Science.gov

Sample records for fossil calibrations codon

  1. The Fossil Calibration Database-A New Resource for Divergence Dating.

    PubMed

    Ksepka, Daniel T; Parham, James F; Allman, James F; Benton, Michael J; Carrano, Matthew T; Cranston, Karen A; Donoghue, Philip C J; Head, Jason J; Hermsen, Elizabeth J; Irmis, Randall B; Joyce, Walter G; Kohli, Manpreet; Lamm, Kristin D; Leehr, Dan; Patané, Josés L; Polly, P David; Phillips, Matthew J; Smith, N Adam; Smith, Nathan D; Van Tuinen, Marcel; Ware, Jessica L; Warnock, Rachel C M

    2015-09-01

    Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important-often least appreciated-step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the database. PMID:25922515

  2. Corrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents.

    PubMed

    Kimura, Yuri; Hawkins, Melissa T R; McDonough, Molly M; Jacobs, Louis L; Flynn, Lawrence J

    2015-01-01

    Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating. PMID:26411391

  3. Corrected placement of Mus-Rattus fossil calibration forces precision in the molecular tree of rodents

    PubMed Central

    Kimura, Yuri; Hawkins, Melissa T. R.; McDonough, Molly M.; Jacobs, Louis L.; Flynn, Lawrence J.

    2015-01-01

    Time calibration derived from the fossil record is essential for molecular phylogenetic and evolutionary studies. Fossil mice and rats, discovered in the Siwalik Group of Pakistan, have served as one of the best-known fossil calibration points in molecular phylogenic studies. Although these fossils have been widely used as the 12 Ma date for the Mus/Rattus split or a more basal split, conclusive paleontological evidence for the nodal assignments has been absent. This study analyzes newly recognized characters that demonstrate lineage separation in the fossil record of Siwalik murines and examines the most reasonable nodal placement of the diverging lineages in a molecular phylogenetic tree by ancestral state reconstruction. Our specimen-based approach strongly indicates that Siwalik murines of the Karnimata clade are fossil members of the Arvicanthini-Otomyini-Millardini clade, which excludes Rattus and its relatives. Combining the new interpretation with the widely accepted hypothesis that the Progonomys clade includes Mus, the lineage separation event in the Siwalik fossil record represents the Mus/Arvicanthis split. Our test analysis on Bayesian age estimates shows that this new calibration point provides more accurate estimates of murine divergence than previous applications. Thus, we define this fossil calibration point and refine two other fossil-based points for molecular dating. PMID:26411391

  4. The fossilized birth–death process for coherent calibration of divergence-time estimates

    PubMed Central

    Heath, Tracy A.; Huelsenbeck, John P.; Stadler, Tanja

    2014-01-01

    Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene. PMID:25009181

  5. Genomic fossils calibrate the long-term evolution of hepadnaviruses.

    PubMed

    Gilbert, Clément; Feschotte, Cédric

    2010-01-01

    Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these viruses are on the order of 10(-8) substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep time scale. PMID

  6. Beyond fossil calibrations: realities of molecular clock practices in evolutionary biology

    PubMed Central

    Hipsley, Christy A.; Müller, Johannes

    2014-01-01

    Molecular-based divergence dating methods, or molecular clocks, are the primary neontological tool for estimating the temporal origins of clades. While the appropriate use of vertebrate fossils as external clock calibrations has stimulated heated discussions in the paleontological community, less attention has been given to the quality and implementation of other calibration types. In lieu of appropriate fossils, many studies rely on alternative sources of age constraints based on geological events, substitution rates and heterochronous sampling, as well as dates secondarily derived from previous analyses. To illustrate the breadth and frequency of calibration types currently employed, we conducted a literature survey of over 600 articles published from 2007 to 2013. Over half of all analyses implemented one or more fossil dates as constraints, followed by geological events and secondary calibrations (15% each). Vertebrate taxa were subjects in nearly half of all studies, while invertebrates and plants together accounted for 43%, followed by viruses, protists and fungi (3% each). Current patterns in calibration practices were disproportionate to the number of discussions on their proper use, particularly regarding plants and secondarily derived dates, which are both relatively neglected in methodological evaluations. Based on our survey, we provide a comprehensive overview of the latest approaches in clock calibration, and outline strengths and weaknesses associated with each. This critique should serve as a call to action for researchers across multiple communities, particularly those working on clades for which fossil records are poor, to develop their own guidelines regarding selection and implementation of alternative calibration types. This issue is particularly relevant now, as time-calibrated phylogenies are used for more than dating evolutionary origins, but often serve as the backbone of investigations into biogeography, diversity dynamics and rates of

  7. Xenopus in Space and Time: Fossils, Node Calibrations, Tip-Dating, and Paleobiogeography.

    PubMed

    Cannatella, David

    2015-01-01

    Published data from DNA sequences, morphology of 11 extant and 15 extinct frog taxa, and stratigraphic ranges of fossils were integrated to open a window into the deep-time evolution of Xenopus. The ages and morphological characters of fossils were used as independent datasets to calibrate a chronogram. We found that DNA sequences, either alone or in combination with morphological data and fossils, tended to support a close relationship between Xenopus and Hymenochirus, although in some analyses this topology was not significantly better than the Pipa + Hymenochirus topology. Analyses that excluded DNA data found strong support for the Pipa + Hymenochirus tree. The criterion for selecting the maximum age of the calibration prior influenced the age estimates, and our age estimates of early divergences in the tree of frogs are substantially younger than those of published studies. Node-dating and tip-dating calibrations, either alone or in combination, yielded older dates for nodes than did a root calibration alone. Our estimates of divergence times indicate that overwater dispersal, rather than vicariance due to the splitting of Africa and South America, may explain the presence of Xenopus in Africa and its closest fossil relatives in South America. PMID:26279165

  8. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics

    PubMed Central

    2013-01-01

    Background Molecular phylogenetics has provided unprecedented resolution in the ruminant evolutionary tree. However, molecular age estimates using only one or a few (often misapplied) fossil calibration points have produced a diversity of conflicting ages for important evolutionary events within this clade. I here identify 16 fossil calibration points of relevance to the phylogeny of Bovidae and Ruminantia and use these, individually and together, to construct a dated molecular phylogeny through a reanalysis of the full mitochondrial genome of over 100 ruminant species. Results The new multi-calibrated tree provides ages that are younger overall than found in previous studies. Among these are young ages for the origin of crown Ruminantia (39.3–28.8 Ma), and crown Bovidae (17.3–15.1 Ma). These are argued to be reasonable hypotheses given that many basal fossils assigned to these taxa may in fact lie on the stem groups leading to the crown clades, thus inflating previous age estimates. Areas of conflict between molecular and fossil dates do persist, however, especially with regard to the base of the rapid Pecoran radiation and the sister relationship of Moschidae to Bovidae. Results of the single-calibrated analyses also show that a very wide range of molecular age estimates are obtainable using different calibration points, and that the choice of calibration point can influence the topology of the resulting tree. Compared to the single-calibrated trees, the multi-calibrated tree exhibits smaller variance in estimated ages and better reflects the fossil record. Conclusions The use of a large number of vetted fossil calibration points with soft bounds is promoted as a better approach than using just one or a few calibrations, or relying on internal-congruency metrics to discard good fossil data. This study also highlights the importance of considering morphological and ecological characteristics of clades when delimiting higher taxa. I also illustrate how

  9. Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria).

    PubMed

    Campanella, Daniela; Hughes, Lily C; Unmack, Peter J; Bloom, Devin D; Piller, Kyle R; Ortí, Guillermo

    2015-05-01

    Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence data collected for eight molecular markers for a representative sample of 103 atheriniform species, covering 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to provide an explicit timeframe for the diversification of this group. Our results support the subdivision of Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further study is necessary to support a revised taxonomy of Atherinoidei. The time-calibrated phylogeny was used to infer ancestral habitat reconstructions to explain the current distribution of marine and freshwater taxa. Based on these results, the current distribution of Atheriniformes is likely due to widespread marine dispersal along the margins of continents, infrequent trans-oceanic dispersal, and repeated invasion of freshwater habitats. This conclusion is supported by post-Gondwanan divergence times among families within the order, and a high probability of a marine ancestral habitat. PMID:25769409

  10. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae).

    PubMed

    Arcila, Dahiana; Alexander Pyron, R; Tyler, James C; Ortí, Guillermo; Betancur-R, Ricardo

    2015-01-01

    Time-calibrated phylogenies based on molecular data provide a framework for comparative studies. Calibration methods to combine fossil information with molecular phylogenies are, however, under active development, often generating disagreement about the best way to incorporate paleontological data into these analyses. This study provides an empirical comparison of the most widely used approach based on node-dating priors for relaxed clocks implemented in the programs BEAST and MrBayes, with two recently proposed improvements: one using a new fossilized birth-death process model for node dating (implemented in the program DPPDiv), and the other using a total-evidence or tip-dating method (implemented in MrBayes and BEAST). These methods are applied herein to tetraodontiform fishes, a diverse group of living and extinct taxa that features one of the most extensive fossil records among teleosts. Previous estimates of time-calibrated phylogenies of tetraodontiforms using node-dating methods reported disparate estimates for their age of origin, ranging from the late Jurassic to the early Paleocene (ca. 150-59Ma). We analyzed a comprehensive dataset with 16 loci and 210 morphological characters, including 131 taxa (95 extant and 36 fossil species) representing all families of fossil and extant tetraodontiforms, under different molecular clock calibration approaches. Results from node-dating methods produced consistently younger ages than the tip-dating approaches. The older ages inferred by tip dating imply an unlikely early-late Jurassic (ca. 185-119Ma) origin for this order and the existence of extended ghost lineages in their fossil record. Node-based methods, by contrast, produce time estimates that are more consistent with the stratigraphic record, suggesting a late Cretaceous (ca. 86-96Ma) origin. We show that the precision of clade age estimates using tip dating increases with the number of fossils analyzed and with the proximity of fossil taxa to the node under

  11. Notes on the birth-death prior with fossil calibrations for Bayesian estimation of species divergence times.

    PubMed

    Dos Reis, Mario

    2016-07-19

    Constructing a multi-dimensional prior on the times of divergence (the node ages) of species in a phylogeny is not a trivial task, in particular, if the prior density is the result of combining different sources of information such as a speciation process with fossil calibration densities. Yang & Rannala (2006 Mol. Biol. Evol 23, 212-226. (doi:10.1093/molbev/msj024)) laid out the general approach to combine the birth-death process with arbitrary fossil-based densities to construct a prior on divergence times. They achieved this by calculating the density of node ages without calibrations conditioned on the ages of the calibrated nodes. Here, I show that the conditional density obtained by Yang & Rannala is misspecified. The misspecified density can sometimes be quite strange-looking and can lead to unintentionally informative priors on node ages without fossil calibrations. I derive the correct density and provide a few illustrative examples. Calculation of the density involves a sum over a large set of labelled histories, and so obtaining the density in a computer program seems hard at the moment. A general algorithm that may provide a way forward is given.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325826

  12. Phylogenetic Analysis of Pelecaniformes (Aves) Based on Osteological Data: Implications for Waterbird Phylogeny and Fossil Calibration Studies

    PubMed Central

    Smith, Nathan D.

    2010-01-01

    Background Debate regarding the monophyly and relationships of the avian order Pelecaniformes represents a classic example of discord between morphological and molecular estimates of phylogeny. This lack of consensus hampers interpretation of the group's fossil record, which has major implications for understanding patterns of character evolution (e.g., the evolution of wing-propelled diving) and temporal diversification (e.g., the origins of modern families). Relationships of the Pelecaniformes were inferred through parsimony analyses of an osteological dataset encompassing 59 taxa and 464 characters. The relationships of the Plotopteridae, an extinct family of wing-propelled divers, and several other fossil pelecaniforms (Limnofregata, Prophaethon, Lithoptila, ?Borvocarbo stoeffelensis) were also assessed. The antiquity of these taxa and their purported status as stem members of extant families makes them valuable for studies of higher-level avian diversification. Methodology/Principal Findings Pelecaniform monophyly is not recovered, with Phaethontidae recovered as distantly related to all other pelecaniforms, which are supported as a monophyletic Steganopodes. Some anatomical partitions of the dataset possess different phylogenetic signals, and partitioned analyses reveal that these discrepancies are localized outside of Steganopodes, and primarily due to a few labile taxa. The Plotopteridae are recovered as the sister taxon to Phalacrocoracoidea, and the relationships of other fossil pelecaniforms representing key calibration points are well supported, including Limnofregata (sister taxon to Fregatidae), Prophaethon and Lithoptila (successive sister taxa to Phaethontidae), and ?Borvocarbo stoeffelensis (sister taxon to Phalacrocoracidae). These relationships are invariant when ‘backbone’ constraints based on recent avian phylogenies are imposed. Conclusions/Significance Relationships of extant pelecaniforms inferred from morphology are more congruent with

  13. A reappraisal of the evolution of Asian snakehead fishes (Pisces, Channidae) using molecular data from multiple genes and fossil calibration.

    PubMed

    Adamson, Eleanor A S; Hurwood, David A; Mather, Peter B

    2010-08-01

    Freshwater snakehead fishes (Channidae) provide an interesting target for phylogenetic analysis for the following reasons, their unusual biology, potential for cryptic diversity and availability of a good fossil record. Here, a multi-locus molecular phylogeny was constructed and calibrated using two fossil dates to estimate divergence times within the family. Sampling aimed to explore interspecific divergence of Channa species across Southeast Asia and intra-specific variation where species possessed natural geographical ranges that were extensive. Results contradict divergence times estimated previously independently from single locus mitochondrial data or the fossil record and suggest that after divergence from African taxa 40-50 Ma, evolution of Asian snakeheads has been heavily influenced by multiple broad scale dispersal events across India and Southeast Asia. A similar pattern of divergence within multiple clades suggests that west-east dispersal was limited for many taxa during the Miocene. Deep intra-specific divergence was inferred for C. striata, indicating that long historical periods of isolation ( approximately 8Ma) have not resulted in the evolution of reproductive isolation within this species. Results support suggestions that C. marulia like fishes in northern Cambodia may constitute an undescribed species, and that Indian C. diplogramma warrants taxonomic recognition as being distinct from Southeast Asian C. micropeltes, with the two taxa last sharing a common ancestor in the mid- to late-Miocene. PMID:20359539

  14. Colonization and diversification in the African 'sky islands': insights from fossil-calibrated molecular dating of Lychnis (Caryophyllaceae).

    PubMed

    Gizaw, Abel; Brochmann, Christian; Nemomissa, Sileshi; Wondimu, Tigist; Masao, Catherine Aloyce; Tusiime, Felly Mugizi; Abdi, Ahmed Abdikadir; Oxelman, Bengt; Popp, Magnus; Dimitrov, Dimitar

    2016-07-01

    The flora on the isolated high African mountains or 'sky islands' is remarkable for its peculiar adaptations, local endemism and striking biogeographical connections to remote parts of the world. Ages of the plant lineages and the timing of their radiations have frequently been debated but remain contentious as there are few estimates based on explicit models and fossil-calibrated molecular clocks. We used the plastid region maturaseK (matK) and a Caryophylloflora paleogenica fossil to infer the age of the genus Lychnis, and constructed a data set of three plastid (matK; a ribosomal protein S16 (rps16); and an intergenic spacer (psbE-petL)) and two nuclear (internal transcribed spacer (ITS) and a region spanning exon 18-24 in the second largest subunit of RNA polymerase II (RPB2)) loci for joint estimation of the species tree and divergence time of the African representatives. The time of divergence of the African high-altitude Lychnis was placed in the late Miocene to early Pliocene. A single speciation event was inferred in the early Pliocene; subsequent speciation took place sporadically from the late Pliocene to the middle Pleistocene. We provide further support for a Eurasian origin of the African 'sky islands' floral elements, which seem to have been recruited via dispersals at different times: some old, as in Lychnis, and others very recent. We show that dispersal and diversification within Africa play an important role in shaping these isolated plant communities. PMID:27037925

  15. A rich fossil record yields calibrated phylogeny for Acanthaceae (Lamiales) and evidence for marked biases in timing and directionality of intercontinental disjunctions.

    PubMed

    Tripp, Erin A; McDade, Lucinda A

    2014-09-01

    More than a decade of phylogenetic research has yielded a well-sampled, strongly supported hypothesis of relationships within the large ( > 4000 species) plant family Acanthaceae. This hypothesis points to intriguing biogeographic patterns and asymmetries in sister clade diversity but, absent a time-calibrated estimate for this evolutionary history, these patterns have remained unexplored. Here, we reconstruct divergence times within Acanthaceae using fossils as calibration points and experimenting with both fossil selection and effects of invoking a maximum age prior related to the origin of Eudicots. Contrary to earlier reports of a paucity of fossils of Lamiales (an order of ∼ 23,000 species that includes Acanthaceae) and to the expectation that a largely herbaceous to soft-wooded and tropical lineage would have few fossils, we recovered 51 reports of fossil Acanthaceae. Rigorous evaluation of these for accurate identification, quality of age assessment and utility in dating yielded eight fossils judged to merit inclusion in analyses. With nearly 10 kb of DNA sequence data, we used two sets of fossils as constraints to reconstruct divergence times. We demonstrate differences in age estimates depending on fossil selection and that enforcement of maximum age priors substantially alters estimated clade ages, especially in analyses that utilize a smaller rather than larger set of fossils. Our results suggest that long-distance dispersal events explain present-day distributions better than do Gondwanan or northern land bridge hypotheses. This biogeographical conclusion is for the most part robust to alternative calibration schemes. Our data support a minimum of 13 Old World (OW) to New World (NW) dispersal events but, intriguingly, only one in the reverse direction. Eleven of these 13 were among Acanthaceae s.s., which comprises > 90% of species diversity in the family. Remarkably, if minimum age estimates approximate true history, these 11 events occurred within

  16. Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida).

    PubMed

    Bolotov, Ivan N; Vikhrev, Ilya V; Bespalaya, Yulia V; Gofarov, Mikhail Y; Kondakov, Alexander V; Konopleva, Ekaterina S; Bolotov, Nikita N; Lyubas, Artyom A

    2016-10-01

    The taxonomy and biogeographic history of the bivalve family Margaritiferidae are controversial because previous molecular studies did not provide a well-resolved phylogenetic framework for these enigmatic freshwater mussels that have extensive but disjunct distribution in North America, Eurasia and North Africa. In this study, we present a new, fossil-calibrated phylogenetic hypothesis based on five molecular markers (∼4kb of total length) for ten species. Our results indicate that all recent margaritiferids are in the single genus, Margaritifera Schumacher, 1816. Additionally, we identified three relatively well-supported phylogenetic clades that are valid subgenera, i.e., Margaritifera s. str. (Holarctic), Margaritanopsis (=Cumberlandia) (southeast North America-southeast Asia disjunct) and Pseudunio (Mediterranean). We suggest that the crown lineage of the Margaritiferidae most likely originated in the Cretaceous (mean age 93Ma, 95% CI 66-126Ma). The combined results of ancestral area reconstructions based on the three different approaches (S-DIVA, DEC and S-DEC) showed that ancient vicariance events could have played an important role in speciation within the family. The rates of mitochondrial evolution of margaritiferids are notably slow, which may be associated with their longevity, long generation time and low metabolic rates. Our findings highlight the complex biogeographic history of the Margaritiferidae as an intermixing of ancient vicariance and dispersal events, which were most likely associated with some inland barriers, continental movements and a sea level dynamic. PMID:27444710

  17. Redundant 230Th/ 234U/ 238U, 231Pa/ 235U and 14C dating of fossil corals for accurate radiocarbon age calibration

    NASA Astrophysics Data System (ADS)

    Chiu, Tzu-Chien; Fairbanks, Richard G.; Mortlock, Richard A.; Cao, Li; Fairbanks, Todd W.; Bloom, Arthur L.

    2006-09-01

    230Th/ 234U/ 238U dating of fossil corals by mass spectrometry is remarkably precise, but some samples exposed to freshwater over thousands of years may gain and/or lose uranium and/or thorium and consequently yield inaccurate ages. Although a δ 234U initial value equivalent to modern seawater and modern corals has been an effective quality control criterion, for samples exposed to freshwater but having δ 234U initial values indistinguishable from modern seawater and modern corals, there remains a need for additional age validation in the most demanding applications such as the 14C calibration (Fairbanks et al., 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/ 234U/ 238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16-17), 1781-1796). In this paper we enhance screening criteria for fossil corals older than 30,000 years BP in the Fairbanks0805 radiocarbon calibration data set (Fairbanks et al., 2005) by measuring redundant 230Th/ 234U/ 238U and 231Pa/ 235U dates via multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-MS-ICPMS) using techniques described in Mortlock et al. (2005. 230Th/ 234U/ 238U and 231Pa/ 235U ages from a single fossil coral fragment by multi-collector magnetic-sector inductively coupled plasma mass spectrometry. Geochimica et Cosmochimica Acta 69(3), 649-657.). In our present study, we regard paired 231Pa/ 235U and 230Th/ 234U/ 238U ages concordant when the 231Pa/ 235U age (±2 σ) overlaps with the associated 230Th/ 234U/ 238U age (±2 σ). Out of a representative set of 11 Fairbanks0805 (Fairbanks et al., 2005) radiocarbon calibration coral samples re-measured in this study, nine passed this rigorous check on the accuracy of their 230Th/ 234U/ 238U ages. The concordancy observed between 230Th/ 234U/ 238U and 231Pa/ 235U dates provides convincing evidence to support closed system behavior of these fossil corals and validation of their 230Th/ 234U/ 238U

  18. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies

    PubMed Central

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a “knowledge bias” and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades. PMID:27192490

  19. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    PubMed

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades. PMID:27192490

  20. Calibration

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    Commercial spectrographic systems are usually supplied with some wave-length calibration, but it is essential that the experimenter performs his own calibration for reliable measurements. A number of sources emitting well-known emission lines are available, and the best values of their wavelengths may be taken from data banks accessible on the internet. Data have been critically evaluated for many decades by the National Institute of Standards and Technology (NIST) of the USA [13], see also p. 3. Special data bases have been established by the astronomy and fusion communities (Appendix B).

  1. Codon Adaptation of Plastid Genes.

    PubMed

    Suzuki, Haruo; Morton, Brian R

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  2. Codon Adaptation of Plastid Genes

    PubMed Central

    Suzuki, Haruo; Morton, Brian R.

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  3. Age Estimates for the Buckwheat Family Polygonaceae Based on Sequence Data Calibrated by Fossils and with a Focus on the Amphi-Pacific Muehlenbeckia

    PubMed Central

    Kron, Kathleen A.

    2013-01-01

    The buckwheat family Polygonaceae is a diverse group of plants and is a good model for investigating biogeography, breeding systems, coevolution with symbionts such as ants and fungi, functional trait evolution, hybridization, invasiveness, morphological plasticity, pollen morphology and wood anatomy. The main goal of this study was to obtain age estimates for Polygonaceae by calibrating a Bayesian phylogenetic analysis, using a relaxed molecular clock with fossil data. Based on the age estimates, we also develop hypotheses about the historical biogeography of the Southern Hemisphere group Muehlenbeckia. We are interested in addressing whether vicariance or dispersal could account for the diversification of Muehlenbeckia, which has a “Gondwanan” distribution. Eighty-one species of Polygonaceae were analysed with MrBayes to infer species relationships. One nuclear (nrITS) and three chloroplast markers (the trnL-trnF spacer region, matK and ndhF genes) were used. The molecular data were also analysed with Beast to estimate divergence times. Seven calibration points including fossil pollen and a leaf fossil of Muehlenbeckia were used to infer node ages. Results of the Beast analyses indicate an age of 110.9 (exponential/lognormal priors)/118.7 (uniform priors) million years (Myr) with an uncertainty interval of (90.7–125.0) Myr for the stem age of Polygonaceae. This age is older than previously thought (Maastrichtian, approximately 65.5–70.6 Myr). The estimated divergence time for Muehlenbeckia is 41.0/41.6 (39.6–47.8) Myr and its crown clade is 20.5/22.3 (14.2–33.5) Myr old. Because the breakup of Gondwana occurred from 95–30 Myr ago, diversification of Muehlenbeckia is best explained by oceanic long-distance and maybe stepping-stone dispersal rather than vicariance. This study is the first to give age estimates for clades of Polygonaceae and functions as a jumping-off point for future studies on the historical biogeography of the family. PMID:23585884

  4. "Fossil" Forecasting.

    ERIC Educational Resources Information Center

    Brody, Michael J.; deOnis, Ann

    2001-01-01

    Presents a density study in which students calculate the density of limestone substrate to determine if the specimen contains any fossils. Explains how to make fossils and addresses national standards. (YDS)

  5. Marquee Fossils

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2008-01-01

    Professors of an online graduate-level paleontology class developed the concept of marquee fossils--fossils that have one or more unique characteristics that capture the attention and direct observation of students. In the classroom, Marquee fossils integrate the geology, biology, and environmental science involved in the study of fossilized…

  6. Ediacara Fossils

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Now, a research team from Virginia Tech and Nanjing Institute of Geology and Paleontology has discovered uniquely well-preserved fossil forms from 550-million-year-old rocks of the Ediacaran Period. The research appears in the Proceedings of the National Academy of Sciences. The discovery of these unusually preserved fossils reveals unprecedented…

  7. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  8. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    2003-01-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  9. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    1999-10-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  10. Fossil spiders.

    PubMed

    Selden, Paul A; Penney, David

    2010-02-01

    Over the last three decades, the fossil record of spiders has increased from being previously biased towards Tertiary ambers and a few dubious earlier records, to one which reveals a much greater diversity in the Mesozoic, with many of the modern families present in that era, and with clearer evidence of the evolutionary history of the group. We here record the history of palaeoarachnology and the major breakthroughs which form the basis of studies on fossil spiders. Understanding the preservation and taphonomic history of spider fossils is crucial to interpretation of fossil spider morphology. We also review the more recent descriptions of fossil spiders and the effect these discoveries have had on the phylogenetic tree of spiders. We discuss some features of the evolutionary history of spiders and present ideas for future work. PMID:19961468

  11. Modal Codon Usage: Assessing the Typical Codon Usage of a Genome

    PubMed Central

    Davis, James J.; Olsen, Gary J.

    2010-01-01

    Most genomes are heterogeneous in codon usage, so a codon usage study should start by defining the codon usage that is typical to the genome. Although this is commonly taken to be the genomewide average, we propose that the mode—the codon usage that matches the most genes—provides a more useful approximation of the typical codon usage of a genome. We provide a method for estimating the modal codon usage, which utilizes a continuous approximation to the number of matching genes and a simplex optimization. In a survey of bacterial and archaeal genomes, as many as 20% more of the genes in a given genome match the modal codon usage than the average codon usage. We use the mode to examine the evolution of the multireplicon genomes of Agrobacterium tumefaciens C58 and Borrelia burgdorferi B31. In A. tumefaciens, the circular and linear chromosomes are characterized by a common “chromosome-like” codon usage, whereas both plasmids share a distinct “plasmid-like” codon usage. In B. burgdorferi, in addition to different codon-usage biases on the leading and lagging strands of DNA replication found by McInerney (McInerney JO. 1998. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci USA. 95:10698–10703), we also detect a codon-usage similarity between linear plasmid lp38 and the leading strand of the chromosome and a high similarity among the cp32 family of plasmids. PMID:20018979

  12. Codon preferences in free-living microorganisms.

    PubMed Central

    Andersson, S G; Kurland, C G

    1990-01-01

    A popular interpretation of the major codon preference is that it reflects the operation of a regulatory device that controls the expression of individual proteins. In this popular model, rapidly translated codons are thought to promote the accumulation of the highly expressed proteins and slowly translated codons are thought to retard the expression of poorly expressed proteins. However, this widely accepted model is not supported by kinetic theory or by experimental results. A less fashionable model in which the major codon preference has nothing to do with the expression level of the individual proteins is forwarded. In this model, the major codon preference is viewed as a global strategy to support the efficient function of the translation system and thereby to maximize the growth rates of cells under favorable conditions. PMID:2194095

  13. Fossil Horses

    NASA Astrophysics Data System (ADS)

    MacFadden, Bruce J.

