Science.gov

Sample records for forms motile inclusions

  1. The Cauliflower Mosaic Virus Protein P6 Forms Motile Inclusions That Traffic along Actin Microfilaments and Stabilize Microtubules1[W][OA

    PubMed Central

    Harries, Phillip A.; Palanichelvam, Karuppaiah; Yu, Weichang; Schoelz, James E.; Nelson, Richard S.

    2009-01-01

    The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV. PMID:19028879

  2. Motility in normal and filamentous forms of Rhodospirillum rubrum.

    PubMed

    Lee, A G; Fitzsimons, J T

    1976-04-01

    By suitable choice of medium, Rhodospirillum rubrum has been grown both in normal (length 2 mum) and filamentous (length up to 60 mum) forms. Both forms were highly motile, and negatively-stained preparations showed bipolar flagellated cells, with an average of seven flagella at each pole. Motion consisted of a series of runs and tumbles, the ditribution of run time-lengths being Poissonian. Both forms tumbled in response to dark shock and showed negative chemotaxis to oxygen. The observation that the motility pattern was very similar in normal and filamentous forms makes chemical control of tumbling unlikely and favours a system involving membrane potentials. PMID:819618

  3. Form and Function in Cell Motility: From Fibroblasts to Keratocytes

    PubMed Central

    Herant, Marc; Dembo, Micah

    2010-01-01

    Abstract It is plain enough that a horse is made for running, but similar statements about motile cells are not so obvious. Here the basis for structure-function relations in cell motility is explored by application of a new computational technique that allows realistic three-dimensional simulations of cells migrating on flat substrata. With this approach, some cyber cells spontaneously display the classic irregular protrusion cycles and handmirror morphology of a crawling fibroblast, and others the steady gliding motility and crescent morphology of a fish keratocyte. The keratocyte motif is caused by optimal recycling of the cytoskeleton from the back to the front so that more of the periphery can be devoted to protrusion. These calculations are a step toward bridging the gap between the integrated mechanics and biophysics of whole cells and the microscopic molecular biology of cytoskeletal components. PMID:20409459

  4. Staphylococcus aureus forms spreading dendrites that have characteristics of active motility.

    PubMed

    Pollitt, Eric J G; Crusz, Shanika A; Diggle, Stephen P

    2015-01-01

    Staphylococcus aureus is historically regarded as a non-motile organism. More recently it has been shown that S. aureus can passively move across agar surfaces in a process called spreading. We re-analysed spreading motility using a modified assay and focused on observing the formation of dendrites: branching structures that emerge from the central colony. We discovered that S. aureus can spread across the surface of media in structures that we term 'comets', which advance outwards and precede the formation of dendrites. We observed comets in a diverse selection of S. aureus isolates and they exhibit the following behaviours: (1) They consist of phenotypically distinct cores of cells that move forward and seed other S. aureus cells behind them forming a comet 'tail'; (2) they move when other cells in the comet tail have stopped moving; (3) the comet core is held together by a matrix of slime; and (4) the comets etch trails in the agar as they move forwards. Comets are not consistent with spreading motility or other forms of passive motility. Comet behaviour does share many similarities with a form of active motility known as gliding. Our observations therefore suggest that S. aureus is actively motile under certain conditions. PMID:26680153

  5. Staphylococcus aureus forms spreading dendrites that have characteristics of active motility

    PubMed Central

    Pollitt, Eric J. G.; Crusz, Shanika A.; Diggle, Stephen P.

    2015-01-01

    Staphylococcus aureus is historically regarded as a non-motile organism. More recently it has been shown that S. aureus can passively move across agar surfaces in a process called spreading. We re-analysed spreading motility using a modified assay and focused on observing the formation of dendrites: branching structures that emerge from the central colony. We discovered that S. aureus can spread across the surface of media in structures that we term ‘comets’, which advance outwards and precede the formation of dendrites. We observed comets in a diverse selection of S. aureus isolates and they exhibit the following behaviours: (1) They consist of phenotypically distinct cores of cells that move forward and seed other S. aureus cells behind them forming a comet ‘tail’; (2) they move when other cells in the comet tail have stopped moving; (3) the comet core is held together by a matrix of slime; and (4) the comets etch trails in the agar as they move forwards. Comets are not consistent with spreading motility or other forms of passive motility. Comet behaviour does share many similarities with a form of active motility known as gliding. Our observations therefore suggest that S. aureus is actively motile under certain conditions. PMID:26680153

  6. Inclusion bodies and purification of proteins in biologically active forms.

    PubMed

    Mukhopadhyay, A

    1997-01-01

    Even though recombinant DNA technology has made possible the production of valuable therapeutic proteins, its accumulation in the host cell as inclusion body poses serious problems in the recovery of functionally active proteins. In the last twenty years, alternative techniques have been evolved to purify biologically active proteins from inclusion bodies. Most of these remain only as inventions and very few are commercially exploited. This review summarizes the developments in isolation, refolding and purification of proteins from inclusion bodies that could be used for vaccine and non-vaccine applications. The second section involves a discussion on inclusion bodies, how they are formed, and their physicochemical properties. In vivo protein folding in Escherichia coli and kinetics of in vitro protein folding are the subjects of the third and fourth sections respectively. The next section covers the recovery of bioactive protein from inclusion bodies: it includes isolation of inclusion body from host cell debris, purification in denatured state alternate refolding techniques, and final purification of active molecules. Since purity and safety are two important issues in therapeutic grade proteins, the following three sections are devoted to immunological and biological characterization of biomolecules, nature, and type of impurities normally encountered, and their detection. Lastly, two case studies are discussed to demonstrate the sequence of process steps involved. PMID:8939059

  7. [Inclusion Bodies are Formed in SFTSV-infected Human Macrophages].

    PubMed

    Jin, Cong; Song, Jingdong; Han, Ying; Li, Chuan; Qiu, Peihong; Liang, Mifang

    2016-01-01

    The severe fever with thrombocytopenia syndrome virus (SFTSV) is a new member in the genus Phlebovirus of the family Bunyaviridae identified in China. The SFTSV is also the causative pathogen of an emerging infectious disease: severe fever with thrombocytopenia syndrome. Using immunofluorescent staining and confocal microscopy, the intracellular distribution of nucleocapsid protein (NP) in SFTSV-infected THP-1 cells was investigated with serial doses of SFTSV at different times after infection. Transmission electron microscopy was used to observe the ultrafine intracellular structure of SFTSV-infected THP-1 cells at different times after infection. SFTSV NP could form intracellular inclusion bodies in infected THP-1 cells. The association between NP-formed inclusion bodies and virus production was analyzed: the size of the inclusion body formed 3 days after infection was correlated with the viral load in supernatants collected 7 days after infection. These findings suggest that the inclusion bodies formed in SFTSV-infected THP-1 cells could be where the SFTSV uses host-cell proteins and intracellular organelles to produce new viral particles. PMID:27295879

  8. Trypanosoma brucei FKBP12 Differentially Controls Motility and Cytokinesis in Procyclic and Bloodstream Forms

    PubMed Central

    Brasseur, Anaïs; Rotureau, Brice; Vermeersch, Marjorie; Blisnick, Thierry; Salmon, Didier; Bastin, Philippe; Pays, Etienne; Vanhamme, Luc

    2013-01-01

    FKBP12 proteins are able to inhibit TOR kinases or calcineurin phosphatases upon binding of rapamycin or FK506 drugs, respectively. The Trypanosoma brucei FKBP12 homologue (TbFKBP12) was found to be a cytoskeleton-associated protein with specific localization in the flagellar pocket area of the bloodstream form. In the insect procyclic form, RNA interference-mediated knockdown of TbFKBP12 affected motility. In bloodstream cells, depletion of TbFKBP12 affected cytokinesis and cytoskeleton architecture. These last effects were associated with the presence of internal translucent cavities limited by an inside-out configuration of the normal cell surface, with a luminal variant surface glycoprotein coat lined up by microtubules. These cavities, which recreated the streamlined shape of the normal trypanosome cytoskeleton, might represent unsuccessful attempts for cell abscission. We propose that TbFKBP12 differentially affects stage-specific processes through association with the cytoskeleton. PMID:23104568

  9. Zr inclusions in actinide–Zr alloys: New data and ideas about how they form

    SciTech Connect

    Janney, Dawn E.; O’Holleran, Thomas P.

    2015-05-01

    High-Zr inclusions are common in actinide–Zr alloys despite phase diagrams indicating that these alloys should not contain a high-Zr phase. The inclusions may contain enough Zr to cause significant differences between bulk compositions and those of inclusion-free areas, leading to possible errors in interpreting data if the inclusions are not considered. This paper presents data from high-Zr inclusions in a complex U–Np–Pu–Am–Zr–RE alloy. It is suggested that the high-Zr inclusions nucleated as high-Zr solid solutions at interfaces with high-actinide RE liquids, then unmixed to form nanometer-scale high-actinide sub-inclusions.

  10. Inclusion.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1992-01-01

    This theme journal issue focuses on current activities of the Office of Special Education and Rehabilitative Services which stress inclusion of students with disabilities in the mainstream. It begins with a message from the Assistant Secretary, Robert R. Davila which examines the full meaning of an "inclusive" education. Next, Barbara Buswell and…

  11. Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism.

    PubMed

    Chanoca, Alexandra; Kovinich, Nik; Burkel, Brian; Stecha, Samantha; Bohorquez-Restrepo, Andres; Ueda, Takashi; Eliceiri, Kevin W; Grotewold, Erich; Otegui, Marisa S

    2015-09-01

    Anthocyanins are flavonoid pigments synthesized in the cytoplasm and stored inside vacuoles. Many plant species accumulate densely packed, 3- to 10-μm diameter anthocyanin deposits called anthocyanin vacuolar inclusions (AVIs). Despite their conspicuousness and importance in organ coloration, the origin and nature of AVIs have remained controversial for decades. We analyzed AVI formation in cotyledons of different Arabidopsis thaliana genotypes grown under anthocyanin inductive conditions and in purple petals of lisianthus (Eustoma grandiorum). We found that cytoplasmic anthocyanin aggregates in close contact with the vacuolar surface are directly engulfed by the vacuolar membrane in a process reminiscent of microautophagy. The engulfed anthocyanin aggregates are surrounded by a single membrane derived from the tonoplast and eventually become free in the vacuolar lumen like an autophagic body. Neither endosomal/prevacuolar trafficking nor the autophagy ATG5 protein is involved in the formation of AVIs. In Arabidopsis, formation of AVIs is promoted by both an increase in cyanidin 3-O-glucoside derivatives and by depletion of the glutathione S-transferase TT19. We hypothesize that this novel microautophagy mechanism also mediates the transport of other flavonoid aggregates into the vacuole. PMID:26342015

  12. Microstructural characterization of halite inclusions in a surrogate glass bonded ceramic waste form

    SciTech Connect

    Luo, J. S.; Zyryanov, V. N.; Ebert, W. L.

    2000-05-12

    A glass-bonded ceramic waste form is being developed to immobilize high-level chloride waste salts generated during the conditioning of spent sodium-bonded nuclear fuel for disposal. The waste salt is loaded into zeolite cavities, mixed with a borosilicate glass, and consolidated at 800--900 C by hot isostatic pressing. During this process, small amounts of halite are generated, whereas the zeolite converts to the mineral sodalite, which retains most of the waste salt. In this work, optical microscopy, scanning electron microscopy, and transmission electron microscopy2048e used to characterize the halite inclusions in the final waste form. The halite inclusions were detected within micron- to submicron-sized pores that form within the glass phase in the vicinity of the sodalite/glass interface. The chemical nature and distribution of the halite inclusions were determined. The particular microstructure of the halite inclusions has been related to the corrosion of the ceramic waste form.

  13. ALS-associated peripherin spliced transcripts form distinct protein inclusions that are neuroprotective against oxidative stress.

    PubMed

    McLean, Jesse R; Smith, Gaynor A; Rocha, Emily M; Osborn, Teresia M; Dib, Samar; Hayes, Melissa A; Beagan, Jonathan A; Brown, Tana B; Lawson, Tristan F S; Hallett, Penelope J; Robertson, Janice; Isacson, Ole

    2014-11-01

    Intracellular proteinaceous inclusions are well-documented hallmarks of the fatal motor neuron disorder amyotrophic lateral sclerosis (ALS). The pathological significance of these inclusions remains unknown. Peripherin, a type III intermediate filament protein, is upregulated in ALS and identified as a component within different types of ALS inclusions. The formation of these inclusions may be associated with abnormal peripherin splicing, whereby an increase in mRNA retaining introns 3 and 4 (Per-3,4) leads to the generation of an aggregation-prone isoform, Per-28. During the course of evaluating peripherin filament assembly in SW-13 cells, we identified that expression of both Per-3,4 and Per-28 transcripts formed inclusions with categorically distinct morphology: Per-3,4 was associated with cytoplasmic condensed/bundled filaments, small inclusions (<10μM), or large inclusions (≥10μM); while Per-28 was associated with punctate inclusions in the nucleus and/or cytoplasm. We found temporal and spatial changes in inclusion morphology between 12 and 48h post-transfected cells, which were accompanied by unique immunofluorescent and biochemical changes of other ALS-relevant proteins, including TDP-43 and ubiquitin. Despite mild cytotoxicity associated with peripherin transfection, Per-3,4 and Per-28 expression increased cell viability during H2O2-mediated oxidative stress in BE(2)-M17 neuroblastoma cells. Taken together, this study shows that ALS-associated peripherin isoforms form dynamic cytoplasmic and intranuclear inclusions, effect changes in local endogenous protein expression, and afford cytoprotection against oxidative stress. These findings may have important relevance to understanding the pathophysiological role of inclusions in ALS. PMID:24907400

  14. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron's submerged sinkholes.

    PubMed

    Biddanda, Bopaiah A; McMillan, Adam C; Long, Stephen A; Snider, Michael J; Weinke, Anthony D

    2015-01-01

    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron's submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100-10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min(-1) or ∼15 body lengths min(-1) at 10°C to ∼215 μm min(-1) or ∼70 body lengths min(-1) at 35°C - rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield - suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles - likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth's early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring

  15. Microstructural characterization of halite inclusion in a glass-bonded ceramic waste form.

    SciTech Connect

    Luo, J. S.; Ebert, W. L.

    2000-12-14

    A glass-bonded ceramic waste form is being developed to immobilize radioactively contaminated chloride waste salts generated during the conditioning of spent sodium-bonded nuclear fuel for disposal. The waste salt is first mixed with zeolite A to occlude the salt into cavities in the zeolite structure. The salt-loaded zeolite is then mixed with a borosilicate glass and consolidated by hot isostatic pressing. During this process, the zeolite converts to the mineral sodalite, which retains most of the waste salt, and small amounts of halite are generated. Halite inclusions have been observed within micron- to submicron-sized pores that form within the glass phase in the vicinity of the sodalite/glass interface. These inclusions are important because they may contain small amounts of radionuclide contaminants (eg {sup 135}Cs and {sup 129}I),and may affect the corrosion behavior of the waste form. Optical microscopy, scanning electron microscopy, and transmission electron microscopy were used to characterize the chemical nature and distribution of halite inclusions in the waste form.

  16. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron’s submerged sinkholes

    PubMed Central

    Biddanda, Bopaiah A.; McMillan, Adam C.; Long, Stephen A.; Snider, Michael J.; Weinke, Anthony D.

    2015-01-01

    We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron’s submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100–10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min-1 or ∼15 body lengths min-1 at 10°C to ∼215 μm min-1 or ∼70 body lengths min-1 at 35°C – rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield – suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3–4 diurnal cycles – likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth’s early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while

  17. Transport, motility, biofilm forming potential and survival of Bacillus subtilis exposed to cold temperature and freeze-thaw.

    PubMed

    Asadishad, Bahareh; Olsson, Adam L J; Dusane, Devendra H; Ghoshal, Subhasis; Tufenkji, Nathalie

    2014-07-01

    In cold climate regions, microorganisms in upper layers of soil are subject to low temperatures and repeated freeze-thaw (FT) conditions during the winter. We studied the effects of cold temperature and FT cycles on the viability and survival strategies (namely motility and biofilm formation) of the common soil bacterium and model pathogen Bacillus subtilis. We also examined the effect of FT on the transport behavior of B. subtilis at two solution ionic strengths (IS: 10 and 100 mM) in quartz sand packed columns. Finally, to study the mechanical properties of the bacteria-surface bond, a quartz crystal microbalance with dissipation monitoring (QCM-D) was used to monitor changes in bond stiffness when B. subtilis attached to a quartz substrate (model sand surface) under different environmental conditions. We observed that increasing the number of FT cycles decreased bacterial viability and that B. subtilis survived for longer time periods in higher IS solution. FT treatment decreased bacterial swimming motility and the transcription of flagellin encoding genes. Although FT exposure had no significant effect on the bacterial growth rate, it substantially decreased B. subtilis biofilm formation and correspondingly decreased the transcription of matrix production genes in higher IS solution. As demonstrated with QCM-D, the bond stiffness between B. subtilis and the quartz surface decreased after FT. Moreover, column transport studies showed higher bacterial retention onto sand grains after exposure to FT. This investigation demonstrates how temperature variations around the freezing point in upper layers of soil can influence key bacterial properties and behavior, including survival and subsequent transport. PMID:24768703

  18. The Proton Coulomb Form Factor from Polarized Inclusive e-p Scattering

    SciTech Connect

    Chris Harris

    2001-08-01

    The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia (15NH3) target at a four momentum transfer squared of Q2 = 0.5 (GeV/c)2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH3. The asymmetry, Ap, has been used to determine the proton elastic form factor GEp. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.

  19. Actin-based phagosome motility.

    PubMed

    Zhang, Fangliang; Southwick, Frederick S; Purich, Daniel L

    2002-10-01

    Despite abundant evidence of actin's involvement at the particle internalization stage of phagocytosis, little is known about whether phagosomes undergo the same type of actin-based motility as observed with endocytic vesicles or such intracellular pathogens as Listeria and Shigella. By employing video microscopy to follow the fate of latex bead-containing phagosomes within the cytoplasm of bone marrow macrophages, we have made the novel observation of actin-based phagosome motility. Immunofluorescence microscopy confirmed that phagosomes containing IgG-opsonized, bovine serum albumin (or BSA) -coated or uncoated latex beads all formed actin-rich rocket tails that persisted only during a brief, 1-2 min period of actin-based motility. Average speeds of actin-based phagosome motility were 0.13 +/- 0.06 microm/s for IgG-coated beads, 0.14 +/- 0.04 microm/s for BSA-coated beads, and 0.11+/- 0.03 microm/s for uncoated beads. Moreover, the speeds and motile-phase duration of each type of phagosome were comparable to the behavior of pinosomes [Merrifield et al., 1999: Nat. Cell Biol. 1:72-74.]. Determination of optimal conditions for observing and analyzing actin-based phagosome motility should facilitate future investigations of phagocytosis and phagosome maturation. PMID:12211106

  20. The hyaluronan receptors CD44 and RHAMM (CD168) form complexeswith ERK1,2, which sustain high basal motility in breast cancercells

    SciTech Connect

    Hamilton, Sara R.; Fard, Shireen F.; Paiwand, Frouz F.; Tolg,Cornelia; Veiseh, Mandana; Wang, Chao; McCarthy, James B.; Bissell, MinaJ.; Koropatnick, James; Turley, Eva A.

    2007-03-28

    CD44 is an integral hyaluronan receptor that can promote or inhibit motogenic signaling in tumor cells. Rhamm is a non-integral cell surface hyaluronan receptor (CD168) and intracellular protein that promotes cell motility in culture and its expression is strongly upregulated in diseases like arthritis and aggressive cancers. Here we describe an autocrine mechanism utilizing cell surface Rhamm/CD44 interactions to sustain rapid basal motility in invasive breast cancer cell lines. This mechanism requires endogenous hyaluronan synthesis and the formation of Rhamm/CD44/ERK1, 2 complexes. Motile/ invasive MDA-MB-231 and Ras-MCF10A cells produce more endogenous hyaluronan, cell surface CD44 and Rhamm, an oncogenic Rhamm isoform, and exhibit elevated basal activation of ERK1, 2 than less invasive MCF7 and MCF10A breast cancer cells. Furthermore, CD44, Rhamm and ERK1, 2 uniquely co-immunoprecipitate and co-localize in MDA-MB-231 and Ras-MCF10A cells. Rapid motility of the invasive cell lines requires interaction of hyaluronan with cells, activation of ERK1, 2 and the participation of both cell surface CD44 and Rhamm. Combinations of anti-CD44, anti-Rhamm antibodies and a MEK1 inhibitor (PD098059) have less-than-additive blocking effects, suggesting action of all three proteins on a common motogenic signaling pathway. Collectively, these results show that cell surface Rhamm and CD44 act together in a hyaluronan-dependent, autocrine mechanism to coordinate sustained signaling through ERK1, 2 leading to high basal motility of invasive breast cancer cells. Since CD44/Rhamm complexes are not evident in less motile cells, an effect of CD44 on tumor cell motility may depend in part on its ability to partner with additional proteins, in this case cell surface Rhamm.

  1. Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch foams were prepared from high amylose corn starch in the presence and absence of sodium stearate and PVOH to determine how the formation of amylose-sodium stearate inclusion complexes and the addition of PVOH would affect foam properties. Low extrusion temperatures were used, and X-ray diffra...

  2. Spectrofluorimetric estimation of salbutamol sulphate in different dosage forms by formation of inclusion complex with β-cyclodextrin.

    PubMed

    Pandya, Harshit Narmadashankar; Berawala, Hiren Harshadlal; Khatri, Deepak Mohanlal; Mehta, Priti Jignesh

    2010-10-01

    A simple, precise, reproducible and accurate spectrofluorimetric method for estimation of Salbutamol sulphate (SAL) in bulk drug and various dosage forms has been developed. This method is based on formation of inclusion complex of SAL in β-cyclodextrin (BCD) which gives fluorescence at excitation wavelength of 279.6 nm and emission wavelength of 609.8 nm in water. Formation of inclusion complex of drug with BCD enhances fluorescence intensity of drug leads to increased sensitivity. The developed method was validated according to ICH guidelines with respect to accuracy, precision, linearity, limit of detection, limit of quantification. Linearity was observed in the range of 4-20 μg/ml with correlation coefficient of 0.9982. The simplicity of the method permitted rapid analysis suitable for routine control. The developed method was successfully applied for the estimation of SAL in different marketed dosage forms like tablets, syrup and aerosol. PMID:23781416

  3. TDP-43 inclusion bodies formed in bacteria are structurally amorphous, non-amyloid and inherently toxic to neuroblastoma cells.

    PubMed

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein. PMID:24497973

  4. TDP-43 Inclusion Bodies Formed in Bacteria Are Structurally Amorphous, Non-Amyloid and Inherently Toxic to Neuroblastoma Cells

    PubMed Central

    Capitini, Claudia; Conti, Simona; Perni, Michele; Guidi, Francesca; Cascella, Roberta; De Poli, Angela; Penco, Amanda; Relini, Annalisa; Cecchi, Cristina; Chiti, Fabrizio

    2014-01-01

    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Such inclusions have variably been described as amorphous aggregates or more structured deposits having an amyloid structure. Following the observations that bacterial inclusion bodies generally consist of amyloid aggregates, we have overexpressed full-length TDP-43 and C-terminal TDP-43 in E. coli, purified the resulting full-length and C-terminal TDP-43 containing inclusion bodies (FL and Ct TDP-43 IBs) and subjected them to biophysical analyses to assess their structure/morphology. We show that both FL and Ct TDP-43 aggregates contained in the bacterial IBs do not bind amyloid dyes such as thioflavin T and Congo red, possess a disordered secondary structure, as inferred using circular dichroism and infrared spectroscopies, and are susceptible to proteinase K digestion, thus possessing none of the hallmarks for amyloid. Moreover, atomic force microscopy revealed an irregular structure for both types of TDP-43 IBs and confirmed the absence of amyloid-like species after proteinase K treatment. Cell biology experiments showed that FL TDP-43 IBs were able to impair the viability of cultured neuroblastoma cells when added to their extracellular medium and, more markedly, when transfected into their cytosol, where they are at least in part ubiquitinated and phosphorylated. These data reveal an inherently high propensity of TDP-43 to form amorphous aggregates, which possess, however, an inherently high ability to cause cell dysfunction. This indicates that a gain of toxic function caused by TDP-43 deposits is effective in TDP-43 pathologies, in addition to possible loss of function mechanisms originating from the cellular mistrafficking of the protein. PMID:24497973

  5. Secreted or nonsecreted forms of acidic fibroblast growth factor produced by transfected epithelial cells influence cell morphology, motility, and invasive potential.

    PubMed Central

    Jouanneau, J; Gavrilovic, J; Caruelle, D; Jaye, M; Moens, G; Caruelle, J P; Thiery, J P

    1991-01-01

    Addition of exogenous acidic fibroblast growth factor (aFGF) to NBT-II epithelial carcinoma cells results in fibroblastic transformation and cell motility. We have generated aFGF-producing NBT-II cells by transfection with recombinant expression vectors containing human aFGF cDNA, or the human aFGF cDNA coupled to a signal peptide (SP) sequence. The effects of the nonsecreted and the secreted 16-kDa growth factor on the morphology, motility, and cell invasive potential (gelatinase activity) were compared. aFGF coupled to a SP was actively secreted out of the producing cells. The secretion of aFGF was not necessary for induction of gelatinase activity, as this was observed in NBT-II cells producing aFGF with or without SP. Production of aFGF, whether secreted or not secreted, resulted in increased in vitro motility of most isolated clones; however, there was no correlation between aFGF level and motility rate. The data suggest that expression of aFGF in NBT-II cells induces metastatic potential through an autocrine or intracrine mechanism. Images PMID:1707175

  6. Solid state forms of 4-aminoquinaldine - From void structures with and without solvent inclusion to close packing

    PubMed Central

    Braun, Doris E.; Gelbrich, Thomas; Kahlenberg, Volker; Griesser, Ulrich J.

    2015-01-01

    Polymorphs of 4-aminoquinaldine (4-AQ) have been predicted in silico and experimentally identified and characterised. The two metastable forms, AH (anhydrate) II and AH III, crystallise in the trigonal space group R3¯ and are less densely packed than the thermodynamically most stable phase AH I° (P21/c). AH II can crystallise and exist both, as a solvent inclusion compound and as an unsolvated phase. The third polymorph, AH III, is exclusively obtained by desolvation of a carbon tetrachloride solvate. Theoretical calculations correctly estimated the experimental 0K stability order, confirmed that AH II can exist without solvents, gave access to the AH III structure, and identified that there exists a subtle balance between close packing and number of hydrogen bonding interactions in the solid state of anhydrous 4-AQ. Furthermore, the prevalence of void space and solvent inclusion in R3¯ structures is discussed. PMID:26726294

  7. Reexamining closed-form formulae for inclusive breakup: Application to deuteron- and 6Li-induced reactions

    NASA Astrophysics Data System (ADS)

    Lei, Jin; Moro, A. M.

    2015-10-01

    The problem of the calculation of inclusive breakup cross sections in nuclear reactions is reexamined. For that purpose, the post-form theory proposed by Ichimura, Austern, and Vincent [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431] is revisited, and an alternative derivation of the nonelastic breakup part of the inclusive breakup is presented, making use of the coupled-channels optical theorem. Using the distorted-wave Born approximation (DWBA) version of this model, several applications to deuteron and 6Li reactions are presented and compared with available data. The validity of the zero-range approximation of the DWBA formula is also investigated by comparing zero-range with full finite-range calculations.

  8. Cellular mechanics and motility

    NASA Astrophysics Data System (ADS)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  9. The Teacher as a Significant Part of Inclusive Education in the Conditions of Czech Schools: Current Opinions of Czech Teachers about the Inclusive Form of Education

    ERIC Educational Resources Information Center

    Šmelová, Eva; Ludíková, Libuše; Petrová, Alena; Souralová, Eva

    2016-01-01

    Inclusive education and related aspects are currently the priorities of the educational policy in the Czech Republic. Should inclusion be successful, it needs to be supported not only by public administration authorities and legislation, but also by schools, families, school authorities and counselling services. The present research study analyses…

  10. A Descriptive Examination of the Types of Relationships Formed between Children with Developmental Disability and Their Closest Peers in Inclusive School Settings

    ERIC Educational Resources Information Center

    Webster, Amanda A.; Carter, Mark

    2013-01-01

    Background: One of the most commonly cited rationales for inclusive education is to enable the development of quality relationships with typically developing peers. Relatively few researchers have examined the features of the range of relationships that children with developmental disability form in inclusive school settings. Method: Interviews…

  11. Inclusion of salt form on prescription medication labeling as a source of patient confusion: a pilot study

    PubMed Central

    McDougall, Dana J.; Hoehns, James D.; Feller, Tara T.; Kriener, Savana J.; Witry, Matthew J.

    2015-01-01

    Background: It has been estimated that 10,000 patient injuries occur in the US annually due to confusion involving drug names. An unexplored source of patient misunderstandings may be medication salt forms. Objective: The objective of this study was to assess patient knowledge and comprehension regarding the salt forms of medications as a potential source of medication errors. Methods: A 12 item questionnaire which assessed patient knowledge of medication names on prescription labels was administered to a convenience sample of patients presenting to a family practice clinic. Descriptive statistics were calculated and multivariate analyses were performed. Results: There were 308 responses. Overall, 41% of patients agreed they find their medication names confusing. Participants correctly answered to salt form questions between 12.1% and 56.9% of the time. Taking more prescription medications and higher education level were positively associated with providing more correct answers to 3 medication salt form knowledge questions, while age was negatively associated. Conclusions: Patient misconceptions about medication salt forms are common. These findings support recommendations to standardize the inclusion or exclusion of salt forms. Increasing patient education is another possible approach to reducing confusion. PMID:27011777

  12. A new crystal form of beta-cyclodextrin-ethanol inclusion complex: channel-type structure without long guest molecules.

    PubMed

    Aree, Thammarat; Chaichit, Narongsak

    2003-07-22

    A new crystal form of beta-cyclodextrin (beta-CD)[bond]ethanol[bond]dodecahydrate inclusion complex [(C(6)H(10)O(5))(7).0.3C(2)H(5)OH.12H(2)O] belongs to monoclinic space group C2 (form II) with unit cell constants a=19.292(1), b=24.691(1), c=15.884(1) A, beta=109.35(1) degrees. The beta-CD macrocycle is more circular than that of the complex in space group P2(1) [form I: J. Am. Chem. Soc. 113 (1991) 5676]. In form II, a disordered ethanol molecule (occupancy 0.3) is placed in the upper part of beta-CD cavity (above the O-4 plane) and is sustained by hydrogen bonding to water site W-2. In form I, an ethanol molecule located below the O-4-plane is well ordered because it hydrogen bonds to surrounding O-3[bond]H, O-6[bond]H groups of the symmetry-related beta-CD molecules. In the crystal lattice of form I, beta-CD macrocycles are stacked in a typical herringbone cage structure. By contrast, the packing structure of form II is a head-to-head channel that is stabilized at both O-2/O-3 and O-6 sides of each beta-CD by direct O(CD)...O(CD) and indirect O(CD)...O(W)...(O(W))...O(CD) hydrogen bonds. The 12 water molecules are disordered in 18 positions both inside the channel-like cavity of beta-CD dimer (W-1[bond]W-6) and in the interstices between the beta-CD macrocycles (W-7[bond]W-18). The latter forms a cluster that is hydrogen bonded together and to the neighboring beta-CD O[bond]H groups. PMID:12860429

  13. Serotonin and colonic motility.

    PubMed

    Kendig, D M; Grider, J R

    2015-07-01

    The role of serotonin (5-hydroxytryptamine [5-HT]) in gastrointestinal motility has been studied for over 50 years. Most of the 5-HT in the body resides in the gut wall, where it is located in subsets of mucosal cells (enterochromaffin cells) and neurons (descending interneurons). Many studies suggest that 5-HT is important to normal and dysfunctional gut motility and drugs affecting 5-HT receptors, especially 5-HT3 and 5-HT4 receptors, have been used clinically to treat motility disorders; however, cardiovascular side effects have limited the use of these drugs. Recently studies have questioned the importance and necessity of 5-HT in general and mucosal 5-HT in particular for colonic motility. Recent evidence suggests the importance of 5-HT3 and 5-HT4 receptors for initiation and generation of one of the key colonic motility patterns, the colonic migrating motor complex (CMMC), in rat. The findings suggest that 5-HT3 and 5-HT4 receptors are differentially involved in two different types of rat CMMCs: the long distance contraction (LDC) and the rhythmic propulsive motor complex (RPMC). The understanding of the role of serotonin in colonic motility has been influenced by the specific motility pattern(s) studied, the stimulus used to initiate the motility (spontaneous vs induced), and the route of administration of drugs. All of these considerations contribute to the understanding and the controversy that continues to surround the role of serotonin in the gut. PMID:26095115

  14. The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand: Evidence from fluid inclusion and sulfur isotope studies

    NASA Astrophysics Data System (ADS)

    Kamvong, Teera; Zaw, Khin

    2009-05-01

    The Phu Lon skarn Cu-Au deposit is located in the northern Loei Fold Belt (LFB), Thailand. It is hosted by Devonian volcano-sedimentary sequences intercalated with limestone and marble units, intruded by diorite and quartz monzonite porphyries. Phu Lon is a calcic skarn with both endoskarn and exoskarn facies. In both skarn facies, andradite and diopside comprise the main prograde skarn minerals, whereas epidote, chlorite, tremolite, actinolite and calcite are the principal retrograde skarn minerals. Four types of fluid inclusions in garnet were distinguished: (1) liquid-rich inclusions; (2) daughter mineral-bearing inclusions; (3) salt-saturated inclusions; and (4) vapor-rich inclusions. Epidote contains only one type of fluid inclusion: liquid-rich inclusions. Fluid inclusions associated with garnet (prograde skarn stage) display high homogenization temperatures and moderate salinities (421.6-468.5 °C; 17.4-23.1 wt% NaCl equiv.). By contrast, fluid inclusions associated with epidote (retrograde skarn stage) record lower homogenization temperatures and salinities (350.9-399.8 °C; 0.5-8 wt% NaCl equiv.). These data suggest a possible mixing of saline magmatic fluids with external, dilute fluid sources (e.g., meteoric fluids), as the system cooled. Some fluid inclusions in garnet contain hematite daughters, suggesting an oxidizing magmatic environment. Sulfur isotope determinations on sulfide minerals from both the prograde and retrograde stages show a uniform and narrow range of δ34S values (-2.6 to -1.1 ‰ δ34S), suggesting that the ore-forming fluid contained sulfur of orthomagmatic origin. Overall, the Phu Lon deposit is interpreted as an oxidized Cu-Au skarn based on the mineralogy and fluid inclusion characteristics.

  15. Crystal form III of beta-cyclodextrin-ethanol inclusion complex: layer-type structure with dimeric motif.

    PubMed

    Aree, Thammarat; Chaichit, Narongsak

    2008-09-01

    The crystal form III of the beta-cyclodextrin (beta-CD)-ethanol inclusion complex [2(C(6)H(10)O(5))(7).1.5C(2)H(5)OH.19H(2)O] belongs to the triclinic space group P1 with unit cell constants: a=15.430(1), b=15.455(1), c=17.996(1)A, alpha=99.30(1) degrees , beta=113.18(1) degrees , gamma=103.04(1) degrees . beta-CD forms dimers comprising two identical monomers that adopt a 'round' conformation stabilized by intramolecular, interglucose O-3(n)cdots, three dots, centeredO-2(n+1) hydrogen bonds. The two beta-CD monomers of form III are isostructural to that of form I in the monoclinic space group P2(1) [Steiner, T.; Mason, S. A.; Saenger, W. J. Am. Chem. Soc.1991, 113, 5676-5687], but exhibit a striking difference from that of form II in the monoclinic space group C2 [Aree, T.; Chaichit, N. Carbohydr. Res.2003, 338, 1581-1589]. The small guest EtOH molecule orients differently in the large beta-CD cavity. In form III, two disordered EtOH molecules are embedded in the beta-CD-dimer cavity. A half occupied EtOH molecule (#1) is located above the O-4 plane of beta-CD #1, whereas another doubly disordered EtOH molecule (#2, #3) is situated at about the middle of the beta-CD-dimer cavity. The three EtOH sites are maintained in positions by making van der Waals contacts to each other and to the surrounding water sites and beta-CD O-3-H group. The EtOH molecules disordered (occupancy 0.3) above the beta-CD O-4 plane in form I and fully occupied beneath the O-4 plane in form II are strongly held in positions by hydrogen bonding with the surrounding water site and beta-CD O-6-H, O-3-H groups. Occurrence of the beta-CD dimer as a structural motif of channel-type packing (form II) and layer-type packing (form III) is attributed to the higher tendency for self aggregation under the moderate acidic conditions. At weak acidic conditions, beta-CD prefers a herringbone mode (form I). PMID:18490008

  16. Regulation of flagellar motility during biofilm formation

    PubMed Central

    Guttenplan, Sarah B.; Kearns, Daniel B.

    2013-01-01

    Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

  17. Remelting of refractory inclusions in the chondrule-forming regions: Evidence from chondrule-bearing type C calcium-aluminum-rich inclusions from Allende

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Yurimoto, Hisayoshi; Hutcheon, Ian D.; Chaussidon, Marc; MacPherson, Glenn J.; Paque, Julie

    2007-08-01

    We describe the mineralogy, petrology, oxygen, and magnesium isotope compositions of three coarse-grained, igneous, anorthite-rich (type C) Ca-Al-rich inclusions (CAIs) (ABC, TS26, and 93) that are associated with ferromagnesian chondrule-like silicate materials from the CV carbonaceous chondrite Allende. The CAIs consist of lath-shaped anorthite (An99), Cr-bearing Al-Ti-diopside (Al and Ti contents are highly variable), spinel, and highly åkermanitic and Na-rich melilite (Åk63-74, 0.4-0.6 wt% Na2O). TS26 and 93 lack Wark-Lovering rim layers; ABC is a CAI fragment missing the outermost part. The peripheral portions of TS26 and ABC are enriched in SiO2 and depleted in TiO2 and Al2O3 compared to their cores and contain relict ferromagnesian chondrule fragments composed of forsteritic olivine (Fa6-8) and low-Ca pyroxene/pigeonite (Fs1Wo1-9). The relict grains are corroded by Al-Ti-diopside of the host CAIs and surrounded by haloes of augite (Fs0.5Wo30-42). The outer portion of CAI 93 enriched in spinel is overgrown by coarse-grained pigeonite (Fs0.5-2Wo5-17), augite (Fs0.5Wo38-42), and anorthitic plagioclase (An84). Relict olivine and low-Ca pyroxene/pigeonite in ABC and TS26, and the pigeonite-augite rim around 93 are 16O-poor (Δ17O ˜ -1‰ to -8‰). Spinel and Al-Ti-diopside in cores of CAIs ABC, TS26, and 93 are 16O-enriched (Δ17O down to -20‰), whereas Al-Ti-diopside in the outer zones, as well as melilite and anorthite, are 16O-depleted to various degrees (Δ17O = -11‰ to 2‰). In contrast to typical Allende CAIs that have the canonical initial 26Al/27Al ratio of ˜5 × 10-5 ABC, 93, and TS26 are 26Al-poor with (26Al/27Al)0 ratios of (4.7 ± 1.4) × 10-6 (1.5 ± 1.8) × 10-6 <1.2 × 10-6 respectively. We conclude that ABC, TS26, and 93 experienced remelting with addition of ferromagnesian chondrule silicates and incomplete oxygen isotopic exchange in an 16O-poor gaseous reservoir, probably in the chondrule-forming region. This melting episode could

  18. Inclusion property of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization

    SciTech Connect

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il

    2013-07-01

    Pyroprocessing is one of the promising technologies enabling the recycling of spent nuclear fuels from a commercial light water reactor (LWR). In general, pyroprocessing uses dry molten salts as electrolytes. In particular, LiCl waste salt after pyroprocessing contains highly radioactive I/II group fission products mainly composed of Cs, Sr, and Ba impurities. Therefore, it is beneficial to reuse LiCl salt in the pyroprocessing as an electrolyte for economic and environmental issues. Herein, to understand the inclusion property of impurities within LiCl crystal, the physical properties such as lattice parameter change, bulk modulus, and substitution enthalpy of a LiCl crystal having 0-6 at% Cs{sup +} or Ba{sup 2+} impurities under existence of 1 at% Sr{sup 2+} impurity were calculated via the first-principles density functional theory. The substitution enthalpy of LiCl crystals having 1 at% Sr{sup 2+} showed slightly decreased value than those without Sr{sup 2+} impurity. Therefore, through the substitution enthalpy calculation, it is expected that impurities will be incorporated within LiCl crystal as co-existed form rather than as a single component form. (authors)

  19. Pediatric intestinal motility disorders

    PubMed Central

    Gfroerer, Stefan; Rolle, Udo

    2015-01-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but in 5% of the cases, an underlying, clearly organic disorder can be identified. Patients with organic causes for intestinal motility disorders usually present in early infancy or even right after birth. The most striking clinical feature of children with severe intestinal motility disorders is the delayed passage of meconium in the newborn period. This sign is highly indicative of the presence of Hirschsprung disease (HD), which is the most frequent congenital disorder of intestinal motility. HD is a rare but important congenital disease and the most significant entity of pediatric intestinal motility disorders. The etiology and pathogenesis of HD have been extensively studied over the last several decades. A defect in neural crest derived cell migration has been proven as an underlying cause of HD, leading to an aganglionic distal end of the gut. Numerous basic science and clinical research related studies have been conducted to better diagnose and treat HD. Resection of the aganglionic bowel remains the gold standard for treatment of HD. Most recent studies show, at least experimentally, the possibility of a stem cell based therapy for HD. This editorial also includes rare causes of pediatric intestinal motility disorders such as hypoganglionosis, dysganglionosis, chronic intestinal pseudo-obstruction and ganglioneuromatosis in multiple endocrine metaplasia. Underlying organic pathologies are rare in pediatric intestinal motility disorders but must be recognized as early as

  20. Pediatric intestinal motility disorders.

    PubMed

    Gfroerer, Stefan; Rolle, Udo

    2015-09-01

    Pediatric intestinal motility disorders affect many children and thus not only impose a significant impact on pediatric health care in general but also on the quality of life of the affected patient. Furthermore, some of these conditions might also have implications for adulthood. Pediatric intestinal motility disorders frequently present as chronic constipation in toddler age children. Most of these conditions are functional, meaning that constipation does not have an organic etiology, but in 5% of the cases, an underlying, clearly organic disorder can be identified. Patients with organic causes for intestinal motility disorders usually present in early infancy or even right after birth. The most striking clinical feature of children with severe intestinal motility disorders is the delayed passage of meconium in the newborn period. This sign is highly indicative of the presence of Hirschsprung disease (HD), which is the most frequent congenital disorder of intestinal motility. HD is a rare but important congenital disease and the most significant entity of pediatric intestinal motility disorders. The etiology and pathogenesis of HD have been extensively studied over the last several decades. A defect in neural crest derived cell migration has been proven as an underlying cause of HD, leading to an aganglionic distal end of the gut. Numerous basic science and clinical research related studies have been conducted to better diagnose and treat HD. Resection of the aganglionic bowel remains the gold standard for treatment of HD. Most recent studies show, at least experimentally, the possibility of a stem cell based therapy for HD. This editorial also includes rare causes of pediatric intestinal motility disorders such as hypoganglionosis, dysganglionosis, chronic intestinal pseudo-obstruction and ganglioneuromatosis in multiple endocrine metaplasia. Underlying organic pathologies are rare in pediatric intestinal motility disorders but must be recognized as early as

  1. Cell motility on nanotopography

    NASA Astrophysics Data System (ADS)

    Kimura, Masahiro; Tsai, Irene; Green, Angelo; Jacobson, Bruce; Russell, Thomas

    2003-03-01

    Cell motility is strongly influenced by the structure of the substratum. Understanding cells motility on a surface has significant applications both in vivo and in vitro applications, such as biological sensors and hip replacement. A gradient surface is used to study the effect of the lateral nanotopography on cell motility. A gradient surface is generated by block copolymer and homopolymer blends, where the concentration of the components varies uniformly across the surface. The two homopolymers phase separate on the micron scale and this length scale gradually decrease to the nanoscopic, i.e. microphase separation of the diblock, as the copolymer concentration increases. Quantitative analysis of the speed of cell migration is correlated to the lateral length scale of the surface.

  2. [Obesity and gastrointestinal motility].

    PubMed

    Lee, Joon Seong

    2006-08-01

    Gastrointestinal (GI) motility has a crucial role in the food consumption, digestion and absorption, and also controls the appetite and satiety. In obese patients, various alterations of GI motility have been investigated. The prevalence of GERD and esophageal motor disorders in obese patients are higher than those of general population. Gastric emptying of solid food is generally accelerated and fasting gastric volume especially in distal stomach is larger in obese patients without change in accommodation. Contractile activity of small intestine in fasting period is more prominent, but orocecal transit is delayed. Autonomic dysfunction is frequently demonstrated in obese patients. These findings correspond with increased appetite and delayed satiety in obese patients, but causes or results have not been confirmed. Therapeutic interventions of these altered GI motility have been developed using botulinum toxin, gastric electrical stimulation in obese patients. Novel agents targeted for GI hormone modulation (such as ghrelin and leptin) need to be developed in the near future. PMID:16929152

  3. Sperm Motility in Flow

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Juarez, Gabriel; Stocker, Roman

    2012-11-01

    A wide variety of plants and animals reproduce sexually by releasing motile sperm that seek out a conspecific egg, for example in the reproductive tract for mammals or in the water column for externally fertilizing organisms. Sperm are aided in their quest by chemical cues, but must also contend with hydrodynamic forces, resulting from laminar flows in reproductive tracts or turbulence in aquatic habitats. To understand how velocity gradients affect motility, we subjected swimming sperm to a range of highly-controlled straining flows using a cross-flow microfluidic device. The motion of the cell body and flagellum were captured through high-speed video microscopy. The effects of flow on swimming are twofold. For moderate velocity gradients, flow simply advects and reorients cells, quenching their ability to cross streamlines. For high velocity gradients, fluid stresses hinder the internal bending of the flagellum, directly inhibiting motility. The transition between the two regimes is governed by the Sperm number, which compares the external viscous stresses with the internal elastic stresses. Ultimately, unraveling the role of flow in sperm motility will lead to a better understanding of population dynamics among aquatic organisms and infertility problems in humans.

  4. An animated model of reticulorumen motility.

    PubMed

    Gookin, Jody L; Foster, Derek M; Harvey, Alice M; McWhorter, Dan

    2009-01-01

    Understanding reticulorumen motility is important to the assessment of ruminant health and optimal production, and in the recognition, diagnosis, and treatment of disease. Accordingly, the teaching of reticulorumen motility is a staple of all veterinary curricula. This teaching has historically been based on written descriptions, line drawings, or pressure tracings obtained during contraction sequences. We developed an animated model of reticulorumen motility and hypothesized that veterinary students would prefer use of the model over traditional instructional methods. First-year veterinary students were randomly allocated to one of two online learning exercises: with the animated model (Group A) or with text and line drawings (Group B) depicting reticulorumen motility. Learning was assessed with a multiple-choice quiz and feedback on the learning alternatives was obtained by survey. Seventy-four students participated in the study, including 38/42 in Group A and 36/36 in Group B. Sixty-four out of 72 students (89%) responded that they would prefer use of the animated model if only one of the two learning methods was available. A majority of students agreed or strongly agreed that the animated model was easy to understand and improved their knowledge and appreciation of the importance of reticulorumen motility, and would recommend the model to other veterinary students. Interestingly, students in Group B achieved higher scores on examination than students in Group A. This could be speculatively attributed to the inclusion of an itemized list of contraction sequences in the text provided to Group B and failure of Group A students to read the text associated with the animations. PMID:20054084

  5. The effect of the inclusion of recycled poultry bedding and the physical form of diet on the performance, ruminal fermentation, and plasma metabolites of fattening lambs.

    PubMed

    Mirmohammadi, D; Rouzbehan, Y; Fazaeli, H

    2015-08-01

    During a 125-d experimental period, 24 Afshari × Kurdish male lambs initially weighing 25.2 ± 1.2 kg were grouped by BW and randomly assigned to treatments under a completely randomized design with a 2 × 2 factorial arrangement of treatments to evaluate the effects of feeding recycled poultry bedding (RPB; 0 and 200 g/kg DM) and the physical form of the diet (mash and block) on nutrient intake and digestibility, ruminal and plasma parameters, microbial N supply, N balance, feeding behavior, and growth performance of the lambs. Two diets with and without RPB in both mash and block form were prepared. Neither the inclusion of RPB nor the physical form of the diet affected the concentration of VFA or the total tract apparent digestibility of nutrients. Dietary RPB inclusion increased DMI ( < 0.01), tended ( = 0.10) to reduce ADG, and decreased G:F ( = 0.05). The physical form of the diet had no effect on DMI but decreased ADG ( = 0.01) and G:F ( = 0.02) in lambs fed on the block diet compared with those fed on the mash diet. Neither the inclusion of RPB nor the physical form of the diets had any effect on microbial N supply (g/d) and N retention. Rate of eating ( = 0.07), time spent eating ( = 0.87) and ruminating ( = 0.28), and total chewing activity ( = 0.65) were not affected by dietary RPB inclusion. Rate of eating decreased ( < 0.01) and time spent eating and total chewing activity increased ( = 0.01 and = 0.02, respectively) in lambs fed on the block diet compared with those fed on the mash diet. Results of the current study showed that inclusion of RPB up to 200 g/kg DM in diets for fattening was possible without any effect on performance and animal health. Processing of feed into the mash form gave higher livestock productivity in comparison to the block form. PMID:26440164

  6. Modeling collective cell motility

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    Eukaryotic cells often move in groups, a critical aspect of many biological and medical processes including wound healing, morphogenesis and cancer metastasis. Modeling can provide useful insights into the fundamental mechanisms of collective cell motility. Constructing models that incorporate the physical properties of the cells, however, is challenging. Here, I discuss our efforts to build a comprehensive cell motility model that includes cell membrane properties, cell-substrate interactions, cell polarity, and cell-cell interaction. The model will be applied to a variety of systems, including motion on micropatterned substrates and the migration of border cells in Drosophila. This work was supported by NIH Grant No. P01 GM078586 and NSF Grant No. 1068869.

  7. Motility of Mollicutes

    NASA Astrophysics Data System (ADS)

    Wolgemuth, Charles; Igoshin, Oleg; Oster, George

    2003-03-01

    Recent experiments show that the conformation of filament proteins play a role in the motility and morphology of many different types of bacteria. Conformational changes in the protein subunits may produce forces to drive propulsion and cell division. Here we present a molecular mechanism by which these forces can drive cell motion. Coupling of a biochemical cycle, such as ATP hydrolysis, to the dynamics of elastic filaments enable elastic filaments to propagate deformations that generate propulsive forces. We demonstrate this possibility for two classes of wall-less bacteria called mollicutes: the swimming of helical shaped Spiroplasma, and the gliding motility of Mycoplasma. Similar mechanisms may explain the locomotion of other prokaryotes, including the swimming of Synechococcus and the gliding of some myxobacteria.

  8. Quantum Mechanical and Experimental Validation that Cyclobis(paraquat-p-phenylene) Forms a 1:1 Inclusion Complex with Tetrathiafulvalene.

    PubMed

    Hartlieb, Karel J; Liu, Wei-Guang; Fahrenbach, Albert C; Blackburn, Anthea K; Frasconi, Marco; Hafezi, Nema; Dey, Sanjeev K; Sarjeant, Amy A; Stern, Charlotte L; Goddard, William A; Stoddart, J Fraser

    2016-02-18

    The promiscuous encapsulation of π-electron-rich guests by the π-electron-deficient host, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge-transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT(4+), is an emerald-green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas-phase calculations that reinterpreted this CT band in terms of an intermolecular side-on interaction of TTF with one of the bipyridinium (BIPY(2+)) units of CBPQT(4+), rather than the encapsulation of TTF inside the cavity of CBPQT(4+). We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT(4+) arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY(2+) units of a CBPQT(4+) ring residing on a separate [2]rotaxane in a side-on fashion. This [2]rotaxane has similar UV/Vis and (1)H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT(4+). The [2]rotaxane exists as an equimolar mixture of cis- and trans-isomers associated with the disubstituted TTF unit in its dumbbell component. Solid-state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT(4+). PMID:26784535

  9. An ocular motility conundrum.

    PubMed

    McElnea, Elizabeth Margaret; Stephenson, Kirk; Lanigan, Bernie; Flitcroft, Ian

    2014-01-01

    Two siblings, an 11-year-old boy and a 7-year-old girl presented with bilateral symmetrical ptosis and limited eye movements. Having already been reviewed on a number of occasions by a variety of specialists in multiple hospital settings a diagnosis of their ocular motility disorder had remained elusive. We describe their cases, outline the differential diagnosis and review the investigations performed which were influential in finally making a diagnosis. PMID:25349186

  10. Motility of Mycoplasma pneumoniae.

    PubMed Central

    Radestock, U; Bredt, W

    1977-01-01

    Cell of Mycoplasma pneumoniae FH gliding on a glass surface in liquid medium were examined by microscopic observation and quantitatively by microcinematography (30 frames per min). Comparisons were made only within the individual experiments. The cells moved in an irregular pattern with numerous narrow bends and circles. They never changed their leading end. The average speed (without pauses) was relatively constant between o.2 and 0.5 mum/s. The maximum speed was about 1.5 to 2.0 mum/s. The movements were interrupted by resting periods of different lengths and frequency. Temperature, viscosity, pH, and the presence of yeast extract in the medium influenced the motility significantly; changes in glucose, calcium ions, and serum content were less effective. The movements were affected by iodoacetate, p-mercuribenzoate, and mitomycin C at inhibitory or subinhibitory concentrations. Sodium fluoride, sodium cyanide, dinitrophenol, chloramphenicol, puromycin, cholchicin, and cytochalasin B at minimal inhibitory concentrations did not affect motility. The movements were effectively inhibited by anti-M. pneumoniae antiserum. Studies with absorbed antiserum suggested that the surface components involved in motility are heat labile. The gliding of M. pneumoniae cells required an intact energy metabolism and the proteins involved seemed to have a low turnover. Images PMID:14925

  11. COMPUTER-ASSISTED SPERM ANALYSIS OF RODENT EPIDIDYMAL SPERM MOTILITY USING THE HAMILTON-THORN MOTILITY ANALYZER

    EPA Science Inventory

    Computer-assisted sperm motion analysis (CASA) can provide a comprehensive evaluation of sperm motility in an efficient and objective manner. he inclusion of CASA in reproductive toxicology studies on male rodents results in a more thorough characterization of adverse effects on ...

  12. Origin of spinel lamella and/or inclusions in olivine of harzburgite form the Pauza ultramafic rocks from the Kurdistan region, northeastern Iraq

    NASA Astrophysics Data System (ADS)

    Mohammad, Y.; Maekawa, H.; Karim, K.

    2009-04-01

    Exsolution lamellae and octahedral inclusions of chromian spinel occur in olivine of harzburgite of the Pauza ultramafic rocks, Kurdistan region, northeastern Iraq. The lamella is up to 80μm long and up to 50 μm wide. The lamellae and octahedral inclusions of chromian spinel are distributed heterogeneously in the host olivine crystal. They are depleted in Al2O3 relative to the subhedral spinel grains in the matrix and spinel lamella in orthopyroxene. Olivine (Fo92 - 93) with spinel lamellae occurs as fine-grained crystals around orthopyroxene, whereas olivine (Fo90-91) free from spinel is found in matrix. Based on back-scattered images analyses, enrichments of both Cr # and Fe+3 in the chromian spinel lamella in olivine (replacive olivine) relative to that in adjacent orthopyroxene. As well as the compositions of chromian spinel lamellae host olivine are more Mg-rich than the matrix olivine. Furthermore the restriction of olivine with spinel lamellae and octahedral inclusions on around orthopyroxene, and the similarity of spinel lamella orientations in both olivine and adjacent orthopyroxene. This study concludes that the spinel inclusions in olivine are remnant (inherited from former orthopyroxene) spinel exsolution lamella in orthopyroxene, that has been formed in upper mantle conditions ( T = 1200 °C, P = 2.5 GPa ). Replacive olivine are formed by reaction of ascending silica poor melt and orthopyroxene in harzburgite as pressure decrease the solubility of silica-rich phase (orthopyroxene) in the system increase, therefore ascending melt dissolve pyroxene with spinel exsolution lamella and precipitate replacive olivine with spinel inclusions. We can conclude that the olivines with spinel lamella are not necessary to be original and presenting ultrahigh-pressure and/or ultra deep-mantle conditions as previously concluded. It has been formed by melting of orthopyroxene (orthopyroxene with spinel exsolution lamella = olivine with spinel lamellae and octahedral

  13. Influence of the form of a solid inclusion in an inhomogeneous liquid droplet on the conditions of its "explosive" destruction under intense heat exchange

    NASA Astrophysics Data System (ADS)

    Nakoryakov, V. E.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-09-01

    The boiling conditions at the interface in a water droplet (initial conventional diameter of 3-4 mm) with a solid nontransparent inclusion (characteristic sizes up to 2 mm) in a high-temperature (higher than 600 K) gas medium are distinguished by the results of experimental investigations with the use of highspeed (no less than 105 frames per second) video registration. The main stages of the process, such as liquid heating, evaporation from a free droplet surface, bubble boiling at internal interfaces between the media, bubble growth, bubble motion through the liquid film, and "explosive" decomposition of the droplet into a group of smaller droplets. The characteristic times of these stages and the influence of the inclusion form on them are established by the example of graphite particles (sphere, disc, cone, parallelepiped, and irregularly shaped polygon).

  14. Evolutionary aspects of collective motility in pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Deforet, Maxime; Xavier, Joao

    Pseudomonas aeruginosa is a pathogenic bacteria that can use its single polar flagellum to swim through liquids. It can move collectively over semisolid surfaces, a behavior called swarming. It can also settle and form surface-attached communities called biofilms that protect them from antibiotics. The transition from single motility (swimming) to collective motility (swarming) is biologically relevant as it enables exploring environments that a single bacterium cannot explore on its own. It is also clinically relevant since swarming and biofilm formation are thought to be antagonistic. We investigate the mechanisms of bacterial collective motility using a multidisciplinary approach that combines mathematical modeling, quantitative experiments, and microbial genetics. We aim to identify how these mechanisms may evolve under the selective pressure of population expansion, and consequently reinforce or hinder collective motility. In particular, we clarify the role of growth rate and motility in invasive populations.

  15. The Inclusive Classroom: How Inclusive Is Inclusion?

    ERIC Educational Resources Information Center

    Reid, Claudette M.

    2010-01-01

    This paper presents the position that inclusion is limited; inclusion does not go far enough. The inclusive classroom has been assessed to be of benefit both to the teacher and student. There are, however, limits set on inclusion. In most classrooms only children with learning disability are included omitting those with severe disabilities,…

  16. Cell Motility Resulting form Spontaneous Polymerization Waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2014-03-01

    The crawling of living cells on solid substrates is often driven by the actin cytoskeleton, a network of structurally polar filamentous proteins that is intrinsically driven by the hydrolysis of ATP. How cells organize their actin network during crawling is still poorly understood. A possible general mechanism underlying actin organization has been offered by the observation of spontaneous actin polymerization waves in various different cell types. We use a theoretical approach to investigate the possible role of spontaneous actin waves on cell crawling. To this end, we develop a meanfield framework for studying spatiotemporal aspects of actin assembly dynamics, which helped to identify possible origins of self-organized actin waves. The impact of these waves on cell crawling is then investigated by using a phase-field approach to confine the actin network to a cellular domain. We find that spontaneous actin waves can lead to directional or amoeboidal crawling. In the latter case, the cell performs a random walk. Within our deterministic framework, this behavior is due to complex spiral waves inside the cell. Finally, we compare the seemingly random motion of our model cells to the dynamics of cells of the human immune system. These cells patrol the body in search for infected cells and we discuss possible implications of our theory for the search process' efficiency. Work was funded by the DFG through KR3430/1, GK1276, and SFB 1027.

