Science.gov

Sample records for fossil-based soft bounds

  1. Soft-bound Synaptic Plasticity Increases Storage Capacity

    PubMed Central

    van Rossum, Mark C. W.; Shippi, Maria; Barrett, Adam B.

    2012-01-01

    Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths. It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance criteria by about 18% over hard-bound plasticity, and likely maximizes the storage capacity of synapses. PMID:23284281

  2. Comparing hard and soft prior bounds in geophysical inverse problems

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    In linear inversion of a finite-dimensional data vector y to estimate a finite-dimensional prediction vector z, prior information about X sub E is essential if y is to supply useful limits for z. The one exception occurs when all the prediction functionals are linear combinations of the data functionals. Two forms of prior information are compared: a soft bound on X sub E is a probability distribution p sub x on X which describes the observer's opinion about where X sub E is likely to be in X; a hard bound on X sub E is an inequality Q sub x(X sub E, X sub E) is equal to or less than 1, where Q sub x is a positive definite quadratic form on X. A hard bound Q sub x can be softened to many different probability distributions p sub x, but all these p sub x's carry much new information about X sub E which is absent from Q sub x, and some information which contradicts Q sub x. Both stochastic inversion (SI) and Bayesian inference (BI) estimate z from y and a soft prior bound p sub x. If that probability distribution was obtained by softening a hard prior bound Q sub x, rather than by objective statistical inference independent of y, then p sub x contains so much unsupported new information absent from Q sub x that conclusions about z obtained with SI or BI would seen to be suspect.

  3. Comparing hard and soft prior bounds in geophysical inverse problems

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1987-01-01

    In linear inversion of a finite-dimensional data vector y to estimate a finite-dimensional prediction vector z, prior information about X sub E is essential if y is to supply useful limits for z. The one exception occurs when all the prediction functionals are linear combinations of the data functionals. Two forms of prior information are compared: a soft bound on X sub E is a probability distribution p sub x on X which describeds the observer's opinion about where X sub E is likely to be in X; a hard bound on X sub E is an inequality Q sub x(X sub E, X sub E) is equal to or less than 1, where Q sub x is a positive definite quadratic form on X. A hard bound Q sub x can be softened to many different probability distributions p sub x, but all these p sub x's carry much new information about X sub E which is absent from Q sub x, and some information which contradicts Q sub x. Both stochastic inversion (SI) and Bayesian inference (BI) estimate z from y and a soft prior bound p sub x. If that probability distribution was obtained by softening a hard prior bound Q sub x, rather than by objective statistical inference independent of y, then p sub x contains so much unsupported new information absent from Q sub x that conclusions about z obtained with SI or BI would seen to be suspect.

  4. Rigorous statistical mechanical results for one-dimensional bounded soft rod systems and for soft rod mixtures

    NASA Astrophysics Data System (ADS)

    Swadesh, Joel K.; Poirier, Jacques C.

    1981-05-01

    We obtain the exact partition functions for modified soft rod systems, thus exploring mixing and end effects. A hypergeometric function appears in each partition function. For a soft and hard rod mixture, we exhibit the excess Helmholtz free energy of mixing in the thermodynamic limit. Using the centrally important integral I( D, M', L, b1), closely related to the confluent hypergeometric function 1F1, we have sketched the evaluation of the soft rod partition function in a form containing 1F1 rather than a Bessel function as derived earlier by us [6]. Again using I( D, M', L, b1) but with altered indices, we have evaluated the partition function for soft rods with hard and soft boundaries in terms of the 1F1 function. We have recognized that the sum of these two partition functions, multiplied by N' equals the partition function of a system of soft rods subject to periodic boundary conditions. Conceptually, then, periodic boundary conditions in the soft rod system are equivalent to imposition of either hard or soft boundary conditions. Additionally, we have noted that soft boundary conditions are equivalent to a two-phase system composed of a bound monolayer and a free bulk phase. Again using I( D, M', L, b1), we have obtained the exact partition function of a mixture of hard and soft rods by a modification of the integral indices. In order to derive results of potential utility in solution theory, we have obtained the thermodynamic limit of this partition function, and have derived the excess Helmholtz free energy of mixing at constant number density and temperature. At high and low temperatures, this excess function assumes greatly simplified mathematical forms. Finally, we have obtained the exact partition function for a finite binary mixture of soft rods of different force constants, using I( D, M', L, b1) to generate an intermediate result which led to a partition function containing a hypergeometric function. We hope that the results of this work, which

  5. Evidence for soft bounds in Ubuntu package sizes and mammalian body masses.

    PubMed

    Gherardi, Marco; Mandrà, Salvatore; Bassetti, Bruno; Cosentino Lagomarsino, Marco

    2013-12-24

    The development of a complex system depends on the self-coordinated action of a large number of agents, often determining unexpected global behavior. The case of software evolution has great practical importance: knowledge of what is to be considered atypical can guide developers in recognizing and reacting to abnormal behavior. Although the initial framework of a theory of software exists, the current theoretical achievements do not fully capture existing quantitative data or predict future trends. Here we show that two elementary laws describe the evolution of package sizes in a Linux-based operating system: first, relative changes in size follow a random walk with non-Gaussian jumps; second, each size change is bounded by a limit that is dependent on the starting size, an intriguing behavior that we call "soft bound." Our approach is based on data analysis and on a simple theoretical model, which is able to reproduce empirical details without relying on any adjustable parameter and generates definite predictions. The same analysis allows us to formulate and support the hypothesis that a similar mechanism is shaping the distribution of mammalian body sizes, via size-dependent constraints during cladogenesis. Whereas generally accepted approaches struggle to reproduce the large-mass shoulder displayed by the distribution of extant mammalian species, this is a natural consequence of the softly bounded nature of the process. Additionally, the hypothesis that this model is valid has the relevant implication that, contrary to a common assumption, mammalian masses are still evolving, albeit very slowly. PMID:24324175

  6. Evidence for soft bounds in Ubuntu package sizes and mammalian body masses

    PubMed Central

    Gherardi, Marco; Mandrà, Salvatore; Bassetti, Bruno; Cosentino Lagomarsino, Marco

    2013-01-01

    The development of a complex system depends on the self-coordinated action of a large number of agents, often determining unexpected global behavior. The case of software evolution has great practical importance: knowledge of what is to be considered atypical can guide developers in recognizing and reacting to abnormal behavior. Although the initial framework of a theory of software exists, the current theoretical achievements do not fully capture existing quantitative data or predict future trends. Here we show that two elementary laws describe the evolution of package sizes in a Linux-based operating system: first, relative changes in size follow a random walk with non-Gaussian jumps; second, each size change is bounded by a limit that is dependent on the starting size, an intriguing behavior that we call “soft bound.” Our approach is based on data analysis and on a simple theoretical model, which is able to reproduce empirical details without relying on any adjustable parameter and generates definite predictions. The same analysis allows us to formulate and support the hypothesis that a similar mechanism is shaping the distribution of mammalian body sizes, via size-dependent constraints during cladogenesis. Whereas generally accepted approaches struggle to reproduce the large-mass shoulder displayed by the distribution of extant mammalian species, this is a natural consequence of the softly bounded nature of the process. Additionally, the hypothesis that this model is valid has the relevant implication that, contrary to a common assumption, mammalian masses are still evolving, albeit very slowly. PMID:24324175

  7. Metastability bounds on flavor-violating trilinear soft terms in the MSSM

    SciTech Connect

    Park, Jae-hyeon

    2011-03-01

    The vacuum stability bounds on flavor-violating trilinear soft terms are revisited from the viewpoint that one should not ban a standard-model-like false vacuum as long as it is long-lived on a cosmological time scale. The vacuum transition rate is evaluated numerically by searching for the bounce configuration. Like stability, a metastability bound does not decouple even if sfermion masses grow. Apart from being more generous than stability, the new bounds are largely independent of Yukawa couplings except for the stop trilinears. With vacuum longevity imposed on otherwise arbitrary LR insertions, it is found that a super flavor factory has the potential to probe sparticle masses up to a few TeV through B and {tau} physics whereas the MEG experiment might cover a far wider range. In the stop sector, metastability is more restrictive than any existing experimental constraint such as from electroweak precision data. Also discussed are dependency on other parameters and reliability under radiative corrections.

  8. Homeostatic Plasticity Achieved by Incorporation of Random Fluctuations and Soft-Bounded Hebbian Plasticity in Excitatory Synapses

    PubMed Central

    Matsubara, Takashi; Uehara, Kuniaki

    2016-01-01

    Homeostatic plasticity is considered to maintain activity in neuronal circuits within a functional range. In the absence of homeostatic plasticity neuronal activity is prone to be destabilized because Hebbian plasticity mechanisms induce positive feedback change. Several studies on homeostatic plasticity assumed the existence of a process for monitoring neuronal activity on a time scale of hours and adjusting synaptic efficacy by scaling up and down. However, the underlying mechanism still remains unclear. Excitatory synaptic efficacy is associated with the size of the dendritic spine, and dendritic spine size fluctuates even after neuronal activity is silenced. These fluctuations could be a non-Hebbian form of synaptic plasticity that serves such a homeostatic function. This study proposed and analyzed a synaptic plasticity model incorporating random fluctuations and soft-bounded Hebbian plasticity at excitatory synapses, and found that the proposed model can prevent excessive changes in neuronal activity by scaling synaptic efficacy up and down. Soft-bounded Hebbian plasticity suppresses strong synapses, thereby scaling synapses down and preventing runaway excitation. Random fluctuations diffuse synaptic efficacy, thereby scaling synapses up and preventing neurons from falling silent. The proposed model acts as a form of homeostatic plasticity, regardless of neuronal activity monitoring. PMID:27313513

  9. Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes

    NASA Astrophysics Data System (ADS)

    Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele

    2015-04-01

    turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.

  10. One-loop corrections to the perturbative unitarity bounds in the CP-conserving two-Higgs doublet model with a softly broken {mathbb{Z}}_2 symmetry

    NASA Astrophysics Data System (ADS)

    Grinstein, Benjamín; Murphy, Christopher W.; Uttayarat, Patipan

    2016-06-01

    We compute all of the one-loop corrections that are enhanced, O( λ i λ j /16 π 2), in the limit s ≫ | λ i | v 2 ≫ M W 2 , s ≫ m 12 2 to all the 2 → 2 longitudinal vector boson and Higgs boson scattering amplitudes in the CP -conserving two-Higgs doublet model with a softly broken {mathbb{Z}}_2 symmetry. In the two simplified scenarios we study, the typical bound we find is | λ i ( s)| ⪷ 4.

  11. One-loop corrections to the perturbative unitarity bounds in the CP-conserving two-Higgs doublet model with a softly broken {{Z}}_2 symmetry

    NASA Astrophysics Data System (ADS)

    Grinstein, Benjamín; Murphy, Christopher W.; Uttayarat, Patipan

    2016-06-01

    We compute all of the one-loop corrections that are enhanced, O( λ i λ j /16 π 2), in the limit s ≫ | λ i | v 2 ≫ M W 2 , s ≫ m 12 2 to all the 2 → 2 longitudinal vector boson and Higgs boson scattering amplitudes in the CP -conserving two-Higgs doublet model with a softly broken {{Z}}_2 symmetry. In the two simplified scenarios we study, the typical bound we find is | λ i ( s)| ⪷ 4.

  12. Softly, Softly

    ERIC Educational Resources Information Center

    Diamond, Abigail

    2008-01-01

    The term "soft skills" encompasses a cluster of personality traits, language abilities, personal habits and, ultimately, values and attitudes. Soft skills complement "harder", more technical, skills, such as being able to read or type a letter, but they also have a significant impact on the ability of people to do their jobs and on their…

  13. Acoustic Analysis of Composite Soft Materials IV.Evaluation of Compressibility of Bound Rubber in Carbon Black Filled SBR

    NASA Astrophysics Data System (ADS)

    Maebayashi, Masahiro; Endo, Masashi; Matsuoka, Tatsuro; Koda, Shinobu; Isono, Yoshinobu

    A carbon black (CB) filled styrene-butadiene rubber (SBR) compound was investigated by acoustic techniques, scanning acoustic microscopy and longitudinal wave velocitometry. The CB agglomerates of larger than 5 µm dispersed in the compound mixed by two-roll mill were observed as black spots in acoustic micrographs. On the other hand, the CB agglomerates in the compound mixed by oil-pressure kneader were not observed in the acoustic micrograph, since the particle size of the agglomerates was less than 5 µm. The density and the longitudinal wave velocity of the compound were measured as a function of the weight percentage of the CB. The density and the velocity increased linearly with the content of the CB. The mass ratio of the bound rubber to the CB in the unvulcanized sample was determined by using toluene extraction and thermo gravimetric analysis. The partial specific adiabatic compressibility of the CB was estimated as (-0.5±0.5)×10-10 Pa-1 on the basis of the three states model. The adiabatic compressibility of the bound rubber was (2.2±0.5)×10-10 Pa-1, and it is half of that of the SBR matrix.

  14. Why Biodiesel is Environmentally Better than Traditional, Fossil-based Diesel: an LCA Approach

    NASA Astrophysics Data System (ADS)

    Pubule, Jelena; Romagnoli, Francesco; Blumberga, Dagnija

    2011-01-01

    In Latvia, rapeseed methyl ester (RME) is generally considered to have a significant economic potential in the field of biofuels. As investments grow, it is important to evaluate the environmental impacts of this production and to highlight the main sources of these impacts. Nowadays, the share of biofuels in the transport sector in Latvia is attested to have a value of 0.3% (around 75% biodiesel and 25% bioethanol). Biofuel production in Latvia doubled in the last two years: the current total biodiesel production is approximately 64 ktonne/year (year 2009). The aim of this paper is to understand and model the environmental performance of the biodiesel produced from rapeseeds under the local Latvian conditions. Firstly, energy crops were evaluated by assessing their levels of biodiesel productivity. Secondly, the current Latvian climatic conditions and cultivation parameters were taken into account. To conclude, a comparison with the impacts of fossil based diesel was conducted.

  15. Improved Endothelial Function of Endothelial Cell Monolayer on the Soft Polyelectrolyte Multilayer Film with Matrix-Bound Vascular Endothelial Growth Factor.

    PubMed

    Chang, Hao; Hu, Mi; Zhang, He; Ren, Ke-Feng; Li, Bo-Chao; Li, Huan; Wang, Li-Mei; Lei, Wen-Xi; Ji, Jian

    2016-06-15

    Endothelialization on the vascular implants is of great importance for prevention of undesired postimplantation symptoms. However, endothelial dysfunction of regenerated endothelial cell (EC) monolayer has been frequently observed, leading to severe complications, such as neointimal hyperplasia, late thrombosis, and neoatherosclerosis. It has significantly impeded long-term success of the therapy. So far, very little attention has been paid on endothelial function of EC monolayer. Bioinspired by the microenvironment of the endothelium in a blood vessel, this study described a soft polyelectrolyte multilayer film (PEM) through layer-by-layer assembly of poly(l-lysine) (PLL) and hyaluronan (HA). The (PLL/HA) PEM was chemically cross-linked and further incorporated with vascular endothelial growth factor. It demonstrated that this approach could promote EC adhesion and proliferation, further inducing formation of EC monolayer. Further, improved endothelial function of the EC monolayer was achieved as shown with the tighter integrity, higher production of nitric oxide, and expression level of endothelial function related genes, compared to EC monolayers on traditional substrates with high stiffness (e.g., glass, tissue culture polystyrene, and stainless steel). Our findings highlighted the influence of substrate stiffness on endothelial function of EC monolayer, giving a new strategy in the surface design of vascular implants. PMID:27223460

  16. Outward Bound.

    ERIC Educational Resources Information Center

    Outward Bound, Inc., Andover, MA.

    The Outward Bound concept was developed in Germany and Great Britain with the saving of human life as the ultimate goal. Courses are designed to help students discover their true physical and mental limits through development of skills including emergency medical aid, firefighting, search and rescue, mountaineering, and sailing. Five Outward Bound…

  17. Soft electronics for soft robotics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  18. Bound states and the Bekenstein bound

    SciTech Connect

    Bousso, Raphael

    2003-10-16

    We explore the validity of the generalized Bekenstein bound, S<= pi M a. We define the entropy S as the logarithm of the number of states which have energy eigenvalue below M and are localized to a flat space region of width alpha. If boundary conditions that localize field modes are imposed by fiat, then the bound encounters well-known difficulties with negative Casimir energy and large species number, as well as novel problems arising only in the generalized form. In realistic systems, however, finite-size effects contribute additional energy. We study two different models for estimating such contributions. Our analysis suggests that the bound is both valid and nontrivial if interactions are properly included, so that the entropy S counts the bound states of interacting fields.

  19. Soft Mappings Space

    PubMed Central

    Ozturk, Taha Yasin; Bayramov, Sadi

    2014-01-01

    Various soft topologies are being introduced on a given function space soft topological spaces. In this paper, soft compact-open topology is defined in functional spaces of soft topological spaces. Further, these functional spaces are studied and interrelations between various functional spaces with soft compact-open topology are established. PMID:25374936

  20. Soft Interfaces

    NASA Astrophysics Data System (ADS)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  1. A matrix lower bound

    SciTech Connect

    Grcar, Joseph F.

    2002-02-04

    A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.

  2. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  3. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... the bacteria Streptococcus pyogenes , which is sometimes called "flesh-eating bacteria." Necrotizing soft tissue infection develops when ...

  4. Physical Uncertainty Bounds (PUB)

    SciTech Connect

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  5. Asymptotic entropy bounds

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2016-07-01

    We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focusing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the quantum null energy condition, of the generalized Second Law, and of the quantum Bousso bound.

  6. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  7. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  8. Causality and Tsirelson's bounds

    SciTech Connect

    Buhrman, H.; Massar, S.

    2005-11-15

    We study the properties of no-signaling correlations that cannot be reproduced by local measurements on entangled quantum states. We say that such correlations violate Tsirelson bounds. We show that if these correlations are obtained by some reversible unitary quantum evolution U, then U cannot be written in the product form U{sub A}xU{sub B}. This implies that U can be used for signaling and for entanglement generation. This result is completely general and in fact can be viewed as a characterization of Tsirelson bounds. We then show how this result can be used as a tool to study Tsirelson bounds and we illustrate this by rederiving the Tsirelson bound of 2{radical}(2) for the Clauser-Horn-Shimony-Holt inequality, and by deriving a new Tsirelson bound for qutrits.

  9. Bound infragravity waves

    NASA Astrophysics Data System (ADS)

    Okihiro, Michele; Guza, R. T.; Seymour, R. J.