    1994-06-01

    The family Equidae have an extensive fossil record spanning the past 58 million years, and the evolution of the horse has frequently been used as a classic example of long-term evolution. In recent years, however, there have been many important discoveries of fossil horses, and these, in conjunction with such new methods as cladistics, and techniques such as precise geochronology, have allowed us to achieve a much greater understanding of the evolution and biology of this important group. This book synthesizes the large body of data and research relevant to an understanding of fossil horses from several disciplines including biology, geology and paleontology. Using horses as the central theme, the author weaves together in the text such topics as modern geochronology, paleobiogeography, climate change, evolution and extinction, functional morphology, and population biology during the Cenozoic period. This book will be exciting reading for researchers and graduate students in vertebrate paleontology, evolution, and zoology.

  14. Codon information value and codon transition-probability distributions in short-term evolution

    NASA Astrophysics Data System (ADS)

    Jiménez-Montaño, M. A.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.; Ramos-Fernández, A.

    2016-07-01

    To understand the way the Genetic Code and the physical-chemical properties of coded amino acids affect accepted amino acid substitutions in short-term protein evolution, taking into account only overall amino acid conservation, we consider an underlying codon-level model. This model employs codon pair-substitution frequencies from an empirical matrix in the literature, modified for single-base mutations only. Ordering the degenerated codons according to their codon information value (Volkenstein, 1979), we found that three-fold and most of four-fold degenerated codons, which have low codon values, were best fitted to rank-frequency distributions with constant failure rate (exponentials). In contrast, almost all two-fold degenerated codons, which have high codon values, were best fitted to rank-frequency distributions with variable failure rate (inverse power-laws). Six-fold degenerated codons are considered to be doubly assigned. The exceptional behavior of some codons, including non-degenerate codons, is discussed.

  15. CodonPhyML: Fast Maximum Likelihood Phylogeny Estimation under Codon Substitution Models

    PubMed Central

    Gil, Manuel; Zoller, Stefan; Anisimova, Maria

    2013-01-01

    Markov models of codon substitution naturally incorporate the structure of the genetic code and the selection intensity at the protein level, providing a more realistic representation of protein-coding sequences compared with nucleotide or amino acid models. Thus, for protein-coding genes, phylogenetic inference is expected to be more accurate under codon models. So far, phylogeny reconstruction under codon models has been elusive due to computational difficulties of dealing with high dimension matrices. Here, we present a fast maximum likelihood (ML) package for phylogenetic inference, CodonPhyML offering hundreds of different codon models, the largest variety to date, for phylogeny inference by ML. CodonPhyML is tested on simulated and real data and is shown to offer excellent speed and convergence properties. In addition, CodonPhyML includes most recent fast methods for estimating phylogenetic branch supports and provides an integral framework for models selection, including amino acid and DNA models. PMID:23436912

  16. Di-codon Usage for Gene Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh N.; Ma, Jianmin; Fogel, Gary B.; Rajapakse, Jagath C.

    Classification of genes into biologically related groups facilitates inference of their functions. Codon usage bias has been described previously as a potential feature for gene classification. In this paper, we demonstrate that di-codon usage can further improve classification of genes. By using both codon and di-codon features, we achieve near perfect accuracies for the classification of HLA molecules into major classes and sub-classes. The method is illustrated on 1,841 HLA sequences which are classified into two major classes, HLA-I and HLA-II. Major classes are further classified into sub-groups. A binary SVM using di-codon usage patterns achieved 99.95% accuracy in the classification of HLA genes into major HLA classes; and multi-class SVM achieved accuracy rates of 99.82% and 99.03% for sub-class classification of HLA-I and HLA-II genes, respectively. Furthermore, by combining codon and di-codon usages, the prediction accuracies reached 100%, 99.82%, and 99.84% for HLA major class classification, and for sub-class classification of HLA-I and HLA-II genes, respectively.

  17. Codon compression algorithms for saturation mutagenesis.

    PubMed

    Pines, Gur; Pines, Assaf; Garst, Andrew D; Zeitoun, Ramsey I; Lynch, Sean A; Gill, Ryan T

    2015-05-15

    Saturation mutagenesis is employed in protein engineering and genome-editing efforts to generate libraries that span amino acid design space. Traditionally, this is accomplished by using degenerate/compressed codons such as NNK (N = A/C/G/T, K = G/T), which covers all amino acids and one stop codon. These solutions suffer from two types of redundancy: (a) different codons for the same amino acid lead to bias, and (b) wild type amino acid is included within the library. These redundancies increase library size and downstream screening efforts. Here, we present a dynamic approach to compress codons for any desired list of amino acids, taking into account codon usage. This results in a unique codon collection for every amino acid to be mutated, with the desired redundancy level. Finally, we demonstrate that this approach can be used to design precise oligo libraries amendable to recombineering and CRISPR-based genome editing to obtain a diverse population with high efficiency. PMID:25303315

  18. Codon usage trend in mitochondrial CYB gene.

    PubMed

    Uddin, Arif; Chakraborty, Supriyo

    2016-07-15

    Here we reported the pattern of codon usage and the factors which influenced the codon usage pattern in mitochondrial cytochrome B (MT-CYB) gene among pisces, aves and mammals. The F1 axis of correspondence analysis showed highly significant positive correlation with nucleobases A3, C and C3 and significant negative correlation with T and T3 while F2 of correspondence analysis showed significant positive correlation with C and C3 and significant negative correlation with A and A3. From the neutrality plot, it was evident that the GC12 was influenced by mutation pressure and natural selection with a ratio of 0.10/0.90=0.11 in pisces, 0.024/0.976=0.0245 in aves and in mammals 0.215/0.785=0.273, which indicated that the role of natural selection was more than mutation pressure on structuring the bases at the first and second codon positions. Natural selection played the major role; but compositional constraint and mutation pressure also played a significant role in codon usage pattern. Analysis of codon usage pattern has contributed to the better understanding of the mechanism of distribution of codons and the evolution of MT-CYB gene. PMID:27063508

  19. The effect of context on synonymous codon usage in genes with low codon usage bias.

    PubMed Central

    Bulmer, M

    1990-01-01

    The effect of neighbouring bases on the usage of synonymous codons in genes with low codon usage bias in yeast and E. coli is examined. The codon adaptation index is employed to identify a group of genes in each organism with low codon usage bias, which are likely to be weakly expressed. A similar pattern is found in complementary sequences with respect to synonymous usage of A vs G or of U vs C. It is suggested that this may reflect an effect of context on mutation rates in weakly expressed genes. PMID:2190183

  20. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage.

    PubMed

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  1. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  2. Hand gesture recognition by analysis of codons

    NASA Astrophysics Data System (ADS)

    Ramachandra, Poornima; Shrikhande, Neelima

    2007-09-01

    The problem of recognizing gestures from images using computers can be approached by closely understanding how the human brain tackles it. A full fledged gesture recognition system will substitute mouse and keyboards completely. Humans can recognize most gestures by looking at the characteristic external shape or the silhouette of the fingers. Many previous techniques to recognize gestures dealt with motion and geometric features of hands. In this thesis gestures are recognized by the Codon-list pattern extracted from the object contour. All edges of an image are described in terms of sequence of Codons. The Codons are defined in terms of the relationship between maxima, minima and zeros of curvature encountered as one traverses the boundary of the object. We have concentrated on a catalog of 24 gesture images from the American Sign Language alphabet (Letter J and Z are ignored as they are represented using motion) [2]. The query image given as an input to the system is analyzed and tested against the Codon-lists, which are shape descriptors for external parts of a hand gesture. We have used the Weighted Frequency Indexing Transform (WFIT) approach which is used in DNA sequence matching for matching the Codon-lists. The matching algorithm consists of two steps: 1) the query sequences are converted to short sequences and are assigned weights and, 2) all the sequences of query gestures are pruned into match and mismatch subsequences by the frequency indexing tree based on the weights of the subsequences. The Codon sequences with the most weight are used to determine the most precise match. Once a match is found, the identified gesture and corresponding interpretation are shown as output.

  3. Are the oldest 'fossils', fossils

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1976-01-01

    A comparative statistical study has been carried out on populations of modern algae, Precambrian algal microfossils, the 'organized elements' of the Orgueil carbonaceous meteorite, and the oldest microfossil-like objects now known (spheroidal bodies from the Fig Tree and Onverwacht Groups of the Swaziland Supergroup, South Africa). The distribution patterns exhibited by the more than 3000 m.y.-old Swaziland microstructures bear considerable resemblance to those of the abiotic 'organized elements' but differ rather markedly from those exhibited by younger, assuredly biogenic, populations. Based on these comparisons, it is concluded that the Swaziland spheroids could be, at least in part, of nonbiologic origin; these oldest known fossil-like microstructures should not be regarded as constituting firm evidence of Archean life.

  4. Codon catalog usage and the genome hypothesis.

    PubMed Central

    Grantham, R; Gautier, C; Gouy, M; Mercier, R; Pavé, A

    1980-01-01

    Frequencies for each of the 61 amino acid codons have been determined in every published mRNA sequence of 50 or more codons. The frequencies are shown for each kind of genome and for each individual gene. A surprising consistency of choices exists among genes of the same or similar genomes. Thus each genome, or kind of genome, appears to possess a "system" for choosing between codons. Frameshift genes, however, have widely different choice strategies from normal genes. Our work indicates that the main factors distinguishing between mRNA sequences relate to choices among degenerate bases. These systematic third base choices can therefore be used to establish a new kind of genetic distance, which reflects differences in coding strategy. The choice patterns we find seem compatible with the idea that the genome and not the individual gene is the unit of selection. Each gene in a genome tends to conform to its species' usage of the codon catalog; this is our genome hypothesis. PMID:6986610

  5. Will My Fossil Float?

    ERIC Educational Resources Information Center

    Riesser, Sharon; Airey, Linda

    1993-01-01

    Explains how young students can be introduced to fossils. Suggests books to read and science activities including "Fossils to Eat" where students make fossils from peanut butter, honey, and powdered milk. (PR)

  6. Stop Codon Reassignment in the Wild

    SciTech Connect

    Ivanova, Natalia; Schwientek, Patrick; Tripp, H. James; Rinke, Christian; Pati, Amrita; Huntemann, Marcel; Visel, Axel; Woyke, Tanja; Kyrpides, Nikos; Rubin, Edward

    2014-03-21

    Since the discovery of the genetic code and protein translation mechanisms (1), a limited number of variations of the standard assignment between unique base triplets (codons) and their encoded amino acids and translational stop signals have been found in bacteria and phages (2-3). Given the apparent ubiquity of the canonical genetic code, the design of genomically recoded organisms with non-canonical codes has been suggested as a means to prevent horizontal gene transfer between laboratory and environmental organisms (4). It is also predicted that genomically recoded organisms are immune to infection by viruses, under the assumption that phages and their hosts must share a common genetic code (5). This paradigm is supported by the observation of increased resistance of genomically recoded bacteria to phages with a canonical code (4). Despite these assumptions and accompanying lines of evidence, it remains unclear whether differential and non-canonical codon usage represents an absolute barrier to phage infection and genetic exchange between organisms. Our knowledge of the diversity of genetic codes and their use by viruses and their hosts is primarily derived from the analysis of cultivated organisms. Advances in single-cell sequencing and metagenome assembly technologies have enabled the reconstruction of genomes of uncultivated bacterial and archaeal lineages (6). These initial findings suggest that large scale systematic studies of uncultivated microorganisms and viruses may reveal the extent and modes of divergence from the canonical genetic code operating in nature. To explore alternative genetic codes, we carried out a systematic analysis of stop codon reassignments from the canonical TAG amber, TGA opal, and TAA ochre codons in assembled metagenomes from environmental and host-associated samples, single-cell genomes of uncultivated bacteria and archaea, and a collection of phage sequences

  7. Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons.

    PubMed Central

    Zitomer, R S; Walthall, D A; Rymond, B C; Hollenberg, C P

    1984-01-01

    A series of Saccharomyces cerevisiae plasmids and mutant derivatives containing fusions of the Escherichia coli galactokinase gene, galK, to the yeast iso-1-cytochrome c CYC1 transcription unit were used to study the sequences affecting the initiation of translation in S. cerevisiae. When the CYC1 AUG initiation codon preceded the galK AUG codon and coding sequence and either the two AUGs were out of frame with each other or a nonsense codon was located between them, the expression of the galK gene was extremely low. Deletion of the CYC1 AUG and its surrounding sequences resulted in a 100-fold increase in galK expression. This dependence of galK expression on the elimination of the CYC1 AUG codon was used to select mutations in that codon. Then the ability of these altered initiation codons to serve in translational initiation was determined by reconstruction of the CYC1 gene 3' to and in frame with them. Initiation was found to occur at the codons UUG and AUA, but not at the codons AAA and AUC. Furthermore the codon UUG, when preceded by an A three nucleotides upstream, served as a better initiation codon than when a U was substituted for the A. The efficiency of translation from these non-AUG codons was quantitated by using a CYC1/galK protein-coding fusion and measuring cellular galactokinase levels. Initiation at the UUG codon was 6.9% as efficient as initiation at the wild-type AUG codon when preceded by an A three nucleotides upstream, but was over 10-fold less efficient when a U was substituted for that A. Initiation at AUA was 0.5% as efficient as at AUG. The effects of the sequences preceding the initiation codon are discussed in light of these results. PMID:6390186

  8. The non-uniformity of fossil preservation.

    PubMed

    Holland, Steven M

    2016-07-19

    The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325828

  9. Genome-wide analysis of codon usage bias in Ebolavirus.

    PubMed

    Cristina, Juan; Moreno, Pilar; Moratorio, Gonzalo; Musto, Héctor

    2015-01-22

    Ebola virus (EBOV) is a member of the family Filoviridae and its genome consists of a 19-kb, single-stranded, negative sense RNA. EBOV is subdivided into five distinct species with different pathogenicities, being Zaire ebolavirus (ZEBOV) the most lethal species. The interplay of codon usage among viruses and their hosts is expected to affect overall viral survival, fitness, evasion from host's immune system and evolution. In the present study, we performed comprehensive analyses of codon usage and composition of ZEBOV. Effective number of codons (ENC) indicates that the overall codon usage among ZEBOV strains is slightly biased. Different codon preferences in ZEBOV genes in relation to codon usage of human genes were found. Highly preferred codons are all A-ending triplets, which strongly suggests that mutational bias is a main force shaping codon usage in ZEBOV. Dinucleotide composition also plays a role in the overall pattern of ZEBOV codon usage. ZEBOV does not seem to use the most abundant tRNAs present in the human cells for most of their preferred codons. PMID:25445348

  10. Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2015-12-22

    Understanding the interactions that drive the fidelity of the genetic code and the limits to which modifications can be made without breaking the translational system has practical implications for understanding the molecular mechanisms of evolution as well as expanding the set of encodable amino acids, particularly those with chemistries not provided by Nature. Because 61 sense codons encode 20 amino acids, reassigning the meaning of sense codons provides an avenue for biosynthetic modification of proteins, furthering both fundamental and applied biochemical research. We developed a simple screen that exploits the absolute requirement for fluorescence of an active site tyrosine in green fluorescent protein (GFP) to probe the pliability of the degeneracy of the genetic code. Our screen monitors the restoration of the fluorophore of GFP by incorporation of a tyrosine in response to a sense codon typically assigned another meaning in the genetic code. We evaluated sense codon reassignment at four of the 21 sense codons read through wobble interactions in Escherichia coli using the Methanocaldococcus jannaschii orthogonal tRNA/aminoacyl tRNA synthetase pair originally developed and commonly used for amber stop codon suppression. By changing only the anticodon of the orthogonal tRNA, we achieved sense codon reassignment efficiencies between 1% (Phe UUU) and 6% (Lys AAG). Each of the orthogonal tRNAs preferentially decoded the codon traditionally read via a wobble interaction in E. coli with the exception of the orthogonal tRNA with an AUG anticodon, which incorporated tyrosine in response to both the His CAU and His CAC codons with approximately equal frequencies. We applied our screen in a high-throughput manner to evaluate a 10(9)-member combined tRNA/aminoacyl tRNA synthetase library to identify improved sense codon reassigning variants for the Lys AAG codon. A single rapid screen with the ability to broadly evaluate reassignable codons will facilitate

  11. The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    PubMed Central

    Sengupta, Supratim; Yang, Xiaoguang

    2007-01-01

    Many cases of nonstandard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The “gain” represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The “loss” represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is codon disappearance (CD), where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the unassigned codon mechanism, the loss occurs first, whereas in the ambiguous intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. CD is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense-to-sense reassignments cannot be explained by CD. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the unassigned codon and the ambiguous intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully. Electronic supplementary material The online version of this article (doi:10.1007/s00239-006-0284-7) contains supplementary material, which is available to authorized users. PMID:17541678

  12. Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species

    PubMed Central

    2006-01-01

    Background Codon usage has direct utility in molecular characterization of species and is also a marker for molecular evolution. To understand codon usage within the diverse phylum Nematoda, we analyzed a total of 265,494 expressed sequence tags (ESTs) from 30 nematode species. The full genomes of Caenorhabditis elegans and C. briggsae were also examined. A total of 25,871,325 codons were analyzed and a comprehensive codon usage table for all species was generated. This is the first codon usage table available for 24 of these organisms. Results Codon usage similarity in Nematoda usually persists over the breadth of a genus but then rapidly diminishes even within each clade. Globodera, Meloidogyne, Pristionchus, and Strongyloides have the most highly derived patterns of codon usage. The major factor affecting differences in codon usage between species is the coding sequence GC content, which varies in nematodes from 32% to 51%. Coding GC content (measured as GC3) also explains much of the observed variation in the effective number of codons (R = 0.70), which is a measure of codon bias, and it even accounts for differences in amino acid frequency. Codon usage is also affected by neighboring nucleotides (N1 context). Coding GC content correlates strongly with estimated noncoding genomic GC content (R = 0.92). On examining abundant clusters in five species, candidate optimal codons were identified that may be preferred in highly expressed transcripts. Conclusion Evolutionary models indicate that total genomic GC content, probably the product of directional mutation pressure, drives codon usage rather than the converse, a conclusion that is supported by examination of nematode genomes. PMID:26271136

  13. Codon Usage Domains over Bacterial Chromosomes

    PubMed Central

    Bailly-Bechet, Marc; Danchin, Antoine; Iqbal, Mudassar; Marsili, Matteo; Vergassola, Massimo

    2006-01-01

    The geography of codon bias distributions over prokaryotic genomes and its impact upon chromosomal organization are analyzed. To this aim, we introduce a clustering method based on information theory, specifically designed to cluster genes according to their codon usage and apply it to the coding sequences of Escherichia coli and Bacillus subtilis. One of the clusters identified in each of the organisms is found to be related to expression levels, as expected, but other groups feature an over-representation of genes belonging to different functional groups, namely horizontally transferred genes, motility, and intermediary metabolism. Furthermore, we show that genes with a similar bias tend to be close to each other on the chromosome and organized in coherent domains, more extended than operons, demonstrating a role of translation in structuring bacterial chromosomes. It is argued that a sizeable contribution to this effect comes from the dynamical compartimentalization induced by the recycling of tRNAs, leading to gene expression rates dependent on their genomic and expression context. PMID:16683018

  14. Kinetics of Stop Codon Recognition by Release Factor 1

    PubMed Central

    Hetrick, Byron; Lee, Kristin; Joseph, Simpson

    2009-01-01

    Recognition of stop codons by class I release factors is a fundamental step in the termination phase of protein synthesis. Since premature termination is costly to the cell, release factors have to efficiently discriminate between stop and sense codons. In order to understand the mechanism of discrimination between stop and sense codons, we developed a new, pre-steady state kinetic assay to monitor the interaction of RF1 with the ribosome. Our results show that RF1 associates with similar association rate constants to ribosomes programmed with a stop or sense codons. However, dissociation of RF1 from sense codons is as much as three orders of magnitude faster than from stop codons. Interestingly, the affinity of RF1 for ribosomes programmed with different sense codons does not correlate with the defects in peptide release. Thus, discrimination against sense codons is achieved, both, by increasing the dissociation rates and by decreasing the rate of peptide release. These results suggest that sense codons inhibit conformational changes necessary for RF1 to stably bind to the ribosome and catalyze peptide release. PMID:19874047

  15. A computer program to display codon changes caused by mutagenesis.

    PubMed

    Sirotkin, K

    1988-04-01

    A FORTRAN program for displaying the correspondence between codon changes and different possible base changes is presented. Changes of both single bases and dimers are considered. The user can specify the mutagenesis spectrum. Additionally, the user can choose whether or not to consider single or double events in a codon and whether or not to consider the possibility that the change of two bases (a dimer) can overlap a codon boundary. Furthermore, a variety of ways may be chosen to display and summarize the codon changes that can result from the specified mutagenesis. A user-supplied sequence or the genetic code table can be analyzed. PMID:3167596

  16. Comparative context analysis of codon pairs on an ORFeome scale

    PubMed Central

    Moura, Gabriela; Pinheiro, Miguel; Silva, Raquel; Miranda, Isabel; Afreixo, Vera; Dias, Gaspar; Freitas, Adelaide; Oliveira, José L; Santos, Manuel AS

    2005-01-01

    Codon context is an important feature of gene primary structure that modulates mRNA decoding accuracy. We have developed an analytical software package and a graphical interface for comparative codon context analysis of all the open reading frames in a genome (the ORFeome). Using the complete ORFeome sequences of Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Escherichia coli, we show that this methodology permits large-scale codon context comparisons and provides new insight on the rules that govern the evolution of codon-pair context. PMID:15774029

  17. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-04-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic-anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  18. Stop codons in bacteria are not selectively equivalent

    PubMed Central

    2012-01-01

    Background The evolution and genomic stop codon frequencies have not been rigorously studied with the exception of coding of non-canonical amino acids. Here we study the rate of evolution and frequency distribution of stop codons in bacterial genomes. Results We show that in bacteria stop codons evolve slower than synonymous sites, suggesting the action of weak negative selection. However, the frequency of stop codons relative to genomic nucleotide content indicated that this selection regime is not straightforward. The frequency of TAA and TGA stop codons is GC-content dependent, with TAA decreasing and TGA increasing with GC-content, while TAG frequency is independent of GC-content. Applying a formal, analytical model to these data we found that the relationship between stop codon frequencies and nucleotide content cannot be explained by mutational biases or selection on nucleotide content. However, with weak nucleotide content-dependent selection on TAG, -0.5 < Nes < 1.5, the model fits all of the data and recapitulates the relationship between TAG and nucleotide content. For biologically plausible rates of mutations we show that, in bacteria, TAG stop codon is universally associated with lower fitness, with TAA being the optimal for G-content < 16% while for G-content > 16% TGA has a higher fitness than TAG. Conclusions Our data indicate that TAG codon is universally suboptimal in the bacterial lineage, such that TAA is likely to be the preferred stop codon for low GC content while the TGA is the preferred stop codon for high GC content. The optimization of stop codon usage may therefore be useful in genome engineering or gene expression optimization applications. Reviewers This article was reviewed by Michail Gelfand, Arcady Mushegian and Shamil Sunyaev. For the full reviews, please go to the Reviewers’ Comments section. PMID:22974057

  19. Nonsense codons trigger an RNA partitioning shift.

    PubMed

    Bhalla, Angela D; Gudikote, Jayanthi P; Wang, Jun; Chan, Wai-Kin; Chang, Yao-Fu; Olivas, O Renee; Wilkinson, Miles F

    2009-02-13

    T-cell receptor-beta (TCRbeta) genes naturally acquire premature termination codons (PTCs) as a result of programmed gene rearrangements. PTC-bearing TCRbeta transcripts are dramatically down-regulated to protect T-cells from the deleterious effects of the truncated proteins that would otherwise be produced. Here we provide evidence that two responses collaborate to elicit this dramatic down-regulation. One is rapid mRNA decay triggered by the nonsense-mediated decay (NMD) RNA surveillance pathway. We demonstrate that this occurs in highly purified nuclei lacking detectable levels of three different cytoplasmic markers, but containing an outer nuclear membrane marker, suggesting that decay occurs either in the nucleoplasm or at the outer nuclear membrane. The second response is a dramatic partitioning shift in the nuclear fraction-to-cytoplasmic fraction mRNA ratio that results in few TCRbeta transcripts escaping to the cytoplasmic fraction of cells. Analysis of TCRbeta mRNA kinetics after either transcriptional repression or induction suggested that this nonsense codon-induced partitioning shift (NIPS) response is not the result of cytoplasmic NMD but instead reflects retention of PTC(+) TCRbeta mRNA in the nuclear fraction of cells. We identified TCRbeta sequences crucial for NIPS but found that NIPS is not exclusively a property of TCRbeta transcripts, and we identified non-TCRbeta sequences that elicit NIPS. RNA interference experiments indicated that NIPS depends on the NMD factors UPF1 and eIF4AIII but not the NMD factor UPF3B. We propose that NIPS collaborates with NMD to retain and degrade a subset of PTC(+) transcripts at the outer nuclear membrane and/or within the nucleoplasm. PMID:19091751

  20. Synonymous codon usage pattern in glycoprotein gene of rabies virus.

    PubMed

    Morla, Sudhir; Makhija, Aditi; Kumar, Sachin

    2016-06-10

    Rabies virus (RABV) is the causative agent of a fatal nervous system ailment. The disease is zoonotic and prevalent in many developing countries. The glycoprotein (G) of RABV is the major antigenic determinant of the virus and plays a pivotal role in its neurovirulence. Various aspects of 'G' protein biology have been explored, but the factors affecting the nucleotide choice and synonymous codon usage have never been reported. In the present study, we have analyzed the relative synonymous codon usage and effective number of codons (Nc) using 132 'G' protein genes of RABV. Corresponding analysis was used to calculate major trends in codon usage. The correlation between base composition and codon usage as well as the plot between Nc and GC3 suggest that mutational pressure is the major factor that influences the codon usage in the G gene of RABV. In addition, factors like aromaticity, aliphatic index and hydropathy have shown slight correlation suggesting that natural selection also contributes to the codon usage variations of the 'G' gene. In conclusion, codon usage bias in 'G' gene of RABV is mainly by mutational pressure and natural selection. PMID:26945626

  1. [Codon usage bias in the straw mushroom Volvariella volvacea].

    PubMed

    Jiang, Wei; Lü, Beibei; He, Jianhua; Wang, Jinbin; Wu, Xiao; Wu, Guogan; Bao, Dapeng; Chen, Mingjie; Zhang, Jinsong; Tan, Qi; Tang, Xueming

    2014-09-01

    We analyzed the whole genome coding sequence of Volvariella volvacea to study the pattern utilization of codons by Codon W 1.4.2. As results, 24 optimal codons were identified. Moreover, the frequency of codons usage was calculated by CUSP program. We compared the frequency of codons usage of V. volvacea with other organisms including 6 modal value species (Homo sapiens, Saccharomys cerevisiae, Arabidopsis thalian, Mus musculus, Danio rerio and Drosophila melanogaster) and 4 edible fungi (Coprinopsis cinerea, Agaricus bisporus, Lentinula edodes and Pleurotus ostreatus). We found that there were less differences in 3 edible fungi (excluding Pleurotus ostreatus) than 6 modal value species, comparing with the frequency of codons usage of V. volvacea. With software SPSS16.0, cluster analysis which showed differences in the size of codon bias, reflects the evolutionary relationships between species, which can be used as a reference of evolutionary relationships of species. This was the first time for analysis the codon preference among the whole coding sequences of edible fungi, serving as theoretical basis to apply genetic engineering of V. volvacea. PMID:25720157

  2. Structural basis for stop codon recognition in eukaryotes

    PubMed Central

    Murray, Jason; Hegde, Ramanujan S.; Ramakrishnan, V.