  17. Spirochete motility and morpholgy

    NASA Astrophysics Data System (ADS)

    Charon, Nyles

    2004-03-01

    Spirochetes have a unique structure, and as a result their motility is different from that of other bacteria. These organisms can swim in a highly viscous, gel-like medium, such as that found in connective tissue, that inhibits the motility of most other bacteria. In spirochetes, the organelles for motility, the periplasmic flagella, reside inside the cell within the periplasmic space. A given periplasmic flagellum is attached only at one end of the cell, and depending on the species, may or may not overlap in the center of the cell. The number of periplasmic flagella varies from species to species. These structures have been shown to be directly involved in motility and function by rotating within the periplasmic space (1). The present talk focuses on the spirochete that causes Lyme disease, Borrelia burgdorferi. In many bacterial species, cell shape is usually dictated by the peptidoyglycan layer of the cell wall. In the first part of the talk, results will be presented that the morphology of B. burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella resulting in a cell with a flat-wave morphology. Backward moving, propagating waves enable these bacteria to swim and translate in a given direction. Using targeted mutagenesis, we inactivated the gene encoding the major periplasmic flagellar filament protein FlaB. The resulting flaB mutants not only were non-motile, but were rod-shaped (2). Western blot analysis indicated that flaB was no longer synthesized, and electron microscopy revealed that the mutants were completely deficient in periplasmic flagella. Our results indicate that the periplasmic flagella of B. burgdorferi have a skeletal function. These organelles dynamically interact with the rod-shaped cell cylinder to enable the cell to swim, and to confer in part its flat-wave morphology The latter part of the talk concerns the basis for asymmetrical rotation of the periplasmic flagella of B

  18. Mechanics of motility initiation and motility arrest in crawling cells

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Putelat, Thibaut; Truskinovsky, Lev

    2015-11-01

    Motility initiation in crawling cells requires transformation of a symmetric state into a polarized state. In contrast, motility arrest is associated with re-symmetrization of the internal configuration of a cell. Experiments on keratocytes suggest that polarization is triggered by the increased contractility of motor proteins but the conditions of re-symmetrization remain unknown. In this paper we show that if adhesion with the extra-cellular substrate is sufficiently low, the progressive intensification of motor-induced contraction may be responsible for both transitions: from static (symmetric) to motile (polarized) at a lower contractility threshold and from motile (polarized) back to static (symmetric) at a higher contractility threshold. Our model of lamellipodial cell motility is based on a 1D projection of the complex intra-cellular dynamics on the direction of locomotion. In the interest of analytical transparency we also neglect active protrusion and view adhesion as passive. Despite the unavoidable oversimplifications associated with these assumptions, the model reproduces quantitatively the motility initiation pattern in fish keratocytes and reveals a crucial role played in cell motility by the nonlocal feedback between the mechanics and the transport of active agents. A prediction of the model that a crawling cell can stop and re-symmetrize when contractility increases sufficiently far beyond the motility initiation threshold still awaits experimental verification.

  19. Productive performance of brown-egg laying pullets from hatching to 5 weeks of age as affected by fiber inclusion, feed form, and energy concentration of the diet.

    PubMed

    Guzmán, P; Saldaña, B; Mandalawi, H A; Pérez-Bonilla, A; Lázaro, R; Mateos, G G

    2015-02-01

    The effects of fiber inclusion, feed form, and energy concentration of the diet on the growth performance of pullets from hatching to 5 wk age were studied in 2 experiments. In Experiment 1, there was a control diet based on cereals and soybean meal, and 6 extra diets that included 2 or 4% of cereal straw, sugar beet pulp (SBP), or sunflower hulls (SFHs) at the expense (wt/wt) of the whole control diet. From hatching to 5 wk age fiber inclusion increased (P<0.05) ADG and ADFI, and improved (P<0.05) energy efficiency (EnE; kcal AMEn/g ADG), but body weight (BW) uniformity was not affected. Pullets fed SFH tended to have higher ADG than pullets fed SBP (P=0.072) with pullets fed straw being intermediate. The feed conversion ratio (FCR) was better (P<0.05) with 2% than with 4% fiber inclusion. In Experiment 2, 10 diets were arranged as a 2×5 factorial with 2 feed forms (mash vs. crumbles) and 5 levels of AMEn (2,850, 2,900, 2,950, 3,000, and 3,050 kcal/kg). Pullets fed crumbles were heavier and had better FCR than pullets fed mash (P<0.001). An increase in the energy content of the crumble diets reduced ADFI and improved FCR linearly, but no effects were detected with the mash diets (P<0.01 and P<0.05 for the interactions). Feeding crumbles tended to improve BW uniformity at 5 wk age (P=0.077) but no effects were detected with increases in energy concentration of the diet. In summary, the inclusion of moderate amounts of fiber in the diet improves pullet performance from hatching to 5 wk age. The response of pullets to increases in energy content of the diet depends on feed form with a decrease in feed intake when fed crumbles but no changes when fed mash. Feeding crumbles might be preferred to feeding mash in pullets from hatching to 5 wk age. PMID:25602026

  20. Novel inclusion in laser crystals

    SciTech Connect

    Ma Xiaoshan; Wang Siting; Jin Zhongru; Shen Yafang; Chen Jiaguang

    1986-12-01

    In growing alexandrite crystals, a novel inclusion has been found. The inclusions are quantitatively analyzed by an electronic probe and the mechanism for forming inclusions is suggested. In our Bridgman MgF/sub 2/ crystals, the inclusions in <001> direction have also been observed.

  1. Flagella-independent surface motility in Salmonella enterica serovar Typhimurium

    PubMed Central

    Park, Sun-Yang; Pontes, Mauricio H.; Groisman, Eduardo A.

    2015-01-01

    Flagella are multiprotein complexes necessary for swimming and swarming motility. In Salmonella enterica serovar Typhimurium, flagella-mediated motility is repressed by the PhoP/PhoQ regulatory system. We now report that Salmonella can move on 0.3% agarose media in a flagella-independent manner when experiencing the PhoP/PhoQ-inducing signal low Mg2+. This motility requires the PhoP-activated mgtA, mgtC, and pagM genes, which specify a Mg2+ transporter, an inhibitor of Salmonella’s own F1Fo ATPase, and a small protein of unknown function, respectively. The MgtA and MgtC proteins are necessary for pagM expression because pagM mRNA levels were lower in mgtA and mgtC mutants than in wild-type Salmonella, and also because pagM expression from a heterologous promoter rescued motility in mgtA and mgtC mutants. PagM promotes group motility by a surface protein(s), as a pagM-expressing strain conferred motility upon a pagM null mutant, and proteinase K treatment eliminated motility. The pagM gene is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic forms in organisms lacking the identified motility. Deletion of the pagM gene reduced bacterial replication on 0.3% agarose low Mg2+ media but not in low Mg2+ liquid media. Our findings define a form of motility that allows Salmonella to scavenge nutrients and to escape toxic compounds in low Mg2+ semisolid environments. PMID:25624475

  2. Flagella-independent surface motility in Salmonella enterica serovar Typhimurium.

    PubMed

    Park, Sun-Yang; Pontes, Mauricio H; Groisman, Eduardo A

    2015-02-10

    Flagella are multiprotein complexes necessary for swimming and swarming motility. In Salmonella enterica serovar Typhimurium, flagella-mediated motility is repressed by the PhoP/PhoQ regulatory system. We now report that Salmonella can move on 0.3% agarose media in a flagella-independent manner when experiencing the PhoP/PhoQ-inducing signal low Mg(2+). This motility requires the PhoP-activated mgtA, mgtC, and pagM genes, which specify a Mg(2+) transporter, an inhibitor of Salmonella's own F1Fo ATPase, and a small protein of unknown function, respectively. The MgtA and MgtC proteins are necessary for pagM expression because pagM mRNA levels were lower in mgtA and mgtC mutants than in wild-type Salmonella, and also because pagM expression from a heterologous promoter rescued motility in mgtA and mgtC mutants. PagM promotes group motility by a surface protein(s), as a pagM-expressing strain conferred motility upon a pagM null mutant, and proteinase K treatment eliminated motility. The pagM gene is rarely found outside subspecies I of S. enterica and often present in nonfunctional allelic forms in organisms lacking the identified motility. Deletion of the pagM gene reduced bacterial replication on 0.3% agarose low Mg(2+) media but not in low Mg(2+) liquid media. Our findings define a form of motility that allows Salmonella to scavenge nutrients and to escape toxic compounds in low Mg(2+) semisolid environments. PMID:25624475

  3. Dynamic self-assembly of motile bacteria in liquid crystals

    PubMed Central

    Mushenheim, Peter C.; Trivedi, Rishi R.; Tuson, Hannah H.

    2014-01-01

    This paper reports an investigation of dynamical behaviors of motile rod-shaped bacteria within anisotropic viscoelastic environments defined by lyotropic liquid crystals (LCs). In contrast to passive microparticles (including non-motile bacteria) that associate irreversibly in LCs via elasticity-mediated forces, we report that motile Proteus mirabilis bacteria form dynamic and reversible multi-cellular assemblies when dispersed in a lyotropic LC. By measuring the velocity of the bacteria through the LC (8.8 +/− 0.2 μm/s) and by characterizing the ordering of the LC about the rod-shaped bacteria (tangential anchoring), we conclude that the reversibility of the inter-bacterial interaction emerges from the interplay of forces generated by the flagella of the bacteria and the elasticity of the LC, both of which are comparable in magnitude (tens of pN) for motile Proteus mirabilis cells. We also measured the dissociation process, which occurs in a direction determined by the LC, to bias the size distribution of multi-cellular bacterial complexes in a population of motile Proteus mirabilis relative to a population of non-motile cells. Overall, these observations and others reported in this paper provide insight into the fundamental dynamical behaviors of bacteria in complex anisotropic environments and suggest that motile bacteria in LCs are an exciting model system for exploration of principles for the design of active materials. PMID:24652584

  4. Cyclic GMP and Cilia Motility

    PubMed Central

    Wyatt, Todd A.

    2015-01-01

    Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction. PMID:26264028

  5. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus

    PubMed Central

    Starruß, Jörn; Peruani, Fernando; Jakovljevic, Vladimir; Søgaard-Andersen, Lotte; Deutsch, Andreas; Bär, Markus

    2012-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse

  6. Soft micromachines with programmable motility and morphology

    NASA Astrophysics Data System (ADS)

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.

    2016-07-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  7. Soft micromachines with programmable motility and morphology.

    PubMed

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J; Pané, Salvador; Nelson, Bradley J

    2016-01-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers. PMID:27447088

  8. Gastrointestinal Motility Disorders in Children

    PubMed Central

    Ambartsumyan, Lusine

    2014-01-01

    The most common and challenging gastrointestinal motility disorders in children include gastroesophageal reflux disease (GERD), esophageal achalasia, gastroparesis, chronic intestinal pseudo-obstruction, and constipation. GERD is the most common gastrointestinal motility disorder affecting children and is diagnosed clinically and treated primarily with acid secretion blockade. Esophageal achalasia, a less common disorder in the pediatric patient population, is characterized by dysphagia and treated with pneumatic balloon dilation and/or esophagomyotomy. Gastroparesis and chronic intestinal pseudo-obstruction are poorly characterized in children and are associated with significant morbidity. Constipation is among the most common complaints in children and is associated with significant morbidity as well as poor quality of life. Data on epidemiology and outcomes, clinical trials, and evaluation of new diagnostic techniques are needed to better diagnose and treat gastrointestinal motility disorders in children. We present a review of the conditions and challenges related to these common gastrointestinal motility disorders in children. PMID:24799835

  9. Spectroscopic investigation of the three prototropic forms of a β-cyclodextrin-indolizine derivative from its inclusion-cum-charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Ghosh, Bankim Chandra; Deb, Nipamanjari; Becuwe, Matthieu; Fourmentin, Sophie; Mukherjee, Asok K.

    2011-02-01

    By absorption and fluorescence (steady state and time-resolved) studies, three prototropic forms of (N-6-deoxy-β-cyclodextrin-6-yl-1-aminocarbonyl)-3-(4-fluorobenzoyl)-7-pyridine-4-yl indolizine, (1) have been established and shown to be a potential fluorescent pH sensor with switching action. Inclusion complexes of (1) with a number of quinones have been shown to exhibit charge transfer (CT) spectra in aqueous medium and variation of such spectra with change in pH yield the proton affinity of the biologically important indolizine moiety. Förster cycle reveals that in the excited state indolizine moiety has a greater proton affinity. The nature of the CT transitions (whether n-donor-π-acceptor or π-donor-π-acceptor) has been experimentally ascertained.

  10. Inclusive scattering of polarized electrons on polarized {sup 3}He: Effects of final state interaction and the magnetic form factor of the neutron

    SciTech Connect

    Ishikawa, S.; Golak, J.; Witala, H.; Kamada, H.; Gloeckle, W.; Hueber, D.

    1998-01-01

    Effects of final state interaction on asymmetries in inclusive scattering of polarized electrons on polarized {sup 3}He are investigated using a consistent {sup 3}He bound state wave function and 3N continuum scattering states. Significant effects are found, which influence the extraction of the magnetic neutron form factor from A{sub T{sup {prime}}}. The enhancement found experimentally for A{sub TL{sup {prime}}} near the 3N breakup threshold, which could not be explained in calculations carried through in plane wave impulse approximation up to now, occurs now also in theory if the full final state interaction is included. {copyright} {ital 1998} {ital The American Physical Society}

  11. Motility mutants of Dictyostelium discoideum

    PubMed Central

    1982-01-01

    We describe six motility mutants of Dictyostelium discoideum in this report. They were identified among a group of temperature-sensitive growth (Tsg) mutants that had been previously isolated using an enrichment for phagocytosis-defective cells. The Tsg mutants were screened for their ability to produce tracks on gold-coated cover slips, and several strains were found that were temperature-sensitive for migration in this assay. Analysis of spontaneous Tsg+ revertants of 10 migration-defective strains identified six strains that co-reverted the Tsg and track formation phenotypes. Characterization of these six strains indicated that they were defective at restrictive temperature in track formation, phagocytosis of bacteria, and pseudopodial and filopodial activity, while retaining normal rates of oxygen consumption and viability. Because they had lost this group of motile capabilities, these strains were designated motility mutants. The Tsg+ revertants of these mutants, which coordinately recovered all of the motile activities, were found at frequencies consistent with single genetic events. Analysis of the motility mutants and their revertants suggests a relationship between the motility mutations in some of these strains and genes affecting axenic growth. PMID:7118999

  12. Mucin Promotes Rapid Surface Motility in Pseudomonas aeruginosa

    PubMed Central

    Yeung, Amy T. Y.; Parayno, Alicia; Hancock, Robert E. W.

    2012-01-01

    ABSTRACT An important environmental factor that determines the mode of motility adopted by Pseudomonas aeruginosa is the viscosity of the medium, often provided by adjusting agar concentrations in vitro. However, the viscous gel-like property of the mucus layer that overlays epithelial surfaces is largely due to the glycoprotein mucin. P. aeruginosa is known to swim within 0.3% (wt/vol) agar and swarm on the surface at 0.5% (wt/vol) agar with amino acids as a weak nitrogen source. When physiological concentrations or as little as 0.05% (wt/vol) mucin was added to the swimming agar, in addition to swimming, P. aeruginosa was observed to undergo highly accelerated motility on the surface of the agar. The surface motility colonies in the presence of mucin appeared to be circular, with a bright green center surrounded by a thicker white edge. While intact flagella were required for the surface motility in the presence of mucin, type IV pili and rhamnolipid production were not. Replacement of mucin with other wetting agents indicated that the lubricant properties of mucin might contribute to the surface motility. Based on studies with mutants, the quorum-sensing systems (las and rhl) and the orphan autoinducer receptor QscR played important roles in this form of surface motility. Transcriptional analysis of cells taken from the motility zone revealed the upregulation of genes involved in virulence and resistance. Based on these results, we suggest that mucin may be promoting a new or highly modified form of surface motility, which we propose should be termed “surfing.” PMID:22550036

  13. Elenoside increases intestinal motility

    PubMed Central

    Navarro, E; Alonso, SJ; Navarro, R; Trujillo, J; Jorge, E

    2006-01-01

    AIM: To study the effects of elenoside, an arylnaph-thalene lignan from Justicia hyssopifolia, on gastro-intestinal motility in vivo and in vitro in rats. METHODS: Routine in vivo experimental assessments were catharsis index, water percentage of boluses, intestinal transit, and codeine antagonism. The groups included were vehicle control (propylene glycol-ethanol-plant oil-tween 80), elenoside (i.p. 25 and 50 mg/kg), cisapride (i.p. 10 mg/kg), and codeine phosphate (intragastric route, 50 mg/kg). In vitro approaches used isolated rat intestinal tissues (duodenum, jejunum, and ileum). The effects of elenoside at concentrations of 3.2 x 10-4, 6.4 x 10-4 and 1.2 x 10-3 mol/L, and cisapride at 10-6 mol/L were investigated. RESULTS: Elenoside in vivo produced an increase in the catharsis index and water percentage of boluses and in the percentage of distance traveled by a suspension of activated charcoal. Codeine phosphate antagonized the effect of 25 mg/kg of elenoside. In vitro, elenoside in duodenum, jejunum and ileum produced an initial decrease in the contraction force followed by an increase. Elenoside resulted in decreased intestinal frequency in duodenum, jejunum, and ileum. The in vitro and in vivo effects of elenoside were similar to those produced by cisapride. CONCLUSION: Elenoside is a lignan with an action similar to that of purgative and prokinetics drugs. Elenoside, could be an alternative to cisapride in treatment of gastrointestinal diseases as well as a preventive therapy for the undesirable gastrointestinal effects produced by opioids used for mild to moderate pain. PMID:17131476

  14. Phase separation of ore forming fluid related to gold mineralization in Wynad Gold Field, Southern Granulite Terrain, India: Evidences from fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Sahoo, Ajit Kumar; Krishnamurthi, R.; Varghese, Saju

    2015-11-01

    Fluid inclusion studies were carried out on auriferous quartz veins of Wynad Gold Field, Southern Granulite Terrain of India. Three types of primary fluid inclusions have been observed; Type-I: H2O-CO2 inclusions, Type-II: CO2 inclusions and Type-III: aqueous inclusions. The Type-I and Type-II inclusions are more abundant than Type-III inclusions. The coexistence of Type-I and Type-II inclusions are common within quartz grains in most of the samples studied. Variation in phase ratio and broad range of total homogenization temperature of Type-I and Type-III inclusions (i.e. 194°C to 300°C and 189°C to 282°C, respectively) indicate the entrapment of heterogeneous fluid in inclusions. This heterogeneity could be due to phase separation of original low saline H2O-CO2 ore fluid in response to drop in pressure and temperature. Gold along with other constituents could have precipitated in response to phase separation of the ore fluid.

  15. [Mechanism of bacterial gliding motility].

    PubMed

    Nakane, Daisuke

    2015-01-01

    Bacteria have various way to move over solid surfaces, such as glass, agar, and host cell. These movements involve surface appendages including flagella, type IV pili and other "mysterious" nano-machineries. Gliding motility was a term used various surface movements by several mechanisms that have not been well understood in past few decades. However, development of visualization techniques allowed us to make much progress on their dynamics of machineries. It also provided us better understanding how bacteria move over surfaces and why bacteria move in natural environments. In this review, I will introduce recent studies on the gliding motility of Flavobacteium and Mycoplasma based on the detail observation of single cell and its motility machinery with micro-nano scales. PMID:26632217

  16. Preparation, imaging, and quantification of bacterial surface motility assays.

    PubMed

    Morales-Soto, Nydia; Anyan, Morgen E; Mattingly, Anne E; Madukoma, Chinedu S; Harvey, Cameron W; Alber, Mark; Déziel, Eric; Kearns, Daniel B; Shrout, Joshua D

    2015-01-01

    Bacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more "temperate swarmers" that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. "Wettability", or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment. PMID:25938934

  17. Preparation, Imaging, and Quantification of Bacterial Surface Motility Assays

    PubMed Central

    Morales-Soto, Nydia; Anyan, Morgen E.; Mattingly, Anne E.; Madukoma, Chinedu S.; Harvey, Cameron W.; Alber, Mark; Déziel, Eric; Kearns, Daniel B.; Shrout, Joshua D.

    2015-01-01

    Bacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more “temperate swarmers” that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. “Wettability”, or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment. PMID:25938934

  18. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death.

    PubMed

    Xiao, Shangxi; Sanelli, Teresa; Chiang, Helen; Sun, Yulong; Chakrabartty, Avijit; Keith, Julia; Rogaeva, Ekaterina; Zinman, Lorne; Robertson, Janice

    2015-07-01

    The presence of lower molecular weight species comprising the C-terminal region of TAR DNA-binding protein 43 (TDP-43) is a characteristic of TDP-43 proteinopathy in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we have identified a novel splice variant of TDP-43 that is upregulated in ALS and generates a 35-kDa N-terminally truncated species through use of an alternate translation initiation codon (ATG(Met85)), denoted here as Met(85)-TDP-35. Met(85)-TDP-35 expressed ectopically in human neuroblastoma cells exhibited reduced solubility, cytoplasmic distribution, and aggregation. Furthermore, Met(85)-TDP-35 sequestered full-length TDP-43 from the nucleus to form cytoplasmic aggregates. Expression of Met(85)-TDP-35 in primary motor neurons resulted in the formation of Met(85)-TDP-35-positive cytoplasmic aggregates and motor neuron death. A neo-epitope antibody specific for Met(85)-TDP-35 labeled the 35-kDa lower molecular weight species on immunoblots of urea-soluble extracts from ALS-FTLD disease-affected tissues and co-labeled TDP-43-positive inclusions in ALS spinal cord sections, confirming the physiological relevance of this species. These results show that the 35-kDa low molecular weight species in ALS-FTLD can be generated from an abnormal splicing event and use of a downstream initiation codon and may represent a mechanism by which TDP-43 elicits its pathogenicity. PMID:25788357

  19. Pantoea stewartii subsp. stewartii exhibits surface motility, which is a critical aspect of Stewart's wilt disease development on maize.

    PubMed

    Herrera, Carmen M; Koutsoudis, Maria D; Wang, Xiaolei; von Bodman, Susanne B

    2008-10-01

    Pantoea stewartii subsp. stewartii is a plant-pathogenic bacterium that causes Stewart's vascular wilt in maize. The organism is taxonomically described as aflagellated and nonmotile. We recently showed that P. stewartii colonizes the xylem of maize as sessile, cell-wall-adherent biofilms. Biofilm formation is a developmental process that generally involves some form of surface motility. For that reason, we reexamined the motility properties of P. stewartii DC283 based on the assumption that the organism requires some form of surface motility for biofilm development. Here, we show that the organism is highly motile on agar surfaces. This motility is flagella dependent, shown by the fact that a fliC mutant, impaired in flagellin subunit synthesis, is nonmotile. Motility also requires the production of stewartan exopolysaccharide. Moreover, surface motility plays a significant role in the colonization of the plant host. PMID:18785831

  20. Colonic motility in ulcerative colitis

    PubMed Central

    Antonelli, Elisabetta; Villanacci, Vincenzo; Baldoni, Monia; Dore, Maria Pina

    2014-01-01

    Background Inflammatory conditions affecting the gut may cause motility disturbances, and ulcerative colitis – one of the main disorders among the inflammatory bowel diseases – may display abnormal colonic motility. Aim To review the abnormalities of the large bowel in ulcerative colitis, by considering the motility, laboratory (in vitro) and pathological studies dealing with this topic. Methods A comprehensive online search of Medline and the Science Citation Index was carried out. Results Patients with ulcerative colitis frequently display colonic motor abnormalities, including lack of contractility, an increase of propulsive contractile waves, an excessive production of nitric oxide, vasoactive intestinal polypeptide nerves, interleukin 1 beta, neurotensin, tachykinins levels and the weaker action of substance P, likely related to a neuromuscular dysfunction due to the inflammatory process. Conclusions A better understanding of the pathophysiological grounds of altered colonic motility in ulcerative colitis may lead to a more in-depth knowledge of the accompanying symptoms and to better and more targeted therapeutic approaches. PMID:25452840

  1. A computational model of gastro-intestinal motility

    NASA Astrophysics Data System (ADS)

    Wilson, K. F.; Goossens, D. J.

    2001-12-01

    A simulated neural network model of a section of enteric nervous system is presented. The network is a layered feed-forward network consisting of integrate and fire units. The network shows the basic form of intestinal motility; a descending wave of relaxation followed by a wave of contraction. It also shows interesting (but not biologically realistic) spontaneous behaviours when no stimulus is present.

  2. Single cell motility and trail formation in populations of microglia

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Jin

    2009-03-01

    Microglia are a special type of glia cell in brain that has immune responses. They constitute about 20 % of the total glia population within the brain. Compared to other glia cells, microglia are very motile, constantly moving to destroy pathogens and to remove dead neurons. While doing so, they exhibit interesting body shapes, have cell-to-cell communications, and have chemotatic responses to each other. Interestingly, our recent in vitro studies show that their unusual motile behaviors can self-organize to form trails, similar to those in populations of ants. We have studied the changes in the physical properties of these trails by varying the cell population density and by changing the degree of spatial inhomogeneities (``pathogens''). Our experimental observations can be quite faithfully reproduced by a simple mathematical model involving many motile cells whose mechanical motion are driven by actin polymerization and depolymerization process within the individual cell body and by external chemical gradients.

  3. Inclusive health.

    PubMed

    Maclachlan, Malcolm; Khasnabis, Chapal; Mannan, Hasheem

    2012-01-01

    We propose the concept of Inclusive Health to encapsulate the Health for All ethos; to build on the rights-based approach to health; to promote the idea of inclusion as a verb, where a more proactive approach to addressing distinctive and different barriers to inclusion is needed; and to recognise that new initiatives in human resources for health can offer exciting and innovative ways of healthcare delivery. While Inclusive Education has become a widely recognised and accepted concept, Health for All is still contested, and new thinking is required to develop its agenda in line with contemporary developments. Inclusive Health refers both to who gets health care and to who provides it; and its ethos resonates strongly with Jefferson's assertion that 'there is nothing more unequal, than the equal treatment of unequal people'. We situate the timeliness of the Inclusive Health concept with reference to recent developments in the recognition of the rights of people with disability, in the new guidelines for community-based rehabilitation and in the World Report on Disability. These developments offer a more inclusive approach to health and, more broadly, its inter-connected aspects of wellbeing. A concept which more proactively integrates United Nations conventions that recognise the importance of difference - disability, ethnicity, gender, children - could be of benefit for global healthcare policy and practice. PMID:21895893

  4. Evolution of ore forming fluid in the orogenic type gold deposit in Tavt, Mongolia: trace element geochemistry and fluid inclusions in quartz

    NASA Astrophysics Data System (ADS)

    Lee, K.; Oyungerel, S.; Lee, I.

    2011-12-01

    The Tavt gold deposit of Dzhida-Selengisky metallogenic belt is located in the Dzhida terrane, northern Mongolia. This deposit commonly occurs with massive auriferous quartz veins that contain sulfides and less commonly occurs with disseminated- and stockwork-type quartz veins. Such gold-bearing quartz veins have an average grade of 6.3 g/t Au, 29.4 g/t Ag, and 1.3% Cu. This gold deposit is composed of three stages of quartz vein groups. The first stage quartz group is widely spread with medium to large grain size, showing white-grey and milky white colors. It underwent intensive cataclasis with strong cuts via fractures and includes a small amount of sulfides, secondary minerals and Au. The second stage quartz group is grey and includes an oxidation zone. The oxidation zone distributed on the outside of the vein is brown and green-grey; it is also enriched with sulfide minerals containing gold. This quartz group is located in a brittle and cataclastic zone with the first stage quartz group. The main mineralization process for gold is related to this second stage quartz group. The transition between the first and second groups is not clear, and their contact relationship is complex. The third stage quartz group is transparent to translucent, and has small euhedral crystals that were formed in the second stage quartz group. The third stage of quartz is partly associated with chlorite and montmorillonite that was formed in the latest stage. Each generation of quartz was analyzed by SEM-CL, EPMA, and ICP-MS. Fluid inclusion data were collected from the USGS gas-flow heating/freezing stage and Raman-spectroscopy. The electron microprobe data show the distribution of Al, Ca, K and Fe among distinguished CL intensities and textures of quartz from different stages. The prepared pure quartz samples were analyzed by ICP-MS. The analysis also shows different patterns of trace elements according to the quartz stages.

  5. The Shape of Motile Cells

    PubMed Central

    Mogilner, Alex; Keren, Kinneret

    2010-01-01

    Motile cells — fan-like keratocytes, hand-shaped nerve growth cones, polygonal fibroblasts, to name but a few — come in different shapes and sizes. We discuss the origins of this diversity as well as what shape tells us about the physics and biochemistry underlying cell movement. We start with geometric rules describing cell-edge kinetics that govern cell shape, followed by a discussion of the underlying biophysics; we consider actin treadmilling, actin–myosin contraction, cell-membrane deformations, adhesion, and the complex interactions between these modules, as well as their regulation by microtubules and Rho GTPases. Focusing on several different cell types, including keratocytes and fibroblasts, we discuss how dynamic cell morphology emerges from the interplay between the different motility modules and the environment. PMID:19906578

  6. Small intestine motility development in newborn mammals.

    PubMed

    Woliński, Jarosław; Słupecka-Ziemilska, Monika; Boryczka, Maria; Grzesiak, Paulina; Kwiatkowski, Jakub; Kotarba, Grzegorz

    2016-01-01

    Since the beginning of the 20th century, researchers have been working to improve the understanding of gastrointestinal motility. The first major discovery was the observation of a migrating myoelectric complex that turned out to be a universal occurrence among vertebrates. Further inquires resulted in a detailed description of its development during different stages of ontogeny. Some time before that, a cornerstone had been laid for a breakthrough that would come years later. That cornerstone came in the form of interstitial cells of Cajal whose true role could not be discerned until the discovery of a CD117 receptor - their main marker. With the ability to precisely mark interstitial cells of Cajal, a wave of subsequent new experiments and observations connected them to the occurrence of slow waves and allowed an understanding of the mechanism responsible for their generation. Some of these findings suggested that Cajal cells might have a role in the development of several motility disorders thus opening an avenue of research that requires the usage of both traditional and advanced diagnostic methods. PMID:27416626

  7. U-Th-Pb systematics of zircon inclusions in rock-forming minerals: A study of armoring against isotopic loss using the Sherman Granite of Colorado-Wyoming, USA

    USGS Publications Warehouse

    Aleinikoff, J.N.

    1983-01-01

    Zircon inclusions were separated from the five major rock-forming minerals of the Sherman Granite of southern Wyoming, in order to evaluate the degree of discordance as a possible function of host minerals. U-Th-Pb isotopic ratios were determined for two size fractions of zircon inclusions from each mineral, plus five size fractions from the bulk rock. Isotopic data from the inclusions have more than double the spread of data on a discordia obtained from the bulk sample, thereby yielding better-resolved concordia intercepts. However, isotopic ratios and morphologic characteristics indicate that the Pb/U systematics are complicated by inherited radiogenic lead. Although the data array cannot unequivocally be explained by the armoring process, the proposed methodology has succeeded in identifying groups of zircon with different isotopic characteristics. As such, this technique can be used to decipher complex geologic/isotopic histories and may be a useful addition to routine zircon geochronology. ?? 1983 Springer-Verlag.

  8. Inclusive teaching.

    PubMed

    Billings, Diane M

    2008-07-01

    Inclusive teaching involves being responsive to the diversity represented in the classroom and assisting learners to focus on their culture, attitudes, and beliefs while learning to communicate and collaborate with each other and their patients. PMID:18649804

  9. Melt inclusions: Chapter 6

    USGS Publications Warehouse

    Audétat A.; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  10. Properties of extruded starch-poly(methyl acrylate) graft copolymers prepared from spherulites formed from amylose-oleic acid inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...

  11. Mechanics model for actin-based motility

    NASA Astrophysics Data System (ADS)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  12. Elastic mismatch enhances cell motility

    NASA Astrophysics Data System (ADS)

    Bresler, Yony; Palmieri, Benoit; Grant, Martin

    In recent years, the study of physics phenomena in cancer has drawn considerable attention. In cancer metastasis, a soft cancer cell leaves the tumor, and must pass through the endothelium before reaching the bloodstream. Using a phase-field model we have shown that the elasticity mismatch between cells alone is sufficient to enhance the motility of thesofter cancer cell by means of bursty migration, in agreement with experiment. We will present further characterization of these behaviour, as well as new possible applications for this model.

  13. Interventions That Affect Gastrointestinal Motility in Hospitalized Adult Patients

    PubMed Central

    Asrani, Varsha M.; Yoon, Harry D.; Megill, Robin D.; Windsor, John A.; Petrov, Maxim S.

    2016-01-01

    Abstract Gastrointestinal (GI) dysmotility is a common complication in acute, critically ill, postoperative, and chronic patients that may lead to impaired nutrient delivery, poor clinical, and patient-reported outcomes. Several pharmacological and nonpharmacological interventions to treat GI dysmotility were investigated in dozens of clinical studies. However, they often yielded conflicting results, at least in part, because various (nonstandardized) definitions of GI dysmotility were used and methodological quality of studies was poor. While a universally accepted definition of GI dysmotility is yet to be developed, a systematic analysis of data derived from double-blind placebo-controlled randomized trials may provide robust data on absolute and relative effectiveness of various interventions as the study outcome (GI motility) was assessed in the least biased manner. To systematically review data from double-blind placebo-controlled randomized trials to determine and compare the effectiveness of interventions that affect GI motility. Three electronic databases (MEDLINE, SCOPUS, and EMBASE) were searched. A random effects model was used for meta-analysis. The summary estimates were reported as mean difference (MD) with the corresponding 95% confidence interval (CI). A total of 38 double-blind placebo-controlled randomized trials involving 2371 patients were eligible for inclusion in the systematic review. These studies investigated a total of 20 different interventions, of which 6 interventions were meta-analyzed. Of them, the use of dopamine receptor antagonists (MD, −8.99; 95% CI, −17.72 to −0.27; P = 0.04) and macrolides (MD, −26.04; 95% CI, −51.25 to −0.82; P = 0.04) significantly improved GI motility compared with the placebo group. The use of botulism toxin significantly impaired GI motility compared with the placebo group (MD, 5.31; 95% CI, −0.04 to 10.67; P = 0.05). Other interventions (dietary factors, probiotics, hormones) did

  14. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  15. Preschool Inclusion.

    ERIC Educational Resources Information Center

    Cavallaro, Claire C.; Haney, Michele

    This resource guide provides field-tested, research-based strategies for including young children with disabilities in early childhood programs. It is designed to help preservice and in-service educators, Head Start personnel, and child care providers with information to promote inclusion in children's earliest social and educational experiences.…

  16. Bacterial signaling and motility: Sure bets

    SciTech Connect

    Zhulin, Igor B

    2008-01-01

    The IX International Conference on Bacterial Locomotion and Signal Transduction (BLAST IX) was held from 14 to 19 January 2007 in Laughlin, NV, a town in the Mojave Desert on the Nevada-Arizona border near old Route 66 and along the banks of the Colorado River. This area is a home to rattlesnakes, sagebrush, abandoned gold mines, and compulsive gamblers. What better venue could scientists possibly dream of for a professional meeting? So there they were, about 190 scientists gathered in the Aquarius Casino Resort, the largest hotel and casino in Laughlin, discussing the latest advances in the field. Aside from a brief excursion to an abandoned gold mine and a dinner cruise on the Colorado River, the scientists focused on nothing but their data and hypotheses, in spirited arguments and rebuttals, and outlined their visions and future plans in a friendly and open environment. The BLAST IX program was dense, with nearly 50 talks and over 90 posters. For that reason, this meeting report will not attempt to be comprehensive; instead it will first provide general background information on the central topics of the meeting and then highlight only a few talks that were of special interest to us and hopefully to the wider scientific community. We will also attempt to articulate some of the future directions or perspectives to the best of our abilities. The best known and understood bacterial motility mechanism is swimming powered by flagella. The rotation of bacterial flagella drives this form of bacterial movement in an aqueous environment. A bacterial flagellum consists of a helical filament attached to the cell body through a complex structure known as the hook-basal body, which drives flagellar rotation. The essential components of the basal body are the MotA-MotB motor-stator proteins bound to the cytoplasmic membrane. These stator proteins interact with proteins that comprise the supramembrane and cytoplasmic rings, which are components of the motor imbedded in the

  17. Attachment of motile bacterial cells to prealigned holed microarrays.

    PubMed

    Rozhok, Sergey; Fan, Zhifang; Nyamjav, Dorjderem; Liu, Chang; Mirkin, Chad A; Holz, Richard C

    2006-12-19

    Construction of biomotors is an exciting area of scientific research that holds great promise for the development of new technologies with broad potential applications in areas such as the energy industry and medicine. Herein, we demonstrate the fabrication of prealigned microarrays of motile Escherichia coli bacterial cells on SiOx substrates. To prepare these arrays, holed surfaces with a gold layer on the bottom of the holes were utilized. The attachment of bacteria to the holes was achieved via nonspecific interactions using poly-l-lysine hydrobromide (PLL). Our data suggest that a single motile bacterial cell can be selectively attached to an individual hole on a surface and bacterial cell binding can be controlled by altering the pH, with the greatest occupancy occurring at pH 7.8. Cells attached to hole arrays remained motile for at least 4 h. These data indicate that holed surface structures provide a promising footprint for the attachment of motile bacterial cells to form high-density site-specific functional bacterial microarrays. PMID:17154612

  18. Hydrodynamics of helical-shaped bacterial motility

    NASA Astrophysics Data System (ADS)

    Wada, Hirofumi; Netz, Roland R.

    2009-08-01

    To reveal the underlying hydrodynamic mechanism for the directed propulsion of the bacterium Spiroplasma, we formulate a coarse-grained elastic polymer model with domains of alternating helicities along the contour. Using hydrodynamic simulations and analytic arguments, we show that the propagation of helical domain walls leads to the directed propulsion of the cell body opposite to the domain-wall traveling direction. Several key features of Spiroplasma motility are reproduced by our model. We in particular show that the helical pitch angle observed for Spiroplasma meliferum, ψ=35° , is optimized for maximal swimming speed and energy-conversion efficiency. Our analytic theory based on the slender-body hydrodynamic approximation agrees very well with our numerical data demonstrating how the chirality switch propagating along the helical cell body is converted to a translational thrust for the cell body itself. We in detail consider thermal effects on the propulsion efficiency in the form of orientational fluctuations and conformational fluctuations of the helix shape. The body length dependence of the cell motility is studied numerically and compared to our approximate analytic theory. For fixed pitch angle ψ=35° , the swimming speed is maximized at a ratio of cell-body length to domain length of about 2-3, which are typical values for real cells. We also propose simple analytic arguments for an enhancement of the swimming velocity with increasing solution viscosity by taking into account the effects of transient confinement of a helical cell body in a polymeric meshwork. Comparison with a generalized theory for the swimming speed of flagellated bacteria in polymeric meshworks shows that the presence of a finite-sized bacterial head gives rise to a maximal swimming speed at a finite solution viscosity, whereas in the absence of a head the swimming speed monotonically increases with increasing viscosity.

  19. Gliding Motility in Bacteria: Insights from Studies of Myxococcus xanthus

    PubMed Central

    Spormann, Alfred M.

    1999-01-01

    Gliding motility is observed in a large variety of phylogenetically unrelated bacteria. Gliding provides a means for microbes to travel in environments with a low water content, such as might be found in biofilms, microbial mats, and soil. Gliding is defined as the movement of a cell on a surface in the direction of the long axis of the cell. Because this definition is operational and not mechanistic, the underlying molecular motor(s) may be quite different in diverse microbes. In fact, studies on the gliding bacterium Myxococcus xanthus suggest that two independent gliding machineries, encoded by two multigene systems, operate in this microorganism. One machinery, which allows individual cells to glide on a surface, independent of whether the cells are moving alone or in groups, requires the function of the genes of the A-motility system. More than 37 A-motility genes are known to be required for this form of movement. Depending on an additional phenotype, these genes are divided into two subclasses, the agl and cgl genes. Videomicroscopic studies on gliding movement, as well as ultrastructural observations of two myxobacteria, suggest that the A-system motor may consist of multiple single motor elements that are arrayed along the entire cell body. Each motor element is proposed to be localized to the periplasmic space and to be anchored to the peptidoglycan layer. The force to glide which may be generated here is coupled to adhesion sites that move freely in the outer membrane. These adhesion sites provide a specific contact with the substratum. Based on single-cell observations, similar models have been proposed to operate in the unrelated gliding bacteria Flavobacterium johnsoniae (formerly Cytophaga johnsonae), Cytophaga strain U67, and Flexibacter polymorphus (a filamentous glider). Although this model has not been verified experimentally, M. xanthus seems to be the ideal organism with which to test it, given the genetic tools available. The second gliding

  20. The La Unión Au ± Cu prospect, Camagüey District, Cuba: fluid inclusion and stable isotope evidence for ore-forming processes

    NASA Astrophysics Data System (ADS)

    Santana, Miriela María Ulloa; Moura, Márcia Abrahão; Olivo, Gema R.; Botelho, Nilson Francisquini; Kyser, T. Kurtis; Bühn, Bernhard

    2011-01-01

    The Camagüey district, Cuba, is known for its epithermal precious metal deposits in a Cretaceous volcanic arc setting. Recently, the La Unión prospect was discovered in the southern part of the district, containing gold and minor copper mineralization interpreted as porphyry type. Mineralization is hosted in a 73.0 ± 1.5 Ma calc-alkaline I-type oxidized porphyry quartz diorite intrusive within volcanic and volcaniclastic rocks of the early Cretaceous Guáimaro Formation. The porphyry is affected by propylitic alteration and crosscut by a network of quartz and carbonate veinlets and veins. Chlorite, epidote, sericite, quartz, and pyrite are the main minerals in the early veins which are cut by late carbonate and zeolite veins. Late barite pseudomorphously replaces pyrite. Gold is associated with pyrite as disseminations in the altered quartz diorite and in the veins, occurring as inclusions or filling fractures in pyrite with 4 g/t Au in bulk samples, and up to 900 ppm Au in in pyrite. Fluid inclusion and oxygen isotope data are consistent with a H2O-NaCl-(KCl) mineralizing fluid, derived from the quartz diorite magma, and trapped at least at 425°C and 1.2 kbar. This primary fluid unmixed into two fluid phases, a hypersaline aqueous fluid and a low-salinity vapor-rich fluid. Boiling during cooling may have played an important role in metal precipitation. Pyrite δ34S values for the La Unión prospect range between 0.71‰ and 1.31‰, consistent with a homogeneous magmatic sulfur source. The fluids in equilibrium with the mineralized rocks have estimated δ18O values from 8‰ to 11.8‰, calculated for a temperature range of 480-505°C. The tectonic environment of the La Unión prospect, its high gold and low copper contents, the physical-chemical characteristics of the mineralizing fluids and the isotopic signature of the alteration minerals and fluids indicate that the La Unión gold mineralization is similar to the porphyry gold type, even though the ore

  1. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites

    PubMed Central

    Bane, Kartik S.; Singer, Mirko; Reinig, Miriam; Klug, Dennis; Heiss, Kirsten; Baum, Jake; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. PMID:27409081

  2. Protonmotive force and motility of Bacillus subtilis.

    PubMed Central

    Shioi, J I; Imae, Y; Oosawa, F

    1978-01-01

    Motility of Bacillus subtilis was inhibited within a few minutes by a combination of valinomycin and a high concentration of potassium ions in the medium at neutral pH. Motility was restored by lowering the concentration of valinomycin or potassium ions. The valinomycin concentration necessary for motility inhibition was determined at various concentrations of potassium ions and various pH's. At pH 7.5, valinomycin of any concentration did not inhibit the motility, when the potassium ion concentration was lower than 9 mM. In the presence of 230 mM potassium ion, the motility inhibition by valinomycin was not detected at pH lower than 6.1. These results are easily explained by the idea that the motility of B. subtilis is supported by the electrochemical potential difference of the proton across the membrane, or the protonmotive force. The electrochemical potential difference necessary for motility was estimated to be about -90 mV. PMID:25261

  3. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. PMID:23857825

  4. Mammalian Sperm Motility: Observation and Theory

    NASA Astrophysics Data System (ADS)

    Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C.

    2011-01-01

    Mammalian spermatozoa motility is a subject of growing importance because of rising human infertility and the possibility of improving animal breeding. We highlight opportunities for fluid and continuum dynamics to provide novel insights concerning the mechanics of these specialized cells, especially during their remarkable journey to the egg. The biological structure of the motile sperm appendage, the flagellum, is described and placed in the context of the mechanics underlying the migration of mammalian sperm through the numerous environments of the female reproductive tract. This process demands certain specific changes to flagellar movement and motility for which further mechanical insight would be valuable, although this requires improved modeling capabilities, particularly to increase our understanding of sperm progression in vivo. We summarize current theoretical studies, highlighting the synergistic combination of imaging and theory in exploring sperm motility, and discuss the challenges for future observational and theoretical studies in understanding the underlying mechanics.

  5. [Effect of drugs on granulocyte motility].

    PubMed

    Schmidt, D; Morenz, J

    1985-01-01

    The in-vitro influence of drugs on the chemokinesis and chemotaxis of neutrophils was investigated in order to prevent additional drug-induced motility impairment of cells in cases of already existing host defense disorders and for an eventual specific treatment of motility defects. Granulocyte motility is unimpaired by penicillin, ampicillin, carbenicillin, streptomycin, nystatin, and cyclophosphamide. The chemokinesis and chemotaxis of neutrophils are inhibited by erythromycin, oxytetracycline, doxycycline, chloramphenicol, hydrocortisone, g-strophanthin, digoxin, and digitoxin and in higher concentrations also by sulfonamides, gentamycin, prednisolone, methylprednisolone, dexamethasone, and phenylbutazone. Chemotaxis is selectively or rather more inhibited than chemokinesis by amphotericin B, griseofulvin, vinblastine++, trifluoperazine, and promethazine. Granulocyte motility is, however, stimulated by ascorbic acid, potassium thiocyanate, levamisole, lithium, and metofenazate. PMID:3161313

  6. Motility in the epsilon-proteobacteria.

    PubMed

    Beeby, Morgan

    2015-12-01

    The epsilon-proteobacteria are a widespread group of flagellated bacteria frequently associated with either animal digestive tracts or hydrothermal vents, with well-studied examples in the human pathogens of Helicobacter and Campylobacter genera. Flagellated motility is important to both pathogens and hydrothermal vent members, and a number of curious differences between the epsilon-proteobacterial and enteric bacterial motility paradigms make them worthy of further study. The epsilon-proteobacteria have evolved to swim at high speed and through viscous media that immobilize enterics, a phenotype that may be accounted for by the molecular architecture of the unusually large epsilon-proteobacterial flagellar motor. This review summarizes what is known about epsilon-proteobacterial motility and focuses on a number of recent discoveries that rationalize the differences with enteric flagellar motility. PMID:26590774

  7. Human follicular fluid adverses hamster spermatozoa motility.

    PubMed

    Wetzels, A; Goverde, H J; Bastiaans, L A; Rolland, R

    1989-01-01

    To determine the optimal conditions for in vitro spermatozoa vitality, human and hamster spermatozoa were incubated at 37 degrees C in T6 medium supplemented with different biologic fluids (10% v/v). The fluids tested were human serum (HUS), hamster serum (HAS), and human follicular fluid (HUF). After incubation the spermatozoa were investigated for their qualitative and quantitative motility. Human spermatozoa maintained a good vitality in all fluids tested (approximately 25% motility after 18-h incubation). The hamster spermatozoa had after an incubation of 4 h a motility of 28.4% in HUS, 14.2% in HAS, and 2.2% in HUF. The quality of the motility was also extremely low in HUF, whereas it was adequate in HUS and in HAS. The presence of species-specific substances in mammalian follicular fluid is discussed. PMID:2589906

  8. Implications of altered gastrointestinal motility in obesity.

    PubMed

    Gallagher, T K; Geoghegan, J G; Baird, A W; Winter, D C

    2007-10-01

    The onset of obesity occurs as a result of an imbalance between nutrient consumption/absorption and energy expenditure. Gastrointestinal (GI) motility plays a critical role in the rate of consumption of foods, digestion, and absorption of nutrients. Various segments of the GI tract coordinate in a complex yet precise way, to control the process of food consumption, digestion, and absorption of nutrients. GI motility not only regulates the rates at which nutrients are processed and absorbed in the gut, but also, via mechanical and neurohormonal methods, participates in the control of appetite and satiety. Altered GI motility has frequently been observed in obese patients, the significance of which is incompletely understood. However, these alterations can be considered as potential contributing factors in the development and maintenance of obesity and changed eating behavior. Therapies aimed at regulating or counteracting the observed changes in GI motility are being actively explored and applied clinically in the management of obese patients. PMID:18098402

  9. ATPases, ion exchangers and human sperm motility.

    PubMed

    Peralta-Arias, Rubén D; Vívenes, Carmen Y; Camejo, María I; Piñero, Sandy; Proverbio, Teresa; Martínez, Elizabeth; Marín, Reinaldo; Proverbio, Fulgencio

    2015-05-01

    Human sperm has several mechanisms to control its ionic milieu, such as the Na,K-ATPase (NKA), the Ca-ATPase of the plasma membrane (PMCA), the Na(+)/Ca(2) (+)-exchanger (NCX) and the Na(+)/H(+)-exchanger (NHE). On the other hand, the dynein-ATPase is the intracellular motor for sperm motility. In this work, we evaluated NKA, PMCA, NHE, NCX and dynein-ATPase activities in human sperm and investigated their correlation with sperm motility. Sperm motility was measured by Computer Assisted Semen Analysis. It was found that the NKA activity is inhibited by ouabain with two Ki (7.9 × 10(-9) and 9.8 × 10(-5) M), which is consistent with the presence of two isoforms of α subunit of the NKA in the sperm plasma membranes (α1 and α4), being α4 more sensitive to ouabain. The decrease in NKA activity is associated with a reduction in sperm motility. In addition, sperm motility was evaluated in the presence of known inhibitors of NHE, PMCA and NCX, such as amiloride, eosin, and KB-R7943, respectively, as well as in the presence of nigericin after incubation with ouabain. Amiloride, eosin and KB-R7943 significantly reduced sperm motility. Nigericin reversed the effect of ouabain and amiloride on sperm motility. Dynein-ATPase activity was inhibited by acidic pH and micromolar concentrations of Ca(2) (+). We explain our results in terms of inhibition of the dynein-ATPase in the presence of higher cytosolic H(+) and Ca(2) (+), and therefore inhibition of sperm motility. PMID:25820902

  10. Novel mechanisms power bacterial gliding motility.

    PubMed

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. PMID:27028358

  11. Ghrelin family of peptides and gut motility.

    PubMed

    Asakawa, Akihiro; Ataka, Koji; Fujino, Kazunori; Chen, Chih-Yen; Kato, Ikuo; Fujimiya, Mineko; Inui, Akio

    2011-04-01

    Acyl ghrelin, des-acyl ghrelin, and obestatin are three peptides isolated from the gastrointestinal tract and encoded by the same preproghrelin gene. Three ghrelin gene products participate in modulating appetite, adipogenesis, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. We have investigated the effects of ghrelin family of peptides on fed and fasted motor activities in the stomach and duodenum of freely moving conscious rats by manometric method. Intracerebroventricular (ICV) and intravenous (IV) administration of acyl ghrelin induced fasted motor activity in the duodenum in fed rats. ICV and IV administration of des-acyl ghrelin disrupted fasted motor activity in the antrum. Changes in gastric motility induced by IV administration of des-acyl ghrelin were antagonized by ICV administration of a corticotropin-releasing factor (CRF) 2 receptor antagonist. IV administration of obestatin decreased the percentage motor index in the antrum and prolonged the time taken to return to fasted motility in the duodenum in fed rats. ICV administration of CRF 1 and 2 receptor antagonists prevented the effects of obestatin on gastroduodenal motility. Ghrelin gene products regulate feeding-associated gastroduodenal motility. Stomach may regulate various functions including gastrointestinal motility via acyl ghrelin, des-acyl ghrelin and obestatin as an endocrine organ. Increasing knowledge of the effects of ghrelin family of peptides on gastrointestinal motility could lead to innovative new therapies for functional gastrointestinal disorders. PMID:21443714

  12. Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa

    PubMed Central

    Caiazza, Nicky C.; Shanks, Robert M. Q.; O'Toole, G. A.

    2005-01-01

    Pseudomonas aeruginosa is capable of twitching, swimming, and swarming motility. The latter form of translocation occurs on semisolid surfaces, requires functional flagella and biosurfactant production, and results in complex motility patterns. From the point of inoculation, bacteria migrate as defined groups, referred to as tendrils, moving in a coordinated manner capable of sensing and responding to other groups of cells. We were able to show that P. aeruginosa produces extracellular factors capable of modulating tendril movement, and genetic analysis revealed that modulation of these movements was dependent on rhamnolipid biosynthesis. An rhlB mutant (deficient in mono- and dirhamnolipid production) and an rhlC mutant (deficient in dirhamnolipid production) exhibited altered swarming patterns characterized by irregularly shaped tendrils. In addition, agar supplemented with rhamnolipid-containing spent supernatant inhibited wild-type (WT) swarming, whereas agar supplemented with spent supernatant from mutants that do not make rhamnolipids had no effect on WT P. aeruginosa swarming. Addition of purified rhamnolipids to swarming medium also inhibited swarming motility of the WT strain. We also show that a sadB mutant does not sense and/or respond to other groups of swarming cells and this mutant was capable of swarming on media supplemented with rhamnolipid-containing spent supernatant or purified rhamnolipids. The abilities to produce and respond to rhamnolipids in the context of group behavior are discussed. PMID:16237018

  13. Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile

    PubMed Central

    Purcell, Erin B.; McKee, Robert W.; McBride, Shonna M.; Waters, Christopher M.

    2012-01-01

    Clostridium difficile-associated disease is increasing in incidence and is costly to treat. Our understanding of how this organism senses its entry into the host and adapts for growth in the large bowel is limited. The small-molecule second messenger cyclic diguanylate (c-di-GMP) has been extensively studied in Gram-negative bacteria and has been shown to modulate motility, biofilm formation, and other processes in response to environmental signals, yet little is known about the functions of this signaling molecule in Gram-positive bacteria or in C. difficile specifically. In the current study, we investigated the function of the second messenger c-di-GMP in C. difficile. To determine the role of c-di-GMP in C. difficile, we ectopically expressed genes encoding a diguanylate cyclase enzyme, which synthesizes c-di-GMP, or a phosphodiesterase enzyme, which degrades c-di-GMP. This strategy allowed us to artificially elevate or deplete intracellular c-di-GMP, respectively, and determine that c-di-GMP represses motility in C. difficile, consistent with previous studies in Gram-negative bacteria, in which c-di-GMP has a negative effect on myriad modes of bacterial motility. Elevated c-di-GMP levels also induced clumping of C. difficile cells, which may signify that C. difficile is capable of forming biofilms in the host. In addition, we directly quantified, for the first time, c-di-GMP production in a Gram-positive bacterium. This work demonstrates the effect of c-di-GMP on the motility of a Gram-positive bacterium and on aggregation of C. difficile, which may be relevant to the function of this signaling molecule during infection. PMID:22522894

  14. A Quantitative 3D Motility Analysis of Trypanosoma brucei by Use of Digital In-line Holographic Microscopy

    PubMed Central

    Weiße, Sebastian; Heddergott, Niko; Heydt, Matthias; Pflästerer, Daniel; Maier, Timo; Haraszti, Tamás; Grunze, Michael; Engstler, Markus; Rosenhahn, Axel

    2012-01-01

    We present a quantitative 3D analysis of the motility of the blood parasite Trypanosoma brucei. Digital in-line holographic microscopy has been used to track single cells with high temporal and spatial accuracy to obtain quantitative data on their behavior. Comparing bloodstream form and insect form trypanosomes as well as mutant and wildtype cells under varying external conditions we were able to derive a general two-state-run-and-tumble-model for trypanosome motility. Differences in the motility of distinct strains indicate that adaption of the trypanosomes to their natural environments involves a change in their mode of swimming. PMID:22629379

  15. Statistical physical models of cellular motility

    NASA Astrophysics Data System (ADS)

    Banigan, Edward J.

    Cellular motility is required for a wide range of biological behaviors and functions, and the topic poses a number of interesting physical questions. In this work, we construct and analyze models of various aspects of cellular motility using tools and ideas from statistical physics. We begin with a Brownian dynamics model for actin-polymerization-driven motility, which is responsible for cell crawling and "rocketing" motility of pathogens. Within this model, we explore the robustness of self-diffusiophoresis, which is a general mechanism of motility. Using this mechanism, an object such as a cell catalyzes a reaction that generates a steady-state concentration gradient that propels the object in a particular direction. We then apply these ideas to a model for depolymerization-driven motility during bacterial chromosome segregation. We find that depolymerization and protein-protein binding interactions alone are sufficient to robustly pull a chromosome, even against large loads. Next, we investigate how forces and kinetics interact during eukaryotic mitosis with a many-microtubule model. Microtubules exert forces on chromosomes, but since individual microtubules grow and shrink in a force-dependent way, these forces lead to bistable collective microtubule dynamics, which provides a mechanism for chromosome oscillations and microtubule-based tension sensing. Finally, we explore kinematic aspects of cell motility in the context of the immune system. We develop quantitative methods for analyzing cell migration statistics collected during imaging experiments. We find that during chronic infection in the brain, T cells run and pause stochastically, following the statistics of a generalized Levy walk. These statistics may contribute to immune function by mimicking an evolutionarily conserved efficient search strategy. Additionally, we find that naive T cells migrating in lymph nodes also obey non-Gaussian statistics. Altogether, our work demonstrates how physical

  16. Cellular Motility--Experiments on Contractile and Motile Mechanisms in the Slime Mould, Physarum Polycephalum

    ERIC Educational Resources Information Center

    Holmes, R. P.; Stewart, P. R.

    1977-01-01

    Actin and myosin have now been demonstrated to be important constituents of many eukaryotic cells. Their role is primarily that of a contractile system underlying all aspects of cellular motility. Described here is a simple experimental system to demonstrate quantitatively aspects of motility and its regulation in a slime mold. (Author/MA)

  17. HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus

    PubMed Central

    zur Lage, Petra; Ait-Lounis, Aouatef; Schmidts, Miriam; Shoemark, Amelia; Garcia Munoz, Amaya; Halachev, Mihail R.; Gautier, Philippe; Yeyati, Patricia L.; Bonthron, David T.; Carr, Ian M.; Hayward, Bruce; Markham, Alexander F.; Hope, Jilly E.; von Kriegsheim, Alex; Mitchison, Hannah M.; Jackson, Ian J.; Durand, Bénédicte; Reith, Walter; Sheridan, Eamonn; Jarman, Andrew P.; Mill, Pleasantine

    2014-01-01

    Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme. PMID:25232951

  18. Acidification Activates Toxoplasma gondii Motility and Egress by Enhancing Protein Secretion and Cytolytic Activity

    PubMed Central

    Roiko, Marijo S.; Svezhova, Nadezhda; Carruthers, Vern B.

