Science.gov

Sample records for fossilized vertebrate integument

  1. First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument

    PubMed Central

    Lingham-Soliar, Theagarten; Wesley-Smith, James

    2008-01-01

    The ultrastructure of dermal fibres of a 200 Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67 nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM–energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, ‘protofeathers’ in the Chinese dinosaurs. PMID:18577504

  2. Adaptive evolution of Hoxc13 genes in the origin and diversification of the vertebrate integument.

    PubMed

    Wu, Jianghong; Husile; Sun, Hailian; Wang, Feng; Li, Yurong; Zhao, Cunfa; Zhang, Wenguang

    2013-11-01

    The problem of origination and diversification of integument derivatives in vertebrates is still a challenge. The homeobox (Hox) genes Hoxc13 control integument formation in vertebrate. Hoxc13 show strong expression in the integument development, are highly conserved across vertebrates, and show mutations that are associated with skin and appendages. To test whether the evolution of the integument is associated with positive selection or relaxation of Hoxc13, we obtained these genes in a wide range of vertebrates. In Hoxc13, we found evidence of diversifying selection after speciation during the origin of vertebrates. In addition, we found the glycine-rich regions in Hoxc13 protein in mammals, but not among non-mammalian taxa. Our results strongly implicate that Hoxc13 genes could have played an important role in the evolution of integument structure. PMID:25961277

  3. Adaptation to the sky: Defining the feather with integument fossils from Mesozoic China and experimental evidence from molecular laboratories

    PubMed Central

    Chuong, Cheng-Ming; Wu, Ping; Zhang, Fu-Cheng; Xu, Xing; Yu, Minke; Widelitz, Randall B.; Jiang, Ting-Xin; Hou, Lianhai

    2015-01-01

    In this special issue of Evo-Devo of the amniote integument, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss results from the molecular and developmental biological experiments using chicken integument as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From these evidences, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for a proximo – distal growth mode; 2) forming hierarchical branches of rachis, barbs and barbules, with barbs shaped by differential cell death into either bilaterally or radially symmetric structures; 3) having a follicle structure, with a mesenchyme core during development; 4) maturing into a structure consisting of epithelia without a mesenchyme core with two sides of the vane facing the previous basal and supra-basal layer, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud → barbs → barbules → rachis is presented, which is opposite to the old view of scale plate → rachis → barbs → barbules. PMID:12949768

  4. Evidence for Evolution from the Vertebrate Fossil Record.

    ERIC Educational Resources Information Center

    Gingerich, Philip D.

    1983-01-01

    Discusses three examples of evolutionary transition in the vertebrate fossil record, considering evolutionary transitions at the species level. Uses archaic squirrel-like Paleocine primates, the earliest primates of modern aspect, as examples. Also reviews new evidence on the origin of whales and their transition from land to sea. (JN)

  5. REE compositions in fossil vertebrate dental tissues indicate biomineral preservation

    NASA Astrophysics Data System (ADS)

    Žigaite, Ž.; Kear, B.; Pérez-Huerta, A.; Jeffries, T.; Blom, H.

    2012-04-01

    Rare earth element (REE) abundances have been measured in a number of Palaeozoic and Mesozoic dental tissues using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS). Fossil vertebrates analysed comprise scales and tesserae of Silurian and Devonian acanthodians, chondrichthyans, galeaspids, mongolepids, thelodonts, as well as teeth of Cretaceous lungfish and marine reptiles. The evaluation of fossil preservation level has been made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections, using Energy Dispersive X-ray Spectroscopy (EDS). Fossil teeth and scales with significant structure and colour alteration have shown elevated heavy element concentrations, and the silicification of bioapatite has been common in their tissues. Stable oxygen isotope measurements (δ18O) of bulk biomineral have been conducted in parallel, and showed comparatively lower heavy oxygen values in the same fossil tissues with stronger visible alteration. Significant difference in REE concentrations has been observed between the dentine and enamel of Cretaceous plesiosaurs, suggesting the enamel to be more geochemically resistant to diagenetic overprint.