    2015-01-01

    Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UGA, UAA, or UAG. Release factors recognise stop codons in the ribosomal A site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases1. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognise all three stop codons2. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here, we present electron cryo-microscopy (cryo-EM) structures at 3.5 – 3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A site. Binding of eRF1 flips nucleotide A1825 of 18S rRNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A site, where it is stabilised by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during tRNA selection to drive mRNA compaction. Stop codons are favoured in this compacted mRNA conformation by a hydrogen-bonding network with essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination3,4. PMID:26245381

  3. Codon Bias Patterns of E. coli’s Interacting Proteins

    PubMed Central

    Dilucca, Maddalena; Cimini, Giulio; Semmoloni, Andrea; Deiana, Antonio; Giansanti, Andrea

    2015-01-01

    Synonymous codons, i.e., DNA nucleotide triplets coding for the same amino acid, are used differently across the variety of living organisms. The biological meaning of this phenomenon, known as codon usage bias, is still controversial. In order to shed light on this point, we propose a new codon bias index, CompAI, that is based on the competition between cognate and near-cognate tRNAs during translation, without being tuned to the usage bias of highly expressed genes. We perform a genome-wide evaluation of codon bias for E.coli, comparing CompAI with other widely used indices: tAI, CAI, and Nc. We show that CompAI and tAI capture similar information by being positively correlated with gene conservation, measured by the Evolutionary Retention Index (ERI), and essentiality, whereas, CAI and Nc appear to be less sensitive to evolutionary-functional parameters. Notably, the rate of variation of tAI and CompAI with ERI allows to obtain sets of genes that consistently belong to specific clusters of orthologous genes (COGs). We also investigate the correlation of codon bias at the genomic level with the network features of protein-protein interactions in E.coli. We find that the most densely connected communities of the network share a similar level of codon bias (as measured by CompAI and tAI). Conversely, a small difference in codon bias between two genes is, statistically, a prerequisite for the corresponding proteins to interact. Importantly, among all codon bias indices, CompAI turns out to have the most coherent distribution over the communities of the interactome, pointing to the significance of competition among cognate and near-cognate tRNAs for explaining codon usage adaptation. Notably, CompAI may potentially correlate with translation speed measurements, by accounting for the specific delay induced by wobble-pairing between codons and anticodons. PMID:26566157

  4. Modes of fossil preservation

    USGS Publications Warehouse

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  5. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon.

    PubMed

    Svidritskiy, Egor; Madireddy, Rohini; Korostelev, Andrei A

    2016-05-22

    Pseudouridylation of messenger RNA emerges as an abundant modification involved in gene expression regulation. Pseudouridylation of stop codons in eukaryotic and bacterial cells results in stop-codon read through. The structural mechanism of this phenomenon is not known. Here we present a 3.1-Å crystal structure of Escherichia coli release factor 1 (RF1) bound to the 70S ribosome in response to the ΨAA codon. The structure reveals that recognition of a modified stop codon does not differ from that of a canonical stop codon. Our in vitro biochemical results support this finding by yielding nearly identical rates for peptide release from E. coli ribosomes programmed with pseudouridylated and canonical stop codons. The crystal structure also brings insight into E. coli RF1-specific interactions and suggests involvement of L27 in bacterial translation termination. Our results are consistent with a mechanism in which read through of a pseudouridylated stop codon in bacteria results from increased decoding by near-cognate tRNAs (miscoding) rather than from decreased efficiency of termination. PMID:27107638

  6. Premature termination codons in modern human genomes

    PubMed Central

    Fujikura, Kohei

    2016-01-01

    The considerable range of genetic variation in human populations may partly reflect distinctive processes of adaptation to variable environmental conditions. However, the adaptive genomic signatures remain to be completely elucidated. This research explores candidate loci under selection at the population level by characterizing recently arisen premature termination codons (PTCs), some of which indicate a human knockout. From a total of 7595 participants from two population exome projects, 246 PTCs were found where natural selection has resulted in new alleles with a high frequency (from 1% to 96%) of derived alleles and various levels of population differentiation (FST = 0.00139–0.626). The PTC genes formed protein and regulatory networks limited to 15 biological processes or gene families, of which seven categories were previously unreported. PTC mutations have a strong tendency to be introduced into members of the same gene family, even during modern human evolution, although the exact nature of the selection is not fully known. The findings here suggest the ongoing evolutionary plasticity of modern humans at the genetic level and also partly provide insights into common human knockouts. PMID:26932450

  7. Premature termination codons in modern human genomes.

    PubMed

    Fujikura, Kohei

    2016-01-01

    The considerable range of genetic variation in human populations may partly reflect distinctive processes of adaptation to variable environmental conditions. However, the adaptive genomic signatures remain to be completely elucidated. This research explores candidate loci under selection at the population level by characterizing recently arisen premature termination codons (PTCs), some of which indicate a human knockout. From a total of 7595 participants from two population exome projects, 246 PTCs were found where natural selection has resulted in new alleles with a high frequency (from 1% to 96%) of derived alleles and various levels of population differentiation (FST = 0.00139-0.626). The PTC genes formed protein and regulatory networks limited to 15 biological processes or gene families, of which seven categories were previously unreported. PTC mutations have a strong tendency to be introduced into members of the same gene family, even during modern human evolution, although the exact nature of the selection is not fully known. The findings here suggest the ongoing evolutionary plasticity of modern humans at the genetic level and also partly provide insights into common human knockouts. PMID:26932450

  8. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  9. Analysis of amino acid and codon usage in Paramecium bursaria.

    PubMed

    Dohra, Hideo; Fujishima, Masahiro; Suzuki, Haruo

    2015-10-01

    The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis. PMID:26341535

  10. Calibration age and quartet divergence date estimation.

    PubMed

    Brochu, Christopher A

    2004-06-01

    The date of a single divergence point--between living alligators and crocodiles--was estimated with quartet dating using calibrations of widely divergent ages. For five mitochondrial sequence datasets, there is a clear relationship between calibration age and quartet estimate--quartets based on two relatively recent calibrations support younger divergence estimates than do quartets based on two older calibrations. Some of the estimates supported by young quartets are impossibly young and exclude the first appearance of the group in the fossil record as too old. The older estimates--those based on two relatively old calibrations--may be overestimates, and those based on one old and one recent calibration support divergence estimates very close to fossil data. This suggests that quartet dating methods may be most effective when calibrations are applied from different parts of a clade's history. PMID:15266985

  11. Genetic Code Expansion by Degeneracy Reprogramming of Arginyl Codons.

    PubMed

    Lee, Ki Baek; Hou, Chen Yuan; Kim, Chae-Eun; Kim, Dong-Myung; Suga, Hiroaki; Kang, Taek Jin

    2016-07-01

    The genetic code in most organisms codes for 20 proteinogenic amino acids or translation stop. In order to encode more than 20 amino acids in the coding system, one of stop codons is usually reprogrammed to encode a non-proteinogenic amino acid. Although this approach works, usually only one amino acid is added to the amino acid repertoire. In this study, we incorporated non-proteinogenic amino acids into a protein by using a sense codon. As all the codons are allocated in the universal genetic code, we destroyed all the tRNA(Arg) in a cell-free protein synthesis system by using a tRNA(Arg) -specific tRNase, colicin D. Then by supplementing the system with tRNACCU , the translation system was partially restored. Through this creative destruction, reprogrammable codons were successfully created in the system to encode modified lysines along with the 20 proteinogenic amino acids. PMID:27151886

  12. 20. WEST CONFEDERATE AVENUE BRIDGE SPANNING CODON'S RUN, ARCH DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. WEST CONFEDERATE AVENUE BRIDGE SPANNING CODON'S RUN, ARCH DETAIL SHOWING BRICK ARCH FOR MAIN SPAN AND STONE VOUSSOIRS. VIEW W. - Gettysburg National Military Park Tour Roads, Gettysburg, Adams County, PA

  13. Mononucleotide and dinucleotide frequencies, and codon usage in poliovirion RNA.

    PubMed Central

    Rothberg, P G; Wimmer, E

    1981-01-01

    The polio type 1 (Mahoney) RNA sequence (1) has been analyzed in terms of the distribution of its mononucleotides, dinucleotides and trinucleotides (codons). The distribution of adenosine in the sequence is nonuniform, being lower at the 5' end and higher at the 3' end. The dinucleotide CG is relatively rare and the dinucleotides UG and CA are relatively more common than expected. Codon usage is decidedly nonrandom. Codons containing CG are avoided and those ending in adenosine are favored. The asymmetric use of mononucleotides, dinucleotides and codons in polio RNA is unexplained at the present time although the lowered CG frequency may be the result of a DNA origin for polio RNA. PMID:6275352

  14. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  15. Codon Usage Bias and Determining Forces in Taenia solium Genome.

    PubMed

    Yang, Xing; Ma, Xusheng; Luo, Xuenong; Ling, Houjun; Zhang, Xichen; Cai, Xuepeng

    2015-12-01

    The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome. PMID:26797435

  16. Codon Usage Bias and Determining Forces in Taenia solium Genome

    PubMed Central

    Yang, Xing; Ma, Xusheng; Luo, Xuenong; Ling, Houjun; Zhang, Xichen; Cai, Xuepeng

    2015-01-01

    The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome. PMID:26797435

  17. The Effect of Codon Mismatch on the Protein Translation System

    PubMed Central

    Cao, Liaoran; Li, Guohui; Cheng, Hong

    2016-01-01

    Incorrect protein translation, caused by codon mismatch, is an important problem of living cells. In this work, a computational model was introduced to quantify the effects of codon mismatch and the model was used to study the protein translation of Saccharomyces cerevisiae. According to simulation results, the probability of codon mismatch will increase when the supply of amino acids is unbalanced, and the longer is the codon sequence, the larger is the probability for incorrect translation to occur, making the synthesis of long peptide chain difficult. By comparing to simulation results without codon mismatch effects taken into account, the fraction of mRNAs with bound ribosome decrease faster along the mRNAs, making the 5’ ramp phenomenon more obvious. It was also found in our work that the premature mechanism resulted from codon mismatch can reduce the proportion of incorrect translation when the amino acid supply is extremely unbalanced, which is one possible source of high fidelity protein synthesis after peptidyl transfer. PMID:26840415

  18. Enhanced expression of codon optimized interferon gamma in CHO cells.

    PubMed

    Chung, Bevan Kai-Sheng; Yusufi, Faraaz N K; Mariati; Yang, Yuansheng; Lee, Dong-Yup

    2013-09-10

    The human interferon-gamma (IFN-γ) is a potential drug candidate for treating various diseases due to its immunomodulatory properties. The efficient production of this protein can be achieved through a popular industrial host, Chinese hamster ovary (CHO) cells. However, recombinant expression of foreign proteins is typically suboptimal possibly due to the usage of non-native codon patterns within the coding sequence. Therefore, we demonstrated the application of a recently developed codon optimization approach to design synthetic IFN-γ coding sequences for enhanced heterologous expression in CHO cells. For codon optimization, earlier studies suggested to establish the target usage distribution pattern in terms of selected design parameters such as individual codon usage (ICU) and codon context (CC), mainly based on the host's highly expressed genes. However, our RNA-Seq based transcriptome profiling indicated that the ICU and CC distribution patterns of different gene expression classes in CHO cell are relatively similar, unlike other microbial expression hosts, Escherichia coli and Saccharomyces cerevisiae. This finding was further corroborated through the in vivo expression of various ICU and CC optimized IFN-γ in CHO cells. Interestingly, the CC-optimized genes exhibited at least 13-fold increase in expression level compared to the wild-type IFN-γ while a maximum of 10-fold increase was observed for the ICU-optimized genes. Although design criteria based on individual codons, such as ICU, have been widely used for gene optimization, our experimental results suggested that codon context is relatively more effective parameter for improving recombinant IFN-γ expression in CHO cells. PMID:23876479

  19. Fossil Simulation in the Classroom

    ERIC Educational Resources Information Center

    Hoehn, Robert G.

    1977-01-01

    Describes classroom science demonstrations and experiments that simulate the process of fossil formation. Lists materials, procedures and suggestions for successful activities. Includes ten student activities (coral fossils, leaf fossils, leaf scars, carbonization, etc.). Describes a fossil game in which students work in pairs. (CS)

  20. Tooth Enamel Oxygen and Carbon Isotope Variations in Modern Central Asian Horses: Development of a Calibration Database for the Interpretation of Stable Isotope Signals Preserved in Fossil Horse Remains from Archaeological Sites

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Rosenmeier, M. F.; Allard, F.; Olsen, S. L.

    2005-12-01

    Recent studies of early nomadic pastoralism within Central Asia have focused on the rich archaeological history of Mongolia and specifically the examination of so-called khirigsuur sites. These monumental Bronze Age (first and second millennium B.C.) structures consist of stone constructions that contain abundant horse remains (typically skulls) and occasionally human burials. Isotopic analysis of horse remains preserved within these sites may provide a wealth of paleoclimatic information. However, the accuracy of climate reconstructions from fossil teeth collected at archaeological sites in Mongolia is currently limited by insufficient knowledge of the relationship between local environmental conditions and tooth enamel isotope ratios as well as uncertainties attributed to intra-population variability. In this study we measured the oxygen and carbon isotope (δ18O and δ13C) values of enamel samples from modern horse teeth collected along a nearly 550 km latitudinal (northwest-southeast) transect within central Mongolia. Preliminary results suggest that modern tooth enamel records local environmental conditions, although δ18O and δ13C values are not always a direct proxy for climate and vegetation cover. The modern samples serve as a baseline for interpreting isotope signals preserved in fossil horses and thereby increase the accuracy of paleoclimatic reconstructions. Approximately one-hundred individuals were examined from highly varied geographic zones (forest steppe, grassland steppe, dry steppe, and semi-desert) and compared with the δ18O of meteoric waters and δ13C values of local vegetation. Oxygen isotope ratios of bulk enamel samples (spanning the entire vertical axis of tooth growth) parallel spatial trends observed in isotopic composition of meteoric waters and major north-south gradients in temperature and precipitation. Average δ13C values similarly increase with decreasing geographic latitude and likely correspond to documented increases in the

  1. Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae.

    PubMed

    Li, Xiuzhang; Song, Hui; Kuang, Yu; Chen, Shuihong; Tian, Pei; Li, Chunjie; Nan, Zhibiao

    2016-01-01

    Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C. PMID:27428961

  2. Genome-Wide Analysis of Codon Usage Bias in Epichloë festucae

    PubMed Central

    Li, Xiuzhang; Song, Hui; Kuang, Yu; Chen, Shuihong; Tian, Pei; Li, Chunjie; Nan, Zhibiao

    2016-01-01

    Analysis of codon usage data has both practical and theoretical applications in understanding the basics of molecular biology. Differences in codon usage patterns among genes reflect variations in local base compositional biases and the intensity of natural selection. Recently, there have been several reports related to codon usage in fungi, but little is known about codon usage bias in Epichloë endophytes. The present study aimed to assess codon usage patterns and biases in 4870 sequences from Epichloë festucae, which may be helpful in revealing the constraint factors such as mutation or selection pressure and improving the bioreactor on the cloning, expression, and characterization of some special genes. The GC content with 56.41% is higher than the AT content (43.59%) in E. festucae. The results of neutrality and effective number of codons plot analyses showed that both mutational bias and natural selection play roles in shaping codon usage in this species. We found that gene length is strongly correlated with codon usage and may contribute to the codon usage patterns observed in genes. Nucleotide composition and gene expression levels also shape codon usage bias in E. festucae. E. festucae exhibits codon usage bias based on the relative synonymous codon usage (RSCU) values of 61 sense codons, with 25 codons showing an RSCU larger than 1. In addition, we identified 27 optimal codons that end in a G or C. PMID:27428961

  3. An Engineered Rare Codon Device for Optimization of Metabolic Pathways

    PubMed Central

    Wang, You; Li, Chunying; Khan, Md. Rezaul Islam; Wang, Yushu; Ruan, Yunfeng; Zhao, Bin; Zhang, Bo; Ma, Xiaopan; Zhang, Kaisi; Zhao, Xiwen; Ye, Guanhao; Guo, Xizhi; Feng, Guoyin; He, Lin; Ma, Gang

    2016-01-01

    Rare codons generally arrest translation due to rarity of their cognate tRNAs. This property of rare codons can be utilized to regulate protein expression. In this study, a linear relationship was found between expression levels of genes and copy numbers of rare codons inserted within them. Based on this discovery, we constructed a molecular device in Escherichia coli using the rare codon AGG, its cognate tRNA (tRNAArg (CCU)), modified tRNAAsp (GUC → CCU), and truncated aspartyl-tRNA synthetase (TDRS) to switch the expression of reporter genes on or off as well as to precisely regulate their expression to various intermediate levels. To underscore the applicability of our work, we used the rare codon device to alter the expression levels of four genes of the fatty acid synthesis II (FASII) pathway (i.e. fabZ, fabG, fabI, and tesA’) in E. coli to optimize steady-state kinetics, which produced nearly two-fold increase in fatty acid yield. Thus, the proposed method has potential applications in regulating target protein expression at desired levels and optimizing metabolic pathways by precisely tuning in vivo molar ratio of relevant enzymes. PMID:26852704

  4. Fossilization of feathers

    NASA Astrophysics Data System (ADS)

    Davis, Paul G.; Briggs, Derek E. G.

    1995-09-01

    Scanning electron microscopy of feathers has revealed evidence that a bacterial glycocalyx (a network of exocellular polysaccharide fibers) played a role in promoting their fossilization in some cases. This mode of preservation has not been reported in other soft tissues. The majority of fossil feathers are preserved as carbonized traces. More rarely, bacteria on the surface are replicated by authigenic minerals (bacterial autolithification). The feathers of Archaeopteryx are preserved mainly by imprintation following early lithification of the substrate and decay of the feather. Lacustrine settings provide the most important taphonomic window for feather preservation. Preservation in terrestrial and normal-marine settings involves very different processes (in amber and in authigenically mineralized coprolites, respectively). Therefore, there may be a significant bias in the avian fossil record in favor of inland water habitats.

  5. Design, synthesis, and testing toward a 57-codon genome.

    PubMed

    Ostrov, Nili; Landon, Matthieu; Guell, Marc; Kuznetsov, Gleb; Teramoto, Jun; Cervantes, Natalie; Zhou, Minerva; Singh, Kerry; Napolitano, Michael G; Moosburner, Mark; Shrock, Ellen; Pruitt, Benjamin W; Conway, Nicholas; Goodman, Daniel B; Gardner, Cameron L; Tyree, Gary; Gonzales, Alexandra; Wanner, Barry L; Norville, Julie E; Lajoie, Marc J; Church, George M

    2016-08-19

    Recoding--the repurposing of genetic codons--is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes. We have validated 63% of recoded genes by individually testing 55 segments of 50 kilobases each. We observed that 91% of tested essential genes retained functionality with limited fitness effect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were found in 2229 genes. This work underscores the feasibility of rewriting genomes and establishes a framework for large-scale design, assembly, troubleshooting, and phenotypic analysis of synthetic organisms. PMID:27540174

  6. Model for Codon Position Bias in RNA Editing

    NASA Astrophysics Data System (ADS)

    Liu, Tsunglin; Bundschuh, Ralf

    2005-08-01

    RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.

  7. A model for codon position bias in RNA editing

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf; Liu, Tsunglin

    2006-03-01

    RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.

  8. Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons

    NASA Astrophysics Data System (ADS)

    Lind, Christoffer; Sund, Johan; Åqvist, Johan

    2013-12-01

    A key feature of mitochondrial translation is the reduced number of transfer RNAs and reassignment of codons. For human mitochondria, a major unresolved problem is how the set of stop codons are decoded by the release factors mtRF1a and mtRF1. Here we present three-dimensional structural models of human mtRF1a and mtRF1 based on their homology to bacterial RF1 in the codon recognition domain, and the strong conservation between mitochondrial and bacterial ribosomal RNA in the decoding region. Sequence changes in the less homologous mtRF1 appear to be correlated with specific features of the mitochondrial rRNA. Extensive computer simulations of the complexes with the ribosomal decoding site show that both mitochondrial factors have similar specificities and that neither reads the putative vertebrate stop codons AGA and AGG. Instead, we present a structural model for a mechanism by which the ICT1 protein causes termination by sensing the presence of these codons in the A-site of stalled ribosomes.

  9. A backtranslation method based on codon usage strategy.

    PubMed Central

    Pesole, G; Attimonelli, M; Liuni, S

    1988-01-01

    This study describes a method for the backtranslation of an aminoacidic sequence, an extremely useful tool for various experimental approaches. It involves two computer programs CLUSTER and BACKTR written in Fortran 77 running on a VAX/VMS computer. CLUSTER generates a reliable codon usage table through a cluster analysis, based on a chi 2-like distance between the sequences. BACKTR produces backtranslated sequences according to different options when use is made of the codon usage table obtained in addition to selecting the least ambiguous potential oligonucleotide probes within an aminoacidic sequence. The method was tested by applying it to 158 yeast genes. PMID:3281142

  10. Trace Fossil Analysis

    NASA Astrophysics Data System (ADS)

    Hasiotis, Stephen T.

    2009-05-01

    Today, the study of trace fossils—ichnology—is an important subdiscipline of geology at the interface of paleontology and sedimentology, mostly because of the efforts of Adolf Seilacher. His ability to synthesize various aspects of ichnology and produce a hierarchy of marine ichna and sedimentary facies has made ichnology useful worldwide in interpreting paleodiversity, rates of sedimentation, oxygenation of bottom water and sediment pore water, and depositional energy. Seilacher's book Trace Fossil Analysis provides a glimpse into the mind, methodology, and insights of the father of modern ichnology, generated from his course notes as a professor and a guest lecturer. The title sounds misleading—readers looking for up-to-date principles and approaches to trace fossil analysis in marine and continental strata will be disappointed. In his preface, however, Seilacher clearly gives direction for the use of his text: “This is a course book—meaning that it is intended to confer not knowledge, but skill.” Thus, it is not meant as a total compilation of all trace fossils, ichnotaxonomy, ichnological interpretations, applications, or the most relevant and up-to-date references. Rather, it takes the reader on a personal journey, explaining how trace fossils are understood in the context of their three-dimensional (3-D) morphology and sedimentary facies.

  11. Fossil-Fired Boilers

    Energy Science and Technology Software Center (ESTSC)

    1993-09-23

    Boiler Performance Model (BPM 3.0S) is a set of computer programs developed to analyze the performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, and can model coal, oil, or natural gas firing. The programs are intended for use by engineers performing analyses of alternative fuels, alternative operating modes, or boiler modifications.

  12. Fossil-energy

    NASA Astrophysics Data System (ADS)

    1981-08-01

    Progress in the following areas of fossil energy is reported: physiochemical cleaning and recovery of fine coal; a systematic investigation of the organosulfur components in coal; microstructures of coal; rapid analysis of mineral content in coal; coal blending experiments; performance characteristics of heavy media cyclones using fly ash derived heavy media; briquetting solvent treated coal; and coal preparation and testing.

  13. Advanced fossil energy utilization

    SciTech Connect

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  14. Gene classification using codon usage and support vector machines.

    PubMed

    Ma, Jianmin; Nguyen, Minh N; Rajapakse, Jagath C

    2009-01-01

    A novel approach for gene classification, which adopts codon usage bias as input feature vector for classification by support vector machines (SVM) is proposed. The DNA sequence is first converted to a 59-dimensional feature vector where each element corresponds to the relative synonymous usage frequency of a codon. As the input to the classifier is independent of sequence length and variance, our approach is useful when the sequences to be classified are of different lengths, a condition that homology-based methods tend to fail. The method is demonstrated by using 1,841 Human Leukocyte Antigen (HLA) sequences which are classified into two major classes: HLA-I and HLA-II; each major class is further subdivided into sub-groups of HLA-I and HLA-II molecules. Using codon usage frequencies, binary SVM achieved accuracy rate of 99.3% for HLA major class classification and multi-class SVM achieved accuracy rates of 99.73% and 98.38% for sub-class classification of HLA-I and HLA-II molecules, respectively. The results show that gene classification based on codon usage bias is consistent with the molecular structures and biological functions of HLA molecules. PMID:19179707

  15. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  16. Expression of a Chimeric Allergen with High Rare Codons Content in Codon Bias-Adjusted Escherichia coli: Escherichia coli BL21 (DE3)-Codon Plus RIL as an Efficient Host.

    PubMed

    Nouri, Hamid Reza; Karkhah, Ahmad; Varasteh, Abdolreza; Sankian, Mojtaba

    2016-07-01

    The expression of heterologous proteins in Escherichia coli (E. coli) is importantly affected by codon bias. Hence, the aim of the current study was to determine which codon bias-adjusted E. coli strain is sufficient for expression of a chimeric allergen coded by high rare codon content. To investigate the expression level, a chimeric protein of Chenopodium album (C. album) was used as an appropriate model. An expression construct was assembled and was transformed to four strains of codon bias-adjusted E. coli including origami, BL21 (DE3), BL21 (DE3)-codon plus RIL, and Rosetta. The level of expression and solubility of the chimeric allergen was analyzed by SDS-PAGE. In addition, the allergenicity of chimeric allergen was determined using immunoblotting. Our results showed that the chimeric allergen was expressed at high level in E. coli BL21 (DE3)-codon plus RIL and Rosetta. In detail, this recombinant allergen was isolated from soluble fraction in the codon bias-adjusted strains of E. coli BL21 (DE3)-codon plus RIL and Rosetta. Moreover, some lower molecular weight proteins were observed in Rosetta, which could be related to inappropriate expression or broken compartments of the chimeric allergen. The immunoblotting assay confirmed that the IgE-specific immune reactivity of our chimeric allergen expressed in BL21 (DE3)-codon plus RIL was significantly higher than the other strains. Our results showed that the expression of the chimeric allergen with high rare codons content in a codon bias-adjusted strain E. coli BL21 (DE3)-codon plus RIL improves the quality and solubility of the heterologous protein production. PMID:27040822

  17. Codon usage patterns in Chinese bayberry (Myrica rubra) based on RNA-Seq data

    PubMed Central

    2013-01-01

    Background Codon usage analysis has been a classical topic for decades and has significances for studies of evolution, mRNA translation, and new gene discovery, etc. While the codon usage varies among different members of the plant kingdom, indicating the necessity for species-specific study, this work has mostly been limited to model organisms. Recently, the development of deep sequencing, especial RNA-Seq, has made it possible to carry out studies in non-model species. Result RNA-Seq data of Chinese bayberry was analyzed to investigate the bias of codon usage and codon pairs. High frequency codons (AGG, GCU, AAG and GAU), as well as low frequency ones (NCG and NUA codons) were identified, and 397 high frequency codon pairs were observed. Meanwhile, 26 preferred and 141 avoided neighboring codon pairs were also identified, which showed more significant bias than the same pairs with one or more intervening codons. Codon patterns were also analyzed at the plant kingdom, organism and gene levels. Changes during plant evolution were evident using RSCU (relative synonymous codon usage), which was even more significant than GC3s (GC content of 3rd synonymous codons). Nine GO categories were differentially and independently influenced by CAI (codon adaptation index) or GC3s, especially in 'Molecular function’ category. Within a gene, the average CAI increased from 0.720 to 0.785 in the first 50 codons, and then more slowly thereafter. Furthermore, the preferred as well as avoided codons at the position just following the start codon AUG were identified and discussed in relation to the key positions in Kozak sequences. Conclusion A comprehensive codon usage Table and number of high-frequency codon pairs were established. Bias in codon usage as well as in neighboring codon pairs was observed, and the significance of this in avoiding DNA mutation, increasing protein production and regulating protein synthesis rate was proposed. Codon usage patterns at three levels were

  18. Clustering of classical swine fever virus isolates by codon pair bias

    PubMed Central

    2011-01-01

    Background The genetic code consists of non-random usage of synonymous codons for the same amino acids, termed codon bias or codon usage. Codon juxtaposition is also non-random, referred to as codon context bias or codon pair bias. The codon and codon pair bias vary among different organisms, as well as with viruses. Reasons for these differences are not completely understood. For classical swine fever virus (CSFV), it was suggested that the synonymous codon usage does not significantly influence virulence, but the relationship between variations in codon pair usage and CSFV virulence is unknown. Virulence can be related to the fitness of a virus: Differences in codon pair usage influence genome translation efficiency, which may in turn relate to the fitness of a virus. Accordingly, the potential of the codon pair bias for clustering CSFV isolates into classes of different virulence was investigated. Results The complete genomic sequences encoding the viral polyprotein of 52 different CSFV isolates were analyzed. This included 49 sequences from the GenBank database (NCBI) and three newly sequenced genomes. The codon usage did not differ among isolates of different virulence or genotype. In contrast, a clustering of isolates based on their codon pair bias was observed, clearly discriminating highly virulent isolates and vaccine strains on one side from moderately virulent strains on the other side. However, phylogenetic trees based on the codon pair bias and on the primary nucleotide sequence resulted in a very similar genotype distribution. Conclusion Clustering of CSFV genomes based on their codon pair bias correlate with the genotype rather than with the virulence of the isolates. PMID:22126254

  19. The Stringency of Start Codon Selection in the Filamentous Fungus Neurospora crassa*

    PubMed Central

    Wei, Jiajie; Zhang, Ying; Ivanov, Ivaylo P.; Sachs, Matthew S.