    2014-01-01

    Pathogenic microbes rely on environmental cues to initiate key events during infection such as differentiation, motility, egress and invasion of cells or tissues. Earlier investigations showed that an acidic environment activates motility of the protozoan parasite T. gondii. Conversely, potassium ions, which are abundant in the intracellular milieu that bathes immotile replicating parasites, suppress motility. Since motility is required for efficient parasite cell invasion and egress we sought to better understand its regulation by environmental cues. We found that low pH stimulates motility by triggering Ca2+-dependent secretion of apical micronemes, and that this cue is sufficient to overcome suppression by potassium ions and drive parasite motility, cell invasion and egress. We also discovered that acidification promotes membrane binding and cytolytic activity of perforin-like protein 1 (PLP1), a pore-forming protein required for efficient egress. Agents that neutralize pH reduce the efficiency of PLP1-dependent perforation of host membranes and compromise egress. Finally, although low pH stimulation of microneme secretion promotes cell invasion, it also causes PLP1-dependent damage to host cells, suggesting a mechanism by which neutral extracellular pH subdues PLP1 activity to allow cell invasion without overt damage to the target cell. These findings implicate acidification as a signal to activate microneme secretion and confine cytolytic activity to egress without compromising the viability of the next cell infected. PMID:25375818

  19. Opposing microtubule motors control motility, morphology and cargo segregation during ER-to-Golgi transport.

    PubMed

    Brown, Anna K; Hunt, Sylvie D; Stephens, David J

    2014-01-01

    We recently demonstrated that dynein and kinesin motors drive multiple aspects of endosomal function in mammalian cells. These functions include driving motility, maintaining morphology (notably through providing longitudinal tension to support vesicle fission), and driving cargo sorting. Microtubule motors drive bidirectional motility during traffic between the endoplasmic reticulum (ER) and Golgi. Here, we have examined the role of microtubule motors in transport carrier motility, morphology, and domain organization during ER-to-Golgi transport. We show that, consistent with our findings for endosomal dynamics, microtubule motor function during ER-to-Golgi transport of secretory cargo is required for motility, morphology, and cargo sorting within vesicular tubular carriers en route to the Golgi. Our data are consistent with previous findings that defined roles for dynein-1, kinesin-1 (KIF5B) and kinesin-2 in this trafficking step. Our high resolution tracking data identify some intriguing aspects. Depletion of kinesin-1 reduces the number of motile structures seen, which is in line with other findings relating to the role of kinesin-1 in ER export. However, those transport carriers that were produced had a much greater run length suggesting that this motor can act as a brake on anterograde motility. Kinesin-2 depletion did not significantly reduce the number of motile transport carriers but did cause a similar increase in run length. These data suggest that kinesins act as negative regulators of ER-to-Golgi transport. Depletion of dynein not only reduced the number of motile carriers formed but also caused tubulation of carriers similar to that seen for sorting nexin-coated early endosomes. Our data indicated that the previously observed anterograde-retrograde polarity of transport carriers in transit to the Golgi from the ER is maintained by microtubule motor function. PMID:24705013

  20. A Novel Inducer of Roseobacter Motility Is Also a Disruptor of Algal Symbiosis

    PubMed Central

    Sule, Preeti

    2013-01-01

    Silicibacter sp. strain TM1040, a member of the Roseobacter clade, forms a symbiosis with unicellular phytoplankton, which is inextricably linked to the biphasic “swim or stick” lifestyle of the bacteria. Mutations in flaC bias the population toward the motile phase. Renewed examination of the FlaC− strain (HG1016) uncovered that it is composed of two different cells: a pigmented type, PS01, and a nonpigmented cell, PS02, each of which has an identical mutation in flaC. While monocultures of PS01 and PS02 had few motile cells (0.6 and 6%, respectively), coculturing the two strains resulted in a 10-fold increase in the number of motile cells. Cell-free supernatants from coculture or wild-type cells were fully capable of restoring motility to PS01 and PS02, which was due to increased fliC3 (flagellin) transcription, FliC3 protein levels per cell, and flagella synthesis. The motility-inducing compound has an estimated mass of 226 Da, as determined by mass spectrometry, and is referred to as Roseobacter Motility Inducer (RMI). Mutations affecting genes involved in phenyl acetic acid synthesis significantly reduced RMI, while defects in tropodithietic acid (TDA) synthesis had marginal or no effect on RMI. RMI biosynthesis is induced by p-coumaric acid, a product of algal lignin degradation. When added to algal cultures, RMI caused loss of motility, cell enlargement, and vacuolization in the algal cells. RMI is a new member of the roseobacticide family of troponoid compounds whose activities affect roseobacters, by shifting their population toward motility, as well as their phytoplankton hosts, through an algicidal effect. PMID:23161030

  1. Exploring the role of CheA3 in Desulfovibrio vulgaris Hildenborough motility

    PubMed Central

    Ray, Jayashree; Keller, Kimberly L.; Catena, Michela; Juba, Thomas R.; Zemla, Marcin; Rajeev, Lara; Knierim, Bernhard; Zane, Grant M.; Robertson, Jarrod J.; Auer, Manfred; Wall, Judy D.; Mukhopadhyay, Aindrila

    2014-01-01

    Sulfate-reducing bacteria such as Desulfovibrio vulgaris Hildenborough are often found in environments with limiting growth nutrients. Using lactate as the electron donor and carbon source, and sulfate as the electron acceptor, wild type D. vulgaris shows motility on soft agar plates. We evaluated this phenotype with mutants resulting from insertional inactivation of genes potentially related to motility. Our study revealed that the cheA3 (DVU2072) kinase mutant was impaired in the ability to form motility halos. Insertions in two other cheA loci did not exhibit a loss in this phenotype. The cheA3 mutant was also non-motile in capillary assays. Complementation with a plasmid-borne copy of cheA3 restores wild type phenotypes. The cheA3 mutant displayed a flagellum as observed by electron microscopy, grew normally in liquid medium, and was motile in wet mounts. In the growth conditions used, the D. vulgaris ΔfliA mutant (DVU3229) for FliA, predicted to regulate flagella-related genes including cheA3, was defective both in flagellum formation and in forming the motility halos. In contrast, a deletion of the flp gene (DVU2116) encoding a pilin-related protein was similar to wild type. We conclude that wild type D. vulgaris forms motility halos on solid media that are mediated by flagella-related mechanisms via the CheA3 kinase. The conditions under which the CheA1 (DVU1594) and CheA2 (DVU1960) kinase function remain to be explored. PMID:24639670

  2. Study of human sperm motility post cryopreservation

    PubMed Central

    Oberoi, Bhavni; Kumar, Sushil; Talwar, Pankaj

    2014-01-01

    Background Cryopreservation of spermatozoa is a widely used technique to preserve the fertility of males. It can also benefit the armed forces personnel who are to be sent for long recruitments, while leaving their families behind. This study, apart from studying the effects of freezing and thawing, reveals the effect of the post thaw interval on the motility of the human spermatozoa and thus widens the insemination window period. Methods A detailed semen analysis was carried out as per the WHO guidelines for 25 samples. The samples were then washed, analysed and frozen in liquid nitrogen. The semen samples were subsequently thawed and similarly analysed after 20 min and 40 min of thawing. This was then followed by statistical analysis of the comparative motilities. Results Motility of sperms is found to decrease after cryopreservation. However, the study revealed that after thawing a significant increase in the motility of the sperms was noted with the progression of time (p < 0.05). Conclusion By simulating conditions similar to the in vivo conditions for the post thaw semen samples, we can safely wait, confirm the parameters like motility and count, and then inseminate the samples instead of blindly inseminating them immediately after thawing. PMID:25382909

  3. Motility modes of the parasite Trypanosoma brucei

    NASA Astrophysics Data System (ADS)

    Temel, Fatma Zeynep; Qu, Zijie; McAllaster, Michael; de Graffenried, Christopher; Breuer, Kenneth

    2015-11-01

    The parasitic single-celled protozoan Trypanosoma brucei causes African Sleeping Sickness, which is a fatal disease in humans and animals that threatens more than 60 million people in 36 African countries. Cell motility plays a critical role in the developmental phases and dissemination of the parasite. Unlike many other motile cells such as bacteria Escherichia coli or Caulobacter crescentus, the flagellum of T. brucei is attached along the length of its awl-like body, producing a unique mode of motility that is not fully understood or characterized. Here, we report on the motility of T. brucei, which swims using its single flagellum employing both rotating and undulating propulsion modes. We tracked cells in real-time in three dimensions using fluorescent microscopy. Data obtained from experiments using both short-term tracking within the field of view and long-term tracking using a tracking microscope were analyzed. Motility modes and swimming speed were analyzed as functions of cell size, rotation rate and undulation pattern. Research supported by NSF.

  4. On the motility of military microrobots

    SciTech Connect

    Solem, J.C.

    1991-07-01

    I show that at the physical limits of technology, crude robots on the size scale of 10--100 {mu}m may be possible. An interesting aspect of such miniscule vehicles is the means by which they might move about. I address this question with a number of detailed calculations for microrobots traveling by air, land, and sea. The Reynolds number for airborne robots is close to unity -- the viscous forces dominate the inertial forces. I show that there is no sense to using a lifting airfoil, a microrobotic helicopter could fly by simply gripping the viscous air around it. Swimming robots encounter a higher Reynolds number and I explore a variety of propulsion mechanisms. The best propulsion appears to be a fan propeller using blades of rather unusual design. Surprisingly, the corkscrew-flagellum propulsion of the motile form of Escherichia coli is a good deal less efficient than this fan propulsion. Nature is known for her parsimonious use of energy: perhaps she uses the flagellum because it is easy to fabricate from protein. Hopping seems to be the most effective mode of transport for earth-bound robots. It is stealthy, predator-evading, and energy-efficient and provides mobility over many types of terrain. I calculate optimum hopping strategies as a function of weight and atmospheric viscosity. It would be interesting to see how these equations apply to insects. Finally, I show various ways adhesion and electric fields can be used for walking on walls. The research is avant-garde, but may be useful when micromechanical technology reaches the projected level of competence. 5 figs.

  5. Trimebutine as a modulator of gastrointestinal motility.

    PubMed

    Lee, Hyun-Tai; Kim, Byung Joo

    2011-06-01

    Trimebutine has been used for treatment of both hypermotility and hypomotility disorders of the gastrointestinal (GI) tract, such as irritable bowel syndrome. In this issue, Tan et al. (2011) examined the concentration-dependent dual effects of trimebutine on colonic motility in guinea pig. The authors suggested that trimebutine attenuated colonic motility mainly through the inhibition of L-type Ca(2+) channels at higher concentrations, whereas, at lower concentrations, it depolarized membrane potentials by reducing BK(ca) currents, resulting in the enhancement of the muscle contractions. Trimebutine might be a plausible modulator of GI motility, which gives an insight in developing new prokinetic agents. Further studies to elucidate the effects of trimebutine on the interstitial cells of Cajal, the pacemaker in GI muscles would promote the therapeutic benefits as a GI modulator. PMID:21725804

  6. Direct Upstream Motility in Escherichia coli

    PubMed Central

    Kaya, Tolga; Koser, Hur

    2012-01-01

    We provide an experimental demonstration of positive rheotaxis (rapid and continuous upstream motility) in wild-type Escherichia coli freely swimming over a surface. This hydrodynamic phenomenon is dominant below a critical shear rate and robust against Brownian motion and cell tumbling. We deduce that individual bacteria entering a flow system can rapidly migrate upstream (>20 μm/s) much faster than a gradually advancing biofilm. Given a bacterial population with a distribution of sizes and swim speeds, local shear rate near the surface determines the dominant hydrodynamic mode for motility, i.e., circular or random trajectories for low shear rates, positive rheotaxis for moderate flow, and sideways swimming at higher shear rates. Faster swimmers can move upstream more rapidly and at higher shear rates, as expected. Interestingly, we also find on average that both swim speed and upstream motility are independent of cell aspect ratio. PMID:22500751

  7. Mechanism of shape determination in motile cells

    PubMed Central

    Keren, Kinneret; Pincus, Zachary; Allen, Greg M.; Barnhart, Erin L.; Marriott, Gerard; Mogilner, Alex; Theriot, Julie A.

    2010-01-01

    The shape of motile cells is determined by many dynamic processes spanning several orders of magnitude in space and time, from local polymerization of actin monomers at subsecond timescales to global, cell-scale geometry that may persist for hours. Understanding the mechanism of shape determination in cells has proved to be extremely challenging due to the numerous components involved and the complexity of their interactions. Here we harness the natural phenotypic variability in a large population of motile epithelial keratocytes from fish (Hypsophrys nicaraguensis) to reveal mechanisms of shape determination. We find that the cells inhabit a low-dimensional, highly correlated spectrum of possible functional states. We further show that a model of actin network treadmilling in an inextensible membrane bag can quantitatively recapitulate this spectrum and predict both cell shape and speed. Our model provides a simple biochemical and biophysical basis for the observed morphology and behaviour of motile cells. PMID:18497816

  8. Invisible gold distribution on pyrite and ore-forming fluid process of the Huangshan orogenic-type gold deposit of Zhejiang, SE China: implications from mineralogy, trace elements, impurity and fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Sundarrajan, Vijay Anand; Li, Zilong; Hu, Yizhou; Fu, Xuheng; Zhu, Yuhuo

    2016-07-01

    The Huangshan orogenic-type gold deposit in Zhejiang of SE China occurred in quartz-pyrite veins. It is hosted by phyllonite that underwent greenschist-facies metamorphism along a large Jiangshan-Shaoxing tectonic belt with a NE-SW direction. Trace elemental characteristics, ore-forming process and invisible gold on different forms of pyrite and quartz are studied. The Au associated pyrite can be classified into two categories; recrystallized pyrite and euhedral pyrite. The precipitation of invisible Au on pyrite is mainly derived by Co and Ni with AuHS2 - complex in the mineralizing fluids in different events. The XPS results revealed that valence states of Au3+ replaced 2Fe2+ in the pyrite and Au0 replaced Si4+ in the quartz structure. The electron paramagnetic resonance and trace elemental results suggested that the element pairs of Ge-Li-Al in quartz and Mn-Co-Ni in pyrite have distinct impurities as identified. A fluid inclusion study showed that the auriferous quartz is characterized by low-saline and CO2-rich fluids. Coexistence of the type I-type III inclusions and same range of homogenization temperature with different mode are evidences of immiscible fluid process. The temperature-pressure values of ca. 250 °C/1250 bar and ca. 220 °C/780 bar for gold precipitation have been calculated by intersection of coexisting fluids during the entrapment. The Huangshan orogenic-type gold deposit may be associated with the Wuyi-Yunkai orogeny during the early Paleozoic, including an upper-mid greenschist-facies metamorphism (450-420 Ma). All the features suggest that the Huangshan gold deposit is probably a product linking with the early Paleozoic orogeny in South China.

  9. Incidence of motile Aeromonas spp. in foods.

    PubMed

    Pin, C; Marín, M L; García, M L; Tormo, J; Selgas, M D; Casas, C

    1994-09-01

    A total of 80 food samples were purchased from local retail consumer shops and examined for the presence of motile Aeromonas spp. Of the food categories tested, poultry had the highest incidence, with 100% positive. This was followed by lamb samples, with 60% positive. Raw milk and cheese samples had very low incidence (20%). No motile Aeromonas spp. were found in pre-prepared salads. Shellfish, fish, pork and beef samples had incidences of 40%. Most of the strains isolated were Aeromonas hydrophila, and for most of the food categories, no Aeromonas caviae isolates were obtained. PMID:7873101

  10. Response of a Motile/Non-Motile Escherichia coli Front to Hydrodynamic excitations

    NASA Astrophysics Data System (ADS)

    Baabour, Magali; Douarche, Carine; Salin, Dominique

    2014-11-01

    In a recent study (Douarche et al. PRL 102, 198101 (2009)), it has been shown that the motility of Escherichia coli (E. coli) is highly correlated to the oxygen level in a minimal medium: bacteria swim as long as they are provided with oxygen but reversibly transit to a non-motile state when they lack of it. Hence, when oxygen diffuses into an anaerobic sample of non-motile bacteria, a propagating front delineates a region of motile bacteria where oxygen is present from a region of non-motile ones where the oxygen is still not present. To study the response of this front to hydrodynamics excitation, we use the same fluorescent E. coli bacterial solution in rectangular cross section glass cells open to air (oxygen) at one inlet. After bacteria have consumed the oxygen of the solution, the presence of the oxygen only at the open edge of the sample leads to the formation of an analogous stationary front between motile and non-motile bacteria. We follow the response of this front to hydrodynamics flows such as an oscillating Poiseuille flow or natural convection. We analyze both the macroscopic behavior (shape and width) of the front as well as the microscopic displacements of individual bacteria. The dispersive behavior of this bacterial front is compared to the one of equivalent. Collaboration between Laboratories FAST and LPS, Univ Paris Sud and CNRS.

  11. Extending the molecular clutch beyond actin-based cell motility

    NASA Astrophysics Data System (ADS)

    Havrylenko, Svitlana; Mezanges, Xavier; Batchelder, Ellen; Plastino, Julie

    2014-10-01

    Many cell movements occur via polymerization of the actin cytoskeleton beneath the plasma membrane at the front of the cell, forming a protrusion called a lamellipodium, while myosin contraction squeezes forward the back of the cell. In what is known as the ‘molecular clutch’ description of cell motility, forward movement results from the engagement of the acto-myosin motor with cell-matrix adhesions, thus transmitting force to the substrate and producing movement. However during cell translocation, clutch engagement is not perfect, and as a result, the cytoskeleton slips with respect to the substrate, undergoing backward (retrograde) flow in the direction of the cell body. Retrograde flow is therefore inversely proportional to cell speed and depends on adhesion and acto-myosin dynamics. Here we asked whether the molecular clutch was a general mechanism by measuring motility and retrograde flow for the Caenorhabditis elegans sperm cell in different adhesive conditions. These cells move by adhering to the substrate and emitting a dynamic lamellipodium, but the sperm cell does not contain an acto-myosin cytoskeleton. Instead the lamellipodium is formed by the assembly of major sperm protein, which has no biochemical or structural similarity to actin. We find that these cells display the same molecular clutch characteristics as acto-myosin containing cells. We further show that retrograde flow is produced both by cytoskeletal assembly and contractility in these cells. Overall this study shows that the molecular clutch hypothesis of how polymerization is transduced into motility via adhesions is a general description of cell movement regardless of the composition of the cytoskeleton.

  12. The effects of temperature and motility on the advective transport of a deep subsurface bacteria through saturated sediment

    SciTech Connect

    McCaulou, D.R.

    1993-10-01

    Replicate column experiments were done to quantify the effects of temperature and bacterial motility on advective transport through repacked, but otherwise unaltered, natural aquifer sediment. The bacteria used in this study, A0500, was a flagellated, spore-forming rod isolated from the deep subsurface at DOE`s Savannah River Laboratory. Motility was controlled by turning on flagellar metabolism at 18{degrees}C but off at 40{degrees}C. Microspheres were used to independently quantify the effects of temperature on the sticking efficiency ({alpha}), estimated using a steady-state filtration model. The observed greater microsphere removal at the higher temperature agreed with the physical-chemical model, but bacteria removal at 18{degrees}C was only half that at 4{degrees}C. The sticking efficiency for non-motile A0500 (4{degrees}C) was over three times that of the motile A0500 (18{degrees}C), 0.073 versus 0.022 respectively. Analysis of complete breakthrough curves using a non-steady, kinetically limited, transport model to estimate the time scales of attachment and detachment suggested that motile A 0500 bacteria traveled twice as far as non-motile A 0500 bacteria before becoming attached. Once attached, non-motile colloids detached on the time scale of 9 to 17 days. The time scale for detachment of motile A0500 bacteria was shorter, 4 to 5 days. Results indicate that bacterial attachment was reversible and detachment was enhanced by bacterial motifity. The kinetic energy of bacterial motility changed the attachment-detachment kinetics in favor of the detached state. The chemical factors responsible for the enhanced transport are not known. However, motility may have caused weakly held bacteria to detach from the secondary minimum, and possibly from the primary minimum, as described by DLVO theory.

  13. Ultrastructural cytochemical analysis of intranuclear arsenic inclusions

    SciTech Connect

    Sorensen, E.M.B.

    1987-01-01

    To establish the chemical composition of the arsenic inclusion, freshly isolated preparations of inclusions and epon-embedded thin sections of inclusions were subjected to ultrastructural cytochemical analysis. Intranuclear inclusions are composed of amorphous, arsenic-containing subunits aligned linearly to form a coiled complex. Lipase, ribonuclease, deoxyribonuclease, trypsin, pepsin, protease, amylase, or ethylenediaminetetraacetic acid (EDTA) was used to digest or chelate these inclusions. Following enzymatic digestion or chelation, the electron opacity of inclusions was compared with that of control sections exposed for equal times to equivalent solutions lacking the enzymes. Exposure to amylase caused a consistent reduction in the electron opacity of thin sections of inclusions and almost complete digestion of the freshly isolated preparations of inclusions. This was indicative of the presence of a carbohydrate moiety within arsenic inclusions. Incubation of inclusions with EDTA resulted in solubilization of freshly isolated and thin-sectioned embedded material. These data indicated that the intranuclear arsenic inclusion is composed of both metallic and carbohydrate moieties, confirming earlier studies which identified arsenic within inclusions using instrumental neutron activation analysis and x-ray microprobe analysis.

  14. The effects of angiogenic growth factors on extravillous trophoblast invasion and motility.

    PubMed

    Lash, G E; Cartwright, J E; Whitley, G S; Trew, A J; Baker, P N

    1999-11-01

    There is accumulating evidence that deficient trophoblast invasion of the placental bed spiral arteries is crucial to the pathogenesis of pre-eclampsia and intrauterine growth restriction. However, the factors which regulate the process of trophoblast invasion remain unclear. We have investigated whether extravillous trophoblast invasion and motility are mediated by the angiogenic growth factors, vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). The SGHPL-4 extravillous trophoblast cell line was utilized. Expression of mRNA for the receptors of VEGF and PlGF (KDR and flt-1) was determined using the reverse transcriptase polymerase chain reaction. An in vitro model of invasion assessed the number and length of trophoblast processes invading into an extracellular matrix. The motility of cells under standard culture conditions was also quantified. The effect of the addition of VEGF and PlGF (+/-heparin) on trophoblast invasion and motility was determined. The effect of VEGF and PlGF (+/-heparin) on SGHPL-4 cell proliferation was assessed by cell counts at 24, 48 and 72 h post-addition of growth factor. The SGHPL-4 cells expressed mRNA for the flt-1 but not the KDR receptor. The addition of VEGF resulted in a significant decrease in the number of trophoblast processes formed (P< 0.02); this effect was not influenced by the addition of heparin. However, there was no effect on the length of processes formed in response to VEGF (+/-heparin). The addition of PlGF had no effect on either the number or the length of processes formed. The addition of VEGF increased the motility of the SGHPL-4 cells (P< 0.002); the addition of heparin prevented this VEGF-induced increase in motility. The addition of PlGF had no effect on SGHPL-4 motility (+/-heparin). Neither growth factor had any effect on the proliferative ability of SGHPL-4 cells. Contrary to our hypothesis, we did not find that the angiogenic growth factors, VEGF and PlGF, mediated the in vitro

  15. Esophageal motility abnormalities in gastroesophageal reflux disease.

    PubMed

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-05-01

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett's esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted. PMID:24868489

  16. Actin motility: formin a SCAry tail.

    PubMed

    Alberts, Art; Way, Michael

    2011-01-11

    A new biochemical analysis has revealed that the Rickettsia bacterial protein Sca2--recently shown to be essential for virulence and actin-dependent motility--assembles actin filaments using a mechanism that functionally resembles the processive elongation tactics used by formins. PMID:21215933

  17. Semiautomated Motility Assay For Determining Toxicity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond

    1996-01-01

    Improved method of assessing toxicities of various substances based on observation of effects of those substances on motilities of manageably small number of cells of protozoan species Tetrahema pyriformis. Provides repeatable, standardized tests with minimal handling by technicians and with minimal exposure of technicians to chemicals. Rapid and economical alternative to Draize test.

  18. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  19. Motility patterns of ex vivo intestine segments depend on perfusion mode

    PubMed Central

    Schreiber, Dominik; Jost, Viktor; Bischof, Michael; Seebach, Kristina; Lammers, Wim JEP; Douglas, Rees; Schäfer, Karl-Herbert

    2014-01-01

    AIM: To evaluate and characterize motility patterns from small intestinal gut segments depending on different perfusion media and pressures. METHODS: Experiments were carried out in a custom designed perfusion chamber system to validate and standardise the perfusion technique used. The perfusion chamber was built with a transparent front wall allowing for optical motility recordings and a custom made fastener to hold the intestinal segments. Experiments with different perfusion and storage media combined with different luminal pressures were carried out to evaluate the effects on rat small intestine motility. Software tools which enable the visualization and characterization of intestinal motility in response to different stimuli were used to evaluate the videotaped experiments. The data collected was presented in so called heatmaps thus providing a concise overview of form and strength of contractility patterns. Furthermore, the effect of different storage media on tissue quality was evaluated. Haematoxylin-Eosin stainings were used to compare tissue quality depending on storage and perfusion mode. RESULTS: Intestinal motility is characterized by different repetitive motility patterns, depending on the actual situation of the gut. Different motility patterns could be recorded and characterized depending on the perfusion pressure and media used. We were able to describe at least three different repetitive patterns of intestinal motility in vitro. Patterns with an oral, anal and oro-anal propagation direction could be recorded. Each type of pattern finalized its movement with or without a subsequent distension of the wavefront. Motility patterns could clearly be distinguished in heatmap diagrams. Furthermore undirected motility could be observed. The quantity of the different patterns varies and is highly dependent on the perfusion medium used. Tissue preservation varies depending on the perfusion medium utilized, therefore media with a simple composition as Tyrode

  20. Limits to Inclusion

    ERIC Educational Resources Information Center

    Hansen, Janne Hedegaard

    2012-01-01

    In this article, I will argue that a theoretical identification of the limit to inclusion is needed in the conceptual identification of inclusion. On the one hand, inclusion is formulated as a vision that is, in principle, limitless. On the other hand, there seems to be an agreement that inclusion has a limit in the pedagogical practice. However,…

  1. Maintenance of motility bias during cyanobacterial phototaxis.

    PubMed

    Chau, Rosanna Man Wah; Ursell, Tristan; Wang, Shuo; Huang, Kerwyn Casey; Bhaya, Devaki

    2015-04-01

    Signal transduction in bacteria is complex, ranging across scales from molecular signal detectors and effectors to cellular and community responses to stimuli. The unicellular, photosynthetic cyanobacterium Synechocystis sp. PCC6803 transduces a light stimulus into directional movement known as phototaxis. This response occurs via a biased random walk toward or away from a directional light source, which is sensed by intracellular photoreceptors and mediated by Type IV pili. It is unknown how quickly cells can respond to changes in the presence or directionality of light, or how photoreceptors affect single-cell motility behavior. In this study, we use time-lapse microscopy coupled with quantitative single-cell tracking to investigate the timescale of the cellular response to various light conditions and to characterize the contribution of the photoreceptor TaxD1 (PixJ1) to phototaxis. We first demonstrate that a community of cells exhibits both spatial and population heterogeneity in its phototactic response. We then show that individual cells respond within minutes to changes in light conditions, and that movement directionality is conferred only by the current light directionality, rather than by a long-term memory of previous conditions. Our measurements indicate that motility bias likely results from the polarization of pilus activity, yielding variable levels of movement in different directions. Experiments with a photoreceptor (taxD1) mutant suggest a supplementary role of TaxD1 in enhancing movement directionality, in addition to its previously identified role in promoting positive phototaxis. Motivated by the behavior of the taxD1 mutant, we demonstrate using a reaction-diffusion model that diffusion anisotropy is sufficient to produce the observed changes in the pattern of collective motility. Taken together, our results establish that single-cell tracking can be used to determine the factors that affect motility bias, which can then be coupled with

  2. Characterization of swarming motility in Rhizobium leguminosarum bv. viciae.

    PubMed

    Tambalo, Dinah D; Yost, Christopher K; Hynes, Michael F

    2010-06-01

    We have characterized swarming motility in Rhizobium leguminosarum strains 3841 and VF39SM. Swarming was dependent on growth on energy-rich media, and both agar concentration and incubation temperature were critical parameters for surface migration. A cell density-dependent lag period was observed before swarming motility was initiated. Surface migration began 3-5 days after inoculation and a full swarming phenotype was observed 3 weeks after inoculation. The swarming front was preceded by a clear extracellular matrix, from which we failed to detect surfactants. The edge of the swarming front formed by VF39SM was characterized by hyperflagellated cells arranged in rafts, whereas the cells at the point of inoculation were indistinguishable from vegetative cells. Swarmer cells formed by 3841, in contrast, showed a minor increase in flagellation, with each swarmer cell exhibiting an average of three flagellar filaments, compared with an average of two flagella per vegetative cell. Reflective of their hyperflagellation, the VF39SM swarmer cells demonstrated an increased expression of flagellar genes. VF39SM swarmed better than 3841 under all the conditions tested, and the additional flagellation in VF39SM swarm cells may contribute to this difference. Metabolism of the supplemented carbon source appeared to be necessary for surface migration as strains incapable of utilizing the carbon source failed to swarm. We also observed that swarmer cells have increased resistance to several antibiotics. PMID:20455952

  3. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production

    PubMed Central

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B.; Igoshin, Oleg A.

    2016-01-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. PMID:27362260

  4. Motility is Critical for Effective Distribution and Accumulation of Bacteria in Tumor Tissue

    PubMed Central

    Toley, Bhushan J.; Forbes, Neil S.

    2016-01-01

    Motile bacteria can overcome the penetration limitations of cancer chemotherapeutics because they can actively migrate into solid tumors. Although several genera of bacteria have been shown to accumulate preferentially in tumors, the spatiotemporal dynamics of bacterial tumor colonization and their dependence on bacterial motility is not clear. For effective tumor regression, bacteria must penetrate and distribute uniformly throughout tumors. To measure these dynamics, we used an in vitro model of continuously perfused tumor tissue to mimic the delivery and systemic clearance of Salmonella typhimurium strains SL1344 and VNP20009, and Escherichia coli strains K12 and DH5α. Tissues were treated for 1 hour with 105 or 107 CFU/ml suspensions of each strain and the location and extent of bacterial accumulation was observed for 30 hours. Salmonella had 14.5 times greater average swimming speeds than E.coli and colonized tissues at 100 times lower doses than E.coli. Bacterial motility strongly correlated (R2 = 99.3%) with the extent of tissue accumulation. When inoculated at 105 CFU/ml, motile Salmonella formed colonies denser than 1010 CFU/(g-tissue) and less motile E.coli showed no detectable colonization. Based on spatio-temporal profiles and a mathematical model of motility and growth, bacterial dispersion was found to be necessary for deep penetration into tissue. Bacterial colonization caused apoptosis in tumors and apoptosis levels correlated (R2 = 98.6%) with colonization density. These results show that motility is critical for effective distribution of bacteria in tumors and is essential for designing cancer therapies that can overcome the barrier of limited tumor penetration. PMID:22193245

  5. The enigma of eugregarine epicytic folds: where gliding motility originates?

    PubMed Central

    2013-01-01

    Background In the past decades, many studies focused on the cell motility of apicomplexan invasive stages as they represent a potential target for chemotherapeutic intervention. Gregarines (Conoidasida, Gregarinasina) are a heterogeneous group that parasitize invertebrates and urochordates, and are thought to be an early branching lineage of Apicomplexa. As characteristic of apicomplexan zoites, gregarines are covered by a complicated pellicle, consisting of the plasma membrane and the closely apposed inner membrane complex, which is associated with a number of cytoskeletal elements. The cell cortex of eugregarines, the epicyte, is more complicated than that of other apicomplexans, as it forms various superficial structures. Results The epicyte of the eugregarines, Gregarina cuneata, G. polymorpha and G. steini, analysed in the present study is organised in longitudinal folds covering the entire cell. In mature trophozoites and gamonts, each epicytic fold exhibits similar ectoplasmic structures and is built up from the plasma membrane, inner membrane complex, 12-nm filaments, rippled dense structures and basal lamina. In addition, rib-like myonemes and an ectoplasmic network are frequently observed. Under experimental conditions, eugregarines showed varied speeds and paths of simple linear gliding. In all three species, actin and myosin were associated with the pellicle, and this actomyosin complex appeared to be restricted to the lateral parts of the epicytic folds. Treatment of living gamonts with jasplakinolide and cytochalasin D confirmed that actin actively participates in gregarine gliding. Contributions to gliding of specific subcellular components are discussed. Conclusions Cell motility in gregarines and other apicomplexans share features in common, i.e. a three-layered pellicle, an actomyosin complex, and the polymerisation of actin during gliding. Although the general architecture and supramolecular organisation of the pellicle is not correlated with

  6. An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ 37Cl analysis of fluid inclusions

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Banks, David A.; Mercadier, Julien; Boiron, Marie-Christine; Cuney, Michel; Cathelineau, Michel

    2011-05-01

    Analyses of halogen concentration and stable chlorine isotope composition of fluid inclusions from hydrothermal quartz and carbonate veins spatially and temporally associated with giant unconformity-related uranium deposits from the Paleoproterozoic Athabasca Basin (Canada) were performed in order to determine the origin of chloride in the ore-forming brines. Microthermometric analyses show that samples contain variable amounts of a NaCl-rich brine (Cl concentration between 120,000 and 180,000 ppm) and a CaCl 2-rich brine (Cl concentration between 160,000 and 220,000 ppm). Molar Cl/Br ratios of fluid inclusion leachates range from ˜100 to ˜900, with most values between 150 and 350. Cl/Br ratios below 650 (seawater value) indicate that the high salinities were acquired by evaporation of seawater. Most δ 37Cl values are between -0.6‰ and 0‰ (seawater value) which is also compatible with a common evaporated seawater origin for both NaCl- and CaCl 2-rich brines. Slight discrepancies between the Cl concentration, Cl/Br, δ 37Cl data and seawater evaporation trends, indicate that the evaporated seawater underwent secondary minor modification of its composition by: (i) mixing with a minor amount of halite-dissolution brine or re-equilibration with halite during burial; (ii) dilution in a maximum of 30% of connate and/or formation waters during its migration towards the base of the Athabasca sandstones; (iii) leaching of chloride from biotites within basement rocks and (iv) water loss by hydration reactions in alteration haloes linked to uranium deposition. The chloride in uranium ore-forming brines of the Athabasca Basin has an unambiguous dominantly marine origin and has required large-scale seawater evaporation and evaporite deposition. Although the direct evidence for evaporative environments in the Athabasca Basin are lacking due to the erosion of ˜80% of the sedimentary pile, Cl/Br ratios and δ 37Cl values of brines have behaved conservatively at the basin

  7. Velocity profiles and discontinuities propagation in a pipe flow of suspension of motile microorganisms

    NASA Astrophysics Data System (ADS)

    Denissenko, P.; Lukaschuk, S.

    2007-03-01

    Suspension of motile gravitactic unicellular algae flowing down in a vertical pipe concentrates near its axis in the form of a thin thread. Such a thread is unstable relative to the travelling nodule-like structures. We study the dynamics of nodules experimentally and describe them in terms of a hydrodynamic model.

  8. Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae

    PubMed Central

    Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.

    2013-01-01

    Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276

  9. 2,4-Diacetylphloroglucinol suppresses zoosporogenesis and impairs motility of Peronosporomycete zoospores.

    PubMed

    Islam, M Tofazzal; von Tiedemann, Andreas

    2011-09-01

    2,4-Diacetylphloroglucinol (DAPG) produced by Pseudomonas fluorescens, shows toxicity to many microorganisms including fungi, bacteria, and peronosporomycetes. Zoosporogenesis and motility of zoospores are critical for a complete disease cycle and pathogenicity of the peronosporomycete phytopathogens. The aim of this study was to test the effects of DAPG and its derivatives on zoosporogenesis and motility of zoospores of a downy mildew pathogen, Plasmopara viticola, and a damping-off pathogen, Aphanomyces cochlioides. In both cases, DAPG inhibited zoosporogenesis (5 μg/ml) and the motility of zoospores (10 μg/ml) in a dose-dependent manner. Generally, zoospores became immotile shortly after exposure to DAPG followed by lysis. However, a fraction of DAPG treated A. cochlioides zoospores formed round cystospores instead of lysis and then germinated with excessively-branched germ tubes. All derivatives of DAPG had similar inhibitory activities but at varying doses. Among them, 2,4-dipropylphloroglucinol exerted the highest inhibitory activity against both zoosporogenesis and motility of zoospores. This revealed that the degree of hydrogen atoms substitution in the benzene ring by acyl groups and the length of substituted acyl groups were related to the level of bioactivity. This is the first report of inhibitory activities of DAPG and its derivatives against zoosporogenesis and motility of zoospores of two important peronosporomycete phytopathogens. PMID:22448105

  10. Towards Inclusion: An Australian Perspective

    ERIC Educational Resources Information Center

    Forbes, Fiona

    2007-01-01

    This article outlines the views of the Australian Special Education Principals' Association (ASEPA) on inclusion and the impact this is having on Australian Government Schools from a school based perspective. ASEPA is a relatively young association and was formed in 1997 out of the need to put forward the case to support students with special…

  11. Recovery of gastrointestinal tract motility detection using Naive Bayesian and minimum statistics.

    PubMed

    Ulusar, Umit D

    2014-08-01

    Loss of gastrointestinal motility is a significant medical setback for patients who experience abdominal surgery and contributes to the most common reason for prolonged hospital stays. Recent clinical studies suggest that initiating feeding early after abdominal surgery is beneficial. Early feeding is possible when the patients demonstrate bowel motility in the form of bowel sounds (BS). This work provides a data collection, processing and analysis methodology for detection of recovery of gastrointestinal track motility by observing BSs in auscultation recordings. The approach is suitable for real-time long-term continuous monitoring in clinical environments. The system was developed using a Naive Bayesian algorithm for pattern classification, and Minimum Statistics and spectral subtraction for noise attenuation. The solution was tested on 59h of recordings and 94.15% recognition accuracy was observed. PMID:24971526

  12. Experimental and Mathematical-Modeling Characterization of Trypanosoma cruzi Epimastigote Motility

    PubMed Central

    Arias-del-Angel, Jorge A.; Dévora-Canales, Diego; Manning-Cela, Rebeca G.; Santana-Solano, Jesús; Santillán, Moisés

    2015-01-01

    The present work is aimed at characterizing the motility of parasite T. cruzi in its epimastigote form. To that end, we recorded the trajectories of two strains of this parasite (a wild-type strain and a stable transfected strain, which contains an ectopic copy of LYT1 gene and whose motility is known to be affected). We further extracted parasite trajectories from the recorded videos, and statistically analysed the following trajectory-step features: step length, angular change of direction, longitudinal and transverse displacements with respect to the previous step, and mean square displacement. Based on the resulting observations, we developed a mathematical model to simulate parasite trajectories. The fact that the model predictions closely match most of the experimentally observed parasite-trajectory characteristics, allows us to conclude that the model is an accurate description of T. cruzi motility. PMID:26544863

  13. A Mach-Zender Holographic Microscope for Quantifying Bacterial Motility

    NASA Astrophysics Data System (ADS)

    Niraula, B.; Nadeau, J. L.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.; Graff, E.; Lindensmith, C.

    2014-12-01

    New microscopic techniques have revolutionized cell biology over the past two decades. However, there are still biological processes whose details elude us, especially those involving motility: e.g. feeding behavior of microorganisms in the ocean, or migration of cancer cells to form metastases. Imaging prokaryotes, which range in size from several hundred nm to a few microns, is especially challenging. An emerging technique to address these issues is Digital Holographic Microscopy (DHM). DHM is an imaging technique that uses the interference of light to record and reproduce three-dimensional magnified images of objects. This approach has several advantages over ordinary brightfield microscopy for fieldwork: a larger depth of field, hands-off operation, robustness regarding environmental conditions, and large sampling volumes with quantitative 3D records of motility behavior. Despite these promising features, real-time DHM was thought to be impractical for technological and computational reasons until recently, and there has so far been very limited application of DHM to biology. Most existing instruments are limited in performance by their particular (e.g. in-line, lens-less, phase-shifting) approach to holography. These limitations can be mitigated with an off-axis dual-path configuration. Here we describe the design and implementation of a design for a Mach-Zehnder-type holographic microscope with diffraction-limited lateral resolution, with intended applications in environmental microbiology. We have achieved sub-micron resolution and three-dimensional tracking of prokaryotic and eukaryotic test strains designed to represent different modes and speeds of microbial motility. Prokaryotes are Escherichia coli, Vibrio alginolyticus, and Bacillus subtilis. Each shows a characteristic motility pattern, as we illustrate in holographic videos in sample chambers 0.6 mm in depth. The ability to establish gradients of attractants with bacterial taxis towards the

  14. MOTILITY, AGGRESSION, AND THE BODILY I: AN INTERPRETATION OF WINNICOTT.

    PubMed

    Elkins, Jeremy

    2015-10-01

    Among the central ideas associated with the name of Winnicott, scant mention is made of motility. This is largely attributable to Winnicott himself, who never thematized motility and never wrote a paper specifically devoted to the topic. This paper suggests both that the idea of motility is nonetheless of central significance in Winnicott's thought, and that motility is of central importance in the development and constitution of the bodily I. In elaborating both these suggestions, the paper gives particular attention to the connections between motility, continuity, aggression, and creativity in Winnicott's work. PMID:26443951

  15. [Motility and functional gastrointestinal disorders].

    PubMed

    Mearin, Fermín; Rey, Enrique; Balboa, Agustín

    2014-09-01

    This article discusses the studies on functional and motor gastrointestinal disorders presented at the 2014 Digestive Diseases Week conference that are of greatest interest to us. New data have been provided on the clinical importance of functional gastrointestinal disorders, with recent prevalence data for irritable bowel syndrome and fecal incontinence. We know more about the pathophysiological mechanisms of the various functional disorders, especially irritable bowel syndrome, which has had the largest number of studies. Thus, we have gained new data on microinflammation, genetics, microbiota, psychological aspects, etc. Symptoms such as abdominal distension have gained interest in the scientific community, both in terms of patients with irritable bowel syndrome and those with constipation. From the diagnostic point of view, the search continues for a biomarker for functional gastrointestinal disorders, especially for irritable bowel syndrome. In the therapeutic area, the importance of diet for these patients (FODMAP, fructans, etc.) is once again confirmed, and data is provided that backs the efficacy of already marketed drugs such as linaclotide, which rule out the use of other drugs such as mesalazine for patients with irritable bowel syndrome. This year, new forms of drug administration have been presented, including metoclopramide nasal sprays and granisetron transdermal patches for patients with gastroparesis. Lastly, a curiosity that caught our attention was the use of a vibrating capsule to stimulate gastrointestinal transit in patients with constipation. PMID:25294261

  16. Light Regulation of Swarming Motility in Pseudomonas syringae Integrates Signaling Pathways Mediated by a Bacteriophytochrome and a LOV Protein

    PubMed Central

    Wu, Liang; McGrane, Regina S.; Beattie, Gwyn A.

    2013-01-01

    ABSTRACT The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. PMID:23760465

  17. Electrical Signaling in Motile and Primary Cilia

    PubMed Central

    Kleene, Steven J.; Van Houten, Judith L.

    2014-01-01

    Cilia are highly conserved for their structure and also for their sensory functions. They serve as antennae for extracellular information. Whether the cilia are motile or not, they respond to environmental mechanical and chemical stimuli and send signals to the cell body. The information from extracellular stimuli is commonly converted to electrical signals through the repertoire of ion-conducting channels in the ciliary membrane, which results in changes in concentrations of ions, especially calcium ions, in the cilia. These changes, in turn, affect motility and the ability of the signaling pathways in the cilia and cell body to carry on the signal transduction. We review here the activities of ion channels in cilia in animals from protists to vertebrates. PMID:25892740

  18. Symbiosis and the origin of eukaryotic motility

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  19. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2011-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use both analytic and computational models to investigate intracellular fluid flow in a simple model of Physarum. In both models, of we are specifically interested in stresses generated by cytoplasmic flow which act in the direction of cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, low waves and locomotive forces, and attempt characterize conditions necessary to generate directed motion.

  20. Hydrodynamic Contributions to Amoeboid Cell Motility

    NASA Astrophysics Data System (ADS)

    Lewis, Owen; Guy, Robert

    2012-11-01

    Understanding the methods by which cells move is a fundamental problem in modern biology. Recent evidence has shown that the fluid dynamics of cytoplasm can play a vital role in cellular motility. The slime mold Physarum polycephalum provides an excellent model organism for the study of amoeboid motion. In this research, we use a simply analytic model in conjuction with computational experiments to investigate intracellular fluid flow in a simple model of Physarum. Of particlar interest are stresses generated by cytoplasmic flow which may be used to aid in cellular motility. In our numerical model, the Immersed Boundary Method is used to account for such stresses. We investigate the relationship between contraction waves, flow waves, adhesion, and locomotive forces in an attempt to characterize conditions necessary to generate directed motion.

  1. Congo red uptake by motile Aeromonas species.

    PubMed

    Statner, B; George, W L

    1987-05-01

    Virulence of several species of enteropathogenic bacteria has been correlated with the ability of isolates to take up the dye Congo red. To determine whether Congo red uptake might be a useful marker for virulence of motile Aeromonas species, we examined 50 strains of diverse clinical origin on a medium containing 50 micrograms of Congo red per ml. All of the strains took up the dye to various degrees. For most strains, uptake was greatest at 37 degrees C and least at 22 degrees C. Production of acetyl methyl carbinol (Voges-Proskauer test) or lysine decarboxylase has been reported by some investigators to be a virulence marker for Aeromonas species. Congo red uptake did not correlate with either acetyl methyl carbinol or lysine decarboxylase production in our study. These data suggest that Congo red uptake may not be a useful marker for virulence of motile Aeromonas species. PMID:3584422

  2. Patterns of periodic holes created by increased cell motility

    PubMed Central

    Chen, Ting-Hsuan; Guo, Chunyan; Zhao, Xin; Yao, Yucheng; Boström, Kristina I.; Wong, Margaret N.; Tintut, Yin; Demer, Linda L.; Ho, Chih-Ming; Garfinkel, Alan

    2012-01-01

    The reaction and diffusion of morphogens is a mechanism widely used to explain many spatial patterns in physics, chemistry and developmental biology. However, because experimental control is limited in most biological systems, it is often unclear what mechanisms account for the biological patterns that arise. Here, we study a biological model of cultured vascular mesenchymal cells (VMCs), which normally self-organize into aggregates that form into labyrinthine configurations. We use an experimental control and a mathematical model that includes reacting and diffusing morphogens and a third variable reflecting local cell density. With direct measurements showing that cell motility was increased ninefold and threefold by inhibiting either Rho kinase or non-muscle myosin-II, respectively, our experimental results and mathematical modelling demonstrate that increased motility alters the multicellular pattern of the VMC cultures, from labyrinthine to a pattern of periodic holes. These results suggest implications for the tissue engineering of functional replacements for trabecular or spongy tissue such as endocardium and bone. PMID:22649581

  3. Particle-based simulations of self-motile suspensions

    NASA Astrophysics Data System (ADS)

    Hinz, Denis F.; Panchenko, Alexander; Kim, Tae-Yeon; Fried, Eliot

    2015-11-01

    A simple model for simulating flows of active suspensions is investigated. The approach is based on dissipative particle dynamics. While the model is potentially applicable to a wide range of self-propelled particle systems, the specific class of self-motile bacterial suspensions is considered as a modeling scenario. To mimic the rod-like geometry of a bacterium, two dissipative particle dynamics particles are connected by a stiff harmonic spring to form an aggregate dissipative particle dynamics molecule. Bacterial motility is modeled through a constant self-propulsion force applied along the axis of each such aggregate molecule. The model accounts for hydrodynamic interactions between self-propelled agents through the pairwise dissipative interactions conventional to dissipative particle dynamics. Numerical simulations are performed using a customized version of the open-source software package LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) software package. Detailed studies of the influence of agent concentration, pairwise dissipative interactions, and Stokes friction on the statistics of the system are provided. The simulations are used to explore the influence of hydrodynamic interactions in active suspensions. For high agent concentrations in combination with dominating pairwise dissipative forces, strongly correlated motion patterns and a fluid-like spectral distributions of kinetic energy are found. In contrast, systems dominated by Stokes friction exhibit weaker spatial correlations of the velocity field. These results indicate that hydrodynamic interactions may play an important role in the formation of spatially extended structures in active suspensions.

  4. Esophageal motility abnormalities in gastroesophageal reflux disease

    PubMed Central

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-01-01

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett’s esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted. PMID:24868489

  5. [Gastrointestinal motility and possibilities of influencing it].

    PubMed

    Duris, I; Payer, J; Huorka, M; Randus, V; Ondrejka, P

    1994-06-01

    The authors discuss factors which influence the motility of the smooth muscles in the pancreatobiliary region. They investigated some clinical and laboratory parameters after administration of the selective antagonist of calcium influx-Pineverium bromide-Dicetel. The drug influenced significantly in a positive way nausea, flatulence, pain and chronically elevated amylases. The authors mention a cycle of possible neurohumoral changes with which specific calcium channel antagonists could interfere. PMID:8073641

  6. Extracellular Regulation of Sperm Transmembrane Adenylyl Cyclase by a Forward Motility Stimulating Protein

    PubMed Central

    Dey, Souvik; Roy, Debarun; Majumder, Gopal C.; Bhattacharyya, Debdas

    2014-01-01

    Forward motility stimulating factor (FMSF), a glycoprotein isolated from buffalo serum, binds to the surface of the mature sperm cells to promote their progressive motility. This article reports the mode of signal transduction of this extracellular factor in goat sperm. The mechanism was investigated by assaying intracellular second messenger level and forward motility in presence of different pharmacological modulators. Mg++-dependent Forskolin responsive form of transmembrane adenylyl cyclase (tmAC) of goat spermatozoa was probed for its involvement in FMSF action. Dideoxyadenosine, a selective inhibitor of tmACs, was used to identify the role of this enzyme in the scheme of FMSF-signaling. Involvement of the α-subunit of G-protein in this regard has been inspected using GTPγS. Participation of protein kinase A (PKA) and tyrosine kinase was checked using IP20 and genistein, respectively. FMSF promotes tmAC activity in a dose-dependent manner through receptor/G-protein activation to enhance intracellular cAMP and forward motility. Motility boosting effects of this glycoprotein are almost lost in presence of dideoxyadenosine. But, FMSF displayed substantial motility promoting activity when movement of spermatozoa was inhibited with KH7, the specific inhibitor of soluble adenylyl cyclase indicating tmAC to be the primary target of FMSF action. Involvement of cAMP in mediating FMSF action was confirmed by the application of dibutyryl cAMP. Observed motility regulatory effects with IP20 and genistein indicate contribution of PKA and tyrosine kinase in FMSF activity; enhanced phosphorylation of a tyrosine containing ≈50 kDa protein was detected in this regard. FMSF initiates a novel signaling cascade to stimulate tmAC activity that augments intracellular cAMP, which through downstream crosstalk of phosphokinases leads to enhanced forward motility in mature spermatozoa. Thus, this article for the first time describes conventional tmAC-dependent profound activation

  7. Irish Mathematics Teachers' Attitudes towards Inclusion

    ERIC Educational Resources Information Center

    Whitty, Elaine; Clarke, Marie

    2012-01-01

    This paper through the theoretical framework of constructive attitude theory explores mathematics teachers' attitudes and pedagogical strategies with reference to inclusive practice. The authors argue that though teachers may have formed positive inclusive attitudes, the translation of these into practice does not always occur and poses…

  8. Inclusive Schooling Policy: An Educational Detective Story?

    ERIC Educational Resources Information Center

    Moss, Julianne

    2003-01-01

    Since the publication of the Salamanca statement (UNESCO 1994), inclusive schooling has formed a growing part of the deliberations of the special education community. Inclusive schooling research in Australia in the main continues to reproduce traditions of the special education field, emphasising the dominant psychological perspectives that have…

  9. Inclusive and Exclusive |Vub|

    SciTech Connect

    Petrella, Antonio; /Ferrara U. /INFN, Ferrara

    2011-11-17

    The current status of the determinations of CKM matrix element |V{sub ub}| via exclusive and inclusive charmless semileptonic B decays is reviewed. The large datasets collected at the B-Factories, and the increased precision of theoretical calculations have allowed an improvement in the determination of |V{sub ub}|. However, there are still significant uncertainties. In the exclusive approach, the most precise measurement of the pion channel branching ratio is obtained by an untagged analysis. This very good precision can be reached by tagged analyses with more data. The problem with exclusive decays is that the strong hadron dynamics can not be calculated from first principles and the determination of the form factor has to rely on light-cone sum rules or lattice QCD calculations. The current data samples allow a comparison of different FF models with data distributions. With further developments on lattice calculations, the theoretical error should shrink to reach the experimental one. The inclusive approach still provides the most precise |V{sub ub}| determinations. With new theoretical calculations, the mild (2.5{sigma}) discrepancy with respect to the |V{sub ub}| value determined from the global UT fit has been reduced. As in the exclusive approach, theoretical uncertainties represent the limiting factor to the precision of the measurement. Reducing the theoretical uncertainties to a level comparable with the statistical error is challenging. New measurements in semileptonic decays of charm mesons could increase the confidence in theoretical calculations and related uncertainties.

  10. Drosophila sperm motility in the reproductive tract.

    PubMed

    Yang, Yong; Lu, Xiangyi

    2011-05-01

    Motile cilia and flagella exhibit many waveforms as outputs of dynein activation sequences on the highly conserved axoneme. Motility change of sperm in the reproductive tract is difficult to study and remains an important area of investigation. Sperm typically execute a sinusoidal waveform. Increased viscosity in the medium induces somewhat unusual arc-line and helical waveforms in some sperm. However, whether the latter two waveforms occur in vivo is not known. Using green fluorescence protein imaging, we show that Drosophila sperm in the uterus move in circular foci via arc-line waves, predominantly in a tail-leading orientation. From the uterus, a small fraction of the sperm enters the seminal receptacle (SR) in parallel formations. After sperm storage and coincident with fertilization of the egg, the sperm exit the SR via head-leading helical waves. Consistent with the observed bidirectional movements, the sperm show the ability to propagate both base-to-tip and tip-to-base flagellar waves. Numerous studies have shown that sperm motility is regulated by intraflagellar calcium concentrations; in particular, the Pkd2 calcium channel has been shown to affect sperm storage. Our analyses here suggest that Pkd2 is required for the sperm to adopt the correct waveform and movement orientation during SR entry. A working model for the sperm's SR entry movement is proposed. PMID:21293028

  11. Swimming Motility Reduces Deposition to Silica Surfaces

    SciTech Connect

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng; Hu, Dehong; Kamai, Tamir; Ginn, Timothy R.; Zilles, Julie L.; Nguyen, Thanh H.

    2015-01-01

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation point flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.

  12. Bacteria motility at oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Juarez, Gabriel; Smirga, Steven; Fernandez, Vicente; Stocker, Roman

    2012-11-01

    The swimming dynamics of bacteria are strongly influenced by interfaces: Motile bacteria often accumulate at rigid boundaries, such as liquid-solid interfaces, and at soft boundaries, such as liquid-air or liquid-liquid interfaces. Attachment of bacteria to these interfaces is crucial for the formation of biofilms (liquid-solid), pellicles (liquid-air), and oil-degrading communities (liquid-liquid). We investigated the motility of the oil-degrading bacteria Marinobacter aquaeolei in the presence of oil droplets. We created individual oil droplets using dedicated microfluidic devices and captured the swimming behavior of individual bacteria near the interface and their attachment dynamics to the droplets with high-speed and epifluorescent microscopy. We find that Marinobacter aquaeolei has a high affinity towards interfaces and their swimming dynamics at soft interfaces differ from both those in the bulk and at rigid boundaries. Characterizing the interaction and attachment of motile bacteria to liquid-liquid interfaces will promote a fundamental understanding to oil-microbe interactions in aquatic environments and potentially lead to improved oil bioremediation strategies.

  13. Motility of active fluid drops on surfaces

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Diana; Alexander, Gareth P.

    2015-12-01

    Drops of active liquid crystal have recently shown the ability to self-propel, which was associated with topological defects in the orientation of active filaments [Sanchez et al., Nature 491, 431 (2013), 10.1038/nature11591]. Here, we study the onset and different aspects of motility of a three-dimensional drop of active fluid on a planar surface. We analyze theoretically how motility is affected by orientation profiles with defects of various types and locations, by the shape of the drop, and by surface friction at the substrate. In the scope of a thin drop approximation, we derive exact expressions for the flow in the drop that is generated by a given orientation profile. The flow has a natural decomposition into terms that depend entirely on the geometrical properties of the orientation profile, i.e., its bend and splay, and a term coupling the orientation to the shape of the drop. We find that asymmetric splay or bend generates a directed bulk flow and enables the drop to move, with maximal speeds achieved when the splay or bend is induced by a topological defect in the interior of the drop. In motile drops the direction and speed of self-propulsion is controlled by friction at the substrate.

  14. Effect of total laryngectomy on esophageal motility

    SciTech Connect

    Hanks, J.B.; Fisher, S.R.; Meyers, W.C.; Christian, K.C.; Postlethwait, R.W.; Jones, R.S.

    1981-01-01

    Total laryngectomy for cancer can result in dysphagia and altered esophageal motility. Manometric changes in the upper esophageal sphincter (UES), and in proximal and distal esophageal function have been reported. However, most studies have failed to take into account radiation therapy and appropriate controls. We selected ten male patients (54.3 +/- 1.9 yr) for longitudinal manometric evaluation prior to laryngectomy then at two weeks and again six months later. No patient received preoperative radiation therapy, had a previous history of esophageal surgery, or developed a postoperative wound infection or fistula. Seven of ten patients had positive nodes and received 6,000-6,600 rads postoperative radiation therapy. Preoperatively 4 of 10 patients complained of dysphagia which did not significantly change following surgery and radiation. Two of three patients who did not complain of dysphagia preoperatively and received radiation postoperatively developed dysphagia. No patient without dysphagia preoperatively who received no radiation therapy developed symptoms. Our studies show that laryngectomy causes alterations in the UES resting and peak pressures but not in the proximal or distal esophagus, or the lower esophageal sphincter. These data also imply radiation therapy may be associated with progressive alterations in motility and symptomatology. Further study regarding the effects of radiation on esophageal motility and function are urged.

  15. Hyaluronan stimulates pancreatic cancer cell motility

    PubMed Central

    Cheng, Xiao-Bo; Kohi, Shiro; Koga, Atsuhiro; Hirata, Keiji; Sato, Norihiro

    2016-01-01

    Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment with 4-methylumbelliferone (4-MU) and to promotion by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or by co-culture with tumor-derived stromal fibroblasts. We also investigated changes in cell motility by adding exogenous HA. Additionally, mRNA expressions of hyaluronan synthases and hyaluronidases were examined using real time RT-PCR. Inhibition of HA by 4-MU significantly decreased the migration, whereas promotion of HA by TPA or co-culture with tumor-derived fibroblasts significantly increased the migration of PDAC cells. The changes in HA production by these treatments tended to be associated with changes in HAS3 mRNA expression. Furthermore, addition of exogenous HA, especially low-molecular-weight HA, significantly increased the migration of PDAC cells. These findings suggest that HA stimulates PDAC cell migration and thus represents an ideal therapeutic target to prevent invasion and metastasis. PMID:26684359

  16. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  17. Inclusion Body Myositis

    MedlinePlus

    ... What is Inclusion Body Myositis? Inclusion body myositis (IBM) is one of a group of muscle diseases ... muscle weakness. The onset of muscle weakness in IBM is generally gradual (over months or years) and ...

  18. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  19. Shock Re-equilibration of Fluid Inclusions

    NASA Technical Reports Server (NTRS)

    Madden, M. E. Elwood; Horz, F.; Bodnar, R. J.