    1992-07-01

    Model predictions of bound (i.e., nonlinearly forced by and coupled to wave groups) infragravity wave energy are compared with about 2 years of observations in 8- to 13-m depths at Imperial Beach, California, and Barbers Point, Hawaii. Frequency-directional spectra of free waves at sea and swell frequencies, estimated with a small array of four pressure sensors, are used to predict the bound wave spectra below 0.04 Hz. The predicted total bound wave energy is always less than the observed infragravity energy, and the underprediction increases with increasing water depth and especially with decreasing swell energy. At most half, and usually much less, of the observed infragravity energy is bound. Bound wave spectra are also predicted with data from a single wave gage in 183-m depth at Point Conception, California, and the assumption of unidirectional sea and swell. Even with energetic swell, less than 10% of the total observed infragravity energy in 183-m depth is bound. Free waves, either leaky or edge waves, are more energetic than bound waves at both the shallow and deep sites. The low level of infragravity energy observed in 183-m depth compared with 8- to 13-m depths, with similarly moderate sea and swell energy, suggests that leaky (and very high-mode edge) waves contribute less than 10% of the infragravity energy in 8-13 m. Most of the free infragravity energy in shallow water is refractively trapped and does not reach deep water.

  10. Bounding the Bogoliubov coefficients

    SciTech Connect

    Boonserm, Petarpa; Visser, Matt

    2008-11-15

    While over the last century or more considerable effort has been put into the problem of finding approximate solutions for wave equations in general, and quantum mechanical problems in particular, it appears that as yet relatively little work seems to have been put into the complementary problem of establishing rigourous bounds on the exact solutions. We have in mind either bounds on parametric amplification and the related quantum phenomenon of particle production (as encoded in the Bogoliubov coefficients), or bounds on transmission and reflection coefficients. Modifying and streamlining an approach developed by one of the present authors [M. Visser, Phys. Rev. A 59 (1999) 427-438, (arXiv:quant-ph/9901030)], we investigate this question by developing a formal but exact solution for the appropriate second-order linear ODE in terms of a time-ordered exponential of 2x2 matrices, then relating the Bogoliubov coefficients to certain invariants of this matrix. By bounding the matrix in an appropriate manner, we can thereby bound the Bogoliubov coefficients.

  11. Validation of EMP bounds

    SciTech Connect

    Warne, L.K.; Merewether, K.O.; Chen, K.C.; Jorgenson, R.E.; Morris, M.E.; Solberg, J.E.; Lewis, J.G.; Derr, W.

    1996-07-01

    Test data on canonical weapon-like fixtures are used to validate previously developed analytical bounding results. The test fixtures were constructed to simulate (but be slightly worse than) weapon ports of entry but have known geometries (and electrical points of contact). The exterior of the test fixtures exhibited exterior resonant enhancement of the incident fields at the ports of entry with magnitudes equal to those of weapon geometries. The interior consisted of loaded transmission lines adjusted to maximize received energy or voltage but incorporating practical weapon geometrical constraints. New analytical results are also presented for bounding the energies associated with multiple bolt joints and for bounding the exterior resonant enhancement of the exciting fields.

  12. The Relation Between Finiteness and Unitarity in Superstring Theory — Froissart-Gribov Bounds and Spin

    NASA Astrophysics Data System (ADS)

    Davis, Simon

    2016-05-01

    The finiteness of the eikonal approximation to the superstring amplitude is related to unitarity bounds. The Froissart-Gribov bound is used to establish that only the soft pomeron can contribute at lower energies to the parton distribution. A model of the strongly coupled pomeron, consistent with the intercept of the Regge trajectory, is described.

  13. Computing Graphical Confidence Bounds

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1983-01-01

    Approximation for graphical confidence bounds is simple enough to run on programmable calculator. Approximation is used in lieu of numerical tables not always available, and exact calculations, which often require rather sizable computer resources. Approximation verified for collection of up to 50 data points. Method used to analyze tile-strength data on Space Shuttle thermal-protection system.

  14. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  15. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  16. Simple Ontology Format (SOFT)

    SciTech Connect

    Sorokine, Alexandre

    2011-10-01

    Simple Ontology Format (SOFT) library and file format specification provides a set of simple tools for developing and maintaining ontologies. The library, implemented as a perl module, supports parsing and verification of the files in SOFt format, operations with ontologies (adding, removing, or filtering of entities), and converting of ontologies into other formats. SOFT allows users to quickly create ontologies using only a basic text editor, verify it, and portray it in a graph layout system using customized styles.

  17. Universal bounds on current fluctuations

    NASA Astrophysics Data System (ADS)

    Pietzonka, Patrick; Barato, Andre C.; Seifert, Udo

    2016-05-01

    For current fluctuations in nonequilibrium steady states of Markovian processes, we derive four different universal bounds valid beyond the Gaussian regime. Different variants of these bounds apply to either the entropy change or any individual current, e.g., the rate of substrate consumption in a chemical reaction or the electron current in an electronic device. The bounds vary with respect to their degree of universality and tightness. A universal parabolic bound on the generating function of an arbitrary current depends solely on the average entropy production. A second, stronger bound requires knowledge both of the thermodynamic forces that drive the system and of the topology of the network of states. These two bounds are conjectures based on extensive numerics. An exponential bound that depends only on the average entropy production and the average number of transitions per time is rigorously proved. This bound has no obvious relation to the parabolic bound but it is typically tighter further away from equilibrium. An asymptotic bound that depends on the specific transition rates and becomes tight for large fluctuations is also derived. This bound allows for the prediction of the asymptotic growth of the generating function. Even though our results are restricted to networks with a finite number of states, we show that the parabolic bound is also valid for three paradigmatic examples of driven diffusive systems for which the generating function can be calculated using the additivity principle. Our bounds provide a general class of constraints for nonequilibrium systems.

  18. Bound charges and currents

    NASA Astrophysics Data System (ADS)

    Herczyński, Andrzej

    2013-03-01

    Bound charges and currents are among the conceptually challenging topics in advanced courses on electricity and magnetism. It may be tempting for students to believe that they are merely computational tools for calculating electric and magnetic fields in matter, particularly because they are usually introduced through abstract manipulation of integral identities, with the physical interpretation provided a posteriori. Yet these charges and currents are no less real than free charges and currents and can be measured experimentally. A simpler and more direct approach to introducing this topic, suggested by the ideas in the classic book by Purcell and emphasizing the physical origin of these phenomena, is proposed.

  19. Soft Pion Processes

    DOE R&D Accomplishments Database

    Nambu, Y.

    1968-01-01

    My talk is concerned with a review, not necessarily of the latest theoretical developments, but rather of an old idea which has contributed to recent theoretical activities. By soft pion processes I mean processes in which low energy pions are emitted or absorbed or scattered, just as we use the word soft photon in a similar context. Speaking more quantitatively, we may call a pion soft if its energy is small compared to a natural scale in the reaction. This scale is determined by the particular dynamics of pion interaction, and one may roughly say that a pion is soft if its energy is small compared to the energies of the other individual particles that participate in the reaction. It is important to note at this point that pion is by far the lightest member of all the hadrons, and much of the success of the soft pion formulas depends on this fact.

  20. Avian Soft Tissue Surgery.

    PubMed

    Guzman, David Sanchez-Migallon

    2016-01-01

    Basic surgical instrumentation for avian soft tissue surgery includes soft tissue retractors, microsurgical instrumentation, surgical loupes, and head-mounted lights. Hemostasis is fundamental during the surgical procedures. The indications, approach, and complications associated with soft tissue surgeries of the integumentary (digit constriction repair, feather cyst excision, cranial wound repair, sternal wound repair, uropygial gland excision), gastrointestinal (ingluviotomy, crop biopsy, crop burn repair, celiotomy, coelomic hernia and pseudohernia repair, proventriculotomy, ventriculotomy, enterotomy, intestinal resection and anastomosis, cloacoplasty, cloacopexy), respiratory (rhinolith removal, sinusotomy, tracheotomy, tracheal resection and anastomosis, tracheostomy, pneumonectomy) and reproductive (ovocentesis, ovariectomy, salpingohysterectomy, cesarean section, orchidectomy, vasectomy, phallectomy) systems are reviewed. PMID:26611927

  1. Simple Ontology Format (SOFT)

    Energy Science and Technology Software Center (ESTSC)

    2011-10-01

    Simple Ontology Format (SOFT) library and file format specification provides a set of simple tools for developing and maintaining ontologies. The library, implemented as a perl module, supports parsing and verification of the files in SOFt format, operations with ontologies (adding, removing, or filtering of entities), and converting of ontologies into other formats. SOFT allows users to quickly create ontologies using only a basic text editor, verify it, and portray it in a graph layoutmore » system using customized styles.« less

  2. Shape transitions in soft spheres regulated by elasticity

    NASA Astrophysics Data System (ADS)

    Fogle, Craig; Rowat, Amy; Levine, Alex; Rudnick, Joseph

    2014-03-01

    Soft core shell structures abound in nature. Examples of these structures, comprised of a thin outer membrane bounding an elastic core, include raisins, gel-filled vesicles, and a variety of membrane-bound organelles in the cell. We study the elasticity-driven morphological transitions of spherical core shell structures when either their surface area is increased or their interior volume is decreased. We demonstrate a transition, which is related to the Euler buckling, from the spherical initial shape to a lower symmetry one. We discuss the dependence of the critical excess surface area (relative to that of a bounding sphere) for buckling, the internal stresses in the core, and the symmetry of the buckled state on the elastic parameters of the system. We compare these predictions to a variety of observed morphological transitions in hard and soft materials, and discuss extensions of this work to growing viscoelastic media.

  3. Very Soft Sculpture.

    ERIC Educational Resources Information Center

    deGrassi, Jennifer

    1979-01-01

    Instructions are provided for making dolls, or soft people sculptures, by stuffing nylons with cotton and shaping the result with stitching and decoration. This article is one of seven in this issue on fiber arts. (SJL)

  4. Facial Soft Tissue Trauma

    PubMed Central

    Kretlow, James D.; McKnight, Aisha J.; Izaddoost, Shayan A.

    2010-01-01

    Traumatic facial soft tissue injuries are commonly encountered in the emergency department by plastic surgeons and other providers. Although rarely life-threatening, the treatment of these injuries can be complex and may have significant impact on the patient's facial function and aesthetics. This article provides a review of the relevant literature related to this topic and describes the authors' approach to the evaluation and management of the patient with facial soft tissue injuries. PMID:22550459

  5. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality. PMID:26390078

  6. Magnetic Resonance Elastography: Inversions in Bounded Media

    PubMed Central

    Kolipaka, Arunark; McGee, Kiaran P.; Manduca, Armando; Romano, Anthony J.; Glaser, Kevin J.; Araoz, Philip A.; Ehman, Richard L.

    2009-01-01

    Magnetic resonance elastography (MRE) is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, MRE inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord in which the shear wavelength approaches the geometric dimensions of the object. The aim of this study was to develop and test mathematical inversion algorithms capable of resolving shear stiffness from displacement maps of flexural waves propagating in bounded media such as beams, plates and spherical shells using geometry-specific equations of motion. MRE and finite element modeling (FEM) of beam, plate, and spherical shell phantoms of various geometries were performed. Mechanical testing of the phantoms agreed with the stiffness values obtained from FEM and MRE data and a linear correlation of r2 ≥ 0.99 was observed between the stiffness values obtained using MRE and FEM data. In conclusion, we have demonstrated new inversion methods for calculating shear stiffness that may be more appropriate for waves propagating in bounded media. PMID:19780146

  7. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  8. Effective surface coverage of coarse-grained soft matter.

    PubMed

    Craven, Galen T; Popov, Alexander V; Hernandez, Rigoberto

    2014-12-11

    The surface coverage of coarse-grained macromolecules bound to a solid substrate is not simply proportional to the two-dimensional number density because macromolecules can overlap. As a function of the overlap probability δ, we have developed analytical formulas and computational models capable of characterizing this nonlinear relationship. For simplicity, we ignore site-site interactions that would be induced by length-scale mismatches between binding sites and the radius of gyration of the incident coarse-grained macromolecular species. The interactions between macromolecules are modeled with a finite bounded potential that allows multiple macromolecules to occupy the same binding site. The softness of the bounded potential is thereby reduced to the single parameter δ. Through variation of this parameter, completely hard (δ = 0) and completely soft (δ = 1) behavior can be bridged. For soft macromolecular interactions (δ > 0), multiple occupancy reduces the fraction of sites ϕ occupied on the substrate. We derive the exact transition probability between sequential configurations and use this probability to predict ϕ and the distribution of occupied sites. Due to the complexity of the exact ϕ expressions and their analytical intractability at the thermodynamic limit, we apply a simplified mean-field (MF) expression for ϕ. The MF model is found to be in excellent agreement with the exact result. Both the exact and MF models are applied to an example dynamical system with multibody interactions governed by a stochastic bounded potential. Both models show agreement with results measured from simulation. PMID:25059882

  9. Bounds for Asian basket options

    NASA Astrophysics Data System (ADS)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  10. Northwest Outward Bound Instructor's Manual.

    ERIC Educational Resources Information Center

    Northwest Outward Bound School, Portland, OR.

    Instructor responsibilities, procedures for completing activities safely, and instructional methods and techniques are outlined to assist instructors in the Northwest Outward Bound School (Portland, Oregon) as they strive for teaching excellence. Information is organized into six chapters addressing: history and philosophy of Outward Bound; course…

  11. Fractional diffusion on bounded domains

    DOE PAGESBeta

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; Gunzburger, Max Donald; Lehoucq, Richard B.; Meerschaert, Mark M.

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  12. Soft and Ultra-soft Elastomers

    NASA Astrophysics Data System (ADS)

    Daniel, William; Burdynska, Joanna; Kirby, Sam; Zhou, Yang; Matyjaszewski, Krzysztof; Rubinstein, Michael; Sheiko, Sergei; UNC-MIRT Team

    2014-03-01

    Polymeric networks are attractive engineering materials utilized for various mechanically demanding applications. As such, much attention has been paid to reinforcement of polymer mechanical properties with little interest in how to make softer elastomers to address numerous biomedical applications including implants and cell differentiation. Without swelling in a solvent, it is challenging to obtain materials with a modulus below ca.105 Pa, which is dictated by chain entanglements. Here we present two methodologies for the creation of soft and ultra-soft dry elastomeric compounds. The first method utilizes polymer capsules as temperature responsive filler. Depending on volume fraction of microcapsules this method is capable of fine tuning modulus within an order of magnitude. The second technique uses the densely grafted molecular brush architecture to create solvent-free polymer melts and elastomers with plateau moduli in the range one hundred to ten hundred Pa. Such compounds may find uses in biomedical applications including reconstructive surgery and cell differentiation. National Science Foundation DMR-1122483.

  13. Tensional acoustomechanical soft metamaterials

    NASA Astrophysics Data System (ADS)

    Xin, Fengxian; Lu, Tianjian

    2016-06-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability.

  14. Tensional acoustomechanical soft metamaterials.

    PubMed

    Xin, Fengxian; Lu, Tianjian

    2016-01-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106

  15. Tensional acoustomechanical soft metamaterials

    PubMed Central

    Xin, Fengxian; Lu, Tianjian

    2016-01-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106

  16. Introductory physics going soft

    NASA Astrophysics Data System (ADS)

    Langbeheim, Elon; Livne, Shelly; Safran, Samuel A.; Yerushalmi, Edit

    2012-01-01

    We describe an elective course on soft matter at the level of introductory physics. Soft matter physics serves as a context that motivates the presentation of basic ideas in statistical thermodynamics and their applications. It also is an example of a contemporary field that is interdisciplinary and touches on chemistry, biology, and physics. We outline a curriculum that uses the lattice gas model as a quantitative and visual tool, initially to introduce entropy, and later to facilitate the calculation of interactions. We demonstrate how free energy minimization can be used to teach students to understand the properties of soft matter systems such as the phases of fluid mixtures, wetting of interfaces, self-assembly of surfactants, and polymers. We discuss several suggested activities in the form of inquiry projects which allow students to apply the concepts they have learned to experimental systems.

  17. Some Properties of Fuzzy Soft Proximity Spaces

    PubMed Central

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224

  18. Saturating the holographic entropy bound

    SciTech Connect

    Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan

    2010-10-15

    The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S < or approx. A{sup 3/4}, may hold true. In this note, we exhibit light sheets whose entropy exceeds A{sup 3/4} by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order {Lambda}{sup -1} ({Lambda}{sup -2}), and not |{Lambda}|{sup -3/4} as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S < or approx. A{sup 3/4} is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems.

  19. Adult soft tissue sarcoma

    MedlinePlus

    ... free at 5 years. Most people who survive 5 years can expect to be cancer-free at 10 years. ... most soft tissue sarcomas, and there is no way to prevent it. ... them can increase your chance of surviving this type of cancer.

  20. Forms of Soft Sculpture

    ERIC Educational Resources Information Center

    Tucker, Dorothy

    1978-01-01

    For the past several years, students at Madison Senior High School in San Diego have responded to the tactile texture and draping quality of soft materials. They experimented enthusiastically with three-dimensional forms made out of foam rubber. Here is the result of their efforts and experimentation. (Author/RK)

  1. Soft Decision Analyzer and Method

    NASA Technical Reports Server (NTRS)

    Steele, Glen F. (Inventor); Lansdowne, Chatwin (Inventor); Zucha, Joan P. (Inventor); Schlesinger, Adam M. (Inventor)

    2015-01-01

    A soft decision analyzer system is operable to interconnect soft decision communication equipment and analyze the operation thereof to detect symbol wise alignment between a test data stream and a reference data stream in a variety of operating conditions.

  2. Bounding the elliptic Mahler measure

    NASA Astrophysics Data System (ADS)

    Pinner, Christopher

    1998-11-01

    We give a simple inequality relating the elliptic Mahler measure of a polynomial to the traditional Mahler measure (via the length of the polynomial). These bounds are essentially sharp. We also give the corresponding result for polynomials in several variables.

  3. Teaching Soft Skills Employers Need

    ERIC Educational Resources Information Center

    Ellis, Maureen; Kisling, Eric; Hackworth, Robbie G.

    2014-01-01

    This study identifies the soft skills community colleges teach in an office technology course and determines whether the skills taught are congruent with the soft skills employers require in today's entry-level office work. A qualitative content analysis of a community college office technology soft skills course was performed using 23 soft…

  4. Soft computing and fuzzy logic

    SciTech Connect

    Zadeh, L.A.

    1994-12-31

    Soft computing is a collection of methodologies that aim to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness, and low solution cost. Its principal constituents are fuzzy logic, neuro-computing, and probabilistic reasoning. Soft computing is likely to play an increasingly important role in many application areas, including software engineering. The role model for soft computing is the human mind.