    2013-01-01

    In eukaryotic cells initiation may occur from near-cognate codons that differ from AUG by a single nucleotide. The stringency of start codon selection impacts the efficiency of initiation at near-cognate codons and the efficiency of initiation at AUG codons in different contexts. We used a codon-optimized firefly luciferase reporter initiated with AUG or each of the nine near-cognate codons in preferred context to examine the stringency of start codon selection in the model filamentous fungus Neurospora crassa. In vivo results indicated that the hierarchy of initiation at start codons in N. crassa (AUG ≫ CUG > GUG > ACG > AUA ≈ UUG > AUU > AUC) is similar to that in human cells. Similar results were obtained by translating mRNAs in a homologous N. crassa in vitro translation system or in rabbit reticulocyte lysate. We next examined the efficiency of initiation at AUG, CUG, and UUG codons in different contexts in vitro. The preferred context was more important for efficient initiation from near-cognate codons than from AUG. These studies demonstrated that near-cognate codons are used for initiation in N. crassa. Such events could provide additional coding capacity or have regulatory functions. Analyses of the 5′-leader regions in the N. crassa transcriptome revealed examples of highly conserved near-cognate codons in preferred contexts that could extend the N termini of the predicted polypeptides. PMID:23396971

  20. Genome-Wide Analysis of Codon Usage and Influencing Factors in Chikungunya Viruses

    PubMed Central

    Tong, Yigang

    2014-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus of the family Togaviridae that is transmitted to humans by Aedes spp. mosquitoes. Its genome comprises a 12 kb single-strand positive-sense RNA. In the present study, we report the patterns of synonymous codon usage in 141 CHIKV genomes by calculating several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis showed that the preferred synonymous codons were G/C and A-ended. A comparative analysis of RSCU between CHIKV and its hosts showed that codon usage patterns of CHIKV are a mixture of coincidence and antagonism. Similarity index analysis showed that the overall codon usage patterns of CHIKV have been strongly influenced by Pan troglodytes and Aedes albopictus during evolution. The overall codon usage bias was low in CHIKV genomes, as inferred from the analysis of effective number of codons (ENC) and codon adaptation index (CAI). Our data suggested that although mutation pressure dominates codon usage in CHIKV, patterns of codon usage in CHIKV are also under the influence of natural selection from its hosts and geography. To the best of our knowledge, this is first report describing codon usage analysis in CHIKV genomes. The findings from this study are expected to increase our understanding of factors involved in viral evolution, and fitness towards hosts and the environment. PMID:24595095

  1. Problem-Solving Test: The Effect of Synonymous Codons on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: the genetic code, codon, degenerate codons, protein synthesis, aminoacyl-tRNA, anticodon, antiparallel orientation, wobble, unambiguous codons, ribosomes, initiation, elongation and termination of translation, peptidyl transferase, translocation, degenerate oligonucleotides, green…

  2. Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta

    PubMed Central

    Whittle, C. A.; Sun, Y.; Johannesson, H.

    2011-01-01

    Neurospora comprises a primary model system for the study of fungal genetics and biology. In spite of this, little is known about genome evolution in Neurospora. For example, the evolution of synonymous codon usage is largely unknown in this genus. In the present investigation, we conducted a comprehensive analysis of synonymous codon usage and its relationship to gene expression and gene length (GL) in Neurospora tetrasperma and Neurospora discreta. For our analysis, we examined codon usage among 2,079 genes per organism and assessed gene expression using large-scale expressed sequenced tag (EST) data sets (279,323 and 453,559 ESTs for N. tetrasperma and N. discreta, respectively). Data on relative synonymous codon usage revealed 24 codons (and two putative codons) that are more frequently used in genes with high than with low expression and thus were defined as optimal codons. Although codon-usage bias was highly correlated with gene expression, it was independent of selectively neutral base composition (introns); thus demonstrating that translational selection drives synonymous codon usage in these genomes. We also report that GL (coding sequences [CDS]) was inversely associated with optimal codon usage at each gene expression level, with highly expressed short genes having the greatest frequency of optimal codons. Optimal codon frequency was moderately higher in N. tetrasperma than in N. discreta, which might be due to variation in selective pressures and/or mating systems. PMID:21402862

  3. Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals.

    PubMed

    Meredith, Robert W; Gatesy, John; Murphy, William J; Ryder, Oliver A; Springer, Mark S

    2009-09-01

    Vestigial structures occur at both the anatomical and molecular levels, but studies documenting the co-occurrence of morphological degeneration in the fossil record and molecular decay in the genome are rare. Here, we use morphology, the fossil record, and phylogenetics to predict the occurrence of "molecular fossils" of the enamelin (ENAM) gene in four different orders of placental mammals (Tubulidentata, Pholidota, Cetacea, Xenarthra) with toothless and/or enamelless taxa. Our results support the "molecular fossil" hypothesis and demonstrate the occurrence of frameshift mutations and/or stop codons in all toothless and enamelless taxa. We then use a novel method based on selection intensity estimates for codons (omega) to calculate the timing of iterated enamel loss in the fossil record of aardvarks and pangolins, and further show that the molecular evolutionary history of ENAM predicts the occurrence of enamel in basal representatives of Xenarthra (sloths, anteaters, armadillos) even though frameshift mutations are ubiquitous in ENAM sequences of living xenarthrans. The molecular decay of ENAM parallels the morphological degeneration of enamel in the fossil record of placental mammals and provides manifest evidence for the predictive power of Darwin's theory. PMID:19730686

  4. Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome

    PubMed Central

    Ma, Yan-Ping; Ke, Hao; Liang, Zhi-Ling; Liu, Zhen-Xing; Hao, Le; Ma, Jiang-Yao; Li, Yu-Gu

    2016-01-01

    Streptococcus agalactiae is an important human and animal pathogen. To better understand the genetic features and evolution of S. agalactiae, multiple factors influencing synonymous codon usage patterns in S. agalactiae were analyzed in this study. A- and U-ending rich codons were used in S. agalactiae function genes through the overall codon usage analysis, indicating that Adenine (A)/Thymine (T) compositional constraints might contribute an important role to the synonymous codon usage pattern. The GC3% against the effective number of codon (ENC) value suggested that translational selection was the important factor for codon bias in the microorganism. Principal component analysis (PCA) showed that (i) mutational pressure was the most important factor in shaping codon usage of all open reading frames (ORFs) in the S. agalactiae genome; (ii) strand specific mutational bias was not capable of influencing the codon usage bias in the leading and lagging strands; and (iii) gene length was not the important factor in synonymous codon usage pattern in this organism. Additionally, the high correlation between tRNA adaptation index (tAI) value and codon adaptation index (CAI), frequency of optimal codons (Fop) value, reinforced the role of natural selection for efficient translation in S. agalactiae. Comparison of synonymous codon usage pattern between S. agalactiae and susceptible hosts (human and tilapia) showed that synonymous codon usage of S. agalactiae was independent of the synonymous codon usage of susceptible hosts. The study of codon usage in S. agalactiae may provide evidence about the molecular evolution of the bacterium and a greater understanding of evolutionary relationships between S. agalactiae and its hosts. PMID:26927064

  5. Visualization of codon-dependent conformational rearrangements during translation termination

    PubMed Central

    He, Shan L.; Green, Rachel

    2010-01-01

    While the recognition of stop codons by class 1 release factors (RFs) on the ribosome takes place with extremely high fidelity, the molecular mechanisms behind this remarkable process are poorly understood. Here we performed structural probing experiments with Fe(II)-derivatized RFs to compare the conformation of cognate and near-cognate ribosome termination complexes. The structural differences that we document provide an unprecedented view of signal transduction on the ribosome that depends on authentic stop codon recognition. These events initiate with very close interactions between RF and the small subunit decoding center (DC), lead to increased interactions between the switch loop of the RF and specific regions of the subunit interface and end in the precise orientation of the RF for maximal catalytic activity in the large subunit peptidyl transferase center (PTC). PMID:20208546

  6. Cycles in fossil diversity

    SciTech Connect

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  7. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons

    PubMed Central

    Simões, João; Bezerra, Ana R.; Moura, Gabriela R.; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  8. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons.

    PubMed

    Simões, João; Bezerra, Ana R; Moura, Gabriela R; Araújo, Hugo; Gut, Ivo; Bayes, Mónica; Santos, Manuel A S

    2016-01-01

    The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans. PMID:27065968

  9. Decoding RAS isoform and codon-specific signalling

    PubMed Central

    Newlaczyl, Anna U.; Hood, Fiona E.; Coulson, Judy M.; Prior, Ian A.

    2014-01-01

    RAS proteins are key signalling hubs that are oncogenically mutated in 30% of all cancer cases. Three genes encode almost identical isoforms that are ubiquitously expressed, but are not functionally redundant. The network responses associated with each isoform and individual oncogenic mutations remain to be fully characterized. In the present article, we review recent data defining the differences between the RAS isoforms and their most commonly mutated codons and discuss the underlying mechanisms. PMID:25109951

  10. Codon Distribution in Error-Detecting Circular Codes

    PubMed Central

    Fimmel, Elena; Strüngmann, Lutz

    2016-01-01

    In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick’s hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C3 and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising) result, it is shown that the codons can be separated into very few classes (three, or five, or six) with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C3 codes to maximal self-complementary circular codes. PMID:26999215

  11. Computational codon optimization of synthetic gene for protein expression

    PubMed Central

    2012-01-01

    Background The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous works have also reported the significant influence of codon pair usage, also known as codon context (CC), on the level of protein expression. Results In this study, we have developed novel computational procedures for evaluating the relative importance of optimizing ICU and CC for enhancing protein expression. By formulating appropriate mathematical expressions to quantify the ICU and CC fitness of a coding sequence, optimization procedures based on genetic algorithm were employed to maximize its ICU and/or CC fitness. Surprisingly, the in silico validation of the resultant optimized DNA sequences for Escherichia coli, Lactococcus lactis, Pichia pastoris and Saccharomyces cerevisiae suggests that CC is a more relevant design criterion than the commonly considered ICU. Conclusions The proposed CC optimization framework can complement and enhance the capabilities of current gene design tools, with potential applications to heterologous protein production and even vaccine development in synthetic biotechnology. PMID:23083100

  12. Novel small molecules potentiate premature termination codon readthrough by aminoglycosides.

    PubMed

    Baradaran-Heravi, Alireza; Balgi, Aruna D; Zimmerman, Carla; Choi, Kunho; Shidmoossavee, Fahimeh S; Tan, Jason S; Bergeaud, Célia; Krause, Alexandra; Flibotte, Stéphane; Shimizu, Yoko; Anderson, Hilary J; Mouly, Vincent; Jan, Eric; Pfeifer, Tom; Jaquith, James B; Roberge, Michel

    2016-08-19

    Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations. PMID:27407112

  13. Fossil Microorganisms in Archaean

    NASA Technical Reports Server (NTRS)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  14. Genome-wide analysis of synonymous codon usage in Huaiyangshan virus and other bunyaviruses.

    PubMed

    Luo, Xuelian; Liu, Qingzhen; Xiong, Yanwen; Ye, Changyun; Jin, Dong; Xu, Jianguo

    2015-12-01

    Huaiyangshan virus (HYSV) is a newly discovered bunyavirus, which is transmitted by ticks and causes hemorrhagic fever-like illness in human. The interplay of codon usage among viruses and their hosts is expected to affect viral survival, evasion from host's immune system and evolution. However, little is known about the codon usage in HYSV genome. In the present study, we analyzed synonymous codon usage in 120 available full-length HYSV sequences and performed a comparative analysis of synonymous codon usage patterns in HYSV and 42 other bunyaviruses. The relative synonymous codon usage (RSCU) analysis showed that the preferred synonymous codons were G/C-ended. A comparative analysis of RSCU between HYSV and its hosts reflected that codon usage patterns of HYSV were mostly coincident with that of its hosts. Our data suggested that although mutational bias dominated codon usage, patterns of codon usage in HYSV were also under the influence of nature selection. Phylogenetic analysis based on RSCU values across different HYSV strains and 42 other bunyaviruses suggested that codon usage pattern in HYSV was the most similar with that of Uukuniemi virus among these bunyaviruses and that viruses belonged to Phlebovirus showed a diversity of codon usage patterns. PMID:26173646

  15. Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses

    PubMed Central

    Bhatia, Sandeep; Sood, Richa; Selvaraj, Pavulraj

    2016-01-01

    Equine influenza viruses (EIVs) of H3N8 subtype are culprits of severe acute respiratory infections in horses, and are still responsible for significant outbreaks worldwide. Adaptability of influenza viruses to a particular host is significantly influenced by their codon usage preference, due to an absolute dependence on the host cellular machinery for their replication. In the present study, we analyzed genome-wide codon usage patterns in 92 EIV strains, including both H3N8 and H7N7 subtypes by computing several codon usage indices and applying multivariate statistical methods. Relative synonymous codon usage (RSCU) analysis disclosed bias of preferred synonymous codons towards A/U-ended codons. The overall codon usage bias in EIVs was slightly lower, and mainly affected by the nucleotide compositional constraints as inferred from the RSCU and effective number of codon (ENc) analysis. Our data suggested that codon usage pattern in EIVs is governed by the interplay of mutation pressure, natural selection from its hosts and undefined factors. The H7N7 subtype was found less fit to its host (horse) in comparison to H3N8, by possessing higher codon bias, lower mutation pressure and much less adaptation to tRNA pool of equine cells. To the best of our knowledge, this is the first report describing the codon usage analysis of the complete genomes of EIVs. The outcome of our study is likely to enhance our understanding of factors involved in viral adaptation, evolution, and fitness towards their hosts. PMID:27119730

  16. Codon usage and protein sequence pattern dependency in different organisms: A Bioinformatics approach.

    PubMed

    Foroughmand-Araabi, Mohammad-Hadi; Goliaei, Bahram; Alishahi, Kasra; Sadeghi, Mehdi; Goliaei, Sama

    2015-04-01

    Although it is known that synonymous codons are not chosen randomly, the role of the codon usage in gene regulation is not clearly understood, yet. Researchers have investigated the relation between the codon usage and various properties, such as gene regulation, translation rate, translation efficiency, mRNA stability, splicing, and protein domains. Recently, a universal codon usage based mechanism for gene regulation is proposed. We studied the role of protein sequence patterns on the codons usage by related genes. Considering a subsequence of a protein that matches to a pattern or motif, we showed that, parts of the genes, which are translated to this subsequence, use specific ratios of synonymous codons. Also, we built a multinomial logistic regression statistical model for codon usage, which considers the effect of patterns on codon usage. This model justifies the observed codon usage preference better than the classic organism dependent codon usage. Our results showed that the codon usage plays a role in controlling protein levels, for genes that participate in a specific biological function. This is the first time that this phenomenon is reported. PMID:25409941

  17. Analysis of synonymous codon usage in porcine reproductive and respiratory syndrome virus.

    PubMed

    Liu, Yong-sheng; Zhou, Jian-hua; Chen, Hao-tai; Ma, Li-na; Ding, Yao-zhong; Wang, Meng; Zhang, Jie

    2010-08-01

    In this study, we calculated the relative synonymous codon usage (RSCU) values and codon usage bias (CUB) values to implement a comparative analysis of codon usage pattern of open reading frames (ORFs) which belong to the two main genotypes of porcine reproductive and respiratory syndrome virus (PRRSV). By analysis of synonymous codon usage values in each ORF of PRRSV, the optimal codons for most amino acids were all C or G-ended codons except GAU for Asp, CAU for His, UUU for Phe and CCU for Pro. The synonymous codon usage patterns in different ORFs of PRRSV were different and genetically conserved. Among them, ORF1a, ORF4, ORF5 and ORF7 could cluster these strains into the two main serotypes (EU and US). Due to mutational pressure, compositional constraint played an important role in shaping the synonymous codon usage pattern in different ORFs, and the synonymous codon usage diversity in ORFs was correlated with gene function. The degree of CUB for some particular amino acids under strong selection pressure probably served as a potential genetic marker for each ORF in PRRSV. However, gene length and translational selection in nature had no effect on the synonymous codon usage pattern in PRRSV. These conclusions could not only offer an insight into the synonymous codon usage pattern and differentiation of gene function, but also assist in understanding the discrepancy of evolution among ORFs in PRRSV. PMID:20438864

  18. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo

    PubMed Central

    Pechmann, Sebastian; Chartron, Justin W; Frydman, Judith

    2015-01-01

    The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP in vivo is enhanced when mRNAs contain nonoptimal codon clusters 35–40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome. PMID:25420103

  19. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo.

    PubMed

    Pechmann, Sebastian; Chartron, Justin W; Frydman, Judith

    2014-12-01

    The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP in vivo is enhanced when mRNAs contain nonoptimal codon clusters 35-40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome. PMID:25420103

  20. Bioinformatics analysis of codon usage patterns and influencing factors in Penaeus monodon nudivirus.

    PubMed

    Tyagi, Anuj; Singh, Niraj K; Gurtler, Volker; Karunasagar, Indrani

    2016-02-01

    Penaeus monodon nudivirus (PmNV) is one of the most important and most commonly reported shrimp viruses. In the present study, codon usage of PmNV was studied in detail. Based on effective number of codons (ENC) values, strong to low codon usage bias was observed in PmNV genes. Nucleotide composition-ENC correlation analysis and the GC3 versus ENC relationship indicated that compositional constraint has a major effect on codon usage of PmNV. At the whole-genome level, relative synonymous codon usage (RSCU) analysis showed almost complete antagonism between the codon usage pattern of PmNV and its host P. monodon. However, codon adaptive index (CAI) values indicated that forces of selective/translational constraints have been able to overcome this antagonism in some genes. PMID:26586333

  1. Evolutionary timescale of monocots determined by the fossilized birth-death model using a large number of fossil records.

    PubMed

    Eguchi, Satoshi; Tamura, Minoru N

    2016-05-01

    Although the phylogenetic relationships between monocot orders are sufficiently understood, a timescale of their evolution is needed. Several studies on molecular clock dating are available, but their results have been biased by their calibration schemes. Recently, the fossilized birth-death model, a type of Bayesian dating method, was proposed, and it does not require prior calibration and allows the use all available fossils. Using this model, we conducted divergence-time estimations of monocots to explore their evolutionary timeline without calibration bias. This is the first application of this model to seed plants. The dataset contained the matK and rbcL chloroplast genes of 118 monocot genera covering all extant orders. We employed information from 247 monocot fossils, which exceeded previous dating analyses that used a maximum of 12 monocot fossils. The crown group of monocots was dated to approximately the Late Jurassic-Early Cretaceous periods, and most extant monocot orders were estimated to diverge throughout the Early Cretaceous. Our results overlapped with the divergence time of insect lineages, such as beetles and flies, suggesting an association with pollinators in early monocot evolution. In addition, we proposed three new orders based on divergence time: Orchidales separated from Asparagales and Tofieldiales and Arales separated from Aslimatales. PMID:27061096

  2. The Rare Codon AGA Is Involved in Regulation of Pyoluteorin Biosynthesis in Pseudomonas protegens Pf-5.

    PubMed

    Yan, Qing; Philmus, Benjamin; Hesse, Cedar; Kohen, Max; Chang, Jeff H; Loper, Joyce E

    2016-01-01

    The soil bacterium Pseudomonas protegens Pf-5 can colonize root and seed surfaces of many plants, protecting them from infection by plant pathogenic fungi and oomycetes. The capacity to suppress disease is attributed to Pf-5's production of a large spectrum of antibiotics, which is controlled by complex regulatory circuits operating at the transcriptional and post-transcriptional levels. In this study, we analyzed the genomic sequence of Pf-5 for codon usage patterns and observed that the six rarest codons in the genome are present in all seven known antibiotic biosynthesis gene clusters. In particular, there is an abundance of rare codons in pltR, which encodes a member of the LysR transcriptional regulator family that controls the expression of pyoluteorin biosynthetic genes. To test the hypothesis that rare codons in pltR influence pyoluteorin production, we generated a derivative of Pf-5 in which 23 types of rare codons in pltR were substituted with synonymous preferred codons. The resultant mutant produced pyoluteorin at levels 15 times higher than that of the wild-type Pf-5. Accordingly, the promoter activity of the pyoluteorin biosynthetic gene pltL was 20 times higher in the codon-modified stain than in the wild-type. pltR has six AGA codons, which is the rarest codon in the Pf-5 genome. Substitution of all six AGA codons with preferred Arg codons resulted in a variant of pltR that conferred increased pyoluteorin production and pltL promoter activity. Furthermore, overexpression of tRNA[Formula: see text], the cognate tRNA for the AGA codon, significantly increased pyoluteorin production by Pf-5. A bias in codon usage has been linked to the regulation of many phenotypes in eukaryotes and prokaryotes but, to our knowledge, this is the first example of the role of a rare codon in the regulation of antibiotic production by a Gram-negative bacterium. PMID:27148187

  3. The Rare Codon AGA Is Involved in Regulation of Pyoluteorin Biosynthesis in Pseudomonas protegens Pf-5

    PubMed Central

    Yan, Qing; Philmus, Benjamin; Hesse, Cedar; Kohen, Max; Chang, Jeff H.; Loper, Joyce E.

    2016-01-01

    The soil bacterium Pseudomonas protegens Pf-5 can colonize root and seed surfaces of many plants, protecting them from infection by plant pathogenic fungi and oomycetes. The capacity to suppress disease is attributed to Pf-5's production of a large spectrum of antibiotics, which is controlled by complex regulatory circuits operating at the transcriptional and post-transcriptional levels. In this study, we analyzed the genomic sequence of Pf-5 for codon usage patterns and observed that the six rarest codons in the genome are present in all seven known antibiotic biosynthesis gene clusters. In particular, there is an abundance of rare codons in pltR, which encodes a member of the LysR transcriptional regulator family that controls the expression of pyoluteorin biosynthetic genes. To test the hypothesis that rare codons in pltR influence pyoluteorin production, we generated a derivative of Pf-5 in which 23 types of rare codons in pltR were substituted with synonymous preferred codons. The resultant mutant produced pyoluteorin at levels 15 times higher than that of the wild-type Pf-5. Accordingly, the promoter activity of the pyoluteorin biosynthetic gene pltL was 20 times higher in the codon-modified stain than in the wild-type. pltR has six AGA codons, which is the rarest codon in the Pf-5 genome. Substitution of all six AGA codons with preferred Arg codons resulted in a variant of pltR that conferred increased pyoluteorin production and pltL promoter activity. Furthermore, overexpression of tRNAUCUArg, the cognate tRNA for the AGA codon, significantly increased pyoluteorin production by Pf-5. A bias in codon usage has been linked to the regulation of many phenotypes in eukaryotes and prokaryotes but, to our knowledge, this is the first example of the role of a rare codon in the regulation of antibiotic production by a Gram-negative bacterium. PMID:27148187

  4. Anemometer calibrator

    NASA Technical Reports Server (NTRS)

    Bate, T.; Calkins, D. E.; Price, P.; Veikins, O.

    1971-01-01

    Calibrator generates accurate flow velocities over wide range of gas pressure, temperature, and composition. Both pressure and flow velocity can be maintained within 0.25 percent. Instrument is essentially closed loop hydraulic system containing positive displacement drive.

  5. Biogeographic calibrations for the molecular clock

    PubMed Central

    Ho, Simon Y. W.; Tong, K. Jun; Foster, Charles S. P.; Ritchie, Andrew M.; Lo, Nathan; Crisp, Michael D.

    2015-01-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses. PMID:26333662

  6. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    PubMed

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA). PMID:18442873

  7. Re-exploration of the Codon Context Effect on Amber Codon-Guided Incorporation of Noncanonical Amino Acids in Escherichia coli by the Blue-White Screening Assay.

    PubMed

    Xu, Huan; Wang, Yan; Lu, Jiaqi; Zhang, Bo; Zhang, Ziwei; Si, Longlong; Wu, Ling; Yao, Tianzhuo; Zhang, Chuanling; Xiao, Sulong; Zhang, Lihe; Xia, Qing; Zhou, Demin

    2016-07-01

    The effect of codon context on amber codon-guided incorporation of noncanonical amino acids (NAAs) has been previously examined by antibiotic selection. Here, we re-explored this effect by screening a library in which three nucleotides upstream and downstream of the amber codon were randomised, and inserted within the lacZ-α gene. Thousands of clones were obtained and distinguished by the depth of blue colour upon exposure to X-gal. Large-scale sequencing revealed remarkable preferences in nucleotides downstream of the amber codon, and moderate preferences for upstream nucleotides. Nucleotide preference was quantified by a dual-luciferase assay, which verified that the optimum context for NAA incorporation, AATTAGACT, was applicable to different proteins. Our work provides a general guide for engineering amber codons into genes of interest in bacteria. PMID:27028123

  8. Characterization of Codon usage bias in the newly identified DEV UL18 gene

    NASA Astrophysics Data System (ADS)

    Chen, Xiwen; Cheng, Anchun; Wang, Mingshu; Xiang, Jun

    2011-10-01

    In this study, Codon usage bias (CUB) of DEV UL18 gene was analyzed, the results showed that codon usage bias in the DEV UL18 gene was strong bias towards the synonymous codons with A and T at the third codon position. Phylogenetic tree based on the amino acid sequences of the DEV UL18 gene and the 27 other herpesviruses revealed that UL18 gene of the DEV CHv strain and some fowl herpesviruses such as MeHV-1, GaHV-2 and GaHV-3 were clustered within a monophyletic clade and grouped within alphaherpesvirinae. The ENC-GC3S plot indicated that codon usage bias has strong species-specificity between DEV and 27 reference herpesviruses, and suggests that factors other than gene composition, such as translational selection leading to the codon usage variation among genes in different organisms, contribute to the codon usage among the different herpesviruses. Comparison of codon preferences of DEV UL18 gene with those of E. coli , yeast and humans showed that there were 20 codons showing distinct usage differences between DEV UL18 and yeast, 22 between DEV UL18 and humans, 23 between DEV UL18 and E.coli, which indicated the codon usage bias pattern in the DEV UL18 gene was similar to that of yeast. It is infered that the yeast expression system may be more suitable for the DEV UL18 expression.