  6. Vertebral anomaly in fossil sea cows (Mammalia, Sirenia).

    PubMed

    Voss, Manja; Asbach, Patrick; Hilger, André

    2011-06-01

    Four incompletely preserved caudal vertebrae lacking the neural arches of two fossil sirenian individuals of Halitherium schinzii (Oligocene) from the Rhine area in Germany and northern Belgium reveal osteological alterations. The caudal vertebrae possess a transverse process with growth retardation. This asymmetry indicates that the affected transverse processes are less developed than their counterparts and, consequently, deviate from the norm. Computed tomography (CT) scans reveal osteosclerotic patterns, a morphological feature that characterizes sea cows and supports the nonpathological state of the vertebrae. Additionally, no indications of vertebral fractures or any other occurrences due to external factors are present. This is the oldest documentation of such an anomaly in any sirenian and is interpreted here as hypoplasia, the underdevelopment of an organ or parts of it that might cause a functional deficiency. PMID:21538937

  7. Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record

    PubMed Central

    Sansom, Robert S.; Gabbott, Sarah E.; Purnell, Mark A.

    2011-01-01

    The timing and sequence of events underlying the origin and early evolution of vertebrates remains poorly understood. The palaeontological evidence should shed light on these issues, but difficulties in interpretation of the non-biomineralized fossil record make this problematic. Here we present an experimental analysis of decay of vertebrate characters based on the extant jawless vertebrates (Lampetra and Myxine). This provides a framework for the interpretation of the anatomy of soft-bodied fossil vertebrates and putative cyclostomes, and a context for reading the fossil record of non-biomineralized vertebrate characters. Decay results in transformation and non-random loss of characters. In both lamprey and hagfish, different types of cartilage decay at different rates, resulting in taphonomic bias towards loss of ‘soft’ cartilages containing vertebrate-specific Col2α1 extracellular matrix proteins; phylogenetically informative soft-tissue characters decay before more plesiomorphic characters. As such, synapomorphic decay bias, previously recognized in early chordates, is more pervasive, and needs to be taken into account when interpreting the anatomy of any non-biomineralized fossil vertebrate, such as Haikouichthys, Mayomyzon and Hardistiella. PMID:20947532

  8. Late Pleistocene Vertebrates and Other Fossils from Epiguruk, Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    Hamilton, Thomas D.; Ashley, Gall M.; Reed, Katherine M.; Schweger, Charles E.

    1993-05-01

    Sediments exposed at Epiguruk, a large cutbank on the Kobuk River about 170 km inland from Kotzebue Sound, record multiple episodes of glacial-age alluviation followed by interstadial downcutting and formation of paleosols. Vertebrate remains from Epiguruk include mammoth, bison, caribou, an equid, a canid, arctic ground squirrel, lemmings, and voles. Radiocarbon ages of bone validated by concordant ages of peat and wood span the interval between about 37,000 and 14,000 yr B.P. The late Pleistocene pollen record is dominated by Cyperaceae, with Artemisia, Salix, Betula, and Gramineae also generally abundant. The fossil record from Epiguruk indicates that the Kobuk River valley supported tundra vegetation with abundant riparian willows during middle and late Wisconsin time. Large herbivores were present during the height of late Wisconsin glaciation as well as during its waning stage and the preceding interstadial interval. The Kobuk River valley would have been a favorable refugium for plants, animals, and possibly humans throughout the last glaciation.

  9. Experimental taphonomy and the anatomy and diversity of the earliest fossil vertebrates (Chengjiang Biota, Cambrian, China)

    NASA Astrophysics Data System (ADS)

    Purnell, Mark; Gabbott, Sarah; Murdock, Duncan; Cong, Peiyun

    2016-04-01

    The oldest fossil vertebrates are from the Lower Cambrian Chengjiang biota of China, which contains four genera of fish-like, primitive vertebrates: Haikouichthys, Myllokunmingia, Zhongjianichthys and Zhongxiniscus. These fossils play key roles in calibrating molecular clocks and informing our view of the anatomy of animals close to the origin of vertebrates, potentially including transitional forms between vertebrates and their nearest relatives. Despite the evident importance of these fossils, the degree to which taphonomic processes have affected their anatomical completeness has not been investigated. For example, some or all might have been affected by stemward slippage - the pattern observed in experimental decay of non-biomineralised chordates in which preferential decay of synapomorphies and retention of plesiomorphic characters would cause fossil taxa to erroneously occupy more basal positions than they should. This hypothesis is based on experimental data derived from decay of non-biomineralised chordates under laboratory conditions. We have expanded this analysis to include a broader range of potentially significant environmental variables; we have also compared and combined the results of experiments from several taxa to identify general patterns of chordate decay. Examination of the Chengjiang vertebrates in the light of these results demonstrates that, contrary to some assertions, experimentally derived models of phylogenetic bias are applicable to fossils. Anatomical and phylogenetic interpretations of early vertebrates that do not take taphonomic biases into account risk overestimating diversity and the evolutionary significance of differences between fossil specimens.