    2004-01-01

    Fluid inclusions (microscopic volumes of fluid trapped within minerals as they precipitate) are extremely common in terrestrial minerals formed under a wide range of geological conditions from surface evaporite deposits to kimberlite pipes. While fluid inclusions in terrestrial rocks are nearly ubiquitous, only a few fluid inclusion-bearing meteorites have been documented. The scarcity of fluid inclusions in meteoritic materials may be a result of (a) the absence of fluids when the mineral was formed on the meteorite parent body or (b) the destruction of fluid inclusions originally contained in meteoritic materials by subsequent shock metamorphism. However, the effects of impact events on pre-existing fluid inclusions trapped in target and projectile rocks has received little study. Fluid inclusions trapped prior to the shock event may be altered (re-equilibrated) or destroyed due to the high pressures, temperatures, and strain rates associated with impact events. By examining the effects of shock deformation on fluid inclusion properties and textures we may be able to better constrain the pressure-temperature path experienced by terrestrial and meteoritic shocked materials and also gain a clearer understanding of why fluid inclusions are rarely found in meteorite samples.

  20. Inclusive Education in Bangladesh

    ERIC Educational Resources Information Center

    Ahsan, Mohammad Tariq; Burnip, Lindsay

    2007-01-01

    This article reports on inclusive education in Bangladesh for children with special needs. Bangladesh is not behind other developed countries in enacting laws and declarations in favour of inclusive education, but a lack of resources is the main barrier in implementing inclusive education. Special education and integrated education models exist in…

  1. Inclusion in Middle Tennessee

    ERIC Educational Resources Information Center

    Hayes, Brandalyn; Ashley, Mandi; Salter, Derrick

    2013-01-01

    The overall purpose of this study was to provide school districts within Tennessee with more research about how weekly hours of inclusion impact student achievement. Specifically, researchers examined which models of inclusion were in use in two school districts in Tennessee, administrators' and teachers' perceptions of inclusion, and whether or…

  2. Towards Inclusive Schooling

    ERIC Educational Resources Information Center

    Gafoor, K. Abdul

    2010-01-01

    Social inclusion is the process that will enable every person in society to participate in normal activities of societies they live in, including education, employment, public services and social recreational activities. For the development of an inclusive society, preparation of younger generation also needs to be inclusive. Our schools must…

  3. Supporting Inclusive Practice

    ERIC Educational Resources Information Center

    Knowles, Gianna

    2006-01-01

    Written to support all teaching and learning staff in developing good inclusive practice, this book provides knowledge and understanding about a range of inclusion issues, such as what an inclusive school might look like and practical guidance on supporting the development of such a school. It also explores issues surrounding: (1) Ethnicity; (2)…

  4. Footstep towards Inclusive Education

    ERIC Educational Resources Information Center

    Abbas, Faiza; Zafar, Aneeka; Naz, Tayyaba

    2016-01-01

    Inclusive education is a rising trend in the world. The first step towards inclusive education is providing the awareness to the general education teachers. This study focused to investigate the general education teachers of primary and secondary level awareness about the special education and inclusive education. This study is descriptive method…

  5. The Wireless Motility Capsule: a One-Stop Shop for the Evaluation of GI Motility Disorders.

    PubMed

    Saad, Richard J

    2016-03-01

    The wireless motility and pH capsule (WMC) provides an office-based test to simultaneously assess both regional and whole gut transit. Ingestion of this non-digestible capsule capable of measuring temperature, pH, and the pressure of its immediate surroundings allows for the measurement of gastric, small bowel, and colonic transit times in an ambulatory setting. Approved by the US Food and Drug Administration for the evaluation of suspected conditions of delayed gastric emptying and the evaluation of colonic transit in chronic idiopathic constipation, WMC should be considered in suspected gastrointestinal motility disorders as it provides a single study capable of simultaneously assessing for regional, multiregional, or generalized motility disorders. Specific indications for testing with the WMC should include the evaluation of suspect cases of gastroparesis, small bowel dysmotility, and slow transit constipation, as well as symptom syndromes suggestive of a multiregional or generalized gastrointestinal transit delay. PMID:26908282

  6. First identification of proteins involved in motility of Mycoplasma gallisepticum.

    PubMed

    Indikova, Ivana; Vronka, Martin; Szostak, Michael P

    2014-01-01

    Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility. PMID:25323771

  7. Sonographic Evaluation of Gallbladder Motility in Children with Chronic Functional Constipation

    PubMed Central

    Mehra, Rakesh; Sodhi, Kushaljit Singh; Saxena, Akshay; Thapa, BR; Khandelwal, Niranjan

    2015-01-01

    Background/Aims Studies in adults suggest that constipation may not be a purely colonic pathology and may be a component of a generalized gastrointestinal (GI) motor disorder in which proximal GI motility can be impaired. Pediatric data are scarce, and the natural history of the disorder remains undefined. We aimed to evaluate gallbladder motility in a subset of Asian children with chronic functional constipation. Methods Abdominal ultrasound was performed on 105 children, including 55 patients (aged 3 to 13 years) with chronic functional constipation who met the inclusion criteria and 50 age- and gender-matched controls. The gallbladder contractility index was calculated based on the preprandial and postprandial gallbladder areas. Preprandial and postprandial values for gallbladder volume and wall thickness were evaluated. Results The mean value of the contractility index for the patients (15.77±24.68) was significantly lower than the mean value for the controls (43.66±11.58) (p=0.001). The mean postprandial gallbladder volumes and areas were larger in children with gallbladder hypomotility (p<0.05). The mean duration of constipation (4.8 months) was significantly higher (p=0.004) in the children with gall-bladder hypomotility. Conclusions Gallbladder motility is significantly impaired in children with chronic functional constipation. This study contributes to the understanding of the underlying pathophysiology, which will enable advancement in and improved management of children with chronic constipation and associated gallbladder hypomotility. PMID:25167798

  8. Autonomic control of gut motility: a comparative view.

    PubMed

    Olsson, Catharina; Holmgren, Susanne

    2011-11-16

    Gut motility is regulated to optimize food transport and processing. The autonomic innervation of the gut generally includes extrinsic cranial and spinal autonomic nerves. It also comprises the nerves contained entirely within the gut wall, i.e. the enteric nervous system. The extrinsic and enteric nervous control follows a similar pattern throughout the vertebrate groups. However, differences are common and may occur between groups and families as well as between closely related species. In this review, we give an overview of the distribution and effects of common neurotransmitters in the vertebrate gut. While the focus is on birds, reptiles, amphibians and fish, mammalian data are included to form the background for comparisons. While some transmitters, like acetylcholine and nitric oxide, show similar distribution patterns and effects in most species investigated, the role of others is more varying. The significance for these differences is not yet fully understood, emphasizing the need for continued comparative studies of autonomic control. PMID:20724224

  9. Involvement of the Type IX Secretion System in Capnocytophaga ochracea Gliding Motility and Biofilm Formation

    PubMed Central

    Kita, Daichi; Shibata, Satoshi; Kikuchi, Yuichiro; Kokubu, Eitoyo; Nakayama, Koji; Saito, Atsushi

    2016-01-01

    Capnocytophaga ochracea is a Gram-negative, rod-shaped bacterium that demonstrates gliding motility when cultured on solid agar surfaces. C. ochracea possesses the ability to form biofilms; however, factors involved in biofilm formation by this bacterium are unclear. A type IX secretion system (T9SS) in Flavobacterium johnsoniae was shown to be involved in the transport of proteins (e.g., several adhesins) to the cell surface. Genes orthologous to those encoding T9SS proteins in F. johnsoniae have been identified in the genome of C. ochracea; therefore, the T9SS may be involved in biofilm formation by C. ochracea. Here we constructed three ortholog-deficient C. ochracea mutants lacking sprB (which encodes a gliding motility adhesin) or gldK or sprT (which encode T9SS proteins in F. johnsoniae). Gliding motility was lost in each mutant, suggesting that, in C. ochracea, the proteins encoded by sprB, gldK, and sprT are necessary for gliding motility, and SprB is transported to the cell surface by the T9SS. For the ΔgldK, ΔsprT, and ΔsprB strains, the amounts of crystal violet-associated biofilm, relative to wild-type values, were 49%, 34%, and 65%, respectively, at 48 h. Confocal laser scanning and scanning electron microscopy revealed that the biofilms formed by wild-type C. ochracea were denser and bacterial cells were closer together than in those formed by the mutant strains. Together, these results indicate that proteins exported by the T9SS are key elements of the gliding motility and biofilm formation of C. ochracea. PMID:26729712

  10. Swimming Motility Reduces Deposition to Silica Surfaces.

    PubMed

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng; Hu, Dehong; Kamai, Tamir; Ginn, Timothy R; Zilles, Julie L; Nguyen, Thanh H

    2015-09-01

    The transport and fate of bacteria in porous media is influenced by physicochemical and biological properties. This study investigated the effect of swimming motility on the attachment of cells to silica surfaces through comprehensive analysis of cell deposition in model porous media. Distinct motilities were quantified for different strains using global and cluster-based statistical analyses of microscopic images taken under no-flow condition. The wild-type, flagellated strain DJ showed strong swimming as a result of the actively swimming subpopulation whose average speed was 25.6 μm/s; the impaired swimming of strain DJ77 was attributed to the lower average speed of 17.4 μm/s in its actively swimming subpopulation; and both the nonflagellated JZ52 and chemically treated DJ cells were nonmotile. The approach and deposition of these bacterial cells were analyzed in porous media setups, including single-collector radial stagnation point flow cells (RSPF) and two-dimensional multiple-collector micromodels under well-defined hydrodynamic conditions. In RSPF experiments, both swimming and nonmotile cells moved with the flow when at a distance ≥20 μm above the collector surface. Closer to the surface, DJ cells showed both horizontal and vertical movement, limiting their contact with the surface, while chemically treated DJ cells moved with the flow to reach the surface. These results explain how wild-type swimming reduces attachment. In agreement, the deposition in micromodels was also lowest for DJ compared with those for DJ77 and JZ52. Wild-type swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors. Conducted under environmentally relevant hydrodynamic conditions, the results suggest that swimming motility is an important characteristic for bacterial deposition and transport in the environment. PMID:26436254

  11. Motile responses in outer hair cells.

    PubMed

    Zenner, H P

    1986-01-01

    Motile responses of cochlear hair cells open new perspectives for the understanding of cochlear hearing mechanisms and hearing disorders located in hair cells. Direct visualization of hair cell motility was achieved by a method for the study of living isolated mammalian outer hair cells (OHCs) which has overcome some of the complexities in dealing with the heterogeneous organ of Corti. Electrophysiological giga-seal whole-cell recordings of single OHC prepared by this approach had revealed negative cell potentials ranging from -32 mV to -70 mV (Gitter et al. (1986) Oto-Rhino-Laryngol. in press). Elucidation of HC motility has come from two lines of experiments. One follows from the observation that exposure of the lateral and basal membrane parts of living OHCs to increasing bath K+ concentrations resulted in a sustained reversible depolarization of the cell. Here, we report that by depolarization of the cell membrane in the presence of 25-125 mM K+/Cl- a sustained contraction of OHC was induced. This was followed by relaxation in the presence of artificial perilymph containing 5.4 mM K+/Cl-. By alternating these procedures OHCs were made to undergo as many as five cycles of contraction and relaxation. External Ca2+ was not required for the initial contraction but was essential for relaxation. Following repeated contraction/relaxation cycles the cytoplasm of individual OHCs exhibited a filamentous network, correlating with a new infracuticular anti-actin binding capacity. The second series of experiments originates in the observation that permeabilized OHCs contracted in the presence of ATP. No response was seen in the presence of control nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3733547

  12. The unique paradigm of spirochete motility and chemotaxis

    PubMed Central

    Charon, Nyles W.; Cockburn, Andrew; Li, Chunhao; Liu, Jun; Miller, Kelly A.; Miller, Michael R.; Motaleb, Md.; Wolgemuth, Charles W.

    2013-01-01

    Spirochete motility is enigmatic: It differs from the motility of most other bacteria in that the entire bacterium is involved in translocation in the absence of external appendages. Using the Lyme disease spirochete Borrelia burgdorferi (Bb) as a model system, we explore the current research on spirochete motility and chemotaxis. Bb has periplasmic flagella (PFs) subterminally attached to each end of the protoplasmic cell cylinder, and surrounding the cell is an outer membrane. These internal helically shaped PFs allow the spirochete to swim by generating backward-moving waves by rotation. Exciting advances using cryoelectron microscopy tomography are presented with respect to in situ analysis of cell, PF, and motor structure. In addition, advances in the dynamics of motility, chemotaxis, gene regulation, and the role of motility and chemotaxis in the life cycle of Bb are summarized. The results indicate that the motility paradigms of flagellated bacteria do not apply to these unique bacteria. PMID:22994496

  13. Uncovering the Mystery of Gliding Motility in the Myxobacteria

    PubMed Central

    Nan, Beiyan; Zusman, David R.

    2012-01-01

    Bacterial gliding motility is the smooth movement of cells on solid surfaces unaided by flagella or pili. Many diverse groups of bacteria exhibit gliding, but the mechanism of gliding motility has remained a mystery since it was first observed more than a century ago. Recent studies on the motility of Myxococcus xanthus, a soil myxobacterium, suggest a likely mechanism for gliding in this organism. About forty M. xanthus genes were shown to be involved in gliding motility, and some of their protein products were labeled and localized within cells. These studies suggest that gliding motility in M. xanthus involves large multiprotein structural complexes, regulatory proteins, and cytoskeletal filaments. In this review, we summarize recent experiments that provide the basis for this emerging view of M. xanthus motility. We also discuss alternative models for gliding. PMID:21910630

  14. Filling an Emulsion Drop with Motile Bacteria

    NASA Astrophysics Data System (ADS)

    Vladescu, I. D.; Marsden, E. J.; Schwarz-Linek, J.; Martinez, V. A.; Arlt, J.; Morozov, A. N.; Marenduzzo, D.; Cates, M. E.; Poon, W. C. K.

    2014-12-01

    We have measured the spatial distribution of motile Escherichia coli inside spherical water droplets emulsified in oil. At low cell concentrations, the cell density peaks at the water-oil interface; at increasing concentration, the bulk of each droplet fills up uniformly while the surface peak remains. Simulations and theory show that the bulk density results from a "traffic" of cells leaving the surface layer, increasingly due to cell-cell scattering as the surface coverage rises above ˜10 %. Our findings show similarities with the physics of a rarefied gas in a spherical cavity with attractive walls.

  15. Gastrointestinal motility in space motion sickness

    NASA Technical Reports Server (NTRS)

    Thornton, William E.; Linder, Barry J.; Moore, Thomas P.; Pool, Sam L.

    1987-01-01

    Gastrointestinal symptoms in space motion sickness (SMS) are significantly different from those in ordinary motion sickness (MS). Recording and tabulation of sounds was the only technique that could be used as a measure of motility during spaceflight operations. There were 17 subjects, six unaffected by SMS, who made ambulatory recordings preflight and inflight. With one exception, all those affected had sharply reduced sounds, while those unaffected had increases or moderate reductions. The mechanism of vomiting in SMS appears to be secondary to this ileus, in contrast to vomiting in ordinary MS, where the emesis center is thought to be directly triggered by the vestibular system.

  16. Dual registration of abdominal motion for motility assessment in free-breathing data sets acquired using dynamic MRI

    NASA Astrophysics Data System (ADS)

    Menys, A.; Hamy, V.; Makanyanga, J.; Hoad, C.; Gowland, P.; Odille, F.; Taylor, S. A.; Atkinson, D.

    2014-08-01

    At present, registration-based quantification of bowel motility from dynamic MRI is limited to breath-hold studies. Here we validate a dual-registration technique robust to respiratory motion for the assessment of small bowel and colonic motility. Small bowel datasets were acquired in breath-hold and free-breathing in 20 healthy individuals. A pre-processing step using an iterative registration of the low rank component of the data was applied to remove respiratory motion from the free breathing data. Motility was then quantified with an existing optic-flow (OF) based registration technique to form a dual-stage approach, termed Dual Registration of Abdominal Motion (DRAM). The benefit of respiratory motion correction was assessed by (1) assessing the fidelity of automatically propagated segmental regions of interest (ROIs) in the small bowel and colon and (2) comparing parametric motility maps to a breath-hold ground truth. DRAM demonstrated an improved ability to propagate ROIs through free-breathing small bowel and colonic motility data, with median error decreased by 90% and 55%, respectively. Comparison between global parametric maps showed high concordance between breath-hold data and free-breathing DRAM. Quantification of segmental and global motility in dynamic MR data is more accurate and robust to respiration when using the DRAM approach.

  17. Regulation of axonemal motility in demembranated equine sperm.

    PubMed

    Loux, Shavahn C; Macías-Garcia, Beatríz; González-Fernández, Lauro; Canesin, Heloisa DeSiqueira; Varner, Dickson D; Hinrichs, Katrin

    2014-12-01

    Equine in vitro fertilization is not yet successful because equine sperm do not effectively capacitate in vitro. Results of previous studies suggest that this may be due to failure of induction of hyperactivated motility in equine sperm under standard capacitating conditions. To evaluate factors directly affecting axonemal motility in equine sperm, we developed a demembranated sperm model and analyzed motility parameters in this model under different conditions using computer-assisted sperm analysis. Treatment of ejaculated equine sperm with 0.02% Triton X-100 for 30 sec maximized both permeabilization and total motility after reactivation. The presence of ATP was required for motility of demembranated sperm after reactivation, but cAMP was not. The calculated intracellular pH of intact equine sperm was 7.14 ± 0.07. Demembranated sperm showed maximal total motility at pH 7. Neither increasing pH nor increasing calcium levels, nor any interaction of the two, induced hyperactivated motility in demembranated equine sperm. Motility of demembranated sperm was maintained at free calcium concentrations as low as 27 pM, and calcium arrested sperm motility at much lower concentrations than those reported in other species. Calcium arrest of sperm motility was not accompanied by flagellar curvature, suggesting a failure of calcium to induce the tonic bend seen in other species and thought to support hyperactivated motility. This indicated an absence, or difference in calcium sensitivity, of the related asymmetric doublet-sliding proteins. These studies show a difference in response to calcium of the equine sperm axoneme to that reported in other species that may be related to the failure of equine sperm to penetrate oocytes in vitro under standard capacitating conditions. Further work is needed to determine the factors that stimulate hyperactivated motility at the axonemal level in equine sperm. PMID:25339104

  18. Chemokinetic motility responses of the cyanobacterium oscillatoria terebriformis

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Castenholz, Richard W.

    1989-01-01

    Oscillatoria terebriformis, a gliding, filamentous, thermophilic cyanobacterium, exhibited an inhibition of gliding motility upon exposure to fructose. The observed response was transient, and the duration of nonmotility was directly proportional to the concentration of fructose. Upon resumption of motility, the rate of motility was also inversely proportional to the concentration of fructose. Sulfide caused a similar response. The effect of sulfide was specific and not due to either anoxia or negative redox potential. Exposure to glucose, acetate, lactate, or mat interstitial water did not elicit any motility response.

  19. Mechanics and polarity in cell motility

    NASA Astrophysics Data System (ADS)

    Ambrosi, D.; Zanzottera, A.

    2016-09-01

    The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-migrating and the migrating one. In both configurations the shape is fixed in time and, when the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable configuration to the other one can be produced by a mechanical or chemotactic perturbation. In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin dynamics inside the cell using a minimal mathematical model. While the protein diffusion, recruitment and segregation govern the polarization process, we show that the free actin mass balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active stress, are sufficient ingredients to account for the motile bistability. The length and velocity of the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The key physical ingredient of the theory is the exchange among actin phases at the edges of the cell, that plays a central role both in kinematics and in dynamics.

  20. Regulation of macrophage motility by Irgm1

    PubMed Central

    Henry, Stanley C.; Traver, Maria; Daniell, Xiaojou; Indaram, Maanasa; Oliver, Tim; Taylor, Gregory A.

    2010-01-01

    IRG are a family of IFN-regulated proteins that are critical for resistance to infection. Mouse IRG proteins are divided into GMS and GKS subfamilies, based on a sequence within the G1 GTP-binding motif. The GMS proteins have a particularly profound impact on immunity, as typified by Irgm1, of which absence leads to a complete loss of resistance to a variety of intracellular bacteria and protozoa. The underlying molecular and cellular mechanisms are not clear. Here, we use time-lapse microscopy and cell-tracking analysis to demonstrate that Irgm1 is required for motility of IFN-γ-activated macrophages. The absence of Irgm1 led to decreased actin remodeling at the leading edge of migrating macrophages, as well as decreased Rac activation. Although Irgm1 did not localize to the leading edge of migrating macrophages, it was found to regulate the localization of a GKS IRG protein, Irgb6, which in turn, concentrated on the plasma membrane in the advancing lamellipodia, in close apposition to molecular components that regulate membrane remodeling, including Rac, paxillin, and actin. Thus, Irgm1 likely controls macrophage motility by regulating the positioning of specific GKS IRG proteins to the plasma membrane, which in turn, modulate cytoskeletal remodeling and membrane dynamics. PMID:19920210

  1. Gastrointestinal motility and functional gastrointestinal diseases.

    PubMed

    Kusano, Motoyasu; Hosaka, Hiroko; Kawada, Akiyo; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Zai, Hiroaki; Kawamura, Osamu; Yamada, Masanobu

    2014-01-01

    Digestive tract motility patterns are closely related to the pathophysiology of functional gastrointestinal diseases (FGID), and these patterns differ markedly between the interdigestive period and the postprandial period. The characteristic motility pattern in the interdigestive period is so-called interdigestive migrating contraction (IMC). IMCs have a housekeeping role in the intestinal tract, and could also be related to FGID. IMCs arising from the stomach are called gastrointestinal IMCs (GI-IMC), while IMCs arising from the duodenum without associated gastric contractions are called intestinal IMCs (I-IMC). It is thought that I-IMCs are abnormal in FGID. Transport of food residue to the duodenum via gastric emptying is one of the most important postprandial functions of the stomach. In patients with functional dyspepsia (FD), abnormal gastric emptying is a possible mechanism of gastric dysfunction. Accordingly, delayed gastric emptying has attracted attention, with prokinetic agents and herbal medicines often being administered in Japan to accelerate gastric emptying in patients who have anorexia associated with dyspepsia. Recently, we found that addition of monosodium L-glutamate (MSG) to a high-calorie liquid diet rich in casein promoted gastric emptying in healthy men. Therefore, another potential method of improving delayed gastric emptying could be activation of chemosensors that stimulate the autonomic nervous system of the gastrointestinal tract, suggesting a role for MSG in the management of delayed gastric emptying in patients with FD. PMID:23886379

  2. The mechanics of motility in dissociated cytoplasm.

    PubMed Central

    Dembo, M

    1986-01-01

    We stimulate the dynamical behavior of dissociated cytoplasm using the Reactive Flow Model (Dembo, M., and F. Harlow, 1986, Biophys. J., 50:109-121). We find that for the most part the predicted dynamical behavior of the cytoplasm is governed by three nondimensional numbers. Several other nondimensional parameters, the initial conditions, and boundary conditions are found to have lesser effects. Of the three major nondimensional parameters, one (D#) controls the percentage of ectoplasm, the second (C#) controls the sharpness of the endoplasm-ectoplasm boundary, and the third (R#) controls the topological complexity of the endoplasm-ectoplasm distribution. If R# is very small, then the cytoplasm contracts into a single uniform mass, and there is no bulk streaming. If R# is very large, then the cytoplasmic mass breaks up into a number of clumps scattered throughout the available volume. Between these clumps the solution undergoes turbulent or chaotic patterns of streaming. Intermediate values of R# can be found such that the mass of cytoplasm remains connected and yet undergoes coherent modes of motility similar to flares (Taylor, D.L., J.S. Condeelis, P.L. Moore, and R.D. Allen, 1973, J. Cell Biol., 59:378-394) and rosettes (Kuroda, K., 1979, Cell Motility: Molecules and Organization, 347-362). Images FIGURE 1 FIGURE 1B FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 PMID:3801576

  3. Bacterial Motility Reveals Unknown Molecular Organization.

    PubMed

    Duchesne, Ismaël; Rainville, Simon; Galstian, Tigran

    2015-11-17

    The water solubility of lyotropic liquid crystals (LCs) makes them very attractive to study the behavior of biological microorganisms in an environment where local symmetry is broken (as often encountered in nature). Several recent studies have shown a dramatic change in the behavior of flagellated bacteria when swimming in solutions of the lyotropic LC disodium cromoglycate (DSCG). In this study, the movements of Escherichia coli bacteria in DSCG-water solutions of different concentrations are observed to improve our understanding of this phenomenon. In addition, the viscosity of DSCG aqueous solutions is measured as a function of concentration at room temperature. We also experimentally identify a previously undescribed isotropic pretransition zone where bacteria start sticking to each other and to surfaces. Simple estimations show that the unbalanced osmotic pressure induced depletion force might be responsible for this sticking phenomenon. An estimate of the bacteria propulsive force and the DSCG aggregates length (versus concentration) are calculated from the measured viscosity of the medium. All these quantities are found to undergo a strong increase in the pretransition zone, starting at a threshold concentration of 6±1 wt % DSCG that is well below the known isotropic-LC transition (∼10 wt %). This study also shines light on the motility of flagellated bacteria in realistic environments, and it opens new avenues for interesting applications such as the use of motile microorganisms to probe the physical properties of their host or smart bandages that could guide bacteria out of wounds. PMID:26588572

  4. Impact of altered actin gene expression on vinculin, talin, cell spreading, and motility.

    PubMed

    Schevzov, G; Lloyd, C; Gunning, P

    1995-08-01

    Previous studies have demonstrated a strong correlation between the expression of vinculin and the shape and motility of a cell (Rodriguez Fernandez et al., 1992a, b, 1993). This hypothesis was tested by comparing the expression of vinculin and talin with the motility of morphologically altered myoblasts. These mouse C2 myoblasts were previously generated by directly perturbing the cell cytoskeleton via the stable transfection of a mutant-form of the beta-actin gene (beta sm) and three different forms of the gamma-actin gene; gamma, gamma minus 3'UTR (gamma delta'UTR), and gamma minus intron III (gamma delta IVSIII) (Schevzov et al., 1992; Lloyd and Gunning, 1993). In the case of the beta sm and gamma-actin transfectants, a two-fold decrease in the cell surface area was coupled, as predicted, with a decrease in vinculin and talin expression. In contrast, the gamma delta IVSIII transfectants with a seven-fold decrease in the cell surface area showed an unpredicted slight increase in vinculin and talin expression and the gamma delta 3'-UTR transfectants with a slight increase in the cell surface area showed no changes in talin expression and a decrease in vinculin expression. We conclude that changes in actin gene expression alone can impact on the expression of vinculin and talin. Furthermore, we observed that these actin transfectants failed to show a consistent relationship between cell shape, motility, and the expression of vinculin. However, a relationship between talin and cell motility was found to exist, suggesting a role for talin in the establishment of focal contacts necessary for motility. PMID:7646816

  5. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica

    PubMed Central

    Sisti, Federico; Ha, Dae-Gon; O'Toole, George A.; Hozbor, Daniela

    2013-01-01

    The signalling molecule bis-(3′–5′)-cyclic-dimeric guanosine monophosphate (c-di-GMP) is a central regulator of diverse cellular functions, including motility, biofilm formation, cell cycle progression and virulence, in bacteria. Multiple diguanylate cyclase and phosphodiesterase-domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) modulate the levels of the second messenger c-di-GMP to transmit signals and obtain such specific cellular responses. In the genus Bordetella this c-di-GMP network is poorly studied. In this work, we evaluated the expression of two phenotypes in Bordetella bronchiseptica regulated by c-di-GMP, biofilm formation and motility, under the influence of ectopic expression of Pseudomonas aeruginosa proteins with EAL or GGDEF domains that regulates the c-di-GMP level. In agreement with previous reports for other bacteria, we observed that B. bronchiseptica is able to form biofilm and reduce its motility only when GGDEF domain protein is expressed. Moreover we identify a GGDEF domain protein (BB3576) with diguanylate cyclase activity that participates in motility and biofilm regulation in B. bronchiseptica. These results demonstrate for the first time, to our knowledge, the presence of c-di-GMP regulatory signalling in B. bronchiseptica. PMID:23475948

  6. Gene position in a long operon governs motility development in Bacillus subtilis

    PubMed Central

    Cozy, Loralyn M.; Kearns, Daniel B.

    2010-01-01

    Growing cultures of Bacillus subtilis bifurcate into subpopulations of motile individuals and non-motile chains of cells that are differentiated at the level of gene expression. The motile cells are ON and the chaining cells are OFF for transcription that depends on RNA polymerase and the alternative sigma factor σD. Here we show that chaining cells were OFF for σD-dependent gene expression because σD levels fell below a threshold, and σD activity was inhibited by the anti-sigma factor FlgM. The probability that σD exceeded the threshold was governed by the position of the sigD genes. The proportion of ON cells increased when sigD was artificially moved forward in the 27kb fla/che operon. In addition, we identified a new σD-dependent promoter that increases sigD expression and may provide positive feedback to stabilize the ON state. Finally, we demonstrate that ON/OFF motility states in B. subtilis are a form of development because mosaics of stable and differentiated epigenotypes were evident when the normally dispersed bacteria were forced to grow in one dimension. PMID:20233303

  7. Identification of functional modules of AKMT, a novel lysine methyltransferase regulating the motility of Toxoplasma gondii

    PubMed Central

    Sivagurunathan, Senthilkumar; Heaslip, Aoife; Liu, Jun; Hu, Ke

    2013-01-01

    The intracellular parasite Toxoplasma gondii is a leading cause of congenital neurological defects. To cause disease, it must reiterate its lytic cycle through host cell invasion, replication,and parasite egress. This requires the parasite to sense changes in its environment and switch between the non-motile (for replication) and motile (for invasion and egress) states appropriately. Recently, we discovered a previously unknown mechanism of motility regulation in T. gondii, mediated by a lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). When AKMT is absent, activation of motility is inhibited, which compromises parasite invasion and egress, and thus severely impairs the lytic cycle. Although the methyltransferase activity of AKMT has been established, the phylogenetic relationship of AKMT with other better studied lysine methyltransferases (KMTs) was not known. Also unknown was the functional relationships between different domains of AKMT. In this work we carried out phylogenetic analyses, which show that AKMT orthologs form a new subfamily of KMTs. We systematically generated truncation mutants of AKMT, and discovered that the predicted enzymatic domain alone is a very poor enzyme and cannot complement the function of AKMT in vivo. Interestingly, the N- and C-terminal domains of the AKMT have drastically different impacts on its enzyme activity, localization as well as in vivo function. Our results thus reveal that AKMT is an unusual, parasite-specific enzyme and identified regions and interactions within this novel lysine methyltransferase that can be used as drug targets. PMID:23685344

  8. Key stages in mammary gland development: the mammary end bud as a motile organ.

    PubMed

    Hinck, Lindsay; Silberstein, Gary B

    2005-01-01

    In the rodent, epithelial end buds define the tips of elongating mammary ducts. These highly motile structures undergo repeated dichotomous branching as they aggressively advance through fatty stroma and, turning to avoid other ducts, they finally cease growth leaving behind the open, tree-like framework on which secretory alveoli develop during pregnancy. This review identifies the motility of end buds as a unique developmental marker that represents the successful integration of systemic and local mammotrophic influences, and covers relevant advances in ductal growth regulation, extracellular matrix (ECM) remodeling, and cell adhesion in the inner end bud. An unexpected growth-promoting synergy between insulin-like growth factor-1 and progesterone, in which ducts elongate without forming new end buds, is described as well as evidence strongly supporting self-inhibition of ductal elongation by end-bud-secreted transforming growth factor-beta acting on stromal targets. The influence of the matrix metalloproteinase ECM-remodeling enzymes, notably matrix metalloproteinase-2, on end bud growth is discussed in the broader context of enzymes that regulate the polysaccharide-rich glycosaminoglycan elements of the ECM. Finally, a critical, motility-enabling role for the cellular architecture of the end bud is identified and the contribution of cadherins, the netrin/neogenin system, and ErbB2 to the structure and motility of end buds is discussed. PMID:16280048

  9. Giardia Flagellar Motility Is Not Directly Required to Maintain Attachment to Surfaces

    PubMed Central

    House, Susan A.; Richter, David J.; Pham, Jonathan K.; Dawson, Scott C.

    2011-01-01

    Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined “suction-based” mechanism, and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia's pathogenesis and colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella, has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc. We aimed to test this prevailing “hydrodynamic model” of attachment mediated by flagellar motility. We defined four distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required for attachment, flagellar motility is

  10. Leadership for Inclusion: Conceptualising and Enacting Inclusion in Integrated Schools in a Troubled Society

    ERIC Educational Resources Information Center

    McGlynn, Claire; London, Tim

    2013-01-01

    Inclusion is increasingly understood as an educational reform that responds to the diversity of all learners, challenging the marginalisation, exclusion and underachievement which may result from all forms of "difference". Leadership for inclusion is conceptualised here as driving a constant struggle to create shared meanings of…

  11. Penile epidermal inclusion cyst.

    PubMed

    Saini, Pradeep; Mansoor, M N; Jalali, Sanjay; Sharma, Abhishek

    2010-07-01

    We report a case of epidermal inclusion cyst of penis in a five-year-old boy, who had presented to the outpatient department of our hospital. Epidermal inclusion cysts are benign lesions that can develop in any part of the body. However, the finding of an epidermal inclusion cyst in the penis is rare. The child was operated and discharged uneventfully. The objective of reporting this case is to highlight the rare possibility of an inclusion cyst arising from penis as a late complication of circumcision. PMID:20589475

  12. Stress Field Caused by Polygonal Inclusion

    NASA Astrophysics Data System (ADS)

    Nozaki, Hideaki; Horibe, Tadashi; Taya, Minoru

    In this paper, we analyze the elastic field caused by an arbitrary polygonal inclusion (with uniform eigenstrain prescribed) in an infinite elastic solid. Closed-form solutions are obtained using Green’s function technique. Numerical calculations are performed for the strain and stress distributions in and around a regular polygonal inclusion. It is shown that logarithmic-type stress singularity at each corner of the inclusion may vanish only for a square inclusion of a specific orientation. Unique properties of the Eshelby tensor of a regular polygonal inclusion found by Nozaki and Taya [ASME J. Appl. Mech., Vol. 64, 1997, pp. 495-502] are also investigated in detail and the terms that cause the properties are specified.

  13. Gene expression in Pseudomonas aeruginosa swarming motility

    PubMed Central

    2010-01-01

    Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril

  14. A Glycosylation Mutant of Trypanosoma brucei Links Social Motility Defects In Vitro to Impaired Colonization of Tsetse Flies In Vivo.

    PubMed

    Imhof, Simon; Vu, Xuan Lan; Bütikofer, Peter; Roditi, Isabel

    2015-06-01

    Transmission of African trypanosomes by tsetse flies requires that the parasites migrate out of the midgut lumen and colonize the ectoperitrophic space. Early procyclic culture forms correspond to trypanosomes in the lumen; on agarose plates they exhibit social motility, migrating en masse as radial projections from an inoculation site. We show that an Rft1(-/-) mutant needs to reach a greater threshold number before migration begins, and that it forms fewer projections than its wild-type parent. The mutant is also up to 4 times less efficient at establishing midgut infections. Ectopic expression of Rft1 rescues social motility defects and restores the ability to colonize the fly. These results are consistent with social motility reflecting movement to the ectoperitrophic space, implicate N-glycans in the signaling cascades for migration in vivo and in vitro, and provide the first evidence that parasite-parasite interactions determine the success of transmission by the insect host. PMID:25862152

  15. The interplay between cell motility and tissue architecture

    NASA Astrophysics Data System (ADS)

    Tanner, Kandice

    2013-03-01

    Glandular tissue form arboreal networks comprised of acini and tubes. Loss of structure is concomitant with the in vivo pathologic state. In vitro models have been shown to recapitulate the functional units of the mammary gland and other organs. Despite our much improved understanding gleaned from both in vitro and in vivo interrogation, the mechanisms by which cells are able to achieve the correct tissue organization remain elusive. How do single mammary epithelial cells form polarized acini when cultured in a surrogate basement membrane gel but not on 2D surfaces? Simply put, how does a cell know which way is up? Why do malignant breast cells show a differential response in that they form non-polarized aggregates? Recently, it was determined that non-malignant cells undergo multiple rotations to establish acini while tumor cells are randomly motile during tumor formation. Can it be that a tumor cell has simply lost its way. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute.

  16. Quantification of motility of carabid beetles in farmland.

    PubMed

    Allema, A B; van der Werf, W; Groot, J C J; Hemerik, L; Gort, G; Rossing, W A H; van Lenteren, J C

    2015-04-01

    Quantification of the movement of insects at field and landscape levels helps us to understand their ecology and ecological functions. We conducted a meta-analysis on movement of carabid beetles (Coleoptera: Carabidae), to identify key factors affecting movement and population redistribution. We characterize the rate of redistribution using motility μ (L2 T-1), which is a measure for diffusion of a population in space and time that is consistent with ecological diffusion theory and which can be used for upscaling short-term data to longer time frames. Formulas are provided to calculate motility from literature data on movement distances. A field experiment was conducted to measure the redistribution of mass-released carabid, Pterostichus melanarius in a crop field, and derive motility by fitting a Fokker-Planck diffusion model using inverse modelling. Bias in estimates of motility from literature data is elucidated using the data from the field experiment as a case study. The meta-analysis showed that motility is 5.6 times as high in farmland as in woody habitat. Species associated with forested habitats had greater motility than species associated with open field habitats, both in arable land and woody habitat. The meta-analysis did not identify consistent differences in motility at the species level, or between clusters of larger and smaller beetles. The results presented here provide a basis for calculating time-varying distribution patterns of carabids in farmland and woody habitat. The formulas for calculating motility can be used for other taxa. PMID:25673121

  17. Laser radiation and motility patterns of human sperm

    SciTech Connect

    Lenzi, A.; Claroni, F.; Gandini, L.; Lombardo, F.; Barbieri, C.; Lino, A.; Dondero, F. )

    1989-01-01

    Human sperm were exposed in vitro to laser radiation. An increase in progressive sperm motility was associated with a faster rate of sperm ATP consumption. Computer-assisted analysis of sperm motility confirmed the positive effect of laser irradiation on velocity and linearity of sperm.

  18. A novel regulator controls Clostridium difficile sporulation, motility and toxin production.

    PubMed

    Edwards, Adrianne N; Tamayo, Rita; McBride, Shonna M

    2016-06-01

    Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus rstA, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing sigD transcription. Conserved RstA orthologs are present in other pathogenic and industrial Clostridium species and may represent a key regulatory protein controlling clostridial sporulation. PMID:26915493

  19. Towards Inclusive Schooling.

    ERIC Educational Resources Information Center

    Ainscow, Mel

    1997-01-01

    Uses classroom vignettes to examine reasons why schools in the United Kingdom are not yet generally successful in including students with disabilities and suggests simple ways that ordinary teachers can implement inclusive practices. These include the importance of teamwork, a school climate which encourages inclusive practices, and teacher…

  20. Conclusions on Inclusion

    ERIC Educational Resources Information Center

    Fink, John

    2004-01-01

    An inclusion classroom is defined as one that is tasked with mainstreaming special education students into a population of general education students. In this brief article, the author, a high school mathematics teacher, shares his personal experiences in teaching in an inclusion classroom. A primary focus is his relationship with the special…

  1. The Inclusion Facilitator's Guide

    ERIC Educational Resources Information Center

    Jorgensen, Cheryl M.; Schuh, Mary C.; Nisbet, Jan

    2005-01-01

    Inclusion facilitators are educators who do more than teach children with disabilities--they advocate for change in schools and communities, sparking a passion for inclusion in teachers, administrators, and families and giving them the practical guidance they need to make it work. This is an essential new role in today's schools, and this guide…

  2. Teachers' Attitudes toward Inclusion

    ERIC Educational Resources Information Center

    Elhoweris, Hala; Alsheikh, Negmeldin

    2004-01-01

    The purpose of this study was to (a) investigate current teachers' attitudes toward inclusion, and to (b) explore possible difference in the general and special education teachers' attitudes toward inclusion of students with disabilities in the integrated education classroom. A total of 10 participants from a large mid-western state university…

  3. Fluid inclusion petrography

    NASA Astrophysics Data System (ADS)

    Van den Kerkhof, Alfons M.; Hein, Ulrich F.

    2001-01-01

    A procedure of fluid inclusion studies is proposed with emphasis on the criteria of selecting fluid inclusions for detailed (microthermometry and spectroscopic) analysis. An overview of descriptive and genetic classifications of fluid inclusions in single crystals and in massive rocks is given with the intention of further differentiating the commonly used terms 'primary' and 'secondary' fluid inclusions. Some principles of fluid inclusion modification are explained. Cathodoluminescence (CL) studies of quartz with the optical high-power CL-microscope and the electron microprobe provided with a CL detector are an important help in 'fluid petrography'. CL textures are subdivided in primary, growth textures and a wide variety of secondary microtextures, which are in part induced by fluid inclusions. The latter is grouped in textures indicative of local lower crystal order (increasing defect structures) and microtextures indicative of local quartz healing (reduction of the defect structures). Microtextures showing the genetic relationship between fluid inclusions and the host mineral provide information about the possible post-entrapment changes of fluid inclusions and therewith testify their geological relevance.

  4. Index for Inclusion

    ERIC Educational Resources Information Center

    Smith, Allister

    2005-01-01

    Index for Inclusion is a programme to assist in developing learning and participation in schools. It was written by Tony Booth and Mel Ainscow from the Centre for Studies on Inclusive Education, UK. Central Normal School was pleased to have the opportunity to trial this programme.

  5. What Counts as Inclusion?

    ERIC Educational Resources Information Center

    Walton, E.; Nel, N.

    2012-01-01

    In the years since the publication in South Africa of White Paper Six: Special needs education (Department of Education (DoE) 2001) various schools in the state and independent sectors have begun to implement inclusive policies and practices. With reference to the Guidelines for full-service/inclusive schools issued in 2009, and by discussing a…

  6. Understanding Inclusion in Cyprus

    ERIC Educational Resources Information Center

    Mamas, Christoforos

    2013-01-01

    This paper provides a framework for understanding inclusion in Cyprus. The evidence base is the result of a six-month qualitative research study in five Cypriot mainstream primary schools. Despite the rhetoric in favour of inclusion, it seems that the Cypriot educational system is still highly segregating in its philosophy and does not fully…

  7. Inclusive Services Innovation Configuration

    ERIC Educational Resources Information Center

    Holdheide, Lynn R.; Reschly, Daniel J.

    2011-01-01

    Teacher preparation to deliver inclusive services to students with disabilities is increasingly important because of changes in law and policy emphasizing student access to, and achievement in, the general education curriculum. This innovation configuration identifies the components of inclusive services that should be incorporated in teacher…

  8. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  9. Metabolism and motility in prebiotic structures

    PubMed Central

    Hanczyc, Martin M.

    2011-01-01

    Easily accessible, primitive chemical structures produced by self-assembly of hydrophobic substances into oil droplets may result in self-moving agents able to sense their environment and move to avoid equilibrium. These structures would constitute very primitive examples of life on the Earth, even more primitive than simple bilayer vesicle structures. A few examples of simple chemical systems are presented that self-organize to produce oil droplets capable of movement, environment remodelling and primitive chemotaxis. These chemical agents are powered by an internal chemical reaction based on the hydrolysis of an oleic anhydride precursor or on the hydrolysis of hydrogen cyanide (HCN) polymer, a plausible prebiotic chemistry. Results are presented on both the behaviour of such droplets and the surface-active properties of HCN polymer products. Such motile agents would be capable of finding resources while escaping equilibrium and sustaining themselves through an internal metabolism, thus providing a working chemical model for a possible origin of life. PMID:21930579

  10. Method and system for enhancing microbial motility

    SciTech Connect

    Hazen, T.C.; Lopez-De-Victoria, G.

    1992-12-31

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  11. Motile Cilia of Human Airway Epithelia Are Chemosensory

    PubMed Central

    Shah, Alok S; Ben-Shahar, Yehuda; Moninger, Thomas O; Kline, Joel N; Welsh, Michael J

    2010-01-01

    Cilia are microscopic projections that extend from eukaryotic cells. There are two general types of cilia; primary cilia serve as sensory organelles, whereas motile cilia exert mechanical force. The motile cilia emerging from human airway epithelial cells propel harmful inhaled material out of the lung. We found that these cells express sensory bitter taste receptors, which localized on motile cilia. Bitter compounds increased the intracellular Ca2+ concentration and stimulated ciliary beat frequency. Thus, airway epithelia contain a cell-autonomous system in which motile cilia both sense noxious substances entering airways and initiate a defensive mechanical mechanism to eliminate the offending compound. Hence, like primary cilia, classical motile cilia also contain sensors to detect the external environment. PMID:19628819

  12. A mechanism for cell motility by active polar gels

    PubMed Central

    Marth, W.; Praetorius, S.; Voigt, A.

    2015-01-01

    We analyse a generic motility model, with the motility mechanism arising by contractile stress due to the interaction of myosin and actin. A hydrodynamic active polar gel theory is used to model the cytoplasm of a cell and is combined with a Helfrich-type model to account for membrane properties. The overall model allows consideration of the motility without the necessity for local adhesion. Besides a detailed numerical approach together with convergence studies for the highly nonlinear free boundary problem, we also compare the induced flow field of the motile cell with that of classical squirmer models and identify the motile cell as a puller or pusher, depending on the strength of the myosin–actin interactions. PMID:25926698

  13. Primordial Compositions of Refractory Inclusions

    SciTech Connect

    Grossman, L; Simon, S B; Rai, V K; Thiemens, M H; Hutcheon, I D; Williams, R W; Galy, A; Ding, T; Fedkin, A V; Clayton, R N; Mayeda, T K

    2008-02-20

    Bulk chemical and oxygen, magnesium and silicon isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg and Si isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates but only if different inclusions condensed from nebular regions that ranged in total pressure from 10{sup -6} to 10{sup -1} bar, regardless of whether they formed in a system of solar composition or in one enriched in OC dust relative to gas by a factor of ten relative to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al{sub 2}O{sub 3} relative to more volatile MgO + SiO{sub 2} is due to initial condensation and 20% due to subsequent evaporation for both Type A and Type B inclusions.

  14. Thyroxin Is Useful to Improve Sperm Motility

    PubMed Central

    Mendeluk, Gabriela Ruth; Rosales, Mónica

    2016-01-01

    Background The aim of this study was to evaluate the non-genomic action of thyroxin on sperm kinetic and its probable use to improve sperm recovery after applying an en- richment method like “swim-up” in comparison with the available one, pentoxifylline. Materials and Methods This is an experimental study. A total of 50 patients were re- cruited, followed by infertility consultation. Conventional sperm assays were performed according to World Health Organization criteria-2010 (WHO-2010). A Computer Aided Semen Analysis System was employed to assess kinetic parameters and concentrations. Number of the motile sperm recovered after preparation technique was calculated. Results Addition of T4 (0.002 µg/ml) to semen samples increased hypermotility at 20 minutes (control: 14.18 ± 5.1% vs. 17.66 ± 8.88%, P<0.03, data expressed as mean ± SD) and remained unchanged after 40 minutes. Significant differences were found in the motile sperm recovered after swim-up (control: 8.93×106 ± 9.52× 06vs. 17.20×106 ± 21.16×106, P<0.03), achieving all of the tested samples a desirable threshold value for artificial insemination outcome, while adding pentoxifylline increased the number of recovered sperm after swim-up in 60% of the studied cases. No synergism between two treatments could be determined. Conclusion We propose a new physiological tool to artificially improve insemination. The discussion opens windows to investigate unknown pathways involved in sperm ca- pacitation and gives innovative arguments to better understand infertility mechanisms. PMID:27441054

  15. Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2013-06-01

    A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become

  16. Cooperative cell motility during tandem locomotion of amoeboid cells.

    PubMed

    Bastounis, Effie; Álvarez-González, Begoña; Del Álamo, Juan C; Lasheras, Juan C; Firtel, Richard A

    2016-04-15

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion ofDictyosteliumtandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I-coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs' reuse results from the mechanical synchronization of the leading and trailing cells' protrusions and retractions (motility cycles) aided by the cell-cell adhesions. PMID:26912787

  17. Cooperative cell motility during tandem locomotion of amoeboid cells

    PubMed Central

    Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.

    2016-01-01

    Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787

  18. Fluid inclusion geothermometry

    USGS Publications Warehouse

    Cunningham, C.G., Jr.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  19. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi.

    PubMed

    Yang, Qian; Defoirdt, Tom

    2015-04-01

    Vibrios belonging to the Harveyi clade are among the major pathogens of aquatic organisms. Quorum sensing (QS) is essential for virulence of V. harveyi towards different hosts. However, most virulence factors reported to be controlled by QS to date are negatively regulated by QS, therefore suggesting that their impact on virulence is limited. In this study, we report that QS positively regulates flagellar motility. We found that autoinducer synthase mutants showed significantly lower swimming motility than the wild type, and the swimming motility could be restored by adding synthetic signal molecules. Further, motility of a luxO mutant with inactive QS (LuxO D47E) was significantly lower than that of the wild type and of a luxO mutant with constitutively maximal QS activity (LuxO D47A). Furthermore, we found that the expression of flagellar genes (both early, middle and late genes) was significantly lower in the luxO mutant with inactive QS when compared with wild type and the luxO mutant with maximal QS activity. Motility assays and gene expression also revealed the involvement of the quorum-sensing master regulator LuxR in the QS regulation of motility. Finally, the motility inhibitor phenamil significantly decreased the virulence of V. harveyi towards gnotobiotic brine shrimp larvae. PMID:24528485

  20. Ion channels and calcium signaling in motile cilia

    PubMed Central

    Doerner, Julia F; Delling, Markus; Clapham, David E

    2015-01-01

    The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas. DOI: http://dx.doi.org/10.7554/eLife.11066.001 PMID:26650848

  1. Minority Inclusion Programs.

    ERIC Educational Resources Information Center

    Gelfand, M. David

    1995-01-01

    Asserts that the United States has a long, sad history of discrimination against minority rights. Discusses the origins and history of minority inclusion or affirmative action programs. Includes a special report on the "English Only" movement. (CFR)

  2. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    PubMed

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them. PMID:27157805

  3. Effects of trifluoromethyl ketones on the motility of Proteus vulgaris.

    PubMed

    Wolfart, Krisztina; Molnar, Annamaria; Kawase, Masami; Motohashi, Noboru; Molnar, Joseph

    2004-09-01

    In the present study, we showed the inhibition of motility by trifluoromethyl ketone (TF) derivatives (1-8) in Proteus vulgaris (P. vulgaris) cultures. Among them, 1-(2-benzoxazoyl)-3,3,3-trifluoro-2-propanone (1) showed a much stronger inhibitory effect on the motility of P. vulgaris than other TF compounds at 10% MIC. Our results suggest the possibility of an inhibitory action of TF compounds on the proton motive forces by affecting the action of biological motor and proton efflux in the membranes, resulting in a reduction of the ratio of running and the increased number of tumbling and non-motile cells. PMID:15340240

  4. Concerted Action of Two Formins in Gliding Motility and Host Cell Invasion by Toxoplasma gondii

    PubMed Central

    Daher, Wassim; Plattner, Fabienne; Carlier, Marie-France; Soldati-Favre, Dominique

    2010-01-01

    The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells. PMID:20949068

  5. Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates

    PubMed Central

    Vijayakumar, Saranya; Rajenderan, Sangeetha; Laishram, Shakti; Anandan, Shalini; Balaji, Veeraraghavan; Biswas, Indranil

    2016-01-01

    Acinetobacter baumannii is a nosocomial pathogen involved in various infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteremia. The severity and the type of infections depend on the genetic and phenotypic variations of the strains. In this study, we compared the extent of biofilm formation and motility displayed by 60 multidrug-resistant A. baumannii clinical strains isolated from blood and sputum samples from patients from Southern India. Our results showed that isolates from the sputum samples formed significantly more robust biofilm compared to the blood isolates. On the other hand, we observed that the blood isolates were more motile than the sputum isolates. To the best of our knowledge, this is the first study that systematically evaluated the correlation between these two phenotypic traits and the nature of the isolates. PMID:27252939

  6. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment.

    PubMed

    Utada, Andrew S; Bennett, Rachel R; Fong, Jiunn C N; Gibiansky, Maxsim L; Yildiz, Fitnat H; Golestanian, Ramin; Wong, Gerard C L

    2014-01-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: 'roaming', characterized by meandering trajectories, and 'orbiting', characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation. PMID:25234699

  7. Biofilm Formation and Motility Depend on the Nature of the Acinetobacter baumannii Clinical Isolates.

    PubMed

    Vijayakumar, Saranya; Rajenderan, Sangeetha; Laishram, Shakti; Anandan, Shalini; Balaji, Veeraraghavan; Biswas, Indranil

    2016-01-01

    Acinetobacter baumannii is a nosocomial pathogen involved in various infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteremia. The severity and the type of infections depend on the genetic and phenotypic variations of the strains. In this study, we compared the extent of biofilm formation and motility displayed by 60 multidrug-resistant A. baumannii clinical strains isolated from blood and sputum samples from patients from Southern India. Our results showed that isolates from the sputum samples formed significantly more robust biofilm compared to the blood isolates. On the other hand, we observed that the blood isolates were more motile than the sputum isolates. To the best of our knowledge, this is the first study that systematically evaluated the correlation between these two phenotypic traits and the nature of the isolates. PMID:27252939

  8. Radixin Is Involved in Lamellipodial Stability during Nerve Growth Cone Motility

    PubMed Central

    Castelo, Leslie; Jay, Daniel G.

    1999-01-01

    Immunocytochemistry and in vitro studies have suggested that the ERM (ezrin-radixin-moesin) protein, radixin, may have a role in nerve growth cone motility. We tested the in situ role of radixin in chick dorsal root ganglion growth cones by observing the effects of its localized and acute inactivation. Microscale chromophore-assisted laser inactivation (micro-CALI) of radixin in growth cones causes a 30% reduction of lamellipodial area within the irradiated region whereas all control treatments did not affect lamellipodia. Micro-CALI of radixin targeted to the middle of the leading edge often split growth cones to form two smaller growth cones during continued forward movement (>80%). These findings suggest a critical role for radixin in growth cone lamellipodia that is similar to ezrin function in pseudopodia of transformed fibroblasts. They are consistent with radixin linking actin filaments to each other or to the membrane during motility. PMID:10233159

  9. Single-filament kinetic studies provide novel insights into regulation of actin-based motility

    PubMed Central

    Shekhar, Shashank; Carlier, Marie-France

    2016-01-01

    Polarized assembly of actin filaments forms the basis of actin-based motility and is regulated both spatially and temporally. Cells use a variety of mechanisms by which intrinsically slower processes are accelerated, and faster ones decelerated, to match rates observed in vivo. Here we discuss how kinetic studies of individual reactions and cycles that drive actin remodeling have provided a mechanistic and quantitative understanding of such processes. We specifically consider key barbed-end regulators such as capping protein and formins as illustrative examples. We compare and contrast different kinetic approaches, such as the traditional pyrene-polymerization bulk assays, as well as more recently developed single-filament and single-molecule imaging approaches. Recent development of novel biophysical methods for sensing and applying forces will in future allow us to address the very important relationship between mechanical stimulus and kinetics of actin-based motility. PMID:26715420

  10. Limitations of inclusive fitness.

    PubMed

    Allen, Benjamin; Nowak, Martin A; Wilson, Edward O

    2013-12-10

    Until recently, inclusive fitness has been widely accepted as a general method to explain the evolution of social behavior. Affirming and expanding earlier criticism, we demonstrate that inclusive fitness is instead a limited concept, which exists only for a small subset of evolutionary processes. Inclusive fitness assumes that personal fitness is the sum of additive components caused by individual actions. This assumption does not hold for the majority of evolutionary processes or scenarios. To sidestep this limitation, inclusive fitness theorists have proposed a method using linear regression. On the basis of this method, it is claimed that inclusive fitness theory (i) predicts the direction of allele frequency changes, (ii) reveals the reasons for these changes, (iii) is as general as natural selection, and (iv) provides a universal design principle for evolution. In this paper we evaluate these claims, and show that all of them are unfounded. If the objective is to analyze whether mutations that modify social behavior are favored or opposed by natural selection, then no aspect of inclusive fitness theory is needed. PMID:24277847

  11. Limitations of inclusive fitness

    PubMed Central

    Allen, Benjamin; Nowak, Martin A.; Wilson, Edward O.