  9. Analysis of synonymous codon usage patterns in seven different citrus species.

    PubMed

    Xu, Chen; Dong, Jing; Tong, Chunfa; Gong, Xindong; Wen, Qiang; Zhuge, Qiang

    2013-01-01

    We used large samples of expressed sequence tags to characterize the patterns of codon usage bias (CUB) in seven different Citrus species and to analyze their evolutionary effect on selection and base composition. We found that A- and T-ending codons are predominant in Citrus species. Next, we identified 21 codons for 18 different amino acids that were considered preferred codons in all seven species. We then performed correspondence analysis and constructed plots for the effective number of codons (ENCs) to analyze synonymous codon usage. Multiple regression analysis showed that gene expression in each species had a constant influence on the frequency of optional codons (FOP). Base composition differences between the proportions were large. Finally, positive selection was detected during the evolutionary process of the different Citrus species. Overall, our results suggest that codon usages were the result of positive selection. Codon usage variation among Citrus genes is influenced by translational selection, mutational bias, and gene length. CUB is strongly affected by selection pressure at the translational level, and gene length plays only a minor role. One possible explanation for this is that the selection-mediated codon bias is consistently strong in Citrus, which is one of the most widely cultivated fruit trees. PMID:23761955

  10. Comprehensive Analysis of Stop Codon Usage in Bacteria and Its Correlation with Release Factor Abundance*

    PubMed Central

    Korkmaz, Gürkan; Holm, Mikael; Wiens, Tobias; Sanyal, Suparna

    2014-01-01

    We present a comprehensive analysis of stop codon usage in bacteria by analyzing over eight million coding sequences of 4684 bacterial sequences. Using a newly developed program called “stop codon counter,” the frequencies of the three classical stop codons TAA, TAG, and TGA were analyzed, and a publicly available stop codon database was built. Our analysis shows that with increasing genomic GC content the frequency of the TAA codon decreases and that of the TGA codon increases in a reciprocal manner. Interestingly, the release factor 1-specific codon TAG maintains a more or less uniform frequency (∼20%) irrespective of the GC content. The low abundance of TAG is also valid with respect to expression level of the genes ending with different stop codons. In contrast, the highly expressed genes predominantly end with TAA, ensuring termination with either of the two release factors. Using three model bacteria with different stop codon usage (Escherichia coli, Mycobacterium smegmatis, and Bacillus subtilis), we show that the frequency of TAG and TGA codons correlates well with the relative steady state amount of mRNA and protein for release factors RF1 and RF2 during exponential growth. Furthermore, using available microarray data for gene expression, we show that in both fast growing and contrasting biofilm formation conditions, the relative level of RF1 is nicely correlated with the expression level of the genes ending with TAG. PMID:25217634

  11. A detailed comparative analysis of codon usage bias in Zika virus.

    PubMed

    Cristina, Juan; Fajardo, Alvaro; Soñora, Martín; Moratorio, Gonzalo; Musto, Héctor

    2016-09-01

    Zika virus (ZIKV) is a member of the family Flaviviridae and its genome consists of a single-stranded positive sense RNA molecule with 10,794 nucleotides. Clinical manifestations of disease caused by ZIKV infection range from asymptomatic cases to an influenza-like syndrome. There is an increasing concern about the possible relation among microcephaly and ZIKV infection. To get insight into the relation of codon usage among viruses and their hosts is extremely important to understand virus survival, fitness, evasion from host's immune system and evolution. In this study, we performed a comprehensive analysis of codon usage and composition of ZIKV. The overall codon usage among ZIKV strains is similar and slightly biased. Different codon preferences in ZIKV genes in relation to codon usage of human, Aedes aegypti and Aedes albopictus genes were found. Most of the highly frequent codons are A-ending, which strongly suggests that mutational bias is the main force shaping codon usage in this virus. G+C compositional constraint as well as dinucleotide composition also influence the codon usage of ZIKV. The results of these studies suggest that the emergence of ZIKV outside Africa, in the Pacific and the Americas may also be reflected in ZIKV codon usage. No significant differences were found in codon usage among strains isolated from microcephaly cases and the rest of strains from the Asian cluster enrolled in these studies. PMID:27449601

  12. Giving the early fossil record of sponges a squeeze.

    PubMed

    Antcliffe, Jonathan B; Callow, Richard H T; Brasier, Martin D

    2014-11-01

    Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re-analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian-Cambrian boundary, associated with the great radiation events of that interval. PMID:24779547

  13. Codon bias and gene ontology in holometabolous and hemimetabolous insects.

    PubMed

    Carlini, David B; Makowski, Matthew

    2015-12-01

    The relationship between preferred codon use (PCU), developmental mode, and gene ontology (GO) was investigated in a sample of nine insect species with sequenced genomes. These species were selected to represent two distinct modes of insect development, holometabolism and hemimetabolism, with an aim toward determining whether the differences in developmental timing concomitant with developmental mode would be mirrored by differences in PCU in their developmental genes. We hypothesized that the developmental genes of holometabolous insects should be under greater selective pressure for efficient translation, manifest as increased PCU, than those of hemimetabolous insects because holometabolism requires abundant protein expression over shorter time intervals than hemimetabolism, where proteins are required more uniformly in time. Preferred codon sets were defined for each species, from which the frequency of PCU for each gene was obtained. Although there were substantial differences in the genomic base composition of holometabolous and hemimetabolous insects, both groups exhibited a general preference for GC-ending codons, with the former group having higher PCU averaged across all genes. For each species, the biological process GO term for each gene was assigned that of its Drosophila homolog(s), and PCU was calculated for each GO term category. The top two GO term categories for PCU enrichment in the holometabolous insects were anatomical structure development and cell differentiation. The increased PCU in the developmental genes of holometabolous insects may reflect a general strategy to maximize the protein production of genes expressed in bursts over short time periods, e.g., heat shock proteins. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 686-698, 2015. © 2015 Wiley Periodicals, Inc. PMID:26498580

  14. Synthetic approach to stop-codon scanning mutagenesis.

    PubMed

    Nie, Lihua; Lavinder, Jason J; Sarkar, Mohosin; Stephany, Kimberly; Magliery, Thomas J

    2011-04-27

    A general combinatorial mutagenesis strategy using common dimethoxytrityl-protected mononucleotide phosphoramidites and a single orthogonally protected trinucleotide phosphoramidite (Fmoc-TAG; Fmoc = 9-fluorenylmethoxycarbonyl) was developed to scan a gene with the TAG amber stop codon with complete synthetic control. In combination with stop-codon suppressors that insert natural (e.g., alanine) or unnatural (e.g., p-benzoylphenylalanine, Bpa) amino acids, a single DNA library can be used to incorporate different amino acids for diverse purposes. Here, we scanned TAG codons through part of the gene for a model four-helix bundle protein, Rop, which regulates the copy number of ColE1 plasmids. Alanine was incorporated into Rop for mapping its binding site using an in vivo activity screen, and subtle but important differences from in vitro gel-shift studies of Rop function are evident. As a test, Bpa was incorporated using a Phe14 amber mutant isolated from the scanning library. Surprisingly, Phe14Bpa-Rop is weakly active, despite the critical role of Phe14 in Rop activity. Bpa is a photoaffinity label unnatural amino acid that can form covalent bonds with adjacent molecules upon UV irradiation. Irradiation of Phe14Bpa-Rop, which is a dimer in solution like wild-type Rop, results in covalent dimers, trimers, and tetramers. This suggests that Phe14Bpa-Rop weakly associates as a tetramer in solution and highlights the use of Bpa cross-linking as a means of trapping weak and transient interactions. PMID:21452871

  15. Comparative Analysis of Codon Usage Bias Patterns in Microsporidian Genomes

    PubMed Central

    Xiang, Heng; Zhang, Ruizhi; Butler, Robert R.; Liu, Tie; Zhang, Li; Pombert, Jean-François; Zhou, Zeyang

    2015-01-01

    The sub-3 Mbp genomes from microsporidian species of the Encephalitozoon genus are the smallest known among eukaryotes and paragons of genomic reduction and compaction in parasites. However, their diminutive stature is not characteristic of all Microsporidia, whose genome sizes vary by an order of magnitude. This large variability suggests that different evolutionary forces are applied on the group as a whole. In this study, we have compared the codon usage bias (CUB) between eight taxonomically distinct microsporidian genomes: Encephalitozoon intestinalis, Encephalitozoon cuniculi, Spraguea lophii, Trachipleistophora hominis, Enterocytozoon bieneusi, Nematocida parisii, Nosema bombycis and Nosema ceranae. While the CUB was found to be weak in all eight Microsporidia, nearly all (98%) of the optimal codons in S. lophii, T. hominis, E. bieneusi, N. parisii, N. bombycis and N. ceranae are fond of A/U in third position whereas most (64.6%) optimal codons in the Encephalitozoon species E. intestinalis and E. cuniculi are biased towards G/C. Although nucleotide composition biases are likely the main factor driving the CUB in Microsporidia according to correlation analyses, directed mutational pressure also likely affects the CUB as suggested by ENc-plots, correspondence and neutrality analyses. Overall, the Encephalitozoon genomes were found to be markedly different from the other microsporidians and, despite being the first sequenced representatives of this lineage, are uncharacteristic of the group as a whole. The disparities observed cannot be attributed solely to differences in host specificity and we hypothesize that other forces are at play in the lineage leading to Encephalitozoon species. PMID:26057384

  16. Comparative Analysis of Codon Usage Bias Patterns in Microsporidian Genomes.

    PubMed

    Xiang, Heng; Zhang, Ruizhi; Butler, Robert R; Liu, Tie; Zhang, Li; Pombert, Jean-François; Zhou, Zeyang

    2015-01-01

    The sub-3 Mbp genomes from microsporidian species of the Encephalitozoon genus are the smallest known among eukaryotes and paragons of genomic reduction and compaction in parasites. However, their diminutive stature is not characteristic of all Microsporidia, whose genome sizes vary by an order of magnitude. This large variability suggests that different evolutionary forces are applied on the group as a whole. In this study, we have compared the codon usage bias (CUB) between eight taxonomically distinct microsporidian genomes: Encephalitozoon intestinalis, Encephalitozoon cuniculi, Spraguea lophii, Trachipleistophora hominis, Enterocytozoon bieneusi, Nematocida parisii, Nosema bombycis and Nosema ceranae. While the CUB was found to be weak in all eight Microsporidia, nearly all (98%) of the optimal codons in S. lophii, T. hominis, E. bieneusi, N. parisii, N. bombycis and N. ceranae are fond of A/U in third position whereas most (64.6%) optimal codons in the Encephalitozoon species E. intestinalis and E. cuniculi are biased towards G/C. Although nucleotide composition biases are likely the main factor driving the CUB in Microsporidia according to correlation analyses, directed mutational pressure also likely affects the CUB as suggested by ENc-plots, correspondence and neutrality analyses. Overall, the Encephalitozoon genomes were found to be markedly different from the other microsporidians and, despite being the first sequenced representatives of this lineage, are uncharacteristic of the group as a whole. The disparities observed cannot be attributed solely to differences in host specificity and we hypothesize that other forces are at play in the lineage leading to Encephalitozoon species. PMID:26057384

  17. Association of HER2 codon 655 polymorphism with ovarian cancer.

    PubMed

    Watrowski, Rafał; Castillo-Tong, Dan Cacsire; Schuster, Eva; Fischer, Michael B; Speiser, Paul; Zeillinger, Robert

    2016-06-01

    The role of the human epidermal growth factor receptor 2 (HER2) codon 655 (Ile655Val) polymorphism in ovarian cancer is not fully understood. Two studies indicated a possible association between the Val allele and elevated risk or reduced prognosis of ovarian cancer. We investigated the HER2 codon 655 (rs1136201) polymorphism in 242 Austrian women-142 ovarian cancer patients and 100 healthy controls-by polymerase chain reaction and pyrosequencing. Associations between Ile655Val polymorphism and clinicopathological variables (e.g., age, FIGO stage, grading, serous vs. non-serous histology) were evaluated. The genotype distributions in ovarian cancer patients and controls were: AA; 66.2 %, AG; 25.35 %, GG; 8.45 %, and AA; 63 %, AG; 34 %, GG; 3.7 %, respectively (OR 1.15, CI 95 % 0.67-1.96). We observed a non-significant trend toward elevated cancer risk in Val/Val genotype (OR 2.98, CI 95 % 0.82-10.87, p = 0.10). Of note, 11 out of 12 Val/Val homozygotes were postmenopausal. The link between the Val/Val homozygosity and age over 50 years at diagnosis (OR 0.15, CI 95 % 0.02-1.2) was barely significant (p = 0.056). Summarizing, our data indicated a non-significant trend toward increased ovarian cancer risk in the Val/Val homozygosity, especially in women aged above 50 years. Further large-cohort studies focusing on the role of the HER2 codon 655 Val allele are needed. PMID:26666819

  18. Fossil energy materials needs assessment

    NASA Astrophysics Data System (ADS)

    King, R. T.; Judkins, R. R.

    1980-07-01

    An assessment of needs for materials of construction for fossil energy systems was prepared by Oak Ridge National Laboratories staff members who conducted a literature search and interviewed various individuals and organizations that are active in the area of fossil energy technology. Critical materials problems associated with fossil energy systems are identified. Background information relative to the various technologies is given and materials research needed to enhance the viability and improve the economics of fossil energy processes is discussed. The assessment is presented on the basis of materials-related disciplines that impact fossil energy material development. These disciplines include the design-materials interface, materials fabrication technology, corrosion and materials compatibility, wear phenomena, ceramic materials, and nondestructive testing.

  19. Diversification of Neoaves: integration of molecular sequence data and fossils

    PubMed Central

    Ericson, Per G.P; Anderson, Cajsa L; Britton, Tom; Elzanowski, Andrzej; Johansson, Ulf S; Källersjö, Mari; Ohlson, Jan I; Parsons, Thomas J; Zuccon, Dario; Mayr, Gerald

    2006-01-01

    Patterns of diversification and timing of evolution within Neoaves, which includes almost 95% of all bird species, are virtually unknown. On the other hand, molecular data consistently indicate a Cretaceous origin of many neoavian lineages and the fossil record seems to support an Early Tertiary diversification. Here, we present the first well-resolved molecular phylogeny for Neoaves, together with divergence time estimates calibrated with a large number of stratigraphically and phylogenetically well-documented fossils. Our study defines several well-supported clades within Neoaves. The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary. Our results thus do not contradict palaeontological data and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves. PMID:17148284

  20. Translational readthrough potential of natural termination codons in eucaryotes – The impact of RNA sequence

    PubMed Central

    Dabrowski, Maciej; Bukowy-Bieryllo, Zuzanna; Zietkiewicz, Ewa

    2015-01-01

    Termination of protein synthesis is not 100% efficient. A number of natural mechanisms that suppress translation termination exist. One of them is STOP codon readthrough, the process that enables the ribosome to pass through the termination codon in mRNA and continue translation to the next STOP codon in the same reading frame. The efficiency of translational readthrough depends on a variety of factors, including the identity of the termination codon, the surrounding mRNA sequence context, and the presence of stimulating compounds. Understanding the interplay between these factors provides the necessary background for the efficient application of the STOP codon suppression approach in the therapy of diseases caused by the presence of premature termination codons. PMID:26176195

  1. Organic molecules as chemical fossils - The molecular fossil record

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1983-01-01

    The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.

  2. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  3. Selection at the amino acid level can influence synonymous codon usage: implications for the study of codon adaptation in plastid genes.

    PubMed Central

    Morton, B R

    2001-01-01

    A previously employed method that uses the composition of noncoding DNA as the basis of a test for selection between synonymous codons in plastid genes is reevaluated. The test requires the assumption that in the absence of selective differences between synonymous codons the composition of silent sites in coding sequences will match the composition of noncoding sites. It is demonstrated here that this assumption is not necessarily true and, more generally, that using compositional properties to draw inferences about selection on silent changes in coding sequences is much more problematic than commonly assumed. This is so because selection on nonsynonymous changes can influence the composition of synonymous sites (i.e., codon usage) in a complex manner, meaning that the composition biases of different silent sites, including neutral noncoding DNA, are not comparable. These findings also draw into question the commonly utilized method of investigating how selection to increase translation accuracy influences codon usage. The work then focuses on implications for studies that assess codon adaptation, which is selection on codon usage to enhance translation rate, in plastid genes. A new test that does not require the use of noncoding DNA is proposed and applied. The results of this test suggest that far fewer plastid genes display codon adaptation than previously thought. PMID:11560910

  4. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  5. Eukaryotic Evolutionary Transitions Are Associated with Extreme Codon Bias in Functionally-Related Proteins

    PubMed Central

    Hudson, Nicholas J.; Gu, Quan; Nagaraj, Shivashankar H.; Ding, Yong-Sheng; Dalrymple, Brian P.; Reverter, Antonio

    2011-01-01

    Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins – perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair – a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function – which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins – perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor – which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation. PMID:21966531

  6. Codon optimality is a major determinant of mRNA stability

    PubMed Central

    Presnyak, Vladimir; Alhusaini, Najwa; Chen, Ying-Hsin; Martin, Sophie; Morris, Nathan; Kline, Nicholas; Olson, Sara; Weinberg, David; Baker, Kristian E.; Graveley, Brenton R.; Coller, Jeff

    2015-01-01

    Messenger RNA degradation represents a critical regulated step in gene expression. While the major pathways in turnover have been identified, accounting for disparate half-lives has been elusive. We show that codon optimality is one feature that contributes greatly to mRNA stability. Genome-wide RNA decay analysis revealed that stable mRNAs are enriched in codons designated optimal, whereas unstable mRNAs contain predominately non-optimal codons. Substitution of optimal codons with synonymous, non-optimal codons results in dramatic mRNA destabilization, while the converse substitution significantly increases stability. Further, we demonstrate that codon optimality impacts ribosome translocation, connecting the processes of translation elongation and decay through codon optimality. Finally, we show that optimal codon content accounts for the similar stabilities observed in mRNAs encoding proteins with coordinated physiological function. This work demonstrates that codon optimization exists as an mechanism to finely tune levels of mRNAs, and ultimately, proteins. PMID:25768907

  7. Control of ribosome traffic by position-dependent choice of synonymous codons

    NASA Astrophysics Data System (ADS)

    Mitarai, Namiko; Pedersen, Steen

    2013-10-01

    Messenger RNA (mRNA) encodes a sequence of amino acids by using codons. For most amino acids, there are multiple synonymous codons that can encode the amino acid. The translation speed can vary from one codon to another, thus there is room for changing the ribosome speed while keeping the amino acid sequence and hence the resulting protein. Recently, it has been noticed that the choice of the synonymous codon, via the resulting distribution of slow- and fast-translated codons, affects not only on the average speed of one ribosome translating the mRNA but also might have an effect on nearby ribosomes by affecting the appearance of ‘traffic jams’ where multiple ribosomes collide and form queues. To test this ‘context effect’ further, we here investigate the effect of the sequence of synonymous codons on the ribosome traffic by using a ribosome traffic model with codon-dependent rates, estimated from experiments. We compare the ribosome traffic on wild-type (WT) sequences and sequences where the synonymous codons were swapped randomly. By simulating translation of 87 genes, we demonstrate that the WT sequences, especially those with a high bias in codon usage, tend to have the ability to reduce ribosome collisions, hence optimizing the cellular investment in the translation apparatus. The magnitude of such reduction of the translation time might have a significant impact on the cellular growth rate and thereby have importance for the survival of the species.

  8. Codon 219 polymorphism of PRNP in healthy caucasians and Creutzfeldt-Jakob disease patients

    SciTech Connect

    Petraroli, R.; Pocchiari, M.

    1996-04-01

    A number of point and insert mutations of the PrP gene (PRNP) have been linked to familial Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Scheinker disease (GSS). Moreover, the methionine/valine homozygosity at the polymorphic codon 129 of PRNP may cause a predisposition to sporadic and iatrogenic CJD or may control the age at onset of familial cases carrying either the 144-bp insertion or codon 178, codon 198, and codon 210 pathogenic mutations in PRNP. In addition, the association of methionine or valine at codon 129 and the point mutation at codon 178 on the same allele seem to play an important role in determining either fatal familial insomnia or CJD. However, it is noteworthy that a relationship between codon 129 polymorphism and accelerated pathogenesis (early age at onset or shorter duration of the disease) has not been seen in familial CJD patients with codon 200 mutation or in GSS patients with codon 102 mutation, arguing that other, as yet unidentified, gene products or environmental factors, or both, may influence the clinical expression of these diseases. 17 refs.

  9. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    PubMed

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-07-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221

  10. Translationally optimal codons associate with aggregation-prone sites in proteins.

    PubMed

    Lee, Yaelim; Zhou, Tong; Tartaglia, Gian Gaetano; Vendruscolo, Michele; Wilke, Claus O

    2010-12-01

    We analyze the relationship between codon usage bias and residue aggregation propensity in the genomes of four model organisms, Escherichia coli, yeast, fly, and mouse, as well as the archaeon Halobacterium species NRC-1. Using the Mantel-Haenszel procedure, we find that translationally optimal codons associate with aggregation-prone residues. Our results are qualitatively and quantitatively similar to those of an earlier study where we found an association between translationally optimal codons and buried residues. We also combine the aggregation-propensity data with solvent-accessibility data. Although the resulting data set is small, and hence statistical power low, results indicate that the association between optimal codons and aggregation-prone residues exists both at buried and at exposed sites. By comparing codon usage at different combinations of sites (exposed, aggregation-prone sites versus buried, non-aggregation-prone sites; buried, aggregation-prone sites versus exposed, non-aggregation-prone sites), we find that aggregation propensity and solvent accessibility seem to have independent effects of (on average) comparable magnitude on codon usage. Finally, in fly, we assess whether optimal codons associate with sites at which amino acid substitutions lead to an increase in aggregation propensity, and find only a very weak effect. These results suggest that optimal codons may be required to reduce the frequency of translation errors at aggregation-prone sites that coincide with certain functional sites, such as protein-protein interfaces. Alternatively, optimal codons may be required for rapid translation of aggregation-prone regions. PMID:21046618

  11. Prevalent Accumulation of Non-Optimal Codons through Somatic Mutations in Human Cancers

    PubMed Central

    Wu, Xudong; Li, Guohui

    2016-01-01

    Cancer is characterized by uncontrolled cell growth, and the cause of different cancers is generally attributed to checkpoint dysregulation of cell proliferation and apoptosis. Recent studies have shown that non-optimal codons were preferentially adopted by genes to generate cell cycle-dependent oscillations in protein levels. This raises the intriguing question of how dynamic changes of codon usage modulate the cancer genome to cope with a non-controlled proliferative cell cycle. In this study, we comprehensively analyzed the somatic mutations of codons in human cancers, and found that non-optimal codons tended to be accumulated through both synonymous and non-synonymous mutations compared with other types of genomic substitution. We further demonstrated that non-optimal codons were prevalently accumulated across different types of cancers, amino acids, and chromosomes, and genes with accumulation of non-optimal codons tended to be involved in protein interaction/signaling networks and encoded important enzymes in metabolic networks that played roles in cancer-related pathways. This study provides insights into the dynamics of codons in the cancer genome and demonstrates that accumulation of non-optimal codons may be an adaptive strategy for cancerous cells to win the competition with normal cells. This deeper interpretation of the patterns and the functional characterization of somatic mutations of codons will help to broaden the current understanding of the molecular basis of cancers. PMID:27513638

  12. Analysis of codon usage pattern evolution in avian rotaviruses and their preferred host.

    PubMed

    Kattoor, Jobin Jose; Malik, Yashpal Singh; Sasidharan, Aravind; Rajan, Vishnuraj Mangalathu; Dhama, Kuldeep; Ghosh, Souvik; Bányai, Krisztián; Kobayashi, Nobumichi; Singh, Raj Kumar

    2015-08-01

    Rotavirus infection is a worldwide problem, with occurrence of highly divergent viruses classified in 8 species (A-H). We report here the evolution assessment of codon usage patterns in virus-host system in avian rotavirus (AvRV) of species RVA, RVD, RVF and RVG (preferentially affecting birds). The nucleotide contents, codon usage bias (CUB), relative synonymous codon usage (RSCU), and effective number of codons (ENCs) values were investigated targeting overexpressing major inner capsid viral protein (VP6) of these AvRV species. The results confirm that the evolutionary characteristics influences the rotavirus (RV) genetic diversity and impact of host's natural selection on the AvRVs codons. Synonymous codon usage patterns were evaluated following multivariate statistical procedures on all available AvRV coding gene sequences. RSCU trees accommodated all AvRV species and preferred host sequences in one topology confirming greater imminence of AvRVs with the host chicken cell genes. Similarly, the codon adaptation index (CAI) results also displayed a higher adaptation of AvRVs to its chicken host. The codon preference analysis of RVs revealed that VP6 gene express more proficiently in the yeast system, whereas, codon optimization might be required for the effectual expression in Escherichia coli and Homo sapiens. The findings provide basic evidence on the dynamics of AvRV evolution and its host adaptation, which could be exploited for additional research on avian species in future. PMID:26086995

  13. Analysis of synonymous codon usage in spike protein gene of infectious bronchitis virus.

    PubMed

    Makhija, Aditi; Kumar, Sachin

    2015-12-01

    Infectious bronchitis virus (IBV) is responsible for causing respiratory, renal, and urogenital diseases in poultry. IBV infection in poultry leads to high mortality rates in affected flocks and to severe economic losses due to a drop in egg production and a reduced gain in live weight of the broiler birds. IBV-encoded spike protein (S) is the major protective immunogen for the host. Although the functions of the S protein have been well studied, the factors shaping synonymous codon usage bias and nucleotide composition in the S gene have not been reported yet. In the present study, we analyzed the relative synonymous codon usage and effective number of codons (Nc) using the 53 IBV S genes. The major trend in codon usage variation was studied using correspondence analysis. The plot of Nc values against GC3 as well as the correlation between base composition and codon usage bias suggest that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in the S gene. Interestingly, no association of aromaticity, degree of hydrophobicity, and aliphatic index was observed with the codon usage variation in IBV S genes. The study represents a comprehensive analysis of IBV S gene codon usage patterns and provides a basic understanding of the codon usage bias. PMID:26452019

  14. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    SciTech Connect

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume III lists the model equations and a one line definition for equations, in a short, readable format.

  15. Fossilized bioelectric wire – the trace fossil Trichichnus

    PubMed Central

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-01-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic–anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized “electric wire”. PMID:26290671

  16. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): codon 178 mutation and codon 129 polymorphism.

    PubMed Central

    Medori, R; Tritschler, H J

    1993-01-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp)-->AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. We confirmed the 178Asn mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178Asn reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Sträussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129Met/Val. Moreover, of five 178Asn individuals who are above age-at-onset range and who are well, two have 129Met and three have 129Met/Val, suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178Asn mutation. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8105681

  17. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    SciTech Connect

    Medori, R.; Tritschler, H.J. )

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  18. Dating Fossil Pollen: A Simulation.

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1992-01-01

    Describes a hands-on simulation in which students determine the age of "fossil" pollen samples based on the pollen types present when examined microscopically. Provides instructions for the preparation of pollen slides. (MDH)

  19. An Introduction to Fossil Plants

    ERIC Educational Resources Information Center

    Thomas, B. A.

    1976-01-01

    Introduces methods of studying fossil plants and of teaching palaeobotany. Brief accounts are given of different types of preservation and where to find specimens. An annotated bibliography is provided. (Author/SL)

  20. A comparative analysis on the synonymous codon usage pattern in viral functional genes and their translational initiation region of ASFV.

    PubMed

    Zhou, Jian-Hua; Gao, Zong-Liang; Sun, Dong-Jie; Ding, Yao-Zhong; Zhang, Jie; Stipkovits, Laszlo; Szathmary, Susan; Pejsak, Zygmunt; Liu, Yong-Sheng

    2013-04-01

    The synonymous codon usage pattern of African swine fever virus (ASFV), the similarity degree of the synonymous codon usage between this virus and some organisms and the synonymous codon usage bias for the translation initiation region of viral functional genes in the whole genome of ASFV have been investigated by some simply statistical analyses. Although both GC12% (the GC content at the first and second codon positions) and GC3% (the GC content at the third codon position) of viral functional genes have a large fluctuation, the significant correlations between GC12 and GC3% and between GC3% and the first principal axis of principle component analysis on the relative synonymous codon usage of the viral functional genes imply that mutation pressure of ASFV plays an important role in the synonymous codon usage pattern. Turning to the synonymous codon usage of this virus, the codons with U/A end predominate in the synonymous codon family for the same amino acid and a weak codon usage bias in both leading and lagging strands suggests that strand compositional asymmetry does not take part in the formation of codon usage in ASFV. The interaction between the absolute codon usage bias and GC3% suggests that other selections take part in the formation of codon usage, except for the mutation pressure. It is noted that the similarity degree of codon usage between ASFV and soft tick is higher than that between the virus and the pig, suggesting that the soft tick plays a more important role than the pig in the codon usage pattern of ASFV. The translational initiation region of the viral functional genes generally have a strong tendency to select some synonymous codons with low GC content, suggesting that the synonymous codon usage bias caused by translation selection from the host takes part in modulating the translation initiation efficiency of ASFV functional genes. PMID:23161403

  1. An empirical test of the concomitantly variable codon hypothesis

    PubMed Central

    Merlo, Lauren M. F.; Lunzer, Mark; Dean, Antony M.

    2007-01-01

    A central assumption of models of molecular evolution, that each site in a sequence evolves independently of all other sites, lacks empirical support. We investigated the extent to which sites evolve codependently in triosephosphate isomerase (TIM), a ubiquitous glycolytic enzyme conserved in both structure and function. Codependencies among sites, or concomitantly variable codons (covarions), are evident from the reduced function and misfolding of hybrid TIM proteins. Although they exist, we find covarions are relatively rare, and closely related proteins are unlikely to have developed them. However, the potential for covarions increases with genetic distance so that highly divergent proteins may have evolved codependencies between many sites. The evolution of covarions undermines a key assumption in phylogenetics and calls into question our ability to disentangle ancient relationships among major taxonomic groups. PMID:17578921

  2. Vertebrate codon bias indicates a highly GC-rich ancestral genome.

    PubMed

    Nabiyouni, Maryam; Prakash, Ashwin; Fedorov, Alexei

    2013-04-25

    Two factors are thought to have contributed to the origin of codon usage bias in eukaryotes: 1) genome-wide mutational forces that shape overall GC-content and create context-dependent nucleotide bias, and 2) positive selection for codons that maximize efficient and accurate translation. Particularly in vertebrates, these two explanations contradict each other and cloud the origin of codon bias in the taxon. On the one hand, mutational forces fail to explain GC-richness (~60%) of third codon positions, given the GC-poor overall genomic composition among vertebrates (~40%). On the other hand, positive selection cannot easily explain strict regularities in codon preferences. Large-scale bioinformatic assessment, of nucleotide composition of coding and non-coding sequences in vertebrates and other taxa, suggests a simple possible resolution for this contradiction. Specifically, we propose that the last common vertebrate ancestor had a GC-rich genome (~65% GC). The data suggest that whole-genome mutational bias is the major driving force for generating codon bias. As the bias becomes prominent, it begins to affect translation and can result in positive selection for optimal codons. The positive selection can, in turn, significantly modulate codon preferences. PMID:23376453

  3. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    NASA Astrophysics Data System (ADS)

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-06-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.