  10. Vertebrate fossils and trace fossils in Upper Jurassic-Lower cretaceous red beds in the Atacama region, Chile

    NASA Astrophysics Data System (ADS)

    Bell, C. M.; Suárez, M.

    Pterosaur, dinosaur, and crocodile bones are recorded here for the first time in Upper Jurassic-Lower Cretaceous red beds in the Atacama region east of Copiapó, Chile. Trace fossils produced by vertebrate animals include the footprints of theropod dinosaurs and the depressions of sandstone laminae interpreted as burrows and foot impressions. The fossils occur in the 1500-meter-thick Quebrada Monardes Formation, which consists predominantly of the aeolian and alluvial deposits of a semi-arid terrestrial environment. Vertebrate fossils are very rare in Chile. Dinosaur bones and footprints have previously been recorded at only seven locations, and pterosaur remains at only one location. The newly discovered dinosaur bones are the oldest to be described in Chile.

  11. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

    PubMed Central

    Sansom, Robert S.; Randle, Emma; Donoghue, Philip C. J.

    2015-01-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates. PMID:25520359

  12. 3D Microstructural Architecture of Muscle Attachments in Extant and Fossil Vertebrates Revealed by Synchrotron Microtomography

    PubMed Central

    Sanchez, Sophie; Dupret, Vincent; Tafforeau, Paul; Trinajstic, Katherine M.; Ryll, Bettina; Gouttenoire, Pierre-Jean; Wretman, Lovisa; Zylberberg, Louise; Peyrin, Françoise; Ahlberg, Per E.

    2013-01-01

    Background Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material. Methodology/Principal Findings Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi. Conclusions/Significance We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments. PMID:23468901

  13. Charles Darwin's beagle voyage, fossil vertebrate succession, and "the gradual birth & death of species".

    PubMed

    Brinkman, Paul D

    2010-01-01

    The prevailing view among historians of science holds that Charles Darwin became a convinced transmutationist only in the early spring of 1837, after his Beagle collections had been examined by expert British naturalists. With respect to the fossil vertebrate evidence, some historians believe that Darwin was incapable of seeing or understanding the transmutationist implications of his specimens without the help of Richard Owen. There is ample evidence, however, that he clearly recognized the similarities between several of the fossil vertebrates he collected and some of the extant fauna of South America before he returned to Britain. These comparisons, recorded in his correspondence, his diary and his notebooks during the voyage, were instances of a phenomenon that he later called the "law of the succession of types." Moreover, on the Beagle, he was following a geological research agenda outlined in the second volume of Charles Lyell's Principles of Geology, which implies that paleontological data alone could provide an insight into the laws which govern the appearance of new species. Since Darwin claims in On the Origin of Species that fossil vertebrate succession was one of the key lines of evidence that led him to question the fixity of species, it seems certain that he was seriously contemplating transmutation during the Beagle voyage. If so, historians of science need to reconsider both the role of Britain's expert naturalists and the importance of the fossil vertebrate evidence in the development of Darwin's ideas on transmutation. PMID:20665232

  14. A comprehensive database of quality-rated fossil ages for Sahul’s Quaternary vertebrates

    PubMed Central

    Rodríguez-Rey, Marta; Herrando-Pérez, Salvador; Brook, Barry W.; Saltré, Frédérik; Alroy, John; Beeton, Nicholas; Bird, Michael I.; Cooper, Alan; Gillespie, Richard; Jacobs, Zenobia; Johnson, Christopher N.; Miller, Gifford H.; Prideaux, Gavin J.; Roberts, Richard G.; Turney, Chris S.M.; Bradshaw, Corey J.A.

    2016-01-01

    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery. PMID:27434208

  15. A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates.

    PubMed

    Rodríguez-Rey, Marta; Herrando-Pérez, Salvador; Brook, Barry W; Saltré, Frédérik; Alroy, John; Beeton, Nicholas; Bird, Michael I; Cooper, Alan; Gillespie, Richard; Jacobs, Zenobia; Johnson, Christopher N; Miller, Gifford H; Prideaux, Gavin J; Roberts, Richard G; Turney, Chris S M; Bradshaw, Corey J A