    2013-01-01

    Until recently, inclusive fitness has been widely accepted as a general method to explain the evolution of social behavior. Affirming and expanding earlier criticism, we demonstrate that inclusive fitness is instead a limited concept, which exists only for a small subset of evolutionary processes. Inclusive fitness assumes that personal fitness is the sum of additive components caused by individual actions. This assumption does not hold for the majority of evolutionary processes or scenarios. To sidestep this limitation, inclusive fitness theorists have proposed a method using linear regression. On the basis of this method, it is claimed that inclusive fitness theory (i) predicts the direction of allele frequency changes, (ii) reveals the reasons for these changes, (iii) is as general as natural selection, and (iv) provides a universal design principle for evolution. In this paper we evaluate these claims, and show that all of them are unfounded. If the objective is to analyze whether mutations that modify social behavior are favored or opposed by natural selection, then no aspect of inclusive fitness theory is needed. PMID:24277847

  12. Eye Motility Alterations in Retinitis Pigmentosa

    PubMed Central

    Galeoto, Giovanni; Fratipietro, Manuela

    2015-01-01

    Purpose. We evaluated a sample of individuals with retinitis pigmentosa (RP) with the aim of assessing the presence or absence of ocular motility (OM) disorders. Materials and Methods. We included 23 out of the 25 individuals from the sample (9 females and 14 males) with an average visual acuity of 6/10. Results. The cover test about the vertical deviation in near distance showed an r/l in 3.45% and an l/r in 6.9%. The assessment of OM showed that 39.1% of the sample had a severe hyperfunction of the IO of the right eye and a severe hyperfunction (34.5%) of the SO of the left eye; 21.8% had a moderate hypofunction of right SO with a moderate percentage of hypofunction of 17.5% for the SO of the left eye; 30.5%, however, showed a serious hypofunction of the SR of both eyes; 21.7% of the sample showed a hyperfunction in both eyes of the IR. Conclusion. This alteration, however, is not attributable to either a high refractive defect (medium-low myopia: −1 diopter ±3 SD) or to a severely impaired binocular vision (visual acuity, motor fusion, and stereopsis are normal or within a range of values commonly accepted). Therefore, the disorders of OM lead to a genetic origin. PMID:26124957

  13. Colloidal motility and patterning by physical chemotaxis

    NASA Astrophysics Data System (ADS)

    Palacci, Jeremie; Abecassis, Benjamin; Cottin-Bizonne, Cecile; Ybert, Christophe; Bocquet, Lyderic

    2009-11-01

    We developped a microfluidic setup to show the motility of colloids or biomolecules under a controlled salt gradient thanks to the diffusiophoresis phenomenon [1,2]. We can therefore mimic chemotaxis on simple physical basis with thrilling analogies with the biological chemotaxis of E. Coli bacteria: salt dependance of the velocity [3] and log-sensing behavior [4]. In addition with a temporally tunable gradient we show we can generate an effective osmotic potential to trap colloids or DNA. These experimental observations are supported by numerical simulations and an asymptotic ratchet model. Finally, we use these traps to generate various patterns and because concentration gradients are ubiquitous in nature, we question for the role of such a mecanism in morphogenesis [5] or positioning perspectives in cells [6]. [4pt] [1] B. Abecassis, C. Cottin-Bizonne, C. Ybert, A. Ajdari, and L. Bocquet, Nat. Mat., 7(10):785--789, 2008. [2] Anderson, Ann. Rev. Fluid Mech, 21, 1989. [3] Y. L. Qi and J. Adler, PNAS, 86(21):8358--8362, 1989. [4] Y. V. Kalinin, L. L. Jiang, Y. H. Tu, and M. M. Wu, Biophys. J., 96(6):2439--2448, 2009. [4] J. B. Moseley, A. Mayeux, A. Paoletti, and P. Nurse, Nat., 459(7248):857--U8, 2009. [6] L. Wolpert, Dev., 107:3--12, 1989

  14. Ghrelin as a target for gastrointestinal motility disorders.

    PubMed

    Greenwood-Van Meerveld, Beverley; Kriegsman, Michael; Nelson, Richard

    2011-11-01

    The therapeutic potential of ghrelin and synthetic ghrelin receptor (GRLN-R) agonists for the treatment of gastrointestinal (GI) motility disorders is based on their ability to stimulate coordinated patterns of propulsive GI motility. This review focuses on the latest findings that support the therapeutic potential of GRLN-R agonists for the treatment of GI motility disorders. The review highlights the preclinical and clinical prokinetic effects of ghrelin and a series of novel ghrelin mimetics to exert prokinetic effects on the GI tract. We build upon a series of excellent reviews to critically discuss the evidence that supports the potential of GRLN-R agonists to normalize GI motility in patients with GI hypomotility disorders such as gastroparesis, post-operative ileus (POI), idiopathic chronic constipation and functional bowel disorders. PMID:21453735

  15. Molecular mechanism of fluoroquinolones modulation on corneal fibroblast motility.

    PubMed

    Chen, Tsan-Chi; Tsai, Tzu-Yun; Chang, Shu-Wen

    2016-04-01

    Topical fluoroquinolones are widely used to prevent ocular infections after ophthalmic surgery. However, they have been shown to affect the corneal cell motility, whose mechanism remains indefinite. The purpose of this study was to investigate how fluoroquinolones affect corneal stromal cell motility. Human corneal fibroblasts (HCFs) were incubated in ciprofloxacin (CIP), levofloxacin (LEV), or moxifloxacin (MOX) at 0, 10, 50, and 100 μg/ml for up to 3 days. Effect of CIP, LEV, or MOX on HCF migration was monitored using migration assay. HCF viability was determined by WST-1 assay. Expression of focal adhesion kinase (FAK), paxillin (PXN), and their phosphorylated forms were analyzed by immunoblotting. Binding affinity between FAK and PXN was determined by co-immunoprecipitation. Our results revealed that CIP and MOX, but not LEV, noticeably retarded HCF migration. HCF proliferation was significantly reduced by CIP (38.2%), LEV (29.5%), and MOX (21.3%), respectively (p = 0.002). CIP and MOX suppressed the phosphorylation of PXN at tyrosines (10.2 ± 4.3%, p < 0.001; 11.7 ± 2.4%, p < 0.001, respectively), including tyrosine 118 (33.3 ± 5.2%, p < 0.001; 34.0 ± 4.4%, p < 0.001, respectively). CIP and MOX diminished the binding affinity between FAK and PXN (8.2 ± 1.8%, p < 0.001; 9.0 ± 4.5%, p < 0.001, respectively). Nevertheless, tyrosine dephosphorylation and FAK dissociation of PXN were not found in LEV-treated HCFs. None of these fluoroquinolones affect phosphorylation of FAK-Y397. We conclude that CIP and MOX, but not LEV, might delay corneal fibroblast migration via interfering with recruitment of PXN to focal adhesions and dephosphorylation of PXN at the tyrosines. PMID:26546726

  16. Strongyloides stercoralis hyperinfection associated with impaired intestinal motility disorder

    PubMed Central

    Figueira, Cláudia Frangioia; Cos, Lynda Dorene; Ussami, Edson Yassushi; Otoch, José Pinhata; Felipe-Silva, Aloisio

    2015-01-01

    Infection by Strongyloides stercoralis is a highly prevalent helminthiasis, which is mostly distributed in the tropical and subtropical regions of the world. Although a substantial number of cases are asymptomatic or paucisymtomatic, severe and life-threatening forms of this infection still occur and not infrequently is lately diagnosed. Gram-negative bacteria septicemia, which frequently accompanies the severe helminthiasis, contributes to the high mortality rate. Severe infection is invariably triggered by any imbalance in the host's immunity, favoring the auto-infective cycle, which increases the intraluminal parasite burden enormously. Clinical presentation of severe cases is varied, and diagnosis requires a high suspicion index. Acute abdomen has been reported in association with S. stercoralis infection, but intestinal necrosis is rarely found during the surgical approach. The authors report the case of a man who sought the emergency unit with recent onset abdominal pain. Clinical and imaging features were consistent with obstructive acute abdomen. Scattered adhesions and a necrotic ileal segment with a tiny perforation represented the surgical findings. The patient outcome was unfavorable and respiratory distress required an open lung biopsy. Both surgical specimens showed S. stercoralis infection. Unfortunately the patient underwent multiple organ failure and septicemia, and subsequently died. The authors call attention to the finding of intestinal necrosis and impaired intestinal motility disorder as possibilities for the diagnosis and risk factor, respectively, for a severe infection of S. stercoralis. PMID:26484331

  17. Microfabricated ratchet structures for concentrating and patterning motile bacterial cells

    NASA Astrophysics Data System (ADS)

    Yub Kim, Sang; Lee, Eun Se; Lee, Ho Jae; Lee, Se Yeon; Kuk Lee, Sung; Kim, Taesung

    2010-09-01

    We present a novel microfabricated concentrator for Escherichia coli that can be a stand-alone and self-contained microfluidic device because it utilizes the motility of cells. First of all, we characterize the motility of E. coli cells and various ratcheting structures that can guide cells to move in a desired direction in straight and circular channels. Then, we combine these ratcheting microstructures with the intrinsic tendency of cells to swim on the right side in microchannels to enhance the concentration rates up to 180 fold until the concentrators are fully filled with cells. Furthermore, we demonstrate that cells can be positioned and concentrated with a constant spacing distance on a surface, allowing spatial patterning of motile cells. These results can be applied to biosorption or biosensor devices that are powered by motile cells because they can be highly concentrated without any external mechanical and electrical energy sources. Hence, we believe that the concentrator design holds considerable potential to be applied for concentrating and patterning other motile microbes and providing a versatile structure for motility study of bacterial cells.

  18. Upper gastrointestinal motility: prenatal development and problems in infancy.

    PubMed

    Singendonk, Maartje M J; Rommel, Nathalie; Omari, Taher I; Benninga, Marc A; van Wijk, Michiel P

    2014-09-01

    Deglutition, or swallowing, refers to the process of propulsion of a food bolus from the mouth into the stomach and involves the highly coordinated interplay of swallowing and breathing. At 34 weeks gestational age most neonates are capable of successful oral feeding if born at this time; however, the maturation of respiration is still in progress at this stage. Infants can experience congenital and developmental pharyngeal and/or gastrointestinal motility disorders, which might manifest clinically as gastro-oesophageal reflux (GER) symptoms, feeding difficulties and/or refusal, choking episodes and airway changes secondary to micro or overt aspiration. These problems might lead to impaired nutritional intake and failure to thrive. These gastrointestinal motility disorders are mostly classified according to the phase of swallowing in which they occur, that is, the oral preparatory, oral, pharyngeal and oesophageal phases. GER is a common phenomenon in infancy and is referred to as GERD when it causes troublesome complications. GER is predominantly caused by transient relaxation of the lower oesophageal sphincter. In oesophageal atresia, oesophageal motility disorders develop in almost all patients after surgery; however, a congenital origin of disordered motility has also been proposed. This Review highlights the prenatal development of upper gastrointestinal motility and describes the most common motility disorders that occur in early infancy. PMID:24890279

  19. Comparison of motility stimulants for cryopreserved human semen.

    PubMed

    Hammitt, D G; Bedia, E; Rogers, P R; Syrop, C H; Donovan, J F; Williamson, R A

    1989-09-01

    Caffeine, pentoxifylline, 2-deoxyadenosine, cyclic adenosine monophosphate (cAMP), relaxin, adenosine, kallikrein, and calcium were compared for their ability to stimulate motility of cryopreserved sperm. Caffeine, pentoxifylline, and 2-deoxyadenosine significantly increased the percentage of motile sperm at 15, 30, 45, and 60 minutes after administration. Sperm velocity was significantly increased by caffeine at 0, 15, 30, and 45 minutes, and by pentoxifylline at 0, 45, and 60 minutes. Consistent stimulation was not observed for other chemicals. Caffeine, pentoxifylline, and 2-deoxyadenosine were then examined for their ability to provide motility stimulation after removal with washing. With the exception of caffeine, percent motility and velocity for stimulated and untreated sperm were similar after washing. A significant reduction in motility was observed at 48 hours after washing for caffeine. The percentage of hamster oocytes penetrated at 24 hours after washing was significantly reduced for caffeine, 2-deoxyadenosine, and pentoxifylline combined with 2-deoxyadenosine. Pentoxifylline-treated sperm showed no reduction in fertilizing capacity. These results indicate that, of the chemicals examined, pentoxifylline is superior for motility stimulation of cryopreserved sperm. PMID:2550282

  20. Mass sperm motility is associated with fertility in sheep.

    PubMed

    David, Ingrid; Kohnke, Philippa; Lagriffoul, Gilles; Praud, Olivier; Plouarboué, Franck; Degond, Pierre; Druart, Xavier

    2015-10-01

    The study was to focus on the relationship between wave motion (mass sperm motility, measured by a mass sperm motility score, manually assessed by artificial insemination (AI) center operators) and fertility in male sheep. A dataset of 711,562 artificial inseminations performed in seven breeds by five French AI centers during the 2001-2005 time period was used for the analysis. Factors influencing the outcome of the insemination, which is a binary response observed at lambing of either success (1) or failure (0), were studied using a joint model within each breed and AI center (eight separate analyses). The joint model is a multivariate model where all information related to the female, the male and the insemination process were included to improve the estimation of the factor effects. Results were consistent for all analyses. The male factors affecting AI results were the age of the ram and the mass motility. After correction for the other factors of variation, the lambing rate increased quasi linearly from three to more than ten points with the mass sperm motility score depending on the breed and the AI center. The consistency of the relationship for all breeds indicated that mass sperm motility is predictive of the fertility resulting when sperm are used from a specific ejaculate. Nonetheless, predictability could be improved if an objective measurement of mass sperm motility were available as a substitute for the subjective scoring currently in use in AI centers. PMID:26364125

  1. Linguistic Diversity and Social Inclusion

    ERIC Educational Resources Information Center

    Piller, Ingrid; Takahashi, Kimie

    2011-01-01

    This introduction provides the framework for the special issue by describing the social inclusion agenda of neoliberal market democracies. While the social inclusion agenda has been widely adopted, social inclusion policies are often blind to the ways in which language proficiency and language ideologies mediate social inclusion in linguistically…

  2. Inclusion Body Myositis

    PubMed Central

    Dimachkie, Mazen M.; Barohn, Richard J.

    2012-01-01

    The idiopathic inflammatory myopathies are a group of rare disorders that share many similarities. These include dermatomyositis (DM), polymyositis (PM), necrotizing myopathy (NM), and sporadic inclusion body myositis (IBM). Inclusion body myositis is the most common idiopathic inflammatory myopathy after age 50 and it presents with chronic proximal leg and distal arm asymmetric mucle weakness. Despite similarities with PM, it is likely that IBM is primarily a degenerative disorder rather than an inflammatory muscle disease. Inclusion body myositis is associated with a modest degree of creatine kinase (CK) elevation and an abnormal electromyogram demonstrating an irritative myopathy with some chronicity. The muscle histopathology demonstrates inflammatory exudates surrounding and invading nonnecrotic muscle fibers often times accompanied by rimmed vacuoles. In this chapter, we review sporadic IBM. We also examine past, essentially negative, clinical trials in IBM and review ongoing clinical trials. For further details on DM, PM, and NM, the reader is referred to the idiopathic inflammatory myopathies chapter. PMID:23117948

  3. Urotensin II receptor determines prognosis of bladder cancer regulating cell motility/invasion

    PubMed Central

    2014-01-01

    Background Non Muscle Invasive Bladder Transitional Cancer (NMIBC) and Muscle Invasive Bladder Transitional Cancer (MIBC)/invasive have different gene profile and clinical course. NMIBC prognosis is not completely predictable, since the relapse rate is higher than 20%, even in the form of MIBC. The aim of this study is to evaluate if UTR expression can discriminate between NMIBC and MIBC and predict the risk of relapses in NMIBCs. Methods We have investigated upon urotensin-II (UII) receptor (UTR) expression in vivo in 159 patients affected by NMIBC. The biological role of UTR was also investigated in vitro. UTR expression was evaluated in a tissue-micro-array, consisting of normal, NMIBC and invasive bTCC samples. Results UTR discriminated between NMIBC and MIBC and showed a significant correlation between low UTR expression and shorter disease free survival in NMIBC. The superagonist UPG84 induced growth suppression at nM concentrations on 3/4 cell lines. Bladder cancer cell treatment with the antagonist urantide or the knock-down of UTR with a specific shRNA significantly blocked both the motility and invasion of bladder cancer cells. Conclusions The evaluation of UTR expression can discriminate between NMIBC at high and low risk of relapse. Moreover, our data suggest that UTR is involved in the regulation of motility, invasion and proliferation of bladder cancer cells. High UTR expression is an independent prognostic factor of good prognosis for NMIBC regulating motility and invasion of bladder cancer cells. PMID:24893613

  4. Calmodulin regulates dimerization, motility, and lipid binding of Leishmania myosin XXI

    PubMed Central

    Batters, Christopher; Ellrich, Heike; Helbig, Constanze; Woodall, Katy Anna; Hundschell, Christian; Brack, Dario; Veigel, Claudia

    2014-01-01

    Myosin XXI is the only myosin expressed in Leishmania parasites. Although it is assumed that it performs a variety of motile functions, the motor’s oligomerization states, cargo-binding, and motility are unknown. Here we show that binding of a single calmodulin causes the motor to adopt a monomeric state and to move actin filaments. In the absence of calmodulin, nonmotile dimers that cross-linked actin filaments were formed. Unexpectedly, structural analysis revealed that the dimerization domains include the calmodulin-binding neck region, essential for the generation of force and movement in myosins. Furthermore, monomeric myosin XXI bound to mixed liposomes, whereas the dimers did not. Lipid-binding sections overlapped with the dimerization domains, but also included a phox-homology domain in the converter region. We propose a mechanism of myosin regulation where dimerization, motility, and lipid binding are regulated by calmodulin. Although myosin-XXI dimers might act as nonmotile actin cross-linkers, the calmodulin-binding monomers might transport lipid cargo in the parasite. PMID:24379364

  5. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility

    PubMed Central

    Bastounis, Effie; Meili, Ruedi; Álvarez-González, Begoña; Francois, Joshua; del Álamo, Juan C.; Lasheras, Juan C.

    2014-01-01

    Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell’s mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior–posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA− and abp120− cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells. PMID:24637328

  6. Uncovering the mechanism of trapping and cell orientation during Neisseria gonorrhoeae twitching motility.

    PubMed

    Zaburdaev, Vasily; Biais, Nicolas; Schmiedeberg, Michael; Eriksson, Jens; Jonsson, Ann-Beth; Sheetz, Michael P; Weitz, David A

    2014-10-01

    Neisseria gonorrheae bacteria are the causative agent of the second most common sexually transmitted infection in the world. The bacteria move on a surface by means of twitching motility. Their movement is mediated by multiple long and flexible filaments, called type IV pili, that extend from the cell body, attach to the surface, and retract, thus generating a pulling force. Moving cells also use pili to aggregate and form microcolonies. However, the mechanism by which the pili surrounding the cell body work together to propel bacteria remains unclear. Understanding this process will help describe the motility of N. gonorrheae bacteria, and thus the dissemination of the disease which they cause. In this article we track individual twitching cells and observe that their trajectories consist of alternating moving and pausing intervals, while the cell body is preferably oriented with its wide side toward the direction of motion. Based on these data, we propose a model for the collective pili operation of N. gonorrheae bacteria that explains the experimentally observed behavior. Individual pili function independently but can lead to coordinated motion or pausing via the force balance. The geometry of the cell defines its orientation during motion. We show that by changing pili substrate interactions, the motility pattern can be altered in a predictable way. Although the model proposed is tangibly simple, it still has sufficient robustness to incorporate further advanced pili features and various cell geometries to describe other bacteria that employ pili to move on surfaces. PMID:25296304

  7. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    PubMed

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  8. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility

    PubMed Central

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  9. Calmodulin regulates dimerization, motility, and lipid binding of Leishmania myosin XXI.

    PubMed

    Batters, Christopher; Ellrich, Heike; Helbig, Constanze; Woodall, Katy Anna; Hundschell, Christian; Brack, Dario; Veigel, Claudia

    2014-01-14

    Myosin XXI is the only myosin expressed in Leishmania parasites. Although it is assumed that it performs a variety of motile functions, the motor's oligomerization states, cargo-binding, and motility are unknown. Here we show that binding of a single calmodulin causes the motor to adopt a monomeric state and to move actin filaments. In the absence of calmodulin, nonmotile dimers that cross-linked actin filaments were formed. Unexpectedly, structural analysis revealed that the dimerization domains include the calmodulin-binding neck region, essential for the generation of force and movement in myosins. Furthermore, monomeric myosin XXI bound to mixed liposomes, whereas the dimers did not. Lipid-binding sections overlapped with the dimerization domains, but also included a phox-homology domain in the converter region. We propose a mechanism of myosin regulation where dimerization, motility, and lipid binding are regulated by calmodulin. Although myosin-XXI dimers might act as nonmotile actin cross-linkers, the calmodulin-binding monomers might transport lipid cargo in the parasite. PMID:24379364

  10. Efficacy of aphrodisiac plants towards improvement in semen quality and motility in infertile males.

    PubMed

    Mahajan, Ghanashyam Keshav; Mahajan, Arun Yashwant; Mahajan, Raghunath Totaram

    2012-01-01

    Infertility is the inability to conceive after one year of unprotected intercourse. In the present study, herbal composition prepared by using medicinal plants having aphrodisiac potentials was administered orally to the albino rats for 40 days and to the oligospermic patients for 90 days in order to prove the efficacy of herbal composition. Herbal composition was the mixture (powder form) of the medicinal plants namely, Mucuna pruriens (Linn), Chlorophytum borivillianum (Sant and Fernand), and Eulophia campestris (Wall). In the neem oil treated albino rats, there was significant reduction in almost all the parameters viz. body weight, testes and epididymes weight, sperm density and motility, serum levels of testosterone, FSH, and LH compared with control rats. Treatment with said herbal composition for 40 days results significant increased in the body weight, testis, and epididymes weight in rats. Concomitantly the sperm motility and the sperm density were significantly increased. After 90 days of treatment with this herbal composition, sperm density vis-a-vis motility was increased in oligozoospermic patients as a result of elevation in serum testosterone levels. No side effects were noticed during the entire duration of the trial. PMID:22499723

  11. miR-17 regulates melanoma cell motility by inhibiting the translation of ETV1.

    PubMed

    Cohen, Ronit; Greenberg, Eyal; Nemlich, Yael; Schachter, Jacob; Markel, Gal

    2015-08-01

    Melanoma is an aggressive malignancy with a high metastatic potential. microRNA-17 (miR-17) is a member of the oncogenic miR-17/92 cluster. Here we study the effect of miR-17 on melanoma cell motility. Over expression of the mature or pri-microRNA form of miR-17 in WM-266-4 and 624mel melanoma lines enhances cell motility, evident in both wound healing and transwell migration assays. TargetScan algorithm predicts the PEA3-subfamily member ETV1 as a direct target of miR-17. Indeed, a 3-4-fold decrease of ETV1 protein levels are observed following miR-17 transfection into the various melanoma lines, with no significant change in ETV1 mRNA expression. Dual luciferase experiments demonstrate direct binding of miR-17 to the 3'-untranslated region of ETV1, confirmed by abolishing point mutations in the putative binding site. These combined results suggest regulation of ETV1 by miR-17 by a direct translational repression. Further, in both melanoma cell lines ETV1 knockdown by selective siRNA successfully pheno-copies the facilitated cell migration, while overexpression of ETV1 inhibits cell motility and migration. Altered ETV1 expression does not affect melanoma net-proliferation. In conclusion, we show a new role for miR-17 in melanoma, facilitating cell motility, by targeting the translation of ETV1 protein, which may support the development of metastasis. PMID:26158900

  12. The flagellum in bacterial pathogens: For motility and a whole lot more.

    PubMed

    Chaban, Bonnie; Hughes, H Velocity; Beeby, Morgan

    2015-10-01

    The bacterial flagellum is an amazingly complex molecular machine with a diversity of roles in pathogenesis including reaching the optimal host site, colonization or invasion, maintenance at the infection site, and post-infection dispersal. Multi-megadalton flagellar motors self-assemble across the cell wall to form a reversible rotary motor that spins a helical propeller - the flagellum itself - to drive the motility of diverse bacterial pathogens. The flagellar motor responds to the chemoreceptor system to redirect swimming toward beneficial environments, thus enabling flagellated pathogens to seek out their site of infection. At their target site, additional roles of surface swimming and mechanosensing are mediated by flagella to trigger pathogenesis. Yet while these motility-related functions have long been recognized as virulence factors in bacteria, many bacteria have capitalized upon flagellar structure and function by adapting it to roles in other stages of the infection process. Once at their target site, the flagellum can assist adherence to surfaces, differentiation into biofilms, secretion of effector molecules, further penetration through tissue structures, or in activating phagocytosis to gain entry into eukaryotic cells. Next, upon onset of infection, flagellar expression must be adapted to deal with the host's immune system defenses, either by reduced or altered expression or by flagellar structural modification. Finally, after a successful growth phase on or inside a host, dispersal to new infection sites is often flagellar motility-mediated. Examining examples of all these processes from different bacterial pathogens, it quickly becomes clear that the flagellum is involved in bacterial pathogenesis for motility and a whole lot more. PMID:26541483

  13. Cooperativity of thiol-modified myosin filaments. ATPase and motility assays of myosin function.

    PubMed Central

    Root, D D; Reisler, E

    1992-01-01

    The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin. PMID:1420910

  14. Using Liquid Crystals to Reveal How Mechanical Anisotropy Changes Interfacial Behaviors of Motile Bacteria

    PubMed Central

    Mushenheim, Peter C.; Trivedi, Rishi R.; Weibel, Douglas B.; Abbott, Nicholas L.

    2014-01-01

    Bacteria often inhabit and exhibit distinct dynamical behaviors at interfaces, but the physical mechanisms by which interfaces cue bacteria are still poorly understood. In this work, we use interfaces formed between coexisting isotropic and liquid crystal (LC) phases to provide insight into how mechanical anisotropy and defects in LC ordering influence fundamental bacterial behaviors. Specifically, we measure the anisotropic elasticity of the LC to change fundamental behaviors of motile, rod-shaped Proteus mirabilis cells (3 μm in length) adsorbed to the LC interface, including the orientation, speed, and direction of motion of the cells (the cells follow the director of the LC at the interface), transient multicellular self-association, and dynamical escape from the interface. In this latter context, we measure motile bacteria to escape from the interfaces preferentially into the isotropic phase, consistent with the predicted effects of an elastic penalty associated with strain of the LC about the bacteria when escape occurs into the nematic phase. We also observe boojums (surface topological defects) present at the interfaces of droplets of nematic LC (tactoids) to play a central role in mediating the escape of motile bacteria from the LC interface. Whereas the bacteria escape the interface of nematic droplets via a mechanism that involved nematic director-guided motion through one of the two boojums, for isotropic droplets in a continuous nematic phase, the elasticity of the LC generally prevented single bacteria from escaping. Instead, assemblies of bacteria piled up at boojums and escape occurred through a cooperative, multicellular phenomenon. Overall, our studies show that the dynamical behaviors of motile bacteria at anisotropic LC interfaces can be understood within a conceptual framework that reflects the interplay of LC elasticity, surface-induced order, and topological defects. PMID:24988359

  15. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii

    PubMed Central

    2014-01-01

    Background Acinetobacter baumannii has emerged as an opportunistic nosocomial pathogen causing infections worldwide. One reason for this emergence is due to its natural ability to survive in the hospital environment, which may be explained by its capacity to form biofilms. Cell surface appendages are important determinants of the A. baumannii biofilm formation and as such constitute interesting targets to prevent the development of biofilm-related infections. A chemical agent called virstatin was recently described to impair the virulence of Vibrio cholerae by preventing the expression of its virulence factor, the toxin coregulated pilus (type IV pilus). The objective of this work was to investigate the potential effect of virstatin on A. baumannii biofilms. Results After a dose–response experiment, we determined that 100 μM virstatin led to an important decrease (38%) of biofilms formed by A. baumannii ATCC17978 grown under static mode. We demonstrated that the production of biofilms grown under dynamic mode was also delayed and reduced. The biofilm susceptibility to virstatin was then tested for 40 clinical and reference A. baumannii strains. 70% of the strains were susceptible to virstatin (with a decrease of 10 to 65%) when biofilms grew in static mode, whereas 60% of strains respond to the treatment when their biofilms grew in dynamic mode. As expected, motility and atomic force microscopy experiments showed that virstatin acts on the A. baumannii pili biogenesis. Conclusions By its action on pili biogenesis, virstatin demonstrated a very promising antibiofilm activity affecting more than 70% of the A. baumannii clinical isolates. PMID:24621315

  16. Persistent enhancement of bacterial motility increases tumor penetration.

    PubMed

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. PMID:25976712

  17. Computational and Modeling Strategies for Cell Motility

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Yang, Xiaofeng; Adalsteinsson, David; Elston, Timothy C.; Jacobson, Ken; Kapustina, Maryna; Forest, M. Gregory

    A predictive simulation of the dynamics of a living cell remains a fundamental modeling and computational challenge. The challenge does not even make sense unless one specifies the level of detail and the phenomena of interest, whether the focus is on near-equilibrium or strongly nonequilibrium behavior, and on localized, subcellular, or global cell behavior. Therefore, choices have to be made clear at the outset, ranging from distinguishing between prokaryotic and eukaryotic cells, specificity within each of these types, whether the cell is "normal," whether one wants to model mitosis, blebs, migration, division, deformation due to confined flow as with red blood cells, and the level of microscopic detail for any of these processes. The review article by Hoffman and Crocker [48] is both an excellent overview of cell mechanics and an inspiration for our approach. One might be interested, for example, in duplicating the intricate experimental details reported in [43]: "actin polymerization periodically builds a mechanical link, the lamellipodium, connecting myosin motors with the initiation of adhesion sites, suggesting that the major functions driving motility are coordinated by a biomechanical process," or to duplicate experimental evidence of traveling waves in cells recovering from actin depolymerization [42, 35]. Modeling studies of lamellipodial structure, protrusion, and retraction behavior range from early mechanistic models [84] to more recent deterministic [112, 97] and stochastic [51] approaches with significant biochemical and structural detail. Recent microscopic-macroscopic models and algorithms for cell blebbing have been developed by Young and Mitran [116], which update cytoskeletal microstructure via statistical sampling techniques together with fluid variables. Alternatively, whole cell compartment models (without spatial details) of oscillations in spreading cells have been proposed [35, 92, 109] which show positive and negative feedback

  18. Inclusion Practice Priorities Instrument.

    ERIC Educational Resources Information Center

    Montie, Jo; And Others

    This instrument was developed to assist individuals or teams to review best practice indicators regarding the development of inclusive school communities and to establish priority targets for improvement. The instrument covers three areas: (1) school community issues, (2) team issues, and (3) classroom issues. For each area, there is a review…

  19. In Search of Inclusion

    ERIC Educational Resources Information Center

    Hunter, John; O'Connor, Una

    2006-01-01

    This article provides a context within which other contributions to this issue might be read. It examines the position of special educational needs (SEN) within the evolving continuum of education in Northern Ireland, specifically within the context of educational inclusion. It describes recent changes in educational policy and legislation which…

  20. Inclusion Art Contest

    ERIC Educational Resources Information Center

    Mel, Melisa Dauzat

    2010-01-01

    The purpose of this study was to ease a school system into the transitions that occur when Inclusion is incorporated. An entire Middle School was used to collect data from. The grades in that school were 6th, 7th and 8th grade. The initial intent was to foment a community feeling among the students. The results were completely unexpected as they…

  1. Exploring Inclusive Pedagogy

    ERIC Educational Resources Information Center

    Florian, Lani; Black-Hawkins, Kristine

    2011-01-01

    This paper reports on a study designed to examine teachers' craft knowledge of their practice of "inclusion" in terms of what they do, why and how. The research approach offers an important alternative to studies of students with "additional needs" and the search to articulate the specialist knowledge and skill required to teach them. Through…

  2. Inclusion on the Bookshelf

    ERIC Educational Resources Information Center

    Jackson, Camille

    2009-01-01

    Three decades have passed since federal law mandated inclusion--ending, officially at least, a system that segregated students with disabilities from the rest of the student population. The publishing world has yet to catch up. In children's books, characters with disabilities often inhabit their own separate world, where disability is the only…

  3. Nanotubular Toughening Inclusions

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Working, Dennis C. (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2015-01-01

    Conventional toughening agents are typically rubbery materials or small molecular weight molecules, which mostly sacrifice the intrinsic properties of a matrix such as modulus, strength, and thermal stability as side effects. On the other hand, high modulus inclusions tend to reinforce elastic modulus very efficiently, but not the strength very well. For example, mechanical reinforcement with inorganic inclusions often degrades the composite toughness, encountering a frequent catastrophic brittle failure triggered by minute chips and cracks. Thus, toughening generally conflicts with mechanical reinforcement. Carbon nanotubes have been used as efficient reinforcing agents in various applications due to their combination of extraordinary mechanical, electrical, and thermal properties. Moreover, nanotubes can elongate more than 20% without yielding or breaking, and absorb significant amounts of energy during deformation, which enables them to also be an efficient toughening agent, as well as excellent reinforcing inclusion. Accordingly, an improved toughening method is provided by incorporating nanotubular inclusions into a host matrix, such as thermoset and thermoplastic polymers or ceramics without detrimental effects on the matrix's intrinsic physical properties.

  4. Raising Achievement through Inclusion

    ERIC Educational Resources Information Center

    Persson, Elisabeth

    2013-01-01

    In 2007, Swedish authorities introduced open publication of comparisons of students' results at the end of compulsory school. In this study, we investigated a municipality that had succeeded in breaking a negative trend from a bottom position in the ranking in 2007 to a top position in 2010, apparently through inclusive practices. The purpose…

  5. Teaching Inclusion through Alphapoems.

    ERIC Educational Resources Information Center

    Murray, Susan "BOON"

    2000-01-01

    Describes what inclusion is and how people in the helping professions may unintentionally promote exclusion. Describes the author's use of alphapoems in a course to develop college students' affective learning and advocacy toward people with disabilities. Offers examples of students' work and concludes that alphapoems served to further pedagogical…

  6. Optimization of inclusive fitness.

    PubMed

    Grafen, Alan

    2006-02-01

    The first fully explicit argument is given that broadly supports a widespread belief among whole-organism biologists that natural selection tends to lead to organisms acting as if maximizing their inclusive fitness. The use of optimization programs permits a clear statement of what this belief should be understood to mean, in contradistinction to the common mathematical presumption that it should be formalized as some kind of Lyapunov or even potential function. The argument reveals new details and uncovers latent assumptions. A very general genetic architecture is allowed, and there is arbitrary uncertainty. However, frequency dependence of fitnesses is not permitted. The logic of inclusive fitness immediately draws together various kinds of intra-genomic conflict, and the concept of 'p-family' is introduced. Inclusive fitness is thus incorporated into the formal Darwinism project, which aims to link the mathematics of motion (difference and differential equations) used to describe gene frequency trajectories with the mathematics of optimization used to describe purpose and design. Important questions remain to be answered in the fundamental theory of inclusive fitness. PMID:16046225

  7. Into the Workforce: Employers' Perspectives of Inclusion

    ERIC Educational Resources Information Center

    Irvine, Angela; Lupart, Judy

    2008-01-01

    Employment is an important component to community living that allows persons with disabilities the opportunity to form new relationships and learn new skills. Individuals with disabilities have much to contribute to the work place and, if a proper "fit" is achieved, work inclusion can benefit all involved. This project provides and insight into…

  8. On the Dirt Road to Inclusion

    ERIC Educational Resources Information Center

    Wiazowski, Jaroslaw

    2012-01-01

    Inclusive education in the Republic of South Africa has been codified and written down in the form of White Papers. From the legislative point of view, the situation is clear. The reality however shows that the implementation of the law is still at its infancy. Students with visual impairments are practically confined to being educated in…

  9. Gastric emptying and duodenal motility upon intake of a liquid meal with monosodium glutamate in healthy subjects

    PubMed Central

    Teramoto, Hidemi; Shimizu, Toshiyasu; Yogo, Hideto; Nishimiya, Yuuta; Hori, Shinji; Kosugi, Takashi; Nakayama, Shinsuke

    2014-01-01

    Abstract Glutamate is thought to serve as a special signal for gut functions. We investigated the effects of monosodium l‐glutamate (MSG) on gastric emptying and duodenal motility. Ten healthy male volunteers underwent rapid magnetic resonance imaging (MRI) of the abdomen. Coronal images were successively acquired after ingestion of liquid meal (200 kcal in 200 mL: 9 g protein, 28.4 g carbohydrate, 5.6 g fat, 370 mg Na+) with and without 0.5% MSG. During the acquisition of MRI, participants breathed freely. In all participants, the gastric residual volume gradually decreased to 80.1 ± 14.2% without MSG and to 75.9 ± 14.3% with MSG after 60 min (P = 0.45 between the groups, n = 10). In two of 10 participants, gastric emptying slowed down significantly, whereas in the remaining eight participants, gastric residual volume decreased to 84.0 ± 13.1% without MSG, and to 73.0 ± 14.6% with MSG after 60 min (P = 0.015, n = 8). There was no difference in the shape of the stomach between groups. In four of the eight participants responding positively to MSG, the duodenum wall was sufficiently identified to quantify the motions. The inclusion of MSG enhanced duodenal motility, judging from changes in (1) the magnitude of the duodenal area, (2) the center of gravity, and (3) the mean velocity of the wall motions. The third parameter most significantly indicated the excitatory effect of l‐glutamate on duodenum motility (~ three‐ to sevenfold increase during 60 min, P < 0.05, n = 4). These results suggest that MSG accelerates gastric emptying by facilitating duodenal motility, at least in subjects with positive responses to MSG. PMID:24744869

  10. Use of diatom motility features as endpoints of metolachlor toxicity.

    PubMed

    Coquillé, Nathalie; Jan, Gwilherm; Moreira, Aurélie; Morin, Soizic

    2015-01-01

    Many recent ecotoxicological studies suggest a relationship between freshwater contamination and increasing abundances of motile diatoms (potentially able to move). The capacity to escape would present advantages to species in polluted environments. However, actual motility as a response to toxicants had not been described and required experimental validation. We designed a specific experiment to assess how a field-isolated diatom (Gomphonema gracile) distributes energy to in situ resistance (increased population growth or photosynthesis) and escape (behavioral changes), when exposed to increasing concentrations of the herbicide metolachlor. We report here the dose-time dependent responses of G. gracile populations. They coped with low contamination by resisting in situ, with early hormetic responses highlighted by stimulation of chlorophyll-a fluorescence. At a higher dose, harmful impacts were observed on growth after a few days, but an earlier behavioral response suggested that higher motility (percentage of motile individuals and mean distance crossed) could be involved in escape. Our findings bring new arguments to support the implementation of real measurements instead of motility traits in toxicity assessment. Specifically, motion descriptors have been used as early-warning indicators of contamination in our study. Further works should address the reliability of these endpoints in more complex conditions (interspecific variability, behavior in the field). PMID:25481786

  11. Microscopic Analysis of Bacterial Motility at High Pressure

    PubMed Central

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  12. PACRG, a protein linked to ciliary motility, mediates cellular signaling.

    PubMed

    Loucks, Catrina M; Bialas, Nathan J; Dekkers, Martijn P J; Walker, Denise S; Grundy, Laura J; Li, Chunmei; Inglis, P Nick; Kida, Katarzyna; Schafer, William R; Blacque, Oliver E; Jansen, Gert; Leroux, Michel R

    2016-07-01

    Cilia are microtubule-based organelles that project from nearly all mammalian cell types. Motile cilia generate fluid flow, whereas nonmotile (primary) cilia are required for sensory physiology and modulate various signal transduction pathways. Here we investigate the nonmotile ciliary signaling roles of parkin coregulated gene (PACRG), a protein linked to ciliary motility. PACRG is associated with the protofilament ribbon, a structure believed to dictate the regular arrangement of motility-associated ciliary components. Roles for protofilament ribbon-associated proteins in nonmotile cilia and cellular signaling have not been investigated. We show that PACRG localizes to a small subset of nonmotile cilia in Caenorhabditis elegans, suggesting an evolutionary adaptation for mediating specific sensory/signaling functions. We find that it influences a learning behavior known as gustatory plasticity, in which it is functionally coupled to heterotrimeric G-protein signaling. We also demonstrate that PACRG promotes longevity in C. elegans by acting upstream of the lifespan-promoting FOXO transcription factor DAF-16 and likely upstream of insulin/IGF signaling. Our findings establish previously unrecognized sensory/signaling functions for PACRG and point to a role for this protein in promoting longevity. Furthermore, our work suggests additional ciliary motility-signaling connections, since EFHC1 (EF-hand containing 1), a potential PACRG interaction partner similarly associated with the protofilament ribbon and ciliary motility, also positively regulates lifespan. PMID:27193298

  13. Sensory functions of motile cilia and implication for bronchiectasis

    PubMed Central

    Jain, Raksha; Javidan-Nejad, Cylen; Alexander-Brett, Jennifer; Horani, Amjad; Cabellon, Michelle C.; Walter, Michael J.; Brody, Steven L.

    2013-01-01

    Cilia are specialized organelles that extend from the surface of cells into the local environment. Airway epithelial cell cilia are motile to provide mucociliary clearance for host defense. On other cells, solitary cilia are specialized to detect chemical or mechanosensory signals. Sensory proteins in motile cilia have recently been identified that detect shear stress, osmotic force, fluid flow, bitter taste and sex hormones. The relationship of sensory function in human motile cilia to disease is now being revealed. One example is polycystin-1 and polycystin-2. As a complex, these proteins function as a flow sensor in cilia and are mutated in autosomal dominant polycystic kidney disease (ADPKD). The polycystins are also expressed in motile cilia of the airways, potentially operating as sensors in the lung. Computed tomography studies from patients with ADPKD revealed radiographic evidence for bronchiectasis, suggesting that polycystin-1 and -2 are important in lung function. The expression of this complex and sensory channel TRPV4, and bitter taste and sex hormones receptors in motile cilia indicate that the cell is wired to interpret environmental cues to regulate cilia beat frequency and other functions. Defective signaling of sensory proteins may result in a ciliopathy that includes lung disease. PMID:22202111

  14. Microscopic analysis of bacterial motility at high pressure.

    PubMed

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-04-18

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  15. Bidirectional motility of the fission yeast kinesin-5, Cut7

    SciTech Connect

    Edamatsu, Masaki

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  16. Sodium affects the sperm motility in the European eel.

    PubMed

    Vílchez, M Carmen; Morini, Marina; Peñaranda, David S; Gallego, Víctor; Asturiano, Juan F; Pérez, Luz

    2016-08-01

    The role of seminal plasma sodium and activation media sodium on sperm motility was examined by selectively removing the element from these two media, in European eel sperm. Sperm size (sperm head area) was also measured using an ASMA (Automated Sperm Morphometry Analyses) system, in the different conditions. Intracellular sodium [Na(+)]i was quantitatively analyzed by first time in the spermatozoa from a marine fish species. Measurement of [Na(+)]i was done before and after motility activation, by Flow Cytometry, using CoroNa Green AM as a dye. Sperm motility activation induced an increase in [Na(+)]i, from 96.72mM in quiescent stage to 152.21mM post-activation in seawater. A significant decrease in sperm head area was observed post-activation in seawater. There was a notable reduction in sperm motility when sodium was removed from the seminal plasma, but not when it was removed from the activation media. Sodium removal was also linked to a significant reduction in sperm head area in comparison to the controls. Our results indicate that the presence of the ion Na(+) in the seminal plasma (or in the extender medium) is necessary for the preservation of sperm motility in European eel, probably because it plays a role in maintaining an appropriate sperm cell volume in the quiescent stage of the spermatozoa. PMID:27085371

  17. A new chamber for rapid sperm count and motility estimation.

    PubMed

    Makler, A

    1978-09-01

    A new chamber for sperm count and motility estimation is described. This chamber, which is only 10 micron deep, enables free horizontal movement of spermatozoa in one focal plane and provides conditions for the examination of undiluted samples. Therefore, with the aid of this instrument it is possible to compare sperm motility in various samples from the same person or in different samples at different times. This can be done either by simple estimation or with any other method of motility evaluation chosen by the examiner. The sperm count can be made rapidly and directly from an undiluted, preheated sample by counting spermatozoa in the area of a grid located within the eyepiece; the count is expressed in millions per milliliter. Thirty-seven specimens were analyzed with this chamber. Statistical evaluation of the results revealed high precision, accuracy, and reliability of sperm counts when compared with the hemocytometric method. Better results were obtained when motility estimation was compared with the ordinary slide technique. Easy performance, rapid sperm counts, and improvement of motility estimation make this chamber a useful tool where sperm analysis is carried out. PMID:710602

  18. The Evolution from Integration to Inclusion: The Hong Kong Tale

    ERIC Educational Resources Information Center

    Poon-McBrayer, Kim Fong

    2014-01-01

    As a worldwide movement, some forms or stages of inclusive education have been experimented and/or mandated in various countries since the mid-1970s. Integration was piloted in Hong Kong in 1997 and remains the official rhetoric and policy. Three developmental phases of inclusive education, namely, integration, integration in transition to…

  19. Developing Inclusive Teachers from an Inclusive Curricular Perspective

    ERIC Educational Resources Information Center

    Opertti, Renato; Brady, Jayne

    2011-01-01

    This article defines inclusive education in light of the Education for All agenda. It then describes key considerations for developing inclusive teachers from the perspective of an inclusive curriculum which seeks to address the needs of all learners. It concludes by outlining several key policy discussion areas which must be addressed if…

  20. Inclusive Education in Italy: Description and Reflections on Full Inclusion

    ERIC Educational Resources Information Center

    Anastasiou, Dimitris; Kauffman, James M.; Di Nuovo, Santo

    2015-01-01

    Inclusion of students with disabilities when appropriate is an important goal of special education for students with special needs. Full inclusion, meaning no education for any child in a separate setting, is held to be desirable by some, and Italy is likely the nation with an education system most closely approximating full inclusion on the…

  1. Paxillin controls directional cell motility in response to physical cues

    PubMed Central

    Sero, Julia E.; German, Alexandra E.; Mammoto, Akiko; Ingber, Donald E.

    2012-01-01

    Physical cues from the extracellular environment that influence cell shape and directional migration are transduced into changes in cytoskeletal organization and biochemistry through integrin-based cell adhesions to extracellular matrix (ECM). Paxillin is a focal adhesion (FA) scaffold protein that mediates integrin anchorage to the cytoskeleton, and has been implicated in regulation of FA assembly and cell migration. To determine whether paxillin is involved in coupling mechanical distortion with directional movement, cell shape was physically constrained by culturing cells on square-shaped fibronectin-coated adhesive islands surrounded by non-adhesive barrier regions that were created with a microcontact printing technique. Square-shaped cells preferentially formed FAs and extended lamellipodia from their corner regions when stimulated with PDGF, and loss of paxillin resulted in loss of this polarized response. Selective expression of the N- and C-terminal domains of paxillin produced opposite, but complementary, effects on suppressing or promoting lamellipodia formation in different regions of square cells, which corresponded to directional motility defects in vitro. Paxillin loss or mutation was also shown to affect the formation of circular dorsal ruffles, and this corresponded to changes in cell invasive behavior in 3D. This commentary addresses the implications of these findings in terms of how a multifunctional FA scaffold protein can link physical cues to cell adhesion, protrusion and membrane trafficking so as to control directional migration in 2D and 3D. We also discuss how microengineered ECM islands and in vivo model systems can be used to further elucidate the functions of paxillin in directional migration. PMID:23076140

  2. Emergence of macroscopic directed motion in populations of motile colloids

    NASA Astrophysics Data System (ADS)

    Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis

    2013-11-01

    From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic `flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our

  3. Motility protein interactions in the bacterial flagellar motor.

    PubMed Central

    Garza, A G; Harris-Haller, L W; Stoebner, R A; Manson, M D

    1995-01-01

    Five proteins (MotA, MotB, FliG, FliM, and FliN) have been implicated in energizing flagellar rotation in Escherichia coli and Salmonella typhimurium. One model for flagellar function envisions that MotA and MotB comprise the stator of a rotary motor and that FliG, FliM, and FliN are part of the rotor. MotA probably functions as a transmembrane proton channel, and MotB has been proposed to anchor MotA to the peptidoglycan of the cell wall. To study interactions between the Mot proteins themselves and between them and other components of the flagellar motor, we attempted to isolate extragenic suppressors of 13 dominant or partially dominant motB missense mutations. Four of these yielded suppressors, which exhibited widely varying efficiencies of suppression. The pattern of suppression was partially alleles-specific, but no suppressor seriously impaired motility in a motB+ strain. Of 20 suppressors from the original selection, 15 were characterized by DNA sequencing. Fourteen of these cause single amino acid changes in MotA. Thirteen alter residues in, or directly adjacent to, the putative periplasmic loops of MotA, and the remaining one alters a residue in the middle of the fourth predicted transmembrane helix of MotA. We conclude that the MotA and MotB proteins form a complex and that their interaction directly involves or is strongly influenced by the periplasmic loops of MotA. The 15th suppressor from the original selection and 2 motB suppressors identified during a subsequent search cause single amino acid substitutions in FliG. This finding suggests that the postulated Mot-protein complex may be in close proximity to FliG at the stator-rotor interface of the flagellar motor. Images Fig. 1 Fig. 2 PMID:7892209

  4. Gliding Motility of Mycoplasma mobile on Uniform Oligosaccharides

    PubMed Central

    Kasai, Taishi; Hamaguchi, Tasuku

    2015-01-01

    ABSTRACT The binding and gliding of Mycoplasma mobile on a plastic plate covered by 53 uniform oligosaccharides were analyzed. Mycoplasmas bound to and glided on only 21 of the fixed sialylated oligosaccharides (SOs), showing that sialic acid is essential as the binding target. The affinities were mostly consistent with our previous results on the inhibitory effects of free SOs and suggested that M. mobile recognizes SOs from the nonreducing end with four continuous sites as follows. (i and ii) A sialic acid at the nonreducing end is tightly recognized by tandemly connected two sites. (iii) The third site is recognized by a loose groove that may be affected by branches. (iv) The fourth site is recognized by a large groove that may be enhanced by branches, especially those with a negative charge. The cells glided on uniform SOs in manners apparently similar to those of the gliding on mixed SOs. The gliding speed was related inversely to the mycoplasma's affinity for SO, suggesting that the detaching step may be one of the speed determinants. The cells glided faster and with smaller fluctuations on the uniform SOs than on the mixtures, suggesting that the drag caused by the variation in SOs influences gliding behaviors. IMPORTANCE Mycoplasma is a group of bacteria generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide in the direction of the protrusion. These procedures are essential for parasitism. Usually, mycoplasmas glide on mixed sialylated oligosaccharides (SOs) derived from glycoprotein and glycolipid. Since gliding motility on uniform oligosaccharides has never been observed, this study gives critical information about recognition and interaction between receptors and SOs. PMID:26148712

  5. Symbolic dynamics of jejunal motility in the irritable bowel

    NASA Astrophysics Data System (ADS)

    Wackerbauer, Renate; Schmidt, Thomas

    1999-09-01

    Different studies of the irritable bowel syndrome (IBS) by conventional analysis of jejunal motility report conflicting results. Therefore, our aim is to quantify the jejunal contraction activity by symbolic dynamics in order to discriminate between IBS and control subjects. Contraction amplitudes during fasting motility (phase II) are analyzed for 30 IBS and 30 healthy subjects. On the basis of a particular scale-independent discretization of the contraction amplitudes with respect to the median, IBS patients are characterized by increased block entropy as well as increased mean contraction amplitude. In a further more elementary level of analysis these differences can be reduced to specific contraction patterns within the time series, namely the fact that successive large contraction amplitudes are less ordered in IBS than in controls. These significant differences in jejunal motility may point to an altered control of the gut in IBS, although further studies on a representative number of patients have to be done for a validation of these findings.

  6. Motor-driven intracellular transport powers bacterial gliding motility.

    PubMed

    Sun, Mingzhai; Wartel, Morgane; Cascales, Eric; Shaevitz, Joshua W; Mignot, Tâm

    2011-05-01

    Protein-directed intracellular transport has not been observed in bacteria despite the existence of dynamic protein localization and a complex cytoskeleton. However, protein trafficking has clear potential uses for important cellular processes such as growth, development, chromosome segregation, and motility. Conflicting models have been proposed to explain Myxococcus xanthus motility on solid surfaces, some favoring secretion engines at the rear of cells and others evoking an unknown class of molecular motors distributed along the cell body. Through a combination of fluorescence imaging, force microscopy, and genetic manipulation, we show that membrane-bound cytoplasmic complexes consisting of motor and regulatory proteins are directionally transported down the axis of a cell at constant velocity. This intracellular motion is transmitted to the exterior of the cell and converted to traction forces on the substrate. Thus, this study demonstrates the existence of a conserved class of processive intracellular motors in bacteria and shows how these motors have been adapted to produce cell motility. PMID:21482768

  7. Model for self-polarization and motility of keratocyte fragments

    PubMed Central

    Ziebert, Falko; Swaminathan, Sumanth; Aranson, Igor S.

    2012-01-01

    Computational modelling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments. PMID:22012972

  8. Lipid rafts direct macrophage motility in the tissue microenvironment.

    PubMed

    Previtera, Michelle L; Peterman, Kimberly; Shah, Smit; Luzuriaga, Juan

    2015-04-01

    Infiltrating leukocytes are exposed to a wide range of tissue elasticities. While we know the effects of substrate elasticity on acute inflammation via the study of neutrophil migration, we do not know its effects on leukocytes that direct chronic inflammatory events. Here, we studied morphology and motility of macrophages, the innate immune cells that orchestrate acute and chronic inflammation, on polyacrylamide hydrogels that mimicked a wide range of tissue elasticities. As expected, we found that macrophage spreading area increased as substrate elasticity increased. Unexpectedly, we found that morphology did not inversely correlate with motility. In fact, velocity of steady-state macrophages remained unaffected by substrate elasticity, while velocity of biologically stimulated macrophages was limited on stiff substrates. We also found that the lack of motility on stiff substrates was due to a lack of lipid rafts on the leading edge of the macrophages. This study implicates lipid rafts in the mechanosensory mechanism of innate immune cell infiltration. PMID:25269613

  9. Model for self-polarization and motility of keratocyte fragments.

    PubMed

    Ziebert, Falko; Swaminathan, Sumanth; Aranson, Igor S

    2012-05-01

    Computational modelling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments. PMID:22012972

  10. Highly sensitive kinesin-microtubule motility assays using SLIM

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail; Teng, Kai Wen; Selvin, Paul R.; Popescu, Gabriel

    2016-03-01

    We provide an experimental demonstration of Spatial Light Interference Microscopy (SLIM) as a tool for measuring the motion of 25 nm tubulin structures without the use of florescence labels. Compared to intensity imaging methods such as phase contrast or DIC, our imaging technique relies on the ratios of images associated with optically introduced phase shifts, thus implicitly removing background illumination. To demonstrate our new found capabilities, we characterize kinesin-based motility continuously over periods of time where fluorescence would typically photobleach. We exploit this new method to compare the motility of microtubules at low ATP concentrations, with and without the tagging proteins formerly required to perform these studies. Our preliminary results show that the tags have a non-negligible effect on the microtubule motility, slowing the process down by more than 10%.

  11. Melt inclusions in veins: linking magmas and porphyry Cu deposits.

    PubMed

    Harris, Anthony C; Kamenetsky, Vadim S; White, Noel C; van Achterbergh, Esmé; Ryan, Chris G

    2003-12-19

    At a porphyry copper-gold deposit in Bajo de la Alumbrera, Argentina, silicate-melt inclusions coexist with hypersaline liquid- and vapor-rich inclusions in the earliest magmatic-hydrothermal quartz veins. Copper concentrations of the hypersaline liquid and vapor inclusions reached maxima of 10.0 weight % (wt %) and 4.5 wt %, respectively. These unusually copper-rich inclusions are considered to be the most primitive ore fluid found thus far. Their preservation with coexisting melt allows for the direct quantification of important oreforming processes, including determination of bulk partition coefficients of metals from magma into ore-forming magmatic volatile phases. PMID:14684818

  12. Mediation of muscular control of rhinarial motility in rats by the nasal cartilaginous skeleton

    PubMed Central

    Haidarliu, Sebastian; Kleinfeld, David; Ahissar, Ehud

    2014-01-01

    The Rhinarium is the rostral-most area of the snout that surrounds the nostrils, and is hairless in most mammals. In rodents, it participates in coordinated behaviors, active tactile sensing, and active olfactory sensing. In rats, the Rhinarium is firmly connected to the nasal cartilages, and its motility is determined by movements of the rostral end of the nasal cartilaginous skeleton. Here we demonstrate the nature of different cartilaginous regions that form the Rhinarium and the nasofacial muscles that deform these regions during movements of the nasal cartilaginous skeleton. These muscles, together with the dorsal nasal cartilage that was described here, function as a rhinarial motor plant. PMID:24249396

  13. Vimentin and post-translational modifications in cell motility during cancer - a review.

    PubMed

    Shi, A-M; Tao, Z-Q; Li, R; Wang, Y-Q; Wang, X; Zhao, J

    2016-07-01

    The post-translational modifications (PTMs) are defined as the covalent modification or enzymatic modification of proteins during or after protein biosynthesis. Proteins are synthesized by ribosomes translating mRNA into polypeptide chains, which may then undergo PTM to form the mature protein product. PTMs are important components in cell signaling. Moreover, it is a known fact that PTM regulation offers an immense array and depth of regulatory possibilities. The present review article will focus on their possible role in cancer cell motility with special reference to vimentin, an intermediate filament (IF), as the later is an important process responsible for life-threatening state viz. cancer metastasis. PMID:27383311

  14. New aspects in the biology of Photobacterium damselae subsp. piscicida: pili, motility and adherence to solid surfaces.

    PubMed

    Remuzgo-Martínez, Sara; Lázaro-Díez, María; Padilla, Daniel; Vega, Belinda; El Aamri, Fátima; Icardo, José Manuel; Acosta, Félix; Ramos-Vivas, José

    2014-11-01

    We describe for the first time the presence of pilus-like structures on the surface of Photobacterium damselae subsp. piscicida (Phdp). The hint to this discovery was the ability of one strain to hemagglutinate human erythrocytes. Further analysis of several Phdp strains ultrastructure by electron microscopy revealed the presence of long, thin fibers, similar to pili of other Gram-negative bacteria. These appendages were also observed and photographed by scanning, transmission electron microscopy and immunofluorescence. Although this fish pathogen has been described as non-motile, all strains tested exhibit twitching motility, a flagella-independent type IV-dependent form of bacterial translocation over surfaces. As far as we are aware, the movement of Phdp bacteria on semi-solid or solid surfaces has not been described previously. Moreover, we speculate that Phdp twitching motility may be involved in biofilm formation. Microscopic examination of Phdp biofilms by microscopy revealed that Phdp biofilm architecture display extensive cellular chaining and also bacterial mortality during biofilm formation in vitro. Based on our results, standardized analyses of Phdp surface appendages, biofilms, motility and their impact on Phdp survival, ecology and pathobiology are now feasible. PMID:25263496

  15. Shedding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is Essential for Gliding Motility and Sporozoite Infectivity

    PubMed Central

    Ejigiri, Ijeoma; Ragheb, Daniel R. T.; Pino, Paco; Coppi, Alida; Bennett, Brandy Lee; Soldati-Favre, Dominique; Sinnis, Photini

    2012-01-01

    Plasmodium sporozoites, the infective stage of the malaria parasite, move by gliding motility, a unique form of locomotion required for tissue migration and host cell invasion. TRAP, a transmembrane protein with extracellular adhesive domains and a cytoplasmic tail linked to the actomyosin motor, is central to this process. Forward movement is achieved when TRAP, bound to matrix or host cell receptors, is translocated posteriorly. It has been hypothesized that these adhesive interactions must ultimately be disengaged for continuous forward movement to occur. TRAP has a canonical rhomboid-cleavage site within its transmembrane domain and mutations were introduced into this sequence to elucidate the function of TRAP cleavage and determine the nature of the responsible protease. Rhomboid cleavage site mutants were defective in TRAP shedding and displayed slow, staccato motility and reduced infectivity. Moreover, they had a more dramatic reduction in infectivity after intradermal inoculation compared to intravenous inoculation, suggesting that robust gliding is critical for dermal exit. The intermediate phenotype of the rhomboid cleavage site mutants suggested residual, albeit inefficient cleavage by another protease. We therefore generated a mutant in which both the rhomboid-cleavage site and the alternate cleavage site were altered. This mutant was non-motile and non-infectious, demonstrating that TRAP removal from the sporozoite surface functions to break adhesive connections between the parasite and extracellular matrix or host cell receptors, which in turn is essential for motility and invasion. PMID:22911675

  16. Genome-Wide Screening of Genes Required for Swarming Motility in Escherichia coli K-12▿ †

    PubMed Central

    Inoue, Tetsuyoshi; Shingaki, Ryuji; Hirose, Shotaro; Waki, Kaori; Mori, Hirotada; Fukui, Kazuhiro

    2007-01-01

    Escherichia coli K-12 has the ability to migrate on semisolid media by means of swarming motility. A systematic and comprehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection) was used to identify the genes involved in the swarming motility of this bacterium. Of the 3,985 nonessential gene mutants, 294 were found to exhibit a strongly repressed-swarming phenotype. Further, 216 of the 294 mutants displayed no significant defects in swimming motility; therefore, the 216 genes were considered to be specifically associated with the swarming phenotype. The swarming-associated genes were classified into various functional categories, indicating that swarming is a specialized form of motility that requires a wide variety of cellular activities. These genes include genes for tricarboxylic acid cycle and glucose metabolism, iron acquisition, chaperones and protein-folding catalysts, signal transduction, and biosynthesis of cell surface components, such as lipopolysaccharide, the enterobacterial common antigen, and type 1 fimbriae. Lipopolysaccharide and the enterobacterial common antigen may be important surface-acting components that contribute to the reduction of surface tension, thereby facilitating the swarm migration in the E. coli K-12 strain. PMID:17122336

  17. Inclusion-Body Myositis: Diagnosis

    MedlinePlus

    ... How to Get Involved Donate Inclusion-Body Myositis (IBM) Share print email share facebook twitter google plus ... Causes/Inheritance Medical Management Research Inclusion-Body Myositis (IBM) News Gene Therapy Success in IBM- A Quest ...

  18. Cell motility and antibiotic tolerance of bacterial swarms

    NASA Astrophysics Data System (ADS)

    Zuo, Wenlong

    Many bacteria species can move across moist surfaces in a coordinated manner known as swarming. It is reported that swarm cells show higher tolerance to a wide variety of antibiotics than planktonic cells. We used the model bacterium E. coli to study how motility affects the antibiotic tolerance of swarm cells. Our results provide new insights for the control of pathogenic invasion via regulating cell motility. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: zwlong@live.com.