  4. Selective Factors Associated with the Evolution of Codon Usage in Natural Populations of Arboviruses

    PubMed Central

    Velazquez-Salinas, Lauro; Zarate, Selene; Eschbaumer, Michael; Pereira Lobo, Francisco; Gladue, Douglas P.; Arzt, Jonathan; Novella, Isabel S.; Rodriguez, Luis L.

    2016-01-01

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for their translation, suggesting that virus codon usage could be a target for selection. In the current study we analyzed the relative synonymous codon usage (RSCU) patterns of 26 arboviruses together with 25 vectors and hosts, including 8 vertebrates and 17 invertebrates. We used hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify trends in codon usage. HCA demonstrated that the RSCU of arboviruses reflects that of their natural hosts, but not that of dead-end hosts. Of the two major components identified by PCA, the first accounted for 62.1% of the total variance, and among the 59 codons analyzed in this study, the leucine codon CTG had the highest correlation with the first principal component, however isoleucine had the highest correlation during amino acid analysis. Nucleotide and dinucleotide composition were the variables that explained most of the total codon usage variance. The results suggest that the main factors driving the evolution of codon usage in arboviruses is based on the nucleotide and dinucleotide composition present in the host. Comparing codon usage of arboviruses and potential vector hosts can help identifying potential vectors for emerging arboviruses. PMID:27455096

  5. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.

    PubMed

    Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi

    2016-08-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. PMID:27542830

  6. Enhanced expression of codon optimized Mycobacterium avium subsp. paratuberculosis antigens in Lactobacillus salivarius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously identified the mycobacterial high G+C codon usage bias as a limiting factor in heterologous expression of MAP proteins from Lb.salivarius, and demonstrated that codon optimisation of a synthetic coding gene greatly enhances MAP protein production. Here, we effectively demonstrate ...

  7. Codon Usage Patterns in Corynebacterium glutamicum: Mutational Bias, Natural Selection and Amino Acid Conservation.

    PubMed

    Liu, Guiming; Wu, Jinyu; Yang, Huanming; Bao, Qiyu

    2010-01-01

    The alternative synonymous codons in Corynebacterium glutamicum, a well-known bacterium used in industry for the production of amino acid, have been investigated by multivariate analysis. As C. glutamicum is a GC-rich organism, G and C are expected to predominate at the third position of codons. Indeed, overall codon usage analyses have indicated that C and/or G ending codons are predominant in this organism. Through multivariate statistical analysis, apart from mutational selection, we identified three other trends of codon usage variation among the genes. Firstly, the majority of highly expressed genes are scattered towards the positive end of the first axis, whereas the majority of lowly expressed genes are clustered towards the other end of the first axis. Furthermore, the distinct difference in the two sets of genes was that the C ending codons are predominate in putatively highly expressed genes, suggesting that the C ending codons are translationally optimal in this organism. Secondly, the majority of the putatively highly expressed genes have a tendency to locate on the leading strand, which indicates that replicational and transciptional selection might be invoked. Thirdly, highly expressed genes are more conserved than lowly expressed genes by synonymous and nonsynonymous substitutions among orthologous genes fromthe genomes of C. glutamicum and C. diphtheriae. We also analyzed other factors such as the length of genes and hydrophobicity that might influence codon usage and found their contributions to be weak. PMID:20445740

  8. Analysis of the synonymous codon usage bias in recently emerged enterovirus D68 strains.

    PubMed

    Karniychuk, Uladzimir U

    2016-09-01

    Understanding the codon usage pattern of a pathogen and relationship between pathogen and host's codon usage patterns has fundamental and applied interests. Enterovirus D68 (EV-D68) is an emerging pathogen with a potentially high public health significance. In the present study, the synonymous codon usage bias of 27 recently emerged, and historical EV-D68 strains was analyzed. In contrast to previously studied enteroviruses (enterovirus 71 and poliovirus), EV-D68 and human host have a high discrepancy between favored codons. Analysis of viral synonymous codon usage bias metrics, viral nucleotide/dinucleotide compositional parameters, and viral protein properties showed that mutational pressure is more involved in shaping the synonymous codon usage bias of EV-D68 than translation selection. Computation of codon adaptation indices allowed to estimate expression potential of the EV-D68 genome in several commonly used laboratory animals. This approach requires experimental validation and may provide an auxiliary tool for the rational selection of laboratory animals to model emerging viral diseases. Enterovirus D68 genome compositional and codon usage data can be useful for further pathogenesis, animal model, and vaccine design studies. PMID:27364082

  9. Selective Factors Associated with the Evolution of Codon Usage in Natural Populations of Arboviruses.

    PubMed

    Velazquez-Salinas, Lauro; Zarate, Selene; Eschbaumer, Michael; Pereira Lobo, Francisco; Gladue, Douglas P; Arzt, Jonathan; Novella, Isabel S; Rodriguez, Luis L

    2016-01-01

    Arboviruses (arthropod borne viruses) have life cycles that include both vertebrate and invertebrate hosts with substantial differences in vector and host specificity between different viruses. Most arboviruses utilize RNA for their genetic material and are completely dependent on host tRNAs for their translation, suggesting that virus codon usage could be a target for selection. In the current study we analyzed the relative synonymous codon usage (RSCU) patterns of 26 arboviruses together with 25 vectors and hosts, including 8 vertebrates and 17 invertebrates. We used hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify trends in codon usage. HCA demonstrated that the RSCU of arboviruses reflects that of their natural hosts, but not that of dead-end hosts. Of the two major components identified by PCA, the first accounted for 62.1% of the total variance, and among the 59 codons analyzed in this study, the leucine codon CTG had the highest correlation with the first principal component, however isoleucine had the highest correlation during amino acid analysis. Nucleotide and dinucleotide composition were the variables that explained most of the total codon usage variance. The results suggest that the main factors driving the evolution of codon usage in arboviruses is based on the nucleotide and dinucleotide composition present in the host. Comparing codon usage of arboviruses and potential vector hosts can help identifying potential vectors for emerging arboviruses. PMID:27455096

  10. Polypeptide release factors and stop codon recognition in the apicoplast and mitochondrion of Plasmodium falciparum.

    PubMed

    Vaishya, Suniti; Kumar, Vikash; Gupta, Ankit; Siddiqi, Mohammad Imran; Habib, Saman

    2016-06-01

    Correct termination of protein synthesis would be a critical step in translation of organellar open reading frames (ORFs) of the apicoplast and mitochondrion of the malaria parasite. We identify release factors (RFs) responsible for recognition of the UAA and UGA stop-codons of apicoplast ORFs and the sole UAA stop-codon that terminates translation from the three mitochondrial ORFs. A single nuclear-encoded canonical RF2, PfRF2Api , localizes to the apicoplast. It has a conserved tripeptide motif (SPF) for stop-codon recognition and is sufficient for peptidyl-tRNA hydrolysis (PTH) from both UAA and UGA. Two RF family proteins are targeted to the parasite mitochondrion; a canonical RF1, PfRF1Mit , with a variant codon-recognition motif (PxN instead of the conserved RF1 PxT) is the major peptidyl-hydrolase with specific recognition of the UAA codon relevant to mitochondrial ORFs. Mutation of the N residue of the PfRF1Mit PxN motif and two other conserved residues of the codon recognition domain lowers PTH activity from pre-termination ribosomes indicating their role in codon-recognition. The second RF imported by the mitochondrion is the non-canonical PfICT1 that functions as a dimer and mediates codon nonspecific peptide release. Our results help delineate a critical step in organellar translation in Plasmodium, which is an important target for anti-malarials. PMID:26946524

  11. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness.

    PubMed

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  12. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness

    PubMed Central

    Villanueva, Eneko; Martí-Solano, Maria; Fillat, Cristina

    2016-01-01

    Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development. PMID:27278133

  13. Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding.

    PubMed

    Yu, Chien-Hung; Dang, Yunkun; Zhou, Zhipeng; Wu, Cheng; Zhao, Fangzhou; Sachs, Matthew S; Liu, Yi

    2015-09-01

    Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and has been proposed to regulate translation efficiency, accuracy, and protein folding based on the assumption that codon usage affects translation dynamics. The roles of codon usage in translation, however, are not clear and have been challenged by recent ribosome profiling studies. Here we used a Neurospora cell-free translation system to directly monitor the velocity of mRNA translation. We demonstrated that the preferred codons enhance the rate of translation elongation, whereas non-optimal codons slow elongation. Codon usage also controls ribosome traffic on mRNA. These conclusions were supported by ribosome profiling results in vitro and in vivo with template mRNAs designed to increase the signal-to-noise ratio. Finally, we demonstrate that codon usage regulates protein function by affecting co-translational protein folding. These results resolve a long-standing fundamental question and suggest the existence of a codon usage code for protein folding. PMID:26321254

  14. Characterization of codon usage pattern and influencing factors in Japanese encephalitis virus.

    PubMed

    Singh, Niraj K; Tyagi, Anuj; Kaur, Rajinder; Verma, Ramneek; Gupta, Praveen K

    2016-08-01

    Recently, several outbreaks of Japanese encephalitis (JE), caused by Japanese encephalitis virus (JEV), have been reported and it has become cause of concern across the world. In this study, detailed analysis of JEV codon usage pattern was performed. The relative synonymous codon usage (RSCU) values along with mean effective number of codons (ENC) value of 55.30 indicated the presence of low codon usages bias in JEV. The effect of mutational pressure on codon usage bias was confirmed by significant correlations of A3s, U3s, G3s, C3s, GC3s, ENC values, with overall nucleotide contents (A%, U%, G%, C%, and GC%). The correlation analysis of A3s, U3s, G3s, C3s, GC3s, with axis values of correspondence analysis (CoA) further confirmed the role of mutational pressure. However, the correlation analysis of Gravy values and Aroma values with A3s, U3s, G3s, C3s, and GC3s, indicated the presence of natural selection on codon usage bias in addition to mutational pressure. The natural selection was further confirmed by codon adaptation index (CAI) analysis. Additionally, relative dinucleotide frequencies, geographical distribution, and evolutionary processes also influenced the codon usage pattern to some extent. PMID:27189042

  15. Testing for size and allometric differences in fossil hominin body mass estimation.

    PubMed

    Uhl, Natalie M; Rainwater, Christopher W; Konigsberg, Lyle W

    2013-06-01

    Body size reconstructions of fossil hominins allow us to infer many things about their evolution and lifestyle, including diet, metabolic requirements, locomotion, and brain/body size relationships. The importance of these implications compels anthropologists to attempt body mass estimation from fragmentary fossil hominin specimens. Most calculations require a known "calibration" sample usually composed of modern humans or other extant apes. Caution must be taken in these analyses, as estimates are sensitive to overall size and allometric differences between the fossil hominin and the reference sample. PMID:23588924

  16. Importance of codon usage for the temporal regulation of viral gene expression.

    PubMed

    Shin, Young C; Bischof, Georg F; Lauer, William A; Desrosiers, Ronald C

    2015-11-10

    The glycoproteins of herpesviruses and of HIV/SIV are made late in the replication cycle and are derived from transcripts that use an unusual codon usage that is quite different from that of the host cell. Here we show that the actions of natural transinducers from these two different families of persistent viruses (Rev of SIV and ORF57 of the rhesus monkey rhadinovirus) are dependent on the nature of the skewed codon usage. In fact, the transinducibility of expression of these glycoproteins by Rev and by ORF57 can be flipped simply by changing the nature of the codon usage. Even expression of a luciferase reporter could be made Rev dependent or ORF57 dependent by distinctive changes to its codon usage. Our findings point to a new general principle in which different families of persisting viruses use a poor codon usage that is skewed in a distinctive way to temporally regulate late expression of structural gene products. PMID:26504241

  17. Cytochrome P450 genes in coronary artery diseases: Codon usage analysis reveals genomic GC adaptation.

    PubMed

    Malakar, Arup Kumar; Halder, Binata; Paul, Prosenjit; Chakraborty, Supriyo

    2016-09-15

    Establishing codon usage biases are imperative for understanding the etiology of coronary artery diseases (CAD) as well as the genetic factors associated with these diseases. The aim of this study was to evaluate the contribution of 18 responsible cytochrome P450 (CYP) genes for the risk of CAD. Effective number of codon (Nc) showed a negative correlation with both GC3 and synonymous codon usage order (SCUO) suggesting an antagonistic relationship between codon usage and Nc of genes. The dinucleotide analysis revealed that CG and TA dinucleotides have the lowest odds ratio in these genes. Principal component analysis showed that GC composition has a profound effect in separating the genes along the first major axis. Our findings revealed that mutational pressure and natural selection could possibly be the major factors responsible for codon bias in these genes. The study not only offers an insight into the mechanisms of genomic GC adaptation, but also illustrates the complexity of CYP genes in CAD. PMID:27275533

  18. Evidence for Stabilizing Selection on Codon Usage in Chromosomal Rearrangements of Drosophila pseudoobscura

    PubMed Central

    Fuller, Zachary L.; Haynes, Gwilym D.; Zhu, Dianhui; Batterton, Matthew; Chao, Hsu; Dugan, Shannon; Javaid, Mehwish; Jayaseelan, Joy C.; Lee, Sandra; Li, Mingmei; Ongeri, Fiona; Qi, Sulan; Han, Yi; Doddapaneni, Harshavardhan; Richards, Stephen; Schaeffer, Stephen W.

    2014-01-01

    There has been a renewed interest in investigating the role of stabilizing selection acting on genome-wide traits such as codon usage bias. Codon bias, when synonymous codons are used at unequal frequencies, occurs in a wide variety of taxa. Standard evolutionary models explain the maintenance of codon bias through a balance of genetic drift, mutation and weak purifying selection. The efficacy of selection is expected to be reduced in regions of suppressed recombination. Contrary to observations in Drosophila melanogaster, some recent studies have failed to detect a relationship between the recombination rate, intensity of selection acting at synonymous sites, and the magnitude of codon bias as predicted under these standard models. Here, we examined codon bias in 2798 protein coding loci on the third chromosome of D. pseudoobscura using whole-genome sequences of 47 individuals, representing five common third chromosome gene arrangements. Fine-scale recombination maps were constructed using more than 1 million segregating sites. As expected, recombination was demonstrated to be significantly suppressed between chromosome arrangements, allowing for a direct examination of the relationship between recombination, selection, and codon bias. As with other Drosophila species, we observe a strong mutational bias away from the most frequently used codons. We find the rate of synonymous and nonsynonymous polymorphism is variable between different amino acids. However, we do not observe a reduction in codon bias or the strength of selection in regions of suppressed recombination as expected. Instead, we find that the interaction between weak stabilizing selection and mutational bias likely plays a role in shaping the composition of synonymous codons across the third chromosome in D. pseudoobscura. PMID:25326424

  19. Evolutionary characterization of Tembusu virus infection through identification of codon usage patterns.

    PubMed

    Zhou, Hao; Yan, Bing; Chen, Shun; Wang, Mingshu; Jia, Renyong; Cheng, Anchun

    2015-10-01

    Tembusu virus (TMUV) is a single-stranded, positive-sense RNA virus. As reported, TMUV infection has resulted in significant poultry losses, and the virus may also pose a threat to public health. To characterize TMUV evolutionarily and to understand the factors accounting for codon usage properties, we performed, for the first time, a comprehensive analysis of codon usage bias for the genomes of 60 TMUV strains. The most recently published TMUV strains were found to be widely distributed in coastal cities of southeastern China. Codon preference among TMUV genomes exhibits a low bias (effective number of codons (ENC)=53.287) and is maintained at a stable level. ENC-GC3 plots and the high correlation between composition constraints and principal component factor analysis of codon usage demonstrated that mutation pressure dominates over natural selection pressure in shaping the TMUV coding sequence composition. The high correlation between the major components of the codon usage pattern and hydrophobicity (Gravy) or aromaticity (Aromo) was obvious, indicating that properties of viral proteins also account for the observed variation in TMUV codon usage. Principal component analysis (PCA) showed that CQW1 isolated from Chongqing may have evolved from GX2013H or GX2013G isolated from Guangxi, thus indicating that TMUV likely disseminated from southeastern China to the mainland. Moreover, the preferred codons encoding eight amino acids were consistent with the optimal codons for human cells, indicating that TMUV may pose a threat to public health due to possible cross-species transmission (birds to birds or birds to humans). The results of this study not only have theoretical value for uncovering the characteristics of synonymous codon usage patterns in TMUV genomes but also have significant meaning with regard to the molecular evolutionary tendencies of TMUV. PMID:26205688

  20. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin.

    PubMed

    Doorenweerd, Camiel; Nieukerken, Erik J Van; Sohn, Jae-Cheon; Labandeira, Conrad C

    2015-01-01

    With phylogenetic knowledge of Lepidoptera rapidly increasing, catalysed by increasingly powerful molecular techniques, the demand for fossil calibration points to estimate an evolutionary timeframe for the order is becoming an increasingly pressing issue. The family Nepticulidae is a species rich, basal branch within the phylogeny of the Lepidoptera, characterized by larval leaf-mining habits, and thereby represents a potentially important lineage whose evolutionary history can be established more thoroughly with the potential use of fossil calibration points. Using our experience with extant global Nepticulidae, we discuss a list of characters that may be used to assign fossil leaf mines to Nepticulidae, and suggest useful methods for classifying relevant fossil material. We present a checklist of 79 records of Nepticulidae representing adult and leaf-mine fossils mentioned in literature, often with multiple exemplars constituting a single record. We provide our interpretation of these fossils. Two species now are included in the collective generic name Stigmellites: Stigmellites resupinata (Krassilov, 2008) comb. nov. (from Ophiheliconoma) and Stigmellites almeidae (Martins-Neto, 1989) comb. nov. (from Nepticula). Eleven records are for the first time attributed to Nepticulidae. After discarding several dubious records, including one possibly placing the family at a latest Jurassic position, we conclude that the oldest fossils likely attributable to Nepticulidae are several exemplars representing a variety of species from the Dakota Formation (USA). The relevant strata containing these earliest fossils are now dated at 102 Ma (million years ago) in age, corresponding to the latest Albian Stage of the Early Cretaceous. Integration of all records in the checklist shows that a continuous presence of nepticulid-like leaf mines preserved as compression-impression fossils and by amber entombment of adults have a fossil record extending to the latest Early Cretaceous

  1. Travels with the Fossil Hunters

    NASA Astrophysics Data System (ADS)

    Whybrow, Peter J.

    2000-04-01

    Whether dodging bullets in West Africa, or rabid dogs in Pakistan, surviving yak-butter tea in Tibet, or eating raw fish in China, the life of a globe-trotting fossil hunter is often hazardous and always filled with surprises. Travels with the Fossil Hunters lets readers share the wonder, joys of discovery, and excitement of these intrepid scientists. Packed with more than 100 beautiful, full-color photographs, the volume takes readers on twelve expeditions to remote parts of the world in search of diverse fossil remains, from those of dinosaurs to human ancestors. Each expedition by paleontologists from London's Natural History Museum reveals the problems and challenges of working in extreme conditions, from the deserts of the Sahara and Yemen to the frozen wastes of Antarctica, from the mountains of India to the forests of Latvia. Along the way they also describe the paleontology and geology of the countries they visit and the scientific reasons for their expeditions. With a foreword from Sir David Attenborough and an introduction from Richard Fortey, this fascinating book will appeal to amateur and professional fossil hunters alike and to readers interested in accounts of exotic locales. Peter Whybrow is a research scientist at the Natural History Museum, London. His research interests include Arabian Miocene vertebrates, paleoclimates, paleogeography, and biotic diversity. He is senior editor with A. Hill of Fossil Vertebrates of Arabia (Yale University Press, New Haven, 1999).

  2. Tips and nodes are complementary not competing approaches to the calibration of molecular clocks

    PubMed Central

    2016-01-01

    Molecular clock methodology provides the best means of establishing evolutionary timescales, the accuracy and precision of which remain reliant on calibration, traditionally based on fossil constraints on clade (node) ages. Tip calibration has been developed to obviate undesirable aspects of node calibration, including the need for maximum age constraints that are invariably very difficult to justify. Instead, tip calibration incorporates fossil species as dated tips alongside living relatives, potentially improving the accuracy and precision of divergence time estimates. We demonstrate that tip calibration yields node calibrations that violate fossil evidence, contributing to unjustifiably young and ancient age estimates, less precise and (presumably) accurate than conventional node calibration. However, we go on to show that node and tip calibrations are complementary, producing meaningful age estimates, with node minima enforcing realistic ages and fossil tips interacting with node calibrations to objectively define maximum age constraints on clade ages. Together, tip and node calibrations may yield evolutionary timescales that are better justified, more precise and accurate than either calibration strategy can achieve alone. PMID:27095263

  3. ALTEA calibration

    NASA Astrophysics Data System (ADS)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  4. A Galactic Fossil

    NASA Astrophysics Data System (ADS)

    2007-05-01

    How old are the oldest stars? Using ESO's VLT, astronomers recently measured the age of a star located in our Galaxy. The star, a real fossil, is found to be 13.2 billion years old, not very far from the 13.7 billion years age of the Universe. The star, HE 1523-0901, was clearly born at the dawn of time. "Surprisingly, it is very hard to pin down the age of a star", the lead author of the paper reporting the results, Anna Frebel, explains. "This requires measuring very precisely the abundance of the radioactive elements thorium or uranium, a feat only the largest telescopes such as ESO's VLT can achieve." ESO PR Photo 23a/07 ESO PR Photo 23a/07 The 'Cosmic Clock' This technique is analogous to the carbon-14 dating method that has been so successful in archaeology over time spans of up to a few tens of thousands of years. In astronomy, however, this technique must obviously be applied to vastly longer timescales. For the method to work well, the right choice of radioactive isotope is critical. Unlike other, stable elements that formed at the same time, the abundance of a radioactive (unstable) isotope decreases all the time. The faster the decay, the less there will be left of the radioactive isotope after a certain time, so the greater will be the abundance difference when compared to a stable isotope, and the more accurate is the resulting age. Yet, for the clock to remain useful, the radioactive element must not decay too fast - there must still be enough left of it to allow an accurate measurement, even after several billion years. "Actual age measurements are restricted to the very rare objects that display huge amounts of the radioactive elements thorium or uranium," says Norbert Christlieb, co-author of the report. ESO PR Photo 23b/07 ESO PR Photo 23b/07 Uranium Line in the Spectrum of an Old Star Large amounts of these elements have been found in the star HE 1523-0901, an old, relatively bright star that was discovered within the Hamburg/ESO survey [1]. The

  5. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    SciTech Connect

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

  6. A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera.

    PubMed

    Ronquist, Fredrik; Klopfstein, Seraina; Vilhelmsen, Lars; Schulmeister, Susanne; Murray, Debra L; Rasnitsyn, Alexandr P

    2012-12-01

    Phylogenies are usually dated by calibrating interior nodes against the fossil record. This relies on indirect methods that, in the worst case, misrepresent the fossil information. Here, we contrast such node dating with an approach that includes fossils along with the extant taxa in a Bayesian total-evidence analysis. As a test case, we focus on the early radiation of the Hymenoptera, mostly documented by poorly preserved impression fossils that are difficult to place phylogenetically. Specifically, we compare node dating using nine calibration points derived from the fossil record with total-evidence dating based on 343 morphological characters scored for 45 fossil (4--20 complete) and 68 extant taxa. In both cases we use molecular data from seven markers (∼5 kb) for the extant taxa. Because it is difficult to model speciation, extinction, sampling, and fossil preservation realistically, we develop a simple uniform prior for clock trees with fossils, and we use relaxed clock models to accommodate rate variation across the tree. Despite considerable uncertainty in the placement of most fossils, we find that they contribute significantly to the estimation of divergence times in the total-evidence analysis. In particular, the posterior distributions on divergence times are less sensitive to prior assumptions and tend to be more precise than in node dating. The total-evidence analysis also shows that four of the seven Hymenoptera calibration points used in node dating are likely to be based on erroneous or doubtful assumptions about the fossil placement. With respect to the early radiation of Hymenoptera, our results suggest that the crown group dates back to the Carboniferous, ∼309 Ma (95% interval: 291--347 Ma), and diversified into major extant lineages much earlier than previously thought, well before the Triassic. [Bayesian inference; fossil dating; morphological evolution; relaxed clock; statistical phylogenetics.]. PMID:22723471

  7. Codon-Driven Translational Efficiency Is Stable across Diverse Mammalian Cell States

    PubMed Central

    Villar, Diego; White, Robert J.; Marioni, John C.; Kutter, Claudia

    2016-01-01

    Whether codon usage fine-tunes mRNA translation in mammals remains controversial, with recent papers suggesting that production of proteins in specific Gene Ontological (GO) pathways can be regulated by actively modifying the codon and anticodon pools in different cellular conditions. In this work, we compared the sequence content of genes in specific GO categories with the exonic genome background. Although a substantial fraction of variability in codon usage could be explained by random sampling, almost half of GO sets showed more variability in codon usage than expected by chance. Nevertheless, by quantifying translational efficiency in healthy and cancerous tissues in human and mouse, we demonstrated that a given tRNA pool can equally well translate many different sets of mRNAs, irrespective of their cell-type specificity. This disconnect between variations in codon usage and the stability of translational efficiency is best explained by differences in GC content between gene sets. GC variation across the mammalian genome is most likely a result of the interplay between genome repair and gene duplication mechanisms, rather than selective pressures caused by codon-driven translational rates. Consequently, codon usage differences in mammalian transcriptomes are most easily explained by well-understood mutational biases acting on the underlying genome. PMID:27166679

  8. Analysis of Codon Usage Patterns in Herbaceous Peony (Paeonia lactiflora Pall.) Based on Transcriptome Data.

    PubMed

    Wu, Yanqing; Zhao, Daqiu; Tao, Jun

    2015-01-01

    Codon usage bias, which exists in many genomes, is mainly determined by mutation and selection. To elucidate the genetic features and evolutionary history of herbaceous peony (Paeonia lactiflora), a well-known symbol of prosperity in China, we examined synonymous codon usage in 24,216 reconstructed genes from the P. lactiflora transcriptome. The mean GC content was 44.4%, indicating that the nucleotide content of P. lactiflora genes is slightly AT rich and GC poor. The P. lactiflora genome has a wide range of GC3 (GC content at the third synonymous codon position) distribution, with a significant correlation between GC12 and GC3. ENC (effective number of codons) analysis suggested that mutational bias played a major role in shaping codon usage. Parity Rule 2 (PR2) analysis revealed that GC and AU were not used proportionally. We identified 22 "optimal codons", most ending with an A or U. Our results suggested that nucleotide composition mutation bias and translational selection were the main driving factors of codon usage bias in P. lactiflora. These results lay the foundation for exploring the evolutionary mechanisms and heterologous expression of functionally-important proteins in P. lactiflora. PMID:26506393

  9. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes.