  5. Soft-sediment mullions

    NASA Astrophysics Data System (ADS)

    Ortner, Hugo

    2015-04-01

    In this contribution I describe the appearance, formation and significance of soft-sediment mullions. I use several examples from synorogenic turbidites of the Alps and the Pyrenees to show their appearance in the field. Soft-sediment mullions are elongate, slightly irregular bulges at the base of coarse-grained clastic beds (sand to conglomerate), separated by narrow, elongate flames of fine-grained material (mud) protruding into the coarse-grained bed. Various processes may lead to the formation of such structures: (1) longitudinal furrows parallel to the sediment transport direction may form by spiral motion in flow rolls during sediment transport (Dzulinski, 1966; Dzulinski & Simpson, 1966). (2) Loading combined with downslope movement can produce elongate structures parallelling the dowslope direction (Anketell et al., 1970). (3) Soft-sediment mullions are oriented perpendicular or oblique to the downslope direction, and show evidence of bedding-parallel shortening. Thus, they resemble cuspate-lobate folds or mullions, which are well-known in ductile structural geology (e.g. Urai et al., 2001). Soft-sediment mullions have been observed in two cases: Either bedding-parallel shortening can be achieved by slump processes, or by active tectonic shortening. Slumping is characterized by an alternation of stretching and shortening (e.g. Ortner, 2007; Alsop & Marco 2014), and therefore mullions do overprint or are overprinted by normal faults. In active depositional systems that are subject to tectonic shortening growth strata will form, but sediments already deposited will be shortened during lithification. In some cases, the formation of soft-sediment mullions predates folding, but the most widespread expression of syn-lithification shortening seems to be soft-sediment mullions, that form in the inner arcs of fold hinges. In the examples documented so far, the size of soft-sediment mullions is dependent on the grain-size of the coarse-grained layer, in which the

  6. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed. PMID:26643022

  7. Hypoelastic Soft Tissues

    PubMed Central

    Freed, Alan D.; Einstein, Daniel R.; Sacks, Michael S.

    2010-01-01

    In Part I, a novel hypoelastic framework for soft-tissues was presented. One of the hallmarks of this new theory is that the well-known exponential behavior of soft-tissues arises consistently and spontaneously from the integration of a rate based formulation. In Part II, we examine the application of this framework to the problem of biaxial kinematics, which are common in experimental soft-tissue characterization. We confine our attention to an isotropic formulation in order to highlight the distinction between non-linearity and anisotropy. In order to provide a sound foundation for the membrane extension of our earlier hypoelastic framework, the kinematics and kinetics of in-plane biaxial extension are revisited, and some enhancements are provided. Specifically, the conventional stress-to-traction mapping for this boundary value problem is shown to violate the conservation of angular momentum. In response, we provide a corrected mapping. In addition, a novel means for applying loads to in-plane biaxial experiments is proposed. An isotropic, isochoric, hypoelastic, constitutive model is applied to an in-plane biaxial experiment done on glutaraldehyde treated bovine pericardium. The experiment is comprised of eight protocols that radially probe the biaxial plane. Considering its simplicity (two adjustable parameters) the model does a reasonably good job of describing the non-linear normal responses observed in these experimental data, which are more prevalent than are the anisotropic responses exhibited by this tissue. PMID:21394222

  8. Bound polarons in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Woggon, U.; Miller, D.; Kalina, F.; Gerlach, B.; Kayser, D.; Leonardi, K.; Hommel, D.

    2003-01-01

    Bound polarons are discrete, confined electronic states, spatially localized due to a local potential V(r) but sharing a common phonon state of the surrounding crystal. We study the energy states of polarons bound in a potential and determine the local optical absorption spectrum up to first-order time-dependent perturbation theory with respect to the electron-photon interaction. The model is applied to describe the optical properties of submonolayer CdSe insertions epitaxially grown between ZnSe layers. As a typical signature of bound polarons we found excited-state energies equidistantly separated by the LO phonon energy and with optical transition probabilities determined by the anisotropies in V(r).

  9. Unitarity bound for gluon shadowing

    SciTech Connect

    Kopeliovich, B. Z.; Levin, E.; Potashnikova, I. K.; Schmidt, Ivan

    2009-06-15

    Although at small Bjorken x gluons originated from different nucleons in a nucleus overlap in the longitudinal direction, most of them are still well separated in the transverse plane and therefore cannot fuse. For this reason the gluon density in nuclei cannot drop at small x below a certain bottom bound, which we evaluated in a model independent manner assuming the maximal strength of gluon fusion. We also calculated gluon shadowing in the saturated regime using the Balitsky-Kovchegov equation and found the nuclear ratio to be well above the unitarity bound. The recently updated analysis of parton distributions in nuclei, including BNL Relativistic Heavy Ion Collider (RHIC) data on high-p{sub T} hadron production at forward rapidities, led to strong gluon shadowing. Such strong shadowing and therefore the interpretation of the nuclear modification of the p{sub T} spectra in dA collisions at RHIC seem to be inconsistent with this unitarity bound.

  10. Bounds for nonlocality distillation protocols

    SciTech Connect

    Forster, Manuel

    2011-06-15

    Nonlocality can be quantified by the violation of a Bell inequality. Since this violation may be amplified by local operations, an alternative measure has been proposed--distillable nonlocality. The alternative measure is difficult to calculate exactly due to the double exponential growth of the parameter space. In this paper, we give a way to bound the distillable nonlocality of a resource by the solutions to a related optimization problem. Our upper bounds are exponentially easier to compute than the exact value and are shown to be meaningful in general and tight in some cases.

  11. Hard and Soft Constraints in Reliability-Based Design Optimization

    NASA Technical Reports Server (NTRS)

    Crespo, L.uis G.; Giesy, Daniel P.; Kenny, Sean P.

    2006-01-01

    This paper proposes a framework for the analysis and design optimization of models subject to parametric uncertainty where design requirements in the form of inequality constraints are present. Emphasis is given to uncertainty models prescribed by norm bounded perturbations from a nominal parameter value and by sets of componentwise bounded uncertain variables. These models, which often arise in engineering problems, allow for a sharp mathematical manipulation. Constraints can be implemented in the hard sense, i.e., constraints must be satisfied for all parameter realizations in the uncertainty model, and in the soft sense, i.e., constraints can be violated by some realizations of the uncertain parameter. In regard to hard constraints, this methodology allows (i) to determine if a hard constraint can be satisfied for a given uncertainty model and constraint structure, (ii) to generate conclusive, formally verifiable reliability assessments that allow for unprejudiced comparisons of competing design alternatives and (iii) to identify the critical combination of uncertain parameters leading to constraint violations. In regard to soft constraints, the methodology allows the designer (i) to use probabilistic uncertainty models, (ii) to calculate upper bounds to the probability of constraint violation, and (iii) to efficiently estimate failure probabilities via a hybrid method. This method integrates the upper bounds, for which closed form expressions are derived, along with conditional sampling. In addition, an l(sub infinity) formulation for the efficient manipulation of hyper-rectangular sets is also proposed.

  12. Loosely-Bound Diatomic Molecules.

    ERIC Educational Resources Information Center

    Balfour, W. J.

    1979-01-01

    Discusses concept of covalent bonding as related to homonuclear diatomic molecules. Article draws attention to the existence of bound rare gas and alkaline earth diatomic molecules. Summarizes their molecular parameters and offers spectroscopic data. Strength and variation with distance of interatomic attractive forces is given. (Author/SA)

  13. Teacher Education in Outward Bound.

    ERIC Educational Resources Information Center

    Robinson, Richard A.

    A series of Outward Bound programs and experiences was planned for El Paso County, Colorado, school teachers to increase their awareness of their personal characteristics, especially those that might enhance learning on the part of their students. Part of the planning for the program involved a survey of county high school teachers, counselors,…

  14. Wronskian Method for Bound States

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2011-01-01

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…

  15. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  16. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  17. Topological modes bound to dislocations in mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Paulose, Jayson; Chen, Bryan Gin-Ge; Vitelli, Vincenzo

    2015-02-01

    Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable vibrational properties, that originate in the geometry of their unit cell. Often at the heart of such unusual behaviour is a soft mode: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, soft modes become the building blocks of robots and smart materials. Here, we demonstrate the existence of topological soft modes that can be positioned at desired locations in a metamaterial while being robust against a wide range of structural deformations or changes in material parameters. These protected modes, localized at dislocations in deformed kagome and square lattices, are the mechanical analogue of topological states bound to defects in electronic systems. We create physical realizations of the topological modes in prototypes of kagome lattices built out of rigid triangular plates. We show mathematically that they originate from the interplay between two Berry phases: the Burgers vector of the dislocation and the topological polarization of the lattice. Our work paves the way towards engineering topologically protected nanomechanical structures for molecular robotics or information storage and read-out.

  18. Soft RPV through the baryon portal

    NASA Astrophysics Data System (ADS)

    Krnjaic, Gordan; Tsai, Yuhsin

    2014-03-01

    Supersymmetric (SUSY) models with R-parity generically predict sparticle decays with invisible neutralinos, which yield distinctive missing energy events at colliders. Since most LHC searches are designed with this expectation, the putative bounds on sparticle masses become considerably weaker if R-parity is violated so that squarks and gluinos decay to jets with large QCD backgrounds. Here we introduce a scenario in which baryonic R-parity violation (RPV) arises effectively from soft SUSY breaking interactions, but leptonic RPV remains accidentally forbidden to evade constraints from proton decay and FCNCs. The model features a global R-symmetry that initially forbids RPV interactions, a hidden R-breaking sector, and a heavy mediator that communicates this breaking to the visible sector. After R-symmetry breaking, the mediator is integrated out and an effective RPV A-term arises at tree level; RPV couplings between quarks and squarks arise only at loop level and receive additional suppression. Although this mediator must be heavy compared to soft masses, the model introduces no new hierarchy since viable RPV can arise when the mediator mass is near the SUSY breaking scale. In generic regions of parameter space, a light thermally-produced gravitino is stable and can be a viable dark matter candidate.

  19. Modeling Soft Matter

    NASA Astrophysics Data System (ADS)

    Kremer, Kurt

    Soft matter science or soft materials science is a relatively new term for the science of a huge class of rather different materials such as colloids, polymers (of synthetic or biological origin), membranes, complex molecular assemblies, complex fluids, etc. and combinations thereof. While many of these systems are contained in or are even the essential part of everyday products ("simple" plastics such as yoghurt cups, plastic bags, CDs, many car parts; gels and networks such as rubber, many low fat foods, "gummi" bears; colloidal systems such as milk, mayonnaise, paints, almost all cosmetics or body care products, the border lines between the different applications and systems are of course not sharp) or as biological molecules or assemblies (DNA, proteins, membranes and cytoskeleton, etc.) are central to our existence, others are basic ingredients of current and future high tech products (polymers with specific optical or electronic properties, conducting macromolecules, functional materials). Though the motivation is different in life science rather than in materials science biomolecular simulations, the basic structure of the problems faced in the two fields is very similar.

  20. Deployable Soft Composite Structures.

    PubMed

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  1. Deployable Soft Composite Structures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-02-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.

  2. Deployable Soft Composite Structures

    PubMed Central

    Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon

    2016-01-01

    Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762

  3. Transversely bounded DFB lasers. [bounded distributed-feedback lasers

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Evans, G.; Yeh, C.

    1975-01-01

    Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.

  4. Tactual discrimination of softness.

    PubMed

    Srinivasan, M A; LaMotte, R H

    1995-01-01

    1. We investigated the ability of humans to tactually discriminate the softness of objects, using novel elastic objects with deformable and rigid surfaces. For objects with deformable surfaces, we cast transparent rubber specimens with variable compliances. For objects with rigid surfaces ("spring cells") we fabricated telescoping hollow cylinders with the inner cylinder supported by several springs. To measure the human discriminability and to isolate the associated information-processing mechanisms, we performed psychophysical experiments under three conditions: 1) active touch with the normal finger, where both tactile and kinesthetic information was available to the subject: 2) active touch with local cutaneous anesthesia, so that only kinesthetic information was available; and 3) passive touch, where a computer-controlled mechanical stimulator brought down the compliant specimens onto the passive fingerpad of the subject, who therefore had only tactile information. 2. We first characterized the mechanical behavior of the human fingerpad and the test objects by determining the relationship between the depth and force of indentation during constant-velocity indentations by a rigid probe. The fingerpad exhibited a pronounced nonlinear behavior in the indentation depth versus force trace such that compliance, as indicated by the local slope of the trace, decreased with increases in indentation depth. The traces for all the rubber specimens were approximately linear, indicating a constant but distinct value of compliance for each specimen. The fingerpad was more compliant than each of the rubber specimens. 3. All the human subjects showed excellent softness discriminability in ranking the rubber specimens by active touch, and the subjective perception of softness correlated one-to-one with the objectively measured compliance. The ability of subjects to discriminate the compliance of spring cells was consistently poorer compared with that of the rubber specimens. 4

  5. Modifications of the Griesmer bound

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Solomon, G.

    1991-01-01

    The Griesmer bound is a classical technique (developed in 1960) for estimating the minimum length n required for a binary linear code with a given dimension k and minimum distance d. In this article, a unified derivation of the Griesmer bound and two new variations on it are presented. The first variation deals with linear codes which contain the all-ones vector; such codes are quite common and are useful in practice because of their 'transparent' properties. The second variation deals with codes that are constrained to contain a word of weight greater than or equal to M. In both cases these constraints (the all-ones word or a word of high weight) can increase the minimum length of a code with given k and d.

  6. Semiclassical bounds in magnetic bottles

    NASA Astrophysics Data System (ADS)

    Barseghyan, Diana; Exner, Pavel; Kovařík, Hynek; Weidl, Timo

    2016-02-01

    The aim of the paper is to derive spectral estimates into several classes of magnetic systems. They include three-dimensional regions with Dirichlet boundary as well as a particle in ℝ3 confined by a local change of the magnetic field. We establish two-dimensional Berezin-Li-Yau and Lieb-Thirring-type bounds in the presence of magnetic fields and, using them, get three-dimensional estimates for the eigenvalue moments of the corresponding magnetic Laplacians.

  7. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math Science... Upward Bound Math Science Annual Performance Report. OMB Control Number: 1840-NEW. Type of Review: New... under the regular Upward Bound (UB) and Upward Bound Math and Science (UBMS) Programs. The Department...

  8. Hunting η-bound nuclei

    NASA Astrophysics Data System (ADS)

    Machner, H.

    2010-09-01

    The η meson can be bound to atomic nuclei. Experimental search is discussed in the form of final state interaction for the reactions dp → 3Heη and dd → 4Heη. For the latter case tensor polarized deuterons were used in order to extract the s-wave strength. For both reactions complex scattering lengths are deduced: a3Heη = [± (10.7 ± 0.8+0.1-0.5) + i. (1.5 ± 2.6 +1.0-0.9)] fm and a4Heη = [±(3.1 ±0.5) + i. (0 ±0.5)] fm. In a two-nucleon transfer reaction under quasi-free conditions, p27 Al → 3HeX, was investigated. The system X can be the bound 25Mgotimesη at rest. When a possible decay of an intermediate N* (1535) is required, a highly significant bump shows up in the missing mass spectrum. The data give for a bound state a binding energy of 13.3 ±1.6 MeV and a width of σ = 4.4±1.3 MeV.

  9. Not-so-Soft Skills

    ERIC Educational Resources Information Center

    Curran, Mary

    2010-01-01

    Much recent discussion about the skills needed to secure Britain's economic recovery has focused on skills for employability. However, too often, these fundamental skills are understood in narrow functional or vocational terms. So-called "soft skills", what Penelope Tobin, in her 2008 paper "Soft Skills: the hard facts", terms "traits and…

  10. Packings of soft disks

    NASA Astrophysics Data System (ADS)

    Ziherl, Primoz; Vidmar, Marija

    2011-03-01

    We explore the stability of 2D ordered structures formed by soft disks treated as isotropic solid bodies. Using a variational model, we compute the equilibrium shapes and the elastic energy of disks in regular columnar, honeycomb, square, and hexagonal lattice. The results reproduce the Hertzian interaction in the regime of small deformations. The phase diagram of elastic disks is characterized by broad regions of phase coexistence; its main feature is that the coordination number of the stable phases decreases with density. These results may provide an insight into structure of the non-close-packed lattices observed in certain nanocolloidal systems. This work was supported by Slovenian Research Agency (grant No. P1-0055) and by EU through ITN COMPLOIDS (grant FP7-People-ITN-2008 No. 234810).

  11. Soft Systems Methodology

    NASA Astrophysics Data System (ADS)

    Checkland, Peter; Poulter, John

    Soft systems methodology (SSM) is an approach for tackling problematical, messy situations of all kinds. It is an action-oriented process of inquiry into problematic situations in which users learn their way from finding out about the situation, to taking action to improve it. The learning emerges via an organised process in which the situation is explored using a set of models of purposeful action (each built to encapsulate a single worldview) as intellectual devices, or tools, to inform and structure discussion about a situation and how it might be improved. This paper, written by the original developer Peter Checkland and practitioner John Poulter, gives a clear and concise account of the approach that covers SSM's specific techniques, the learning cycle process of the methodology and the craft skills which practitioners develop. This concise but theoretically robust account nevertheless includes the fundamental concepts, techniques, core tenets described through a wide range of settings.

  12. New double soft emission theorems

    NASA Astrophysics Data System (ADS)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2015-09-01

    We study the behavior of the tree-level S-matrix of a variety of theories as two particles become soft. By analogy with the recently found subleading soft theorems for gravitons and gluons, we explore subleading terms in double soft emissions. We first consider double soft scalar emissions and find subleading terms that are controlled by the angular momentum operator acting on hard particles. The order of the subleading theorems depends on the presence or not of color structures. Next we obtain a compact formula for the leading term in a double soft photon emission. The theories studied are a special Galileon, Dirac-Born-Infeld, Einstein-Maxwell-Scalar, nonlinear sigma model and Yang-Mills-Scalar. We use the recently found Cachazo-He-Yuan representation of these theories in order to give a simple proof of the leading order part of all these theorems.

  13. Language as "Soft Power" in Bilateral Relations: The Case of Indonesian Language in Australia

    ERIC Educational Resources Information Center

    Hill, David T.

    2016-01-01

    Since Joseph Nye introduced the concept of "Soft power" in his 1991 book, "Bound to Lead: The Changing Nature of American Power", analysts have discussed states' efforts to exercise their influence by attracting and co-opting rather than coercing or using force. This paper will examine enrolments trends in Indonesian language…

  14. Drugs Approved for Soft Tissue Sarcoma

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Soft Tissue Sarcoma This page lists ... soft tissue sarcoma that are not listed here. Drugs Approved for Soft Tissue Sarcoma Cosmegen (Dactinomycin) Dactinomycin ...

  15. Lower bounds for randomized Exclusive Write PRAMs

    SciTech Connect

    MacKenzie, P.D.