  19. Addition of Titanium Oxide Inclusions into Liquid Steel to Control Nonmetallic Inclusions

    NASA Astrophysics Data System (ADS)

    Kiviö, Miia; Holappa, Lauri

    2012-04-01

    Titanium oxide inclusions in steel are well known to inhibit grain growth and act as nucleation sites for acicular ferrite because of absorbing manganese from the surrounding steel resulting in a manganese depleted zone around the inclusion. In this article, the inclusions resulting from TiO2 additions to low-alloyed C-Mn-Cr steel were studied. Different types of TiO2 containing materials were added to liquid steel before or during casting to get small titanium-oxide-rich inclusions in steel. The main goals were to find out what happens to TiO2 in liquid steel after addition and during cooling and to study further what type of inclusions are formed in the steel as a result of the TiO2 addition. Based on the thermodynamic calculations and the results of scanning electron microscope (SEM)-energy dispersive spectroscope (EDS) and SEM-electron backscatter diffraction (EBSD) analysis, TiO2 is first reduced to Ti3O5 in liquid steel at high temperatures and then to Ti2O3 during cooling at around 1573 K (1300 °C). Both reactions liberate oxygen, which reacts with Ti, Mn, and Al forming complex Ti2O3-rich inclusions. The results also show that TiO2 additions result in more TiOx + MnO inclusions compared with experiments with Ti addition and that the absolute amount of manganese present in the inclusions is much higher in experiments with TiO2 addition than in experiments with Ti additions.

  20. Inclusive Education in South Korea

    ERIC Educational Resources Information Center

    Kim, Yong-Wook

    2014-01-01

    The purpose of this paper is to examine the current implementation of inclusive education in South Korea and discuss its challenges. The history of special education is first described followed by an introduction to policies relevant to special and inclusive education. Next, a critical discussion of the state of inclusive education follows built…

  1. Brief, Amazing Moments of Inclusion

    ERIC Educational Resources Information Center

    Fialka, Janice

    2005-01-01

    "Real inclusion" of kinds with special needs occurs everywhere, inside the classroom as well as outside. This is a fairly basic principle, however, it is not always easy to achieve. In this article, the author describes how her family have had to "fight" for inclusive education and shares some amazing moments of inclusion with her son Micah.

  2. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    NASA Technical Reports Server (NTRS)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  3. Growth form defines physiological photoprotective capacity in intertidal benthic diatoms.

    PubMed

    Barnett, Alexandre; Méléder, Vona; Blommaert, Lander; Lepetit, Bernard; Gaudin, Pierre; Vyverman, Wim; Sabbe, Koen; Dupuy, Christine; Lavaud, Johann

    2015-01-01

    In intertidal marine sediments, characterized by rapidly fluctuating and often extreme light conditions, primary production is frequently dominated by diatoms. We performed a comparative analysis of photophysiological traits in 15 marine benthic diatom species belonging to the four major morphological growth forms (epipelon (EPL), motile epipsammon (EPM-M) and non-motile epipsammon (EPM-NM) and tychoplankton (TYCHO)) found in these sediments. Our analyses revealed a clear relationship between growth form and photoprotective capacity, and identified fast regulatory physiological photoprotective traits (that is, non-photochemical quenching (NPQ) and the xanthophyll cycle (XC)) as key traits defining the functional light response of these diatoms. EPM-NM and motile EPL showed the highest and lowest NPQ, respectively, with EPM-M showing intermediate values. Like EPL, TYCHO had low NPQ, irrespective of whether they were grown in benthic or planktonic conditions, reflecting an adaptation to a low light environment. Our results thus provide the first experimental evidence for the existence of a trade-off between behavioural (motility) and physiological photoprotective mechanisms (NPQ and the XC) in the four major intertidal benthic diatoms growth forms using unialgal cultures. Remarkably, although motility is restricted to the raphid pennate diatom clade, raphid pennate species, which have adopted a non-motile epipsammic or a tychoplanktonic life style, display the physiological photoprotective response typical of these growth forms. This observation underscores the importance of growth form and not phylogenetic relatedness as the prime determinant shaping the physiological photoprotective capacity of benthic diatoms. PMID:25003964

  4. How to measure inclusive fitness.

    PubMed

    Creel, S

    1990-09-22

    Although inclusive fitness (Hamilton 1964) is regarded as the basic currency of natural selection, difficulty in applying inclusive fitness theory to field studies persists, a quarter-century after its introduction (Grafen 1982, 1984; Brown 1987). For instance, strict application of the original (and currently accepted) definition of inclusive fitness predicts that no one should ever attempt to breed among obligately cooperative breeders. Much of this confusion may have arisen because Hamilton's (1964) original verbal definition of inclusive fitness was not in complete accord with his justifying model. By re-examining Hamilton's original model, a modified verbal definition of inclusive fitness can be justified. PMID:1979447

  5. Singing and social inclusion.

    PubMed

    Welch, Graham F; Himonides, Evangelos; Saunders, Jo; Papageorgi, Ioulia; Sarazin, Marc

    2014-01-01

    There is a growing body of neurological, cognitive, and social psychological research to suggest the possibility of positive transfer effects from structured musical engagement. In particular, there is evidence to suggest that engagement in musical activities may impact on social inclusion (sense of self and of being socially integrated). Tackling social exclusion and promoting social inclusion are common concerns internationally, such as in the UK and the EC, and there are many diverse Government ministries and agencies globally that see the arts in general and music in particular as a key means by which social needs can be addressed. As part of a wider evaluation of a national, Government-sponsored music education initiative for Primary-aged children in England ("Sing Up"), opportunity was taken by the authors, at the request of the funders, to assess any possible relationship between (a) children's developing singing behavior and development and (b) their social inclusion (sense of self and of being socially integrated). Subsequently, it was possible to match data from n = 6087 participants, drawn from the final 3 years of data collection (2008-2011), in terms of each child's individually assessed singing ability (based on their singing behavior of two well-known songs to create a "normalized singing score") and their written responses to a specially-designed questionnaire that included a set of statements related to children's sense of being socially included to which the children indicated their level of agreement on a seven-point Likert scale. Data analyses suggested that the higher the normalized singing development rating, the more positive the child's self-concept and sense of being socially included, irrespective of singer age, sex and ethnicity. PMID:25120514

  6. Singing and social inclusion

    PubMed Central

    Welch, Graham F.; Himonides, Evangelos; Saunders, Jo; Papageorgi, Ioulia; Sarazin, Marc

    2014-01-01

    There is a growing body of neurological, cognitive, and social psychological research to suggest the possibility of positive transfer effects from structured musical engagement. In particular, there is evidence to suggest that engagement in musical activities may impact on social inclusion (sense of self and of being socially integrated). Tackling social exclusion and promoting social inclusion are common concerns internationally, such as in the UK and the EC, and there are many diverse Government ministries and agencies globally that see the arts in general and music in particular as a key means by which social needs can be addressed. As part of a wider evaluation of a national, Government-sponsored music education initiative for Primary-aged children in England (“Sing Up”), opportunity was taken by the authors, at the request of the funders, to assess any possible relationship between (a) children's developing singing behavior and development and (b) their social inclusion (sense of self and of being socially integrated). Subsequently, it was possible to match data from n = 6087 participants, drawn from the final 3 years of data collection (2008–2011), in terms of each child's individually assessed singing ability (based on their singing behavior of two well-known songs to create a “normalized singing score”) and their written responses to a specially-designed questionnaire that included a set of statements related to children's sense of being socially included to which the children indicated their level of agreement on a seven-point Likert scale. Data analyses suggested that the higher the normalized singing development rating, the more positive the child's self-concept and sense of being socially included, irrespective of singer age, sex and ethnicity. PMID:25120514

  7. Ribose Accelerates Gut Motility and Suppresses Mouse Body Weight Gaining

    PubMed Central

    Liu, Yan; Li, Tong-Ruei R; Xu, Cong; Xu, Tian

    2016-01-01

    The increasing prevalence of obesity is closely related to excessive energy consumption. Clinical intervention of energy intake is an attractive strategy to fight obesity. However, the current FDA-approved weight-loss drugs all have significant side effects. Here we show that ribose upregulates gut motility and suppresses mice body weight gain. Ribokinase, which is encoded by Rbks gene, is the first enzyme for ribose metabolism in vivo. Rbks mutation resulted in ribose accumulation in the small intestine, which accelerated gut movement. Ribose oral treatment in wild type mice also enhanced bowel motility and rendered mice resistance to high fat diets. The suppressed weight gain was resulted from enhanced ingested food excretion. In addition, the effective dose of ribose didn't cause any known side effects (i.e. diarrhea and hypoglycemia). Overall, our results show that ribose can regulate gut motility and energy homeostasis in mice, and suggest that administration of ribose and its analogs could regulate gastrointestinal motility, providing a novel therapeutic approach for gastrointestinal dysfunction and weight control. PMID:27194947

  8. Correlation of cell membrane dynamics and cell motility

    PubMed Central

    2011-01-01

    Background Essential events of cell development and homeostasis are revealed by the associated changes of cell morphology and therefore have been widely used as a key indicator of physiological states and molecular pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the morphology based features are approximated from cell periphery but its dynamics have received none to scant attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole cell movement by identifying cell edge patterns and its correlation with cell dynamics. Results We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are then used to profile subclasses of cell dynamics by unsupervised clustering. Conclusions By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of edge and cell movements were identified. Our findings are consistent with published literature and we also identified that motility patterns are influenced by edge features from initial time points compared to later sampling intervals. PMID:22372978

  9. Helical motion of the cell body enhances Caulobacter crescentus motility

    PubMed Central

    Liu, Bin; Gulino, Marco; Morse, Michael; Tang, Jay X.; Powers, Thomas R.; Breuer, Kenneth S.

    2014-01-01

    We resolve the 3D trajectory and the orientation of individual cells for extended times, using a digital tracking technique combined with 3D reconstructions. We have used this technique to study the motility of the uniflagellated bacterium Caulobacter crescentus and have found that each cell displays two distinct modes of motility, depending on the sense of rotation of the flagellar motor. In the forward mode, when the flagellum pushes the cell, the cell body is tilted with respect to the direction of motion, and it precesses, tracing out a helical trajectory. In the reverse mode, when the flagellum pulls the cell, the precession is smaller and the cell has a lower translation distance per rotation period and thus a lower motility. Using resistive force theory, we show how the helical motion of the cell body generates thrust and can explain the direction-dependent changes in swimming motility. The source of the cell body precession is believed to be associated with the flexibility of the hook that connects the flagellum to the cell body. PMID:25053810

  10. Autocrine regulation of human sperm motility by tachykinins

    PubMed Central

    2010-01-01

    Background We examined the presence and function of tachykinins and the tachykinin-degrading enzymes neprilysin (NEP) and neprilysin-2 (NEP2) in human spermatozoa. Methods Freshly ejaculated semen was collected from forty-eight normozoospermic human donors. We analyzed the expression of substance P, neurokinin A, neurokinin B, hemokinin-1, NEP and NEP2 in sperm cells by reverse-transcriptase polymerase chain reaction (RT-PCR), western blot and immunocytochemistry assays and evaluated the effects of the neprilysin and neprilysin-2 inhibitor phosphoramidon on sperm motility in the absence and presence of tachykinin receptor-selective antagonists. Sperm motility was measured using WHO procedures or computer-assisted sperm analysis (CASA). Results The mRNAs of the genes that encode substance P/neurokinin A (TAC1), neurokinin B (TAC3), hemokinin-1 (TAC4), neprilysin (MME) and neprilysin-2 (MMEL1) were expressed in human sperm. Immunocytochemistry studies revealed that tachykinin and neprilysin proteins were present in spermatozoa and show specific and differential distributions. Phosphoramidon increased sperm progressive motility and its effects were reduced in the presence of the tachykinin receptor antagonists SR140333 (NK1 receptor-selective) and SR48968 (NK2 receptor-selective) but unmodified in the presence of SR142801 (NK3 receptor-selective). Conclusion These data show that tachykinins are present in human spermatozoa and participate in the regulation of sperm motility. Tachykinin activity is regulated, at least in part, by neprilysins. PMID:20796280

  11. [Effects of trimebutine on intestinal motility in dogs].

    PubMed

    Hondé, C; Le Gallou, B; Pascaud, X; Junien, J L

    1989-02-15

    The effects of intravenous, oral, intracerebroventricular and local intra-arterial administration of trimebutine were investigated in dogs whose digestive tract had been fitted with electrodes and strain gauge transducers. In fasted conscious dogs, trimebutine (5 mg/kg) stimulated small bowel motility with induction of a propagated phase of regular spiking activity. This stimulation was associated with weak inhibition of gastric motility and a biphasic response of the colon characterized by stimulation followed by inhibition. By the oral route, trimebutine (20 mg/kg) stimulated gastrointestinal motility. The duration of the intestinal migrating phase 2 was increased whereas an additional migrating phase 3 developed. These effects were associated with an increase in colonic contractions lasting two hours. The stimulating effect of trimebutine (phase 3) on intestinal motility was not reproduced after intracerebroventricular administration and was abolished by previous intravenous, but not intraventricular, administration of naloxone. The local effects of trimebutine on the circular muscle of canine gastrointestinal tract were studied after close intra-arterial injection in anesthetized dogs. Under these conditions, the drug stimulated the resting gut through its neural and direct smooth muscle components while it inhibited the contractions induced by field stimulation. In conclusion, the excitatory effect of trimebutine seems to be mediated by mu or delta receptors while its inhibitory activity might involve kappa opiate receptors. PMID:2522226

  12. Effectiveness of Hair Bundle Motility as the Cochlear Amplifier

    PubMed Central

    Sul, Bora; Iwasa, Kuni H.

    2009-01-01

    Abstract The effectiveness of hair bundle motility in mammalian and avian ears is studied by examining energy balance for a small sinusoidal displacement of the hair bundle. The condition that the energy generated by a hair bundle must be greater than energy loss due to the shear in the subtectorial gap per hair bundle leads to a limiting frequency that can be supported by hair-bundle motility. Limiting frequencies are obtained for two motile mechanisms for fast adaptation, the channel re-closure model and a model that assumes that fast adaptation is an interplay between gating of the channel and the myosin motor. The limiting frequency obtained for each of these models is an increasing function of a factor that is determined by the morphology of hair bundles and the cochlea. Primarily due to the higher density of hair cells in the avian inner ear, this factor is ∼10-fold greater for the avian ear than the mammalian ear, which has much higher auditory frequency limit. This result is consistent with a much greater significance of hair bundle motility in the avian ear than that in the mammalian ear. PMID:19917218

  13. HES6 enhances the motility of alveolar rhabdomyosarcoma cells

    SciTech Connect

    Wickramasinghe, Caroline M; Domaschenz, Renae; Amagase, Yoko; Williamson, Daniel; Missiaglia, Edoardo; Shipley, Janet; Murai, Kasumi; Jones, Philip H

    2013-01-01

    Absract: HES6, a member of the hairy-enhancer-of-split family of transcription factors, plays multiple roles in myogenesis. It is a direct target of the myogenic transcription factor MyoD and has been shown to regulate the formation of the myotome in development, myoblast cell cycle exit and the organization of the actin cytoskeleton during terminal differentiation. Here we investigate the expression and function of HES6 in rhabdomyosarcoma, a soft tissue tumor which expresses myogenic genes but fails to differentiate into muscle. We show that HES6 is expressed at high levels in the subset of alveolar rhabdomyosarcomas expressing PAX/FOXO1 fusion genes (ARMSp). Knockdown of HES6 mRNA in the ARMSp cell line RH30 reduces proliferation and cell motility. This phenotype is rescued by expression of mouse Hes6 which is insensitive to HES6 siRNA. Furthermore, expression microarray analysis indicates that the HES6 knockdown is associated with a decrease in the levels of Transgelin, (TAGLN), a regulator of the actin cytoskeleton. Knockdown of TAGLN decreases cell motility, whilst TAGLN overexpression rescues the motility defect resulting from HES6 knockdown. These findings indicate HES6 contributes to the pathogenesis of ARMSp by enhancing both proliferation and cell motility.

  14. Morphological characteristics of motile plants for dynamic motion

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon

    2014-11-01

    Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).

  15. [Sodium houttuyfonate inhibits virulence related motility of Pseudomonas aeruginosa].

    PubMed

    Wu, Da-qiang; Huang, Wei-feng; Duan, Qiang-jun; Cheng, Hui-juan; Wang, Chang-zhong

    2015-04-01

    Sodium houttuyfonate (SH) is a derivative of effective component of a Chinese material medica, Houttuynia cordata, which is applied in anti-infection of microorganism. But, the antimicrobial mechanisms of SH still remain unclear. Here, we firstly discovered that SH effectively inhibits the three types of virulence related motility of.Pseudomonas aeruginosa, i.e., swimming, twitching and swarming. The plate assay results showed that the inhibitory action of SH against swimming and twitching in 24 h and swarming in 48 h is dose-dependent; and bacteria nearly lost all of the motile activities under the concentration of 1 x minimum inhibitory concentration (MIC) (512 mg x L(-1) same as azithromycin positive group (1 x MIC, 16 mg x L(-1)). Furthermore, we found that the expression of structural gene flgB and pilG is down-regulated by SH, which implies that inhibitory mechanism of SH against motility of P. aeruginosa may be due to the inhibition of flagella and pili bioformation of P. aeruginosa by SR Therefore, our presented results firstly demonstrate that SH effectively inhibits the motility activities of P. aeruginosa, and suggest that SH could be a promising antipseudomonas agents in clinic. PMID:26281603

  16. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gastrointestinal motility monitoring system. 876.1725 Section 876.1725 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices §...

  17. Effects of Ergot Alkaloids on Bovine Sperm Motility In Vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids are synthesized by endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire). Our objective was to determine direct effects of ergot alkaloids (ergotamine, dihydroergotamine and ergonovine) on the motility of bovine spermatozoa in vit...

  18. Divalent Cation Control of Flagellar Motility in African Trypanosomes

    NASA Astrophysics Data System (ADS)

    Westergard, Anna M.; Hutchings, Nathan R.

    2005-03-01

    Changes in calcium concentration have been shown to dynamically affect flagellar motility in several eukaryotic systems. The African trypanosome is a monoflagellated protozoan parasite and the etiological agent of sleeping sickness. Although cell motility has been implicated in disease progression, very little is currently known about biochemical control of the trypanosome flagellum. In this study, we assess the effects of extracellular changes in calcium and nickel concentration on trypanosome flagellar movement. Using a flow through chamber, we determine the relative changes in motility in individual trypanosomes in response to various concentrations of calcium and nickel, respectively. Extracellular concentrations of calcium and nickel (as low as 100 micromolar) significantly inhibit trypanosome cell motility. The effects are reversible, as indicated by the recovery of motion after removal of the calcium or nickel from the chamber. We are currently investigating the specific changes in flagellar oscillation and coordination that result from calcium and nickel, respectively. These results verify the presence of a calcium-responsive signaling mechanism(s) that regulates flagellar beat in trypanosomes.

  19. 21 CFR 876.1725 - Gastrointestinal motility monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gastrointestinal motility monitoring system. 876.1725 Section 876.1725 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices §...

  20. Rapid Actin-Dependent Viral Motility in Live Cells

    PubMed Central

    Vaughan, Joshua C.; Brandenburg, Boerries; Hogle, James M.; Zhuang, Xiaowei

    2009-01-01

    During the course of an infection, viruses take advantage of a variety of mechanisms to travel in cells, ranging from diffusion within the cytosol to active transport along cytoskeletal filaments. To study viral motility within the intrinsically heterogeneous environment of the cell, we have developed a motility assay that allows for the global and unbiased analysis of tens of thousands of virus trajectories in live cells. Using this assay, we discovered that poliovirus exhibits anomalously rapid intracellular movement that was independent of microtubules, a common track for fast and directed cargo transport. Such rapid motion, with speeds of up to 5 μm/s, allows the virus particles to quickly explore all regions of the cell with the exception of the nucleus. The rapid, microtubule-independent movement of poliovirus was observed in multiple human-derived cell lines, but appeared to be cargo-specific. Other cargo, including a closely related picornavirus, did not exhibit similar motility. Furthermore, the motility is energy-dependent and requires an intact actin cytoskeleton, suggesting an active transport mechanism. The speed of this microtubule-independent but actin-dependent movement is nearly an order of magnitude faster than the fastest speeds reported for actin-dependent transport in animal cells, either by actin polymerization or by myosin motor proteins. PMID:19751669

  1. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  2. Villous motility and unstirred water layers in canine intestine

    SciTech Connect

    Mailman, D.; Womack, W.A.; Kvietys, P.R.; Granger, D.N. )

    1990-02-01

    The possibility that villous motility reduces the mucosal unstirred water layer by mechanical stirring was examined. The frequency of contraction of villi was measured by using videomicroscopic techniques while a segment of anesthetized canine jejunum or ileum with its nerve and blood supply intact was maintained in a sealed chamber through which Tyrode solution was perfused. Radioisotopically labeled inulin, H{sub 2}O, and butyric and lauric acid were used to measure net and/or unidirectional fluxes from the chamber. The unidirectional absorptive transport of H{sub 2}O and butyric acid but not lauric acid by jejunal segments was significantly correlated with flow through the chamber. Plasma volume expansion increased villous motility but decreased the absorption of H{sub 2}O and lauric acid. Absorption of butyric acid from the ileum was little different than from the jejunum although the degree of villous motility was less and net water absorption was greater from the ileum. Absorption of butyric acid into dead tissue indicated that passive diffusion into the tissue accounted for between 7 and 25%, depending on flow rate, of the absorption in intact tissue and that nonspecific binding was low. It was concluded that villous motility did not stir the unstirred water layers and was not directly associated with altered transport.

  3. Effect of gastric acid suppressants on human gastric motility

    PubMed Central

    Parkman, H; Urbain, J; Knight, L; Brown, K; Trate, D; Miller, M; Maurer, A; Fisher, R

    1998-01-01

    Background—The effect of histamine H2 receptor antagonists on gastric emptying is controversial. 
Aims—To determine the effects of ranitidine, famotidine, and omeprazole on gastric motility and emptying. 
Patients and methods—Fifteen normal subjects underwent simultaneous antroduodenal manometry, electrogastrography (EGG), and gastric emptying with dynamic antral scintigraphy (DAS). After 30 minutes of fasting manometry and EGG recording, subjects received either intravenous saline, ranitidine, or famotidine, followed by another 30 minutes recording and then three hours of postprandial recording after ingestion of a radiolabelled meal. Images were obtained every 10-15 minutes for three hours to measure gastric emptying and assess antral contractility. Similar testing was performed after omeprazole 20 mg daily for one week. 
Results—Fasting antral phase III migrating motor complexes (MMCs) were more common after ranitidine (9/15 subjects, 60%), famotidine (12/15, 80%), and omeprazole (8/12, 67%) compared with placebo (4/14, 29%; p<0.05). Postprandially, ranitidine, famotidine, and omeprazole slowed gastric emptying, increased the amplitude of DAS contractions, increased the EGG power, and increased the antral manometric motility index. 
Conclusions—Suppression of gastric acid secretion with therapeutic doses of gastric acid suppressants is associated with delayed gastric emptying but increased antral motility. 

 Keywords: gastric motility; gastric emptying; histamine H2 receptor antagonists; proton pump inhibitors; gastric acid secretion; scintigraphy PMID:9536950

  4. The mysterious nature of bacterial surface (gliding) motility: A focal adhesion-based mechanism in Myxococcus xanthus.

    PubMed

    Islam, Salim T; Mignot, Tâm

    2015-10-01

    Motility of bacterial cells promotes a range of important physiological phenomena such as nutrient detection, harm avoidance, biofilm formation, and pathogenesis. While much research has been devoted to the mechanism of bacterial swimming in liquid via rotation of flagellar filaments, the mechanisms of bacterial translocation across solid surfaces are poorly understood, particularly when cells lack external appendages such as rotary flagella and/or retractile type IV pili. Under such limitations, diverse bacteria at the single-cell level are still able to "glide" across solid surfaces, exhibiting smooth translocation of the cell along its long axis. Though multiple gliding mechanisms have evolved in different bacterial classes, most remain poorly characterized. One exception is the gliding motility mechanism used by the Gram-negative social predatory bacterium Myxococcus xanthus. The available body of research suggests that M. xanthus gliding motility is mediated by trafficked multi-protein (Glt) cell envelope complexes, powered by proton-driven flagellar stator homologues (Agl). Through coupling to the substratum via polysaccharide slime, Agl-Glt assemblies can become fixed relative to the substratum, forming a focal adhesion site. Continued directional transport of slime-associated substratum-fixed Agl-Glt complexes would result in smooth forward movement of the cell. In this review, we have provided a comprehensive synthesis of the latest mechanistic and structural data for focal adhesion-mediated gliding motility in M. xanthus, with emphasis on the role of each Agl and Glt protein. Finally, we have also highlighted the possible connection between the motility complex and a new type of spore coat assembly system, suggesting that gliding and cell envelope synthetic complexes are evolutionarily linked. PMID:26520023

  5. Elucidation of the Photorhabdus temperata Genome and Generation of a Transposon Mutant Library To Identify Motility Mutants Altered in Pathogenesis

    PubMed Central

    Hurst, Sheldon; Rowedder, Holli; Michaels, Brandye; Bullock, Hannah; Jackobeck, Ryan; Abebe-Akele, Feseha; Durakovic, Umjia; Gately, Jon; Janicki, Erik

    2015-01-01

    ABSTRACT The entomopathogenic nematode Heterorhabditis bacteriophora forms a specific mutualistic association with its bacterial partner Photorhabdus temperata. The microbial symbiont is required for nematode growth and development, and symbiont recognition is strain specific. The aim of this study was to sequence the genome of P. temperata and identify genes that plays a role in the pathogenesis of the Photorhabdus-Heterorhabditis symbiosis. A draft genome sequence of P. temperata strain NC19 was generated. The 5.2-Mb genome was organized into 17 scaffolds and contained 4,808 coding sequences (CDS). A genetic approach was also pursued to identify mutants with altered motility. A bank of 10,000 P. temperata transposon mutants was generated and screened for altered motility patterns. Five classes of motility mutants were identified: (i) nonmotile mutants, (ii) mutants with defective or aberrant swimming motility, (iii) mutant swimmers that do not require NaCl or KCl, (iv) hyperswimmer mutants that swim at an accelerated rate, and (v) hyperswarmer mutants that are able to swarm on the surface of 1.25% agar. The transposon insertion sites for these mutants were identified and used to investigate other physiological properties, including insect pathogenesis. The motility-defective mutant P13-7 had an insertion in the RNase II gene and showed reduced virulence and production of extracellular factors. Genetic complementation of this mutant restored wild-type activity. These results demonstrate a role for RNA turnover in insect pathogenesis and other physiological functions. IMPORTANCE The relationship between Photorhabdus and entomopathogenic nematode Heterorhabditis represents a well-known mutualistic system that has potential as a biological control agent. The elucidation of the genome of the bacterial partner and role that RNase II plays in its life cycle has provided a greater understanding of Photorhabdus as both an insect pathogen and a nematode symbiont. PMID

  6. The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle.

    PubMed

    Stooke-Vaughan, Georgina A; Huang, Peng; Hammond, Katherine L; Schier, Alexander F; Whitfield, Tanya T

    2012-05-01

    Otoliths are biomineralised structures required for the sensation of gravity, linear acceleration and sound in the zebrafish ear. Otolith precursor particles, initially distributed throughout the otic vesicle lumen, become tethered to the tips of hair cell kinocilia (tether cilia) at the otic vesicle poles, forming two otoliths. We have used high-speed video microscopy to investigate the role of cilia and ciliary motility in otolith formation. In wild-type ears, groups of motile cilia are present at the otic vesicle poles, surrounding the immotile tether cilia. A few motile cilia are also found on the medial wall, but most cilia (92-98%) in the otic vesicle are immotile. In mutants with defective cilia (iguana) or ciliary motility (lrrc50), otoliths are frequently ectopic, untethered or fused. Nevertheless, neither cilia nor ciliary motility are absolutely required for otolith tethering: a mutant that lacks cilia completely (MZovl) is still capable of tethering otoliths at the otic vesicle poles. In embryos with attenuated Notch signalling [mindbomb mutant or Su(H) morphant], supernumerary hair cells develop and otolith precursor particles bind to the tips of all kinocilia, or bind directly to the hair cells' apical surface if cilia are absent [MZovl injected with a Su(H)1+2 morpholino]. However, if the first hair cells are missing (atoh1b morphant), otolith formation is severely disrupted and delayed. Our data support a model in which hair cells produce an otolith precursor-binding factor, normally localised to tether cell kinocilia. We also show that embryonic movement plays a minor role in the formation of normal otoliths. PMID:22461562

  7. Metastasis-associated 5T4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells.

    PubMed

    Carsberg, C J; Myers, K A; Stern, P L

    1996-09-27

    The 5T4 antigen is defined by a monoclonal antibody (MAb) specific for human trophoblast. It is also expressed by many types of tumour cell and has been associated with metastasis and poor clinical outcome in a number of cancers. This pattern of expression is consistent with a mechanistic involvement of 5T4 molecules in the spread of cancer cells. The 5T4 antigen is a transmembrane glycoprotein with a 310 amino acid extracellular domain and a 44 amino acid cytoplasmic domain. Transfection of full-length 5T4 cDNA into epithelial cells alters cell-cell contacts and cellular motility. Thus, in 5T4-transfected CL-S1 murine mammary cells, 5T4 expression is associated with dendritic morphology, accompanied by abrogation of actin/cadherin-containing contacts and increased motility. In transfected MDCK canine kidney epithelial cells, 5T4 over-expression also results in increased motility, but disruption of cell-cell contacts, either by culturing cells in low calcium medium or by addition of HGF/SF, is needed. The effects of 5T4 expression on morphology and motility are separable since cells transfected with a truncated form of 5T4 cDNA in which the cytoplasmic domain is deleted reveal that the latter is necessary to abrogate actin/cadherin-containing contacts but does not influence the effects on motility. Thus, 5T4 molecules can deliver signals through both the extracellular and intracellular domains, and the resultant effects are consistent with a role for 5T4 molecules in invasion processes. PMID:8895545

  8. Can We Build Inclusion?

    PubMed

    Kirkeby, Inge Mette; Grangaard, Sidse

    2016-01-01

    Inclusion of children with special needs in kindergartens and preschools may be approached from different angles. This paper raises the question of whether the physical framework of kindergartens makes any difference for daily life at the kindergarten at all, and whether it can support inclusion of some children with special needs. Hence the title - can we build inclusion? In the literature of Universal Design, accommodation and design features seldom reflect the less visible disabilities. The paper is based on a research project initiated to investigate how more or less space influences daily pedagogical practice in general. Twelve interviews were conducted with experienced teachers from twelve different kindergartens with different amounts of space, varying from a ratio of 2.1 m2 play area per child to 5.5 m2. The results indicated that, for a group of children with special needs in particular, the amount of space is crucial. This group consisted of children who were socially very extrovert, and who maybe were noisy, easily provoked, and quick to get involved in arguments with other children. Alternatively, children in the group were very restrained and withdrawn in social interaction. Based on the answers in the interviews, we found support for answering the question in the title in the affirmative; we can build inclusion! This is because the teachers' experience indicated that, if there was sufficient space per child, there were fewer conflicts and the children managed to stay in the same activity for a much longer period. Sufficient space made it possible to divide the children into smaller groups, and use any secluded space. Therefore, it was much easier for other children to include some children with special needs. Accordingly, we can say that, sufficient space per child and an adequate layout and furnishing of the kindergarten is an advantage for all children. This is a clear example of Universal Design in which architectural

  9. Effect of Bacterial Motility on Contaminant Mixing in Porous Media

    NASA Astrophysics Data System (ADS)

    Singh, R.; Olson, M. S.; Bioremediation At Drexel

    2010-12-01

    Groundwater flow is typically characterized by laminar flow and therefore contaminant mixing limited conditions prevail in subsurface environments. The presence of porous media introduces tortuosity to groundwater flow paths, thereby enhancing contaminant mixing. In addition, bacterial motility is reported to induce movement in their surrounding liquid, which may enhance contaminant mixing. Enhancement of chemical diffusion coefficients in bulk fluid due to bacterial random motility and chemotaxis has been already reported in literature. The aim of this study is to investigate the effect of bacterial motility on contaminant mixing in the presence of porous media. A microfluidic device was designed and fabricated using standard photolithography and soft-lithography techniques to simulate a contaminant plume in subsurface porous media due to leakage of an underground storage tank. A non-reactive conservative tracer, Dextran solution labeled with FITC (fluorescein isothiocyanate), was used as surrogate for the contaminant and the motile bacterial strain Escherichia coli HCB33 (wild type) was used for the experiments to enhance contaminant mixing. Images were obtained at various cross-sections along the device and fluorescence intensity profile distributions were analyzed to determine the transverse dispersion of the contaminant. Enhancement in contaminant mixing was assessed by comparing the contaminant transverse dispersion coefficients (Dyi) in porous media in presence of motile bacteria, immobilized bacteria, and with no bacteria. In order to quantify the contaminant dispersion coefficients under the various test conditions, experimental data obtained were fitted to concentration profiles predicted by the contaminant advection-dispersion equation for the given experimental conditions (Figure 1). The transverse dispersion coefficient values obtained in the presence of motile bacteria (Dymb)and with no bacteria (Dynb) were 2.49 x 10-4 cm2/s and 1.39 x 10-4 cm2/s

  10. Basic features of slime mould motility

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro

    2015-03-01

    The plasmodium of Physarum polycephalum is a unicellular and multi-nuclear giant amoeba that is formed by fusions of myriads of uninucleate microscopic amoebae at a point in the life cycle of the organism. The very large unicellular form of the plasmodium is very uncommon in nature; on the contrary, almost all of the other higher organisms have multi-cellular bodies. Therefore, the plasmodium has an exceptional property: although the plasmodium is a unicellular organism, the size of the amoeba is variable. The smallest plasmodium consists of the fusion of two amoebae, so the smallest size is twice that of a usual amoeba. There is no upper limit to the largest size of the plasmodium, in principle. There is a record of very large plasmodium of more than a few metres. A more interesting point is that despite the variety in the size, the plasmodium can move, feed and form complex structures and adapt itself to the environment in an intelligent manner...

  11. 3D timelapse analysis of muscle satellite cell motility.

    PubMed

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, D D W

    2009-10-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin alpha 7 beta 1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of "pathfinding" cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. PMID:19609936

  12. 3D Timelapse Analysis of Muscle Satellite Cell Motility

    PubMed Central

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, DDW

    2009-01-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin α7β1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of “pathfinding” cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. Stem Cells 2009;27:2527–2538 PMID:19609936

  13. Relationship of small bowel motility to ileoanal reservoir function.

    PubMed Central

    Groom, J S; Kamm, M A; Nicholls, R J

    1994-01-01

    Some patients with an ileoanal reservoir have a high defecation frequency, despite a good anatomical result and the absence of pouchitis. This study aimed to determine whether variation in function is related to a difference in small bowel motility proximal to the reservoir and if small bowel motility is propagated into the reservoir. Ambulatory small bowel and reservoir motility was studied for 24 hours in five patients with good function (median bowel frequency 4 per day, range 3-6) and seven subjects with poor function (median bowel frequency 12 per day, range 10-20). Five solid state pressure sensors were positioned in the small bowel and one in the reservoir. During the fasting nocturnal period (2300-0800 h), patients with poor function had a median of 10 (range 5-13) migrating motor complexes (MMC), significantly greater (p = 0.03) than the corresponding median number of 3 (range 2-7) in patients with good function. A total of 120 MMCs were observed in the whole series of 12 patients. Of these only two were propagated from the small bowel into the reservoir. Discrete clustered contractions were not propagated into the reservoir, although prolonged propagated contractions did pass into the reservoir in one patient. Patients with poor function had similar 24 hour stool output and radiological reservoir size to those with good function, but the median maximum tolerated volume on reservoir distension was 290 ml (range 160-450) for patients with poor function compared with 475 ml (range 460-550) for patients with good function (p = 0.005). Small bowel motility proximal to the reservoir bears an important relationship to pouch function and defecation frequency. Propagation of coordinated proximal small intestinal motility into the reservoir is rare. PMID:8174992

  14. Flagellar motility is necessary for Aeromonas hydrophila adhesion.

    PubMed

    Qin, Yingxue; Lin, Guifang; Chen, Wenbo; Xu, Xiaojin; Yan, Qingpi

    2016-09-01

    Adhesion to host surface or cells is the initial step in bacterial pathogenesis, and the adhesion mechanisms of the fish pathogenic bacteria Aeromonas hydrophila were investigated in this study. First, a mutagenesis library of A. hydrophila that contained 332 random insertion mutants was constructed via mini-Tn10 Km mutagenesis. Four mutants displayed the most attenuated adhesion. Sequence analysis revealed that the mini-Tn10 insertion sites in the four mutant strains were flgC(GenBank accession numbers KX261880), cytb4(GenBank accession numbers JN133621), rbsR(GenBank accession numbers KX261881) and flgE(GenBank accession numbers JQ974982). To further study the roles of flgC and flgE in the adhesion of A. hydrophila, some biological characteristics of the wild-type strain B11, the mutants M121 and M240, and the complemented strains C121 and C240 were investigated. The results showed that the mutation in flgC or flgE led to the flagellar motility of A. hydrophila significant reduction or abolishment. flgC was not necessary for flagellar biosynthesis but was necessary for the full motility of A. hydrophila, flgE was involved in both flagellar biosynthesis and motility. The flagellar motility is necessary for A. hydrophila to adhere to the host mucus, which suggests flagellar motility plays crucial roles in the early infection process of this bacterium. PMID:27432325

  15. Live tissue viability and chemosensitivity assays using digital holographic motility contrast imaging.

    PubMed

    An, Ran; Turek, John; Matei, Daniela Elena; Nolte, David

    2013-01-01

    Holographic optical coherence imaging is an en face form of optical coherence tomography that uses low-coherence digital holography as a coherence gate to select light from a chosen depth inside scattering tissue. By acquiring successive holograms at a high camera frame rate at a fixed depth, dynamic speckle provides information concerning dynamic light scattering from intracellular motility. Motility contrast imaging (MCI) uses living motion as a label-free and functional biomarker. MCI provides a new form of viability assay and also is applicable for proliferation and cytotoxicity assays. The results presented here demonstrate that low-coherence digital holography can extract viability information from biologically relevant three-dimensional (3D) tissue based on multicellular tumor spheroids by moving beyond the format of two-dimensional cell culture used for conventional high-content analysis. This paper also demonstrates the use of MCI for chemosensitivity assays on tumor exgrafts of excised ovarian cancer tumors responding to standard-of-care cisplatin chemotherapy. This ex vivo application extends the applicability of MCI beyond 3D tissue culture grown in vitro. PMID:23292406

  16. Regulation of endosomal motility and degradation by amyotrophic lateral sclerosis 2/alsin

    PubMed Central

    Lai, Chen; Xie, Chengsong; Shim, Hoon; Chandran, Jayanth; Howell, Brian W; Cai, Huaibin

    2009-01-01

    Dysfunction of alsin, particularly its putative Rab5 guanine-nucleotide-exchange factor activity, has been linked to one form of juvenile onset recessive familial amyotrophic lateral sclerosis (ALS2). Multiple lines of alsin knockout (ALS2-/-) mice have been generated to model this disease. However, it remains elusive whether the Rab5-dependent endocytosis is altered in ALS2-/- neurons. To directly examine the Rab5-mediated endosomal trafficking in ALS2-/- neurons, we introduced green fluorescent protein (GFP)-tagged Rab5 into cultured hippocampal neurons to monitor the morphology and motility of Rab5-associated early endosomes. Here we report that Rab5-mediated endocytosis was severely altered in ALS2-/-neurons. Excessive accumulation of Rab5-positive vesicles was observed in ALS2-/- neurons, which correlated with a significant reduction in endosomal motility and augmentation in endosomal conversion to lysosomes. Consequently, a significant increase in endosome/lysosome-dependent degradation of internalized glutamate receptors was observed in ALS2-/- neurons. These phenotypes closely resembled the endosomal trafficking abnormalities induced by a constitutively active form of Rab5 in wild-type neurons. Therefore, our findings reveal a negatively regulatory mechanism of alsin in Rab5-mediated endosomal trafficking, suggesting that enhanced endosomal degradation in ALS2-/- neurons may underlie the pathogenesis of motor neuron degeneration in ALS2 and related motor neuron diseases. PMID:19630956

  17. [Effect of some pharmacological substances on the motility of the Cryptocotyle lingua cercaria (Heterophyidae)].

    PubMed

    Tolstenkov, O O; Prokof'ev, V V; Terenina, N B; Galaktionov, K V

    2010-01-01

    The effect of some biologically active substances (acetylcholine, serotonin, octopamine, sodium nitroprussid and FMRF-amide) on the motility of the Cryptocotyle lingua cercariae was studied. Solutions of FMRF-amide, octopamine, and sodium nitroprussid have no statistically significant influence on the motility of C. lingua. Acetylcholine and serotonin in solutions affected the motility through the prolongation of the active phase of swimming. Further research is required to elucidate the mechanisms underlying the cercarial motility. PMID:21061596

  18. [Inclusion-body myositis].

    PubMed

    Benveniste, O

    2014-07-01

    Sporadic inclusion-body myositis (sIBM) presents in average at the sixth decade of life and affects three men for one woman. It is a non-lethal, slowly progressive but disabling disease. Except the striated muscles, no other organs (such as the interstitial lung) are involved. The phenotype of this myopathy is particular since it involves the axial muscles (camptocormia, swallowing dysfunction) and limb girdle (notably the quadriceps) but also the distal muscles (in particular the fingers' and wrists' flexors) in a bilateral but non-symmetrical manner. The clinical presentation is then very suggestive of the diagnosis, which remains to be proven by a muscle biopsy. Histological features defining the diagnosis associate endomysial inflammatory infiltrates with frequent invaded fibres (the myositis) and amyloid deposits generally accompanying rimmed vacuoles (the inclusions). There is still today a debate to know if this disease is at its beginning a degenerative or an auto-immune condition. Nonetheless, usual immunosuppressive drugs (corticosteroids, azathioprine, methotrexate) or polyvalent immunoglobulines remain ineffective and even may worsen the handicap. Some controlled randomized trials will soon be launched for this condition, but for now, the best therapeutic approach to slow down the rapidity of progression of the disease is to maintain muscle exercise with the help of the physiotherapists. PMID:24128435

  19. Asymmetric inclusion process

    NASA Astrophysics Data System (ADS)

    Reuveni, Shlomi; Eliazar, Iddo; Yechiali, Uri

    2011-10-01

    We introduce and explore the asymmetric inclusion process (ASIP), an exactly solvable bosonic counterpart of the fermionic asymmetric exclusion process (ASEP). In both processes, random events cause particles to propagate unidirectionally along a one-dimensional lattice of n sites. In the ASEP, particles are subject to exclusion interactions, whereas in the ASIP, particles are subject to inclusion interactions that coalesce them into inseparable clusters. We study the dynamics of the ASIP, derive evolution equations for the mean and probability generating function (PGF) of the sites’ occupancy vector, obtain explicit results for the above mean at steady state, and describe an iterative scheme for the computation of the PGF at steady state. We further obtain explicit results for the load distribution in steady state, with the load being the total number of particles present in all lattice sites. Finally, we address the problem of load optimization, and solve it under various criteria. The ASIP model establishes bridges between statistical physics and queueing theory as it represents a tandem array of queueing systems with (unlimited) batch service, and a tandem array of growth-collapse processes.

  20. Inclusive fitness in agriculture

    PubMed Central

    Kiers, E. Toby; Denison, R. Ford

    2014-01-01

    Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions. PMID:24686938

  1. Inclusive fitness in agriculture.

    PubMed

    Kiers, E Toby; Denison, R Ford

    2014-05-19

    Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions. PMID:24686938

  2. OBJECTIVE ANALYSIS OF SPERM MOTILITY IN THE LAKE STURGEON, ACIPENSER FULVESCENS: ACTIVATION AND INHIBITION CONDITIONS

    EPA Science Inventory

    An objective analysis of the duration of motility of sperm from the lake sturgeon, Acipenser fulvescens, has been performed using computer-assisted sperm motion analysis at 200 frames/s. Motility was measured in both 1993 and 1994. The percentage of activated motile sperm and the...

  3. EFFECT OF CRYOPRESERVATION AND THEOPHYLLINE ON MOTILITY CHARACTERISTICS OF LAKE STURGEON (ACIPENSER FULVESCENS) SPERMATOZOA

    EPA Science Inventory

    Computer-assisted motility analysis (CASA) was used to evaluate the effect of cryopreservation and theophylline treatment on sperm motility of lake sturgeon (Acipenser fulvescens).Motility was recorded at 0 and 5 min postactivation.The effect of cryopreservation on sperm acrosin-...

  4. Preparing Teachers for Inclusive Education: Using Inclusive Pedagogy to Enhance Teaching and Learning for All

    ERIC Educational Resources Information Center

    Florian, Lani; Linklater, Holly

    2010-01-01

    As the concept of "inclusive education" has gained currency, students who would previously have been referred to specialist forms of provision, having been judged "less able", are now believed to belong in mainstream classrooms. However, it is often argued that teachers lack the necessary knowledge and skills to work with such students in…

  5. A Novel Laser Vaccine Adjuvant Increases the Motility of Antigen Presenting Cells

    PubMed Central

    Chen, Xinyuan; Kim, Pilhan; Farinelli, Bill; Doukas, Apostolos; Yun, Seok-Hyun; Gelfand, Jeffrey A.; Anderson, Richard R.; Wu, Mei X.

    2010-01-01

    Background Development of a potent vaccine adjuvant without introduction of any side effects remains an unmet challenge in the field of the vaccine research. Methodology/Principal Findings We found that laser at a specific setting increased the motility of antigen presenting cells (APCs) and immune responses, with few local or systemic side effects. This laser vaccine adjuvant (LVA) effect was induced by brief illumination of a small area of the skin or muscle with a nondestructive, 532 nm green laser prior to intradermal (i.d.) or intramuscular (i.m.) administration of vaccines at the site of laser illumination. The pre-illumination accelerated the motility of APCs as shown by intravital confocal microscopy, leading to sufficient antigen (Ag)-uptake at the site of vaccine injection and transportation of the Ag-captured APCs to the draining lymph nodes. As a result, the number of Ag+ dendritic cells (DCs) in draining lymph nodes was significantly higher in both the 1° and 2° draining lymph nodes in the presence than in the absence of LVA. Laser-mediated increases in the motility and lymphatic transportation of APCs augmented significantly humoral immune responses directed against a model vaccine ovalbumin (OVA) or influenza vaccine i.d. injected in both primary and booster vaccinations as compared to the vaccine itself. Strikingly, when the laser was delivered by a hair-like diffusing optical fiber into muscle, laser illumination greatly boosted not only humoral but also cell-mediated immune responses provoked by i.m. immunization with OVA relative to OVA alone. Conclusion/Significance The results demonstrate the ability of this safe LVA to augment both humoral and cell-mediated immune responses. In comparison with all current vaccine adjuvants that are either chemical compounds or biological agents, LVA is novel in both its form and mechanism; it is risk-free and has distinct advantages over traditional vaccine adjuvants. PMID:21048884

  6. Normal aspects of colorectal motility and abnormalities in slow transit constipation.

    PubMed

    Bassotti, Gabrio; de Roberto, Giuseppe; Castellani, Danilo; Sediari, Luca; Morelli, Antonio

    2005-05-14

    Human colonic motility is a relatively difficult topic to investigate. However, the refinement of manometric techniques in recent years enabled us to study both the proximal and distal segments of the viscus. The present paper reviews our knowledge about normal aspects of colorectal motility in man and the abnormalities found in slow transit constipation (STC), one of the most frequent and difficult to treat subtypes of constipation. An internet-based search strategy of the Medline and Science Citation Index was performed using the keywords colon, colonic, colorectal, constipation, slow transit, motility, rectal, rectum in various combinations with the Boolean operators AND, OR and NOT. Only articles related to human studies were used, and manual cross-referencing was also performed. Most of colonic motor activity is represented by single nonpropagated contractions, rarely organized in bursts; this activity is maximal during the day, especially after waking and following meals. In addition, a specialized propagated activity with propulsive features is detectable, represented by high- and low-amplitude propagated contractions. In the severe form of constipation represented by the slow transit type, the above motor activity is completely deranged. In fact, both basal segmental activity (especially in response to meals) and propagated activity (especially that of high amplitude) are usually decreased, and this may represent a physiologic marker of this disorder. Human colonic motor activity is quite a complex issue, still only partly understood and investigated, due to anatomic and physiological difficulties. In recent years, however, some more data have been obtained, even in proximal segments. These data have helped in elucidating, although only in part, some pathophysiological mechanisms of chronic constipation, and especially of the STC subtype. PMID:15884105

  7. Implications of caveolae in testicular and epididymal myoid cells to sperm motility.

    PubMed

    Oliveira, Regiana L; Parent, Adam; Cyr, Daniel G; Gregory, Mary; Mandato, Craig A; Smith, Charles E; Hermo, Louis

    2016-06-01

    Seminiferous tubules of the testis and epididymal tubules in adult rodents are enveloped by contractile myoid cells, which move sperm and fluids along the male reproductive tract. Myoid cells in the testis influence Sertoli cells by paracrine signaling, but their role in the epididymis is unknown. Electron microscopy revealed that elongated myoid cells formed several concentric layers arranged in a loose configuration. The edges of some myoid cells in a given layer closely approximated one another, and extended small foot-like processes to cells of overlying layers. Gap junction proteins, connexins 32 and 43, were detected within the myoid cell layers by immunohistochemistry. These myoid cells also had caveolae that contained caveolin-1 and cavin-1 (also known as PTRF). The number of caveolae per unit area of plasma membrane was significantly reduced in caveolin-1-deficient mice (Cav1(-/-) ). Morphometric analyses of Cav1-null testes revealed an enlargement in whole-tubule and epithelial profile areas, whereas these parameters were slightly reduced in the epididymis. Although sperm are non-motile as they pass through the proximal epididymis, statistical analyses of cauda epididymidis sperm concentrations revealed no significant differences between wild-type and Cav1(-/-) mice. Motility analyses, however, indicated that sperm velocity parameters were reduced while beat cross frequency was higher in gametes of Cav1(-/-) mice. Thus while caveolae and their associated proteins are not necessary for myoid cell contractility, they appear to be crucial for signaling with the epididymal epithelium to regulate the proper acquisition of sperm motility. Mol. Reprod. Dev. 83: 526-540, 2016. © 2016 Wiley Periodicals, Inc. PMID:27088550

  8. Perceptual binding of sensory events: the inclusive characteristics model.

    PubMed

    Sergin, V Ya

    2003-10-01

    A conceptual model of a perceptual system is proposed, in which each neural level forms characteristics inclusive of the data held in the underlying level. As a result, the stimulus field can be expressed as a hierarchically ordered set of overlying sensory characteristics: from sensory features to higher inclusive characteristics binding sensory data to form whole images and scenes. Specific patterns of electrical activity reflecting inclusive characteristics are transmitted via reverse projections from the upper neural levels to the lower. This forms a downward excitation transmission cascade, stimulating those neural structures whose signals correspond to the higher inclusive characteristics of the given perceptual act. It is demonstrated that these mechanisms are in good agreement with experimental data obtained from psychological and neurophysiological studies and may support the binding of sensory events at all perceptual levels. PMID:14635989

  9. Inclusive Jets in PHP

    NASA Astrophysics Data System (ADS)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  10. Fasciola hepatica: motility response to metabolic inhibitors in vitro.

    PubMed

    Holmes, S D; Fairweather, I

    1985-06-01

    The effects of metabolic inhibitors on the in vitro motility of Fasciola hepatica have been determined by means of an isometric transducer system. Sodium fluoride, an inhibitor of glycolysis, causes a long-term suppression of motility; this is also the effect of sodium iodoacetate (another glycolysis inhibitor) at low concentrations (1 X 10(-5) M and below). However, higher concentrations of iodoacetate induce a rapid inhibition of activity leading to a spastic paralysis. Both rotenone and oligomycin, which act as inhibitors of oxidative phosphorylation, produce a long-term suppression of movement. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone and carbonylcyanide-m-chlorophenylhydrazone, which are uncouplers of oxidative phosphorylation, induce a spastic paralysis of the fluke; this is rapid at high concentrations (1 X 10(-4) and 1 X 10(-5) M). A brief stimulation of activity is evident at 1 X 10(-5) M and lasts longer at 1 X 10(-6) and 1 X 10(-7) M, before inhibition sets in. There is no stimulation at low concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (1 X 10(-8) and 1 X 10(-9) M), only inhibition leading to a medium-term spastic paralysis. In contrast, a third uncoupler, 2,4-dinitrophenol, causes a flaccid paralysis and the effect is rapid only at high concentrations, being accompanied by an initial increase in muscle tone at 1 X 10(-2) M and a brief stimulation of motility at 1 X 10(-3) M. Stimulation lasts longer at 1 X 10(-4) and 1 X 10(-5) M, but is not evident at concentrations below this. The effects on motility at these lower concentrations are essentially long term in nature. That the rapid effects of the uncouplers on muscle tone and motility are not due primarily to uncoupling is shown by 2,4,6-trinitrophenol and hydroquinone, compounds structurally related to 2,4-dinitrophenol. 2,4,6-Trinitrophenol is a membrane-impermeable compound devoid of uncoupling activity; at 1 X 10(-3) M, it causes an immediate inhibition of activity

  11. Effects of psychological stress on small intestinal motility and bacteria and mucosa in mice

    PubMed Central

    Wang, Shao-Xuan; Wu, Wan-Chun

    2005-01-01

    AIM: To investigate the effects of psychological stress on small intestinal motility and bacteria and mucosa in mice, and to explore the relationship between small intestinal dysfunction and small intestinal motility and bacteria and mucosa under psychological stress. METHODS: Sixty mice were randomly divided into psychological stress group and control group. Each group were subdivided into small intestinal motility group (n = 10), bacteria group (n = 10), and D-xylose administered to stomach group (n = 10). An animal model with psychological stress was established housing the mice with a hungry cat in separate layers of a two-layer cage. A semi-solid colored marker (carbon-ink) was used for monitoring small intestinal transit. The proximal small intestine was harvested under sterile condition and processed for quantitation for aerobes (Escherichia coli) and anaerobes (Lactobacilli). The quantitation of bacteria was expressed as log10(colony forming units/g). D-xylose levels in plasma were measured for estimating the damage of small intestinal mucosa. RESULTS: Small intestinal transit was inhibited (39.80±9.50% vs 58.79±11.47%, P<0.01) in mice after psychological stress, compared with the controls. Psychological stress resulted in quantitative alterations in the aerobes (E. coli). There was an increase in the number of E. coli in the proximal small intestinal flora (1.78±0.30 log10(CFU/g) vs 1.37±0.21 log10(CFU/g), P<0.01), and there was decrease in relative proportion of Lactobacilli and E. coli of stressed mice (0.53±0.63 vs 1.14±1.07, P<0.05), while there was no significant difference in the anaerobes (Lactobacilli) between the two groups (2.31±0.70 log10(CFU/g) vs 2.44±0.37 log10(CFU/g), P>0.05). D-xylose concentrations in plasma in psychological stress mice were significantly higher than those in the control group (2.90±0.89 mmol/L vs 0.97±0.33 mmol/L, P<0.01). CONCLUSION: Small intestinal dysfunction under psychological stress may be related to the

  12. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  13. Special type of morphological reorganization induced by phorbol ester: reversible partition of cell into motile and stable domains

    SciTech Connect

    Dugina, V.B.; Svitkina, T.M.; Vasiliev, J.M.; Gelfand, I.M.

    1987-06-01

    The phorbol ester phorbol 12-myristate 13-acetate (PMA) induced reversible alteration of the shape of fibroblastic cells of certain transformed lines-namely, partition of the cells into two types of domains: motile body actively extending large lamellas and stable narrow cytoplasmic processes. Dynamic observations have shown that stable processes are formed from partially retracted lamellas and from contracted tail parts of cell bodies. Immunofluorescence microscopy and electron microscopy of platinum replicas of cytoskeleton have shown that PMA-induced narrow processes are rich in microtubules and intermediate filaments but relatively poor in actin microfilaments; in contrast, lamellas and cell bodies contained numerous microfilaments. Colcemid-induced depolymerization of microtubules led to contraction of PMA-induced processes; cytochalasin B prevented this contraction. It is suggested that PMA-induced separation of cell into motile and stable parts is due to directional movement of actin structures along the microtubular framework. Similar movements may play an important role in various normal morphogenetic processes.

  14. Effects of physical factors on the swarming motility of text itPseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Si, Tieyan; Ma, Zidong; Tang, Wai Shing; Yang, Alexander; Tang, Jay

    Many species of bacteria can spread over a semi-solid surface via a particular form of collective motion known as surface swarming. Using Pseudomonas aeruginosa as a model organism, we investigate physical factors that either facilitate or restrict the swarming motility. The semi-solid surface is typically formed by 0.5-1% agar containing essential nutrients for the bacterial growth and proliferation. Most bacterial species, including P. aeruginosa, synthesize bio-surfactants to aid in swarming. We found addition of exogenous surfactants such as triton into the agar matrix enhances the swarming. In contrast, increasing agar percentage, infusing osmolites, and adding viscous agents all decrease swarming. We propose that the swarming speed is restricted by the rate of water supply from within the agar gel and by the line tension at the swarm front involving three materials in contact: the air, the bacteria propelled liquid film, and the agar substrate.

  15. Possibilities for an Inclusive Society in Singapore: Becoming Inclusive within

    ERIC Educational Resources Information Center

    Lim, Levan

    2009-01-01

    The envisioning of Singapore as an inclusive society has witnessed the most progressive systemic and policy developments concerning people with disabilities in recent years. The building of "heartware" in society (as in the will, values, and attitudes of its citizens) in order to realize the vision of an inclusive society, however, requires both…

  16. Student Teachers' Attitudes and Beliefs about Inclusion and Inclusive Practice

    ERIC Educational Resources Information Center

    Beacham, Nigel; Rouse, Martyn

    2012-01-01

    The beliefs and attitudes of teachers are an important element in the development of inclusive education and its associated practices. Teacher education is seen as crucial in helping to develop positive attitudes and beliefs that are thought to promote inclusion, although attempts to reform teacher education in order to address issues of inclusion…

  17. Inclusive Education: Identifying Teachers' Perceived Stressors in Inclusive Classrooms

    ERIC Educational Resources Information Center

    Brackenreed, Darlene

    2008-01-01

    This research replicates the study conducted by Forlin (2001) in Churchlands, Western Australia. Forlin's Inclusive Education Teacher Stress and Coping Questionnaire was adapted from the original questionnaire to more accurately reflect the language and practice of inclusion in Ontario (Frost & Brackenreed, 2004). The purpose of this study was to…

  18. Motility contrast imaging of live porcine cumulus-oocyte complexes

    NASA Astrophysics Data System (ADS)

    An, Ran; Turek, John; Machaty, Zoltan; Nolte, David

    2013-02-01

    Freshly-harvested porcine oocytes are invested with cumulus granulosa cells in cumulus-oocyte complexes (COCs). The cumulus cell layer is usually too thick to image the living oocyte under a conventional microscope. Therefore, it is difficult to assess the oocyte viability. The low success rate of implantation is the main problem for in vitro fertilization. In this paper, we demonstrate our dynamic imaging technique called motility contrast imaging (MCI) that provides a non-invasive way to monitor the COCs before and after maturation. MCI shows a change of intracellular activity during oocyte maturation, and a measures dynamic contrast between the cumulus granulosa shell and the oocytes. MCI also shows difference in the spectral response between oocytes that were graded into quality classes. MCI is based on shortcoherence digital holography. It uses intracellular motility as the endogenous imaging contrast of living tissue. MCI presents a new approach for cumulus-oocyte complex assessment.

