, along with a project risk and opportunity assessment. Lessons-learned related to these elements are summarized in this report. Companion reports Oxy-combustion further document the accomplishments and learnings of the project, including: A.01 Project Management Report which describes what was done to coordinate the various participants, and to track their performance with regard to schedule and budget B.02 Lessons Learned - Technology Integration, Value Improvements, and Program Management, which describes the innovations and conclusions that we arrived upon during the development of the project, and makes recommendations for improvement of future projects of a similar nature . B.03 Project Economics, which details the capital and operation costs and their basis, and also illustrates the cost of power produced by the plant with certain sensitivities. B.04 Power Plant, Pipeline, and Injection Site Interfaces, which details the interfaces between the two FutureGen projects B.05 Contractual Mechanisms for Design, Construction, and Operation, which describes the major EPC, and Operations Contracts required to execute the project.

  10. Community College Technical Mathematics Project. Final Report.

    ERIC Educational Resources Information Center

    Self, Samuel L.

    The purpose of the research project was to develop an applied or technical mathematics curriculum which would meet the needs of vocational-technical students at the community college level. The research project was divided into three distinct phases: Identifying the mathematical concepts requisite for job-entry competencies in each of the…

  11. Technical assistance contractor Management Plan. Final [report

    SciTech Connect

    Not Available


    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) and its major teaming partners [Roy F. Weston, Inc. (RFW), Sergent, Hauskins & Beckwith Agra, Inc. (SHB Agra), and Geraghty & Miller, Inc. (G&M)]. The first three companies have worked together effectively on the UMTRA Project for more than 10 years. With the initiation of the UMTRA Groundwater Project in April 1991, a need arose to increase the TAC`s groundwater technical breadth and depth, so G&M was brought in to augment the team`s capabilities. The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both surface and groundwater projects. The TAC team continues to support the DOE in completing surface remedial actions and initiating groundwater remediation work for start-up, characterization, design, construction oversight, and remedial operations. A key feature of the TAC`s management approach is the extensive set of communication systems implemented for the UMTRA Project. These systems assist all functional disciplines in performing UMTRA Project tasks associated with management, technical support, administrative support, and financial/project controls.

  12. Southwest Region Experiment Station - Final Technical Report

    SciTech Connect

    Rosenthal, A


    Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growing U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing

  13. Oklahoma Deaf-Blind Technical Assistance Project. Final Report.

    ERIC Educational Resources Information Center

    Watts, Jan, Comp.

    This final report describes the activities and accomplishments of the Oklahoma Deaf-Blind Technical Assistance Project, an effort to systematically provide training, resource provision and technical assistance (TA) to approximately 120-155 children and youth with deaf-blindness, their families, educators and service providers. The overall impact…

  14. Minnesota Deaf-Blind Technical Assistance Project. Final Report.

    ERIC Educational Resources Information Center

    Kloos, Eric

    This final report describes activities and accomplishments of the 3-year federally supported Minnesota Deaf-Blind Technical Assistance Project. The project provided training and technical assistance, information sharing, and support services to families of children with deaf-blindness. Activities and accomplishments included: collaboration with…

  15. Technical review of externalities issues. Final report

    SciTech Connect

    Niemeyer, V.


    Externalities has become the catchword for a major experiment in electric utility regulation. Together with increased competition as a means for economic regulation, this experiment represents a potential revolution in how electric utilities are regulated. It is very important for utilities and policy makers to understand the technical issues and arguments driving the externality experiment. This Technical Review presents four papers covering topics in economics that may play important roles in this revolution. The four papers are: Economic Issues in the Application of Externalities to Electricity Resource Selection; Climate Change, the Marginal Cost of Carbon Dioxide Emissions and the Implications for Carbon Dioxide Emissions Adders; Positive Externalities and Benefits from Electricity; and Socioeconomic Effects of Externality Adders for Electric Utility Emissions.

  16. Final Technical Report: Microbial Production of Isoprene

    SciTech Connect

    Fall, Ray


    OAK B135 We have discovered that bacteria produce and emit the hydrocarbon isoprene (2-methyl-1,3-butadiene), and have suggested that if isoprene-producing enzymes and their genes can be harnessed, useful hydrocarbon-producing systems might be constructed. The main goal of the proposed work was to establish the biochemical mechanism and regulation of isoprene formation in the model bacterial system, Bacillus subtilis. In this 3-year project we (a) characterized the physiological regulation of isoprene formation in B. subtilis and its relationship to isoprene formation in plant chloroplasts; (b) analyzed genetic controls on isoprene formation in B. subtilis; and (c) developed models to explain the biochemical rationale for isoprene formation. We are also pursued (d) new methods for continuous measurement of isoprene release in bioreactors, and (e) determined the presence of isoprene-forming Bacillus on plant roots and used B. subtilis as a biocontrol agent for protection of plant roots from plant pathogenic bacteria. We have made significant advances in several areas. These include: (1) establishing the enzymatic basis of isoprene formation in B. subtilis, and demonstrating throughout growth in a bioreactor that isoprene synthase activity rises and falls with each of three peaks of isoprene release (i.e. it appears to be a regulated enzyme). (2) We have explored genetic aspects of isoprene formation, using gene disruption methods to greatly alter the patterns of isoprene formation in bioreactors. Analysis of these mutants and alteration of cellular levels of dimethylallyl diphosphate (DMAPP), the substrate for isoprene synthase, has led to the formulation of two models to explain why isoprene is formed: an isoprenoid overflow model and a signaling model. We have obtained compelling evidence that isoprene releases in bioreactors result from metabolic overflow. However, we have yet to determine the pattern of isoprene formation when these bacteria are grown in a more

  17. Job Skills Education Program. Final Technical Report.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Center for Educational Technology.

    This publication provides materials developed by a project designed to transfer a U.S. Army computer-based basic skills curriculum to applications in the vocational skills development of civilian adults. An executive summary of the final report describes the Job Skills Education Program (JSEP), which teaches academic skills that support vocational…

  18. Final Technical Report CMS fast optical calorimetry

    SciTech Connect

    Winn, David R.


    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  19. DOE-TMS-11477-Final Technical Report

    SciTech Connect

    Howe, David


    The Neutron and X-Ray Studies of Advanced Materials VII Symposium, held at the 2014, 143rd Annual Meeting of The Minerals, Metals, and Materials Society (TMS), brought together experts, young investigators, and students from this sub-discipline of materials science in order for them to share their latest discoveries and develop collaborations. This annual symposium, which is organized by The Minerals, Metals, and Materials Society, is an important event for this community of scientists. This year, over 100 high-level technical talks were delivered over the course of the four day event. In addition, the large number of students and young investigators in attendance ensured the maximum benefit to the next generation’s work force in this area of study. The science surrounding the utilization of neutrons and x-rays to study advanced materials is becoming increasingly important in increasing the understanding of how the exceptional materials properties of such materials arise. In particular, x-rays and neutrons can be used to visualize material structures at an extremely high resolution and in some cases, three dimensions—allowing unprecedented insights into the mechanisms governing certain materials properties such as strength and toughness. Moreover, some of these techniques allow materials to be visualized without damaging the material, approaches known as non-destructive evaluation or “NDE”. This allows materials to be studied in 3 dimensions while undergoing change in real time which represents an important (and long sought-after) advancement in materials science. The types of interactions afforded by this event are beneficial to society at large primarily because they provide opportunities for the leaders within this field to learn from one another and thus improve the quality and productivity of their investigations. Additionally, the presence of young investigators and students with technical interests in this field provides promise that the United

  20. Hydrogen energy systems studies. Final technical report

    SciTech Connect

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.


    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  1. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.


    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  2. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect

    Charles M. Falco


    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  3. AISI Direct Steelmaking Program. Final technical report

    SciTech Connect

    Aukrust, E.


    This final report deals with the results of a 5-yr project for developing a more energy-efficient, environmentally friendly, less costly process for producing hot metal than current coke ovens and blast furnaces. In the process, iron ore pellets are smelted in a foamy slag created by reaction of coal char with molten slag to produce CO. The CO further reacts with oxygen, which also reacts with coal volatile matter, to produce the heat necessary to sustain the endothermic reduction reaction. The uncombusted CO and H{sub 2} from the coal are used to preheat and prereduce hematite pellets for the most efficient use of the energy in the coal. Laboratory programs confirmed that the process steps worked. Pilot plant studies were successful. Economic analysis for a 1 million tpy plant is promising.

  4. Solar Cell Nanotechnology Final Technical Report

    SciTech Connect

    Das, Biswajit


    nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.

  5. Final Technical Report: Results of Phase 1

    SciTech Connect

    Narang, David, J.; Hambrick, Joshua; Srinivasan, Devarajan; Ayyannar, Raja; O'Brien, Kathleen


    of a working, utility distribution feeder. To address the technical challenges related to the integration of distributed PV when PV penetration levels reach or exceed 30% of the total load, technologies and methods to ensure the stable and safe operation of the feeder will be evaluated. Lessons learned will enable APS to improve the framework for future PV integration on its system and may also aid other utilities across the United States energy sector in accelerating the adoption of distributed photovoltaic generation.

  6. Final Technical Report: Results of Phase 1

    SciTech Connect

    Narang, David, J.; Hambrick, Joshua; Srinivasan, Devarajan; Ayyannar, Raja; O'Brien, Kathleen; Bebic, Jovan; Schelenz, Owen


    working, utility distribution feeder. To address the technical challenges related to the integration of distributed PV when PV penetration levels reach or exceed 30% of the total load, technologies and methods to ensure the stable and safe operation of the feeder will be evaluated. Lessons learned will enable APS to improve the framework for future PV integration on its system and may also aid other utilities across the United States energy sector in accelerating the adoption of distributed photovoltaic generation.

  7. Geothermal research, Oregon Cascades: Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.


    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  8. Regulatory analysis technical evaluation handbook. Final report

    SciTech Connect


    The purpose of this Handbook is to provide guidance to the regulatory analyst to promote preparation of quality regulatory analysis documents and to implement the policies of the Regulatory Analysis Guidelines of the US Nuclear Regulatory Commission (NUREG/BR-0058 Rev. 2). This Handbook expands upon policy concepts included in the NRC Guidelines and translates the six steps in preparing regulatory analyses into implementable methodologies for the analyst. It provides standardized methods of preparation and presentation of regulatory analyses, with the inclusion of input that will satisfy all backfit requirements and requirements of NRC`s Committee to Review Generic Requirements. Information on the objectives of the safety goal evaluation process and potential data sources for preparing a safety goal evaluation is also included. Consistent application of the methods provided here will result in more directly comparable analyses, thus aiding decision-makers in evaluating and comparing various regulatory actions. The handbook is being issued in loose-leaf format to facilitate revisions. NRC intends to periodically revise the handbook as new and improved guidance, data, and methods become available.

  9. Final Technical Report - DE-EE0003542

    SciTech Connect

    Haley, James D


    Wind has provided energy for thousands of years: some of the earliest windmill engineering designs date back to ancient Babylonia and India where wind would be used as a source of irrigation. Today, wind is the quickest growing resource in Americas expanding energy infrastructure. However, to continue to positively diversify Americas energy portfolio and further reduce the countrys reliance of foreign oil, the industry must grow substantially over the next two decades in both turbine installations and skilled industrial manpower to support. The wind sector is still an emergent industry requiring maturation and development of its labor force: dedicated training is needed to provide the hard and soft skills to support the increasingly complex wind turbine generators as the technology evolves. Furthermore, the American workforce is facing a steep decline in available labor resources as the baby boomer generation enters retirement age. It is therefore vital that a process is quickly created for supporting the next generation of wind technicians. However, the manpower growth must incorporate three key components. First, the safety and technical training curriculum must be standardized across the industry - current wind educational programs are disparate and dedicated standardization programs must be further refined and implemented. Second, it is essential that the wind sector avoid disrupting other energy production industries by cannibalizing workers, which would indirectly affect the rest of Americas energy portfolio. The future wind workforce must be created organically utilizing either young people entering the workforce or train personnel emerging from careers outside of energy production. Third, the training must be quick and efficient as large amounts of wind turbines are being erected each year and this growth is expected to continue until at least 2035. One source that matches these three requirements is personnel transitioning from military service to the

  10. Final Technical Report 09 LW 112

    SciTech Connect

    Lenhoff, R J


    Since the development of new antibiotics is out-paced by the emergence of bacterial resistance to existing antibiotics, it is crucial to understand the genetic mechanisms underlying resistance existing antibiotics. At the center of this mystery is a poorly understood phenomenon, heteroresistance: the coexistence of multiple subpopulations with varying degrees of antibiotic resistance. A better understanding of the fundamental basis of heteroresistance could result in sorely needed breakthroughs in treatment options. This project proposed to leverage a novel microfluidic (microchemostat) technology to probe the heteroresistance phenomenon in bacteria, with the aim of restoring the efficacy of existing {beta}-lactam antibiotics. The clinically important bacteria Methicillin Resistant S. aureus (MRSA) was used as the test case of bacteria that exhibits antibiotic heteroresistance. MRSA is difficult to treat because it is resistant to all {beta}-lactam antibiotics, as well as other classes of antimicrobials. Whereas {beta}-lactams such as methicillin and oxacillin are the preferred antibiotics to treat S. aureus infections due to their efficacy and low side effects, accurate determination and use of oxacillin/methicillin dosage is hampered by heteroresistance. In fact, invasive MRSA infections now account for about 95,000 deaths per year, a number that exceeds the deaths due to either influenza or HIV (12). In some MRSA strains, two subpopulations of cells may coexist: both populations carry the mecA gene that confers resistance, but mecA is differentially expressed so that only a small number of cells are observed during in vitro testing. Why this occurs is not understood. Prior experiments have sought to explain this phenomenon with conflicting results, with technology being the primary barrier to test the system sufficiently. This is the final report on work accomplished under the Lab-wide LDRD project 09-LW-112. This project was awarded to Frederick Balagadde who

  11. Final Technical Report "Energy Partitioning in Elementary Chemical Reactions"

    SciTech Connect

    Richard Bersohn; James J. Valentini


    This is the final technical report of the subject grant. It describes the scientific results obtained during the reporting period. These results are focused on the reactions of atomic oxygen with terminal alkenes. We have studied the production of vinoxy in these reactions. We have characterized the energy disposal in the reactions and have elaborated the reaction mechanism.