    1995-05-02

    In this paper we study the question: How useful is randomization in speeding up Exclusive Write PRAM computations? Our results give further evidence that randomization is of limited use in these types of computations. First we examine a compaction problem on both the CREW and EREW PRAM models, and we present randomized lower bounds which match the best deterministic lower bounds known. (For the CREW PRAM model, the lower bound is asymptotically optimal.) These are the first non-trivial randomized lower bounds known for the compaction problem on these models. We show that our lower bounds also apply to the problem of approximate compaction. Next we examine the problem of computing boolean functions on the CREW PRAM model, and we present a randomized lower bound, which improves on the previous best randomized lower bound for many boolean functions, including the OR function. (The previous lower bounds for these functions were asymptotically optimal, but we improve the constant multiplicative factor.) We also give an alternate proof for the randomized lower bound on PARITY, which was already optimal to within a constant additive factor. Lastly, we give a randomized lower bound for integer merging on an EREW PRAM which matches the best deterministic lower bound known. In all our proofs, we use the Random Adversary method, which has previously only been used for proving lower bounds on models with Concurrent Write capabilities. Thus this paper also serves to illustrate the power and generality of this method for proving parallel randomized lower bounds.

  16. Metal speciation dynamics in monodisperse soft colloidal ligand suspensions.

    PubMed

    Duval, Jérôme F L; Pinheiro, José P; van Leeuwen, Herman P

    2008-08-01

    A comprehensive theory is presented for the dynamics of metal speciation in monodisperse suspensions of soft spherical particles characterized by a hard core and an ion-permeable shell layer where ligands L are localized. The heterogeneity in the binding site distribution leads to complex formation/dissociation rate constants (denoted as k a (*) and k d (*), respectively) that may substantially differ from their homogeneous solution counterparts (k a and k d). The peculiarities of metal speciation dynamics in soft colloidal ligand dispersions result from the coupling between diffusive transport of free-metal ions M within and around the soft surface layer and the kinetics of ML complex formation/dissociation within the shell component of the particle. The relationship between k a,d (*) and k a,d is derived from the numerical evaluation of the spatial, time-dependent distributions of free and bound metal. For that purpose, the corresponding diffusion equations corrected by the appropriate chemical source term are solved in spherical geometry using a Kuwabara-cell-type representation where the intercellular distance is determined by the volume fraction of soft particles. The numerical study is supported by analytical approaches valid in the short time domain. For dilute dispersions of soft ligand particles, it is shown that the balance between free-metal diffusion within and outside of the shell and the kinetic conversion of M into ML within the particular soft surface layer rapidly establishes a quasi-steady-state regime. For sufficiently long time, chemical equilibrium between the free and bound metal is reached within the reactive particle layer, which corresponds to the true steady-state regime for the system investigated. The analysis reported covers the limiting cases of rigid particles where binding sites are located at the very surface of the particle core (e.g., functionalized latex colloids) and polymeric particles that are devoid of a hard core (e

  17. Soft Hair on Black Holes

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  18. Growing and evolving soft robots.

    PubMed

    Rieffel, John; Knox, Davis; Smith, Schuyler; Trimmer, Barry

    2014-01-01

    Completely soft and flexible robots offer to revolutionize fields ranging from search and rescue to endoscopic surgery. One of the outstanding challenges in this burgeoning field is the chicken-and-egg problem of body-brain design: Development of locomotion requires the preexistence of a locomotion-capable body, and development of a location-capable body requires the preexistence of a locomotive gait. This problem is compounded by the high degree of coupling between the material properties of a soft body (such as stiffness or damping coefficients) and the effectiveness of a gait. This article synthesizes four years of research into soft robotics, in particular describing three approaches to the co-discovery of soft robot morphology and control. In the first, muscle placement and firing patterns are coevolved for a fixed body shape with fixed material properties. In the second, the material properties of a simulated soft body coevolve alongside locomotive gaits, with body shape and muscle placement fixed. In the third, a developmental encoding is used to scalably grow elaborate soft body shapes from a small seed structure. Considerations of the simulation time and the challenges of physically implementing soft robots in the real world are discussed. PMID:23373976

  19. Soft Hair on Black Holes.

    PubMed

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. PMID:27341223

  20. Soft Decision Analyzer

    NASA Technical Reports Server (NTRS)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the

  1. Entropy bounds and dark energy

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D. H.

    2004-07-01

    Entropy bounds render quantum corrections to the cosmological constant Λ finite. Under certain assumptions, the natural value of Λ is of order the observed dark energy density ~10-10 eV4, thereby resolving the cosmological constant problem. We note that the dark energy equation of state in these scenarios is w≡p/ρ=0 over cosmological distances, and is strongly disfavored by observational data. Alternatively, Λ in these scenarios might account for the diffuse dark matter component of the cosmological energy density. Permanent address: Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403.

  2. Bound potassium in muscle II.

    PubMed

    Hummel, Z

    1980-01-01

    Experiments were performed to decide between the alternatives a) the ionized K+ is in a dissolved state in the muscle water, or b) a part of the muscle potassium is in a "bound' state. Sartorius muscles of Rana esculenta were put into glicerol for about one hour at 0-2 degrees C. Most of muscle water came out, but most of muscle potassium remained in the muscles. In contrast to this: from muscle in heat rigor more potassium was released due to glicerol treating than from the intact ones. 1. Supposition a) is experimentally refuted. 2. Supposition b) corresponds to the experimental results. PMID:6969511

  3. Soft magnetic wires

    NASA Astrophysics Data System (ADS)

    Vázquez, M.

    2001-06-01

    An overview of the present state of the art on the preparation techniques, outstanding magnetic properties and applications of soft magnetic micro and nanowires is presented. Rapid solidification techniques (in-rotating-water quenching and drawing methods) to fabricate amorphous microwires with diameter in the range from 100 down to 1 μm are first described. Electrodeposition is also employed to prepare composite microtubes (magnetic coatings) and to fill porous membranes (diameter of the order of 0.1 μm). Magnetic behaviours of interest are related to the different hysteresis loops of samples: square-shaped loops typical of bistable behaviour, and nearly non-hysteretic loop with well-defined transverse anisotropy field. The role played by magnetic dipolar interactions in the magnetic behaviour of arrays of micro and nanowires is described. A particular analysis is done on the giant magnetoimpedance (GMI) effect in the radio and microwave frequency ranges exhibited by ultrasoft microwires. Finally, a few examples of applications are introduced for magnetostrictive and non-magnetostrictive wires, they are: “magnetoelastic pens”, micromotors; DC current-sensors based on GMI, and sharpened amorphous wire tips in spin polarised scanning tunneling microscopy.

  4. Soft tissue angiosarcomas

    SciTech Connect

    Morales, P.H.; Lindberg, R.D.; Barkley, H.T.

    1981-12-01

    From 1949 to 1979, 12 patients with soft tissue angiosarcoma received radiotherapy (alone or in combination with other modalities of treatment) with curative intent at The University of Texas M.D. Anderson Hospital and Tumor Institute. The primary site was the head and neck in six patients (scalp, four; maxillary antrum, one; and oral tongue, one), the breast in four patients, and the thigh in two patients. All four patients with angiosarcoma of the scalp had advanced multifocal tumors, and two of them had clinically positive neck nodes. None of these tumors were controlled locally, and local recurrences occurred within and/or at a distance from the generous fields of irradiation. The remaining two patients with head and neck lesions had their disease controlled by surgery and postoperative irradiation. Three of the four angiosarcomas of the breast were primary cases which were treated by a combination of surgery (excisional biopsy, simple mastectomy, radical mastectomy) and postoperative irradiation. One patient also received adjuvant chemotherapy. The fourth patient was treated for scar recurrence after radical mastectomy. All four patients had their disease locally controlled, and two of them have survived over 5 years. The two patients with angiosarcoma of the thigh were treated by conservative surgical excision and postoperative irradiation. One patient had her disease controlled; the other had a local recurrence requiring hip disarticulation and subsequent hemipelvectomy for salvage.

  5. Consistent Tolerance Bounds for Statistical Distributions

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1983-01-01

    Assumption that sample comes from population with particular distribution is made with confidence C if data lie between certain bounds. These "confidence bounds" depend on C and assumption about distribution of sampling errors around regression line. Graphical test criteria using tolerance bounds are applied in industry where statistical analysis influences product development and use. Applied to evaluate equipment life.

  6. Lower bound of concurrence for qubit systems

    NASA Astrophysics Data System (ADS)

    Zhu, Xue-Na; Fei, Shao-Ming

    2013-11-01

    We study the concurrence of four-qubit quantum states and provide analytical lower bounds of concurrence in terms of the monogamy inequality of concurrence for qubit systems. It is shown that these lower bounds are able to improve the existing bounds and detect entanglement better. The approach is generalized to arbitrary qubit systems.

  7. Resonant Soft X-ray Scattering for Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Young, Athony; Hexemer, Alexander; Padmore, Howard

    2015-03-01

    Over the past a few years, we have developed Resonant Soft X-ray Scattering (RSoXS) and constructed the first dedicated resonant soft x-ray scattering beamline at the Advanced Light Source, LBNL. RSoXS combines soft x-ray spectroscopy with x-ray scattering thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Its unique chemical sensitivity, large accessible size scale, molecular bond orientation sensitivity with polarized x-rays and high coherence have shown great potential for chemical/morphological structure characterization for many classes of materials. Some recent development of in-situ soft x-ray scattering with in-vacuum sample environment will be discussed. In order to study sciences in naturally occurring conditions, we need to overcome the sample limitations set by the low penetration depth of soft x-rays and requirement of high vacuum. Adapting to the evolving environmental cell designs utilized increasingly in the Electron Microscopy community, customized designed liquid/gas environmental cells will enable soft x-ray scattering experiments on biological, electro-chemical, self-assembly, and hierarchical functional systems in both static and dynamic fashion. Recent RSoXS results on organic electronics, block copolymer thin films, and membrane structure will be presented.

  8. Endurance bounds of aerial systems

    NASA Astrophysics Data System (ADS)

    Harrington, Aaron M.; Kroninger, Christopher M.

    2014-06-01

    Within the past few years micro aerial vehicles (MAVs) have received much more attention and are starting to proliferate into military as well as civilian roles. However, one of the major drawbacks for this technology currently, has been their poor endurance, usually below 10 minutes. This is a direct result of the inefficiencies inherent in their design. Often times, designers do not consider the various components in the vehicle design and match their performance to the desired mission for the vehicle. These vehicles lack a prescribed set of design guidelines or empirically derived design equations which often limits their design to selection of commercial off-the-shelf components without proper consideration of their affect on vehicle performance. In the current study, the design space for different vehicle configurations has been examined including insect flapping, avian flapping, rotary wing, and fixed wing, and their performance bounds are established. The propulsion system typical of a rotary wing vehicle is analyzed to establish current baselines for efficiency of vehicles at this scale. The power draw from communications is analyzed to determine its impact on vehicle performance. Finally, a representative fixed wing MAV is examined and the effects of adaptive structures as a means for increasing vehicle endurance and range are examined. This paper seeks to establish the performance bounds for micro air vehicles and establish a path forward for future designs so that efficiency may be maximized.

  9. Quantum correlations beyond Tsirelson's bound

    NASA Astrophysics Data System (ADS)

    Berry, Dominic; Ringbauer, Martin; Fedrizzi, Alessandro; White, Andrew

    2014-03-01

    Violations of Bell inequalities show that there are correlations that cannot explained by any classical theory. Further violation, beyond Tsirelson's bound, shows that there are correlations that are not explained by quantum mechanics. Such super-quantum correlations would enable violation of information causality, where communication of one bit provides more than one bit of information [Nature 461, 1101 (2009)]. An unavoidable feature of all realistic Bell inequality experiments is loss. If one postselects on successful measurements, unentangled states can violate Bell inequalities. On the other hand, loss can be used to enhance the violation of Bell inequalities for entangled states. This can improve the ability to distinguish between entangled and unentangled states, despite loss. Here we report an optical experiment providing maximal violation of the CHSH-Bell inequality with entangled states. Due to loss and postselection, Tsirelson's bound is also violated. This enables us to more easily distinguish between entangled and unentangled states. In addition, it provides violation of information causality for the postselected data.

  10. Cardinality bounds for triangulations with bounded minimum angle

    SciTech Connect

    Mitchell, S.A.

    1994-05-01

    We consider bounding the cardinality of an arbitrary triangulation with smallest angle {alpha}. We show that if the local feature size (i.e. distance between disjoint vertices or edges) of the triangulation is within a constant factor of the local feature size of the input, then N < O(1/{alpha})M, where N is the cardinality of the triangulation and M is the cardinality of any other triangulation with smallest angle at least {alpha}. Previous results had an O(1/{alpha}{sup 1/{alpha}}) dependence. Our O(1/{alpha}) dependence is tight for input with a large length to height ratio, in which triangles may be oriented along the long dimension.

  11. Bounds of the bit error probability of a linear cyclic code over GF(2 exp l) and its extended code

    NASA Technical Reports Server (NTRS)

    Cheng, Unjeng; Huth, Gaylord K.

    1988-01-01

    An upper bound on the bit-error probability (BEP) of a linear cyclic code over GF(2 exp l) with hard-decision (HD) maximum-likelihood (ML) decoding on memoryless symmetric channels is derived. Performance results are presented for Reed-Solomon codes on GF(32), GF(64), and GF(128). Also, a union upper bound on the BEP of a linear cyclic code with either HD or soft-decision (SD) ML decoding is developed, as well as the corresponding bounds for the extended code of a linear cyclic code. Using these bounds, which are tight at low bit error rate, the performance advantage of SD and HD ML over bounded-distance decoding is established.

  12. Cytodiagnosis of soft tissue tumors.

    PubMed

    Oland, J; Rosen, A; Reif, R; Sayfan, J; Orda, R

    1988-03-01

    The only acceptable definitive diagnosis of a soft tissue mass is histologic or cytologic examination. In recent years, fine-needle aspiration cytology is used in more and more centers for diagnosis of soft tissue masses. We studied 196 aspiration cytologies performed on soft tissue lesions. Out of these, in 48 cases a definitive surgical procedure or open biopsy for histology and further evaluation were performed. There were 25 sarcomas and 23 benign tumors. There was one false negative cytologic result in this group; no false positive cytologies were detected. It seems that cytodiagnosis of soft tissue masses performed by an experienced pathologist is the method of choice, permitting a good diagnostic evaluation, with almost none of the traumatic and oncologic disadvantages of the other methods of biopsy. PMID:3352270

  13. Recursion relations from soft theorems

    NASA Astrophysics Data System (ADS)

    Luo, Hui; Wen, Congkao

    2016-03-01

    We establish a set of new on-shell recursion relations for amplitudes satisfying soft theorems. The recursion relations can apply to those amplitudes whose additional physical inputs from soft theorems are enough to overcome the bad large- z behaviour. This work is a generalization of the recursion relations recently obtained by Cheung et al. for amplitudes in scalar effective field theories with enhanced vanishing soft behaviours, which can be regarded as a special case of those with non-vanishing soft limits. We apply the recursion relations to tree-level amplitudes in various theories, including amplitudes in the Akulov-Volkov theory and amplitudes containing dilatons of spontaneously-broken conformal symmetry.

  14. Softness Correlations Across Length Scales

    NASA Astrophysics Data System (ADS)

    Ivancic, Robert; Shavit, Amit; Rieser, Jennifer; Schoenholz, Samuel; Cubuk, Ekin; Durian, Douglas; Liu, Andrea; Riggleman, Robert

    In disordered systems, it is believed that mechanical failure begins with localized particle rearrangements. Recently, a machine learning method has been introduced to identify how likely a particle is to rearrange given its local structural environment, quantified by softness. We calculate the softness of particles in simulations of atomic Lennard-Jones mixtures, molecular Lennard-Jones oligomers, colloidal systems and granular systems. In each case, we find that the length scale characterizing spatial correlations of softness is approximately a particle diameter. These results provide a rationale for why localized rearrangements--whose size is presumably set by the scale of softness correlations--might occur in disordered systems across many length scales. Supported by DOE DE-FG02-05ER46199.

  15. A soft and dexterous motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Tse, Tony Chun Hin; Inamura, Tokushu; O'Brien, Benjamin M.; McKay, Thomas; Gisby, Todd

    2011-03-01

    We present a soft, bearing-free artificial muscle motor that cannot only turn a shaft but also grip and reposition it through a flexible gear. The bearing-free operation provides a foundation for low complexity soft machines, with multiple degree-of-freedom actuation, that can act simultaneously as motors and manipulators. The mechanism also enables an artificial muscle controlled gear change. Future work will include self-sensing feedback for precision, multidegree-of-freedom operation.

  16. Soft systems, hard lessons.

    PubMed

    Kirwan, B

    2000-12-01

    This paper is concerned with practical experiences of achieving human factors and safety interventions in the nuclear power and process control industries. It rests upon the premise that, although human factors (HF) and safety may be technological in approach, they nevertheless must operate in a socio-technical environment, within companies with corporate structures and cultures, interacting with regulatory authorities. A crucial ingredient to the successful implementation and integration of human factors into company practices and procedures is therefore the nature of the inter-relationships between human factors personnel and those who control the existing procedures determining all aspects of the design and operational processes. Such inter-relationships can largely determine whether HF is implemented or not. These human-human interactions and interfaces in a socio-technical system may be referred to as soft systems. When training in human factors, much of the training is concerned with technical aspects of the discipline. However, when entering industry or consultancy, one quickly discovers that technical aspects are usually the least of one's problems. This paper is concerned with experiences and guidance to better help the human factors professional starting out in industry. There is little scientific method in the paper. It is, instead, a distillation of this author's and others' experiences in acting either as a practitioner or consultant, or as leader of a human factors unit in industries that have at times been reluctant or even hostile about the perceived 'invasion' of human factors. However, to avoid being purely anecdotal, the experiences are placed in a framework concerned with the life cycle of integrating human factors into an industry, from being the first HF person in a company, to the development of a successful unit, or the absorption of a successful unit into other departments. Within this framework a range of strategic aspects are dealt with

  17. Tri-soft shell technique.

    PubMed

    Arshinoff, Steve A; Norman, Richard

    2013-08-01

    Soft-shell techniques exist for lower viscosity dispersive with higher viscosity cohesive ophthalmic viscosurgical devices (OVDs) (soft-shell technique [SST]), viscoadaptive OVDs with balanced salt solution (ultimate soft-shell technique), intraoperative floppy-iris syndrome (soft-shell bridge), and many specific modifications for disinserted zonular fibers, frayed iris strands, Fuchs endothelial dystrophy, small holes in the posterior capsule with protruding vitreous, capsular dye use, and others. Soft-shell techniques exist because it is rheologically impossible to control the surgical environment with a single OVD as well as with an ordered combination of rheologically different OVDs. Surgeons frequently confuse these techniques because of their multitude. This paper unifies all SSTs into a single improved tri-soft shell technique (TSST), from which basic specific applications to unusual circumstances are simple and intuitive. As shown with previous SSTs, the TSST allows surgeons to perform complex tasks with greater surgical facility and to protect endothelial cells better than with single OVDs. PMID:23889867

  18. Dissecting soft radiation with factorization.

    PubMed

    Stewart, Iain W; Tackmann, Frank J; Waalewijn, Wouter J

    2015-03-01

    An essential part of high-energy hadronic collisions is the soft hadronic activity that underlies the primary hard interaction. It includes soft radiation from the primary hard partons, secondary multiple parton interactions (MPI), and factorization-violating effects. The invariant mass spectrum of the leading jet in Z+jet and H+jet events is directly sensitive to these effects, and we use a QCD factorization theorem to predict its dependence on the jet radius R, jet p_{T}, jet rapidity, and partonic process for both the perturbative and nonperturbative components of primary soft radiation. We prove that the nonperturbative contributions involve only odd powers of R, and the linear R term is universal for quark and gluon jets. The hadronization model in Pythia8 agrees well with these properties. The perturbative soft initial state radiation (ISR) has a contribution that depends on the jet area in the same way as the underlying event, but this degeneracy is broken by dependence on the jet p_{T}. The size of this soft ISR contribution is proportional to the color state of the initial partons, yielding the same positive contribution for gg→Hg and gq→Zq, but a negative interference contribution for qq[over ¯]→Zg. Hence, measuring these dependencies allows one to separate hadronization, soft ISR, and MPI contributions in the data. PMID:25793802

  19. Cosmological bounds on tachyonic neutrinos

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.; Moss, Ian G.