  19. Voltage- and calcium-dependent motility of saccular hair bundles

    NASA Astrophysics Data System (ADS)

    Quiñones, Patricia M.; Meenderink, Sebastiaan W. F.; Bozovic, Dolores

    2015-12-01

    Active bundle motility, which is hypothesized to supply feedback for mechanical amplification of signals, is thought to enhance sensitivity and sharpen tuning in vestibular and auditory organs. To study active hair bundle motility, we combined high-speed camera recordings of bullfrog sacculi, which were mounted in a two-compartment chamber, and voltage-clamp of the hair cell membrane potential. Using this paradigm, we measured three types of bundle motions: 1) spontaneous oscillations which can be analyzed to measure the physiological operating range of the transduction channel; 2) a sustained quasi-static movement of the bundle that depends on membrane potential; and 3) a fast, transient and asymmetric movement that resets the bundle position and depends on changes in the membrane potential. These data support a role for both calcium and voltage in the transduction-channel function.

  20. Disorders of colonic motility in patients with diabetes mellitus.

    PubMed Central

    Battle, W. M.; Cohen, J. D.; Snape, W. J.

    1983-01-01

    Motility disturbances of the colon can give significant symptoms in patients with diabetes mellitus. Constipation is a common complaint in these patients. Diarrhea associated with a generalized autonomic neuropathy can be very troublesome. There is a disturbance in the gastrocolonic response to eating in patients with diabetes mellitus who have constipation. These patients have no postprandial increase in colonic motility. However, their colonic smooth muscle contracts normally to the exogenous administration of neostigmine or metoclopramide. Stool softeners used in combination with the smooth muscle stimulants (neostigmine or metoclopramide) are helpful in treating constipation in patients with diabetes mellitus. Diarrhea can be treated with loperamide or diphenoxylate. Biofeedback may be useful in treating incontinence associated with diarrhea in these patients. PMID:6670291

  1. A Structural Basis for How Motile Cilia Beat

    PubMed Central

    Satir, Peter; Heuser, Thomas; Sale, Winfield S.

    2014-01-01

    The motile cilium is a mechanical wonder, a cellular nanomachine that produces a high-speed beat based on a cycle of bends that move along an axoneme made of 9+2 microtubules. The molecular motors, dyneins, power the ciliary beat. The dyneins are compacted into inner and outer dynein arms, whose activity is highly regulated to produce microtubule sliding and axonemal bending. The switch point hypothesis was developed long ago to account for how sliding in the presence of axonemal radial spoke–central pair interactions causes the ciliary beat. Since then, a new genetic, biochemical, and structural complexity has been discovered, in part, with Chlamydomonas mutants, with high-speed, high-resolution analysis of movement and with cryoelectron tomography. We stand poised on the brink of new discoveries relating to the molecular control of motility that extend and refine our understanding of the basic events underlying the switching of arm activity and of bend formation and propagation. PMID:26955066

  2. Spontaneous motility of passive emulsion droplets in polar active gels.

    PubMed

    De Magistris, G; Tiribocchi, A; Whitfield, C A; Hawkins, R J; Cates, M E; Marenduzzo, D

    2014-10-21

    We study by computer simulations the dynamics of a droplet of passive, isotropic fluid, embedded in a polar active gel. The latter represents a fluid of active force dipoles, which exert either contractile or extensile stresses on their surroundings, modelling for instance a suspension of cytoskeletal filaments and molecular motors. When the polarisation of the active gel is anchored normal to the droplet at its surface, the nematic elasticity of the active gel drives the formation of a hedgehog defect; this defect then drives an active flow which propels the droplet forward. In an extensile gel, motility can occur even with tangential anchoring, which is compatible with a defect-free polarisation pattern. In this case, upon increasing activity the droplet first rotates uniformly, and then undergoes a discontinuous nonequilibrium transition into a translationally motile state, powered by bending deformations in the surrounding active medium. PMID:25156695

  3. Where to Go: Breaking the Symmetry in Cell Motility

    PubMed Central

    2016-01-01

    Cell migration in the “correct” direction is pivotal for many biological processes. Although most work is devoted to its molecular mechanisms, the cell’s preference for one direction over others, thus overcoming intrinsic random motility, epitomizes a profound principle that underlies all complex systems: the choice of one axis, in structure or motion, from a uniform or symmetric set of options. Explaining directional motility by an external chemo-attractant gradient does not solve but only shifts the problem of causation: whence the gradient? A new study in PLOS Biology shows cell migration in a self-generated gradient, offering an opportunity to take a broader look at the old dualism of extrinsic instruction versus intrinsic symmetry-breaking in cell biology. PMID:27196433

  4. Motility of the rumen and abomasum during hypocalcaemia.

    PubMed Central

    Daniel, R C

    1983-01-01

    The relationship between plasma calcium level and rumen motility in cows and sheep and abomasal motility in cows was investigated by inducing hypocalcaemia in seven cows and five sheep by the infusion of Na2 EDTA over a period of approximately two hours. Rates and amplitudes of rumen and abomasal contractions were markedly reduced by the reduction of plasma calcium level to approximately 50% of normal. There were significant positive linear relationships (P less than 0.05) between rate and amplitude of rumen contractions in both sheep and cows over a plasma calcium range of 1-3 mmol/L. There was also a significant linear relationship (P less than 0.05) between plasma calcium and abomasal rate of contraction over the same range in cows, but the relationship with amplitude of abomasal contraction was not quite significant (P less than 0.1 greater than 0.05). PMID:6416656

  5. Bacillus subtilis Hfq: A role in chemotaxis and motility.

    PubMed

    Jagtap, Chandrakant B; Kumar, Pradeep; Rao, Krishnamurthy K

    2016-09-01

    Hfq is a global post-transcriptional regulator that modulates the translation and stability of target mRNAs and thereby regulates pleiotropic functions, such as growth, stress, virulence and motility, in many Gram-negative bacteria. However, comparatively little is known about the regulation and function(s) of Hfq in Gram-positive bacteria. Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibility of Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis is regulated by the stress sigma factor, sigma^B, in addition to the stationary phase sigma factor, sigma^H. We further demonstrate that Hfq positively regulates the expression of flagellum and chemotaxis genes (fla/che) that control chemotaxis and motility, thus assigning a new function for Hfq in B. subtilis. PMID:27581927

  6. Endocytosis and early endosome motility in filamentous fungi

    PubMed Central

    Steinberg, Gero

    2014-01-01

    Hyphal growth of filamentous fungi requires microtubule-based long-distance motility of early endosomes. Since the discovery of this process in Ustilago maydis, our understanding of its molecular basis and biological function has greatly advanced. Studies in U. maydis and Aspergillus nidulans reveal a complex interplay of the motor proteins kinesin-3 and dynein, which co-operate to support bi-directional motion of early endosomes. Genetic screening has shed light on the molecular mechanisms underpinning motor regulation, revealing Hook protein as general motor adapters on early endosomes. Recently, fascinating insight into unexpected roles for endosome motility has emerged. This includes septin filament formation and cellular distribution of the machinery for protein translation. PMID:24835422

  7. A random motility assay based on image correlation spectroscopy.

    PubMed

    Prummer, Michael; Kling, Dorothee; Trefzer, Vanessa; Enderle, Thilo; Zoffmann, Sannah; Prunotto, Marco

    2013-06-01

    We demonstrate the random motility (RAMOT) assay based on image correlation spectroscopy for the automated, label-free, high-throughput characterization of random cell migration. The approach is complementary to traditional migration assays, which determine only the collective net motility in a particular direction. The RAMOT assay is less demanding on image quality compared to single-cell tracking, does not require cell identification or trajectory reconstruction, and performs well on live-cell, time-lapse, phase contrast video microscopy of hundreds of cells in parallel. Effective diffusion coefficients derived from the RAMOT analysis are in quantitative agreement with Monte Carlo simulations and allowed for the detection of pharmacological effects on macrophage-like cells migrating on a planar collagen matrix. These results expand the application range of image correlation spectroscopy to multicellular systems and demonstrate a novel, to our knowledge, migration assay with little preparative effort. PMID:23746508

  8. MNS1 Is Essential for Spermiogenesis and Motile Ciliary Functions in Mice

    PubMed Central

    Zhou, Jian; Yang, Fang; Leu, N. Adrian; Wang, P. Jeremy

    2012-01-01

    During spermiogenesis, haploid round spermatids undergo dramatic cell differentiation and morphogenesis to give rise to mature spermatozoa for fertilization, including nuclear elongation, chromatin remodeling, acrosome formation, and development of flagella. The molecular mechanisms underlining these fundamental processes remain poorly understood. Here, we report that MNS1, a coiled-coil protein of unknown function, is essential for spermiogenesis. We find that MNS1 is expressed in the germ cells in the testes and localizes to sperm flagella in a detergent-resistant manner, indicating that it is an integral component of flagella. MNS1–deficient males are sterile, as they exhibit a sharp reduction in sperm production and the remnant sperm are immotile with abnormal short tails. In MNS1–deficient sperm flagella, the characteristic arrangement of “9+2” microtubules and outer dense fibers are completely disrupted. In addition, MNS1–deficient mice display situs inversus and hydrocephalus. MNS1–deficient tracheal motile cilia lack some outer dynein arms in the axoneme. Moreover, MNS1 monomers interact with each other and are able to form polymers in cultured somatic cells. These results demonstrate that MNS1 is essential for spermiogenesis, the assembly of sperm flagella, and motile ciliary functions. PMID:22396656

  9. Genetics of Swarming Motility in Salmonella enterica Serovar Typhimurium: Critical Role for Lipopolysaccharide

    PubMed Central

    Toguchi, Adam; Siano, Michael; Burkart, Mark; Harshey, Rasika M.

    2000-01-01

    Salmonella enterica serovar Typhimurium can differentiate into hyperflagellated swarmer cells on agar of an appropriate consistency (0.5 to 0.8%), allowing efficient colonization of the growth surface. Flagella are essential for this form of motility. In order to identify genes involved in swarming, we carried out extensive transposon mutagenesis of serovar Typhimurium, screening for those that had functional flagella yet were unable to swarm. A majority of these mutants were defective in lipopolysaccharide (LPS) synthesis, a large number were defective in chemotaxis, and some had defects in putative two-component signaling components. While the latter two classes were defective in swarmer cell differentiation, representative LPS mutants were not and could be rescued for swarming by external addition of a biosurfactant. A mutation in waaG (LPS core modification) secreted copious amounts of slime and showed a precocious swarming phenotype. We suggest that the O antigen improves surface “wettability” required for swarm colony expansion, that the LPS core could play a role in slime generation, and that multiple two-component systems cooperate to promote swarmer cell differentiation. The failure to identify specific swarming signals such as amino acids, pH changes, oxygen, iron starvation, increased viscosity, flagellar rotation, or autoinducers leads us to consider a model in which the external slime is itself both the signal and the milieu for swarming motility. The model explains the cell density dependence of the swarming phenomenon. PMID:11053374

  10. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment

    PubMed Central

    Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.

    2015-01-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming’, characterised by meandering trajectories, and ‘orbiting’, characterised by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation. PMID:25234699

  11. Mitochondrial organization and motility probed by two-photon microscopy in cultured mouse brainstem neurons

    SciTech Connect

    Mueller, Michael . E-mail: mike@neuro-physiol.med.uni-goettingen.de; Mironov, Sergej L.; Ivannikov, Maxim V.; Schmidt, Joerg; Richter, Diethelm W.

    2005-02-01

    Two-photon microscopy of rhodamine 123-labeled mitochondria revealed that mitochondria of neurons cultured from mouse respiratory center form functionally coupled, dynamically organized aggregates such as chains and clusters, while single mitochondria were rarely seen. Mitochondrial chain structures predominate in dendrites, while irregularly shaped mitochondrial clusters are mostly found in the soma. Both types of mitochondrial structures showed chaotic Brownian motions and the mitochondrial chains also revealed well-directed movements. The latter dislocations were arrested upon mitochondrial depolarization or blockade of mitochondrial ATP synthesis. Depolymerization of microtubules by colchicine or nocodazole or inhibition of protein phosphatases by calyculin A disrupted mitochondrial chains and the mitochondria accumulated in the soma. Forskolin and IBMX reversibly blocked directed movements of mitochondria, but did not affect their overall spatial distribution. Thus, protein phosphorylation seems to control both mitochondrial transport and organization. Protein phosphorylation downstream of enhanced cytosolic cAMP levels apparently regulates the transition from motile to non-motile mitochondria, while phosphorylation resulting from inhibition of types 1 and 2A protein phosphatases massively disturbs mitochondrial organization. The complex phosphorylation processes seem to control the close interaction of mitochondria and cytoskeleton which may guarantee that mitochondria are immobilized at energetic hot spots and rearranged in response to changes in local energy demands.

  12. Structural Basis of Backwards Motion in Kinesin-1-Kinesin-14 Chimera: Implication for Kinesin-14 Motility.

    PubMed

    Yamagishi, Masahiko; Shigematsu, Hideki; Yokoyama, Takeshi; Kikkawa, Masahide; Sugawa, Mitsuhiro; Aoki, Mari; Shirouzu, Mikako; Yajima, Junichiro; Nitta, Ryo

    2016-08-01

    Kinesin-14 is a unique minus-end-directed microtubule-based motor. A swinging motion of a class-specific N-terminal neck helix has been proposed to produce minus-end directionality. However, it is unclear how swinging of the neck helix is driven by ATP hydrolysis utilizing the highly conserved catalytic core among all kinesins. Here, using a motility assay, we show that in addition to the neck helix, the conserved five residues at the C-terminal region in kinesin-14, namely the neck mimic, are necessary to give kinesin-1 an ability to reverse its directionality toward the minus end of microtubules. Our structural analyses further demonstrate that the C-terminal neck mimic, in cooperation with conformational changes in the catalytic core during ATP binding, forms a kinesin-14 bundle with the N-terminal neck helix to swing toward the minus end of microtubules. Thus, the neck mimic plays a crucial role in coupling the chemical ATPase reaction with the mechanical cycle to produce the minus-end-directed motility of kinesin-14. PMID:27452403

  13. The actin-bundling protein L-plastin supports T-cell motility and activation

    PubMed Central

    Morley, Sharon Celeste

    2013-01-01

    Summary Tight regulation of actin dynamics is essential for T-cell trafficking and activation. Recent studies in human and murine T cells reveal that T-cell motility and full T-cell activation require the hematopoietic-specific, actin-bundling protein L-plastin. T cells lacking L-plastin do not form fully mature synapses and thus demonstrate reduced cytokine production and proliferation. Reduction or loss of L-plastin expression also reduces the velocity of T cells and impairs thymic egress and intranodal motility. While dispensable for proximal T-cell receptor and chemokine receptor signaling, L-plastin is critical to the later stages of synapse maturation and cellular polarization. Serine phosphorylation, calcium, and calmodulin binding regulate the bundling activity and localization of LPL following T-cell receptor and chemokine receptor engagement. However, the interaction between these regulatory domains and resulting changes in local control of actin cytoskeletal structures has not been fully elucidated. Circumstantial evidence suggests a function for L-plastin in either the formation or maintenance of integrin-associated adhesion structures. As L-plastin may be a target of the commonly used immunosuppressive agent dexamethasone, full elucidation of the regulation and function of L-plastin in T-cell biology may illuminate new pathways for clinically useful immunotherapeutics. PMID:24117812

  14. Evaporation-driven convection observed in a suspension of non-motile bacteria

    NASA Astrophysics Data System (ADS)

    Dunstan, Jocelyn; Lee, Kyoung Jin; Park, Simon; Goldstein, Raymond E.

    2015-03-01

    We report a novel form of convection in a suspension of non-motile bioluminescent bacteria. The patterns appear like those of conventional bioconvection driven by oxygentaxis, yet the bacteria are observed to have limited if any motility. While the phenomenon also resembles chemo-convection, in which a chemical reaction (or metabolic activity) alters the local buoyancy balance at the air-water interface, the convention actually derives from evaporation of the salty bacterial growth medium. We corroborate this through control experiments using polystyrene beads in pure and salty water, and establish that there is a threshold of salt concentration needed to observe plumes. The dynamics of the plumes is rich, with striking coalescence events and a complex internal structure. A mathematical model is formulated for the process and studied analytically and numerically, reproducing most of the observed experimental features. Evaporation-driven convection on the millimeter scale has not been studied extensively and its effect may have been underestimated in a variety of contexts. It may naturally occur in marine settings.

  15. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment

    NASA Astrophysics Data System (ADS)

    Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.

    2014-09-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.

  16. Transmembrane adenylyl cyclase regulates amphibian sperm motility through Protein Kinase A activation

    PubMed Central

    O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.

    2014-01-01

    Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515

  17. The Semen pH Affects Sperm Motility and Capacitation

    PubMed Central

    Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na+/K+-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2+ concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na+/K+-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility. PMID:26173069

  18. Discrimination of motile bacteria from filamentous fungi using dynamic speckle

    NASA Astrophysics Data System (ADS)

    Murialdo, Silvia E.; Passoni, Lucía I.; Guzman, Marcelo N.; Sendra, G. Hernán; Rabal, Héctor; Trivi, Marcelo; Gonzalez, J. Froilán

    2012-05-01

    We present a dynamic laser speckle method to easily discriminate filamentous fungi from motile bacteria in soft surfaces, such as agar plate. The method allows the detection and discrimination between fungi and bacteria faster than with conventional techniques. The new procedure could be straightforwardly extended to different micro-organisms, as well as applied to biological and biomedical research, infected tissues analysis, and hospital water and wastewaters studies.

  19. GLP-1: broadening the incretin concept to involve gut motility.

    PubMed

    Hellström, Per M

    2009-08-01

    The incretin effect of the gut peptide hormone glucagon-like peptide-1 (GLP-1) is a combined result of inhibition of gastric emptying and stimulation of insulin secretion via an incretin mechanism. The temporal pattern of these events implicate that gastric emptying is primarily delayed, while later in the digestive process insulin is released for nutrient disposal. Since the inhibitory effect of GLP-1 on gastric motility is very outspoken, we considered it of value to study its effects on gut motility. Animal experimentation in the rat clearly showed that not only gastric emptying, but also small bowel motility with the migrating myoelectric complex was profoundly inhibited by GLP-1 at low doses. Similar effects were seen with analogues of the peptide. Extending the studies to man supported our earliest data indicating that the migrating motor complex of the small intestine was affected, and even more noticeable, the summarized motility index inhibited. Further extension of our studies to patients with irritable bowel syndrome (IBS) displayed similar results. This encouraged us to embark on a clinical pain-relief multi-centre study in IBS patients using a GLP-1 analogue, ROSE-010, with longer half-life than the native peptide. The outcome of the IBS study proved ROSE-010 to be superior to placebo with a pain-relief response rate of 24% for ROSE-010 compared to 12% for placebo. Taken together, the GLP-1 analogue ROSE-010 is believed to cause relaxation of the gut and can thereby relieve an acute pain attack of IBS, even though its precise mechanism is yet to be defined. PMID:19362109

  20. Relationship between weight loss and gallbladder motility in obese women.

    PubMed Central

    Sari, Ramazan; Balci, Mustafa Kemal

    2006-01-01

    OBJECTIVE AND AIM: Most studies have detected impairment of gallbladder motility among obese compared with nonobese people. However, the relationship between gallbladder motility and weight loss is not well defined. The aim of this study was to evaluate the relationship between percent of weight loss and gallbladder motility during weight-reducing programs in obese women. PATIENTS AND METHODS: Thirty-four premenopausal obese women (body mass index >30 kg/m2) were included in the study. Following an overnight fast, fasting and postprandial 15-, 30-, 45-, 60-, 75-, 90-, 120- and 150th-minute gallbladder volumes and ejection fractions were evaluated with real-time ultrasonography as baseline and repeated after sixth months of weight-reducing programs. The lowest postprandial gallbladder volume was accepted as the residual volume. Gallstone formation was found in three (8.8%) patients during the study period, and these patients were dropped out. Thirty-one obese women were divided into three groups based on weight loss percent (group 1: 11 patients, weight loss <5%; group 2: 10 patients, weight loss 5-10%; group 3: 10 patients, weight loss >10%). RESULTS: Fasting gallbladder volume and all ejection fractions were not significantly different between baseline and after sixth months in all groups (p>0.05). Residual volume was decreased after sixth months in only group 3 (p=0.005). Difference of fasting and residual volumes, and ejection fractions at baseline and after sixth months was similar in all groups (p>0.05). There was a positive correlation between weight loss and the change of residual volume (r=0.395, p=0.028). CONCLUSION: Our findings suggest no relationship between degree of weight loss and ejection fraction. However, decreased residual volume and late-phase gallbladder volumes indicate gallbladder motility changing in patients who had >10% weight loss. PMID:17052060

  1. Earthquake-like dynamics in Myxococcus xanthus social motility

    PubMed Central

    Gibiansky, Maxsim L.; Hu, Wei; Dahmen, Karin A.; Shi, Wenyuan; Wong, Gerard C. L.

    2013-01-01

    Myxococcus xanthus is a bacterium capable of complex social organization. Its characteristic social (“S”)-motility mechanism is mediated by type IV pili (TFP), linear actuator appendages that propel the bacterium along a surface. TFP are known to bind to secreted exopolysaccharides (EPS), but it is unclear how M. xanthus manages to use the TFP-EPS technology common to many bacteria to achieve its unique coordinated multicellular movements. We examine M. xanthus S-motility, using high-resolution particle-tracking algorithms, and observe aperiodic stick–slip movements. We show that they are not due to chemotaxis, but are instead consistent with a constant TFP-generated force interacting with EPS, which functions both as a glue and as a lubricant. These movements are quantitatively homologous to the dynamics of earthquakes and other crackling noise systems. These systems exhibit critical behavior, which is characterized by a statistical hierarchy of discrete “avalanche” motions described by a power law distribution. The measured critical exponents from M. xanthus are consistent with mean field theoretical models and with other crackling noise systems, and the measured Lyapunov exponent suggests the existence of highly branched EPS. Such molecular architectures, which are common for efficient lubricants but rare in bacterial EPS, may be necessary for S-motility: We show that the TFP of leading “locomotive” cells initiate the collective motion of follower cells, indicating that lubricating EPS may alleviate the force generation requirements on the lead cell and thus make S-motility possible. PMID:23341622

  2. Fluid Inclusions in Extraterrestrial Samples Fact or Fiction?

    NASA Technical Reports Server (NTRS)

    Bodnar, R. J.; Zolensky, M. E.; Gibson, E. K.

    2000-01-01

    Over the years there have been numerous reports of liquid inclusions in meteorites. Roedder reviews the reported occurrences of liquid inclusions in meteorites and states that "silicate-melt inclusions are expectable and apparently ubiquitous, but the presence of actual liquid inclusions (i.e., with moving bubbles at room temperature) would seem almost impossible." The reason for this conclusion is that meteorites (presumably) form in space at high temperatures and very low pressures where liquid water (or carbon dioxide) is not stable. Perhaps the most infamous report of fluid inclusions in meteorites was that of Warner et al. In that study, the authors reported the presence of two-phase, liquid-vapor inclusions in a diogenite from Antarctica. This report of fluid inclusions generated considerable interest in the meteorite community, and caused many to question existing models for the origin of the diogenites. This interest was short-lived however, as later investigations of the same samples showed that the inclusions were most likely artifacts. Rudnick et al. showed that many of the inclusions in meteorites prepared at the Johnson Space Center contained a fluid that fluoresced strongly under the laser beam on the Raman microprobe. They interpreted this to indicate that the inclusions contained Almag oil used in the preparation of thin sections. Presumably, the Almag oil entered empty vesicles along fractures that were opened intermittently during cutting. Here, the occurrence of unambiguous fluid inclusions that could not have been introduced during sample preparation are described in samples from two different extraterrestrial environments. One environment is represented by the SNC (martian) meteorites ALH 84001 and Nakhla. The second environment is represented by the Monahans 1998 meteorite that fell recently in the USA.

  3. Drosophila Sperm Motility in the Reproductive Tract1

    PubMed Central

    Yang, Yong; Lu, Xiangyi

    2011-01-01

    Motile cilia and flagella exhibit many waveforms as outputs of dynein activation sequences on the highly conserved axoneme. Motility change of sperm in the reproductive tract is difficult to study and remains an important area of investigation. Sperm typically execute a sinusoidal waveform. Increased viscosity in the medium induces somewhat unusual arc-line and helical waveforms in some sperm. However, whether the latter two waveforms occur in vivo is not known. Using green fluorescence protein imaging, we show that Drosophila sperm in the uterus move in circular foci via arc-line waves, predominantly in a tail-leading orientation. From the uterus, a small fraction of the sperm enters the seminal receptacle (SR) in parallel formations. After sperm storage and coincident with fertilization of the egg, the sperm exit the SR via head-leading helical waves. Consistent with the observed bidirectional movements, the sperm show the ability to propagate both base-to-tip and tip-to-base flagellar waves. Numerous studies have shown that sperm motility is regulated by intraflagellar calcium concentrations; in particular, the Pkd2 calcium channel has been shown to affect sperm storage. Our analyses here suggest that Pkd2 is required for the sperm to adopt the correct waveform and movement orientation during SR entry. A working model for the sperm's SR entry movement is proposed. PMID:21293028

  4. Allergic gastrointestinal motility disorders in infancy and early childhood.

    PubMed

    Heine, Ralf G

    2008-08-01

    Gastro-oesophageal reflux disease, constipation and colic are among the most common disorders in infancy and early childhood. In at least a subset of infants with these functional disorders, improvement after dietary elimination of specific food proteins has been demonstrated. Gastrointestinal food allergy should therefore be considered in the differential diagnosis of infants presenting with persistent regurgitation, constipation or irritable behaviour, particularly if conventional treatment has not been beneficial. The diagnosis of food protein-induced gastrointestinal motility disorders is hampered by the absence of specific clinical features or useful laboratory markers. Gastrointestinal biopsies before commencing a hypoallergenic diet may provide the most important diagnostic clues. Early recognition is essential for the optimal management of these patients to prevent nutritional sequelae or aversive feeding behaviours. Treatment relies on hypoallergenic formulae, as well as maternal elimination diets in breast-fed infants. Further research is required to better define the pathological mechanisms and diagnostic markers of paediatric allergic gastrointestinal motility disorders. The following article will present three instructive cases followed by discussion of the clinical presentation, diagnosis, treatment and natural history of food allergic motility disorders in infancy and early childhood. PMID:18713339

  5. Radiation-induced motility alterations in medulloblastoma cells.

    PubMed

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  6. Actin-based motility propelled by molecular motors

    NASA Astrophysics Data System (ADS)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  7. Kinetic-structural analysis of neuronal growth cone veil motility.

    PubMed

    Mongiu, Anne K; Weitzke, Elizabeth L; Chaga, Oleg Y; Borisy, Gary G

    2007-03-15

    Neuronal growth cone advance was investigated by correlative light and electron microscopy carried out on chick dorsal root ganglion cells. Advance was analyzed in terms of the two principal organelles responsible for protrusive motility in the growth cone - namely, veils and filopodia. Veils alternated between rapid phases of protrusion and retraction. Electron microscopy revealed characteristic structural differences between the phases. Our results provide a significant advance in three respects: first, protruding veils are comprised of a densely branched network of actin filaments that is lamellipodial in appearance and includes the Arp2/3 complex. On the basis of this structural and biomarker evidence, we infer that the dendritic nucleation and/or array-treadmilling mechanism of protrusive motility is conserved in veil protrusion of growth cones as in the motility of fibroblasts; second, retracting veils lack dendritic organization but contain a sparse network of long filaments; and third, growth cone filopodia have the capacity to nucleate dendritic networks along their length, a property consistent with veil formation seen at the light microscopic level but not previously understood in supramolecular terms. These elements of veil and filopodial organization, when taken together, provide a conceptual framework for understanding the structural basis of growth cone advance. PMID:17327278

  8. Motility of the jejunum after proctocolectomy and ileal pouch anastomosis.

    PubMed Central

    Chaussade, S; Merite, F; Hautefeuille, M; Valleur, P; Hautefeuille, P; Couturier, D

    1989-01-01

    Proctocolectomy with ileal pouch anastomosis could modify motility of the small intestine through two mechanisms: obstruction or bacterial overgrowth. Motility of the jejunum was measured in 11 patients with ileoanal anastomosis six (n = 6), or 12 (n = 5) months after closure of the loop ileostomy. Manometric recording from the jejunum were made during fasting (four hours) and after a liquid meal (one hour). These findings were compared with those of six healthy volunteers. Motor events were classified as follows: migrating motor complex (MMC), propagated contractions, or discrete clustered contractions. All patients were investigated for bacterial overgrowth (D-glucose breath test). Only two patients had bacterial overgrowth. The frequency of MMC remained unchanged after ileo-anal anastomosis (2.83 (0.37)/four hours) compared with normal volunteers (2.81 (0.29)/four hours). During fasting, four patients had numerous propagated contractions in the jejunum. This condition was associated in two with bacterial overgrowth and in two with intubation of the reservoir. Discrete clustered contractions were found in the seven patients studied postprandially (7.6 (2.5)/h), but not in volunteers. These seven patients emptied their pouch spontaneously and bacterial overgrowth was found in only one. As this motility pattern was previously described in partial small intestinal obstruction, it is postulated that discrete clustered contractions could be the consequence of a functional obstruction as a result of anastomosis of the small intestine to the high pressure zone of the anal sphincters. Images Fig. 1 Fig. 2 PMID:2707637

  9. Possible roles of the endocytic cycle in cell motility.

    PubMed

    Traynor, David; Kay, Robert R

    2007-07-15

    Starving, highly motile Dictyostelium cells maintain an active endocytic cycle, taking up their surface about every 11 minutes. Cell motility depends on a functional NSF (N-ethylmaleimide sensitive factor) protein--also essential for endocytosis and membrane trafficking generally--and we, therefore, investigated possible ways in which the endocytic cycle might be required for cell movement. First, NSF, and presumably membrane trafficking, are not required for the initial polarization of the leading edge in a cyclic-AMP gradient. Second, we can detect no evidence for membrane flow from the leading edge, as photobleached or photoactivated marks in the plasma membrane move forward roughly in step with the leading edge, rather than backwards from it. Third, we find that the surface area of a cell--measured from confocal reconstructions--constantly fluctuates during movement as it projects pseudopodia and otherwise changes shape; increases of 20-30% can often occur over a few minutes. These fluctuations cannot be explained by reciprocal changes in filopodial surface area and they substantially exceed the 2-3% by which membranes can stretch. We propose that the endocytic cycle has a key function in motility by allowing adjustment of cell surface area to match changes in shape and that, without this function, movement is severely impaired. PMID:17606987

  10. [Capacity, motility and emptying of the ileal reservoir].

    PubMed

    Hultén, L

    1993-01-01

    The ileal pouch design has been considered to be an important functional determinant. Whether reported differences are attributed to properties of a specific pouch or simply due to different length of ileum used for their construction is controversial. The pouch motility pattern has been considered to be another important functional determinator. There is evidence that pouches with a low volume threshold, i.e. those in which even a moderate volume distension generates high pressure waves, are associated with poor function. Manovolumetric data and results on the functional outcome carefully analyzed in our colorectal unit fail to support some of these statements. While the expanding property and volume capacity of the S- and K-pouch (design according to the Kock folding principle) are both superior to those of the J-configurated pouch the one year functional result appears quite similar. While ileal pouches which on distension exhibited vivid motility pattern generating high pressure waves were sometimes associated with poor function the observation was not consistent. Evacuation and sensory function of the pelvic pouch differ from that of the normal rectum. The motor compound of the defecation reflex is absent and patients evacuate by straining. Pouch design and motility only explain a fraction of the total variability in function. Factors like stool volume and consistency, and canal deformity, social habits and other patients related factors may also play an important role. PMID:8161131

  11. Ciliary motility activity measurement using a dense optical flow algorithm.

    PubMed

    Parrilla, Eduardo; Armengot, Miguel; Mata, Manuel; Cortijo, Julio; Riera, Jaime; Hueso, José L; Moratal, David

    2013-01-01

    Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. In this study, an automatic method has been established to determine the ciliary motility activity from cell cultures by means of optical flow computation, and has been applied to 136 control cultures and to 144 RSV-infected cultures. The control group presented an average of cell surface with cilia motility per field of 41 ± 15 % (mean ± standard deviation), while the infected group presented a 11 ± 5 %, t-Student p<0.001. The cutoff value to classify a infected specimen was <17.89 % (sensitivity 0.94, specificity 0.93). This methodology has proved to be a robust technique to evaluate cilia motility in cell cultures. PMID:24110720

  12. Stathmin Activity Influences Sarcoma Cell Shape, Motility, and Metastatic Potential

    PubMed Central

    Belletti, Barbara; Nicoloso, Milena S.; Schiappacassi, Monica; Berton, Stefania; Lovat, Francesca; Wolf, Katarina; Canzonieri, Vincenzo; D'Andrea, Sara; Zucchetto, Antonella; Friedl, Peter; Colombatti, Alfonso

    2008-01-01

    The balanced activity of microtubule-stabilizing and -destabilizing proteins determines the extent of microtubule dynamics, which is implicated in many cellular processes, including adhesion, migration, and morphology. Among the destabilizing proteins, stathmin is overexpressed in different human malignancies and has been recently linked to the regulation of cell motility. The observation that stathmin was overexpressed in human recurrent and metastatic sarcomas prompted us to investigate stathmin contribution to tumor local invasiveness and distant dissemination. We found that stathmin stimulated cell motility in and through the extracellular matrix (ECM) in vitro and increased the metastatic potential of sarcoma cells in vivo. On contact with the ECM, stathmin was negatively regulated by phosphorylation. Accordingly, a less phosphorylable stathmin point mutant impaired ECM-induced microtubule stabilization and conferred a higher invasive potential, inducing a rounded cell shape coupled with amoeboid-like motility in three-dimensional matrices. Our results indicate that stathmin plays a significant role in tumor metastasis formation, a finding that could lead to exploitation of stathmin as a target of new antimetastatic drugs. PMID:18305103

  13. Reduced Protein Synthesis Fidelity Inhibits Flagellar Biosynthesis and Motility

    PubMed Central

    Fan, Yongqiang; Evans, Christopher R.; Ling, Jiqiang

    2016-01-01

    Accurate translation of the genetic information from DNA to protein is maintained by multiple quality control steps from bacteria to mammals. Genetic and environmental alterations have been shown to compromise translational quality control and reduce fidelity during protein synthesis. The physiological impact of increased translational errors is not fully understood. While generally considered harmful, translational errors have recently been shown to benefit cells under certain stress conditions. In this work, we describe a novel regulatory pathway in which reduced translational fidelity downregulates expression of flagellar genes and suppresses bacterial motility. Electron microscopy imaging shows that the error-prone Escherichia coli strain lacks mature flagella. Further genetic analyses reveal that translational errors upregulate expression of a small RNA DsrA through enhancing its transcription, and deleting DsrA from the error-prone strain restores motility. DsrA regulates expression of H-NS and RpoS, both of which regulate flagellar genes. We demonstrate that an increased level of DsrA in the error-prone strain suppresses motility through the H-NS pathway. Our work suggests that bacteria are capable of switching on and off the flagellar system by altering translational fidelity, which may serve as a previously unknown mechanism to improve fitness in response to environmental cues. PMID:27468805

  14. Sperm motility-initiating substance in newt egg-jelly induces differential initiation of sperm motility based on sperm intracellular calcium levels.

    PubMed

    Watanabe, Akihiko; Takayama-Watanabe, Eriko; Vines, Carol A; Cherr, Gary N

    2011-01-01

    Sperm motility-initiating substance (SMIS), a novel motility inducer from newt egg-jelly, is activated by the release from associated jelly substances at the beginning of internal fertilization and affects female-stored sperm. We examined motility initiation kinetics of newt sperm in response to SMIS by monitoring the changes of sperm intracellular calcium ([Ca²(+)](i)). In quiescent non-motile sperm loaded with the Ca²(+) indicator Fluo-4, intracellular free Ca²(+) was observed around mitochondria using confocal scanning laser microscopy. A slight increase in [Ca²(+)](i) occurred simultaneously and transiently at motility initiation in sperm treated with either heated jelly extract (hJE) containing activated SMIS, or a low osmotic solution, which naturally initiates motility in externally-fertilizing amphibians and can initiate motility in urodele sperm. When the increase of [Ca²(+)](i) at motility-initiation was monitored using spectrofluorometry, large increases in [Ca²(+)](i) occurred immediately in the low osmotic solution and within 1.5 min in the hJE. In the intact jelly extract (no heating), small increases of [Ca²(+)](i) irregularly occurred from around 1 min and for about 4 min, during which motility was differentially initiated among sperm. These results indicate that the SMIS induces differential initiation of sperm motility depending on the activational states of the SMIS and its overall activity. The motility initiation in the jelly extract was delayed in sperm whose intracellular Ca²(+) had been chelated with BAPTA-AM. The relative levels of [Ca²(+)](i) were variable with a mean of 414 ± 256 nmol/L among resting sperm, suggesting that the level of [Ca²(+)](i) in the resting sperm modulates the responsiveness to the SMIS. PMID:21261606

  15. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  16. Cumberland Falls chondritic inclusions: III. Consortium study of relationship to inclusions in Allan Hills 78113 aubrite

    SciTech Connect

    Lipschutz, M.E.; Verkouteren, R.M. ); Sears, D.W.G.; Hasan, F.A. ); Prinz, M.; Weisberg, M.K.; Nehru, C.E.; Delaney, J.S. ); Grossman, L.; Boily, M. )

    1988-07-01

    The authors describe the mineralogy and report contents of Ag, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U and Zn determined by RNAA in three primitive chondritic inclusions from the ALH A78113 aubrite. Comparison of these data with those for large, petrologic type 3 chondritic clasts from the Cumberland Falls aubrite and the discovery of small clasts in it like those in ALH A78113 indicate that all constitute a single chondritic suite. They report thermoluminescence data for Cumberland Falls chondritic inclusions and achondritic host. These results, together with mineralogic, major, minor and trace element information, demonstrate that aubrite inclusions represent a different sort of type 3 chondrite, not an LL3 chondrite altered during equilibration with aubrite host. Instead, the aubrite inclusions represent a distinct chondrite class. These inclusions reflect nebular condensation/accretion over a broad redox range and at temperatures relatively high compared with those at which other type 3 chondrites formed. Limited metamorphism and reduction occurred during condensation/accretion, prior to incorporation into aubrite host. During the impact of the chondritic parent body with the aubrite parent body, chondrite fragments were strongly shocked and cooled rapidly. They then mixed with aubrite host, possibly in a regolith, so that these aubrites now represent impact breccias.

  17. Social Inclusion and Metrolingual Practices

    ERIC Educational Resources Information Center

    Otsuji, Emi; Pennycook, Alastair

    2011-01-01

    In this paper, we explore the implications of metrolingual language practices for how we understand social inclusion. A vision of social inclusion that includes bi- and multilingual capacities may comprise an appreciation of a diversity of languages other than English, and the skills and capabilities of multilingual language users, yet it is all…

  18. Serbian Teachers' Attitudes towards Inclusion

    ERIC Educational Resources Information Center

    Kalyva, Efrosini; Gojkovic, Dina; Tsakiris, Vlastaris

    2007-01-01

    This study investigated the attitudes of 72 Serbian teachers towards the inclusion of children with Special Educational Needs (SEN) in mainstream schools; they were asked to complete "My Thinking About Inclusion Questionnaire" (Stoiber, Goettinger, & Goetz, 1998). It was found that Serbian teachers held overall slightly negative attitudes towards…

  19. Principals Influence Culture of Inclusion.

    ERIC Educational Resources Information Center

    King, Sophia

    2000-01-01

    Three New American High Schools (in Pittsburgh, Baltimore, and Greenbelt, Maryland) have successfully replaced the special-education culture of separation with a culture of inclusion. A large part of moving from self-contained practices to inclusion was helping students become self-advocates, so that the world outside school and home would not…

  20. In Support of Unfinished Inclusion

    ERIC Educational Resources Information Center

    Hausstätter, Rune Sarromaa

    2014-01-01

    This article claims that the radical potential inherent in the origins of inclusive education has been altered into a tool for protecting the status quo. Drawing on ideas from the essay "The Unfinished" by Thomas Mathiesen (1971), I discuss inclusion as a potential alternative to mainstream education and argue that the potential power of…

  1. Building Inclusive Cities and Communities

    ERIC Educational Resources Information Center

    Freiler, Christa

    2008-01-01

    Canada prides itself on being an inclusive country. Immigrants from all over the world arrive in Canada's cities with their families because they feel welcome and safe. According to research, engagement towards social inclusion increased among Canadians during the last 30 last years. These changing values resulted in the creation of official…

  2. Friendship in Inclusive Physical Education

    ERIC Educational Resources Information Center

    Seymour, Helena; Reid, Greg; Bloom, Gordon A.

    2009-01-01

    Social interaction and development of friendships between children with and without a disability are often proposed as potential outcomes of inclusive education. Physical activity specialists assert that exercise and sport environments may be conducive to social and friendship outcomes. This study investigated friendship in inclusive physical…

  3. Stiffening solids with liquid inclusions

    NASA Astrophysics Data System (ADS)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  4. Promoting a Lifetime of Inclusion.

    ERIC Educational Resources Information Center

    Renzaglia, Adelle; Karvonen, Meagan; Drasgow, Erik; Stoxen, Craig C.

    2003-01-01

    Discussion of ways to promote inclusion for individuals with severe disabilities first establishes the principle of normalization, then describes conditions and practices that reflect this principle and foster inclusion across the life span. These include universal design, person-centered planning, self-determination, and positive behavior…

  5. Early Childhood Inclusion in Turkey

    ERIC Educational Resources Information Center

    Diken, Ibrahim H.; Rakap, Salih; Diken, Ozlem; Tomris, Gozde; Celik, Secil

    2016-01-01

    Inclusion of young children with disabilities into regular preschool classrooms is a common practice that has been implemented for several decades in industrialized nations around the world, and many developing countries including Turkey have been developing and implementing laws, regulation, and services to support inclusion and teaching in…

  6. Inclusion in Malaysian Integrated Preschools

    ERIC Educational Resources Information Center

    Sukumaran, Sailajah; Loveridge, Judith; Green, Vanessa A.

    2015-01-01

    Inclusive education has been introduced through a number of policy developments in Malaysia over the last 10 years but there is little research investigating the extent and nature of inclusive education for preschoolers with special educational needs (SEN). This study surveyed both regular and special education teachers in Malaysian integrated…

  7. Fluid Inclusions in Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Saylor, J.; Zolensky, M. E.; Bodnar, R. J.; Le L.; Schwandt, C.

    2001-01-01

    Fluid inclusions are present in carbonaceous chondrites. Of the chondrites studied (CI1, CM1 and 2, CV3) fluid inclusions were found only in CM2s and CI1s, and by extrapolation are most likely to be found there in the future. Additional information is contained in the original extended abstract.

  8. Quality in Inclusive Preschool Classrooms

    ERIC Educational Resources Information Center

    Hestenes, Linda L.; Cassidy, Deborah J.; Shim, Jonghee; Hegde, Archana V.

    2008-01-01

    Research Findings: Quality of care for preschool children in inclusive and noninclusive classrooms was examined in two studies. In Study 1, comparisons across a large sample of classrooms (N = 1, 313) showed that inclusive classrooms were higher than noninclusive classrooms in global quality as well as on two dimensions of quality…

  9. Inclusion Kinetics of Polyrotaxanes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hideaki; Takahashi, Shoko; Ito, Kohzo; Yamada, Norifumi

    Inclusion complex (IC) formation of α-cyclodextrin (α-CD) and poly(ethylene glycol) (PEG) brush in water was investigated by Surface Plasmon Resonance Spectroscopy(SPR), neutron reflectometry(NR) and grazing incident wide angle X-ray scattering(GISANS). Spontaneous IC formation of α-CD with PEG (polyrotaxanes) is believed to be due to hydrophobic interaction between the hydrophobic interior of α-CD and PEG; however, the detail of the IC formation kinetics has not been observed because IC formation results in aggregation and precipitation of the complex. SPR revealed that IC formation occurs after induction period, which often appears in crystallization. When concentration of α-CD solution is 10%, IC consisting randomly oriented α-CD polycrystal appeared. In contrast, when the concentration of α-CD solution is 5%, a uniform 10-nm-thick IC layer with α-CD stacked perpendicular to the substrate appeared. 10-nm-thick IC was also found in the diluted PEG brush in contact with a 10% α-CD solution. The characteristic 10-nm-thick layer is related to the folded crystalline structure of α-CD on PEG brush. Such crystallization was proved to be the main driving force for IC formation.

  10. Inclusion Body Myositis

    PubMed Central

    Barohn, Richard J.

    2014-01-01

    The idiopathic inflammatory myopathies (IIM) are a heterogenous group of rare disorders that share many similarities. In addition to sporadic inclusion body myositis (IBM), these include dematomyositis (DM), polymyositis (PM), and autoimmune necrotizing myopathy (NM). For discussion of later three disorders, the reader is referred to the IIM review in this issue. IBM is the most common IIM after age 50. It typically presents with chronic insidious proximal leg and/or distal arm asymmetric muscle weakness leading to recurrent falls and loss of dexterity. Creatine kinase (CK) is up to 15 times elevated in IBM and needle electromyograhy (EMG) mostly shows a chronic irritative myopathy. Muscle histopathology demonstrates endomysial inflammatory exudates surrounding and invading non-necrotic muscle fibers often times accompanied by rimmed vacuoles and protein deposits. Despite inflammatory muscle pathology suggesting similarity with PM, it likely that IBM is has a prominent degenerative component as supported by refractoriness to immunosuppressive therapy. We review the evolution of our knowledge in IBM with emphasis on recent developments in the field and discuss ongoing clinical trials. PMID:25037082

  11. Sperm motility of externally fertilizing fish and amphibians.

    PubMed

    Browne, R K; Kaurova, S A; Uteshev, V K; Shishova, N V; McGinnity, D; Figiel, C R; Mansour, N; Agney, D; Wu, M; Gakhova, E N; Dzyuba, B; Cosson, J

    2015-01-01

    We review the phylogeny, sperm competition, morphology, physiology, and fertilization environments of the sperm of externally fertilizing fish and amphibians. Increased sperm competition in both fish and anurans generally increases sperm numbers, sperm length, and energy reserves. The difference between the internal osmolarity and iconicity of sperm cells and those of the aquatic medium control the activation, longevity, and velocity of sperm motility. Hypo-osmolarity of the aquatic medium activates the motility of freshwater fish and amphibian sperm and hyperosmolarity activates the motility of marine fish sperm. The average longevity of the motility of marine fish sperm (~550 seconds) was significantly (P < 0.05) greater than that of freshwater fish sperm (~150 seconds), with the longevities of both marine and freshwater fish being significantly (P < 0.05) lower than that of anuran sperm (~4100 seconds). The average velocity of anuran sperm (25 μm/s) was significantly (P < 0.05) lower than that of marine fish (140 μm/s) or freshwater fish (135 μm/s) sperm. The longevity of the sperm of giant salamanders (Cryptobranchoidea) of approximately 600 seconds was greater than that of freshwater fish sperm but much lower than anuran sperm. Our research and information from the literature showed that higher osmolarities promote greater longevity in anuran sperm, and some freshwater fish sperm, and that anuran and cryptobranchid sperm maintained membrane integrity long after the cessation of motility, demonstrating a preferential sharing of energy reserves toward the maintenance of membrane integrity. The maintenance of the membrane integrity of anuran sperm in fresh water for up to 6 hours showed an extremely high osmotic tolerance relative to fish sperm. The very high longevity and osmotic tolerance of anuran sperm and high longevity of cryptobranchid sperm, relative to those of freshwater fish, may reflect the complex fertilization history of amphibian sperm in

  12. High temperature behavior of metallic inclusions in uranium dioxide

    SciTech Connect

    Yang, R.L.

    1980-08-01

    The object of this thesis was to construct a temperature gradient furnace to simulate the thermal conditions in the reactor fuel and to study the migration of metallic inclusions in uranium oxide under the influence of temperature gradient. No thermal migration of molybdenum and tungsten inclusions was observed under the experimental conditions. Ruthenium inclusions, however, dissolved and diffused atomically through grain boundaries in slightly reduced uranium oxide. An intermetallic compound (probably URu/sub 3/) was formed by reaction of Ru and UO/sub 2-x/. The diffusivity and solubility of ruthenium in uranium oxide were measured.

  13. Modification of fluid inclusions in quartz by deviatoric stress. III: Influence of principal stresses on inclusion density and orientation

    NASA Astrophysics Data System (ADS)

    Tarantola, A.; Diamond, L. W.; Stünitz, H.; Thust, A.; Pec, M.

    2012-09-01

    Extraction of useful geochemical, petrologic and structural information from deformed fluid inclusions is still a challenge in rocks displaying moderate plastic strain. In order to better understand the inclusion modifications induced by deviatoric stresses, six deformation experiments were performed with a Griggs piston-cylinder apparatus. Natural NaCl-H2O inclusions in an oriented quartz crystal were subjected to differential stresses of 250-470 MPa at 700-900 °C and at 700-1,000 MPa confining pressure. Independently of the strain rate and of the crystallographic orientation of the quartz, the inclusions became dismembered and flattened within a crystallographic cleavage plane subperpendicular to σ 1. The neonate (newly formed) inclusions that result from dismemberment have densities that tend towards equilibrium with P fluid = σ 1 at T shearing. These results permit ambiguities in earlier deformation experiments on CO2-H2O-NaCl to be resolved. The results of the two studies converge, indicating that density changes in neonate inclusions are promoted by high differential stresses, long periods at high P and high T, and fluid compositions that maximize quartz solubility. Neonates spawned from large precursor inclusions show greater changes in density that those spawned from small precursors. These findings support the proposal that deformed fluid inclusions can serve as monitors of both the orientation and magnitude of deviatoric stresses during low-strain, ductile deformation of quartz-bearing rocks.

  14. Inclusion of seminal plasma in sperm cryopreservation of Iberian pig.

    PubMed

    Gómez-Fernández, José; Gómez-Izquierdo, Emilio; Tomás, Cristina; González-Bulnes, Antonio; Sánchez-Sánchez, Raúl; de Mercado, Eduardo

    2012-01-01

    The aim of the present study was to evaluate the inclusion of seminal plasma (SP) in the freezing extender, trying to preserve as much as possible of SP with spermatozoa from Iberian pigs, thus improving the conservation of animal genetic resources of this breed. Experiment 1, evaluated the effect of substituting water with SP as diluent in the freezing media in different proportions (0%, 10%, 25%, 50%, 75% and 100%), over pre-freezing (at 10°C and 5°C) and post-thawing sperm quality. The results showed that over 50% of SP in the extender, significantly decreased sperm quality in comparison to the control sample (0% SP) and the samples with 10% and 25% of SP (P<0.05). No significant differences were found between the control sample and the samples with 10% and 25% SP (P>0.05), but treatment with 25% did not show significant differences between the time of incubation at 37°C after thawing (P>0.05), showing greater sperm quality resistance over time. Experiment 2, evaluated the effect of prolonged incubation period, until 480min (simulating the lifespan of sperm in the female genital tract), of sperm samples with 0%, 10% and 25% of SP. Treatment with 25% of SP maintained better sperm quality over time, compared to control sample. Significant differences were observed especially in the parameters of motility analysis (TMS, total motile spermatozoa; PMS: progressive motility spermatozoa. P<0.05). In Experiment 3, the effect of the presence of SP was evaluated during the thawing process. Although some differences were observed between treatments, these differences were not as clear as the previous experiments. In conclusion, replacement of 25% of the water by SP as diluent in the freezing extender could be considered the maximum percentage of inclusion, without harmful effects to the sperm. In addition, this proportion of SP maintained Iberian sperm quality for longer time when it was present during the freezing and thawing process. PMID:22266249

  15. Lead chloride affects sperm motility and acrosome reaction in mice: lead affects mice sperm motility and acrosome reaction.

    PubMed

    Oliveira, Helena; Spanò, Marcello; Santos, Conceição; Pereira, Maria de Lourdes

    2009-08-01

    Lead is highly toxic and persistent in the environment and, thus, a major concern for public health. In this study, the effects of lead chloride (PbCl2) on mouse epididymal sperm were evaluated. Male mice were subcutaneously injected with 74 and 100 mg PbCl2/kg body weight for four consecutive days. Sperm was collected from the epididymis and several parameters of sperm function, such as sperm density, motility, viability, mitochondrial function, acrosome integrity and morphology, were evaluated. Furthermore, DNA fragmentation was assessed by the terminal deoxylnucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) assay and chromatin integrity was evaluated by sperm chromatin structure assay (SCSA). In order to assess direct effects on existing sperm population, we sacrificed one group for each condition at day 5. The effects of lead upon one entire spermatogenic cycle were evaluated on day 35. Both lead concentrations used in this work affected sperm motility, although no significant differences were observed in sperm viability, mitochondrial function and DNA/chromatin integrity. However, a decrease in the percentage of intact acrosomes was also observed, mirroring a lead-induced premature acrosome reaction. Thus, the results obtained indicate that, together with impaired motility, the effect of lead toxicity on acrosome integrity, leading to premature reaction, may compromise the ability of sperm to fertilize the oocyte. PMID:18594995

  16. Pseudomonas aeruginosa Cystic Fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro. Results Our investigations revealed a wide diversity in the production, architecture and control of biofilm formation. Of 96 isolates, 49% possessed swimming motility, 27% twitching and 52% swarming motility, while 47% were non-motile. Microtitre plate assays for biofilm formation showed a range of biofilm formation ability from biofilm deficient phenotypes to those that formed very thick biofilms. A comparison of the motility and adherence properties of individual strains demonstrated that the presence of swimming and twitching motility positively affected biofilm biomass. Crucially, however, motility was not an absolute requirement for biofilm formation, as 30 non-motile isolates actually formed thick biofilms, and three motile isolates that had both flagella and type IV pili attached only weakly. In addition, CLSM analysis showed that biofilm-forming strains of P. aeruginosa were in fact capable of entrapping non-biofilm forming strains, such that these 'non-biofilm forming' cells could be observed as part of the mature biofilm architecture. Conclusions Clinical isolates that do not produce biofilms in the laboratory must have the ability to survive in the patient lung. We propose that a synergy exists between isolates in vivo, which allows "non biofilm-forming" isolates to be incorporated into the biofilm. Therefore, there is the potential for strains that are apparently non-biofilm forming in vitro to participate in biofilm-mediated pathogenesis in the CF lung. PMID:20141637

  17. The infidelity of melt inclusions?

    NASA Astrophysics Data System (ADS)

    Kent, A. J.

    2008-12-01

    Melt inclusions provide important information about magmatic systems and represent unique records of magma composition and evolution. However, it is also clear that melt inclusions do not necessarily constitute a petrological 'magic bullet', and potential exists for trapped melt compositions to be modified by a range of inclusion-specific processes. These include trapping of diffusional boundary layers, crystallization of the host mineral after trapping and dissolution of co-trapped minerals during homogenization, diffusional exchange between trapped liquid and the host mineral and external melt, and cryptic alteration of trapped material during weathering or hydrothermal alteration. It clearly important to identify when melt inclusions are unmodified, and which compositional indices represent the most robust sources of petrogenetic information. In this presentation I review and discuss various approaches for evaluating compositions and compositional variations in inclusion suites. An overriding principle is that the variations evident in melt inclusions should be able to be understood in terms of petrological processes that are known, or can be reasonably inferred to also effect bulk magma compositions. One common approach is to base petrological conclusions on species that should be more robust, and many workers use variations in incompatible trace elements for this purpose. However important information may also be obtained from a comparison of variations in melt inclusions and the lavas that host them, and in most cases this comparison is the key to identifying inclusions and suites that are potentially suspect. Comparisons can be made between individual inclusions and lavas, although comparison of average inclusion composition and the host lava, after correction for differences in crystal fractionation, may also be valuable. An important extension of this is the comparison of the variability of different species in inclusions and host lavas. This also provides

  18. Nontraditional Student Perceptions of Collegiate Inclusion

    ERIC Educational Resources Information Center

    Witkowsky, Patricia; Mendez, Sylvia; Ogunbowo, Oluwafolakemi; Clayton, Grant; Hernandez, Nancy

    2016-01-01

    This study explored student responses to a Student Inclusiveness Survey (SIS), with specific attention to nontraditional student responses about collegiate inclusion. Specifically, the SIS constructs that related to inclusion, the Perceptions of Inclusiveness and Institutional Safeguarding of Inclusiveness, were analyzed descriptively, and…

  19. The Sinorhizobium meliloti ntrX Gene Is Involved in Succinoglycan Production, Motility, and Symbiotic Nodulation on Alfalfa

    PubMed Central

    Wang, Dong; Xue, Haiying; Wang, Yiwen; Yin, Ruochun; Xie, Fang

    2013-01-01

    Rhizobia establish a symbiotic relationship with their host legumes to induce the formation of nitrogen-fixing nodules. This process is regulated by many rhizobium regulators, including some two-component regulatory systems (TCSs). NtrY/NtrX, a TCS that was first identified in Azorhizobium caulinodans, is required for free-living nitrogen metabolism and symbiotic nodulation on Sesbania rostrata. However, its functions in a typical rhizobium such as Sinorhizobium meliloti remain unclear. Here we found that the S. meliloti response regulator NtrX but not the histidine kinase NtrY is involved in the regulation of exopolysaccharide production, motility, and symbiosis with alfalfa. A plasmid insertion mutant of ntrX formed mucous colonies, which overproduced succinoglycan, an exopolysaccharide, by upregulating its biosynthesis genes. This mutant also exhibited motility defects due to reduced flagella and decreased expression of flagellins and regulatory genes. The regulation is independent of the known regulatory systems of ExoR/ExoS/ChvI, EmmABC, and ExpR. Alfalfa plants inoculated with the ntrX mutant were small and displayed symptoms of nitrogen starvation. Interestingly, the deletion mutant of ntrY showed a phenotype similar to that of the parent strain. These findings demonstrate that the S. meliloti NtrX is a new regulator of succinoglycan production and motility that is not genetically coupled with NtrY. PMID:24038694

  20. Acanthamoeba feature a unique backpacking strategy to trap and feed on Listeria monocytogenes and other motile bacteria.