  12. Chapter 2 Forumula. 1988-89 Final Technical Report.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    Presented is the final technical report on the evaluation of the 1988-89 supplementary education programs of the Austin (Texas) Independent School District funded under Chapter 2 of the Education Consolidation and Improvement Act. The following major findings are reported: (1) extracurricular transportation costs, which had been reduced by…

  13. The Independent Technical Analysis Process Final Report 2006-2007.

    SciTech Connect

    Duberstein, Corey; Ham, Kenneth; Dauble, Dennis; Johnson, Gary


    The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities. The Independent Technical Analysis Process (ITAP) was created to provide non-routine analysis for fish and wildlife agencies and tribes in particular and the public in general on matters related to juvenile and adult salmon and steelhead passage through the mainstem hydrosystem. The process was designed to maintain the independence of analysts and reviewers from parties requesting analyses, to avoid potential bias in technical products. The objectives identified for this project were to administer a rigorous, transparent process to deliver unbiased technical assistance necessary to coordinate recommendations for storage reservoir and river operations that avoid potential conflicts between anadromous and resident fish. Seven work elements, designated by numbered categories in the Pisces project tracking system, were created to define and accomplish project goals as follows: (1) 118 Coordination - Coordinate technical analysis and review process: (a) Retain expertise for analyst/reviewer roles. (b) Draft research directives. (c) Send directive to the analyst. (d) Coordinate two independent reviews of the draft report. (e) Ensure reviewer comments are addressed within the final report. (2) 162 Analyze/Interpret Data - Implement the independent aspects of the project. (3) 122 Provide Technical Review - Implement the review process for the analysts. (4) 132 Produce Annual Report - FY06 annual progress report with Pisces Disseminate (5) 161

  14. High energy physics research. Final technical report, 1957--1994

    SciTech Connect

    Williams, H.H.


    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  15. Joint Technical Architecture for Robotic Systems (JTARS)-Final Report

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Holloway, Sidney E., III


    This document represents the final report for the Joint Technical Architecture for Robotic Systems (JTARS) project, funded by the Office of Exploration as part of the Intramural Call for Proposals of 2005. The project was prematurely terminated, without review, as part of an agency-wide realignment towards the development of a Crew Exploration Vehicle (CEV) and meeting the near-term goals of lunar exploration.

  16. Shawmut hydroelectric redevelopment project. Final technical and construction cost report

    SciTech Connect


    This report describes the major steps undertaken by the Central Maine Power Company to redevelop an old existing lowhead (19 to 23 ft) hydroelectric station and, at the same time, demonstrate the commercial viability of such a venture. The report addresses the process of site selection, preliminary conceptual design for determining economic viability, licensing and the regulatory process, final design, and project construction with the objective of presenting to the reader a technical and economical guide useful for a similar undertaking.

  17. Report format preferences of technical managers and nonmanagers

    NASA Technical Reports Server (NTRS)

    Pinelli, T. E.; Cordle, V. M.; Glassman, M.; Vondran, R. F., Jr.


    A survey of engineers and scientists concerning the format of NASA technical reports indicates that a summary as well as an abstract should be included, that the definitions of symbols and glossary of terms should be located in the front of the report, and that the illustrative material should be integrated with the text rather than grouped at the end of the report. Citation of references by number, one-column, ragged-right-margin layout, and third-person writing style are also preferred by a majority of the respondents. The preferences of managers and nonmanagers are very similar for all aspects of technical report format covered by the survey.

  18. Site Operator technical report. Final report (1992--1996)

    SciTech Connect


    The Southern California Edison Company (SCE) and the US Department of Energy (DOE) entered into cooperative agreement No. DE-FC07-91ID13077 on August 23, 1991, which expired on August 3, 1996. This cooperative agreement provided SCE with DOE cofunding for participation in the DOE`s Electric and Hybrid Vehicle Site Operator Program. In return, SCE provided the DOE with quarterly progress reports which include operating and maintenance data for the electric (EVs) vehicles in SCE`s fleet. Herein is SCE`s final report for the 1992 to 1996 agreement period. As of September 1, 1996 the SCE fleet had 65 electric vehicles in service. A total of 578,200 miles had been logged. During the agreement period, SCE sent the DOE a total of 19 technical reports (Appendix B). This report summarizes the technical achievements which took place during a long, productive and rewarding, relationship with the DOE.

  19. Genetic effects of plutonium in Drosophila. Final technical report

    SciTech Connect


    This three year project, initiated in 1987, involved the genetic effects of alpha radiations on Drosophila. This document represents the final technical report. Plutonium residue was used as the alpha source of radon gas. Spontaneous mutation frequency in the Drosophila stock was very low. In the experiments using alpha radiation from radon gas, radiation doses as low as 20R induced significant numbers of mutations, with higher numbers of mutations at higher doses. If X-ray induced mutation frequencies reported in the literature are used for comparison, it can be concluded that alpha radiation from radon gas induces at least 2 to 3 time more mutations in Drosophila.

  20. New Particle Formation Study Final Campaign Report

    SciTech Connect

    Smith, JN; McMurry, PH


    The scientific foci of the New Particle Formation Study were the formation and evolution of atmospheric aerosols and the impacts of newly formed particles on cloud processes. Specifically, we planned to: (1) to identify the species and mechanisms responsible for the initial steps of new particle formation, i.e., the formation of thermodynamically stable clusters; (2) investigate the role of acid-base chemistry in new particle growth through measurements of ammonia and amines as well as organic and inorganic acids in both atmospheric nanoparticles and the gas phase; (3) investigate the contribution of other surface area or volume-controlled processes to nanoparticle formation and growth; (4) create a comprehensive dataset related to new particle formation and growth that can be used as input for our own thermodynamic models as well as the modeling efforts by our Department of Energy (DOE) Aerosol Life Cycle working group collaborators; (5) characterize the increase of the number and activity of cloud condensation nuclei (CCN) due to particle formation and growth; (6) determine the regional extent of new particle formation to address the role that atmospheric transport plays in determining the impacts, if any, of new particle formation on cloud number and properties.

  1. The SAMPIE flight experimental final technical requirements document

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Ferguson, Dale C.


    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a shuttle based flight experiment scheduled for launch in early 1994. SAMPIE will investigate plasma interactions of high voltage space power systems in low earth orbit. Solar cell modules, representing several technologies, will be biased through a series of high voltages to characterize both arcing and plasma current collection. Other solar modules, specially modified in accordance with current theories of arcing and breakdown, will demonstrate the possibility of arc suppression. Finally, several test modules will be included to study the basic nature of these interactions. The science and technology goals for the project are defined in the Technical Requirements Document (TRD) which is presented here in its final form. The experiment is being developed at NASA LeRC in Cleveland, Ohio, and is sponsored by the NASA Office of Aeronautics and Space Technology (OAST).

  2. Admiralty Inlet Pilot Tidal Project Final Technical Report

    SciTech Connect

    Collar, Craig


    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  3. Mathematics Intensive Summer Session (MISS). Final technical report

    SciTech Connect


    This final technical report appears in two parts: the report for the 1995 summer MISS program and the report for the 1996 summer MISS program. Copies of the US Department of Energy Pre-Freshman Enrichment Program 1995 Entry Form and 1996 Entry Form completed by all participants were sent to the Oak Ridge Institute for Science and Education in the fall of 1995 and 1996 respectively. Those forms are on file should they be needed. Attached also is a copy of the Summary of ideas for panel discussions, problem-solving sessions, or small group discussions presented at the Department of Energy Oak Ridge Institute for Science and Education Pre-Freshman Enrichment Program Project Directors Meeting held in San Antonio, TX, November 12--14, 1995.

  4. FERMI@Elettra FEL Design Technical Optimization Final Report

    SciTech Connect

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno,Giovanni; Graves, William


    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI{at}ELETTRA project. The FERMI{at}ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn.

  5. Systematized contact between inventors and industry. [Final Technical Report

    SciTech Connect

    Not Available


    A total of 139 inventions by private (individual) inventors were submitted to Technology Targeting Incorporated. Each inventor was told of the nature of the DOE-supported Project, through informational and promotional efforts by TTI, and each completed an Invention Submittal Form developed by TTI to describe the essential nature of the claimed invention. Many also submitted detailed descriptions, drawings, technical reports and similar supplemental materials giving a more comprehensive view of their inventions. Each invention was reviewed for technical and commercial merit, as well as for appropriateness of marketing through the Technology Targeting DataBase[trademark] (hereafter DATABASE). Overall, participating inventors were enthusiastic about the Project and felt participation in it was rewording. Even when not selected for marketing, inventors were given an analysis of their inventions which could help them enhance the inventions and improve marketing efforts. Inventors whose inventions were selected for marketing were shown how to professionally market the inventions, including the format for Non Confidential Invention Summaries, the preferred form for Confidential Disclosure Agreements, targeting of business decision-makers responsible for technology evaluation, and the like; some of these inventors are still interacting with industrial contacts provided by TTI through this Project. All inventors received copies of patent abstracts uncovered in the prior art searches for their inventions and a copy of TTI's booklet, Patent Law Basics for Individual Inventors.

  6. Systematized contact between inventors and industry. Final technical report

    SciTech Connect

    Not Available


    A total of 139 inventions by private (individual) inventors were submitted to Technology Targeting Incorporated. Each inventor was told of the nature of the DOE-supported Project, through informational and promotional efforts by TTI, and each completed an Invention Submittal Form developed by TTI to describe the essential nature of the claimed invention. Many also submitted detailed descriptions, drawings, technical reports and similar supplemental materials giving a more comprehensive view of their inventions. Each invention was reviewed for technical and commercial merit, as well as for appropriateness of marketing through the Technology Targeting DataBase{trademark} (hereafter ``DATABASE). Overall, participating inventors were enthusiastic about the Project and felt participation in it was rewording. Even when not selected for marketing, inventors were given an analysis of their inventions which could help them enhance the inventions and improve marketing efforts. Inventors whose inventions were selected for marketing were shown how to professionally market the inventions, including the format for Non Confidential Invention Summaries, the preferred form for Confidential Disclosure Agreements, targeting of business decision-makers responsible for technology evaluation, and the like; some of these inventors are still interacting with industrial contacts provided by TTI through this Project. All inventors received copies of patent abstracts uncovered in the prior art searches for their inventions and a copy of TTI`s booklet, Patent Law Basics for Individual Inventors.

  7. Planet formation imager (PFI): introduction and technical considerations

    NASA Astrophysics Data System (ADS)

    Monnier, John D.; Kraus, Stefan; Buscher, David; Berger, J.-P.; Haniff, Christopher; Ireland, Michael; Labadie, Lucas; Lacour, Sylvestre; Le Coroller, Herve; Petrov, Romain G.; Pott, JoÌrg-Uwe; Ridgway, Stephen; Surdej, Jean; ten Brummelaar, Theo; Tuthill, Peter; van Belle, Gerard


    Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newlyformed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project ( and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements.

  8. Preferences on technical report format - Results of a survey

    NASA Technical Reports Server (NTRS)

    Pinelli, T. E.; Cordle, V. M.; Glassman, M.; Vondran, R. F.


    A survey of 513 engineers and scientists employed at the National Aeronautics and Space Administration Langley Research Center and 600 engineers and scientists from three professional/technical societies solicited the opinions of report users concerning the format of NASA technical reports. The results indicate that a summary as well as an abstract should be included, that the definitions of symbols and glossary of terms should be located in the front of the report, and that the illustrative material should be integrated with the text rather than grouped at the end of the report. Citation of references by number, one-column, ragged-right-margin layout, and third-person writing style are also preferred by a majority of the respondents.

  9. Latin American Literacy Partnership Project. Final Formative Evaluation.

    ERIC Educational Resources Information Center

    Watt, David L. E.

    This final evaluation of the 1991-92 program year of the Latin American literacy Project, designed to foster English language literacy in Spanish-speaking families in Canada, is intended as a formative report, American Literacy Project is intended as a formative report, assessing the changes in the students' language proficiency and the progress…

  10. Herbert Easterly auxiliary truck heater. Final technical report

    SciTech Connect

    Not Available


    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work nine different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.

  11. Final Technical Report - Kotzebue Wind Power Porject - Volume I

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker


    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  12. Energy-related inventions program invention 637. Final technical report

    SciTech Connect


    The final technical report for the Pegasus plow, a stalk and root embedding apparatus, describes progress from the development stage to the product support stage. The US Department of Agriculture - Agriculture Research Service (ARS) is now in the second year of a three year study comparing the Pegasus to conventional tillage. So far, no downside has been with the Pegasus and the following benefits have been documented: (1) Energy savings of 65.0 kilowatt hours per hectare over conventional tillage. This is when the Pegasus plow is used to bury whole stalks, and represents a 70% savings over conventional tillage (92.5 kilowatt hours per hectare). (2) Four to seven fewer passes of tillage, depending on the particular situation. This represents a substantial time savings to farmers. (3) So far, no differences in cotton yields. Recent cotton boll counts in one study indicate a higher yield potential with the Pegasus. (4) No disease problems. (5) Significantly higher levels of organic matter in the soil. A hypothesis of the study is that whole stalk burial may reduce plant disease problems. This hypothesis has not yet been proven. (6) Significantly higher levels of nitrate nitrogen. Total nitrogen and ammonia nitrogen trended higher but were not significantly different. This shows that whole stalk burial does not adversely affect the nitrogen cycle in the soil and may actually improve it. The marketing support stage of the project is also described in the report.

  13. AISI waste oxide recycling program. Final technical report

    SciTech Connect

    Aukrust, E.; Downing, K.B.; Sarma, B.


    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  14. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker


    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  15. Inventors Center of Michigan Technical Assessment Program. Final progress report

    SciTech Connect

    Not Available


    The Technical Assessment Program at the Inventors Center of Michigan is designed to provide independent inventors with a reliable assessment of the technical merits of their proposed inventions. Using faculty from within Ferris State University`s College of Technology an assessment process examines the inventor`s assumptions, documentation, and prototypes, as well as, reviewing patent search results and technical literature to provide the inventor with a written report on the technical aspects of the proposed invention. The forms for applying for a technical assessment of an invention are included.

  16. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2013 CFR


    ... 10 Energy 2 2013-01-01 2013-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Combined Licenses § 52.79 Contents of applications; technical information in final...