    2012-05-01

    Recent time-of-flight measurements on muon neutrinos in the OPERA neutrino oscillation experiment have found anomalously short times compared to the light travel-times, corresponding to a superluminal velocity, v - 1 = 2.37 ± 0.32 × 10-5 in units where c = 1. We show that cosmological bounds rule out an explanation involving a Lorentz invariant tachyonic neutrino. At the OPERA energy scale, nucleosynthesis constraints imply v - 1 < 0.86 × 10-12 and the Cosmic Microwave Background observations imply v - 1 < 7.1 × 10-23. The CMB limit on the velocity of a tachyon with an energy of 10 MeV is stronger than the SN 1987A limit. Superluminal neutrinos that could conceivably be observed at particle accelerator energy scales would have to be associated with Lorentz symmetry violation.

  20. A note on bounded entropies

    NASA Astrophysics Data System (ADS)

    Amblard, Pierre-Olivier; Vignat, Christophe

    2006-06-01

    The aim of the paper is to study the link between non-additivity of some entropies and their boundedness. We propose an axiomatic construction of the entropy relying on the fact that entropy belongs to a group isomorphic to the usual additive group. This allows to show that the entropies that are additive with respect to the addition of the group for independent random variables are nonlinear transforms of the Rényi entropies, including the particular case of the Shannon entropy. As a particular example, we study as a group a bounded interval in which the addition is a generalization of the addition of velocities in special relativity. We show that Tsallis-Havrda-Charvat entropy is included in the family of entropies we define. Finally, a link is made between the approach developed in the paper and the theory of deformed logarithms.

  1. Performance Bounds of Quaternion Estimators.

    PubMed

    Xia, Yili; Jahanchahi, Cyrus; Nitta, Tohru; Mandic, Danilo P

    2015-12-01

    The quaternion widely linear (WL) estimator has been recently introduced for optimal second-order modeling of the generality of quaternion data, both second-order circular (proper) and second-order noncircular (improper). Experimental evidence exists of its performance advantage over the conventional strictly linear (SL) as well as the semi-WL (SWL) estimators for improper data. However, rigorous theoretical and practical performance bounds are still missing in the literature, yet this is crucial for the development of quaternion valued learning systems for 3-D and 4-D data. To this end, based on the orthogonality principle, we introduce a rigorous closed-form solution to quantify the degree of performance benefits, in terms of the mean square error, obtained when using the WL models. The cases when the optimal WL estimation can simplify into the SWL or the SL estimation are also discussed. PMID:25643416

  2. Evaluation of high-level bound-bound and bound-continuum hydrogenic oscillator strengths by asymptotic expansion

    NASA Astrophysics Data System (ADS)

    Omidvar, K.; McAllister, A. M.

    1995-02-01

    An asymptotic expansion due to Menzel and Pekeris [Mon. Not. R. Astron. Soc. 96, 77 (1935); reprinted in Selected Papers on Physical Processes in Ionized Plasma, edited by D. H. Menzel (Dover, New York, 1962)] has been used to give a series expansion for the bound-bound and bound-continuum oscillator strengths. For the bound-bound transitions between the initial and final principal quantum numbers n and n', and for any n and n' considered, the oscillator strength is within 0.5% accuracy of the exact values. For the bound-continuum oscillator strength, and continuum energies ɛ<=1 Ry, the accuracy is better than 1%. For n2ɛ>>1, the method of Menzel and Pekeris is inapplicable. Using an alternative method, an expansion in terms of n and ɛ is derived that gives the oscillator strength within 1% accuracy.

  3. Microfabrication using soft lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Mei

    Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be

  4. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  5. Biologically-inspired soft exosuit.

    PubMed

    Asbeck, Alan T; Dyer, Robert J; Larusson, Arnar F; Walsh, Conor J

    2013-06-01

    In this paper, we present the design and evaluation of a novel soft cable-driven exosuit that can apply forces to the body to assist walking. Unlike traditional exoskeletons which contain rigid framing elements, the soft exosuit is worn like clothing, yet can generate moments at the ankle and hip with magnitudes of 18% and 30% of those naturally generated by the body during walking, respectively. Our design uses geared motors to pull on Bowden cables connected to the suit near the ankle. The suit has the advantages over a traditional exoskeleton in that the wearer's joints are unconstrained by external rigid structures, and the worn part of the suit is extremely light, which minimizes the suit's unintentional interference with the body's natural biomechanics. However, a soft suit presents challenges related to actuation force transfer and control, since the body is compliant and cannot support large pressures comfortably. We discuss the design of the suit and actuation system, including principles by which soft suits can transfer force to the body effectively and the biological inspiration for the design. For a soft exosuit, an important design parameter is the combined effective stiffness of the suit and its interface to the wearer. We characterize the exosuit's effective stiffness, and present preliminary results from it generating assistive torques to a subject during walking. We envision such an exosuit having broad applicability for assisting healthy individuals as well as those with muscle weakness. PMID:24187272

  6. Thermodynamic law from the entanglement entropy bound

    NASA Astrophysics Data System (ADS)

    Park, Chanyong

    2016-04-01

    From black hole thermodynamics, the Bekenstein bound has been proposed as a universal thermal entropy bound. It has been further generalized to an entanglement entropy bound which is valid even in a quantum system. In a quantumly entangled system, the non-negativity of the relative entropy leads to the entanglement entropy bound. When the entanglement entropy bound is saturated, a quantum system satisfies the thermodynamicslike law with an appropriately defined entanglement temperature. We show that the saturation of the entanglement entropy bound accounts for a universal feature of the entanglement temperature proportional to the inverse of the system size. In addition, we show that the deformed modular Hamiltonian under a global quench also satisfies the generalized entanglement entropy boundary after introducing a new quantity called the entanglement chemical potential.

  7. Isocurvature bounds on axions revisited

    SciTech Connect

    Beltran, Maria; Garcia-Bellido, Juan; Lesgourgues, Julien

    2007-05-15

    The axion is one of the best motivated candidates for particle dark matter. We study and update the constraints imposed by the recent CMB and LSS experiments on the mass of axions produced by the misalignment mechanism, as a function of both the inflationary scale and the reheating temperature. Under some particular although not unconventional assumptions, the axion induces isocurvature perturbations with an amplitude too large to be compatible with observations. Specifically, for inflation taking place at intermediate energy scales, we derive some restrictive limits which can only be evaded by assuming an efficient reheating mechanism, with T{sub rh}>10{sup 11} GeV. Chaotic inflation with a quadratic potential is still compatible with the axion scenario, provided that the Peccei-Quinn scale f{sub a} is close to 10{sup 10} or 10{sup 11} GeV. Isocurvature bounds eliminate the possibility of a larger f{sub a} and a small misalignment angle. We find that isocurvature constraints on the axion scenario must be taken into account whenever the scale of inflation is above 10{sup 12} GeV; below this scale, axionic isocurvature modes are too small to be probed by current observations.

  8. A violation of the covariant entropy bound?

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali; Mathur, Samir D.

    2015-04-01

    Several arguments suggest that the entropy density at high energy density ρ should be given by the expression s =K √{ρ /G } , where K is a constant of order unity. On the other hand the covariant entropy bound requires that the entropy on a light sheet be bounded by A /4 G , where A is the area of the boundary of the sheet. We find that in a suitably chosen cosmological geometry, the above expression for s violates the covariant entropy bound. We consider different possible explanations for this fact, in particular, the possibility that entropy bounds should be defined in terms of volumes of regions rather than areas of surfaces.

  9. Bound states of heavy flavor hyperons

    NASA Astrophysics Data System (ADS)

    Frömel, F.; Juliá-Díaz, B.; Riska, D. O.

    2005-04-01

    Several realistic phenomenological nucleon-nucleon interaction models are employed to investigate the possibility of bound deuteron-like states of such heavy flavor hyperons and nucleons, for which the interaction between the light flavor quark components is expected to be the most significant interaction. The results indicate that deuteron-like bound states are likely to form between nucleons and the Ξc' and Ξ charm hyperons as well as between Ξ hyperons and double-charm hyperons. Bound states between two Σ hyperons are also likely. In the case of beauty hyperons the corresponding states are likely to be deeply bound.

  10. Bounds on Transport Coefficients of Porous Media

    SciTech Connect

    Berryman, J G

    2005-03-21

    An analytical formulation of conductivity bounds by Bergman and Milton is used in a different way to obtain rigorous bounds on the real transport coefficients (electrical conductivity, thermal conductivity, and/or fluid permeability) of a fluid-saturated porous medium. These bounds do not depend explicitly on the porosity, but rather on two formation factors--one associated with the pore space and the other with the solid frame. Hashin-Shtrikman bounds for transport in random polycrystals of porous-material laminates will also be discussed.

  11. Some Improved Nonperturbative Bounds for Fermionic Expansions

    NASA Astrophysics Data System (ADS)

    Lohmann, Martin

    2016-06-01

    We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

  12. Hard evidence on soft skills✩

    PubMed Central

    Heckman, James J.; Kautz, Tim

    2012-01-01

    This paper summarizes recent evidence on what achievement tests measure; how achievement tests relate to other measures of “cognitive ability” like IQ and grades; the important skills that achievement tests miss or mismeasure, and how much these skills matter in life. Achievement tests miss, or perhaps more accurately, do not adequately capture, soft skills—personality traits, goals, motivations, and preferences that are valued in the labor market, in school, and in many other domains. The larger message of this paper is that soft skills predict success in life, that they causally produce that success, and that programs that enhance soft skills have an important place in an effective portfolio of public policies. PMID:23559694

  13. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2004-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emit&ng hundreds of predominantly soft (kT=30 kev), short (0.1-100 ms long) events. Their quiescent source x-ray light ewes exhibit puhlions rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10^14- 10^l5 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence were obtained in 1998 for two of these sources. I will discuss here the history of Soft Gamma Repeaters, and their spectral, timing and flux characteristics both in the persistent and their burst emission.

  14. A new ChainMail approach for real-time soft tissue simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2016-07-01

    This paper presents a new ChainMail method for real-time soft tissue simulation. This method enables the use of different material properties for chain elements to accommodate various materials. Based on the ChainMail bounding region, a new time-saving scheme is developed to improve computational efficiency for isotropic materials. The proposed method also conserves volume and strain energy. Experimental results demonstrate that the proposed ChainMail method can not only accommodate isotropic, anisotropic and heterogeneous materials but also model incompressibility and relaxation behaviors of soft tissues. Further, the proposed method can achieve real-time computational performance. PMID:27282487

  15. Polymer nanofibers by soft lithography

    NASA Astrophysics Data System (ADS)

    Pisignano, Dario; Maruccio, Giuseppe; Mele, Elisa; Persano, Luana; Di Benedetto, Francesca; Cingolani, Roberto

    2005-09-01

    The fabrication of polymeric fibers by soft lithography is demonstrated. Polyurethane, patterned by capillarity-induced molding with high-resolution elastomeric templates, forms mm-long fibers with a diameter below 0.3μm. The Young's modulus of the fabricated structures, evaluated by force-distance scanning probe spectroscopy, has a value of 0.8MPa. This is an excellent example of nanostructures feasible by the combination of soft nanopatterning and high-resolution fabrication approaches for master templates, and particularly electron-beam lithography.

  16. [Skin and soft tissue infections].

    PubMed

    Piso, R J; Bassetti, S

    2012-03-14

    Skin- and Soft tissue infections are a frequent problem in hospital as well as in ambulatory care. Diagnostic procedures and treatment principles have to include the most frequent pathogens. While the acute forms of skin and soft tissue infections, with, necrotising fasciitis as important exception, rarely cause diagnostic or therapeutic problem, the treatment of patients with recurrent furunculosis, chronic wounds and diabetic feet is often difficult and frustration for patients and physicians. This article gives an overview of the most important problems and treatment strategies. PMID:22419138

  17. Soft tissue laser in orthodontics.

    PubMed

    Gracco, Antonio; Tracey, Stephen; Lombardo, Luca; Siciliani, Giuseppe

    2011-01-01

    Today a lot of minor cosmetic surgery operations on the gingiva can easily be carried out directly by the orthodontist with a small quantity of topical anaesthetic and the use of a soft tissue laser. The Diode laser is the most commonly used laser in dentistry for minor surgery to the soft tissues. This kind of laser offers numerous advantages with respect to traditional or electric scalpels. In this article the authors will analyse several typical uses of the diode laser in daily orthodontic practice. PMID:21515234

  18. Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    PubMed Central

    Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.

    2010-01-01

    Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227

  19. Quasi-exactly solvable relativistic soft-core Coulomb models

    SciTech Connect

    Agboola, Davids Zhang, Yao-Zhong

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  20. Constrained bounds on measures of entanglement

    SciTech Connect

    Datta, Animesh; Flammia, Steven T.; Shaji, Anil; Caves, Carlton M.

    2007-06-15

    Entanglement measures constructed from two positive, but not completely positive, maps on density operators are used as constraints in placing bounds on the entanglement of formation, the tangle, and the concurrence of 4N mixed states. The maps are the partial transpose map and the phi map introduced by Breuer [H.-P. Breuer, Phys. Rev. Lett. 97, 080501 (2006)]. The norm-based entanglement measures constructed from these two maps, called negativity and phi negativity, respectively, lead to two sets of bounds on the entanglement of formation, the tangle, and the concurrence. We compare these bounds and identify the sets of 4N density operators for which the bounds from one constraint are better than the bounds from the other. In the process, we present a derivation of the already known bound on the concurrence based on the negativity. We compute bounds on the three measures of entanglement using both the constraints simultaneously. We demonstrate how such doubly constrained bounds can be constructed. We discuss extensions of our results to bipartite states of higher dimensions and with more than two constraints.

  1. A cosmological upper bound on superpartner masses

    NASA Astrophysics Data System (ADS)

    Hall, Lawrence J.; Ruderman, Joshua T.; Volansky, Tomer

    2015-02-01

    If some superpartners were in thermal equilibrium in the early universe, and if the lightest superpartner is a cosmologically stable gravitino, then there is a powerful upper bound on the scale of the superpartner masses. Typically the bound is below tens of TeV, often much lower, and has similar parametrics to the WIMP miracle.

  2. THE HOPF BIFURCATION WITH BOUNDED NOISE.

    PubMed

    Botts, Ryan T; Homburg, Ale Jan; Young, Todd R

    2012-08-01

    We study Hopf-Andronov bifurcations in a class of random differential equations (RDEs) with bounded noise. We observe that when an ordinary differential equation that undergoes a Hopf bifurcation is subjected to bounded noise then the bifurcation that occurs involves a discontinuous change in the Minimal Forward Invariant set. PMID:24748762

  3. Expeditionary Learning Outward Bound. Summary Report.

    ERIC Educational Resources Information Center

    Weinbaum, Alexandra; Gregory, Lynn; Wilkie, Alex; Hirsch, Lesley; Fancsali, Cheri

    This report describes the Expeditionary Learning Outward Bound Project (ELOB), a 3-year project launched by Outward Bound USA in 1992 with a grant from the New American Schools Development Corporation. The major goal of the ELOB was to develop new schools or transform existing ones into centers of expeditionary learning, in which learning would…

  4. Outward Bound: An Innovative Patient Education Program.

    ERIC Educational Resources Information Center

    Stich, Thomas F.; Gaylor, Michael S.

    A 1975 Dartmouth Outward Bound Mental Health Project, begun with a pilot project for disturbed adolescents, has evolved into an ongoing treatment option in three separate clinical settings for psychiatric patients and recovering alcoholics. Outward Bound consists of a series of prescribed physical and social tasks where the presence of stress,…

  5. Mechanically triggered solute uptake in soft contact lenses.

    PubMed

    Tavazzi, Silvia; Ferraro, Lorenzo; Fagnola, Matteo; Cozza, Federica; Farris, Stefano; Bonetti, Simone; Simonutti, Roberto; Borghesi, Alessandro

    2015-06-01

    Molecular arrangement plays a role in the diffusion of water and solutes across soft contact lenses. In particular, the uptake of solutes in hydrated contact lenses can occur as long as free water is available for diffusion. In this work, we investigated the effect of mechanical vibrations of low frequency (200 Hz) on the solute uptake. Hyaluronan, a polysaccharide of ophthalmic use, was taken as example of solute of interest. For a specific water-hydrated hydrogel material, differential scanning calorimetry experiments showed that a large fraction of the hydration water accounted for loosely-bound water, both before and after one week of daily-wear of the lenses. The size (of the order of magnitude of few hundreds of nanometers) of hyaluronan in aqueous solution was found to be less than the size of the pores of the lens observed by scanning electron microscopy. However, solute uptake in already-hydrated lenses was negligible by simple immersion, while a significant increase occurred under mechanical vibrations of 200 Hz, thus providing experimental evidence of mechanically triggered enhanced solute uptake, which is attributed to the release of interfacial loosely-bound water. Also other materials were taken into consideration. However, the effectiveness of mechanical vibrations for hyaluronan uptake is restricted to lenses containing interfacial loosely-bound water. Indeed, loosely-bound water is expected to be bound to the polymer with bonding energies of the order of magnitude of 10-100 J/g, which are compatible with the energy input supplied by the vibrations. PMID:25884491

  6. Soft matter: food for thought

    NASA Astrophysics Data System (ADS)

    Ogborn, Jon

    2004-01-01

    'Soft matter' is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on the boundary between physics and chemistry.

  7. Soft Matter: Food for Thought

    ERIC Educational Resources Information Center

    Ogborn, Jon

    2004-01-01

    "Soft matter" is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on…

  8. Infra-red soft universality

    SciTech Connect

    Jack, I.

    1997-06-15

    In a special class of supersymmetric grand unified theories, the commonly assumed universal form of the soft supersymmetry-breaking terms is approached in the infra-red limit. The resulting universal scalar mass and trilinear coupling are predicted in terms of the gaugino mass.