    2016-01-01

    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery. PMID:27434208

  16. Water relations of tetrapod integument.

    PubMed

    Lillywhite, Harvey B

    2006-01-01

    The vertebrate integument represents an evolutionary compromise between the needs for mechanical protection and those of sensing the environment and regulating the exchange of materials and energy. Fibrous keratins evolved as a means of strengthening the integument while simultaneously providing a structural support for lipids, which comprise the principal barrier to cutaneous water efflux in terrestrial taxa. Whereas lipids are of fundamental importance to water barriers, the efficacy of these barriers depends in many cases on structural features that enhance or maintain the integrity of function. Amphibians are exceptional among tetrapods in having very little keratin and a thin stratum corneum. Thus, effective lipid barriers that are present in some specialized anurans living in xeric habitats are external to the epidermis, whereas lipid barriers of amniotes exist as a lipid-keratin complex within the stratum corneum. Amphibians prevent desiccation of the epidermis and underlying tissues either by evaporating water from a superficial aqueous film, which must be replenished, or by shielding the stratum corneum with superficial lipids. Water barrier function in vertebrates generally appears to be relatively fixed, although various species have ;plasticity' to adjust the barrier effectiveness facultatively. While it is clear that both phenotypic plasticity and genetic adaptation can account for covariation between environment and skin resistance to water efflux, studies of the relative importance of these two phenomena are few. Fundamental mechanisms for adjusting the skin water barrier include changes in barrier thickness, composition and physicochemical properties of cutaneous lipids, and/or geometry of the barrier within the epidermis. While cutaneous lipids have been studied extensively in the contexts of disease and cosmetics, relatively little is known about the processes of permeability barrier ontogenesis related to adaptation and environment. Advances in

  17. Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes

    PubMed Central

    Müller, Johannes; Scheyer, Torsten M.; Head, Jason J.; Barrett, Paul M.; Werneburg, Ingmar; Ericson, Per G. P.; Pol, Diego; Sánchez-Villagra, Marcelo R.

    2010-01-01

    The development of distinct regions in the amniote vertebral column results from somite formation and Hox gene expression, with the adult morphology displaying remarkable variation among lineages. Mammalian regionalization is reportedly very conservative or even constrained, but there has been no study investigating vertebral count variation across Amniota as a whole, undermining attempts to understand the phylogenetic, ecological, and developmental factors affecting vertebral column variation. Here, we show that the mammalian (synapsid) and reptilian lineages show early in their evolutionary histories clear divergences in axial developmental plasticity, in terms of both regionalization and meristic change, with basal synapsids sharing the conserved axial configuration of crown mammals, and basal reptiles demonstrating the plasticity of extant taxa. We conducted a comprehensive survey of presacral vertebral counts across 436 recent and extinct amniote taxa. Vertebral counts were mapped onto a generalized amniote phylogeny as well as individual ingroup trees, and ancestral states were reconstructed by using squared-change parsimony. We also calculated the relationship between presacral and cervical numbers to infer the relative influence of homeotic effects and meristic changes and found no correlation between somitogenesis and Hox-mediated regionalization. Although conservatism in presacral numbers characterized early synapsid lineages, in some cases reptiles and synapsids exhibit the same developmental innovations in response to similar selective pressures. Conversely, increases in body mass are not coupled with meristic or homeotic changes, but mostly occur in concert with postembryonic somatic growth. Our study highlights the importance of fossils in large-scale investigations of evolutionary developmental processes. PMID:20080660

  18. X-ray computed tomography datasets for forensic analysis of vertebrate fossils

    PubMed Central

    Rowe, Timothy B.; Luo, Zhe-Xi; Ketcham, Richard A.; Maisano, Jessica A.; Colbert, Matthew W.

    2016-01-01

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251

  19. X-ray computed tomography datasets for forensic analysis of vertebrate fossils.

    PubMed

    Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A; Maisano, Jessica A; Colbert, Matthew W

    2016-01-01

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251

  20. Evidence of inherent spontaneous polarization in the metazoan integument epithelia.

    PubMed Central

    Athenstaedt, H; Claussen, H

    1983-01-01

    The live integument epithelia of the metazoa have an inherent spontaneous polarization (an inherent permanent electric dipole moment) of corresponding direction perpendicular to the integument surface. The existence of the inherent polarization was proved by their temperature dependence, i.e., by the pyroelectric (PE) effect. Quantitative PE measurements were carried out on a number of integument epithelia of vertebrates (a) in vivo, (b) on fresh epidermis preparations, and (c) on dead, air-dried epidermis specimens of the same species. The demonstrated spontaneous polarization is not dependent on the living state and not caused by a potential difference between the outer and inner integument surface. Dead, dry epidermis samples (potential difference less than 0.01 mV) as well as dead, dry integument appendages (bristles, hairs), and dead cuticles (of arthropoda, annelida, nematoda) showed an inherent dipole moment of the same orientation as the live epidermis. The findings reveal a relationship between the direction (vector) of inherent spontaneous polarization and that of growth (morphogenesis) in the animal epidermis, their appendages, and cuticles. We conclude (a) that the inherent spontaneous polarization is present in live individual epithelial cells of the metazoan integument, and (b) that this physical property is related to the structural and functional cell polarity of integument epithelia and possibly of other epithelia. Images FIGURE 10 PMID:6838974

  1. Nd and Sr isotope compositions in modern and fossil bones - Proxies for vertebrate provenance and taphonomy

    NASA Astrophysics Data System (ADS)

    Tütken, Thomas; Vennemann, Torsten W.; Pfretzschner, Hans-U.