    PubMed

    Iwane, Yoshihiko; Hitomi, Azusa; Murakami, Hiroshi; Katoh, Takayuki; Goto, Yuki; Suga, Hiroaki

    2016-04-01

    In ribosomal polypeptide synthesis the library of amino acid building blocks is limited by the manner in which codons are used. Of the proteinogenic amino acids, 18 are coded for by multiple codons and therefore many of the 61 sense codons can be considered redundant. Here we report a method to reduce the redundancy of codons by artificially dividing codon boxes to create vacant codons that can then be reassigned to non-proteinogenic amino acids and thereby expand the library of genetically encoded amino acids. To achieve this, we reconstituted a cell-free translation system with 32 in vitro transcripts of transfer RNASNN (tRNASNN) (S = G or C), assigning the initiator and 20 elongator amino acids. Reassignment of three redundant codons was achieved by replacing redundant tRNASNNs with tRNASNNs pre-charged with non-proteinogenic amino acids. As a demonstration, we expressed a 32-mer linear peptide that consists of 20 proteinogenic and three non-proteinogenic amino acids, and a 14-mer macrocyclic peptide that contains more than four non-proteinogenic amino acids. PMID:27001726

  10. Gaining Insights into the Codon Usage Patterns of TP53 Gene across Eight Mammalian Species

    PubMed Central

    Mazumder, Tarikul Huda; Chakraborty, Supriyo

    2015-01-01

    TP53 gene is known as the “guardian of the genome” as it plays a vital role in regulating cell cycle, cell proliferation, DNA damage repair, initiation of programmed cell death and suppressing tumor growth. Non uniform usage of synonymous codons for a specific amino acid during translation of protein known as codon usage bias (CUB) is a unique property of the genome and shows species specific deviation. Analysis of codon usage bias with compositional dynamics of coding sequences has contributed to the better understanding of the molecular mechanism and the evolution of a particular gene. In this study, the complete nucleotide coding sequences of TP53 gene from eight different mammalian species were used for CUB analysis. Our results showed that the codon usage patterns in TP53 gene across different mammalian species has been influenced by GC bias particularly GC3 and a moderate bias exists in the codon usage of TP53 gene. Moreover, we observed that nature has highly favored the most over represented codon CTG for leucine amino acid but selected against the ATA codon for isoleucine in TP53 gene across all mammalian species during the course of evolution. PMID:25807269

  11. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer

    PubMed Central

    Liu, Jibin; Zhu, Dekang; Ma, Guangpeng; Liu, Mafeng; Wang, Mingshu; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Riemerella anatipestifer (RA) belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC3 (p > 0.05). Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA. PMID:27517915

  12. A Comparative Analysis of Synonymous Codon Usage Bias Pattern in Human Albumin Superfamily

    PubMed Central

    Mirsafian, Hoda; Mat Ripen, Adiratna; Singh, Aarti; Teo, Phaik Hwan; Merican, Amir Feisal; Mohamad, Saharuddin Bin

    2014-01-01

    Synonymous codon usage bias is an inevitable phenomenon in organismic taxa across the three domains of life. Though the frequency of codon usage is not equal across species and within genome in the same species, the phenomenon is non random and is tissue-specific. Several factors such as GC content, nucleotide distribution, protein hydropathy, protein secondary structure, and translational selection are reported to contribute to codon usage preference. The synonymous codon usage patterns can be helpful in revealing the expression pattern of genes as well as the evolutionary relationship between the sequences. In this study, synonymous codon usage bias patterns were determined for the evolutionarily close proteins of albumin superfamily, namely, albumin, α-fetoprotein, afamin, and vitamin D-binding protein. Our study demonstrated that the genes of the four albumin superfamily members have low GC content and high values of effective number of codons (ENC) suggesting high expressivity of these genes and less bias in codon usage preferences. This study also provided evidence that the albumin superfamily members are not subjected to mutational selection pressure. PMID:24707212

  13. A bacterial strain with a unique quadruplet codon specifying non-native amino acids.

    PubMed

    Chatterjee, Abhishek; Lajoie, Marc J; Xiao, Han; Church, George M; Schultz, Peter G

    2014-08-18

    The addition of noncanonical amino acids to the genetic code requires unique codons not assigned to the 20 canonical amino acids. Among the 64 triplet codons, only the three nonsense "stop" codons have been used to encode non-native amino acids. Use of quadruplet "frame-shift" suppressor codons provides an abundant alternative but suffers from low suppression efficiency as a result of competing recognition of their first three bases by endogenous host tRNAs or release factors. Deletion of release factor 1 in a genomically recoded strain of E. coli (E. coli C321), in which all endogenous amber stop codons (UAG) are replaced with UAA, abolished UAG mediated translation termination. Here we show that a Methanocaldococcus jannaschii-derived frame-shift suppressor tRNA/aminoacyl-tRNA synthetase pair enhanced UAGN suppression efficiency in this recoded bacterial strain. These results demonstrate that efficient quadruplet codons for encoding non-native amino acids can be generated by eliminating competing triplet codon recognition at the ribosome. PMID:24867343

  14. Polymorphism distribution of prion protein codon 117, 129 and 171 in Taiwan.

    PubMed

    Wang, Kaw-Chen; Wang, Vinchi; Sun, Ming-Chieh; Chiueh, Ti-I; Soong, Bing-Wen; Shan, Din-E

    2007-01-01

    Prion diseases compass transmissible spongiform neurodegenerative diseases from various causes, including the genetic and infectious ones. We investigated the prevalence of codon 117, 129 and 171 polymorphism in prion protein (PrP) in Taiwanese, mainly for the sake of the informative absence of this genetic distribution. Our subjects were 419 aged ones of Han ethic origin. We evaluated the PrP gene (PRNP) polymorphism by restriction fragment length polymorphism, after amplification of their genomic DNAs by polymerase chain reactions with specific primers, digested by restriction enzyme PvuII (for codon 117), NspI (for codon 129), and BbvI (for codon 171), respectively, and confirmed by nucleotide sequencing. All of the subjects were homozygotes at codon 117 (Ala/Ala, gca/gca) and 171 (Asn/Asn, aac/aac). There were no valine homozygotes (Val/Val) in our 419 subjects, and nine subjects (2.1%) showed methionine-valine heterozygosity (Mal/Val, atg/gtg). The methionine homozygotes (Met/Met) comprised the major population (97.9%), and the prevalence of distribution is different to that seen in Caucasians. The almost 100% conservation of the domain from codon 117 to 171 implies the warranty of PrP in cellular functions. The high prevalence of Met/Met alleles in Taiwan did not imply an increased risk of CJD, and the genetic susceptibility of CJD by codon 129 of PrP may be still elusive for the infectivity. PMID:17410475

  15. Transcription attenuation in Salmonella typhimurium: the significance of rare leucine codons in the leu leader.

    PubMed Central

    Carter, P W; Bartkus, J M; Calvo, J M

    1986-01-01

    The leucine operon of Salmonella typhimurium is controlled by a transcription attenuation mechanism. Four adjacent leucine codons within a 160-nucleotide leu leader RNA are thought to play a central role in this mechanism. Three of the four codons are CUA, a rarely used leucine codon within enteric bacteria. To determine whether the nature of the leucine codon affects the regulation of the leucine operon, we used oligonucleotide-directed mutagenesis to first convert one CUA of the leader to CUG and then convert all three CUA codons to CUG. CUG is the most frequently used leucine codon in enteric bacteria. A mutant having (CUA)2CUGCUC in place of (CUA)3CUC has an altered response to leucine limitation, requiring a slightly higher degree of limitation to effect derepression. Changing (CUA)3CUC to (CUG)3CUC has more dramatic effects upon operon expression. First, the basal level of expression is lowered to the point that the mutant grows more slowly than the parent in a minimal medium lacking leucine. Second, the response of the mutant to a leucine limitation is dramatically altered such that even a strong limitation elicits only a modest degree of derepression. If the mutant is grown under conditions of leucyl-tRNA limitation rather than leucine limitation, complete derepression can be achieved, but only at a much higher degree of limitation than for the wild-type operon. These results provide a clear-cut example of codon usage having a dramatic effect upon gene expression. PMID:3534884

  16. Genome-Wide Analysis of the Synonymous Codon Usage Patterns in Riemerella anatipestifer.

    PubMed

    Liu, Jibin; Zhu, Dekang; Ma, Guangpeng; Liu, Mafeng; Wang, Mingshu; Jia, Renyong; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2016-01-01

    Riemerella anatipestifer (RA) belongs to the Flavobacteriaceae family and can cause a septicemia disease in poultry. The synonymous codon usage patterns of bacteria reflect a series of evolutionary changes that enable bacteria to improve tolerance of the various environments. We detailed the codon usage patterns of RA isolates from the available 12 sequenced genomes by multiple codon and statistical analysis. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A or U ending codons are predominant in RA. Neutrality analysis found no significant correlation between GC12 and GC₃ (p > 0.05). Correspondence analysis and ENc-plot results showed that natural selection dominated over mutation in the codon usage bias. The tree of cluster analysis based on RSCU was concordant with dendrogram based on genomic BLAST by neighbor-joining method. By comparative analysis, about 50 highly expressed genes that were orthologs across all 12 strains were found in the top 5% of high CAI value. Based on these CAI values, we infer that RA contains a number of predicted highly expressed coding sequences, involved in transcriptional regulation and metabolism, reflecting their requirement for dealing with diverse environmental conditions. These results provide some useful information on the mechanisms that contribute to codon usage bias and evolution of RA. PMID:27517915

  17. Adjacent Codons Act in Concert to Modulate Translation Efficiency in Yeast.

    PubMed

    Gamble, Caitlin E; Brule, Christina E; Dean, Kimberly M; Fields, Stanley; Grayhack, Elizabeth J

    2016-07-28

    Translation elongation efficiency is largely thought of as the sum of decoding efficiencies for individual codons. Here, we find that adjacent codon pairs modulate translation efficiency. Deploying an approach in Saccharomyces cerevisiae that scored the expression of over 35,000 GFP variants in which three adjacent codons were randomized, we have identified 17 pairs of adjacent codons associated with reduced expression. For many pairs, codon order is obligatory for inhibition, implying a more complex interaction than a simple additive effect. Inhibition mediated by adjacent codons occurs during translation itself as GFP expression is restored by increased tRNA levels or by non-native tRNAs with exact-matching anticodons. Inhibition operates in endogenous genes, based on analysis of ribosome profiling data. Our findings suggest translation efficiency is modulated by an interplay between tRNAs at adjacent sites in the ribosome and that this concerted effect needs to be considered in predicting the functional consequences of codon choice. PMID:27374328

  18. Mutation and Selection Cause Codon Usage and Bias in Mitochondrial Genomes of Ribbon Worms (Nemertea)

    PubMed Central

    Chen, Haixia; Sun, Shichun; Norenburg, Jon L.; Sundberg, Per

    2014-01-01

    The phenomenon of codon usage bias is known to exist in many genomes and it is mainly determined by mutation and selection. To understand the patterns of codon usage in nemertean mitochondrial genomes, we use bioinformatic approaches to analyze the protein-coding sequences of eight nemertean species. Neutrality analysis did not find a significant correlation between GC12 and GC3. ENc-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENc values are below it. ENc-plot suggested that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally and we propose that codons containing A or U at third position are used preferentially in nemertean species, regardless of whether corresponding tRNAs are encoded in the mitochondrial DNA. Context-dependent analysis indicated that the nucleotide at the second codon position slightly affects synonymous codon choices. These results suggested that mutational and selection forces are probably acting to codon usage bias in nemertean mitochondrial genomes. PMID:24454907

  19. Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (Nemertea).

    PubMed

    Chen, Haixia; Sun, Shichun; Norenburg, Jon L; Sundberg, Per

    2014-01-01

    The phenomenon of codon usage bias is known to exist in many genomes and it is mainly determined by mutation and selection. To understand the patterns of codon usage in nemertean mitochondrial genomes, we use bioinformatic approaches to analyze the protein-coding sequences of eight nemertean species. Neutrality analysis did not find a significant correlation between GC12 and GC3. ENc-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENc values are below it. ENc-plot suggested that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally and we propose that codons containing A or U at third position are used preferentially in nemertean species, regardless of whether corresponding tRNAs are encoded in the mitochondrial DNA. Context-dependent analysis indicated that the nucleotide at the second codon position slightly affects synonymous codon choices. These results suggested that mutational and selection forces are probably acting to codon usage bias in nemertean mitochondrial genomes. PMID:24454907

  20. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes

    NASA Astrophysics Data System (ADS)

    Iwane, Yoshihiko; Hitomi, Azusa; Murakami, Hiroshi; Katoh, Takayuki; Goto, Yuki; Suga, Hiroaki

    2016-04-01

    In ribosomal polypeptide synthesis the library of amino acid building blocks is limited by the manner in which codons are used. Of the proteinogenic amino acids, 18 are coded for by multiple codons and therefore many of the 61 sense codons can be considered redundant. Here we report a method to reduce the redundancy of codons by artificially dividing codon boxes to create vacant codons that can then be reassigned to non-proteinogenic amino acids and thereby expand the library of genetically encoded amino acids. To achieve this, we reconstituted a cell-free translation system with 32 in vitro transcripts of transfer RNASNN (tRNASNN) (S = G or C), assigning the initiator and 20 elongator amino acids. Reassignment of three redundant codons was achieved by replacing redundant tRNASNNs with tRNASNNs pre-charged with non-proteinogenic amino acids. As a demonstration, we expressed a 32-mer linear peptide that consists of 20 proteinogenic and three non-proteinogenic amino acids, and a 14-mer macrocyclic peptide that contains more than four non-proteinogenic amino acids.

  1. Fossil Groups in the Local Universe

    NASA Technical Reports Server (NTRS)

    OSullivan, Ewan

    2005-01-01

    The two galaxies observed as part of this project were originally selected as fossil group candidates because of their isolation from other galaxies and their apparent high X-ray luminosity and extended X-ray emission. However, the X-ray data available was minimal, being drawn from the ROSAT All-Sky Survey. We have performed an initial analysis of the XMM data from both galaxies and found that their gaseous halos are smaller, cooler, and less luminous than expected. In the case of NGC 57, the RASS estimate of extent and luminosity was biased because of a previously unidentified background group which is visible in the XMM data to one side of the galaxy. In the case of IC 153 1, the contribution from background point sources near the galaxy appears to be to blame. This suggests that both galaxies should be reclassified as isolated ellipticals. Such systems are very rare, and currently poorly understood; for comparison, there are now 6-10 known fossil groups, but only one isolated elliptical with useful X-ray data. We are currently re-analyzing the data for the two galaxies to take advantage of the calibration improvements of SAS 6.1, and to include calculations of the mass profiles of the two systems. A paper is currently in preparation dealing with the X-ray properties and environment of the galaxies, and we expect to submit this to the Astrophysical Journal within the next two months. Multi-band optical imaging of the field surrounding NGC 57 has been acquired to confirm its isolated status and provide more information on the background group. IC 1531 was accepted as a target in Chandra cycle 6 as part of a related proposal, and we intend to add this new observation to our XMM data when it becomes available. A second paper is planned to include the results of this combined analysis.

  2. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.

    PubMed

    Ho, Joanne M; Reynolds, Noah M; Rivera, Keith; Connolly, Morgan; Guo, Li-Tao; Ling, Jiqiang; Pappin, Darryl J; Church, George M; Söll, Dieter

    2016-02-19

    Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli. PMID:26544153

  3. Tryptophan Codon-Dependent Transcription in Chlamydia pneumoniae during Gamma Interferon-Mediated Tryptophan Limitation.

    PubMed

    Ouellette, Scot P; Rueden, Kelsey J; Rucks, Elizabeth A

    2016-09-01

    In evolving to an obligate intracellular niche, Chlamydia has streamlined its genome by eliminating superfluous genes as it relies on the host cell for a variety of nutritional needs like amino acids. However, Chlamydia can experience amino acid starvation when the human host cell in which the bacteria reside is exposed to interferon gamma (IFN-γ), which leads to a tryptophan (Trp)-limiting environment via induction of the enzyme indoleamine-2,3-dioxygenase (IDO). The stringent response is used to respond to amino acid starvation in most bacteria but is missing from Chlamydia Thus, how Chlamydia, a Trp auxotroph, responds to Trp starvation in the absence of a stringent response is an intriguing question. We previously observed that C. pneumoniae responds to this stress by globally increasing transcription while globally decreasing translation, an unusual response. Here, we sought to understand this and hypothesized that the Trp codon content of a given gene would determine its transcription level. We quantified transcripts from C. pneumoniae genes that were either rich or poor in Trp codons and found that Trp codon-rich transcripts were increased, whereas those that lacked Trp codons were unchanged or even decreased. There were exceptions, and these involved operons or large genes with multiple Trp codons: downstream transcripts were less abundant after Trp codon-rich sequences. These data suggest that ribosome stalling on Trp codons causes a negative polar effect on downstream sequences. Finally, reassessing previous C. pneumoniae microarray data based on codon content, we found that upregulated transcripts were enriched in Trp codons, thus supporting our hypothesis. PMID:27400720

  4. The unfolded protein response affects readthrough of premature termination codons

    PubMed Central

    Oren, Yifat S; McClure, Michelle L; Rowe, Steven M; Sorscher, Eric J; Bester, Assaf C; Manor, Miriam; Kerem, Eitan; Rivlin, Joseph; Zahdeh, Fouad; Mann, Matthias; Geiger, Tamar; Kerem, Batsheva

    2014-01-01

    One-third of monogenic inherited diseases result from premature termination codons (PTCs). Readthrough of in-frame PTCs enables synthesis of full-length functional proteins. However, extended variability in the response to readthrough treatment is found among patients, which correlates with the level of nonsense transcripts. Here, we aimed to reveal cellular pathways affecting this inter-patient variability. We show that activation of the unfolded protein response (UPR) governs the response to readthrough treatment by regulating the levels of transcripts carrying PTCs. Quantitative proteomic analyses showed substantial differences in UPR activation between patients carrying PTCs, correlating with their response. We further found a significant inverse correlation between the UPR and nonsense-mediated mRNA decay (NMD), suggesting a feedback loop between these homeostatic pathways. We uncovered and characterized the mechanism underlying this NMD-UPR feedback loop, which augments both UPR activation and NMD attenuation. Importantly, this feedback loop enhances the response to readthrough treatment, highlighting its clinical importance. Altogether, our study demonstrates the importance of the UPR and its regulatory network for genetic diseases caused by PTCs and for cell homeostasis under normal conditions. PMID:24705877

  5. Suppression of Premature Termination Codons as a Therapeutic Approach

    PubMed Central

    Keeling, Kim M.; Wang, Dan; Conard, Sara E.; Bedwell, David M.

    2012-01-01

    In this review, we describe our current understanding of translation termination and pharmacological agents that influence the accuracy of this process. A number of drugs have been identified that induce suppression of translation termination at in-frame premature termination codons (PTCs; also known as nonsense mutations) in mammalian cells. We discuss efforts to utilize these drugs to suppress disease-causing PTCs that result in the loss of protein expression and function. In-frame PTCs represent a genotypic subset of mutations that make up ~11% of all known mutations that cause genetic diseases, and millions of patients have diseases attributable to PTCs. Current approaches aimed at reducing the efficiency of translation termination at PTCs (referred to as PTC suppression therapy) have the goal of alleviating the phenotypic consequences of a wide range of genetic diseases. Suppression therapy is currently in clinical trials for treatment of several genetic diseases caused by PTCs, and preliminary results suggest that some patients have shown clinical improvements. While current progress is promising, we discuss various approaches that may further enhance the efficiency of this novel therapeutic approach. PMID:22672057

  6. The characteristics of synonymous codon usage in the initial and terminal translation regions of encephalomyocarditis virus.

    PubMed

    Ma, X-X; Feng, Y-P; Liu, J-L; Zhao, Y-Q; Chen, L; Guo, P-H; Guo, J-Z; Ma, Z-R

    2014-01-01

    The synonymous codon usage patterns in the initial and terminal translation regions (ITR, TTR) of the whole coding sequence of encephalomyocarditis virus (EMCV) were analyzed in relation to those in its natural hosts using the sequences accessible in databases. In general, some low-usage host codons were found over-represented in the ITR and TTR of the virus, while some high-usage host codons were found under-represented in the two viral regions. These relationships are thought to participate in the regulation of the speed of translation of viral proteins and in the suppression of ribosomal traffic jams, both aiming at the increase of virus yields. PMID:24720745

  7. Progress of fossil fuel science

    SciTech Connect

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  8. Fossils of big bang turbulence

    NASA Astrophysics Data System (ADS)

    Gibson, C. H.

    2004-12-01

    A model is proposed connecting turbulence, fossil turbulence, and the big bang origin of the universe. While details are incomplete, the model is consistent with our knowledge of these processes and is supported by observations. Turbulence arises in a hot-big-bang quantum-gravitational-dynamics scenario at Planck scales. Chaotic, eddy-like-motions produce an exothermic Planck particle cascade from 10-35 m at 1032 K to 108 larger, 104 cooler, quark-gluon scales. A Planck-Kerr instability gives high-Reynolds-number (Re 106) turbulent combustion, space-time-energy-entropy and turbulent mixing. Batchelor-Obukhov-Corrsin turbulent-temperature fluctuations are preserved as the first fossil-turbulence by inflation stretching the patterns beyond the horizon ct of causal connection faster than light speed c in time t 10-33 seconds. Fossil-big-bang-temperature-turbulence re-enters the horizon and imprints nucleosynthesis of H-He densities that seed fragmentation by gravity at 1012 s in the low Reynolds number plasma before its transition to gas at t 1013 s and T 3000 K. Multi-scaling coefficients of the cosmic-microwave-background (CMB) temperature anisotropies closely match those for high Reynolds number turbulence, Bershadskii and Sreenivasan 2002, 2003. CMB spectra support the interpretation that big-bang-turbulence-fossils triggered fragmentation of the viscous plasma at supercluster to galaxy mass scales from 1046 to 1042 kg, Gibson 1996, 2000, 2004ab.

  9. Fossil power plant systems description

    SciTech Connect

    Not Available

    1984-01-01

    This single-volume, looseleaf text presents the functions and relationships between each major component and its auxiliaries within a system. The text also describes the relationships between systems. All major components are addressed, and system boundaries are defined for a generic fossil power plant.

  10. Fossil Energy: Drivers and Challenges.

    NASA Astrophysics Data System (ADS)

    Friedmann, Julio

    2007-04-01

    Concerns about rapid economic growth, energy security, and global climate change have created a new landscape for fossil energy exploration, production, and utilization. Since 85% of primary energy supply comes from fossil fuels, and 85% of greenhouse gas emissions come from fossil fuel consumption, new and difficult technical and political challenges confront commercial, governmental, and public stakeholders. As such, concerns over climate change are explicitly weighed against security of international and domestic energy supplies, with economic premiums paid for either or both. Efficiency improvements, fuel conservation, and deployment of nuclear and renewable supplies will help both concerns, but are unlikely to offset growth in the coming decades. As such, new technologies and undertakings must both provide high quality fossil energy with minimal environmental impacts. The largest and most difficult of these undertakings is carbon management, wherein CO2 emissions are sequestered indefinitely at substantial incremental cost. Geological formations provide both high confidence and high capacity for CO2 storage, but present scientific and technical challenges. Oil and gas supply can be partially sustained and replaced through exploitation of unconventional fossil fuels such as tar-sands, methane hydrates, coal-to-liquids, and oil shales. These fuels provide enormous reserves that can be exploited at current costs, but generally require substantial energy to process. In most cases, the energy return on investment (EROI) is dropping, and unconventional fuels are generally more carbon intensive than conventional, presenting additional carbon management challenges. Ultimately, a large and sustained science and technology program akin to the Apollo project will be needed to address these concerns. Unfortunately, real funding in energy research has dropped dramatically (75%) in the past three decades, and novel designs in fission and fusion are not likely to provide any

  11. Fossil group origins. VII. Galaxy substructures in fossil systems

    NASA Astrophysics Data System (ADS)

    Zarattini, S.; Girardi, M.; Aguerri, J. A. L.; Boschin, W.; Barrena, R.; del Burgo, C.; Castro-Rodriguez, N.; Corsini, E. M.; D'Onghia, E.; Kundert, A.; Méndez-Abreu, J.; Sánchez-Janssen, R.

    2016-02-01

    Context. Fossil groups (FG) are expected to be the final product of galaxy merging within galaxy groups. In simulations, they are predicted to assemble their mass at high redshift. This early formation allows for the innermost M∗ galaxies to merge into a massive central galaxy. Then, they are expected to maintain their fossil status because of the few interactions with the large-scale structure. In this context, the magnitude gap between the two brightest galaxies of the system is considered a good indicator of its dynamical status. As a consequence, the systems with the largest gaps should be dynamically relaxed. Aims: In order to examine the dynamical status of these systems, we systematically analyze, for the first time, the presence of galaxy substructures in a sample of 12 spectroscopically-confirmed fossil systems with redshift z ≤ 0.25. Methods: We apply a number of tests to investigate the substructure in fossil systems in the two-dimensional space of projected positions out to R200. Moreover, for a subsample of five systems with at least 30 spectroscopically-confirmed members we also analyze the substructure in the velocity and in the three-dimensional velocity-position spaces. Additionally, we look for signs of recent mergers in the regions around the central galaxies. Results: We find that an important fraction of fossil systems show substructure. The fraction depends critically on the adopted test, since each test is more sensitive to a particular type of substructure. Conclusions: Our interpretation of the results is that fossil systems are not, in general, as relaxed as expected from simulations. Our sample of 12 spectroscopically-confirmed fossil systems need to be extended to compute an accurate fraction, but our conclusion is that this fraction is similar to the fraction of substructure detected in nonfossil clusters. This result points out that the magnitude gap alone is not a good indicator of the dynamical status of a system. However, the

  12. Multi-omics data driven analysis establishes reference codon biases for synthetic gene design in microbial and mammalian cells.

    PubMed

    Ang, Kok Siong; Kyriakopoulos, Sarantos; Li, Wei; Lee, Dong-Yup

    2016-06-01

    In this study, we analyzed multi-omics data and subsets thereof to establish reference codon usage biases for codon optimization in synthetic gene design. Specifically, publicly available genomic, transcriptomic, proteomic and translatomic data for microbial and mammalian expression hosts, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Chinese hamster ovary (CHO) cells, were compiled to derive their individual codon and codon pair frequencies. Then, host dependent and -omics specific codon biases were generated and compared by principal component analysis and hierarchical clustering. Interestingly, our results indicated the similar codon bias patterns of the highly expressed transcripts, highly abundant proteins, and efficiently translated mRNA in microbial cells, despite the general lack of correlation between mRNA and protein expression levels. However, for CHO cells, the codon bias patterns among various -omics subsets are not distinguishable, forming one cluster. Thus, we further investigated the effect of different input codon biases on codon optimized sequences using the codon context (CC) and individual codon usage (ICU) design parameters, via in silico case study on the expression of human IFNγ sequence in CHO cells. The results supported that CC is more robust design parameter than ICU for improved heterologous gene design. PMID:26850284

  13. Role of codon choice in the leader region of the ilvGMEDA operon of Serratia marcescens.

    PubMed Central

    Harms, E; Umbarger, H E

    1987-01-01

    Leucine participates in multivalent repression of the Serratia marcescens ilvGMEDA operon by attenuation (J.-H. Hsu, E. Harms, and H.E. Umbarger, J. Bacteriol. 164:217-222, 1985), although there is only one single leucine codon that could be involved in this type of control. This leucine codon is the rarely used CUA. The contribution of this leucine codon to the control of transcription by attenuation was examined by replacing it with the commonly used leucine codon CUG and with a nonregulatory proline codon, CCG. These changes left intact the proposed secondary structure of the leader. The effects of the codon changes were assessed by placing the mutant leader regions upstream of the ilvGME structural genes or the cat gene and measuring acetohydroxy acid synthase II, transaminase B, or chloramphenicol acetyltransferase activities in cells grown under limiting and repressing conditions. The presence of the common leucine codon in place of the rare leucine codon reduced derepression by about 70%. Eliminating the leucine codon by converting it to proline abolished leucine control. Furthermore, a possible context effect of the adjacent upstream serine codon on leucine control was examined by changing it into a glycine codon. PMID:2824442

  14. 18. WEST CONFEDERATE AVENUE BRIDGE SPANNING CODON'S RUN, BUILT 189x. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. WEST CONFEDERATE AVENUE BRIDGE SPANNING CODON'S RUN, BUILT 189x. NOTE STRAIGHT ASHLAR COURSING AND RAISED KEYSTONES. VIEW NW. - Gettysburg National Military Park Tour Roads, Gettysburg, Adams County, PA

  15. The most deviated codon position in AT-rich bacterial genomes: a function related analysis.

    PubMed

    Ma, Bin-Guang; Chen, Ling-Ling

    2005-10-01

    We have performed systematic study on more than 120 archaeal and bacterial genomes. Based on the index proposed in the current paper, clear patterns are observed showing the relation between the base compositional deviation at three codon positions and the genomic GC content. For AT-rich genomes, the Most Deviated Codon Position (MDCP) is the 1st codon position, while for GC-rich genomes, MDCP appears at the 2nd or 3rd codon position alternatively. According to MDCP, the CDSs of a genome can be classified into two types: typical and atypical. In AT-rich genomes the typical represent the majority and account for about 3/4 of all the CDSs. Based on the functional classification of COG database, the two types of CDSs are examined. An apparent bias of distribution is observed that the CDSs with the function of 'information processing' are more likely to present in typical type. PMID:16060688

  16. CodHonEditor: Spreadsheets for Codon Optimization and Editing of Protein Coding Sequences.

    PubMed

    Takai, Kazuyuki

    2016-05-01

    Gene synthesis is getting more important with the growing availability of low-cost commercial services. The coding sequences are often "optimized" as for the relative synonymous codon usage (RSCU) before synthesis, which is generally included in the commercial services. However, the codon optimization processes are different among different providers and are often hidden from the users. Here, the d'Hondt method, which is widely adopted as a method for determining the number of seats for each party in proportional-representation public elections, is applied to RSCU fitting. This allowed me to make a set of electronic spreadsheets for manual design of protein coding sequences for expression in Escherichia coli, with which users can see the process of codon optimization and can manually edit the codons after the automatic optimization. The spreadsheets may also be useful for molecular biology education. PMID:27002987

  17. Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons.