  9. Soft tick sampling and collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several soft tick species in the genus Ornithodoros are vectors of African swine fever virus (ASFV) in nature, or known to be susceptible to infection. African swine fever (ASF) caused by ASFV is considered one of the most serious transboundary swine diseases because of its high lethality for pigs, ...

  10. Metrics for Soft Goods Merchandising.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students interested in soft goods merchandising, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…

  11. Pediatric soft tissue oral lesions.

    PubMed

    Pinto, Andres; Haberland, Christel M; Baker, Suher

    2014-04-01

    This article provides an overview of common color changes and soft tissue oral nodular abnormalities in children and adolescents. The clinical presentation and treatment options to address these conditions are presented in a concise approach, highlighting key features relevant to the oral health care professional. PMID:24655531

  12. Soft Factors Influence College Enrollment

    ERIC Educational Resources Information Center

    Fogg, Neeta P.; Harrington, Paul E.

    2010-01-01

    Evidence about the role that "soft factors" like student engagement and school environment play in influencing whether high school students go on to enroll in college is hard to come by. Over the past two years, the Center for Labor Market Studies (CLMS) of Northeastern University, with support from the Nellie Mae Education Foundation and the…

  13. Hard Thinking about Soft Skills

    ERIC Educational Resources Information Center

    Claxton, Guy; Costa, Arthur L.; Kallick, Bena

    2016-01-01

    People use various terms to refer to traits and tendencies connected to social-emotional behavior and ways of thinking or approaching problems--from 21st century skills to mindsets to habits of mind. Such traits are also often called soft skills or non-cognitive skills. The authors contend that these latter terms imply that these traits and…

  14. New bounds on isotropic Lorentz violation

    SciTech Connect

    Chris Carone; Marc Sher; Marc Vanderhaeghen

    2006-09-19

    Violations of Lorentz invariance that appear via operators of dimension four or less are completely parameterized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are nineteen dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10{sup -11} and 10{sup -32}; the remaining parameter, ktr, is isotropic and has a much weaker bound of order 10{sup -4}. In this Brief Report, we point out that ktr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10{sup -8}. With reasonable assumptions, we further show that this bound may be improved to 10{sup -14} by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz violating parameters in the pure gluonic sector of QCD.

  15. SHARP ENTRYWISE PERTURBATION BOUNDS FOR MARKOV CHAINS

    PubMed Central

    THIEDE, ERIK; VAN KOTEN, BRIAN; WEARE, JONATHAN

    2015-01-01

    For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature. Moreover, our bounds have a simple interpretation in terms of hitting times, which can be used to draw intuitive but rigorous conclusions about the sensitivity of a chain to various types of perturbations. PMID:26491218

  16. Mutually unbiased bases and bound entanglement

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.; Löffler, Wolfgang

    2014-04-01

    In this contribution we relate two different key concepts: mutually unbiased bases (MUBs) and entanglement. We provide a general toolbox for analyzing and comparing entanglement of quantum states for different dimensions and numbers of particles. In particular we focus on bound entanglement, i.e. highly mixed states which cannot be distilled by local operations and classical communications. For a certain class of states—for which the state-space forms a ‘magic’ simplex—we analyze the set of bound entangled states detected by the MUB criterion for different dimensions d and number of particles n. We find that the geometry is similar for different d and n, consequently the MUB criterion opens possibilities to investigate the typicality of positivity under partial transposition (PPT)-bound and multipartite bound entanglement more deeply and provides a simple experimentally feasible tool to detect bound entanglement.

  17. Rigorous bounds for optimal dynamical decoupling

    SciTech Connect

    Uhrig, Goetz S.; Lidar, Daniel A.

    2010-07-15

    We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in quantum dots. We show that if the total sequence time is fixed the optimal sequence can be used to make the distance between the protected and unperturbed qubit states arbitrarily small in the number of applied pulses. If, on the other hand, the minimum pulse interval is fixed and the total sequence time is allowed to scale with the number of pulses, then longer sequences need not always be advantageous. The rigorous bound may serve as a testbed for approximate treatments of optimal decoupling in bounded models of decoherence.

  18. Covariant entropy bound and loop quantum cosmology

    SciTech Connect

    Ashtekar, Abhay; Wilson-Ewing, Edward

    2008-09-15

    We examine Bousso's covariant entropy bound conjecture in the context of radiation filled, spatially flat, Friedmann-Robertson-Walker models. The bound is violated near the big bang. However, the hope has been that quantum gravity effects would intervene and protect it. Loop quantum cosmology provides a near ideal setting for investigating this issue. For, on the one hand, quantum geometry effects resolve the singularity and, on the other hand, the wave function is sharply peaked at a quantum corrected but smooth geometry, which can supply the structure needed to test the bound. We find that the bound is respected. We suggest that the bound need not be an essential ingredient for a quantum gravity theory but may emerge from it under suitable circumstances.

  19. Entropy bounds for hierarchical molecular networks.

    PubMed

    Dehmer, Matthias; Borgert, Stephan; Emmert-Streib, Frank

    2008-01-01

    In this paper we derive entropy bounds for hierarchical networks. More precisely, starting from a recently introduced measure to determine the topological entropy of non-hierarchical networks, we provide bounds for estimating the entropy of hierarchical graphs. Apart from bounds to estimate the entropy of a single hierarchical graph, we see that the derived bounds can also be used for characterizing graph classes. Our contribution is an important extension to previous results about the entropy of non-hierarchical networks because for practical applications hierarchical networks are playing an important role in chemistry and biology. In addition to the derivation of the entropy bounds, we provide a numerical analysis for two special graph classes, rooted trees and generalized trees, and demonstrate hereby not only the computational feasibility of our method but also learn about its characteristics and interpretability with respect to data analysis. PMID:18769487

  20. Bound-free Spectra for Diatomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    2012-01-01

    It is now recognized that prediction of radiative heating of entering space craft requires explicit treatment of the radiation field from the infrared (IR) to the vacuum ultra violet (VUV). While at low temperatures and longer wavelengths, molecular radiation is well described by bound-bound transitions, in the short wavelength, high temperature regime, bound-free transitions can play an important role. In this work we describe first principles calculations we have carried out for bound-bound and bound-free transitions in N2, O2, C2, CO, CN, NO, and N2+. Compared to bound ]bound transitions, bound-free transitions have several particularities that make them different to deal with. These include more complicated line shapes and a dependence of emission intensity on both bound state diatomic and atomic concentrations. These will be discussed in detail below. The general procedure we used was the same for all species. The first step is to generate potential energy curves, transition moments, and coupling matrix elements by carrying out ab initio electronic structure calculations. These calculations are expensive, and thus approximations need to be made in order to make the calculations tractable. The only practical method we have to carry out these calculations is the internally contracted multi-reference configuration interaction (icMRCI) method as implemented in the program suite Molpro. This is a widely used method for these kinds of calculations, and is capable of generating very accurate results. With this method, we must first of choose which electrons to correlate, the one-electron basis to use, and then how to generate the molecular orbitals.

  1. Soft-decision decoding techniques for linear block codes and their error performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1996-01-01

    The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.

  2. Childhood Soft Tissue Sarcoma: Treatment Information

    MedlinePlus

    ... Germ Cell Tumors Kidney/Wilms Tumor Liver Cancer Neuroblastoma Osteosarcoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma Thyroid ... Tumor Liver Cancer Lymphoma (Non-Hodgkin) Lymphoma (Hodgkin) Neuroblastoma Osteosarcoma Retinoblastoma Rhabdomyosarcoma Skin Cancer Soft Tissue Sarcoma ...

  3. General Information about Adult Soft Tissue Sarcoma

    MedlinePlus

    ... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Adult Soft Tissue Sarcoma Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  4. General Information about Childhood Soft Tissue Sarcoma

    MedlinePlus

    ... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Childhood Soft Tissue Sarcoma Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  5. [Radiotherapy of adult soft tissue sarcoma].

    PubMed

    Le Péchoux, C; Moureau-Zabotto, L; Llacer, C; Ducassou, A; Sargos, P; Sunyach, M P; Thariat, J

    2016-09-01

    Incidence of soft tissue sarcoma is low and requires multidisciplinary treatment in specialized centers. The objective of this paper is to report the state of the art regarding indications and treatment techniques of main soft tissue sarcoma localisations. PMID:27523415

  6. Survival by Stage of Soft Tissue Sarcoma

    MedlinePlus

    ... Next Topic How are soft tissue sarcomas treated? Survival by stage of soft tissue sarcoma Survival rates ... observed, not relative survival): Stage 5-year observed survival rate I 90% II 81% III 56% IV ...

  7. Windchill-201 - Custom Soft-Type Construction

    NASA Technical Reports Server (NTRS)

    Jones, Corey; LaPha, Steven

    2013-01-01

    This presentation will explain Windchill soft-types-what they are, how they work, and how to construct custom ones, configured specifically for your system. The process and particulars of creating and implementing a WTDocument soft-type will be discussed, and the interaction between soft-types and Windchill objects will be shown.

  8. 7 CFR 51.1866 - Soft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft. 51.1866 Section 51.1866 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1866 Soft. Soft means that the tomato yields readily...

  9. 7 CFR 51.1866 - Soft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft. 51.1866 Section 51.1866 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1866 Soft. Soft means that the tomato yields readily...

  10. 7 CFR 51.486 - Soft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft. 51.486 Section 51.486 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Cantaloups 1 Definitions § 51.486 Soft. Soft means that the cantaloup yields...

  11. 7 CFR 51.1866 - Soft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft. 51.1866 Section 51.1866 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Fresh Tomatoes 1 Definitions § 51.1866 Soft. Soft means that the tomato yields readily...

  12. Match-bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2003-01-01

    We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h+1 then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.

  13. Bounds on tensor wave and twisted inflation

    NASA Astrophysics Data System (ADS)

    Panda, Sudhakar; Sami, M.; Ward, John

    2010-11-01

    We study the bounds on tensor wave in a class of twisted inflation models, where D(4+2k)-branes are wrapped on cycles in the compact manifold and wrap the Kaluza-Klein direction in the corresponding effective field theory. While the lower bound is found to be analogous to that in type IIB models of brane inflation, the upper bound turns out to be significantly different. This is argued for a range of values for the parameter gsM satisfying the self-consistency relation and the WMAP data. Further, we observe that the wrapped D8-brane appears to be the most attractive from a cosmological perspective.

  14. Majorana bound states in magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Stano, Peter; Klinovaja, Jelena; Loss, Daniel

    2016-06-01

    Magnetic skyrmions are highly mobile nanoscale topological spin textures. We show, both analytically and numerically, that a magnetic skyrmion of an even azimuthal winding number placed in proximity to an s -wave superconductor hosts a zero-energy Majorana bound state in its core, when the exchange coupling between the itinerant electrons and the skyrmion is strong. This Majorana bound state is stabilized by the presence of a spin-orbit interaction. We propose the use of a superconducting trijunction to realize non-Abelian statistics of such Majorana bound states.

  15. Pattern Search Algorithms for Bound Constrained Minimization

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Torczon, Virginia

    1996-01-01

    We present a convergence theory for pattern search methods for solving bound constrained nonlinear programs. The analysis relies on the abstract structure of pattern search methods and an understanding of how the pattern interacts with the bound constraints. This analysis makes it possible to develop pattern search methods for bound constrained problems while only slightly restricting the flexibility present in pattern search methods for unconstrained problems. We prove global convergence despite the fact that pattern search methods do not have explicit information concerning the gradient and its projection onto the feasible region and consequently are unable to enforce explicitly a notion of sufficient feasible decrease.

  16. Lightweight Distance Bounding Protocol against Relay Attacks

    NASA Astrophysics Data System (ADS)

    Kim, Jin Seok; Cho, Kookrae; Yum, Dae Hyun; Hong, Sung Je; Lee, Pil Joong

    Traditional authentication protocols are based on cryptographic techniques to achieve identity verification. Distance bounding protocols are an enhanced type of authentication protocol built upon both signal traversal time measurement and cryptographic techniques to accomplish distance verification as well as identity verification. A distance bounding protocol is usually designed to defend against the relay attack and the distance fraud attack. As there are applications to which the distance fraud attack is not a serious threat, we propose a streamlined distance bounding protocol that focuses on the relay attack. The proposed protocol is more efficient than previous protocols and has a low false acceptance rate under the relay attack.

  17. Soliton bound states in semiconductor disk laser

    NASA Astrophysics Data System (ADS)

    Viktorov, Evgeny A.; Butkus, Mantas; Erneux, Thomas; Hamilton, Craig J.; Malcolm, Graeme P. A.; Rafailov, Edik U.

    2014-05-01

    We report what we believe is the first demonstration of a temporal soliton bound state in semiconductor disk laser. The laser was passively mode-locked using a quantum dot based semiconductor saturable absorber mirror (QD-SESAM). Two mode-locking regimes were observed where the laser would emit single or closely spaced double pulses (soliton bound state regime) per cavity round-trip. The pulses in soliton bound state regime were spaced by discrete, fixed time duration. We use a system of delay differential equations to model the dynamics of our device.

  18. Bounds on dark matter in solar orbit

    SciTech Connect

    Anderson, J.D.; Lau, E.L.; Taylor, A.H.; Dicus, D.A.; Teplitz, D.C.; Texas Univ., Austin; Maryland Univ., College Park )

    1989-07-01

    The possibility is considered that a spherical distribution of dark matter (DM), matter not visible with current instruments, is trapped in the sun's gravitational field. Bounds are placed from the motion of Uranus and Neptune, on the amount of DM that could be so trapped within the radius of those planets' orbits, as follows: from the Voyager 2, Uranus-flyby data new, more accurate ephemeris values are generated. Trapped DM mass is bounded by noting that such a distribution would increase the effective mass of the sun as seen by the outer planets and by using the new ephemeris values to bound such an increase. 34 refs.

  19. Sound Velocity Bound and Neutron Stars

    SciTech Connect

    Bedaque, Paulo; Steiner, Andrew W

    2015-01-01

    It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt(3). Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at low densities is in strong tension with this bound.

  20. Soft impacts on aerospace structures

    NASA Astrophysics Data System (ADS)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  1. The Forced Soft Spring Equation

    ERIC Educational Resources Information Center

    Fay, T. H.

    2006-01-01

    Through numerical investigations, this paper studies examples of the forced Duffing type spring equation with [epsilon] negative. By performing trial-and-error numerical experiments, the existence is demonstrated of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions. Subharmonic boundaries are…

  2. Bound phenolics in foods, a review.

    PubMed

    Acosta-Estrada, Beatriz A; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2014-01-01

    Among phytochemicals, phenolic compounds have been extensively researched due to their diverse health benefits. Phenolic compounds occur mostly as soluble conjugates and insoluble forms, covalently bound to sugar moieties or cell wall structural components. Absorption mechanisms for bound phenolic compounds in the gastrointestinal tract greatly depend on the liberation of sugar moieties. Food processes such as fermentation, malting, thermoplastic extrusion or enzymatic, alkaline and acid hydrolyses occasionally assisted with microwave or ultrasound have potential to release phenolics associated to cell walls. Different kinds of wet chemistry methodologies to release and detect bound phenolic have been developed. These include harsh heat treatments, chemical modifications or biocatalysis. New protocols for processing and determining phenolics in food matrices must be devised in order to release bound phenolics and for quality control in the growing functional food industry. PMID:24444905

  3. Gluing Soft Interfaces by Nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Dobrynin, Andrey

    Using a combination of the molecular dynamics simulations and scaling analysis we studied reinforcement of interface between two soft gel-like materials by spherical nanoparticles. Analysis of the simulations shows that the depth of penetration of a nanoparticle into a gel is determined by a balance of the elastic energy of the gel and nanoparticle deformations and the surface energy of nanoparticle/gel interface. In order to evaluate work of adhesion of the reinforced interface, the potential of mean force for separation of two gels was calculated. These simulations showed that the gel separation proceeds through formation of necks connecting nanoparticle with two gels. The shapes of the necks are controlled by a fine interplay between nanoparticle/gel surface energies and elastic energy of the neck deformation. Our simulations showed that by introducing nanoparticles at soft interfaces, the work required for separation of two gels could be 10-100 times larger than the work of adhesion between two gels without nanoparticle reinforcement. These results provide insight in understanding the mechanism of gluing soft gels and biological tissues by nano- and micro-sized particles. NSF DMR-1409710.

  4. Bone and Soft Tissue Ablation

    PubMed Central

    Foster, Ryan C.B.; Stavas, Joseph M.

    2014-01-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  5. Hard and Soft Safety Verifications

    NASA Technical Reports Server (NTRS)

    Wetherholt, Jon; Anderson, Brenda

    2012-01-01

    The purpose of this paper is to examine the differences between and the effects of hard and soft safety verifications. Initially, the terminology should be defined and clarified. A hard safety verification is datum which demonstrates how a safety control is enacted. An example of this is relief valve testing. A soft safety verification is something which is usually described as nice to have but it is not necessary to prove safe operation. An example of a soft verification is the loss of the Solid Rocket Booster (SRB) casings from Shuttle flight, STS-4. When the main parachutes failed, the casings impacted the water and sank. In the nose cap of the SRBs, video cameras recorded the release of the parachutes to determine safe operation and to provide information for potential anomaly resolution. Generally, examination of the casings and nozzles contributed to understanding of the newly developed boosters and their operation. Safety verification of SRB operation was demonstrated by examination for erosion or wear of the casings and nozzle. Loss of the SRBs and associated data did not delay the launch of the next Shuttle flight.

  6. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  7. Bone and soft tissue ablation.

    PubMed

    Foster, Ryan C B; Stavas, Joseph M

    2014-06-01

    Bone and soft tissue tumor ablation has reached widespread acceptance in the locoregional treatment of various benign and malignant musculoskeletal (MSK) lesions. Many principles of ablation learned elsewhere in the body are easily adapted to the MSK system, particularly the various technical aspects of probe/antenna design, tumoricidal effects, selection of image guidance, and methods to reduce complications. Despite the common use of thermal and chemical ablation procedures in bone and soft tissues, there are few large clinical series that show longitudinal benefit and cost-effectiveness compared with conventional methods, namely, surgery, external beam radiation, and chemotherapy. Percutaneous radiofrequency ablation of osteoid osteomas has been evaluated the most and is considered a first-line treatment choice for many lesions. Palliation of painful metastatic bone disease with thermal ablation is considered safe and has been shown to reduce pain and analgesic use while improving quality of life for cancer patients. Procedure-related complications are rare and are typically easily managed. Similar to all interventional procedures, bone and soft tissue lesions require an integrated approach to disease management to determine the optimum type of and timing for ablation techniques within the context of the patient care plan. PMID:25053865

  8. Soft robotics: a bioinspired evolution in robotics.

    PubMed

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications. PMID:23582470

  9. New spectral features from bound dark matter

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Kouvaris, Chris

    2016-07-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature that we predict can provide a complementary verification of dark matter discovery at experiments with positive signal but unclear background. The effect is generically expected, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section.