    PubMed

    Doyscher, Dominik; Fieseler, Lars; Dons, Lone; Loessner, Martin J; Schuppler, Markus

    2013-02-01

    Despite its prominent role as an intracellular human pathogen, Listeria monocytogenes normally features a saprophytic lifestyle, and shares many environmental habitats with predatory protozoa. Earlier studies claimed that Acanthamoeba may act as environmental reservoirs for L. monocytogenes, whereas others failed to confirm this hypothesis. Our findings support the latter and provide clear evidence that L. monocytogenes is unable to persist in Acanthamoeba castellanii and A. polyphaga. Instead, external Listeria cells are rapidly immobilized on the surface of Acanthamoeba trophozoites, forming large aggregates of densely packed bacteria that we termed backpacks. While the assembly of backpacks is dependent on bacterial motility, flagellation alone is not sufficient. Electron micrographs showed that the aggregates are held together by filaments of likely amoebal origin. Time-lapse microscopy revealed that shortly after the bacteria are collected, the amoeba can change direction of movement, phagocytose the backpack and continue to repeat the process. The phenomenon was also observed with avirulent L. monocytogenes mutants, non-pathogenic Listeria, and other motile bacteria, indicating that formation of backpacks is not specific for L. monocytogenes, and independent of bacterial pathogenicity or virulence. Hence, backpacking appears to represent a unique and highly effective strategy of Acanthamoeba to trap and feed on motile bacteria. PMID:22925311

  1. Effects of environment factors on initiation of sperm motility in sea cucumber Apostichopus japonicus (Selenka)

    NASA Astrophysics Data System (ADS)

    Yu, Li; Shao, Mingyu; Bao, Zhenmin; Hu, Jingjie; Zhang, Zhifeng

    2011-06-01

    Sperm of sea cucumber Apostichopus japonicus (Selenka) were quiescent in electrolyte NaCl solution and artificial seawater (ASW) and nonelectrolyte glucose and mannitol solutions when the osmolality was less than 200 mOsm kg-1. The sperm started to be motile as a result of increased osmolality, indicating an osmolality-dependent initiation of sperm motility in sea cucumber. After a brief incubation in hypotonic NaCl and glucose solutions with osmolalities of 200 and 400 mOsm kg-1, sperm lost partial motile ability. Sperm became immobilized when pH was 6.0 in NaCl, glucose and mannitol solutions, suggesting that an H+ release is involved in sperm activation. The decreased pH had no effect on the percentage of motile sperm in ASW, whereas it delayed the time period to reach the maximum motility (motilitymax). Extracellular Ca2+ in electrolyte solutions was not essential for motility stimulation but shortened the time of reaching motilitymax. When Ca2+ was mixed in nonelectrolyte solutions the sperm motility was completely suppressed. The K+ channel blocker, quinine, suppressed the sperm motility in electrolyte solution, showing a possible involvement of K+ transport in the process. High K+ concentration did not affect the sperm motility in NaCl solution, but decreased it in ASW and almost entirely suppressed it in nonelectrolyte solutions. The different effects of pH and K+ in ASW and NaCl solution indicate that external ions may also regulate sperm motility.

  2. Bio-mimetic surface engineering of plasmid-loaded nanoparticles for active intracellular trafficking by actin comet-tail motility.

    PubMed

    Ng, Chee Ping; Goodman, Thomas T; Park, In-Kyu; Pun, Suzie H

    2009-02-01

    Intracellular transport after endosomal escape presents one of the major barriers for efficient non-viral gene delivery because plasmid DNA and synthetic nanoparticulate carriers suffer from significantly restricted diffusion in the cytoplasm. We postulate that forces generated by actin polymerization, a mechanism used by several bacterial pathogens such as Listeria monocytogenes, can be harnessed to propel nanoparticles within the cytoplasm and thereby overcome diffusional limitations associated with gene transport in the cell cytoplasm. In this work, we synthesized and characterized plasmid DNA-containing nanoparticles modified with ActA protein, the single protein in L. monocytogenes responsible for activating actin polymerization and initiating actin comet-tail propulsion. The motility of the ActA-modified nanoparticles was assessed in Xenopus laevis cytoplasmic extract supplemented with fluorescently labeled actin. Nanoparticle motility was monitored using multi-color, time-lapse fluorescence microscopy for the formation of actin comet tails attached to the fluorescently labeled vehicle. We observed particle motility with velocities approximately 0.06 microm/s with anionic-charged plasmid carriers formed from either poly(lactic-co-glycolic acid) (PLGA) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, but interestingly not with cationic particles assembled by encapsulation of plasmid with either polyethylenimine (PEI) or 1,2-dioleoyl-3-trimethylammonium-propane/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOTAP/DOPE) lipids. Control particles coated with albumin instead of ActA also showed no motility. Taken together, we have demonstrated the feasibility of translating the comet-tail propulsion mechanism to synthetic drug carriers as a potential approach to overcome intracellular transport barriers, and also have identified appropriate gene delivery systems that can be employed for this mechanism. PMID:19046764

  3. Cranberry derivatives enhance biofilm formation and transiently impair swarming motility of the uropathogen Proteus mirabilis HI4320.

    PubMed

    O'May, Che; Amzallag, Olivier; Bechir, Karim; Tufenkji, Nathalie

    2016-06-01

    Proteus mirabilis is a major cause of catheter-associated urinary tract infection (CAUTI), emphasizing that novel strategies for targeting this bacterium are needed. Potential targets are P. mirabilis surface-associated swarming motility and the propensity of these bacteria to form biofilms that may lead to catheter blockage. We previously showed that the addition of cranberry powder (CP) to lysogeny broth (LB) medium resulted in impaired P. mirabilis swarming motility over short time periods (up to 16 h). Herein, we significantly expanded on those findings by exploring (i) the effects of cranberry derivatives on biofilm formation of P. mirabilis, (ii) whether swarming inhibition occurred transiently or over longer periods more relevant to real infections (∼3 days), (iii) whether swarming was also blocked by commercially available cranberry juices, (iv) whether CP or cranberry juices exhibited effects under natural urine conditions, and (v) the effects of cranberry on medium pH, which is an indirect indicator of urease activity. At short time scales (24 h), CP and commercially available pure cranberry juice impaired swarming motility and repelled actively swarming bacteria in LB medium. Over longer time periods more representative of infections (∼3 days), the capacity of the cranberry material to impair swarming diminished and bacteria would start to migrate across the surface, albeit by exhibiting a different motility phenotype to the regular "bull's-eye" swarming phenotype of P. mirabilis. This bacterium did not swarm on urine agar or LB agar supplemented with urea, suggesting that any potential application of anti-swarming compounds may be better suited to settings external to the urine environment. Anti-swarming effects were confounded by the ability of cranberry products to enhance biofilm formation in both LB and urine conditions. These findings provide key insights into the long-term strategy of targeting P. mirabilis CAUTIs. PMID:27090825

  4. [Study on the inclusion compound of avermectin by infrared spectroscopy].

    PubMed

    Shen, Wen; Zhang, Guang-Hua; Guo, Ning; Li, Yun-Tao

    2014-05-01

    This study was designed to investigate the formation and effect of inclusion complex of Avermectin-beta-cyclodextrin based on the accommodation property of beta-cyclodextrin's molecular cavity. The inclusion complex of Averrnectin-beta-cyclodextrin was prepared using saturated solution method and high performance liquid chromatography (HPLC) was employed to determine its entraping efficiency. The formation of Avermectin-beta-cyclodextrin inclusion complex was also demonstrated by infrared spectroscopy(IR). The change of chemical structure produced by photocatalysis of Abamectin was analyzed and the effect of inclusion complex to strengthen the photolysis stability of Abamectin's chemical structure was studied. The results show that the entraping efficiency of the inclusion complex was 40. 5%. The IR analysis presents that the intermolecular hydrogen bond was formed in the Avermectin-beta-cyclodextrin inclusion complex, indicating the composition effect was different from physical mixture. The lactones structure of Avermectin Bla can be photodecomposed and disrupted. After decomposition, the infrared stretching vibration peak of C-O-C structure disappeared and the lactone bond was significantly broken. The lactones structure of avermectin Bla was covered by the inclusion molecular loci in beta-cyclodextrin after the formation of avermectin-beta-cyclodextrin inclusion complex, providing a good photophobic protection for C-O-C structure in the macrocyclic lactone structure of avermectin Bla and improving the photostability of avermectin Bla molecule. The innovation of this study is that the structure and the characters of the prepared avermectin-beta-cyclodextrin inclusion complex were analyzed using spectrum methods. This inclusion complex is expected to be the ideal intermediate in the construction of protective controlled release formulation of avermectin. PMID:25095407

  5. Tumor metastatic promoter ABCE1 interacts with the cytoskeleton protein actin and increases cell motility.

    PubMed

    Han, Xu; Tian, Ye; Tian, Dali

    2016-06-01

    ABCE1, a member of the ATP-binding cassette (ABC) family, is a candidate tumor metastatic promoter in lung cancer. Overexpression of ABCE1 is correlated with aggressive growth and metastasis in lung cancer cells. However, the exact mechanism remains unclear. In the present study, GST pull-down assay provided evidence of the possible interaction between ABCE1 and β-actin using GST-ABCE1 as a bait protein. Co-immunoprecipitation manifested ABCE1 formed complexes with β-actin in vivo. ABCE1 overexpression significantly increased the migration of lung cancer cells which may be attributed to the promotion of F-actin rearrangements. Taken together, these data suggest that overexpression of ABCE1 produces an obvious effect on the motility of lung cancer cells through cytoskeleton rearrangement. PMID:27109616

  6. Growth, collapse, and stalling in a mechanical model for neurite motility

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Jerusalem, Antoine; Goriely, Alain

    2016-03-01

    Neurites, the long cellular protrusions that form the routes of the neuronal network, are capable of actively extending during early morphogenesis or regenerating after trauma. To perform this task, they rely on their cytoskeleton for mechanical support. In this paper, we present a three-component active gel model that describes neurites in the three robust mechanical states observed experimentally: collapsed, static, and motile. These states arise from an interplay between the physical forces driven by growth of the microtubule-rich inner core of the neurite and the acto-myosin contractility of its surrounding cortical membrane. In particular, static states appear as a mechanical traction or compression balance of these two parallel structures. The model predicts how the response of a neurite to a towing force depends on the force magnitude and recovers the response of neurites to several drug treatments that modulate the cytoskeleton active and passive properties.

  7. Functions of plant-specific myosin XI: from intracellular motility to plant postures.

    PubMed

    Ueda, Haruko; Tamura, Kentaro; Hara-Nishimura, Ikuko

    2015-12-01

    The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture. PMID:26432645

  8. A Novel Function for p53: Regulation of Growth Cone Motility through Interaction with Rho Kinase

    PubMed Central

    Qin, Qingyu; Baudry, Michel; Liao, Guanghong; Noniyev, Albert; Galeano, James; Bi, Xiaoning

    2009-01-01

    The transcription factor p53 suppresses tumorgenesis by regulating cell proliferation and migration. We investigated whether p53 could also control cell motility in postmitotic neurons. P53 isoforms recognized by phospho-p53-specific (at Ser15) or “mutant” conformation specific antibodies were highly and specifically expressed in axons and axonal growth cones in primary hippocampal neurons. Inhibition of p53 function by inhibitors, siRNAs, or by dominant negative forms, induced axonal growth cone collapse, whereas p53 over-expression led to larger growth cones. Furthermore, deletion of the p53 nuclear export signal blocked its axonal distribution and induced growth cone collapse. P53 inhibition-induced axonal growth cone collapse was significantly reduced by the Rho kinase (ROCK) inhibitor, Y27632. Our results reveal a new function for p53 as a critical regulator of axonal growth cone behavior by suppressing ROCK activity. PMID:19386914

  9. Diabetes-related dysfunction of the small intestine and the colon: focus on motility.

    PubMed

    Horváth, Viktor József; Putz, Zsuzsanna; Izbéki, Ferenc; Körei, Anna Erzsébet; Gerő, László; Lengyel, Csaba; Kempler, Péter; Várkonyi, Tamás

    2015-11-01

    In contrast to gastric dysfunction, diabetes-related functional impairments of the small and large intestine have been studied less intensively. The gastrointestinal tract accomplishes several functions, such as mixing and propulsion of luminal content, absorption and secretion of ions, water, and nutrients, defense against pathogens, and elimination of waste products. Diverse functions of the gut are regulated by complex interactions among its functional elements, including gut microbiota. The network-forming tissues, the enteric nervous system) and the interstitial cells of Cajal, are definitely impaired in diabetic patients, and their loss of function is closely related to the symptoms in diabetes, but changes of other elements could also play a role in the development of diabetes mellitus-related motility disorders. The development of our understanding over the recent years of the diabetes-induced dysfunctions in the small and large intestine are reviewed in this article. PMID:26374571

  10. Genetics Home Reference: inclusion body myopathy 2

    MedlinePlus

    ... Conditions inclusion body myopathy 2 inclusion body myopathy 2 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Inclusion body myopathy 2 is a condition that primarily affects skeletal muscles , ...

  11. Altered motility causes the early gastrointestinal toxicity of irradiation

    SciTech Connect

    Erickson, B.A.; Moulder, J.E.; Otterson, M.F.; Sarna, S.K. )

    1994-03-01

    This article reviews studies of large and small intestinal contractile activity following radiation exposure. Studies of motility utilize strain gauge transducers surgically implanted on the seromuscular layer of the small intestine. All studies were performed in mixed breed dogs to record the occurrence of normal contractions, giant migrating contractions (GMCs) and retrograde giant contractions (RGCs) before, during and after irradiation (22.5 Gy in 9 fractions at 3 fractions/week). Giant migrating contractions and retrograde giant contractions are infrequent in the healthy state. However, in diseased states, GMCs are associated with abdominal cramps and diarrhea, and RGCs precede vomiting. In fasted animals, fractionated abdominal irradiation dramatically increased the frequency of GMCs, with the incidence peaking after the second dose. The increased frequency of GMCS occurred as early as a few hours after the first radiation fraction, and returned to normal within days of cessation of radiation. RGCs were also significantly increased after abdominal irradiation. The frequency of RGCs was greatest on the first and sixth dose of radiation. Clinically, the dogs developed nausea, vomiting and diarrhea as early as the first day of irradiation. In dogs studied in the fed state, decreased amplitude, duration, and frequency of postprandial contractions occurred. These changes may slow intestinal transit during irradiation. Radiation also produced a striking increase in the frequency of colonic GMCs; these changes in colonic motor activity were associated with diarrhea as early as the second irradiation. Changes in GI motility during fractionated irradiation precede the appearance of histopathological lesions in the GI tract. Thus, the symptoms of nausea, vomiting, and diarrhea experienced during radiotherapy (particularly those within the first week) are directly related to changes in bowel motility. 41 refs., 7 figs., 1 tab.

  12. Ruminal motility of stocker cattle grazed on winter wheat pasture.

    PubMed

    Horn, G W; Frost, D F

    1982-10-01

    A 2-yr study was conducted to determine whether bloat of stocker cattle grazing winter wheat pasture is a primary bloat or a secondary bloat as a result of reduced ruminal motility. Amplitude (mm Hg) and frequency of ruminal contractions (contractions/min) of steers were measured before and after the steers were placed on wheat pasture, and at about weekly intervals during the pasture grazing periods. Implantable pressure transducers and water-filled balloon cannulas were used to measure ruminal motility. During the first year, amplitude of contractions increased (P less than .005) during grazing of wheat pasture (i.e., 20.5 vs 6.7 and 21.6 vs 12.9, respectively, for steers with implanted pressure transducers and water-filled balloon cannulas). Frequency of ruminal contractions of steers on wheat pasture was not decreased (P greater than .05). In the second year, amplitudes of ruminal contractions of steers on wheat pasture ranged from 11.0 to 33.5, and were either similar or greater (P less than .05) than the mean for the pre- and post-wheat pasture period (16.5). Frequencies of ruminal contractions that ranged from 1.66 to 1.80 were observed on four dates during the pasture grazing period, and were decreased (P less than .05) as compared with the mean for the pre- and post-wheat pasture period (2.43). However, the reduced frequencies were not accompanied by reduced (P greater than .05) amplitude x frequency of contractions. The data indicate that ruminal motility is not decreased in stocker cattle grazing winter wheat pasture. PMID:7142058

  13. Targeting ion channels for the treatment of gastrointestinal motility disorders

    PubMed Central

    Beyder, Arthur

    2012-01-01

    Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (NaV), calcium (CaV), potassium (KV, KCa), chloride (Cl–) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress. PMID:22282704

  14. Fasciola hepatica: motility response to fasciolicides in vitro.

    PubMed

    Fairweather, I; Holmes, S D; Threadgold, L T

    1984-06-01

    The effects of a wide range of fasciolicides on the in vitro motility of Fasciola hepatica have been determined by means of an isometric transducer system. Carbon tetrachloride and diamphenethide do not affect movement at concentrations up to 500 and 100 micrograms/ml, respectively; at 1000 micrograms/ml, however, carbon tetrachloride induces a rapid tonic paralysis. Brotianide and the deacetylated metabolite of diamphenethide cause a rapid flaccid paralysis of the fluke at concentrations of 1.0 micrograms/ml and above. In contrast, the effect of MK-401 is a long-term one, a flaccid paralysis occurring after 20 hr only at 200 micrograms/ml. Praziquantel also produces a flaccid paralysis of the fluke, but this follows an initial increase, then decrease in muscle tone. The effect is rapid at 500 micrograms/ml, but long-term at 100 and 200 micrograms/ml; at these lower concentrations there is also a stimulation of activity. Oxyclozanide , rafoxanide, niclofolan , bithionol, and hexacholorophene induce a rapid spastic paralysis of the fluke at concentrations of 1.0 micrograms/ml and above. Both phasic and tonic components are evident in the response at concentrations of 1.0 micrograms/ml and below; the phasic component disappears at higher concentrations. Nitroxynil produces a similar effect, evident at higher concentrations. Among the benzimidazoles, mebendazole, oxfendazole, and albendazole sulphoxide cause a suppression of motility, whilst thiabendazole and albendazole produce a stimulation of movement. The effects are not rapid, however, for only mebendazole at 500 micrograms/ml causes total inactivity of the fluke within a 12-hr period. Possible explanations for these effects on fluke motility are discussed. PMID:6723893

  15. Using laser tweezers to measure twitching motility in Neisseria.

    PubMed

    Maier, Berenike

    2005-06-01

    Dynamic properties of type IV pili are essential for their function in bacterial infection, twitching motility and gene transfer. Laser tweezers are versatile tools to study the molecular mechanism underlying pilus dynamics at the single molecule level. Recently, these optical tweezers have been used to monitor pilus elongation and retraction in vivo at a resolution of several nanometers. The force generated by type IV pili exceeds 100 pN making pili the strongest linear motors characterized to date. The study of pilus dynamics at the single molecule level sheds light on kinetics, force generation, switching and mechanics of the Neisseria gonorrhoeae pilus motor. PMID:15939360

  16. Spontaneous Division and Motility in Active Nematic Droplets

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; DeSimone, Antonio

    2014-04-01

    We investigate the mechanics of an active droplet endowed with internal nematic order and surrounded by an isotropic Newtonian fluid. Using numerical simulations we demonstrate that, due to the interplay between the active stresses and the defective geometry of the nematic director, this system exhibits two of the fundamental functions of living cells: spontaneous division and motility, by means of self-generated hydrodynamic flows. These behaviors can be selectively activated by controlling a single physical parameter, namely, an active variant of the capillary number.

  17. Motility and more: the flagellum of Trypanosoma brucei

    PubMed Central

    Langousis, Gerasimos; Hill, Kent L.

    2014-01-01

    A central feature of trypanosome cell biology and life cycle is the parasite’s single flagellum, which is an essential and multifunctional organelle involved in cell propulsion, morphogenesis and cytokinesis. The flagellar membrane is also a specialized subdomain of the cell surface that harbors multiple parasite virulence factors with roles in signaling and host-parasite interactions. In this review, we discuss the structure, assembly and function of the trypanosome flagellum, including canonical roles in cell motility as well as novel and emerging roles in cell morphogenesis and host-parasite interaction. PMID:24931043

  18. Interventions That Affect Gastrointestinal Motility in Hospitalized Adult Patients: A Systematic Review and Meta-Analysis of Double-Blind Placebo-Controlled Randomized Trials.

    PubMed

    Asrani, Varsha M; Yoon, Harry D; Megill, Robin D; Windsor, John A; Petrov, Maxim S

    2016-02-01

    Gastrointestinal (GI) dysmotility is a common complication in acute, critically ill, postoperative, and chronic patients that may lead to impaired nutrient delivery, poor clinical, and patient-reported outcomes. Several pharmacological and nonpharmacological interventions to treat GI dysmotility were investigated in dozens of clinical studies. However, they often yielded conflicting results, at least in part, because various (nonstandardized) definitions of GI dysmotility were used and methodological quality of studies was poor. While a universally accepted definition of GI dysmotility is yet to be developed, a systematic analysis of data derived from double-blind placebo-controlled randomized trials may provide robust data on absolute and relative effectiveness of various interventions as the study outcome (GI motility) was assessed in the least biased manner.To systematically review data from double-blind placebo-controlled randomized trials to determine and compare the effectiveness of interventions that affect GI motility.Three electronic databases (MEDLINE, SCOPUS, and EMBASE) were searched. A random effects model was used for meta-analysis. The summary estimates were reported as mean difference (MD) with the corresponding 95% confidence interval (CI).A total of 38 double-blind placebo-controlled randomized trials involving 2371 patients were eligible for inclusion in the systematic review. These studies investigated a total of 20 different interventions, of which 6 interventions were meta-analyzed. Of them, the use of dopamine receptor antagonists (MD, -8.99; 95% CI, -17.72 to -0.27; P = 0.04) and macrolides (MD, -26.04; 95% CI, -51.25 to -0.82; P = 0.04) significantly improved GI motility compared with the placebo group. The use of botulism toxin significantly impaired GI motility compared with the placebo group (MD, 5.31; 95% CI, -0.04 to 10.67; P = 0.05). Other interventions (dietary factors, probiotics, hormones) did not affect GI motility

  19. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amylose can form inclusion complexes with guest molecules and represents an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose. To overcome this problem a ferulic acid ester, octadecyl ferulate, posses...

  20. Origins of Majoritic Inclusions in Diamond

    NASA Astrophysics Data System (ADS)

    Kiseeva, K.; Wood, B. J.; Ghosh, S. K.; Stachel, T.

    2015-12-01

    Mineral inclusions in diamonds are the only available samples from the transition zone and the lower mantle. The dominant type of inclusions for the range of transition zone (410-660 km) pressures is majoritic garnet, a high-pressure Si-rich tetragonal garnet which crystallises when pyroxene breaks down and dissolves in the garnet structure. Two majoritic garnet endmembers: Na2MgSi5O12 and Mg4Si4O12 can be distinguished for eclogitic and peridotitic parageneses, respectively. In our recent study [1] we used these idealised substitutions to show that the majority of majoritic garnets reported in the literature belong to neither eclogitic nor peridotitic lithologies and rather crystallised from a wide range of intermediate compositions, referred to as pyroxenites [1]. Here we elaborate on the origin and composition of the pyroxenite lithology. According to Si geobarometry most majoritic garnet inclusions formed at mantle transition zone pressures, predominantly within the stability field of clinopyroxene + garnet. Using experimental partition coefficients for Na, Al, Mg and Fe between garnet and clinopyroxene, we have calculated the compositions of clinopyroxene in equilibrium with majoritic garnet, which allows us to estimate the locus of possible bulk rock compositions. These lie in the field of upper mantle pyroxenites as defined by Hirschmann and Stolper [2]. We also find that occasional clinopyroxene inclusions in diamond actually coexisting with majoritic garnet inclusions are all close in composition to those predicted by our study. Additionally, we show experimentally that the pyroxenite-diamond association is probably a consequence of the interaction between basaltic and peridotitic compositions in the presence of carbonate melt and that layering of pyroxenites is a natural consequence of this interaction. Reduction of carbonate to carbon at high pressures is responsible for the genetic connection between pyroxenite and diamond and the abundance of

  1. [Structure of the intracellular part of the motility apparatus of halobacteria].

    PubMed

    Kireev, I I; Novikova, T M; Sheval', E V; Metlina, A L

    2006-01-01

    The electron microscopic study of the structure of the motility apparatus of the archaea Halobacterium salinarium 4W12 and Natronobacterium magadii confirmed our earlier observation that the motility apparatus of halobacteria contains an intracellular disk-shaped lamellar structure (DLS). Polar cap structures (PCSs) isolated from the halobacterium were preliminarily identified as the DLSs. The PCSs in complexes with flagella were also isolated from the haloalkaliphilic bacterium N. magadii. The specific structure of the archaeal motility apparatus is discussed. PMID:16871803

  2. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection.

    PubMed

    Read, Mark N; Bailey, Jacqueline; Timmis, Jon; Chtanova, Tatyana

    2016-09-01

    The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs) against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto fronts of optimal

  3. Innovation for an Inclusive Future

    NASA Astrophysics Data System (ADS)

    Springett, Mark; Rice, Mark; Carmichael, Alex; Griffiths, Richard

    This workshop will focus on setting the agenda for research, practice and policy in support of inclusive design for third generation computer-based products. The next generation of technology represents an unprecedented opportunity to improve the quality of life for groups of users who have previously faced exclusion, such as those with impairments and older citizens. At the same time it risks creating a greater digital divide and further exclusion. How we approach design for this new generation will determine whether or not the third wave will provide positive advances towards an inclusive digital world. We therefore need to put forward both a rationale for inclusive design and provide pointers towards technical development and design practice in support of inclusion. It is our belief that there is not only a strong moral case for design for inclusion but also significant commercial incentive, which may be key to persuading influential players to focus on inclusion. Therefore one of our key objectives is to describe and promote the advantages of designing ‘in from the edges’ of the user population rather than designing for a notional ‘average’ user.

  4. Sperm motility initiation by egg jelly of the anuran, Discoglossus pictus may be mediated by sperm motility-initiating substance of the internally-fertilizing newt, Cynops pyrrhogaster.

    PubMed

    Takayama-Watanabe, Eriko; Campanella, Chiara; Kubo, Hideo; Watanabe, Akihiko

    2012-11-01

    The egg jelly of Discoglossus pictus contains sperm motility-activating activity, the molecular basis of which has not been studied. Discoglossus pictus sperm initiated motility immediately after immersion in egg-jelly extract, as well as after immersion in hyposmotic solution, which initiates sperm motility in the external fertilization of anuran amphibians. Sequential treatment of the D. pictus sperm with these two solutions revealed the predominant effect of hyposmolality in initiation of motility. The motility initiation induced by jelly extract was suppressed by a monoclonal antibody (mAb) that is specific for the 34 kDa sperm motility-initiating substance (SMIS) in the egg jelly of the newt, Cynops pyrrhogaster. Immunoblotting using the anti-SMIS mAb revealed several antigenic proteins that included major ones with sizes of 18- and 34-kDa in D. pictus jelly extract. Scanning electron microscopic observation revealed that granules of jelly matrix, in which SMIS localizes and which have a critical role in the internal fertilization of C. pyrrhogaster, were not observed near the surface of the D. pictus egg jelly. These results suggest that sperm motility-activating activity in egg jelly of D. pictus may be mediated by SMIS homologous proteins that act through a mechanism that is partially different from that of C. pyrrhogaster. PMID:22805164

  5. Fluid inclusion study of some Sarrabus fluorite deposits, Sardinia, Italy.

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Valera, R.

    1984-01-01

    Fluid inclusions in six deposits of fluorite fracture fillings associated with Hercynian (Carboniferous) cycle magmatism were studied by microthermometric techniques. All the inclusions were liquid dominated, aqueous, and homogenized in the liquid phase. One-phase (liquid), two-phase (liquid + vapour) and three-phase (liquid, vapour, and solid NaCl daughter mineral) fluid inclusions were noted. This study indicates that five of the fluorite deposits formed from 95o-125oC fluids with approx 15 wt.% NaCl. One other deposit appears to have been formed by very dilute solutions at approx 125oC. It is suggested that the local fluorite-forming process was the formation of fracture-localized hydrothermal systems in which magmatic water interaction with some other fluid-connate, meteoric, or marine.-G.J.N.

  6. [Effects of trimebutine maleate (TM-906) on the gastrointestinal motility in anesthetized dogs].

    PubMed

    Nosaka, K; Takenaga, H; Magaribuchi, T; Tamaki, H

    1984-10-01

    Effects of trimebutine maleate (TM-906) on the spontaneous motility of the gastrointestinal tracts were investigated in anesthetized dogs by means of force transducers. TM-906, administrated intravenously or intraduodenally, produced an inhibition followed by a potentiation of the spontaneous motility in the stomach, and caused a potentiation of the spontaneous motility in the duodenum, jejunum, ileum and colon. These effects of TM-906 were observed also in the vagotomized dogs as in the intact dogs. From these results, it is suggested that TM-906 modulates the spontaneous motility of the gastrointestinal tracts primarily through the peripheral mechanism. PMID:6533390

  7. Two-Dimensional Motility of a Macrophage Cell Line on Microcontact-Printed Fibronectin

    PubMed Central

    Hind, Laurel E.; MacKay, Joanna L.; Cox, Dianne; Hammer, Daniel A.

    2014-01-01

    The ability of macrophages to migrate to sites of infection and inflammation is critical for their role in the innate immune response. Macrophage cell lines have made it possible to study the roles of individual proteins responsible for migration using molecular biology, but it has not been possible to reliably elicit the motility of macrophage cell lines in two-dimensions. In the past, measurements of the motility of macrophage cell lines have been largely limited to transwell assays which provide limited quantitative information on motility and limited ability to visualize cell morphology. We used microcontact printing to create polydimethylsiloxane (PDMS) surfaces functionalized with fibronectin that otherwise support little macrophage adhesion. We used these surfaces to measure macrophage migration in two-dimensions and found that these cells migrate efficiently in a uniform field of colony-stimulating factor-1, CSF-1. Knockdown of Cdc42 led to a non-statistically significant reduction in motility, whereas chemical inhibition of PI3K activity led to a complete loss of motility. Inhibition of the RhoA kinase, ROCK, did not abolish the motility of these cells but caused a quantitative change in motility, reducing motility significantly on high concentrations of fibronectin but not on low concentrations. This study illustrates the importance of studying cell motility on well controlled materials to better understand the exact roles of specific proteins on macrophage migration. PMID:25186818

  8. Evolutionarily Ancient Association of the FoxJ1 Transcription Factor with the Motile Ciliogenic Program

    PubMed Central

    Ho, Hao Kee; Babu, Deepak; Eitel, Michael; Narasimhan, Vijayashankaranarayanan; Tiku, Varnesh; Westbrook, Jody; Schierwater, Bernd; Roy, Sudipto

    2012-01-01

    It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans. PMID:23144623

  9. Dynein drives nuclear rotation during forward progression of motile fibroblasts

    PubMed Central

    Levy, Jennifer R.; Holzbaur, Erika L.F.

    2010-01-01

    SUMMARY During directed cell migration the movement of the nucleus is coupled to the forward progression of the cell. The microtubule motor cytoplasmic dynein is required for both cell polarization and cell motility. Here, we investigate the mechanism by which dynein contributes to directed migration. Knockdown of dynein slows protrusion of the leading edge and causes defects in nuclear movements. The velocity of nuclear migration was decreased in dynein knockdown cells, and nuclei were mislocalized to the rear of motile cells. In control cells, we observed that wounding the monolayer stimulated a dramatic induction of nuclear rotations at the wound edge, reaching velocities up to 8.5 degrees/min. These nuclear rotations were significantly inhibited in dynein knockdown cells. Surprisingly, centrosomes do not rotate in concert with the nucleus; instead the centrosome remains stably positioned between the nucleus and the leading edge. Together, these results suggest that dynein contributes to migration in two ways: (1) maintaining centrosome centrality by tethering microtubule plus ends at the cortex, and (2) maintaining nuclear centrality by asserting force directly on the nucleus. PMID:18782860

  10. The Gas Vacuole - an Early Organelle of Prokaryote Motility

    NASA Astrophysics Data System (ADS)

    Staley, James T.

    1980-06-01

    Several lines of evidence suggest that the gas vesicle may have been an early organelle of prokaryote motility. First, it is found in bacteria that are thought to be representatives of primitive groups. Second, it is a simple structure, and the structure alone imparts the function of motility. Thirdly, it is widely distributed amongst prokaryotes, having been found in the purple and green sulfur photosynthetic bacteria, cyanobacteria, methanogenic bacteria, obligate and facultative anaerobic heterotrophic bacteria, as well as aerobic heterotrophic bacteria that divide by budding and binary transverse fission. Recent evidence suggests that in some bacteria the genes for gas vesicle synthesis occur on plasmids. Thus, the wide distribution of this characteristic could be due to recent evolution and rapid dispersal, though early evolution is not precluded. Though the gas vesicle structure itself appears to be highly conserved among the various groups of bacteria, it seems doubtful that the regulatory mechanism to control its synthesis could be the same for the diverse gas vacuolate bacterial groups.

  11. Realizing the Physics of Motile Cilia Synchronization with Driven Colloids

    NASA Astrophysics Data System (ADS)

    Bruot, Nicolas; Cicuta, Pietro

    2016-03-01

    Cilia and flagella in biological systems often show large scale cooperative behaviors such as the synchronization of their beats in "metachronal waves." These are beautiful examples of emergent dynamics in biology, and are essential for life, allowing diverse processes from the motility of eukaryotic microorganisms, to nutrient transport and clearance of pathogens from mammalian airways. How these collective states arise is not fully understood, but it is clear that individual cilia interact mechanically, and that a strong and long-ranged component of the coupling is mediated by the viscous fluid. We review here the work by ourselves and others aimed at understanding the behavior of hydrodynamically coupled systems, and particularly a set of results that have been obtained both experimentally and theoretically by studying actively driven colloidal systems. In these controlled scenarios, it is possible to selectively test aspects of living motile cilia, such as the geometrical arrangement, the effects of the driving profile and the distance to no-slip boundaries. We outline and give examples of how it is possible to link model systems to observations on living systems, which can be made on microorganisms, on cell cultures or on tissue sections. This area of research has clear clinical application in the long term, as severe pathologies are associated with compromised cilia function in humans.

  12. Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion.

    PubMed

    Malet-Engra, Gema; Yu, Weimiao; Oldani, Amanda; Rey-Barroso, Javier; Gov, Nir S; Scita, Giorgio; Dupré, Loïc

    2015-01-19

    Collective cell migration is a widespread biological phenomenon, whereby groups of highly coordinated, adherent cells move in a polarized fashion. This migration mode is a hallmark of tissue morphogenesis during development and repair and of solid tumor dissemination. In addition to circulating as solitary cells, lymphoid malignancies can assemble into tissues as multicellular aggregates. Whether malignant lymphocytes are capable of coordinating their motility in the context of chemokine gradients is, however, unknown. Here, we show that, upon exposure to CCL19 or CXCL12 gradients, malignant B and T lymphocytes assemble into clusters that migrate directionally and display a wider chemotactic sensitivity than individual cells. Physical modeling recapitulates cluster motility statistics and shows that intracluster cell cohesion results in noise reduction and enhanced directionality. Quantitative image analysis reveals that cluster migration runs are periodically interrupted by transitory rotation and random phases that favor leader cell turnover. Additionally, internalization of CCR7 in leader cells is accompanied by protrusion retraction, loss of polarity, and the ensuing replacement by new leader cells. These mechanisms ensure sustained forward migration and resistance to chemorepulsion, a behavior of individual cells exposed to steep CCL19 gradients that depends on CCR7 endocytosis. Thus, coordinated cluster dynamics confer distinct chemotactic properties, highlighting unexpected features of lymphoid cell migration. PMID:25578904

  13. The Influence of Electric Field and Confinement on Cell Motility

    PubMed Central

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C.

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D. PMID:23555674

  14. RelA inhibits Bacillus subtilis motility and chaining.

    PubMed

    Ababneh, Qutaiba O; Herman, Jennifer K

    2015-01-01

    The nucleotide second messengers pppGpp and ppGpp [(p)ppGpp] are responsible for the global downregulation of transcription, translation, DNA replication, and growth rate that occurs during the stringent response. More recent studies suggest that (p)ppGpp is also an important effector in many nonstringent processes, including virulence, persister cell formation, and biofilm production. In Bacillus subtilis, (p)ppGpp production is primarily determined by the net activity of RelA, a bifunctional (p)ppGpp synthetase/hydrolase, and two monofunctional (p)ppGpp synthetases, YwaC and YjbM. We observe that in B. subtilis, a relA mutant grows exclusively as unchained, motile cells, phenotypes regulated by the alternative sigma factor SigD. Our data indicate that the relA mutant is trapped in a SigD "on" state during exponential growth, implicating RelA and (p)ppGpp levels in the regulation of cell chaining and motility in B. subtilis. Our results also suggest that minor variations in basal (p)ppGpp levels can significantly skew developmental decision-making outcomes. PMID:25331430

  15. Modelling cell motility and chemotaxis with evolving surface finite elements

    PubMed Central

    Elliott, Charles M.; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-01-01

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html. PMID:22675164

  16. Effect of preoperative suggestion on postoperative gastrointestinal motility.

    PubMed Central

    Disbrow, E A; Bennett, H L; Owings, J T

    1993-01-01

    Autonomic behavior is subject to direct suggestion. We found that patients undergoing major operations benefit more from instruction than from information and reassurance. We compared the return of intestinal function after intra-abdominal operations in 2 groups of patients: the suggestion group received specific instructions for the early return of gastrointestinal motility, and the control group received an equal-length interview offering reassurance and nonspecific instructions. The suggestion group had a significantly shorter average time to the return of intestinal motility, 2.6 versus 4.1 days. Time to discharge was 6.5 versus 8.1 days. Covariates including duration of operation, amount of intraoperative bowel manipulation, and amount of postoperative narcotics were also examined using the statistical model analysis of covariance. An average savings of $1,200 per patient resulted from this simple 5-minute intervention. In summary, the use of specific physiologically active suggestions given preoperatively in a beleivable manner can reduce the morbidity associated with an intra-abdominal operation by reducing the duration of ileus. PMID:8342264

  17. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  18. Interpreting two-photon imaging data of lymphocyte motility.

    PubMed

    Meyer-Hermann, Michael E; Maini, Philip K

    2005-06-01

    Recently, using two-photon imaging it has been found that the movement of B and T cells in lymph nodes can be described by a random walk with persistence of orientation in the range of 2 minutes. We interpret this new class of lymphocyte motility data within a theoretical model. The model considers cell movement to be composed of the movement of subunits of the cell membrane. In this way movement and deformation of the cell are correlated to each other. We find that, indeed, the lymphocyte movement in lymph nodes can best be described as a random walk with persistence of orientation. The assumption of motility induced cell elongation is consistent with the data. Within the framework of our model the two-photon data suggest that T and B cells are in a single velocity state with large stochastic width. The alternative of three different velocity states with frequent changes of their state and small stochastic width is less likely. Two velocity states can be excluded. PMID:16089770

  19. Trajectories of Listeria-type motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-12-01

    Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.

  20. Motility-Driven Glass and Jamming Transitions in Biological Tissues

    NASA Astrophysics Data System (ADS)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2016-04-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely captures this transition in the limit of small persistence times and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with epithelial-to-mesenchymal transition in these tissues.

  1. T Cell Motility as Modulator of Interactions with Dendritic Cells

    PubMed Central

    Stein, Jens V.

    2015-01-01

    It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs) determines T cell transition from a naïve to an activated or tolerant/anergic status. Although many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting peptides presented on major histocompatibility complex with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8+ T cells to cognate DC–CD4+ T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for “optimal” DCs, while contributing to peripheral tolerance induction in the absence of inflammation. PMID:26579132

  2. Loss of SNAP29 Impairs Endocytic Recycling and Cell Motility

    PubMed Central

    Rapaport, Debora; Lugassy, Yevgenia; Sprecher, Eli; Horowitz, Mia

    2010-01-01

    Intracellular membrane trafficking depends on the ordered formation and consumption of transport intermediates and requires that membranes fuse with each other in a tightly regulated and highly specific manner. Membrane anchored SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNAP29 is a ubiquitous synaptosomal-associated SNARE protein. It interacts with several syntaxins and with the EH domain containing protein EHD1. Loss of functional SNAP29 results in CEDNIK syndrome (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma). Using fibroblast cell lines derived from CEDNIK patients, we show that SNAP29 mediates endocytic recycling of transferrin and β1-integrin. Impaired β1-integrin recycling affected cell motility, as reflected by changes in cell spreading and wound healing. No major changes were detected in exocytosis of VSVG protein from the Golgi apparatus, although the Golgi system acquired a dispersed morphology in SNAP29 deficient cells. Our results emphasize the importance of SNAP29 mediated membrane fusion in endocytic recycling and consequently, in cell motility. PMID:20305790

  3. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3’-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  4. We do, therefore we think: time, motility, and consciousness.

    PubMed

    Goodrich, Barbara Gwenn

    2010-01-01

    This article is a philosopher's expanded review of two recent books on neurophysiology: Rodolfo Llinás's I of the Vortex and György Buszáki's Rhythms of the Brain. Researchers such as these are converging on a view of consciousness as originating in motility and as inherently temporal due to the brainwave oscillations that underlay it. Most current discussions of consciousness include implicit philosophical presuppositions inherited from the canon of Plato, Aristotle, Descartes, and Kant, e.g. that consciousness is self-reflective, passive, and timeless. Because of this, Llinás's and Buszáki's insights may not be fully appreciated. Western philosophy, however, also includes what might be described as a counter-tradition--and one that is more compatible with empirical biological science than the usual canon. Heraclitus, Spinoza, Schopenhauer, Nietzsche, and especially the 20th century French philosopher and psychologist, Merleau-Ponty, all anticipated aspects of Llinás's and Buszáki's approaches. Their alternative conceptual vocabularies are useful for strengthening Llinás's and Buszáki's approaches, sketching out a notion of consciousness emerging from motility, and generating new hypotheses for neurophysiological research. PMID:21280454

  5. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility.

    PubMed

    Yang, Yi; Park, So-Yeon; Nguyen, Thanh Thi; Yu, Young Hyun; Nguyen, Tru Van; Sun, Eun Gene; Udeni, Jayalal; Jeong, Min-Hye; Pereira, Iris; Moon, Cheol; Ha, Hyung-Ho; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2015-01-01

    Lichens produce various unique chemicals that can be used for pharmaceutical purposes. To screen for novel lichen secondary metabolites showing inhibitory activity against lung cancer cell motility, we tested acetone extracts of 13 lichen samples collected in Chile. Physciosporin, isolated from Pseudocyphellaria coriacea (Hook f. & Taylor) D.J. Galloway & P. James, was identified as an effective compound and showed significant inhibitory activity in migration and invasion assays against human lung cancer cells. Physciosporin treatment reduced both protein and mRNA levels of N-cadherin with concomitant decreases in the levels of epithelial-mesenchymal transition markers such as snail and twist. Physciosporin also suppressed KITENIN (KAI1 C-terminal interacting tetraspanin)-mediated AP-1 activity in both the absence and presence of epidermal growth factor stimulation. Quantitative real-time PCR analysis showed that the expression of the metastasis suppressor gene, KAI1, was increased while that of the metastasis enhancer gene, KITENIN, was dramatically decreased by physciosporin. Particularly, the activity of 3'-untranslated region of KITENIN was decreased by physciosporin. Moreover, Cdc42 and Rac1 activities were decreased by physciosporin. These results demonstrated that the lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility through novel mechanisms of action. PMID:26371759

  6. Lattice-free models of directed cell motility

    NASA Astrophysics Data System (ADS)

    Irons, Carolyn; Plank, Michael J.; Simpson, Matthew J.

    2016-01-01

    Directed cell migration often occurs when individual cells move in response to an external chemical stimulus. Cells can respond by moving in either the direction of increasing (chemoattraction) or decreasing (chemorepulsion) concentration. Many previous models of directed cell migration use a lattice-based framework where agents undergo a lattice-based random walk and the direction of nearest-neighbour motility events is biased in a preferred direction. Such lattice-based models can lead to unrealistic configurations of agents, since the agents always move on an artificial lattice structure which is never observed experimentally. We present a lattice-free model of directed cell migration that incorporates two key features. First, agents move on a continuous domain, with the possibility that there is some preferred direction of motion. Second, to be consistent with experimental observations, we enforce a crowding mechanism so that motility events that would lead to agent overlap are not permitted. We compare simulation data from the new lattice-free model with a more traditional lattice-based model. To provide additional insight into the lattice-free model, we construct an approximate conservation statement which corresponds to a nonlinear advection-diffusion equation in the continuum limit. The solution of this mean-field model compares well with averaged data from the individual-based model.

  7. Multicellularity and the Functional Interdependence of Motility and Molecular Transport

    NASA Astrophysics Data System (ADS)

    Solari, C.; Ganguly, S.; Kessler, J. O.; Michod, R.; Goldstein, R. E.

    2006-03-01

    Benefits, costs and requirements accompany the transition from motile totipotent unicellular organisms to multicellular organisms having cells specialized into reproductive (germ) and vegetative (sterile soma) functions such as motility. In flagellated colonial organisms such as the volvocalean green algae, organized beating by the somatic cells' flagella yields propulsion important in phototaxis and chemotaxis. It has not been generally appreciated that for the larger colonies, flagellar stirring of boundary layers and remote transport are fundamental for maintaining a sufficient rate of metabolite turnover, one not attainable by diffusive transport alone. We describe experiments that quantify the role of advective dynamics in enhancing productivity in germ-soma differentiated colonies. First, experiments with suspended deflagellated colonies of Volvox carteri show that forced advection improves productivity. Second, Particle Imaging Velocimetry of fluid motion around colonies reveals flow fields with very large characteristic velocities U extending to length scales comparable to the colony radius R. For a typical metabolite diffusion constant D, the Peclet number Pe=2UR/D 1, indicative of the dominance of advection over diffusion, with striking augmentation at the cell division stage.

  8. Multicellularity and the functional interdependence of motility and molecular transport.

    PubMed

    Solari, Cristian A; Ganguly, Sujoy; Kessler, John O; Michod, Richard E; Goldstein, Raymond E

    2006-01-31

    Benefits, costs, and requirements accompany the transition from motile totipotent unicellular organisms to multicellular organisms having cells specialized into reproductive (germ) and vegetative (sterile soma) functions such as motility. In flagellated colonial organisms such as the volvocalean green algae, organized beating by the somatic cells' flagella yields propulsion important in phototaxis and chemotaxis. It has not been generally appreciated that for the larger colonies flagellar stirring of boundary layers and remote transport are fundamental for maintaining a sufficient rate of metabolite turnover, one not attainable by diffusive transport alone. Here, we describe experiments that quantify the role of advective dynamics in enhancing productivity in germ soma-differentiated colonies. First, experiments with suspended deflagellated colonies of Volvox carteri show that forced advection improves productivity. Second, particle imaging velocimetry of fluid motion around colonies immobilized by micropipette aspiration reveals flow fields with very large characteristic velocities U extending to length scales exceeding the colony radius R. For a typical metabolite diffusion constant D, the associated Peclet number Pe = 2UR/D > 1, indicative of the dominance of advection over diffusion, with striking augmentation at the cell division stage. Near the colony surface, flows generated by flagella can be chaotic, exhibiting mixing due to stretching and folding. These results imply that hydrodynamic transport external to colonies provides a crucial boundary condition, a source for supplying internal diffusional dynamics. PMID:16421211

  9. Membrane tension and cytoskeleton organization in cell motility

    NASA Astrophysics Data System (ADS)

    Sens, Pierre; Plastino, Julie

    2015-07-01

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  10. Gastroesophageal Reflux and Altered Motility in Lung Transplant Rejection

    PubMed Central

    Castor, John M; Wood, Richard K.; Muir, Andrew J.; Palmer, Scott M.; Shimpi, Rahul A.

    2010-01-01

    Background Lung transplantation has become an effective therapeutic option for selected patients with end stage lung disease. Long-term survival is limited by chronic rejection manifest as bronchiolitis obliterans syndrome (BOS). The aspiration of gastric contents has been implicated as a causative or additive factor leading to BOS. Gastroesophageal reflux (GER) and altered foregut motility are common both before and after lung transplantation. Further, the normal defense mechanisms against reflux are impaired in the allograft. Recent studies using biomarkers of aspiration have added to previous association studies to provide a growing body of evidence supporting the link between rejection and GER. Further, the addition of high-resolution manometry (HRM) and impedance technology to characterize bolus transit and the presence and extent of reflux regardless of pH might better identify at-risk patients. Although additional prospective studies are needed, fundoplication appears useful in the prevention or treatment of post-transplant BOS. Purpose This review will highlight the existing literature on the relationship of gastroesophageal reflux and altered motility to lung transplant rejection, particularly BOS. The article will conclude with a discussion of the evaluation and management of patients undergoing lung transplantation at our center. PMID:20507544

  11. Factors Affecting the Inclusion Potency for Acicular Ferrite Nucleation in High-Strength Steel Welds

    NASA Astrophysics Data System (ADS)

    Kang, Yongjoon; Jeong, Seonghoon; Kang, Joo-Hee; Lee, Changhee

    2016-06-01

    Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength weld metals were investigated and the contribution of each factor was qualitatively evaluated. Two kinds of weld metals with different hardenabilities were prepared, in both, MnTi2O4-rich spinel formed as the predominant inclusion phase. To evaluate the factors determining the inclusion potency, the inclusion characteristics of size, phase distribution in the multiphase inclusion, orientation relationship with ferrite, and Mn distribution near the inclusion were analyzed. Three factors affecting the ferrite nucleation potency of inclusions were evaluated: the Baker-Nutting (B-N) orientation relationship between ferrite and the inclusion; the formation of an Mn-depleted zone (MDZ) near the inclusion; and the strain energy around the inclusion. Among these, the first two factors were found to be the most important. In addition, it was concluded that the increased chemical driving force brought about by the formation of an MDZ contributed more to the formation of acicular ferrite in higher-strength weld metals, because the B-N orientation relationship between ferrite and the inclusion was less likely to form as the transformation temperature decreased.

  12. Factors Affecting the Inclusion Potency for Acicular Ferrite Nucleation in High-Strength Steel Welds

    NASA Astrophysics Data System (ADS)

    Kang, Yongjoon; Jeong, Seonghoon; Kang, Joo-Hee; Lee, Changhee

    2016-03-01

    Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength weld metals were investigated and the contribution of each factor was qualitatively evaluated. Two kinds of weld metals with different hardenabilities were prepared, in both, MnTi2O4-rich spinel formed as the predominant inclusion phase. To evaluate the factors determining the inclusion potency, the inclusion characteristics of size, phase distribution in the multiphase inclusion, orientation relationship with ferrite, and Mn distribution near the inclusion were analyzed. Three factors affecting the ferrite nucleation potency of inclusions were evaluated: the Baker-Nutting (B-N) orientation relationship between ferrite and the inclusion; the formation of an Mn-depleted zone (MDZ) near the inclusion; and the strain energy around the inclusion. Among these, the first two factors were found to be the most important. In addition, it was concluded that the increased chemical driving force brought about by the formation of an MDZ contributed more to the formation of acicular ferrite in higher-strength weld metals, because the B-N orientation relationship between ferrite and the inclusion was less likely to form as the transformation temperature decreased.

  13. Paramphistomum cervi: the in vitro effect of plumbagin on motility, survival and tegument structure.

    PubMed

    Saowakon, Naruwan; Lorsuwannarat, Natcha; Changklungmoa, Narin; Wanichanon, Chaitip; Sobhon, Prasert

    2013-02-01

    Paramphistomiasis causes enteritis and anemia in livestocks and result in substantial production and economic losses. It is considered a neglected tropical disease, with no effective trematodicidal compound for treatment. Plumbagin (PB), a compound founds to be rich in the roots of Plumbago indica, is a naphthoquinone derivatives which can induce oxidative stress in parasites. In this study we have evaluated the anthelmintic activity of PB against adult Paramphistomum cervi by incubating the parasites in M-199 medium containing 0.1, 1.0, 10 and 100 μg/ml of the PB, and albendazole (ABZ) at the concentration of 100 μg/ml as the positive control, for 3, 6, 12 and 24 h, using relative motility (RM) assay and observed by scanning electron microscopy (SEM). After 12 h exposure with 100 μg/ml ABZ, flukes showed decreased contraction and motility. At 24 h incubation they showed only active movement of some part of the body. The PB-treated flukes at all concentrations showed rapid decrease of motility at 3 h incubation. In 0.1, 1.0 and 10 μg/ml of PB, the RM values were decreased sharply from 3 to 12 h, and then they were killed since 12 h in the incubation with 10 μg/ml of PB. The highest parasite mortality was found as early as 3h when they were incubated with 100 μg/ml of PB. The morphological changes on the tegumental surface were similar in both flukes treated with ABZ and PB, which sequentially comprised of swelling, followed by blebbings that later ruptured, leading to the erosion and desquamation of the tegument syncytium. As the result, lesions were formed which exposed the basal lamina. The damage appeared more severe on the ventral than the dorsal surface, and earlier on the anterior part and lateral margins of middle third when compared to the posterior part of the parasites's bodies. The severity and rapidity of the damages were enhanced with increasing concentration of PB, which showed stronger activity than ABZ. Hence, PB has a potential to be an

  14. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility.

    PubMed

    Kan, Andrey; Tan, Yan-Hong; Angrisano, Fiona; Hanssen, Eric; Rogers, Kelly L; Whitehead, Lachlan; Mollard, Vanessa P; Cozijnsen, Anton; Delves, Michael J; Crawford, Simon; Sinden, Robert E; McFadden, Geoffrey I; Leckie, Christopher; Bailey, James; Baum, Jake

    2014-05-01

    Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our

  15. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Deditius, Julia Andrea; Kühne, Caroline; Frahm, Michael; Rohde, Manfred; Weiß, Siegfried; Erhardt, Marc

    2015-01-01

    Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments. PMID:26267246

  16. In Silico Reconstitution of Actin-Based Symmetry Breaking and Motility

    PubMed Central

    Dayel, Mark J.; Akin, Orkun; Landeryou, Mark; Risca, Viviana; Mogilner, Alex; Mullins, R. Dyche

    2009-01-01

    Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system. PMID:19771152

  17. ADAM17 Promotes Motility, Invasion, and Sprouting of Lymphatic Endothelial Cells.

    PubMed

    Mężyk-Kopeć, Renata; Wyroba, Barbara; Stalińska, Krystyna; Próchnicki, Tomasz; Wiatrowska, Karolina; Kilarski, Witold W; Swartz, Melody A; Bereta, Joanna

    2015-01-01

    Tumor-associated lymphatic vessels actively participate in tumor progression and dissemination. ADAM17, a sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules, is believed to promote tumor development, facilitating both tumor cell proliferation and migration, as well as tumor angiogenesis. In this work we addressed the issue of whether ADAM17 may also promote tumor lymphangiogenesis. First, we found that ADAM17 is important for the migratory potential of immortalized human dermal lymphatic endothelial cells (LEC). When ADAM17 was stably silenced in LEC, their proliferation was not affected, but: (i) single-cell motility, (ii) cell migration through a 3D Matrigel/collagen type I matrix, and (iii) their ability to form sprouts in a 3D matrix were significantly diminished. The differences in the cell motility between ADAM17-proficient and ADAM17-silenced cells were eliminated by inhibitors of EGFR and HER2, indicating that ADAM17-mediated shedding of growth factors accounts for LEC migratory potential. Interestingly, ADAM17 depletion affected the integrin surface expression/functionality in LEC. ADAM17-silenced cells adhered to plastic, type I collagen, and fibronectin faster than their ADAM17-proficient counterparts. The difference in adhesion to fibronectin was abolished by a cyclic RGD peptide, emphasizing the involvement of integrins in the process. Using a soluble receptor array, we identified BIG-H3 among several candidate proteins involved in the phenotypic and behavioral changes of LEC upon ADAM17 silencing. In additional assays, we confirmed the increased expression of BIG-H3, as well as TGFβ2 in ADAM17-silenced LEC. The antilymphangiogenic effects of ADAM17 silencing in lymphatic endothelial cells suggest further relevance of ADAM17 as a potential target in cancer therapy. PMID:26176220

  18. Role of fungal dynein in hyphal growth, microtubule organization, spindle pole body motility and nuclear migration.

    PubMed

    Inoue, S; Turgeon, B G; Yoder, O C; Aist, J R

    1998-06-01

    Cytoplasmic dynein is a microtubule-associated motor protein with several putative subcellular functions. Sequencing of the gene (DHC1) for cytoplasmic dynein heavy chain of the filamentous ascomycete, Nectria haematococca, revealed a 4,349-codon open reading frame (interrupted by two introns) with four highly conserved P-loop motifs, typical of cytoplasmic dynein heavy chains. The predicted amino acid sequence is 78.0% identical to the cytoplasmic dynein heavy chain of Neurospora crassa, 70.2% identical to that of Aspergillus nidulans and 24.8% identical to that of Saccharomyces cerevisiae. The genomic copy of DHC1 in N. haematococca wild-type strain T213 was disrupted by inserting a selectable marker into the central motor domain. Mutants grew at 33% of the wild-type rate, forming dense compact colonies composed of spiral and highly branched hyphae. Major cytological phenotypes included (1) absence of aster-like arrays of cytoplasmic microtubules focused at the spindle pole bodies of post-mitotic and interphase nuclei, (2) limited post-mitotic nuclear migration, (3) lack of spindle pole body motility at interphase, (4) failure of spindle pole bodies to anchor interphase nuclei, (5) nonuniform distribution of interphase nuclei and (6) small or ephemeral Spitzenkörper at the apices of hyphal tip cells. Microtubule distribution in the apical region of tip cells of the mutant was essentially normal. The nonuniform distribution of nuclei in hyphae resulted primarily from a lack of both post-mitotic nuclear migration and anchoring of interphase nuclei by the spindle pole bodies. The results support the hypothesis that DHC1 is required for the motility and functions of spindle pole bodies, normal secretory vesicle transport to the hyphal apex and normal hyphal tip cell morphogenesis. PMID:9580563

  19. Cyclin D1 interacts and collaborates with Ral GTPases enhancing cell detachment and motility.

    PubMed

    Fernández, R M H; Ruiz-Miró, M; Dolcet, X; Aldea, M; Garí, E

    2011-04-21

    Alterations in the levels of adhesion and motility of cells are critical events in the development of metastasis. Cyclin D1 (CycD1) is one of the most frequently amplified oncogenes in many types of cancers and it is also associated with the development of metastasis. Despite this, we still do not know which are all the relevant pathways by which CycD1 induces oncogenic processes. CycD1 functions can be either dependent or independent of the cyclin-dependent kinase Cdk4, and they affect several cellular aspects such as proliferation, cell attachment and migration. In this work, we reveal a novel function of CycD1 that fosters our understanding of the oncogenic potential of CycD1. We show that CycD1 binds to the small GTPases Ral A and B, which are involved, through exocyst regulation, in the progression of metastatic cancers, inducing anchorage-independent growth and cell survival of transformed cells. We show that CycD1 binds active Ral complexes and the exocyst protein Sec6, and co-localizes with Ral GTPases in trans-Golgi and exocyst-rich regions. We have also observed that CycD1-Cdk4 phosphorylates the Ral GEF Rgl2 'in vitro' and that CycD1-Cdk4 activity stimulates accumulation of the Ral GTP active forms. In accordance with this, our data suggest that CycD1-Cdk4 enhances cell detachment and motility in collaboration with Ral GTPases. This new function may help explain the contribution of CycD1 to tumor spreading. PMID:21242975

  20. Motility modulation by the small non-coding RNA SroC in Salmonella Typhimurium.

    PubMed

    Fuentes, Danitza N; Calderón, Paulina F; Acuña, Lillian G; Rodas, Paula I; Paredes-Sabja, Daniel; Fuentes, Juan A; Gil, Fernando; Calderón, Iván L

    2015-09-01

    Bacterial regulatory networks of gene expression include the interaction of diverse types of molecules such as the small non-coding RNAs (sRNAs) and their cognate messenger RNAs (mRNAs). In this study, we demonstrated that the Salmonella Typhimurium sRNA SroC is significantly expressed between the late-exponential and stationary phase of growth in an rpoS-dependent manner. The expression of flagellar genes predicted as targets of this sRNA was quantitatively analyzed in both a ΔsroC mutant and a SroC-overexpressing (pSroC) strain. Deletion of sroC increased flagellar gene expression (i.e. flhBAE and fliE). Conversely, overexpression of SroC reduced flhBAE and fliE expression. These observations correlated with phenotypic evaluation of motility, where sroC deletion slightly increased motility, which in turn, was drastically reduced upon overexpression of SroC. The effects of deletion and overexpression of sroC in biofilm formation were also examined, where the ΔsroC and pSroC strains exhibited a reduced and increased ability to form biofilm, respectively. Furthermore, electron microscopy revealed that the wild-type strain overexpressing SroC had a non-flagellated phenotype. Taken together, our results showed that S. Typhimurium sRNA SroC modulates the flagellar synthesis by down-regulating the expression of flhBAE and fliE genes. PMID:26293911