  17. Final Technical/Scientific Report: Commodity Scale Thermostable Enzymatic Transformations

    SciTech Connect

    James J. Lalonde; Brian Davison


    The conversion of corn starch to high fructose corn-syrup sweetener is a commodity process, producing over 3 billion kg/y. In the last step of the process, an enzyme catalyst is used to convert glucose to the much sweeter sugar fructose. Due to incomplete conversion in the last step, the syrup must be purified using a chromatographic separation technique, which results in equal quantities of water being added to the syrup, and finally the water must be evaporated (up to 1 lb of water/lb of syrup). We have estimated the energy requirement in the evaporation step to be on the order of 13 billion BTU's/y. This process inefficiency could be eliminated if a thermostable form of glucose isomerase (GI), the enzyme catalyst used in the final step, was developed. Our chosen strategy was to develop an immobilized form of the enzyme in which the protein is first crystallized and then chemically cross-linked to form an insoluble particle. This so-called cross-linked enzyme crystal (CLE C(reg. sign)) technology had been shown to be a powerful method for enzyme stabilization for several other protein catalysts. In this work we have developed more than 30 CLEC preparations of glucose isomerase and tested them for activity and stability. We found these preparations to be highly active, with a 10-50 fold rate per gram of catalyst increase over existing commercial catalysts. The initial rates were also higher at higher temperatures as expected, however the efficiency of the CLEC GI preparations unexpectedly rapidly decreased to a low constant value with use at the higher temperatures. At this point, the source of this activity loss is unclear, however during this loss, the catalyst is found to form a solid mass indicating either breakage of the chemical cross-links or simple aggregation of the particles. It is likely that the increased mass transfer resistance due to this agglomeration is a major component of the activity loss. This research suggests that one potentially beneficial

  18. NTRCI Legacy Engine Research and Development Project Final Technical Report

    SciTech Connect

    Smith-Holbert, Connie; Petrolino, Joseph; Watkins, Bart; Irick, David


    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was

  19. Flue gas desulfurization by rotating beds. Final technical report

    SciTech Connect

    Gardner, N.; Keyvani, M.; Coskundeniz, A.


    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE {number_sign}FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0{sub 2} absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0{sub 2} absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m{sub 2}/m{sub 3}. Liquid flow rates to 36 kg/s*m{sub 2}, gas flow rate to 2.2 kg/s*m{sub 2}, and gravitational fields to 300 g were covered in this study.

  20. Florida Study of Career and Technical Education. Final Report

    ERIC Educational Resources Information Center

    Jacobson, Louis; Mokher, Christine


    A key goal of the "Carl D. Perkins Career and Technical Education Act of 2006" ("Perkins IV") is to ensure career and technical education (CTE) programs are widely available for preparing high school and college students for "high skill, high wage, or high demand occupations in current or emerging professions"…

  1. Pressurized Oxidative Recovery of Energy from Biomass Final Technical Report

    SciTech Connect

    M. Misra


    This study was conducted to evaluate the technical feasibility of using pressurized oxyfuel, the ThermoEnergy Integrated Power System (TIPS), to recover energy from biomass. The study was focused on two fronts—computer simulation of the TIPS plant and corrosion testing to determine the best materials of construction for the critical heat exchanger components of the process. The goals were to demonstrate that a successful strategy of applying the TIPS process to wood waste could be achieved. To fully investigate the technical and economic benefits of using TIPS, it was necessary to model a conventional air-fired biomass power plant for comparison purposes. The TIPS process recovers and utilizes the latent heat of vaporization of water entrained in the fuel or produced during combustion. This latent heat energy is unavailable in the ambient processes. An average composition of wood waste based on data from the Pacific Northwest, Pacific Southwest, and the South was used for the study. The high moisture content of wood waste is a major advantage of the TIPS process. The process can utilize the higher heating value of the fuel by condensing most of the water vapor in the flue gas and making the flue gas a useful source of heat. This is a considerable thermal efficiency gain over conventional power plants which use the lower heating value of the fuel. The elevated pressure also allows TIPS the option of recovering CO2 at near ambient temperatures with high purity oxygen used in combustion. Unlike ambient pressure processes which need high energy multi-stage CO2 compression to supply pipeline quality product, TIPS is able to simply pump the CO2 liquid using very little auxiliary power. In this study, a 15.0 MWe net biomass power plant was modeled, and when a CO2 pump was included it only used 0.1 MWe auxiliary power. The need for refrigeration is eliminated at such pressures resulting in significant energy, capital, and operating and maintenance savings. Since wood

  2. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    SciTech Connect

    Hansen, Clifford


    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  3. Identification and classification of technical specification problems: Final report

    SciTech Connect

    Bizzak, D.J.; Stella, M.E.; Stukus, J.R.


    This report describes a methodology for a systematic review of nuclear plant technical specifications problems. Operating personnel conducted a line-by-line examination of the LaSalle Station technical specifications creating a computerized database of problems, categorized as to their cause, effect, and recommendations for resolving the problems. Some 102 technical specifications problems were identified. Results indicated that the predominant type of problem was inappropriate limiting conditions for operation. The ECCS and containment systems had the largest number of problem technical specifications. The most significant effect was extension of outage lengths. It was estimated that risk-based evaluations would help to justify desirable changes in some 40% of the problems. Both the methodology and the LaSalle database are detailed in the report. 9 refs., 2 figs., 8 tabs.

  4. Final Technical Report: Hydrogen Codes and Standards Outreach

    SciTech Connect

    Hall, Karen I.


    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  5. Final Technical Report DOE/GO/13142-1

    SciTech Connect

    Patrick Mulvihill; Quang Nguyen


    This research adds to the understanding of the areas of residual starch and biomass conversion to alcohol, by providing data from pilot plant equipment of larger scale than the minimum required to give commercially scalable data. Instrumentation and control is in place to capture the information produced, for economic and technical evaluation. The impact of rheology, recycle streams, and residence time distributions on the technical and economic performance can be assessed. Various processes can be compared technically and economically because the pilot plants are readily modifiable. Several technologies for residual starch yield improvement have been identified, implemented, and patent applications filed. Various biomass-to-ethanol processes have been compared and one selected for technical optimization and commercialization. The technical and economic feasibility of the current simplified biomass conversion process is being confirmed by intensive pilot plant efforts as of this writing. Optimization of the feedstock handling and pretreatment is occurring to increase the alcohol yield above the minimum commercially viable level already demonstrated. Samples of biomass residue and reactor blowdown condensate are being collected to determine the technical and economic performance of the high-water-recycle waste treatment system being considered for the process. The project is of benefit to the public because it is advancing the efforts to achieve low-cost fermentable substrates for conversion to transportation fuels. This process combines the hydrolysis of agricultural residues with novel enzymes and organisms to convert the sugars released to transportation fuels. The process development is taking place at a scale allowing commercial development to proceed at a rapid pace.

  6. Final report on technical work accomplished under contract NASw-2953

    NASA Technical Reports Server (NTRS)

    Fredricks, R. W.


    A report is given on the technical work accomplished in the area of plasma physics. The subjects covered are: (1) oblique whistler instabilities, (2) current-limited electron beam injection, (3) three-dimensional ion sound turbulence, (4) theoretical aspects of sounder antenna operation and (5) whistler modes in bow shock structures.

  7. Word Lists to Simplify Vocabulary of Technical Information. Final Report.

    ERIC Educational Resources Information Center

    Kincaid, J. Peter; And Others

    This report describes eight word lists developed for use as part of the computer readability editing system (CRES), which was developed to serve as an author's aid in improving the ease of comprehending Navy technical manuals and training materials. The system has features which flag uncommon and misspelled words and long sentences, suggest simple…

  8. Wisconsin Indianhead Technical College Delphi Study. Final Report.

    ERIC Educational Resources Information Center

    Harkins, Arthur M.; Otto, Nelson R.

    A project was conducted to define positive, opportunity-focused methods to increase the percentage of high school students who are academically and personally prepared for enrollment in technical college directly after graduation. Objectives included determining how and why high school students choose to attend or not to attend vocational…

  9. A Technical Index of Interactive Information Systems. Final Report.

    ERIC Educational Resources Information Center

    Fife, Dennis W.; And Others

    The technical features and operational status of interactive information systems, i.e. those providing a conversational usage mode to a non-programer through a data terminal device, are reviewed. The review is designed to aid information specialists in the state-of-the-art assessments preparatory to a detailed system selection procedure. It…

  10. Technical report, Onondaga Lake, New York. Main report. Final report

    SciTech Connect

    Not Available


    This technical report on Onondaga Lake, New York has compiled existing data to determine which water quality and environmental enhancements are advisable. The report identifies sediment and water quality problems and needs, potential clean-up methodologies, fisheries and fish habitat improvements, and water quality improvements.

  11. Onondaga Lake, New York. Technical annex. Final report

    SciTech Connect

    Not Available


    This technical report on Onondaga Lake, New York has compiled existing data to determine which water quality and environmental enhancements are advisable. The report identifies sediment and water quality problems and needs, potential clean-up methodologies, fisheries and fish habitat improvements, and water quality improvements.

  12. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    SciTech Connect

    Not Available


    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  13. A Dissemination Model for New Technical Education Programs. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    The Technical Education Research Center-SW has conceived, tested, and refined a model for disseminating newly developed programs and materials throughout the nation. The model performed successfully in the dissemination of more than 50,000 educational units (modules) of Laser/Electro-Optics Technician (LEOT) materials during a four-year period…

  14. Matching Community and Technical College Professional/Technical Education Capacity to Employer Demand. Final Report.

    ERIC Educational Resources Information Center

    Sommers, Paul; Heg, Deena

    A project was conducted to improve the state of Washington's community and technical college system by developing and using an improved occupational forecasting system to assess and respond to education and training needs. First, long-term occupational forecast data from Washington's Employment Security Department were matched with technical and…

  15. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    SciTech Connect

    Dorland, William


    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  16. Predoctoral training grant in the area of physical sciences. Final technical report, October 1989--October 1993

    SciTech Connect

    Venkateswarlu, P.


    This final technical report represents the results of the research in nonlinear optics (optical phase conjugation) obtained by five (5) predoctoral students in the department of physics at Alabama Agricultural and Mechanical University (AAMU).

  17. National Evaluation of the Comprehensive Technical Assistance Centers. Final Report. NCEE 2011-4031

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.; White, Richard N.; Sinclair, Elizabeth; Riley, Derek L.; Pistorino, Carol


    This final report presents findings from a multi-year evaluation of the Comprehensive Technical Assistance Centers, a federally funded program that provides technical assistance to states in connection with the Elementary and Secondary Education Act, as reauthorized by the No Child Left Behind (NCLB) Act of 2001. With the redesign of the Center…

  18. 76 FR 50201 - National Early Childhood Technical Assistance Center; Final Extension of Project Period and Waiver

    Federal Register 2010, 2011, 2012, 2013, 2014


    ... National Early Childhood Technical Assistance Center; Final Extension of Project Period and Waiver AGENCY... Early Childhood Technical Assistance Center to receive funding from October 1, 2011 through September 30.... SUPPLEMENTARY INFORMATION: On June 7, 2011, the Department published a notice in the Federal Register (76...

  19. National Evaluation of the Comprehensive Technical Assistance Centers. Final Report. Executive Summary. NCEE 2011-4032

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.; White, Richard N.; Sinclair, Elizabeth; Riley, Derek L.; Pistorino, Carol


    This final report presents findings from a multi-year evaluation of the Comprehensive Technical Assistance Centers, a federally funded program that provides technical assistance to states in connection with the Elementary and Secondary Education Act, as reauthorized by the No Child Left Behind (NCLB) Act of 2001. With the redesign of the Center…

  20. Technical oversight for installation of TNX piezometers, Final Report

    SciTech Connect

    Pidcoe, W.W. Jr.


    Science Applications International Corporation was tasked under subcontract C002025P to provide technical oversight for the drilling of one pilot borehole, and the drilling and installation of five piezometers in the TNX Area Swamp. The work was performed in accordance with the Statement of Work in Task Order Proposal No. ER39-129 dated August 6, 1996. This report describes the activities associated with the performance of the task.

  1. Final Scientific and Technical Report State and Regional Biomass Partnerships

    SciTech Connect

    Handley, Rick; Stubbs, Anne D.


    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  2. Insulation from basaltic stamp sand. Final technical report

    SciTech Connect

    Williams, F. D.


    A Midwest Appropriate Technology Grant was awarded to determine the technical and economic feasibility of producing mineral-fiber insulation directly from extensive deposits of basaltic sand produced during former mining and milling operations in the Keweenaw Peninsula region of Michigan's Upper Peninsula. The amounts of local basaltic sands available and representative chemical compositions were determined. The variation of viscosity with temperature and chemical composition was estimated. Samples were melted and either pulled or blown into fiber. In all cases fiber could be made with a reasonable tensile strength to ensure usefulness. It was concluded that it was technically feasible to produce fibers from basaltic stamp sands of the Upper Peninsula of Michigan. A technical feasibility study using published data, a cost and design analysis of a basalt fiber production plant, a market survey of fiber needs, and an economic analysis for investing in a basalt fiber venture was undertaken. These studies concluded that the local production of basaltic insulation was both feasible and economically reasonable. It was suggested that the plant be located in a region of greater population density with lower utility costs. A representative one-third of these studies is included as appendices A, B, C, and D.

  3. Final Technical Report_Clean Energy Program_SLC-SELF

    SciTech Connect

    Henderson, Glenn; Coward, Doug


    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost of energy

  4. Establishment of the International Power Institute. Final technical report

    SciTech Connect

    Julius E. Coles


    The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

  5. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available


    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  6. FINAL TECHNICAL REPORT: 20% Wind by 2030: Overcoming the Challenges

    SciTech Connect

    Tom Kaiserski; Dan Lloyd


    The funds allocated through the Wind Powering America (WPA) grant were utilized by the State of Montana to support broad outreach activities communicating the benefits and opportunities of increased wind energy and transmission development. The challenges to increased wind development were also clearly communicated with the understanding that a clearer comprehension of the challenges would be beneficial in overcoming the obstacles to further development. The ultimate purpose of these activities was to foster the increased development of Montana's rich wind resources through increased public acceptance and wider dissemination of technical resources.


    ERIC Educational Resources Information Center



  8. SIAM Conference on Geometric Design and Computing. Final Technical Report

    SciTech Connect


    The SIAM Conference on Geometric Design and Computing attracted 164 domestic and international researchers, from academia, industry, and government. It provided a stimulating forum in which to learn about the latest developments, to discuss exciting new research directions, and to forge stronger ties between theory and applications. Final Report

  9. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect

    McDonald, Dale Edward


    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  10. Workshop on molecular methods for genetic diagnosis. Final technical report

    SciTech Connect

    Rinchik, E.M.