  10. Quantum union bounds for sequential projective measurements

    NASA Astrophysics Data System (ADS)

    Gao, Jingliang

    2015-11-01

    We present two quantum union bounds for sequential projective measurements. These bounds estimate the disturbance accumulation and probability of outcomes when the measurements are performed sequentially. These results are based on a trigonometric representation of quantum states and should have wide application in quantum information theory for information-processing tasks such as communication and state discrimination, and perhaps even in the analysis of quantum algorithms.

  11. Elastic scattering with weakly bound projectiles

    SciTech Connect

    Figueira, J. M.; Abriola, D.; Arazi, A.; Capurro, O. A.; Marti, G. V.; Martinez Heinmann, D.; Pacheco, A. J.; Testoni, J. E.; Barbara, E. de; Fernandez Niello, J. O.; Padron, I.; Gomes, P. R. S.; Lubian, J.

    2007-02-12

    Possible effects of the break-up channel on the elastic scattering threshold anomaly has been investigated. We used the weakly bound 6,7Li nuclei, which is known to undergo break-up, as projectiles in order to study the elastic scattering on a 27Al target. In this contribution we present preliminary results of these experiments, which were analyzed in terms of the Optical Model and compared with other elastic scattering data using weakly bound nuclei as projectile.

  12. Hamiltonian anomalies of bound states in QED

    SciTech Connect

    Shilin, V. I.; Pervushin, V. N.

    2013-10-15

    The Bound State in QED is described in systematic way by means of nonlocal irreducible representations of the nonhomogeneous Poincare group and Dirac's method of quantization. As an example of application of this method we calculate triangle diagram Para-Positronium {yields} {gamma}{gamma}. We show that the Hamiltonian approach to Bound State in QED leads to anomaly-type contribution to creation of pair of parapositronium by two photon.

  13. HiggsBounds: Confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron

    NASA Astrophysics Data System (ADS)

    Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K. E.

    2010-01-01

    HiggsBounds is a computer code that tests theoretical predictions of models with arbitrary Higgs sectors against the exclusion bounds obtained from the Higgs searches at LEP and the Tevatron. The included experimental information comprises exclusion bounds at 95% C.L. on topological cross sections. In order to determine which search topology has the highest exclusion power, the program also includes, for each topology, information from the experiments on the expected exclusion bound, which would have been observed in case of a pure background distribution. Using the predictions of the desired model provided by the user as input, HiggsBounds determines the most sensitive channel and tests whether the considered parameter point is excluded at the 95% C.L. HiggsBounds is available as a Fortran 77 and Fortran 90 code. The code can be invoked as a command line version, a subroutine version and an online version. Examples of exclusion bounds obtained with HiggsBounds are discussed for the Standard Model, for a model with a fourth generation of quarks and leptons and for the Minimal Supersymmetric Standard Model with and without CP-violation. The experimental information on the exclusion bounds currently implemented in HiggsBounds will be updated as new results from the Higgs searches become available.

  14. Algorithm for constructing the programmed motion of a bounding vehicle for the flight phase

    NASA Technical Reports Server (NTRS)

    Lapshin, V. V.

    1979-01-01

    The construction of the programmed motion of a multileg bounding vehicle in the flight was studied. An algorithm is given for solving the boundary value problem for constructing this programmed motion. If the motion is shown to be symmetrical, a simplified use of the algorithm can be applied. A method is proposed for nonimpact of the legs during lift-off of the vehicle, and for softness at touchdown. Tables are utilized to construct this programmed motion over a broad set of standard motion conditions.

  15. SoftAR: visually manipulating haptic softness perception in spatial augmented reality.

    PubMed

    Punpongsanon, Parinya; Iwai, Daisuke; Sato, Kosuke

    2015-11-01

    We present SoftAR, a novel spatial augmented reality (AR) technique based on a pseudo-haptics mechanism that visually manipulates the sense of softness perceived by a user pushing a soft physical object. Considering the limitations of projection-based approaches that change only the surface appearance of a physical object, we propose two projection visual effects, i.e., surface deformation effect (SDE) and body appearance effect (BAE), on the basis of the observations of humans pushing physical objects. The SDE visualizes a two-dimensional deformation of the object surface with a controlled softness parameter, and BAE changes the color of the pushing hand. Through psychophysical experiments, we confirm that the SDE can manipulate softness perception such that the participant perceives significantly greater softness than the actual softness. Furthermore, fBAE, in which BAE is applied only for the finger area, significantly enhances manipulation of the perception of softness. We create a computational model that estimates perceived softness when SDE+fBAE is applied. We construct a prototype SoftAR system in which two application frameworks are implemented. The softness adjustment allows a user to adjust the softness parameter of a physical object, and the softness transfer allows the user to replace the softness with that of another object. PMID:26340774

  16. On the unlikeliness of multi-field inflation: bounded random potentials and our vacuum

    SciTech Connect

    Battefeld, Diana; Battefeld, Thorsten; Schulz, Sebastian E-mail: tbattefe@astro.physik.uni-goettingen.de

    2012-06-01

    Based on random matrix theory, we compute the likelihood of saddles and minima in a class of random potentials that are softly bounded from above and below, as required for the validity of low energy effective theories. Imposing this bound leads to a random mass matrix with non-zero mean of its entries. If the dimensionality of field-space is large, inflation is rare, taking place near a saddle point (if at all), since saddles are more likely than minima or maxima for common values of the potential. Due to the boundedness of the potential, the latter become more ubiquitous for rare low/large values respectively. Based on the observation of a positive cosmological constant, we conclude that the dimensionality of field-space after (and most likely during) inflation has to be low if no anthropic arguments are invoked, since the alternative, encountering a metastable deSitter vacuum by chance, is extremely unlikely.

  17. Error bounds from extra precise iterative refinement

    SciTech Connect

    Demmel, James; Hida, Yozo; Kahan, William; Li, Xiaoye S.; Mukherjee, Soni; Riedy, E. Jason

    2005-02-07

    We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub w}, the computed normwise (resp. componentwise) error bound is at most 2 max{l_brace}10,{radical}n{r_brace} {center_dot} {var_epsilon}{sub w}, and indeed bounds the true error. Here, n is the matrix dimension and w is single precision roundoff error. For worse conditioned problems, we get similarly small correct error bounds in over 89.4% of cases.

  18. Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities

    NASA Astrophysics Data System (ADS)

    Berkowitz, Max; Parr, Robert G.

    1988-02-01

    Hardness and softness kernels η(r,r') and s(r,r') are defined for the ground state of an atomic or molecular electronic system, and the previously defined local hardness and softness η(r) and s(r) and global hardness and softness η and S are obtained from them. The physical meaning of s(r), as a charge capacitance, is discussed (following Huheey and Politzer), and two alternative ``hardness'' indices are identified and briefly discussed.

  19. BOOK REVIEW: Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Jones, Richard A. L.

    2002-11-01

    The author states in the preface of the book that the aim is '...to give a unified overview of the various aspects of the physics of soft condensed matter'. The book succeeds in fulfilling this aim in many respects. i) The style is fluent and concise and gives the necessary explanations to make its content understandable to people with some knowledge of the basic principles of physics. ii) The content of the book is complete enough to give a panoramic view of the landscape of soft condensed matter. The first two chapters give, respectively, a short introduction and a presentation of forces, energies and timescales, giving a general overview and pointing out the particular importance of different aspects such as timescales, which are much more important in soft condensed matter than in traditional or 'hard' condensed matter. The next chapter, devoted to phase transition, recalls that the equilibrium between two phases is controlled by free energy considerations. Spinodal decomposition is presented as a counterpart of nucleation and growth. Again, characteristic length scales are considered and applied to a phase separation mixture of polymers in a common solvent. The following three chapters are devoted respectively to specific topics: colloidal dispersion, polymers and gelation. The stability and phase behaviour of colloids are related to the interaction between colloidal particles. Properties of colloidal crystals as well as colloidal dispersion are depicted in terms of stabilization of crystalline colloids. The flow properties of colloidal dispersion are presented in terms of free energy minimization and the structure of the dispersion. After a brief introduction to polymer chemistry and architecture, the coil-globule transition is discussed. Viscoelasticity of polymers is described and discussed by introducing the notion of entanglement. This leads to the introduction of the tube model and the theory of reptation. The sol-gel transition is presented

  20. Soft Skills for Hard Impact

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivo; Davidson, Joy; Knoth, Petr; Kuchma, Iryna; Schmidt, Birgit; Rettberg, Najla; Rogrigues, Eloy

    2015-04-01

    Marine and Earth Science graduates will be under increasing pressure in future to delve into research questions of relevance to societal challenges. Even fundamental research focused on basic processes of the environment and universe will in the coming decade need to justify their societal impact. As the Research Excellence Frameworks (REF) for research evaluation shift more and more away from the classical Impact Factor and number of peer-reviewed publications to "societal impact", the question remains whether the current graduates, and future researchers, are sufficiently prepared to deal with this reality. The essential compliment of skills beyond research excellence, rigor and method are traditionally described as "soft skills". This includes how to formulate an argument, how to construct a scientific publication, how to communicate such publications to non-experts, place them in context of societal challenges and relevant policies, how to write a competitive proposal and "market" one's research idea to build a research group around an interesting research topic. Such "soft skills" can produce very measurable and concrete impact for career development, but are rarely provided systematically and coherently by graduate schools in general. The presentation will focus on Open Science as a set of "soft skills", and demonstrate why graduate schools should train Open Science competencies alongside research excellence by default. Open Science is about removing all barriers to research process and outputs, both published and unpublished, and directly supports transparency and reproducibility of the research process. Open Science as a set of news competencies can also foster unexpected collaborations, engage citizen scientists into co-creation of solutions to societal challenges, as well as use concepts of Open Science to transfer new knowledge to the knowledge-based private sector, and help them with formulating more competitive research proposals in future.

  1. In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions

    PubMed Central

    Johnson, Grant E.; Gunaratne, K. Don Dasitha; Laskin, Julia

    2014-01-01

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces. PMID:24961913

  2. In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions

    SciTech Connect

    Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia

    2014-06-16

    Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.

  3. Conformational phases of membrane bound cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  4. Revisiting cosmological bounds on radiative neutrino lifetime

    SciTech Connect

    Mirizzi, Alessandro; Montanino, Daniele; Serpico, Pasquale D.

    2007-09-01

    Neutrino oscillation experiments and direct bounds on absolute masses constrain neutrino mass differences to fall into the microwave energy range, for most of the allowed parameter space. As a consequence of these recent phenomenological advances, older constraints on radiative neutrino decays based on diffuse background radiations and assuming strongly hierarchical masses in the eV range are now outdated. We thus derive new bounds on the radiative neutrino lifetime using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board the Cosmic Background Explorer. The lower bound on the lifetime is between a fewx10{sup 19} s and {approx}5x10{sup 20} s, depending on the neutrino mass ordering and on the absolute mass scale. However, due to phase space limitations, the upper bound in terms of the effective magnetic moment mediating the decay is not better than {approx}10{sup -8} Bohr magnetons. We also comment about possible improvements of these limits, by means of recent diffuse infrared photon background data. We compare these bounds with preexisting limits coming from laboratory or astrophysical arguments. We emphasize the complementarity of our results with others available in the literature.

  5. Lability of copper bound to humic acid.

    PubMed

    Mao, Lingchen; Young, Scott D; Bailey, Elizabeth H

    2015-07-01

    Geochemical speciation models generally include the assumption that all metal bound to humic acid and fulvic acid (HA, FA) is labile. However, in the current study, we determined the presence of a soluble 'non-labile' Cu fraction bound to HA extracted from grassland and peat soils. This was quantified by determining isotopically-exchangeable Cu (E-value) and EDTA-extraction of HA-bound Cu, separated by size-exclusion chromatography (SEC) and assayed by coupled ICP-MS. Evidence of time-dependent Cu fixation by HA was found during the course of an incubation study (160 d); up to 50% of dissolved HA-bound Cu was not isotopically exchangeable. This result was supported by extraction with EDTA where approximately 40% of Cu remained bound to HA despite dissolution in 0.05 M Na2-EDTA. The presence of a substantial non-labile metal fraction held by HA challenges the assumption of wholly reversible equilibrium which is central to current geochemical models of metal binding to humic substances. PMID:25863164

  6. Universal bounds in even-spin CFTs

    NASA Astrophysics Data System (ADS)

    Qualls, Joshua D.

    2015-12-01

    We prove using invariance under the modular S- and ST -transformations that every unitary two-dimensional conformal field theory (CFT) having only even-spin primary operators (with no extended chiral algebra and with right- and left-central charges c, tilde{c}>1 ) contains a primary operator with dimension Δ1 satisfying 0<{\\varDelta}_1bounds, we discuss how to extend our methods to bound higher conformal dimensions before deriving lower and upper bounds on the number of primary operators in a given energy range. Using the AdS3/CFT2 dictionary, the bound on Δ1 proves the lightest massive excitation in appropriate theories of 3D matter and gravity with cosmological constant Λ < 0 can be no heavier than 1/8{G}_N+O(√{-\\varLambda}) ; the bounds on the number of operators are related via AdS/CFT to the entropy of states in the dual gravitational theory. In the flat-space approximation, the limiting mass is exactly that of the lightest BTZ black hole.

  7. Register file soft error recovery

    DOEpatents

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  8. Statistical thermodynamics of soft surfaces

    NASA Astrophysics Data System (ADS)

    Safran, S. A.

    2002-03-01

    We review the continuum, statistical thermodynamics of surfaces and interfaces in soft matter where both the energy and entropy of the surface are comparable. These systems include complex fluids that are dominated by either surface tension or the interfacial curvature, such as: fluid and solid interfaces, colloidal dispersions, macromolecular solutions, membranes, and other self-assembling aggregates such as micelles, vesicles, and microemulsions. The primary focus is on the theoretical concepts, their universality, and the role of fluctuations and inhomogeneities with connections to relevant experimental systems.

  9. Ordering Multiple Soft Gluon Emissions.

    PubMed

    Ángeles Martínez, René; Forshaw, Jeffrey R; Seymour, Michael H

    2016-05-27

    We present an expression for the QCD amplitude for a general hard scattering process with any number of soft gluon emissions, to one-loop accuracy. The amplitude is written in two different but equivalent ways: as a product of operators ordered in dipole transverse momentum and as a product of loop-expanded currents. We hope that these results will help in the development of an all-orders algorithm for multiple emissions that includes the full color structure and both the real and imaginary contributions to the amplitude. PMID:27284651

  10. Constructing Amplitudes from Their Soft Limits

    SciTech Connect

    Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC

    2011-12-09

    The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.

  11. Multiple soft limits of cosmological correlation functions

    SciTech Connect

    Joyce, Austin; Khoury, Justin; Simonović, Marko E-mail: jkhoury@sas.upenn.edu

    2015-01-01

    We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q{sup 2}) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure.

  12. Acoustomechanical constitutive theory for soft materials

    NASA Astrophysics Data System (ADS)

    Xin, Fengxian; Lu, Tian Jian

    2016-07-01

    Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by combining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momentum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials. Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and analyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.

  13. Subleading soft factor for string disk amplitudes

    NASA Astrophysics Data System (ADS)

    Schwab, Burkhard U. W.

    2014-08-01

    We investigate the behavior of superstring disk scattering amplitudes in the presence of a soft external momentum at finite string tension. We prove that there are no α'-corrections to the field theory form of the subleading soft factor S (1). At the end of this work, we also comment on the possibility to find the corresponding subleading soft factors in closed string theory using our result and the KLT relations.

  14. Bound States in Boson Impurity Models

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Wu, Ying-Hai; González-Tudela, A.; Cirac, J. I.

    2016-04-01

    The formation of bound states involving multiple particles underlies many interesting quantum physical phenomena, such as Efimov physics or superconductivity. In this work, we show the existence of an infinite number of such states for some boson impurity models. They describe free bosons coupled to an impurity and include some of the most representative models in quantum optics. We also propose a family of wave functions to describe the bound states and verify that it accurately characterizes all parameter regimes by comparing its predictions with exact numerical calculations for a one-dimensional tight-binding Hamiltonian. For that model, we also analyze the nature of the bound states by studying the scaling relations of physical quantities, such as the ground-state energy and localization length, and find a nonanalytical behavior as a function of the coupling strength. Finally, we discuss how to test our theoretical predictions in experimental platforms, such as photonic crystal structures and cold atoms in optical lattices.

  15. Search For {eta}-Bound Nuclei

    SciTech Connect

    Machner, H.

    2011-10-24

    The {eta} meson can be bound to atomic nuclei. Experimental search is discussed in the form of final state interaction for the reactions dp{yields}{sup 3}He{eta} and dd{yields}{sup 4}He{eta}. For the latter case tensor polarized deuterons were used in order to extract the s-wave strength. For both reactions complex scattering lengths are deduced: In a two-nucleon transfer reaction under quasi-free conditions, p{sup 27}Al{yields}{sup 3}HeX, was investigated. The system X can be the bound {sup 25}Mg x {eta} at rest. When a possible decay of an intermediate N{sup *}(1535) is required, a highly significant bump shows up in the missing mass spectrum. The data give for a bound state a binding energy of 13.3{+-}1.6 MeV and a width of {sigma} = 4.4{+-}1.3 MeV.

  16. Search For ɛ-Bound Nuclei

    NASA Astrophysics Data System (ADS)

    Machner, H.

    2011-10-01

    The η meson can be bound to atomic nuclei. Experimental search is discussed in the form of final state interaction for the reactions dp→3Heη and dd→4Heη. For the latter case tensor polarized deuterons were used in order to extract the s-wave strength. For both reactions complex scattering lengths are deduced: In a two-nucleon transfer reaction under quasi-free conditions, p27Al→3HeX, was investigated. The system X can be the bound 25Mg⊗η at rest. When a possible decay of an intermediate N*(1535) is required, a highly significant bump shows up in the missing mass spectrum. The data give for a bound state a binding energy of 13.3±1.6 MeV and a width of σ = 4.4±1.3 MeV.

  17. Better Bounds on Online Unit Clustering

    NASA Astrophysics Data System (ADS)

    Ehmsen, Martin R.; Larsen, Kim S.

    Unit Clustering is the problem of dividing a set of points from a metric space into a minimal number of subsets such that the points in each subset are enclosable by a unit ball. We continue work initiated by Chan and Zarrabi-Zadeh on determining the competitive ratio of the online version of this problem. For the one-dimensional case, we develop a deterministic algorithm, improving the best known upper bound of 7/4 by Epstein and van Stee to 5/3. This narrows the gap to the best known lower bound of 8/5 to only 1/15. Our algorithm automatically leads to improvements in all higher dimensions as well. Finally, we strengthen the deterministic lower bound in two dimensions and higher from 2 to 13/6.