    PubMed Central

    Berry, M J; Banu, L; Harney, J W; Larsen, P R

    1993-01-01

    We investigated the requirements for selenocysteine insertion at single or multiple UGA codons in eukaryotic selenoproteins. Two functional SECIS elements were identified in the 3' untranslated region of the rat selenoprotein P mRNA, with predicted stem-loops and critical nucleotides similar to those in the SECIS elements in the type I iodothyronine 5' deiodinase (5'DI) and glutathione peroxidase selenoprotein mRNAs. Site-directed mutational analyses of three SECIS elements confirmed that conserved nucleotides in the loop and in unpaired regions of the stem are critical for activity. This indicates that multiple contact sites are required for SECIS function. Stop codon function at any of five out-of-context UGA codons in the 5'DI mRNA was suppressed by SECIS elements from the 5'DI or selenoprotein P genes linked downstream. Thus, the presence of SECIS elements in eukaryotic selenoprotein mRNAs permits complete flexibility in UGA codon position. Images PMID:8344267

  18. Usage of the three termination codons in a single eukaryotic cell, the Xenopus laevis oocyte.

    PubMed Central

    Bienz, M; Kubli, E; Kohli, J; deHenau, S; Huez, G; Marbaix, G; Grosjean, H

    1981-01-01

    Oocytes from Xenopus laevis were injected with purified amber (UAG), ochre (UAA), and opal (UGA) suppressor tRNAs from yeasts. The radioactively labeled proteins translated from the endogenous mRNAs were then separated on two-dimensional gels. All three termination codons are used in a single cell, the Xenopus laevis oocyte. But a surprisingly low number of readthrough polypeptides were observed from the 600 mRNAs studied in comparison to uninjected oocytes. The experimental data are compared with the conclusions obtained from the compilation of all available termination sequences on eukaryotic and prokaryotic mRNAs. This comparison indicates that the apparent resistance of natural termination codons against readthrough, as observed by the microinjection experiments, cannot be explained by tandem or very close second stop codons. Instead it suggests that specific context sequences around the termination codons may play a role in the efficiency of translation termination. Images PMID:7024919

  19. Understanding discrimination by the ribosome: stability testing and groove measurement of codon-anticodon pairs.

    PubMed

    Sanbonmatsu, K Y; Joseph, S

    2003-04-18

    The ribosome must discriminate between correct and incorrect tRNAs with sufficient speed and accuracy to sustain an adequate rate of cell growth. Here, we report the results of explicit solvent molecular dynamics simulations, which address the mechanism of discrimination by the ribosome. The universally conserved 16S rRNA base A1493 and the kink in mRNA between A and P sites amplify differences in stability between cognate and near-cognate codon-anticodon pairs. Destabilization by the mRNA kink also provides a geometric explanation for the higher error rates observed for mismatches in the first codon position relative to mismatches in the second codon position. For more stable near-cognates, the repositioning of the universally conserved bases A1492 and G530 results in increased solvent exposure and an uncompensated loss of hydrogen bonds, preventing correct codon-anticodon-ribosome interactions from forming. PMID:12683995

  20. Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes

    PubMed Central

    Hinnebusch, Alan G.

    2011-01-01

    Summary: The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5′ end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an “open” conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a “closed” conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the “P” site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded “landing pad” for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site. PMID:21885680

  1. Advanced thermometrics for fossil power plant process improvement

    SciTech Connect

    Shepard, R.L.; Weiss, J.M.; Holcomb, D.E.

    1996-04-30

    Improved temperature measurements in fossil power plants can reduce heat rate and uncertainties in power production efficiencies, extend the life of plant components, reduce maintenance costs, and lessen emissions. Conventional instruments for measurement of combustion temperatures, steam temperatures, and structural component temperatures can be improved by better specification, in situ calibration, signal processing, and performance monitoring. Innovative instruments can enhance, augment, or replace conventional instruments. Several critical temperatures can be accessed using new methods that were impossible with conventional instruments. Such instruments include high temperature resistance temperature detectors (RTDs), thermometric phosphors, inductive thermometry, and ultrasonic thermometry.

  2. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea.

    PubMed

    Whittle, Carrie A; Extavour, Cassandra G

    2015-11-01

    In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods. PMID:26384771

  3. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea

    PubMed Central

    Whittle, Carrie A.; Extavour, Cassandra G.

    2015-01-01

    In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods. PMID:26384771

  4. Fossil groups of galaxies: Are they groups? Are they fossils?

    NASA Astrophysics Data System (ADS)

    Dupke, Renato de Alencar; Miller, Eric; de Oliveira, Claudia Mendes; Sodre, Laerte; Rykoff, Eli; de Oliveira, Raimundo Lopes; Proctor, Rob

    2010-11-01

    Fossil groups present a puzzle to current theories of structure formation. Despite the low number of bright galaxies, their high velocity dispersions and high TX indicate cluster-like potential wells. Measured concentration parameters seem very high indicating early formation epochs in contradiction with the observed lack of large and well defined cooling cores. There are very few fossil groups with good quality X-ray data and their idiosyncrasies may enhance these apparent contradictions. The standard explanation for their formation suggests that bright galaxies within half the virial radii of these systems were wiped out by cannibalism forming the central galaxy. Since dry mergers, typically invoked to explain the formation of the central galaxies, are not expected to change the IGM energetics significantly, thus not preventing the formation of cooling cores, we investigate the scenario where recent gaseous (wet) mergers formed the central galaxy injecting energy and changing the chemistry of the IGM in fossil groups. We show a test for this scenario using fossil groups with enough X-ray flux in the Chandra X-ray Observatory archive by looking at individual metal abundance ratio distributions near the core. Secondary SN II powered winds would tend to erase the dominance of SN IA ejecta in the core of these systems and would help to erase previously existing cold cores. Strong SN II-powered galactic winds resulting from galaxy merging would be trapped by their deep potential wells reducing the central enhancement of SN Ia/SN II iron mass fraction ratio. The results indicate that there is a decrement in the ratio of SN Ia to SN II iron mass fraction in the central regions of the systems analyzed, varying from 99±1% in the outer regions to 85±2% within the cooling radius (Figure 1) and would inject enough energy into the IGM preventing central gas cooling. The results are consistent with a scenario of later formation epoch for fossil groups, as they are defined

  5. Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function

    PubMed Central

    Bali, Vedrana; Bebok, Zsuzsanna

    2015-01-01

    Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479

  6. DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context

    PubMed Central

    Pisareva, Vera P.; Pisarev, Andrey V.

    2016-01-01

    During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal scanning of structured mRNAs. Here, we show that DHX29 stimulates the recognition of the AUG codon but not the near-cognate CUG codon regardless of its nucleotide context during ribosomal scanning. The stimulatory effect depends on the contact between DHX29 and eIF1A. The unique DHX29 N-terminal domain binds to the ribosomal site near the mRNA entrance, where it contacts the eIF1A OB domain. UV crosslinking assays revealed that DHX29 may rearrange eIF1A and eIF2α in key nucleotide context positions of ribosomal complexes. Interestingly, DHX29 impedes the 48S initiation complex formation in the absence of eIF1A perhaps due to forming a physical barrier that prevents the 43S PIC from loading onto mRNA. Mutational analysis allowed us to split the mRNA unwinding and codon selection activities of DHX29. Thus, DHX29 is another example of an initiation factor contributing to start codon selection. PMID:27067542

  7. Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa.

    PubMed

    Jia, Jia; Xue, Qingzhong

    2009-12-01

    Transposable elements (TEs) are mobile genetic entities ubiquitously distributed in nearly all genomes. High frequency of codons ending in A/T in TEs has been previously observed in some species. In this study, the biases in nucleotide composition and codon usage of TE transposases and host nuclear genes were investigated in the AT-rich genome of Arabidopsis thaliana and the GC-rich genome of Oryza sativa. Codons ending in A/T are more frequently used by TEs compared with their host nuclear genes. A remarkable positive correlation between highly expressed nuclear genes and C/G-ending codons were detected in O. sativa (r=0.944 and 0.839, respectively, P<0.0001) but not in A. thaliana, indicating a close association between the GC content and gene expression level in monocot species. In both species, TE codon usage biases are similar to that of weakly expressed genes. The expression and activity of TEs may be strictly controlled in plant genomes. Mutation bias and selection pressure have simultaneously acted on the TE evolution in A. thaliana and O. sativa. The consistently observed biases of nucleotide composition and codon usage of TEs may also provide a useful clue to accurately detect TE sequences in different species. PMID:20172490

  8. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon

    SciTech Connect

    Zinoni, F.; Birkmann, A.; Leinfelder, W.; Boeck, A.

    1987-05-01

    The structural gene (fdhF) for the 80-kDa selenopolypeptide of formate dehydrogenase from Escherichia coli contains an in-frame UGA codon at amino acid position 140 that is translated. Translation of gene fusions between N-terminal parts of fdhF with lacZ depends on the availability of selenium in the medium when the hybrid gene contains the UGA codon; it is independent of the presence of selenium when an fdhF portion upstream of the UGA position is fused to lacZ. Transcription does not require the presence of selenium in either case. By localized mutagenesis, the UGA codon was converted into serine (UCA) and cysteine (UGC and UGU) codons. Each mutagion relieved the selenium dependency of fdhF mRNA translation. Selenium incorporation was completely abolished in the case of the UCA insertion and was reduced to about 10% when the UGA was replaced by a cysteine codon. Insertion of UCA yielded an inactive fdhF gene product, while insertion of UGC and UGU resulted in polypeptides with lowered activities as components in the system formerly known as formate hydrogenlyase. Altogether the results indicate that the UGA codon at position 140 directs the cotranslational insertion of selenocysteine into the fdhF polypeptide chain.

  9. Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli

    PubMed Central

    Mukai, Takahito; Yamaguchi, Atsushi; Ohtake, Kazumasa; Takahashi, Mihoko; Hayashi, Akiko; Iraha, Fumie; Kira, Satoshi; Yanagisawa, Tatsuo; Yokoyama, Shigeyuki; Hoshi, Hiroko; Kobayashi, Takatsugu; Sakamoto, Kensaku

    2015-01-01

    The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code. PMID:26240376

  10. Analysis of Codon Usage Patterns in Herbaceous Peony (Paeonia lactiflora Pall.) Based on Transcriptome Data

    PubMed Central

    Wu, Yanqing; Zhao, Daqiu; Tao, Jun

    2015-01-01

    Codon usage bias, which exists in many genomes, is mainly determined by mutation and selection. To elucidate the genetic features and evolutionary history of herbaceous peony (Paeonia lactiflora), a well-known symbol of prosperity in China, we examined synonymous codon usage in 24,216 reconstructed genes from the P. lactiflora transcriptome. The mean GC content was 44.4%, indicating that the nucleotide content of P. lactiflora genes is slightly AT rich and GC poor. The P. lactiflora genome has a wide range of GC3 (GC content at the third synonymous codon position) distribution, with a significant correlation between GC12 and GC3. ENC (effective number of codons) analysis suggested that mutational bias played a major role in shaping codon usage. Parity Rule 2 (PR2) analysis revealed that GC and AU were not used proportionally. We identified 22 “optimal codons”, most ending with an A or U. Our results suggested that nucleotide composition mutation bias and translational selection were the main driving factors of codon usage bias in P. lactiflora. These results lay the foundation for exploring the evolutionary mechanisms and heterologous expression of functionally-important proteins in P. lactiflora. PMID:26506393

  11. DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context.

    PubMed

    Pisareva, Vera P; Pisarev, Andrey V

    2016-05-19

    During eukaryotic translation initiation, the 43S preinitiation complex (43S PIC), consisting of the 40S ribosomal subunit, eukaryotic initiation factors (eIFs) and initiator tRNA scans mRNA to find an appropriate start codon. Key roles in the accuracy of initiation codon selection belong to eIF1 and eIF1A, whereas the mammalian-specific DHX29 helicase substantially contributes to ribosomal scanning of structured mRNAs. Here, we show that DHX29 stimulates the recognition of the AUG codon but not the near-cognate CUG codon regardless of its nucleotide context during ribosomal scanning. The stimulatory effect depends on the contact between DHX29 and eIF1A. The unique DHX29 N-terminal domain binds to the ribosomal site near the mRNA entrance, where it contacts the eIF1A OB domain. UV crosslinking assays revealed that DHX29 may rearrange eIF1A and eIF2α in key nucleotide context positions of ribosomal complexes. Interestingly, DHX29 impedes the 48S initiation complex formation in the absence of eIF1A perhaps due to forming a physical barrier that prevents the 43S PIC from loading onto mRNA. Mutational analysis allowed us to split the mRNA unwinding and codon selection activities of DHX29. Thus, DHX29 is another example of an initiation factor contributing to start codon selection. PMID:27067542

  12. FOSSIL SPRINGS ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Beard, L.S.; Ellis, C.E.

    1984-01-01

    Based on field studies, the Fossil Springs Roadless Area in central Arizona is concluded to have little promise for the occurrence of mineral or energy resources. Rocks in the Supai Formation (Pennsylvanian-Permian) near the central part of the roadless area contain widespread but spotty copper mineralization and trace amounts of uranium. Analyses obtained during the study define geochemical anomalies in two portions of the area that remain unexplained. The suites of anomalous metals suggest the possibility of hydrothermal veins and the presence of ultramafic rocks; neither were found in the field. Although there is little promise for the occurrence of mineral resources in the Fossil Springs Roadless Area, studies to identify the source of the geochemical anomalies could have valuable implications for regional studies and mineral exploration in the surrounding area.

  13. Looking at Fossils in New Ways

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2005-01-01

    Existing fossils could be studied from a different prospective with the use of new methods of analysis for gathering more information. The new techniques of studying fossils binds the new and the old techniques and information and provides another way to look at fossils.

  14. Cycads: Fossil evidence of late paleozoic origin

    USGS Publications Warehouse

    Mamay, S.H.

    1969-01-01

    Plant fossils from Lower Permian strata of the southwestern United States have been interpreted as cycadalean megasporophylls. They are evidently descended from spermopterid elements of the Pennsylvanian Taeniopteris complex; thus the known fossil history of the cycads is extended from the Late Triassic into the late Paleozoic. Possible implications of the Permian fossils toward evolution of the angiosperm carpel are considered.

  15. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees

    PubMed Central

    Sansom, Robert S.; Wills, Matthew A.

    2013-01-01

    Fossils are vital for calibrating rates of molecular and morphological change through geological time, and are the only direct source of data documenting macroevolutionary transitions. Many evolutionary studies therefore require the robust phylogenetic placement of extinct organisms. Here, we demonstrate that the inevitable bias of the fossil record to preserve just hard, skeletal morphology systemically distorts phylogeny. Removal of soft part characters from 78 modern vertebrate and invertebrate morphological datasets resulted in significant changes to phylogenetic signal; it caused individual taxa to drift from their original position, predominately downward toward the root of their respective trees. This last bias could systematically inflate evolutionary rates inferred from molecular data because first fossil occurrences will not be recognised as such. Stem-ward slippage, whereby fundamental taphonomic biases cause fossils to be interpreted as erroneously primitive, is therefore a ubiquitous problem for all biologists attempting to infer macroevolutionary rates or sequences. PMID:23985991

  16. Extinction and the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  17. Liquid fossil-fuel technology

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Highlights of research activities at Bartlesville Energy Technology Center for the quarter ending March 1982 are summarized. Major research areas are: liquid fossil fuel cycle; extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, processing technology); utilization; and product integration and technology transfer. Special reports include: EOR data base, major new industry tool; properties of crude oils available via telephone hookup; alternative fuels data bank stresses transportation.

  18. Calibration of sound calibrators: an overview

    NASA Astrophysics Data System (ADS)

    Milhomem, T. A. B.; Soares, Z. M. D.

    2016-07-01

    This paper presents an overview of calibration of sound calibrators. Initially, traditional calibration methods are presented. Following, the international standard IEC 60942 is discussed emphasizing parameters, target measurement uncertainty and criteria for conformance to the requirements of the standard. Last, Regional Metrology Organizations comparisons are summarized.

  19. THE NATURE OF FOSSIL GALAXY GROUPS: ARE THEY REALLY FOSSILS?

    SciTech Connect

    La Barbera, F.; Sorrentino, G.; De Carvalho, R. R.; De la Rosa, I. G.; Gal, R. R.; Kohl-Moreira, J. L.

    2009-04-15

    We use SDSS-DR4 photometric and spectroscopic data out to redshift z {approx} 0.1 combined with ROSAT All Sky Survey X-ray data to produce a sample of 25 fossil groups (FGs), defined as bound systems dominated by a single, luminous elliptical galaxy with extended X-ray emission. We examine possible biases introduced by varying the parameters used to define the sample, and the main pitfalls are also discussed. The spatial density of FGs, estimated via the V/V {sub MAX} test, is 2.83 x 10{sup -6} h {sup 3} {sub 75} Mpc{sup -3} for L{sub X} > 0.89 x 10{sup 42} h {sup -2} {sub 75} erg s{sup -1} consistent with Vikhlinin et al., who examined an X-ray overluminous elliptical galaxy sample (OLEG). We compare the general properties of FGs identified here with a sample of bright field ellipticals generated from the same data set. These two samples show no differences in the distribution of neighboring faint galaxy density excess, distance from the red sequence in the color-magnitude diagram, and structural parameters such as a {sub 4} and internal color gradients. Furthermore, examination of stellar populations shows that our 25 FGs have similar ages, metallicities, and {alpha}-enhancement as the bright field ellipticals, undermining the idea that these systems represent fossils of a physical mechanism that occurred at high redshift. Our study reveals no difference between FGs and field ellipticals, suggesting that FGs might not be a distinct family of true fossils, but rather the final stage of mass assembly in the universe.

  20. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  1. Escherichia coli and Staphylococcus phages: effect of translation initiation efficiency on differential codon adaptation mediated by virulent and temperate lifestyles

    PubMed Central

    Prabhakaran, Ramanandan; Chithambaram, Shivapriya

    2015-01-01

    Rapid biosynthesis is key to the success of bacteria and viruses. Highly expressed genes in bacteria exhibit a strong codon bias corresponding to the differential availability of tRNAs. However, a large clade of lambdoid coliphages exhibits relatively poor codon adaptation to the host translation machinery, in contrast to other coliphages that exhibit strong codon adaptation to the host. Three possible explanations were previously proposed but dismissed: (1) the phage-borne tRNA genes that reduce the dependence of phage translation on host tRNAs, (2) lack of time needed for evolving codon adaptation due to recent host switching, and (3) strong strand asymmetry with biased mutation disrupting codon adaptation. Here, we examined the possibility that phages with relatively poor codon adaptation have poor translation initiation which would weaken the selection on codon adaptation. We measured translation initiation by: (1) the strength and position of the Shine–Dalgarno (SD) sequence, and (2) the stability of the secondary structure of sequences flanking the SD and start codon known to affect accessibility of the SD sequence and start codon. Phage genes with strong codon adaptation had significantly stronger SD sequences than those with poor codon adaptation. The former also had significantly weaker secondary structure in sequences flanking the SD sequence and start codon than the latter. Thus, lambdoid phages do not exhibit strong codon adaptation because they have relatively inefficient translation initiation and would benefit little from increased elongation efficiency. We also provided evidence suggesting that phage lifestyle (virulent versus temperate) affected selection intensity on the efficiency of translation initiation and elongation. PMID:25614589

  2. Synonymous Codon Usage Affects the Expression of Wild Type and F508del CFTR

    PubMed Central

    Shah, Kalpit; Cheng, Yi; Hahn, Brian; Bridges, Robert; Bradbury, Neil; Mueller, David M.

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel composed of 1480 amino acids. The major mutation responsible for cystic fibrosis results in loss of amino acid residue, F508, (F508del). Loss of F508 in CFTR alters the folding pathway resulting in endoplasmic reticulum associated degradation (ERAD). This study investigates the role of synonymous codon in the expression of CFTR and CFTR F508del in human HEK293 cells. DNA encoding the open reading frame (ORF) for CFTR containing synonymous codon replacements, were expressed using a heterologous vector integrated into the genome. The results indicate that the codon usage greatly affects the expression of CFTR. While the promoter strength driving expression of the ORFs was largely unchanged and the mRNA half-lives were unchanged, the steady state levels of the mRNA varied by as much as 30 fold. Experiments support that this apparent inconsistency is attributed to exon junction complex independent nonsense mediated decay. The ratio of CFTR/mRNA indicates that mRNA containing native codons was more efficient in expressing mature CFTR as compared to mRNA containing synonymous high expression codons. However, when F508del CFTR was expressed after codon optimization, a greater percentage of the protein escaped ERAD resulting in considerable levels of mature F508del CFTR on the plasma membrane, which showed channel activity. These results indicate that for CFTR, codon usage has an effect on mRNA levels, protein expression and likely, for F508del CFTR, chaperone assisted folding pathway. PMID:25676312

  3. Dinosaur Fossils Predict Body Temperatures

    PubMed Central

    Allen, Andrew P; Charnov, Eric L

    2006-01-01

    Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 °C at 12 kg to approximately 41 °C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy. PMID:16817695

  4. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon.

    PubMed

    Katz, M J; Gándara, L; De Lella Ezcurra, A L; Wappner, P

    2016-05-01

    Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress. PMID:26874685

  5. Non-universal decoding of the leucine codon CUG in several Candida species.

    PubMed Central

    Ohama, T; Suzuki, T; Mori, M; Osawa, S; Ueda, T; Watanabe, K; Nakase, T

    1993-01-01

    It has been reported that CUG, a universal leucine codon, is read as serine in an asporogenic yeast, Candida cylindracea. The distribution of this non-universal genetic code in various yeast species was studied using an in vitro translation assay system with a synthetic messenger RNA containing CUG codons in-frame. It was found that CUG is used as a serine codon in six out of the fourteen species examined, while it is used for leucine in the remaining eight. The tRNA species responsible for the translation of codon CUG as serine was detected in all the six species in which CUG is translated as serine. The grouping according to the CUG codon assignments in these yeast species shows a good correlation with physiological classification by the chain lengths of the isoprenoid moiety of ubiquinone and the cell-wall sugar contained in the yeasts. The six Candida species examined in which CUG is used as serine belong to one distinct group in Hemiascomycetes. PMID:8371978

  6. Analysis of synonymous codon usage patterns in sixty-four different bivalve species

    PubMed Central

    De Moro, Gianluca; Venier, Paola; Pallavicini, Alberto

    2015-01-01

    Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across different genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 different species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable differences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational efficiency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon in this large, commercially and environmentally important, class of marine invertebrates. PMID:26713259

  7. Codon influence on protein expression in E. coli correlates with mRNA levels.

    PubMed

    Boël, Grégory; Letso, Reka; Neely, Helen; Price, W Nicholson; Wong, Kam-Ho; Su, Min; Luff, Jon D; Valecha, Mayank; Everett, John K; Acton, Thomas B; Xiao, Rong; Montelione, Gaetano T; Aalberts, Daniel P; Hunt, John F

    2016-01-21

    Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli. PMID:26760206

  8. Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR.

    PubMed

    Kianmehr, Anvarsadat; Golavar, Raziyeh; Rouintan, Mandana; Mahrooz, Abdolkarim; Fard-Esfahani, Pezhman; Oladnabi, Morteza; Khajeniazi, Safoura; Mostafavi, Seyede Samaneh; Omidinia, Eskandar

    2016-02-01

    Darbepoetin alfa is an engineered and hyperglycosylated analog of recombinant human erythropoietin (EPO) which is used as a drug in treating anemia in patients with chronic kidney failure and cancer. This study desribes the secretory expression of a codon-optimized recombinant form of darbepoetin alfa in Leishmania tarentolae T7-TR. Synthetic codon-optimized gene was amplified by PCR and cloned into the pLEXSY-I-blecherry3 vector. The resultant expression vector, pLEXSYDarbo, was purified, digested, and electroporated into the L. tarentolae. Expression of recombinant darbepoetin alfa was evaluated by ELISA, reverse-transcription PCR (RT-PCR), Western blotting, and biological activity. After codon optimization, codon adaptation index (CAI) of the gene raised from 0.50 to 0.99 and its GC% content changed from 56% to 58%. Expression analysis confirmed the presence of a protein band at 40 kDa. Furthermore, reticulocyte experiment results revealed that the activity of expressed darbepoetin alfa was similar to that of its equivalent expressed in Chinese hamster ovary (CHO) cells. These data suggested that the codon optimization and expression in L. tarentolae host provided an efficient approach for high level expression of darbepoetin alfa. PMID:26546410

  9. ProxiMAX randomization: a new technology for non-degenerate saturation mutagenesis of contiguous codons.

    PubMed

    Ashraf, Mohammed; Frigotto, Laura; Smith, Matthew E; Patel, Seema; Hughes, Marcus D; Poole, Andrew J; Hebaishi, Husam R M; Ullman, Christopher G; Hine, Anna V

    2013-10-01

    Back in 2003, we published 'MAX' randomization, a process of non-degenerate saturation mutagenesis using exactly 20 codons (one for each amino acid) or else any required subset of those 20 codons. 'MAX' randomization saturates codons located in isolated positions within a protein, as might be required in enzyme engineering, or else on one face of an α-helix, as in zinc-finger engineering. Since that time, we have been asked for an equivalent process that can saturate multiple contiguous codons in a non-degenerate manner. We have now developed 'ProxiMAX' randomization, which does just that: generating DNA cassettes for saturation mutagenesis without degeneracy or bias. Offering an alternative to trinucleotide phosphoramidite chemistry, ProxiMAX randomization uses nothing more sophisticated than unmodified oligonucleotides and standard molecular biology reagents. Thus it requires no specialized chemistry, reagents or equipment, and simply relies on a process of saturation cycling comprising ligation, amplification and digestion for each cycle. The process can encode both unbiased representation of selected amino acids or else encode them in predefined ratios. Each saturated position can be defined independently of the others. We demonstrate accurate saturation of up to 11 contiguous codons. As such, ProxiMAX randomization is particularly relevant to antibody engineering. PMID:24059507

  10. Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives.

    PubMed

    Pibiri, Ivana; Lentini, Laura; Melfi, Raffaella; Gallucci, Giulia; Pace, Andrea; Spinello, Angelo; Barone, Giampaolo; Di Leonardo, Aldo

    2015-08-28

    Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importance of H-bonding and stacking π-π interactions. To improve the readthrough activity we changed the fluorine number and position in the PTC124 fluoroaryl moiety. The readthrough ability of these PTC124 derivatives was tested in human cells harboring reporter plasmids with premature stop codons in H2BGFP and FLuc genes as well as in cystic fibrosis (CF) IB3.1 cells with a nonsense mutation. Maintaining low toxicity, three of these molecules showed higher efficacy than PTC124 in the readthrough of the UGA premature stop codon and in recovering the expression of the CFTR protein in IB3.1 cells from cystic fibrosis patient. Molecular dynamics simulations performed with mutated CFTR mRNA fragments and active or inactive derivatives are in agreement with the suggested interaction of PTC124 with mRNA. PMID:26142488