    The Sarah Lawrence College Human Genetics Program received Department of Energy funding to offer a continuing medical education workshop for genetic counselors in the New York metropolitan area. According to statistics from the National Society of Genetic Counselors, there are approximately 160 genetic counselors working in the tri-state area (New York, New Jersey, and Connecticut), and many of them had been working in the field for more than 10 years. Thus, there was a real need to offer these counselors an in-depth opportunity to learn the specifics of the major advances in molecular genetics, and, in particular, the new approaches to diagnostic testing for genetic disease. As a result of the DOE Award DE-FG02-95ER62048 ($20,583), in July 1995 we offered the {open_quotes}Workshop on Molecular Methods for Genetic Diagnosis{close_quotes} for 24 genetic counselors in the New York metropolitan area. The workshop included an initial review session on the basics of molecular biology, lectures and discussions on past and current topics in molecular genetics and diagnostic procedures, and, importantly, daily laboratory exercises. Each counselor gained not only background, but also firsthand experience, in the major techniques of biochemical and molecular methods for diagnosing genetic diseases as well as in mathematical and computational techniques involved in human genetics analyses. Our goal in offering this workshop was not to make genetic counselors experts in these laboratory diagnostic techniques, but to acquaint them, by hands-on experience, about some of the techniques currently in use. We also wanted to provide them a technical foundation upon which they can understand and appreciate new technical developments arising in the near future.

  11. Fifth international fungus spore conference. [Abstracts]: Final technical report

    SciTech Connect

    Timberlake, W.E.


    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  12. 75 FR 16817 - Meeting for Software Developers on the Technical Specifications for Common Formats for Patient...

    Federal Register 2010, 2011, 2012, 2013, 2014


    ... Safety Rule), published in the Federal Register on November 21, 2008: 73 FR 70731- 70814. As authorized... reporting formats (Common Formats) Version 1.1 that allow for reporting of patient safety information to... information on the Common Formats Version 1.1, including the technical specifications, can be obtained...

  13. [Study of institutional issues relating to transportation of high level waste]. Final technical report

    SciTech Connect

    Not Available


    This is the ``seventh`` and final Quarterly Report under the scope of work for cooperative agreement between the Western Interstate Energy Board and the US Department of Energy. The report covers the period January--March 1993. The cooperative agreement was to expire in June 1992, but DOE granted an extension through March 24, 1993. Since this is the last Quarterly Report under the expired cooperative agreement, most tasks are noted as being completed. Two final items, however, will soon be sent to DOE -- final minutes from the March 9--11 High- Level Radioactive Waste Committee meeting, and the Year-End Technical Report. Some highlights from the quarter: The Committee decided on a preferred format for the revised Spent Fuel and High-Level Radioactive Waste Transportation Primer. The document would be 100- 200 pages, accompanied by a series of white papers on key transportation elements. A 25--30 page handbook for educating western state elected officials would also be prepared. On March 24, the Committee sent a letter to DOE commenting on the Near-Site Transportation Infrastructure report findings. The Committee is concerned that infrastructure limitations may limit the rail shipping option in many instances, even after upgrades have been implemented. The NSTI findings may also have significant relevance to the decision to develop multi-purpose canisters. On April 1, the Committee sent DOE the white paper, Transportation Implications of Various NWPA Program Options, which determined that DOE cannot develop a national transportation system by 1998 for shipments to an MRS or other federal storage facility.

  14. Improved seal for geothermal drill bit. Final technical report

    SciTech Connect

    Evans, R.F.


    Each of the two field test bits showed some promise though their performances were less than commercially acceptable. The Ohio test bit ran just over 3000 feet where about 4000 is considered a good run but it was noted that a Varel bit of the same type having a standard O ring seal was completely worn out after 8-1/2 hours (1750 feet drilled). The Texas test bit had good seal-bearing life but was the wrong cutting structure type for the formation being drilled and the penetration rate was low.

  15. New York State technical and economic MAGLEV evaluation. Final report

    SciTech Connect

    Not Available


    The study is the preliminary evaluation of magnetically levitated ground transportation systems (MAGLEV). The evaluation focuses on using the New York State Thruway right-of-way in combination with MAGLEV systems currently in development in Germany and Japan and those proposed for development in the United States. The Energy Authority's goal in cosponsoring the study was to determine if MAGLEV offered the potential to meet future New York State transportation demands cost-effectively, and to evaluate the benefits that the State might expect from supporting MAGLEV technology development and system implementation. According to the preliminary report, substantial economic benefits could accrue to the State through MAGLEV-related research, development, manufacturing and construction. Implementation would have a favorable impact on issues related to transportation, the environment and energy conservation. With the exception of the German Transrapid system, developing a domestic prototype MAGLEV vehicle would take seven to nine years; no insurmountable technical barriers are apparent. EMF shielding (electromagnetic fields) is, however, a concern. It will cost an estimated $1 billion to develop a new MAGLEV system design; however, innovative designs may reduce the price.

  16. Technical assessment of maglev system concepts. Final report

    SciTech Connect

    Lever, J.H.


    The Government Maglev System Assessment Team operated from 1991 to 1993 as part of the National Maglev Initiative. They assessed the technical viability of four US Maglev system concepts, using the French TGV high speed train and the German TR07 Maglev system as assessment baselines. Maglev in general offers advantages that include high speed potential, excellent system control, high capacity, low energy consumption, low maintenance, modest land requirements, low operating costs, and ability to meet a variety of transportation missions. Further, the US Maglev concepts could provide superior performance to TR07 for similar cost or similar performance for less cost. They also could achieve both lower trip times and lower energy consumption along typical US routes. These advantages result generally from the use of large gap magnetic suspensions, more powerful linear synchronous motors and tilting vehicles. Innovative concepts for motors, guideways, suspension, and superconducting magnets all contribute to a potential for superior long term performance of US Maglev systems compared with TGV and TR07.

  17. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect


    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  18. Investigation of gigawatt millimeter wave source applications. Final technical report

    SciTech Connect

    Bruder, J.A.; Belcher, M.L.


    The Georgia Tech Research Institute (GTRI) investigated potential applications of millimeter wave (MMW) sources with peak powers on the order of a gigawatt. This power level is representative of MMW devices such as the free electron laser (FEL) and the cyclotron auto-resonance maser (CARM) that are under development at the Lawrence Livermore National Laboratory (LLNL). In addition to determining the technical requirements for these applications, the investigation considered potential users and how a high power MMW system would expand their current capabilities. Two of the more promising applications were examined in detail to include trade-off evaluations system parameters. The trade-off evaluations included overall system configuration, frequency and coherence, component availability, and performance estimates. Brainstorming sessions were held to try and uncover additional applications for a gigawatt MMW source. In setting up guidelines for the session, the need to attempt to predict applications for the years 2000 to 2030 was stressed. Also, possible non-DoD applications needed to be considered. While some of these applications could not in themselves justify the costs involved in the development of the radar system, they could be considered potential secondary applications of the system. As a result of the sessions, a number of interesting potential applications evolved including: space object identification; low angle tracking; illuminator for space-based radar; radio astronomy; space vehicle navigation; space debris location; atmospheric research; wind shear detection; electronic countermeasures; low observable detection; and long range detection via ducting.

  19. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    SciTech Connect

    Vicic, David A.


    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  20. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    SciTech Connect

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy


    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  1. Skin protectant drug products for over-the-counter human use; final monograph; technical amendment. Final rule; technical amendment.



    The Food and Drug Administration (FDA) is amending the regulation that established conditions under which over-the-counter (OTC) skin protectant drug products are generally recognized as safe and effective and not misbranded as part of FDA's ongoing review of OTC drug products. This amendment revises several of the indications for OTC skin protectant drug products to provide additional labeling claims that should not have been excluded from the final monograph (FM). PMID:14664244

  2. Development of an AC Module System: Final Technical Report

    SciTech Connect

    Suparna Kadam; Miles Russell


    The GreenRay Inc. program focused on simplifying solar electricity and making it affordable and accessible to the mainstream population. This was accomplished by integrating a solar module, micro-inverter, mounting and monitoring into a reliable, 'plug and play' AC system for residential rooftops, offering the following advantages: (1) Reduced Cost: Reduction in installation labor with fewer components, faster mounting, faster wiring. (2) Maximized Energy Production: Each AC Module operates at its maximum, reducing overall losses from shading, mismatch, or module downtime. (3) Increased Safety. Electrical and fire safety experts agree that AC Modules have significant benefits, with no energized wiring or live connections during installation, maintenance or emergency conditions. (4) Simplified PV for a Broader Group of Installers. Dramatic simplification of design and installation of a solar power system, enabling faster and more efficient delivery of the product into the market through well-established, mainstream channels. This makes solar more accessible to the public. (5) Broadened the Rooftop Market: AC Modules enable solar for many homes that have shading, split roofs, or obstructions. In addition, due to the smaller building block size of 200W vs. 1000W, homeowners with budget limitations can start small and add to their systems over time. Through this DOE program GreenRay developed the all-in-one AC Module system with an integrated PV Module and microinverter, custom residential mounting and performance monitoring. Development efforts took the product from its initial concept, through prototypes, to a commercial product sold and deployed in the residential market. This pilot deployment has demonstrated the technical effectiveness of the AC Module system in meeting the needs and solving the problems of the residential market. While more expensive than the traditional central inverter systems at the pilot scale, the economics of AC Modules become more and more

  3. Final Scientific Technical Report Crowder College MARET Center

    SciTech Connect

    Boyt, Art; Eberle, Dan; Hudson, Pam; Hopper, Russ


    and validating new applications of solar and other renewable technologies, the MARET Facility will house a wide variety of programs which will advance implementation of renewable energy throughout the region. These program goals include; Curriculum in renewable energy for pre-engineering transfer programs; Certification and degree programs for technical degrees for Energy Efficiency, Wind, Photovoltaic and Solar Thermal professionals; Short courses and workshops for building management and design professionals; Public education and demonstration projects in renewable energy through conferences and K-12 educational outreach; Technical degree offering in building construction incorporating “best practices” for energy efficiency and renewables; and Business incubators for new renewable energy businesses and new product development The new MARET facility will support the mission of the US Department of Energy (DOE) Solar Program, “to improve America’s security, environmental quality, and economic prosperity through public-private partnerships that bring reliable and affordable solar energy technologies to the marketplace,” through a variety of educational and business assistance programs. Further, technical innovations planned for the MARET facility and its applied research activities will advance the Solar Program strategic goals to “reduce the cost of solar energy to the point it becomes competitive in relevant energy markets (e.g., buildings, power plants) and for solar technology to enable a sustainable solar industry.” Overarching Goals relative to program needs, future expansion, flexibility, quality of materials, and construction and operational costs:; Experimental: The structure and systems of the building operate as an educational resource. The systems are meant to be a source for data collection and study for building users and instructors; Educational: Part of the evolution of this building and its ongoing goals is to use the building as an

  4. Research on the marine food chain. Final technical report

    SciTech Connect

    Eppley, R.W.


    This final report includes summaries of the Food Chain Research Group's extensive basic research in Southern California Bight waters and on planktonic organisms which are important components of the bight's pelagic food web. Additionally, the report conveys much of the information resulting from biological, chemical and physical oceanographic research by others active in the study of the pelagic realm of the Bight, especially that conducted during the last several decades. Hence, the book is intended to be a comprehensive description and analysis of the pelagic food web form and function in the Bight and of interactions between food web components and the environmental parameters affecting these. It is presented in a style intended to be informative to the layman as well as the scientist interested in the important coastal resources represented by the Southern California Bight.

  5. Final Technical Report on DOE Junior Faculty Development Award

    SciTech Connect

    Munsat, Tobin


    Over the course of this project we developed and contstructed the Colorado FRC facility, which included a custom vacuum vessel, high voltage and firing circuitry, two plasma gun electrodes, and pumping system, and several diagnostics. Density measurements were made with a multichannel CO{sub 2} (10.6 μm) laser interferometer. We also developed and a high-resolution magnetic probe array for 3-axis measurements of magnetic fluctuations. We constructed and implemented a triple Langmuir probe for making time-resolved measurements of plasma density, potential, and temperature. By calculating the time history of the gun eigenvalue, we observed indications that the Taylor formation paradigm applies. To estimate the spectral characteristics of fluctuations in an FRC, we developed a technique to extract the relevant spectral information using data from the high-resolution multi-point magnetic probe.

  6. Texas Hydrogen Education Final Scientific/Technical Report

    SciTech Connect

    Hitchcock, David; Bullock, Dan


    fork lifts, and hydrogen fueling) are effective for engaging target audiences, and (3) a clear path forward is needed for state and local agencies interested in project implementation (funding, financing, preliminary design, technical assistance, etc.).

  7. High-Intensity Plasma Glass Melter Final Technical Report

    SciTech Connect

    Gonterman, J. Ronald; Weinstein, Michael A.


    The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various

  8. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    SciTech Connect

    Steve Winkelman; Tim Hargrave; Christine Vanderlan


    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation

  9. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.


    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  10. Expanded bicycling route system for Denver. Final technical report

    SciTech Connect

    Maltempo, M.M.


    This final report describes the results of a study of the potential energy savings associated with increased utilitarian bicycle transportation in the Denver metropolitan area. The project has included computer modeling of the carrying capacity of the present bicycle route system, future route systems, as well as outreach activities to convey the results to public officials and the general public. A key feature of the project has been a consideration of the benefits associated with an expanded bikeway system which includes ''bike boulevards''. Data from the west coast cities and other sources, have been used to generate quantitative estimates of the benefits associated with a Denver bikeway system which includes bike boulevards. The development of a network of bike boulevards in Denver should result in energy savings of about 20.2 million gallons of gasoline per year, as well as a 3.4% reduction in vehicular carbon monoxide emissions. These benefits are in addition to those accruing from current levels of bicycling.

  11. Louisiana Industrial Assessment Center--Final Technical Report

    SciTech Connect

    Dr. Theodore A. Kozman


    This is the Final Report for the Louisiana Industrial Assessment Center for the period of 9/1/2002 through 11/30/2006, although we were still gathering data through 02/16/2007. During this period, our Industrial Assessment Center completed 109 energy assessments for manufacturing firms in our area, offered 3 Save Energy Workshops, taught 26 students (9 graduate and 17 undergraduate) energy management savings techniques and offered an Energy Management Graduate class three times. These 109 energy assessments made a total of 738 energy savings recommendations, 33 waste reduction recommendations, and 108 productivity improvement recommendations. These combined recommendations would save client companies more than $87,741,221.16, annually at the then current energy costs. If all of these recommendations were implemented separately, the implementation cost would have been $34,113,482.10 or a Simple Payback Period, SPP=4.7 months. Between 9 months and 12 months after the assessment, we surveyed the manufacturing firms to find out what they implemented. They had implemented approximately 50 percent of our recommendations at an annual saving of $25,867,613.18. The three Save Energy Workshops had an average attendance of twelve individuals. The three graduate Energy Management courses had an average attendance of eleven students.