  18. A proof of the conformal collider bounds

    NASA Astrophysics Data System (ADS)

    Hofman, Diego M.; Li, Daliang; Meltzer, David; Poland, David; Rejon-Barrera, Fernando

    2016-06-01

    In this paper, we prove that the "conformal collider bounds" originally proposed in [1] hold for any unitary parity-preserving conformal field theory (CFT) with a unique stress tensor in dimensions d ≥ 3. In particular this implies that the ratio of central charges for a unitary 4d CFT lies in the interval 31/18ge a/cge 1/3 . For superconformal theories this is further reduced to 3/2ge a/cge 1/2 . The proof relies only on CFT first principles — in particular, bootstrap methods — and thus constitutes the first complete field theory proof of these bounds. We further elaborate on similar bounds for non-conserved currents and relate them to results obtained recently from deep inelastic scattering.

  19. Bound water in Kevlar 49 fibers

    SciTech Connect

    Garza, R.G.; Pruneda, C.O.; Morgan, R.J.

    1981-04-01

    From elemental analyses, thermogravimetric-mass spectroscopy studies and re-evaluation of previous water diffusion studies in Kevlar 49 fibers it is concluded that these fibers can contain two types of sorbed moisture. The fibers can absorb up to approx. 6 wt % loosely bound water with an activation energy for outgassing by desorption of 6 kcal/mole. This loosely bound water is a direct result of the presence of Na/sub 2/SO/sub 4/ impurities and the perturbations they induce on the packing of the rod-like poly (p-phenylene terephthalamide) macromolecules. Kevlar 49 fibers also inherently contain up to 30 wt % additional water which is tightly bound within the crystal lattice. This water exhibits an activation energy for outgassing by diffusion of approx. 40 kcal/mole and is only evolved from the fiber in significant quantities at t > 350/sup 0/C over a period of hours.

  20. Bounds on Neutrino Non-Standard Interactions

    SciTech Connect

    Fernandez-Martinez, Enrique

    2010-03-30

    We review the present model independent bounds on neutrino non-standard interactions both at neutrino production and detection and in its interactions with matter. For matter non-standard interactions the direct bounds are rather weak. However, matter non-standard interactions are related by gauge invariance to the production and detection ones as well as to flavour changing processes involving charged leptons. Taking into account these relations much stronger bounds of at least O(10{sup -2}) can be derived unless significant fine tunings are implemented. Testing non-standard interactions at this level at future neutrino oscillation facilities is challenging but still feasible at very ambitious proposals such as the Neutrino Factory.

  1. Bounded link prediction in very large networks

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Pu, Cunlai; Xu, Zhongqi; Cai, Shimin; Yang, Jian; Michaelson, Andrew

    2016-09-01

    Evaluating link prediction methods is a hard task in very large complex networks due to the prohibitive computational cost. However, if we consider the lower bound of node pairs' similarity scores, this task can be greatly optimized. In this paper, we study CN index in the bounded link prediction framework, which is applicable to enormous heterogeneous networks. Specifically, we propose a fast algorithm based on the parallel computing scheme to obtain all node pairs with CN values larger than the lower bound. Furthermore, we propose a general measurement, called self-predictability, to quantify the performance of similarity indices in link prediction, which can also indicate the link predictability of networks with respect to given similarity indices.

  2. A bounding technique for plastic deformations

    NASA Astrophysics Data System (ADS)

    Giambanco, F.; Palizzolo, L.; Panzeca, T.

    1992-05-01

    On the grounds of the known proportionality between the kinematical part of the solution of the Euler-Lagrange equations relative to the shakedown load factor problem for an elastic perfectly plastic solid subjected to cyclic loads and the gradient of the kinematical part of the elastic-plastic steady-state response of the solid to cyclic loads at the shakedown limit, a special bounding technique is developed. Such technique consists of computing a bound on the proportionality factor between the two kinematical solutions and, consequently, bounds on any measure of real plastic deformation produced by cyclic loads slightly above the shakedown limit. The technique is then generalized to the case of loads arbitraily varying within a given load domain. Some computational aspects are also discussed. Two examples solved in analytic form and one numerical application conclude the paper.

  3. Convex Lower Bounds for Free Energy Minimization

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan

    We construct lower bounds on free energy with convex relaxations from the nonlinear minimization over probabilities to linear programs over expectation values. Finite-temperature expectation values are further resolved into distributions over energy. A superset of valid expectation values is delineated by an incomplete set of linear constraints. Free energy bounds can be improved systematically by adding constraints, which also increases their computational cost. We compute several free energy bounds of increasing accuracy for the triangular-lattice Ising model to assess the utility of this method. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Experimental bound entanglement through a Pauli channel

    PubMed Central

    Amselem, Elias; Sadiq, Muhammad; Bourennane, Mohamed

    2013-01-01

    Understanding the characteristics of a quantum systems when affected by noise is one of the biggest challenges for quantum technologies. The general Pauli error channel is an important lossless channel for quantum communication. In this work we consider the effects of a Pauli channel on a pure four-qubit state and simulate the Pauli channel experimentally by studying the action on polarization encoded entangled photons. When the noise channel acting on the photons is correlated, a set spanned by four orthogonal bound entangled states can be generated. We study this interesting case experimentally and demonstrate that products of Bell states can be brought into a bound entangled regime. We find states in the set of bound entangled states which experimentally violate the CHSH inequality while still possessing a positive partial transpose. PMID:23752651

  5. Bounds on tensor wave and twisted inflation

    SciTech Connect

    Panda, Sudhakar; Sami, M.; Ward, John

    2010-11-15

    We study the bounds on tensor wave in a class of twisted inflation models, where D(4+2k)-branes are wrapped on cycles in the compact manifold and wrap the Kaluza-Klein direction in the corresponding effective field theory. While the lower bound is found to be analogous to that in type IIB models of brane inflation, the upper bound turns out to be significantly different. This is argued for a range of values for the parameter g{sub s}M satisfying the self-consistency relation and the WMAP data. Further, we observe that the wrapped D8-brane appears to be the most attractive from a cosmological perspective.

  6. [Injury potential of soft-air pistols].

    PubMed

    Nadjem, Hadi; Braunwarth, Roland; Pollak, Stefan

    2004-01-01

    Report on a case in which an 8-year-old girl was injured on the left anterior thoracic wall by two shots fired by her 14-year-old cousin from a soft-air pistol (replica of mod. 17 make Glock, cal. 6 mm, solid plastic bullets); the projectiles caused two skin lesions, both reaching into the subcutis. The results of our own shooting tests with 2 different soft-air pistols and the injuries seen in our case confirm that soft-air pistols may cause penetrating soft-tissue injuries when fired from a short distance. PMID:15012039

  7. Soft optics in intelligent optical networks

    NASA Astrophysics Data System (ADS)

    Shue, Chikong; Cao, Yang

    2001-10-01

    In addition to the recent advances in Hard-optics that pushes the optical transmission speed, distance, wave density and optical switching capacity, Soft-optics provides the necessary intelligence and control software that reduces operational costs, increase efficiency, and enhances revenue generating services by automating optimal optical circuit placement and restoration, and enabling value-added new services like Optical VPN. This paper describes the advances in 1) Overall Hard-optics and Soft-optics 2) Layered hierarchy of Soft-optics 3) Component of Soft-optics, including hard-optics drivers, Management Soft-optics, Routing Soft-optics and System Soft-optics 4) Key component of Routing and System Soft-optics, namely optical routing and signaling (including UNI/NNI and GMPLS signaling). In summary, the soft-optics on a new generation of OXC's enables Intelligent Optical Networks to provide just-in-time service delivery and fast restoration, and real-time capacity management that eliminates stranded bandwidth. It reduces operational costs and provides new revenue opportunities.

  8. A Recipe for Soft Fluidic Elastomer Robots

    PubMed Central

    Marchese, Andrew D.; Katzschmann, Robert K.

    2015-01-01

    Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  9. Career Development and Personal Functioning Differences between Work-Bound and Non-Work Bound Students

    ERIC Educational Resources Information Center

    Creed, Peter A.; Patton, Wendy; Hood, Michelle

    2010-01-01

    We surveyed 506 Australian high school students on career development (exploration, planning, job-knowledge, decision-making, indecision), personal functioning (well-being, self-esteem, life satisfaction, school satisfaction) and control variables (parent education, school achievement), and tested differences among work-bound, college-bound and…

  10. OUTWARD BOUND IN THE MAINSTREAM OF AMERICAN EDUCATION, A SYNOPSIS OF SIX OUTWARD BOUND MAINSTREAM PROJECTS.

    ERIC Educational Resources Information Center

    Outward Bound, Inc., Andover, MA.

    A SYNOPSIS IS OFFERED OF SIX DIFFERENT OUTWARD-BOUND PROGRAMS, EACH OF WHICH IS AN ADAPTATION OF THE BASIC OUTWARD-BOUND PHILOSOPHY OF HAVING YOUNG PEOPLE RECOGNIZE FOR THEMSELVES THEIR PHYSICAL, EMOTIONAL, AND SPIRITUAL CAPABILITIES SO THAT THEY WILL DEVELOP A STRONG SENSE OF SELF-RELIANCE AND INNER STRENGTH. THE ADAMS COUNTY, COLORADO,…

  11. Verifying Stability of Dynamic Soft-Computing Systems

    NASA Technical Reports Server (NTRS)

    Wen, Wu; Napolitano, Marcello; Callahan, John

    1997-01-01

    Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.

  12. Nanoscale Mixing of Soft Solids

    SciTech Connect

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2013-03-07

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C{sub 30}H{sub 62}) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ({sup 1}H and {sup 2}H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  13. Kinks in topological soft matter

    NASA Astrophysics Data System (ADS)

    Chen, Bryan; Upadhyaya, Nitin; Vitelli, Vincenzo

    2014-03-01

    Weakly connected mechanical systems near the isostatic threshold are fragile in the sense that they exhibit large deformations in response to tiny perturbations. Kane and Lubensky have recently defined a new topological invariant of isostatic mechanical lattices which leads within linear elasticity to zero energy modes at the boundary akin to the edge modes studied in topological quantum matter. What happens when such prototype topological soft materials are subject to an external mechanical perturbation? In our work, we demonstrate that the linear soft modes can often integrate to non-linear deformations described by topological solitons. These solitons that are moving kinks between distinct topological phases are the basic excitations of fragile mechanical systems. We illustrate the general soliton construction in the context of a 1D chain of rotors connected by springs that can be considered the archetype of a topological mechanical structure. In the continuum limit, this chain is described by a Lorentz invariant ϕ4 theory and the corresponding solitons exhibit a Lorentz contraction of the width, as their speed is raised.

  14. Observations of Soft Gamma Repeaters

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2005-01-01

    Magnetars (Soft Gamma Repeaters and Anomalous X-ray Pulsars) are a subclass of neutron stars characterized by their recurrent X-ray bursts. While in an active (bursting) state (lasting anywhere between days and years), they are emitting hundreds of predominantly soft (kl'=30 kev), short (0.1 - 100 ms long) events. Their quiescent source X-ray light curves exhibit pulsations in the narrow range of 5-1 1 s; estimates of these rotational period rate changes (spin-down) indicate that their magnetic fields are extremely high, of the order of 10A14-10A15 G. Such high B-field objects, dubbed "magnetars", had been predicted to exist in 1992, but the first concrete observational evidence was obtained in 1998 for two of these sources. Very recently, SGR1806-20 emitted a giant flare, which was detected in the radio with a multitude of telescopes under an extensive international campaign. These observations have revealed exciting new results, never seen before in any of the other magnetar sources. I will discuss here these results and their relevance to our understanding of the nature of magnetars.

  15. Quantum Kolmogorov complexity and bounded quantum memory

    SciTech Connect

    Miyadera, Takayuki

    2011-04-15

    The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.

  16. A generalized discrepancy and quadrature error bound

    NASA Astrophysics Data System (ADS)

    Hickernell, F. J.

    1998-01-01

    An error bound for multidimensional quadrature is derived that includes the Koksma-Hlawka inequality as a special case. This error bound takes the form of a product of two terms. One term, which depends only on the integrand, is defined as a generalized variation. The other term, which depends only on the quadrature rule, is defined as a generalized discrepancy. The generalized discrepancy is a figure of merit for quadrature rules and includes as special cases the L-p-star discrepancy and P-alpha that arises in the study of lattice rules.

  17. The Lovasz bound and some generalizations

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rodemich, E. R.; Rumsey, H. C., Jr.

    1978-01-01

    The zero error capacity of a discrete memoryless channel is defined as the largest rate at which information can be transmitted over the channel with zero error probability. One channel with five inputs and outputs whose zero capacity remained unsolved until very recently is considered. An extremely powerful and general technique phased in terms of graph theory, for studying combinatorial packing problems is presented. In particular, Delsarte's linear programming bound for cliques in association schemes appears as a special case of the Lovasz bound.

  18. Generalized mutual information and Tsirelson's bound

    SciTech Connect

    Wakakuwa, Eyuri; Murao, Mio

    2014-12-04

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the 'no-supersignalling condition' (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  19. Upper bounds on the photon mass

    SciTech Connect

    Accioly, Antonio; Helayeel-Neto, Jose; Scatena, Eslley

    2010-09-15

    The effects of a nonzero photon rest mass can be incorporated into electromagnetism in a simple way using the Proca equations. In this vein, two interesting implications regarding the possible existence of a massive photon in nature, i.e., tiny alterations in the known values of both the anomalous magnetic moment of the electron and the gravitational deflection of electromagnetic radiation, are utilized to set upper limits on its mass. The bounds obtained are not as stringent as those recently found; nonetheless, they are comparable to other existing bounds and bring new elements to the issue of restricting the photon mass.

  20. Scattering of slow neutrons by bound nuclei

    NASA Astrophysics Data System (ADS)

    Nowak, Ernst

    1982-09-01

    The T-operator for scattering of slow neutrons by a system of bound nuclei is calculated up to quadratic terms in the scattering length. Binding effects as well as effects of multiple scattering have to be included in order to avoid inconsistencies. For the discussion of binding effects one can adopt methods developed by Dietze and Nowak [1] for treating scattering by an elastically bound nucleus. In particular the case of coherent elastic scattering is discussed: we show how the corrections can be expressed in terms of correlation functions and that binding effects are most important for scattering by light nuclei.

  1. Proof of a quantum Bousso bound

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Casini, Horacio; Fisher, Zachary; Maldacena, Juan

    2014-08-01

    We prove the generalized covariant entropy bound, ΔS≤(A-A')/4Gℏ, for light-sheets with initial area A and final area A'. The entropy ΔS is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.

  2. Learning within bounds and dream sleep

    NASA Astrophysics Data System (ADS)

    Geszti, T.; Pazmandi, F.

    1987-12-01

    In a bounded-synapses version of Hopfield's model (1984) for neural networks the quasienergy of a given memory, which is approximately equal to the depth of the corresponding energy well is calculated exactly by treating the change of a synaptic strength on learning as a random walk within bounds. Attractors corresponding to stored memories are found to be considerably flattened before serious retrieval errors arise. This allows dream sleep to be interpreted as random recall and relearning of fresh strong memories, in order to stack them on top of weak incidental memory imprints of a day.

  3. Double large Barkhausen jump in soft/soft composite microwires

    NASA Astrophysics Data System (ADS)

    Infante, G.; Badini-Confalonieri, G. A.; del Real, R. P.; Vázquez, M.

    2010-09-01

    The magnetic properties of double layer microwires consisting of a soft FeSiBP amorphous core, an intermediate non-magnetic glass spacer and a softer FeNi outer shell have been investigated. As in the case of other magnetostatically coupled two-phase systems, the hysteresis loops are characterized by two well-defined Barkhausen jumps corresponding each to the magnetization reversal of the individual phases, separated by a plateau. The strong dipolar interaction that leads to the appearance of the plateau is investigated in terms of the microwire geometry. It is shown that this source of coupling is capable of increasing up to one order of magnitude the switching field of the Fe-rich core. Thus, magnetic bistability can be effectively controlled in these kinds of composite wires.

  4. Association Analysis of Soft Wheat Quality Traits in Eastern US Soft Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft wheat quality is highly heritable, is controlled by multiple loci, and has been mapped in a number of bi-parental crosses. We extended the mapping information on soft wheat quality by using association analysis between genetic markers and quality phenotyping in 192 soft winter wheat cultivars ...

  5. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    NASA Astrophysics Data System (ADS)

    Angus, Stephen; Conlon, Joseph P.; Marsh, M. C. David; Powell, Andrew J.; Witkowski, Lukas T.

    2014-09-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measures from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for gaγγ ~ 2 × 10-13 Ge -1. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on Script O(3 kpc) scales over those with most power on Script O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eVlesssim langle Ea rangle lesssim 250 eV, the axion mass to ma lesssim 10-12 eV, and derive a lower bound on the axion-photon coupling gaγγ gtrsim √(0.5/Δ Neff) 1.4 × 10-13 Ge -1.

  6. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    SciTech Connect

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David; Powell, Andrew J.; Witkowski, Lukas T. E-mail: j.conlon1@physics.ox.ac.uk E-mail: andrew.powell2@physics.ox.ac.uk

    2014-09-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measures from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g{sub aγγ} ∼ 2 × 10{sup -13} Ge {sup -1}. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E{sub a} ) ∼< 250 eV, the axion mass to m{sub a} ∼< 10{sup -12} eV, and derive a lower bound on the axion-photon coupling g{sub aγγ} ∼> √(0.5/Δ N{sub eff}) 1.4 × 10{sup -13} Ge {sup -1}.

  7. Soft Selective Sweeps in Complex Demographic Scenarios

    PubMed Central

    Wilson, Benjamin A.; Petrov, Dmitri A.; Messer, Philipp W.

    2014-01-01

    Adaptation from de novo mutation can produce so-called soft selective sweeps, where adaptive alleles of independent mutational origin sweep through the population at the same time. Population genetic theory predicts that such soft sweeps should be likely if the product of the population size and the mutation rate toward the adaptive allele is sufficiently large, such that multiple adaptive mutations can establish before one has reached fixation; however, it remains unclear how demographic processes affect the probability of observing soft sweeps. Here we extend the theory of soft selective sweeps to realistic demographic scenarios that allow for changes in population size over time. We first show that population bottlenecks can lead to the removal of all but one adaptive lineage from an initially soft selective sweep. The parameter regime under which such “hardening” of soft selective sweeps is likely is determined by a simple heuristic condition. We further develop a generalized analytical framework, based on an extension of the coalescent process, for calculating the probability of soft sweeps under arbitrary demographic scenarios. Two important limits emerge within this analytical framework: In the limit where population-size fluctuations are fast compared to the duration of the sweep, the likelihood of soft sweeps is determined by the harmonic mean of the variance effective population size estimated over the duration of the sweep; in the opposing slow fluctuation limit, the likelihood of soft sweeps is determined by the instantaneous variance effective population size at the onset of the sweep. We show that as a consequence of this finding the probability of observing soft sweeps becomes a function of the strength of selection. Specifically, in species with sharply fluctuating population size, strong selection is more likely to produce soft sweeps than weak selection. Our results highlight the importance of accurate demographic estimates over short

  8. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  9. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  10. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....