  12. Toward World Literature in Electronic Formats: Three Promising Technical Developments.

    ERIC Educational Resources Information Center

    Sutton, Brett


    Discusses technical advances that affect the delivery of electronic versions of world literature to libraries. Topics include the creation and dissemination of electronic text and the use of extended character codes and markup language to preserve the form and structure of printed text. (13 references) (KRN)

  13. Instrumentation of Dynamic Gas Pulse Loading system. Final technical report

    SciTech Connect

    Mohaupt, H.


    The Dynamic Gas Pulse Loading (DGPL) process is an hydraulic fracturing method which uses CO{sub 2} and CO gas as a working fluid instead of a liquid. The DGPL system can be used to generate fractures for horizontal and vertical oil and gas well completions in both open hole and perforated casing. The DGPL system provides a cost effective tool for repairing near well bore permeability damage caused by inappropriate chemical treatment, migrating fines and paraffins, or slotted liners blocked by sand. Because the gas is generated from a solid propellant material by chemical reaction, no heavy equipment is required. Tremendous pump rates can be obtained. Peak pressures are naturally localized at the tool position by the tamping effect of well fluids. Thus many of the leakage and sealing problems which plague static hydrofrac processes ore completely avoided. DGPL may be effectively used before acid treatment to provide fresh pathways for the acid to reach the formation. The smaller tools may be positioned by wireline, though most Stressfrac tools are tubing conveyed.


    SciTech Connect

    Holden, Patricia A


    This project was funded to Dr. Mary Neu (LANL) and to Dr. Patricia Holden (UCSB) during the period 10/01/04-09/30/07 with the overall objective of, as stated in the proposal, to investigate how key reactions, which are known to affect major redox-active transition metals such as Fe and Mn, can affect Pu speciation and environmental mobility. The goals included investigating a) bacterial accumulation and immobilization of Pu species by Pseudomonas putida biofilm formation, and b) bacterial mineralization and immobilization via direct enzymatic and indirect biogeochemical reduction of Pu species by Geobacter metallireducens. Through a combination of aqueous chemical, radioanalytical, spectroscopic and microscopic analyses, Pu speciation and solution/solid phase distributions were to be characterized. The combination of biotransformation and biogeochemical research was aimed at filling significant gaps in the scientific basis for monitored natural attenuation and in situ stabilization of widespread and problematic Pu contamination, as well as providing immediately useful data to modeling and risk assessment efforts.

  15. Technical assistance for Meharry Medical College Energy Efficiency Project. Final project status and technical report

    SciTech Connect


    This report presents the results of a program to provide technical assistance to Meharry Medical College. The purpose of the program is to facilitate Meharry`s effort to finance a campus-wide facility retrofit. The US Department of Energy (USDOE) funded the program through a grant to the Tennessee Department of Economic and Community Development (TECD). The University of Memphis-Technology and Energy Services (UM-TES), under contract to TECD, performed program services. The report has three sections: (1) introduction; (2) project definition, financing, and participants; and (3) opportunities for federal participation.

  16. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect

    Weissman, J. M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.


    position in developing quality and competency standards for solar professionals and for training programs critical components to bring the solar industry into step with other recognized craft labor forces. IREC's objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC's Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC's community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren't traditionally part of the solar community. IREC's PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

  17. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    SciTech Connect

    J.Y. Hwang


    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  18. Final Technical Report: Development of Post-Installation Monitoring Capabilities

    SciTech Connect

    Polagye, Brian


    The development of approaches to harness marine and hydrokinetic energy at large-scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under-developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6-meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger-scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with colonization

  19. Control of catalytic hydrotreating selectivity with ammonia. Final technical report

    SciTech Connect

    Satterfield, C.N.; Lee, C.; Gultekin, S.


    The purpose of this study was to explore the possibility of control of product selectivity in the hydroprocessing of coal liquids and related substances by adding small amounts of ammonia. Quinoline was used in this study and in many others as representative of heterocyclic N compounds found in coal liquids. Coal liquids also contain hydroxy pyridines, but by studies with 8-OH quinoline, a representative compound (Part I), we demonstrated that the OH group was rapidly removed at the beginning of reaction to form quinoline, which reacted in the same manner as quinoline fed as such. In Part II we showed that in a mixture of naphthalene and quinoline, with the addition of ammonia there is an operating region in which complete HDN of quinoline can be achieved, but with greater conversion of naphthalene to tetralin instead of to decalin than was the case in the absence of added ammonia. This is of some significance to coal liquefaction since tetralin is a good hydrogen donor, but decalin is not. In Part III we showed that NH{sub 3} addition to a mixture of quinoline and phenanthrene provides an operating region where complete HDN of quinoline can be achieved with reduced formation of hydrogenated phenanthrenes and cracking to biphenyl. Part IV, a study of the hydrodeoxygenation (DHO) of dibenzofuran in the presence of naphthalene, showed that NH{sub 3} strongly inhibits HDO reactions and its effects on naphthalene here were much the same as in Part II. In Part V it was demonstrated that in the hydrotreating of propylbenzene, the addition of ammonia increased the selectivity towards ring hydrogenation (generally desired for reformulated motor fuels) and away from dealkylation (generally undesired), but the overall reaction rate at a fixed temperature drops substantially.

  20. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    SciTech Connect

    Lonergan, Mark


    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  1. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    SciTech Connect

    Huggins, J.


    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  2. Final Technical Report for DE-SC0005467

    SciTech Connect

    Broccoli, Anthony J.


    The objective of this project is to gain a comprehensive understanding of the key atmospheric mechanisms and physical processes associated with temperature extremes in order to better interpret and constrain uncertainty in climate model simulations of future extreme temperatures. To achieve this objective, we first used climate observations and a reanalysis product to identify the key atmospheric circulation patterns associated with extreme temperature days over North America during the late twentieth century. We found that temperature extremes were associated with distinctive signatures in near-surface and mid-tropospheric circulation. The orientations and spatial scales of these circulation anomalies vary with latitude, season, and proximity to important geographic features such as mountains and coastlines. We next examined the associations between daily and monthly temperature extremes and large-scale, recurrent modes of climate variability, including the Pacific-North American (PNA) pattern, the northern annular mode (NAM), and the El Niño-Southern Oscillation (ENSO). The strength of the associations are strongest with the PNA and NAM and weaker for ENSO, and also depend upon season, time scale, and location. The associations are stronger in winter than summer, stronger for monthly than daily extremes, and stronger in the vicinity of the centers of action of the PNA and NAM patterns. In the final stage of this project, we compared climate model simulations of the circulation patterns associated with extreme temperature days over North America with those obtained from observations. Using a variety of metrics and self-organizing maps, we found the multi-model ensemble and the majority of individual models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) generally capture the observed patterns well, including their strength and as well as variations with latitude and season. The results from this project indicate that current models are capable

  3. Final Technical Report - In-line Uranium Immunosensor

    SciTech Connect

    Blake, Diane A.


    In this project, personnel at Tulane University and Sapidyne Instruments Inc. developed an in-line uranium immunosensor that could be used to determine the efficacy of specific in situ biostimulation approaches. This sensor was designed to operate autonomously over relatively long periods of time (2-10 days) and was able to provide near real-time data about uranium immobilization in the absence of personnel at the site of the biostimulation experiments. An alpha prototype of the in-line immmunosensor was delivered from Sapidyne Instruments to Tulane University in December of 2002 and a beta prototype was delivered in November of 2003. The beta prototype of this instrument (now available commercially from Sapidyne Instruments) was programmed to autonomously dilute standard uranium to final concentrations of 2.5 to 100 nM (0.6 to 24 ppb) in buffer containing a fluorescently labeled anti-uranium antibody and the uranium chelator, 2,9-dicarboxyl-1,10-phenanthroline. The assay limit of detection for hexavalent uranium was 5.8 nM or 1.38 ppb. This limit of detection is well below the drinking water standard of 30 ppb recently promulgated by the EPA. The assay showed excellent precision; the coefficients of variation (CV’s) in the linear range of the assay were less than 5% and CV’s never rose above 14%. Analytical recovery in the immunosensors-based assay was assessed by adding variable known quantities of uranium to purified water samples. A quantitative recovery (93.75% - 108.17%) was obtained for sample with concentrations from 7.5 to 20 nM (2-4.75 ppb). In August of 2005 the sensor was transported to Oak Ridge National Laboratory, for testing of water samples at the Criddle test site (see Wu et al., Environ. Sci. Technol. 40:3978-3985 2006 for a description of this site). In this first on-site test, the in-line sensor was able to accurately detect changes in the concentrations of uranium in effluent samples from this site. Although the absolute values for the

  4. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    SciTech Connect

    Dr. Alan Miller; Matthew Ascari


    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between

  5. CIBS Solar Cell Development Final Scientific/Technical Report

    SciTech Connect

    Exstrom, Christopher L.; Soukup, Rodney J.; Ianno, Natale J.


    Efforts to fabricate and study a new photovoltaic material, copper indium boron diselenide (CuInxB1-xSe2 or CIBS), were undertaken. Attempts to prepare CIBS using sputtering deposition techniques resulted in segregation of boron from the rest of elements in the material. CIBS nanocrystals were prepared from the reaction of elemental Se with CuCl, InCl3, and boric acid in solution, but the product material quickly decomposed upon heating that was required in attempts to convert the nanocrystals into a thin film. The investigation of the reasons for the lack of CIBS material stability led to new structure-property studies of closely-related photovoltaic systems as well as studies of new solar cell materials and processing methods that could enhance the development of next-generation solar technologies. A detailed compositional study of CuIn1-xAlxSe2 (CIAS, a system closely related to CIBS) revealed a non-linear correlation between crystal lattice size and the Al/(In+Al) ratios with dual-phase formation being observed. A new nanocrystal-to-thin-film processing method was developed for the preparation of CuIn1-xGaxSe2 (CIGS) thin films in which colloidal Se particles are sprayed in contact with CuIn1-xGaxS2 nanoparticles and heated in an argon atmosphere with no other Se source in the system. The process is non-vacuum and does not require toxic gases such as Se vapor or H2Se. Expertise gained from these studies was applied to new research in the preparation of thin-film pyrite FeS2, an attractive earth-abundant candidate material for next-generation photovoltaics. Three methods successfully produced pure pyrite FeS2 films: sulfurization of sputtered Fe films, chemical bath deposition, and sulfurization of Fe2O3 sol-gel precursors. The last method produced pinhole-free films that may be viable for device development. Nickel, platinum, and possibly carbon would appear to serve as good ohmic contact materials. While CdS has a reasonable conduction band energy match to

  6. 42 CFR 137.144 - Is technical assistance available to an Indian Tribe to avoid rejection of a final offer?

    Code of Federal Regulations, 2010 CFR


    ... Tribe to avoid rejection of a final offer? 137.144 Section 137.144 Public Health PUBLIC HEALTH SERVICE... SELF-GOVERNANCE Final Offer Rejection of Final Offers § 137.144 Is technical assistance available to an Indian Tribe to avoid rejection of a final offer? Yes, upon receiving a final offer, the Secretary...

  7. 42 CFR 137.144 - Is technical assistance available to an Indian Tribe to avoid rejection of a final offer?

    Code of Federal Regulations, 2012 CFR


    ... Tribe to avoid rejection of a final offer? 137.144 Section 137.144 Public Health PUBLIC HEALTH SERVICE... SELF-GOVERNANCE Final Offer Rejection of Final Offers § 137.144 Is technical assistance available to an Indian Tribe to avoid rejection of a final offer? Yes, upon receiving a final offer, the Secretary...

  8. 42 CFR 137.144 - Is technical assistance available to an Indian Tribe to avoid rejection of a final offer?

    Code of Federal Regulations, 2011 CFR


    ... Tribe to avoid rejection of a final offer? 137.144 Section 137.144 Public Health PUBLIC HEALTH SERVICE... SELF-GOVERNANCE Final Offer Rejection of Final Offers § 137.144 Is technical assistance available to an Indian Tribe to avoid rejection of a final offer? Yes, upon receiving a final offer, the Secretary...

  9. 42 CFR 137.144 - Is technical assistance available to an Indian Tribe to avoid rejection of a final offer?

    Code of Federal Regulations, 2014 CFR


    ... Tribe to avoid rejection of a final offer? 137.144 Section 137.144 Public Health PUBLIC HEALTH SERVICE... SELF-GOVERNANCE Final Offer Rejection of Final Offers § 137.144 Is technical assistance available to an Indian Tribe to avoid rejection of a final offer? Yes, upon receiving a final offer, the Secretary...

  10. 42 CFR 137.144 - Is technical assistance available to an Indian Tribe to avoid rejection of a final offer?

    Code of Federal Regulations, 2013 CFR


    ... Tribe to avoid rejection of a final offer? 137.144 Section 137.144 Public Health PUBLIC HEALTH SERVICE... SELF-GOVERNANCE Final Offer Rejection of Final Offers § 137.144 Is technical assistance available to an Indian Tribe to avoid rejection of a final offer? Yes, upon receiving a final offer, the Secretary...


    ERIC Educational Resources Information Center



  12. ESEA Title I Regular Program, 1979-80. Final Technical Report. Publication No. 72.23.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    Seventeen instruments were used to provide the answers to the design and evaluation questions for the 1979-80 ESEA Title I regular program in the Austin (Texas) Independent School District. In the final technical report, a separate appendix for each instrument includes a description of its purpose, procedure, and results as related to specific…

  13. ESEA Title I Regular Program, 1980-81. Volume II, Final Technical Report.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    Data from 8 of the 13 instruments used to provide answers to the decision and evaluation questions for evaluation of the 1980-81 ESEA Title I regular program in the Austin (Texas) Independent School District comprise Volume II of the final technical report. A separate appendix for each instrument includes a description of its purpose, procedure,…

  14. Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae

    SciTech Connect

    Saurabh W. Jha


    The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae" led at Rutgers the State University of New Jersey by Prof. Saurabh W. Jha is presented, including all publications resulting from this award.

  15. Minnesota Deafblind Technical Assistance Project. Final Report: October 1, 1995 to September 30, 2000.

    ERIC Educational Resources Information Center

    Holt, George

    This final report describes activities of the 4-year federally-funded Minnesota DeafBlind Assistance Project in meeting the following objectives: (1) provide technical assistance throughout the state; (2) deliver training to improve transitions from school to adult life for youth with deaf-blindness; (3) develop and implement procedures to locate…

  16. Resources to Inform Technical Assistance on Formative Assessment. CEELO FastFacts

    ERIC Educational Resources Information Center

    Connors-Tadros, L.; Schilder, D.


    In this "FastFacts," a state requested recommendations about research and practical resources to inform technical assistance conducted with state education staff on formative assessment. The Center on Enhancing Early Learning Outcomes (CEELO) responds by describing what is currently known on this topic. Formative assessment is one key…

  17. Final Priority. Rehabilitation Training: Vocational Rehabilitation Workforce Innovation Technical Assistance Center. Final priority.



    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Rehabilitation Training program. The Assistant Secretary may use this priority for competitions in fiscal year 2015 and later years. We take this action to provide training and technical assistance to State vocational rehabilitation agencies to improve services under the State Vocational Rehabilitation Services program and State Supported Employment Services program for individuals with disabilities, including those with the most significant disabilities, and to implement changes to the Rehabilitation Act of 1973, as amended by the Workforce Innovation and Opportunity Act (WIOA), signed into law on July 22, 2014. PMID:26292366

  18. BPA-Solicited Technical Review of "Echo Meadows Project Winter Artificial Recharge: Final Report for 2001 Baseline", Technical Report 2004.

    SciTech Connect

    Morgan, David


    The purpose of this report was to provide, at BPA's request, a technical review of interim products received for Project 2001-015-00 under contract 6925. BPA sometimes solicits technical reviews for Fish and Wildlife products or issues where outside expertise is required. External review of complex project deliverables assures BPA as a funding agency that the contractor is continuing with scientifically-credible experimental techniques envisioned in the original proposal. If the project's methodology proves feasible, there could be potential applications beyond the project area to similar situations in the Columbia Basin. The Experiment involves artificial flooding during high flow periods and a determination of the portion of the return flows that end up in the Umatilla River during low flow months and within acceptable water quality parameters (e.g., low temperature, few contaminants). Flooding could be a critical water source for aquatic organisms at times of the year when flows in the lower reaches of the Umatilla River are low and water is warmer than would be desired. The experiment was proposed to test whether 'this process, recharges the shallow aquifers of the old flood plain, for natural filtration through the alluvial soils as it returns to the Umatilla River, cleaner and cooler (about 50 degree Fahrenheit) five to six month later (about July and August) substantially cooling the river and [making it] more beneficial to anadromous [fish]'. A substantial amount of preliminary data had been collected and preliminary results were submitted in an interim report 'Echo Meadows Project Winter Artificial Recharge: Final Report for 2001 Baseline (December 2002)'. A substantial amount of addition funding was provided for the last cycle of flooding (Phases II) and final analyses of the full compliment of data collected over the life of the contract (Phase III). Third party scientific review may assist the contractor in producing a higher quality Final Report with

  19. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    SciTech Connect

    Fornetti, Micheal; Freeman, Douglas


    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  20. Technical area status report for low-level mixed waste final waste forms. Volume 1

    SciTech Connect

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.


    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  1. Technical approach to finalizing sensible soil cleanup levels at the Fernald Environmental Management Project

    SciTech Connect

    Carr, D.; Hertel, B.; Jewett, M.; Janke, R.; Conner, B.


    The remedial strategy for addressing contaminated environmental media was recently finalized for the US Department of Energy`s (DOE) Fernald Environmental Management Project (FEMP) following almost 10 years of detailed technical analysis. The FEMP represents one of the first major nuclear facilities to successfully complete the Remedial Investigation/Feasibility Study (RI/FS) phase of the environmental restoration process. A critical element of this success was the establishment of sensible cleanup levels for contaminated soil and groundwater both on and off the FEMP property. These cleanup levels were derived based upon a strict application of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations and guidance, coupled with positive input from the regulatory agencies and the local community regarding projected future land uses for the site. The approach for establishing the cleanup levels was based upon a Feasibility Study (FS) strategy that examined a bounding range of viable future land uses for the site. Within each land use, the cost and technical implications of a range of health-protective cleanup levels for the environmental media were analyzed. Technical considerations in driving these cleanup levels included: direct exposure routes to viable human receptors; cross- media impacts to air, surface water, and groundwater; technical practicality of attaining the levels; volume of affected media; impact to sensitive environmental receptors or ecosystems; and cost. This paper will discuss the technical approach used to support the finalization of the cleanup levels for the site. The final cleanup levels provide the last remaining significant piece to the puzzle of establishing a final site-wide remedial strategy for the FEMP, and positions the facility for the expedient completion of site-wide remedial activities.

  2. Final Technical Report of Project DE-FG02-96ER14647

    SciTech Connect

    Lundeen, Stephen R.


    This is the final technical report of work completed under DOE support over the period Sept. 1, 1996 until May 31, 2015. The title of the project was "Ion/Excited Atom Collision Studies with a Rydberg Target and a CO2 Laser" from 9/1/96 to 10/31/06, and "Properties of Actinide Ions from Measurements of Rydberg Ion Fine Structure" from 11/1/06 until 5/31/15. The primary technical results were a detailed experimental study of resonant charge transfer between Rydberg atoms and highly-charged ions, and unique measurements of many properties of multiply-charged Thorium ions.

  3. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    SciTech Connect


    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed.

  4. Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant

    SciTech Connect

    Weinstein-Lloyd, Judith B


    This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

  5. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Sussman, Alan


    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  6. Experimental Program Final Technical Progress Report: 15 February 2007 to 30 September 2012

    SciTech Connect

    Kinney, Edward R.


    This is the final technical report of the grant DE-FG02-04ER41301 to the University of Colorado at Boulder entitled "Intermediate Energy Nuclear Physics" and describes the results of our funded activities during the period 15 February 2007 to 30 September 2012. These activities were primarily carried out at Fermilab, RHIC, and the German lab DESY. Significant advances in these experiments were carried out by members of the Colorado group and are described in detail.

  7. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    SciTech Connect

    Bates, C.E.; Griffin, J.; Giese, S.R.; Lane, A.M.


    This is the final report covering work performed on research into methods of attaining clean ferrous castings. In this program methods were developed to minimize the formation of inclusions in steel castings by using a variety of techniques which decreased the tendency for inclusions to form during melting, casting and solidification. In a second project, a reaction chamber was built to remove inclusions from molten steel using electromagnetic force. Finally, a thorough investigation of the causes of sand penetration defects in iron castings was completed, and a program developed which predicts the probability of penetration formation and indicates methods for avoiding it.

  8. 1996 SPE annual technical conference and exhibition: Formation evaluation and reservoir geology

    SciTech Connect


    This document contains the Proceedings of the 1996 Society of Petroleum Engineers Annual Technical Conference and Exhibition, Formation Evaluation and Reservoir Geology section. Topics covered in this section include the evaluation of reservoir engineering and resource management techniques for oil and natural gas fields, data acquisition methods for reservoir characterization, description of problems and maintenance techniques for fluid flow in oil wells, and technology assessment of well logging instrumentation for formation evaluation and reservoir characterization.

  9. Survey of Reader Preferences Concerning the Format of NASA Technical Reports.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; And Others

    This report presents the results of internal and external surveys of engineers and scientists at Langley Research Center and in the academic and industrial communities concerning the format of technical reports of the National Aeronautics and Space Administration (NASA). After stating the purpose of the study and defining the terms, the report…

  10. Optics and materials research for controlled radiant energy transfer in buildings. Final technical report

    SciTech Connect

    Goldner, R.B.


    The primary objective of this project was to perform the optics and materials research necessary to identify and solve the technical problems associated with fabricating durable, variable reflectivity electrochromic windows for energy efficient buildings and vehicles. The research performed at the Tufts Electro-Optics Technology Center (EOTC) has identified and solved nearly all the significant problems, as discussed below in this final technical report. There still remains, however, one important problem to be solved--i.e., to better understand the science of deposition processes and thereby develop and optimize one or more production-worthy deposition processes that could be used for the practical production of affordable, variable reflectivity electrochromic windows. Therefore, it is recommended that such studies be carried out with the goals of: (1) determining the probable practical limits of performance; and, very importantly, (2) to develop and optimize deposition processes that could be used for the practical production of affordable electrochromic windows.

  11. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    SciTech Connect

    Anderson, Scott; Baca, Georgina; O'Connor, Michael


    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  12. Final Technical Report on DOE Grant for Modeling of Plasma Rotation in the National Spherical Torus Experiment

    SciTech Connect

    Shaing, K. C.


    This is the final technical report on the Modeling of Plasma Rotation in National Spherical Torus Experiment (NSTX) DOE Grant No. DE-FG02-02ER54679. The research subjects, technical abstracts, and publications where details of the research results can be found are reported here.

  13. Alumina reinforced tetragonal zirconia (TZP) composites. Final technical report, July 1, 1993--December 31, 1996

    SciTech Connect

    Shetty, D.K.


    This final technical report summarizes the significant research results obtained during the period July 1, 1993 through December 31, 1996 in the DOE-supported research project entitled, {open_quotes}Alumina Reinforced Tetragonal Zirconia (TZP) Composites{close_quotes}. The objective of the research was to develop high-strength and high-toughness ceramic composites by combining mechanisms of platelet, whisker or fiber reinforcement with transformation toughening. The approach used included reinforcement of Celia- or yttria-partially-stabilized zirconia (Ce-TZP or Y-TZP) with particulates, platelets, or continuous filaments of alumina.

  14. DE-FG02-04ER63746 FinalTechnicalReport

    SciTech Connect

    Lidstrom, M.E.


    This is the final technical report for a project involving the study of stress response systems in the radiation-resistant bacterium, Deinococcus radiodurans. Three stresses of importance for a mixed waste treatment strain were studied, heat shock, solvent shock, and phosphate starvation. In each case, specific genes involved in the ability to survive the stress were identified using a systems biology approach, and analysis of mutants was used to understand mechanisms. This study has led to increased understanding of the ways in which a potential treatment strain could be manipulated to survive multiple stresses for treatment of mixed wastes.

  15. [Tampa Electric Company IGCC project]. Final public design report; Technical progress report

    SciTech Connect


    This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.

  16. Opportunities given by final degree dissertations inside the EHEA to enhance ethical learning in technical education

    NASA Astrophysics Data System (ADS)

    Román-Suero, S.; Sánchez-Martín, J.; Zamora-Polo, F.


    Final degree dissertations in cooperation and development (FDDCD) can be a suitable tool for raising the awareness of the university community. In this paper the paradigmatic actions made in this frame in the University of Extremadura for the last five years have been analysed with the aim of elucidating the possible ways to improve the teaching-learning process. For this target, FDDCDs have to be included in a learning project that is designed according to the needs and circumstances of each student. In this way, both the ethics and technical knowledge of future professionals are enhanced.

  17. Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report

    SciTech Connect


    This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

  18. Chemistry of organic aerosol formation in urban atmospheres. Final report

    SciTech Connect

    Seinfeld, J.H.; Flagan, R.C.


    Aerosol formation from the photooxidation of A-pinene/NOx and B-pinene/NOx mixtures has been investigated in a series of outdoor smog chamber experiments. Both hydrocarbons are potent aerosol formers and in areas containing significant vegetation, terpenes are estimated to be a significant contributor to secondary organic aerosol formation. To model organic aerosol formation, estimates of the vapor pressures of the condensable species are needed. To measure the vapor pressures of the low volatility species characteristic of organic aerosols the Tandem Differential Mobility Analyzer (TDMA) method introduced by Liu and McMurray has been further developed for this task. Initial experiments with compounds of known vapor pressure confirm the usefulness of the method.

  19. Formation of nitrosamines under denitrification conditions. Final report

    SciTech Connect

    Kaplan, D.L.; Cowburn, S.; Kaplan, A.M.


    The formation of nitrosamines under denitrification conditions was evaluated as part of the Army's program on pollution abatement. Various amines (dimethyl-diethanol-, dipropyl- and dibutyl-) were evaluated in batch and/or continuous culture microbial systems under anaerobic conditions with high nitrate loads. With the exception of dimethylamine, tha amines do not form detectable concentrations of the corresponding nitrosamines in the alkaline denitrificatioin systems. N-nitrosodimethylamine (NDMA) is detected in part per billion concentrations in many of these systems. The formation of NDMA is apparently not biologically mediated in the batch systems, however, the reason for its formation in the continuous systems is not clear. The contribution of microbially produced catalysts and the role of the intracellular environment in the reactions is discussed.

  20. Perceptions, Expectations, and Career Formation. Final Report: July 1980.

    ERIC Educational Resources Information Center

    Jacobson, Anne L.; And Others

    A study is reported which focused on career formation including ways in which perceptions and expectations are modified by changing economic and social conditions. Chapter 2 overviews the twenty-three tables in this report which highlight results of analysis of data from two Institute for Demographic and Economic Studies, Inc. surveys and the…

  1. Survey of reader preferences concerning the format of NASA technical reports

    NASA Technical Reports Server (NTRS)

    Pinelli, T. E.; Glassman, M.; Cordle, V. M.


    A survey was conducted to determine the opinions of readers concerning the format (organization) of NASA technical reports and usage of technical report components. A survey questionnaire was sent to 513 LaRC engineers and scientists and 600 engineers and scientists from three (3) professional/technical societies. The response rates were 74 and 85 percent, respectively. The questionnaire included the order in which users read report components, the components reviewed or read to determine whether to read a report, report components which could be deleted, the desirability of a table of contents, the desirability of both a summary and abstract, the location of the symbols list and glossary, the integration of illustrative material, the preferred format for reference citations, column layout and right margin treatment, and person/voice. The results of the reader preference survey indicated that the conclusion was the component most often ready by survey respondents. The summary, conclusion, abstract, title page, and introduction were the components used most frequently to determine if a report would actually be read. Respondents indicated that a summary as well as an abstract should be included, that the definition of symbols and glossary of terms should be located in the front of the report, and that illustrative material should be integrated with the text rather than grouped at the end of the report. Citation by number was the preferred format for references. A one-column, ragged right margin was preferred. Third person, passive voice was the style of writing preferred by the respondents.

  2. CO/sub 2/ formation damage study. Final report

    SciTech Connect

    Patton, J.T.


    The literature did provide insight into four possible damage mechanisms, namely: (1) precipitation of reservoir mineral in the vicinity around the producing well as carbon dioxide escapes from the water phase due to pressure draw down; (2) plugging of reservoir interstices by insoluble organic solids precipitated as the carbon dioxide dissolves in crude oil; (3) formation of an immobile gas phase, predominately CO/sub 2/, which would drastically lower the effective permeability to oil and, especially water; and (4) dissolution of cementation, especially carbonates or feldspars, that could allow fines to migrate in the reservoir and plug tiny flow passages. Each of these mechanisms was investigated in depth during the laboratory experiments. Occasional reports from industry suggested that the use of carbon dioxide to enhance the recovery of tertiary oil might be causing formation damage. This project was undertaken to define the mechanisms responsible for such occurrences. The objectives were threefold: (1) provide a comprehensive literature survey to elicit all that is currently known or suspected, relative to formation damage that might occur during the injection of carbon dioxide into an oil reservoir; (2) under simulated reservoir conditions, demonstrate in the laboratory each of the damage mechanisms and quantify the degree to which each mechanism could cause damage; and (3) for those damage mechanisms identified to be significant, develop a feasible remedy, easily applied in actual field operations. The third mechanism, related to the presence of an immobile gas phase, is a real problem but not unique to the injection of carbon dioxide. In the case of carbon dioxide, the damage should be self-correcting, as the solubility of carbon dioxide in water will eventually allow the water to dissolve away the gas and, hence, the blocking effect.

  3. DOE final report: Studies on the microbial formation of methane

    SciTech Connect

    Wolfe, Ralph S.


    The microbial formation of methane is carried out by methanogens which are found wherever active anaerobic degradation of organic matter occurs. We developed a procedure for reliable culture of 'Methanococus jannaschii' which yields 8 g wet weight of cells per liter of medium. To initiate a study of proteomics, this organism was grown at two levels of hydrogen partial pressure, very low (650 Pa) and high (178 kPa). When cells were exposed to hydrogen excess conditions, they possessed very low or undetectable levels of four flagella-related polypeptides, whereas, when hydrogen became limiting, these proteins were synthesized. Thus, use of proteomics showed, for the first time, that this methanogen can regulate expression of proteins, and these experiments open the door for general studies of regulation in this hyperthermophile.

  4. Burning of hazardous waste in boilers and industrial furnaces--EPA. Final rule: corrections; technical amendments.



    On February 21, 1991, the Environmental Protection Agency (EPA) published a final rule to regulate air emissions from the burning of hazardous waste in boilers and industrial furnaces (56 FR 7134). Today's notice corrects typographical and editorial errors that appeared in the regulatory text, including corrections to appendices II and III, and adds two appendices, appendix IX and appendix X, to part 266. Appendices IX and X were not ready at the time of publication; therefore, a note was placed in the appropriate location in the rule to inform readers that these appendices were to be published at a later date. Copies of these appendices were, however, made available to the public through the RCRA Docket maintained at EPA and through the National Technical Information Service (NTIS). PMID:10112734

  5. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    SciTech Connect


    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  6. Final Technical Report for Grant DE-FG02-04ER54795

    SciTech Connect

    Merlino, Robert L


    This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technological plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.

  7. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    SciTech Connect

    Saurwein, John


    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  8. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    SciTech Connect

    Aiken, George


    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  9. Formation and retention of methane in coal. Final report

    SciTech Connect

    Hucka, V.J.; Bodily, D.M.; Huang, H.


    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  10. Green River Formation water flood demonstration project. Final report

    SciTech Connect

    Pennington, B.I.; Dyer, J.E.; Lomax, J.D. |; Deo, M.D.


    The objectives of the project were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter core, Formation Micro Imaging (FMI) logs from several wells and Magnetic Resonance Imaging (MRI) logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using high-temperature gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2,000 barrels per day.

  11. Final report of the UMTRA independent technical review of TAC audit programs

    SciTech Connect

    Not Available


    This report details the findings of an Independent Technical Review (ITR) of practices and procedures for the Uranium Mill Tailings Remedial Action (UMTRA) Project audit program. The audit program is conducted by Jacobs Engineering Group Inc., the Technical Assistance Contractor (TAC) for the UMTRA Project. The purpose of the ITR was to ensure that the TAC audit program is effective and is conducted efficiently. The ITR was conducted from May 16-20, 1994. A review team observed audit practices in the field, reviewed the TAC audit program`s documentation, and discussed the program with TAC staff and management. The format of this report has been developed around EPA guidelines; they comprise most of the major section headings. Each section begins by identifying the criteria that the TAC program is measured against, then describing the approach used by the ITR team to measure each TAC audit program against the criteria. An assessment of each type of audit is then summarized for each component in the following order: Radiological audit summary; Health and safety audit summary; Environmental audit summary; Quality assurance audit summary.

  12. Formation evaluation and reservoir geology. 1995 SPE annual technical conference and exhibition

    SciTech Connect


    This document contains the proceedings of the Annual Technical Conference and Exhibition of the Society of Petroleum Engineers which was held on October 22-25, 1995 in Dallas, Texas. This volume contains the presentations regarding Formation Evaluation and Reservoir Geology. The topics covered in these presentations include: resource management and reservoir engineering of oil, natural gas and gas condensate fields, magnetic, electrical, and seismic surveys of reservoir rock, mathematical models and computerized simulation of fluid flow in reservoir rock, geochemistry of reservoir fluids, and enhanced recovery of oil and natural gas using waterflooding and other secondary recovery methods. Team approaches to reservoir characterization using geology, geophysics, and petroleum engineering are also described.

  13. Soot formation in synthetic-fuel droplets. First quarterly technical progress report

    SciTech Connect

    England, G.; Kramlich, J.; Payne, R.


    The objective of this project is to provide detailed information on methods of minimizing soot formation during synthetic liquid fuel combustion under conditions which minimize fuel nitrogen conversion to nitric oxide. The program consists of two tasks. The purpose of the first task, Fuel Screening Studies, is to investigate the impact of fuel properties on particulate production, to establish the importance of droplet size and examine atomizer effects, and to develop techniques for surrogate fuels productions. In the second task, Flame Studies, the fundamental details of soot formation from synfuel droplet combustion will be investigated in variable slip velocity configurations. This present report describes technical progress during the first three months of the program effort (October-December 1980). During this initial period, attention has focused on the definition of the different experimental efforts and on the design and construction of the required hardware. Aspects of this work are discussed.

  14. Learning about Equipment from Technical Documentation: A Basic Comprehensible Writing Aid. Final Report. Technical Report No. 31.

    ERIC Educational Resources Information Center

    Kieras, David E.

    Theoretical and empirical work was conducted on the role of the "mental model," or how-it-works information, in learning to operate equipment. The original project was concerned with empirical and cognitive modeling studies of how people learn to operate equipment from the kind of information contained in technical documentation. The goal was to…

  15. Final Technical Report: "Representing Endogenous Technological Change in Climate Policy Models: General Equilibrium Approaches"

    SciTech Connect

    Ian Sue Wing


    The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal

  16. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    SciTech Connect

    Zhu, Charles


    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical information

  17. Semiconductor electrochemistry of coal pyrite. Final technical report, September 1990--September 1995

    SciTech Connect

    Osseo-Asare, K.; Wei, Dawei


    This project seeks to advance the fundamental understanding of the physico-chemical processes occurring at the pyrite/aqueous interface, in the context of coal cleaning, coal desulfurization, and acid mine drainage. Central to this research is the use of synthetic microsize particles of pyrite as model microelectrodes to investigate the semiconductor electrochemistry of pyrite. The research focuses on: (a) the synthesis of microsize particles of pyrite in aqueous solution at room temperature, (b) the formation of iron sulfide complex, the precursor of FeS or FeS{sub 2}, and (c) the relationship between the semiconductor properties of pyrite and its interfacial electrochemical behavior in the dissolution process. In Chapter 2, 3 and 4, a suitable protocol for preparing microsize particles of pyrite in aqueous solution is given, and the essential roles of the precursors elemental sulfur and ``FeS`` in pyrite formation are investigated. In Chapter 5, the formation of iron sulfide complex prior to the precipitation of FeS or FeS{sub 2} is investigated using a fast kinetics technique based on a stopped-flow spectrophotometer. The stoichiometry of the iron sulfide complex is determined, and the rate and formation constants are also evaluated. Chapter 6 provides a summary of the semiconductor properties of pyrite relevant to the present study. In Chapters 7 and 8, the effects of the semiconductor properties on pyrite dissolution are investigated experimentally and the mechanism of pyrite dissolution in acidic aqueous solution is examined. Finally, a summary of the conclusions from this study and suggestions for future research are presented in Chapter 9.

  18. 48 CFR 252.235-7011 - Final scientific or technical report.

    Code of Federal Regulations, 2014 CFR


    ... contract to the Defense Technical Information Center, Attn: DTIC-O, 8725 John J. Kingman Road, Fort Belvoir... Technical Information Center or follow the instructions at (End of clause)...

  19. 48 CFR 252.235-7011 - Final scientific or technical report.

    Code of Federal Regulations, 2010 CFR


    ... contract to the Defense Technical Information Center, Attn: DTIC-O, 8725 John J. Kingman Road, Fort Belvoir... Technical Information Center or follow the instructions at (End of clause)...

  20. 48 CFR 252.235-7011 - Final scientific or technical report.

    Code of Federal Regulations, 2011 CFR


    ... contract to the Defense Technical Information Center, Attn: DTIC-O, 8725 John J. Kingman Road, Fort Belvoir... Technical Information Center or follow the instructions at (End of clause)...

  1. 48 CFR 252.235-7011 - Final scientific or technical report.

    Code of Federal Regulations, 2013 CFR


    ... contract to the Defense Technical Information Center, Attn: DTIC-O, 8725 John J. Kingman Road, Fort Belvoir... Technical Information Center or follow the instructions at (End of clause)...

  2. 48 CFR 252.235-7011 - Final scientific or technical report.

    Code of Federal Regulations, 2012 CFR


    ... contract to the Defense Technical Information Center, Attn: DTIC-O, 8725 John J. Kingman Road, Fort Belvoir... Technical Information Center or follow the instructions at (End of clause)...

  3. Studying the Cost and Value of Library Services: Final Report. Technical Report APLAB/94-3/1,2,3,4.

    ERIC Educational Resources Information Center

    Kantor, Paul B.; And Others

    This is the final technical report (in three parts) of a 15-month long project to study the costs and value of library functions at five major research libraries. Twenty-one services or service aspects were studied, and numerous measures of the importance or benefit of the service to the users were made. These measures were studied together to lay…

  4. An Inquiry into Testing of Information Retrieval Systems. Comparative Systems Laboratory Final Technical Report, Part III: CSL Related Studies.

    ERIC Educational Resources Information Center

    Zull, Carolyn Gifford, Ed.; And Others

    This third volume of the Comparative Systems Laboratory (CSL) Final Technical Report is a collection of relatively independent studies performed on CSL materials. Covered in this document are studies on: (1) properties of files, including a study of the growth rate of a dictionary of index terms as influenced by number of documents in the file and…

  5. Selected Alternatives for Serving More High School-Aged Students in the Vocational-Technical Schools. Final Report.

    ERIC Educational Resources Information Center

    Peat, Marwick, Mitchell, and Co., Hartford, CT.

    This final report discusses a project designed to study increased use of the 16 vocational-technical (VT) schools in Connecticut to serve more individuals of high school age; compare advantages and disadvantages of feasible alternatives; and recommend viable approaches for increasing facility use for serving more individuals. Chapter I outlines…

  6. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect


    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  7. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    SciTech Connect

    Bender, W.


    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  8. 77 FR 43405 - Final Standard Review Plan, Branch Technical Position 7-19 on Guidance for Evaluation of...

    Federal Register 2010, 2011, 2012, 2013, 2014


    ... COMMISSION Final Standard Review Plan, Branch Technical Position 7-19 on Guidance for Evaluation of Diversity... ``Guidance for Evaluation of Diversity and Defense-in-Depth in Digital Computer-Based Instrumentation and Control Systems.'' This BTP is to be cited as the acceptance criteria for Diversity and...

  9. Transfer and Use of Training Technology in Air Force Technical Training: A Model to Guide Training Development. Final Report.

    ERIC Educational Resources Information Center

    Haverland, Edgar M.

    This guide describes the final stage in a project to develop an Air Force technical training development model and presents the model. Chapter 1 summarizes the total project and its objective to facilitate the effective use of training technology through the development of a model for matching training approaches or innovations with specific…

  10. An Approach to Developing Independent Learning and Non-Technical Skills Amongst Final Year Mining Engineering Students

    ERIC Educational Resources Information Center

    Knobbs, C. G.; Grayson, D. J.


    There is mounting evidence to show that engineers need more than technical skills to succeed in industry. This paper describes a curriculum innovation in which so-called "soft" skills, specifically inter-personal and intra-personal skills, were integrated into a final year mining engineering course. The instructional approach was designed to…

  11. 77 FR 47495 - Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting-National...

    Federal Register 2010, 2011, 2012, 2013, 2014


    ... (NPP) for this competition in the Federal Register on May 4, 2012 (77 FR 26522). That notice contained... State Data Collection, Analysis, and Reporting--National IDEA Technical Assistance Center on Early...; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical...

  12. A Revision of Technical Mathematics Based on the NCTM Standards. Final Report.

    ERIC Educational Resources Information Center

    Near, Barbara

    Between 1993 and 1996, Henry Ford Community College (Michigan) worked with business, industry, and technical instructors to revise their Technical Mathematics program in accordance with the National Council of Teachers of Mathematics (NCTM) Standards. The purpose of the project was to restructure the technical math curriculum and create a context…

  13. Vadose zone microbial community structure and activity in metal/radionuclide contaminated sediments. Final technical report

    SciTech Connect

    Balkwill, David L.


    This final technical report describes the research carried out during the final two months of the no-cost extension ending 11/14/01. The primary goals of the project were (1) to determine the potential for transformation of Cr(VI) (oxidized, mobile) to Cr(III) (reduced, immobile) under unsaturated conditions as a function of different levels and combinations of (a) chromium, (b) nitrate (co-disposed with Cr), and (c) molasses (inexpensive bioremediation substrate), and (2) to determine population structure and activity in experimental treatments by characterization of the microbial community by signature biomarker analysis and by RT-PCR and terminal restriction fragment length polymorphism (T-RFLP) and 16S ribosomal RNA genes. It was determined early in the one-year no-cost extension period that the T-RFLP approach was problematic in regard to providing information on the identities of microorganisms in the samples examined. As a result, it could not provide the detailed information on microbial community structure that was needed to assess the effects of treatments with chromium, nitrate, and/or molasses. Therefore, we decided to obtain the desired information by amplifying (using TR-PCR, with the same primers used for T-RFLP) and cloning 16S rRNA gene sequences from the same RNA extracts that were used for T-RFLP analysis. We also decided to use a restriction enzyme digest procedure (fingerprinting procedure) to place the clones into types. The primary focus of the research carried out during this report period was twofold: (a) to complete the sequencing of the clones, and (b) to analyze the clone sequences phylogenetically in order to determine the relatedness of the bacteria detected in the samples to each other and to previously described genera and species.

  14. Final Technical Report - SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodynamics

    SciTech Connect

    Schnack, Dalton D.


    Final technical report for research performed by Dr. Thomas G. Jenkins in collaboration with Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Wave Interactions with Magnetohydrodyanics, DE-FC02-06ER54899, for the period of 8/15/06 - 8/14/11. This report centers on the Slow MHD physics campaign work performed by Dr. Jenkins while at UW-Madison and then at Tech-X Corporation. To make progress on the problem of RF induced currents affect magnetic island evolution in toroidal plasmas, a set of research approaches are outlined. Three approaches can be addressed in parallel. These are: (1) Analytically prescribed additional term in Ohm's law to model the effect of localized ECCD current drive; (2) Introduce an additional evolution equation for the Ohm's law source term. Establish a RF source 'box' where information from the RF code couples to the fluid evolution; and (3) Carry out a more rigorous analytic calculation treating the additional RF terms in a closure problem. These approaches rely on the necessity of reinvigorating the computation modeling efforts of resistive and neoclassical tearing modes with present day versions of the numerical tools. For the RF community, the relevant action item is - RF ray tracing codes need to be modified so that general three-dimensional spatial information can be obtained. Further, interface efforts between the two codes require work as well as an assessment as to the numerical stability properties of the procedures to be used.

  15. A configuration space toolkit for automated spatial reasoning: Technical results and LDRD project final report

    SciTech Connect

    Xavier, P.G.; LaFarge, R.A.


    A robot`s configuration space (c-space) is the space of its kinematic degrees of freedom, e.g., the joint-space of an arm. Sets in c-space can be defined that characterize a variety of spatial relationships, such as contact between the robot and its environment. C-space techniques have been fundamental to research progress in areas such as motion planning and physically-based reasoning. However, practical progress has been slowed by the difficulty of implementing the c-space abstraction inside each application. For this reason, we proposed a Configuration Space Toolkit of high-performance algorithms and data structures meeting these needs. Our intent was to develop this robotics software to provide enabling technology to emerging applications that apply the c-space abstraction, such as advanced motion planning, teleoperation supervision, mechanism functional analysis, and design tools. This final report presents the research results and technical achievements of this LDRD project. Key results and achievements included (1) a hybrid Common LISP/C prototype that implements the basic C-Space abstraction, (2) a new, generic, algorithm for constructing hierarchical geometric representations, and (3) a C++ implementation of an algorithm for fast distance computation, interference detection, and c-space point-classification. Since the project conclusion, motion planning researchers in Sandia`s Intelligent Systems and Robotics Center have been using the CSTk C++ library. The code continues to be used, supported, and improved by projects in the ISRC.

  16. Rawlins UCG Demonstration Project. Final technical progress report, January 1, 1987--February 9, 1988

    SciTech Connect

    Not Available


    Department of Energy Participation in the Rawlins UCG Demonstration Project began officially on November 9, 1987. Even though their financial participation began at this time, they will receive technical information from the start of the project which was on January 1, 1987. The Rawlins UCG Demonstration Project is progressing in Phase I with the majority of the emphasis on facility design, site characterization and the environmental work. The site characterization field work is estimated to be completed by the end of February with the final report completion towards the end of Phase I. The facility design effort is close to the 40% level. It is anticipated that all permits will be applied for in Phase I and most of them will be granted by the end of Phase I. The obtaining of the private financing continues to be a major activity in the project. All of the financing must be in place before the continuation for DOE funding to Phase II will be applied for.

  17. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    SciTech Connect

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.


    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  18. Final Technical Report: "New Tools for Physics with Low-energy Antimatter"

    SciTech Connect

    Surko, Clifford M.


    The objective of this research is to develop new tools to manipulate antimatter plasmas and to tailor them for specific scientific and technical uses. The work has two specific objectives. One is establishing the limits for positron accumulation and confinement in the form of single-component plasmas in Penning-Malmberg traps. This technique underpins a wealth of antimatter applications. A second objective is to develop an understanding of the limits for formation of cold, bright positron beams. The research done in this grant focused on particular facets of these goals. One focus was extracting tailored beams from a high-field Penning-Malmberg trap from the magnetic field to form new kinds of high-quality electrostatic beams. A second goal was to develop the technology for colder trap-based beams using a cryogenically cooled buffer gas. A third objective was to conduct the basic plasma research to develop a new high-capacity multicell trap (MCT) for research with antimatter. Progress is reported here in all three areas. While the goal of this research is to develop new tools for manipulating positrons (i.e., the antiparticles of electrons), much of the work was done with test electron plasmas for increased data rate. Some of the techniques developed in the course of this work are also relevant to the manipulation and use of antiprotons.

  19. Conceptual model for regional radionuclide transport from a basalt repository site. Final draft, technical memorandum

    SciTech Connect

    Walton, W.C.; Voorhees, M.L.; Prickett, T.A.


    This technical memorandum was prepared to: (1) describe a typical basalt radionuclide repository site, (2) describe geologic and hydrologic processes associated with regional radionuclide transport in basalts, (3) define the parameters required to model regional radionuclide transport from a basalt repository site, and (4) develop a ''conceptual model'' of radionuclide transport from a basalt repository site. In a general hydrological sense, basalts may be described as layered sequences of aquifers and aquitards. The Columbia River Basalt, centered near the semi-arid Pasco Basin, is considered by many to be typical basalt repository host rock. Detailed description of the flow system including flow velocities with high-low hydraulic conductivity sequences are not possible with existing data. However, according to theory, waste-transport routes are ultimately towards the Columbia River and the lengths of flow paths from the repository to the biosphere may be relatively short. There are many physical, chemical, thermal, and nuclear processes with associated parameters that together determine the possible pattern of radionuclide migration in basalts and surrounding formations. Brief process descriptions and associated parameter lists are provided. Emphasis has been placed on the use of the distribution coefficient in simulating ion exchange. The use of the distribution coefficient approach is limited because it takes into account only relatively fast mass transfer processes. In general, knowledge of hydrogeochemical processes is primitive.

  20. Final Technical Report, Grant DE-FG02-87ER13714, "Fundamental Studies of Metastable Liquids"

    SciTech Connect

    Pablo G. Debenedetti


    Grant DE-FG02-87ER13714 supported fundamental work on the physical properties of metastable liquids from 6/1/87 to 4/30/08. Renewal proposals were submitted every three years (1990, 1993, 1996, 1999, 2002, 2005), and included, in every case, a detailed Final Technical Report on the previous three years. Accordingly, the bulk of this report covers the final 2-year period 5/1/06 to 4/30/08 of this grant, which is not covered in any of the previous Final Technical Reports. This is preceded by a brief overview of the main research objectives and principal accomplishments during these very fruitful and productive 21 years of DOE-funded research.

  1. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    NASA Astrophysics Data System (ADS)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael


    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and

  2. SeaWiFS Technical Report Series. Volume 43; SeaWiFS Prelaunch Technical Report Series Final Cumulative Index

    NASA Technical Reports Server (NTRS)

    Firestone, Elaine R. (Editor); Hooker, Stanford B.


    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, on the SeaStar satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566 and 1998-104566. All reports published are volumes within the series. This particular volume, which is the last of the so-called Prelaunch Series serves as a reference, or guidebook, to the previous 42 volumes and consists of 6 sections including: an addenda, an errata, an index to key words and phrases, lists of acronyms and symbols used, and a list of all references cited. The editors have published a cumulative index of this type after every five volumes. Each index covers the reference topics published in all previous editions, that is, each new index includes all of the information contained in the preceding indexes with the exception of any addenda.

  3. Technical and economical feasibility of buffalo gourd as a novel energy crop: Final report

    SciTech Connect

    Goldstein, B.


    The New Mexico Solar Energy Institute at NMSU has conducted a two-year investigation into the technical and economic feasibility of using the buffalo gourd plant as an energy feedstock in eastern New Mexico. The New Mexico buffalo gourd project conducted field planting trials to determine optimum planting density, fertilizer levels, and irrigation regime. Starchy roots produced by the field plantings were evaluated as an ethanol feedstock at both laboratory and pilot scale. These studies indicate that buffalo gourd is well suited for root production in eastern New Mexico. Current cultivars of buffalo gourd can be most efficiently produced under dry land farming conditions with little, if any, supplemental fertilizer. Traditional plant breeding techniques can be profitably employed on the buffalo gourd to breed a size and shape of root more easily harvested by existing farm machinery. Because of its sensitivity to root rot, buffalo gourd must be grown in well drained soils. Finally, buffalo gourd has been shown to be an excellent feedstock for ethanol production provided necessary pre-fermentation processing (chopping of roots) is performed correctly. A model was created to determine the economic feasibility of growing buffalo gourd in eastern New Mexico. It was determined that the net return to a farmer in eastern New Mexico can be higher planting buffalo gourd than many traditionally grown crops because of buffalo gourd's low water and fertilizer requirements. The model further indicates that net return is heavily influenced by root yield. Continued research is needed to optimize buffalo gourd root yield, as well as root size and shape, disease resistance, etc. A clearly defined R and D agenda and commercialization strategy is presented and discussed. Buffalo gourd has been demonstrated to have high potential as an alternative feedstock for ethanol production in eastern New Mexico. 128 refs., 9 figs., 28 tabs.

  4. Final Technical Report. DeepCwind Consortium Research Program. January 15, 2010 - March 31, 2013

    SciTech Connect

    Dagher, Habib; Viselli, Anthony; Goupee, Andrew; Thaler, Jeffrey; Brady, Damian; Browne, Peter; Browning, James; Chung, Jade; Coulling, Alexander; Deese, Heather; Fowler, Matthew; Holberton, Rebecca; Anant, Jain; Jalbert, Dustin; Johnson, Theresa; Jonkman, Jason; Karlson, Benjamin; Kimball, Richard; Koo, Bonjun; Lackner, Matthew; Lambrakos, Kostas; Lankowski, Matthew; Leopold, Adrienne; Lim, Ho-Joon; Mangum, Linda; Martin, Heather; Masciola, Marco; Maynard, Melissa; McCleave, James; Mizrahi, Robert; Molta, Paul; Pershing, Andrew; Pettigrew, Neal; Prowell, Ian; Qua, Andrew; Sherwood, Graham; Snape, Thomas; Steneck, Robert; Stewart, Gordon; Stockwell, Jason; Swift, Andrew H. P.; Thomas, Dale; Viselli, Elizabeth; Zydlewski, Gayle


    This is the final technical report for the U.S. Department of Energy-funded program, DE-0002981: DeepCwind Consortium Research Program. The project objective was the partial validation of coupled models and optimization of materials for offshore wind structures. The United States has a great opportunity to harness an indigenous abundant renewable energy resource: offshore wind. In 2010, the National Renewable Energy Laboratory (NREL) estimated there to be over 4,000 GW of potential offshore wind energy found within 50 nautical miles of the US coastlines (Musial and Ram, 2010). The US Energy Information Administration reported the total annual US electric energy generation in 2010 was 4,120 billion kilowatt-hours (equivalent to 470 GW) (US EIA, 2011), slightly more than 10% of the potential offshore wind resource. In addition, deep water offshore wind is the dominant US ocean energy resource available comprising 75% of the total assessed ocean energy resource as compared to wave and tidal resources (Musial, 2008). Through these assessments it is clear offshore wind can be a major contributor to US energy supplies. The caveat to capturing offshore wind along many parts of the US coast is deep water. Nearly 60%, or 2,450 GW, of the estimated US offshore wind resource is located in water depths of 60 m or more (Musial and Ram, 2010). At water depths over 60 m building fixed offshore wind turbine foundations, such as those found in Europe, is likely economically infeasible (Musial et al., 2006). Therefore floating wind turbine technology is seen as the best option for extracting a majority of the US offshore wind energy resource. Volume 1 - Test Site; Volume 2 - Coupled Models; and Volume 3 - Composite Materials

  5. Environmentally responsible recycling of thin-film cadmium telluride photovoltaic modules. Final technical report

    SciTech Connect

    Bohland, John


    Continuing from the third quarter, all technical objectives of this Phase II SBIR work were previously and successfully completed. This report is therefore brief and contains two elements (1) a comparison of technical objective accomplishments to the stated goals in the original grant proposal (2) a summary of the third key element of this work; a market analysis for the developed recycling technology systems.

  6. A Practical Demonstration Project in Teaching Technical Mathematics; Final Progress Report.

    ERIC Educational Resources Information Center

    McHale, Thomas J.; Witzke, Paul T.

    The primary purposes of this developmental and demonstration project were to reduce the number of dropouts and failures and to increase the amount of learning in the technical mathematics core courses. In June 1965 a decision was made to pilot test locally developed programed units in technical mathematics. After the identification of the desired…

  7. Solutions for Some Technical Problems in Domain-Referenced Mastery Testing. Final Report.

    ERIC Educational Resources Information Center

    Huynh, Huynh; Saunders, Joseph C.

    A basic technical framework is provided for the design and use of mastery tests. The Mastery Testing Project (MTP) prepared this framework using advanced mathematics supplemented with computer simulation based on real test data collected by the South Carolina Statewide Testing Program. The MTP focused on basic technical issues encountered in using…

  8. Technical assistance and capability evaluation for the Historically Black Colleges and Universities. Final report

    SciTech Connect

    Dobbins, C.J.


    US DOE contracted with Space Qualified Systems to provide technical and management assistance to the Historically Black Colleges and Universities (HBCUs) through three tasks: technical assistance, HBCU-capability evaluation, and management assistance. This report summarizes the approach taken, lessons learned, results realized, and gives the recommendations. (DLC)

  9. A Vocational Technical Institute Developmental Program for Commercial Fisheries. Final Report.

    ERIC Educational Resources Information Center

    Sainsbury, John C.

    This document describes the development of a 2-year vocational-technical program in commercial fisheries designed to reduce the traditional training period for fishermen, educate and train future captains for the fishing fleets, and improve the technical and general education level of fishermen. A 72-credit curriculum was developed, three-quarters…

  10. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    SciTech Connect


    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.