    2011-10-01

    Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the 143Nd/ 144Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo143Nd/ 144Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 10 1-10 3 are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, ɛ Nd values are often similar within one ɛ Nd unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing ɛ Nd values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic 143Nd/ 144Nd incorporated post mortem during diagenesis. Unlike REE patterns, 143Nd/ 144Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the ɛ Nd value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of ±1 ɛ Nd unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil

  2. Upper Devonian vertebrate taphonomy and sedimentology from the Klunas fossil site, Tervete Formation, Latvia

    NASA Astrophysics Data System (ADS)

    Vasiļkova, J.; Lukševičs, E.; Stinkulis, Ä.¢.; Zupinš, I.

    2012-04-01

    The deposits of the Tervete Formation, Famennian Stage of Latvia, comprising weakly cemented sandstone and sand intercalated with dolomitic marls, siltstone and clay, have been traditionally interpreted as having formed in a shallow, rather restricted sea with lowered salinity. During seven field seasons the excavations took place in the south-western part of Latvia, at the Klunas site, and resulted in extensive palaeontological and sedimentological data. The taphonomical analysis has been performed, having evaluated the size, sorting, orientation of the fossils, articulation and skeletal preservation as well as the degree of fragmentation and abrasion. The sedimentological analysis involved interpretation of sedimentary structures, palaeocurrent direction reconstruction, grain-size analysis and approximate water depth calculations. The vertebrate assemblage of the Klunas site represents all known taxa of the Sparnene Regional Stage of the Baltic Devonian, comprising placoderms Bothriolepis ornata Eichwald, B. jani Lukševičs, Phyllolepis tolli Vasiliauskas, Dunkleosteus sp. and Chelyophorus sp., sarcopterygians Holoptychius nobilissimus Agassiz, Platycephalichthys skuenicus Vorobyeva, Cryptolepis sp., Conchodus sp., Glyptopomus ? sp., "Strunius" ? sp., and Dipterus sp., as well as an undetermined actinopterygian. Placoderms Bothriolepis ornata and B. jani dominate the assemblage. The fossils are represented in the main by fully disarticulated placoderm plates and plate fragments, sarcopterygian scales and teeth, rarely bones of the head and shoulder girdle, and acanthodian spines and scales. The characteristic feature is the great amount of fragmentary remains several times exceeding the number of intact bones. The horizontal distribution of the bones over the studied area is not homogenous, distinct zones of increased or decreased density of fossils can be traced. Zones of the increased density usually contain many elements of various sizes, whereas zones of the

  3. First direct evidence of a vertebrate three-level trophic chain in the fossil record.

    PubMed

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H J

    2008-01-22

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time. PMID:17971323

  4. Fossil vertebrate footprints in the Coconino Sandstone (Permian) of northern Arizona: Evidence for underwater origin

    SciTech Connect

    Brand, L.R.; Thu Tang )

    1991-12-01

    Numerous fossil vertebrate trackways in the Coconino Sandstone of northern Arizona exhibit several features that imply that these trackways were not made in subaerial conditions. Some trackways begin or end abruptly on undisturbed bedding planes, and in other trackways the individual prints are oriented in a different direction from that of the trackway. These features indicate buoyancy of the animals in water. The animals were swimming in the water part of the time and at other times walking on the substrate, and they were sometimes orienting upslope on the surface of the underwater dunes, while being drifted sideways by lateral currents. Observations on salamander locomotion in a sedimentation tank with flowing water support this model.

  5. Rare earth and trace elements of fossil vertebrate bioapatite as palaeoenvironmental and sedimentological proxies

    NASA Astrophysics Data System (ADS)

    Žigaitė, Živilė; Fadel, Alexandre; Pérez-Huerta, Alberto; Jeffries, Teresa

    2015-04-01

    Rare earth (REE) and trace element compositions of fossil vertebrate dental microremains have been studied in Silurian and Devonian vertebrate dental scales and spines in-situ, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Samples were selected from the well-known Silurian bone beds of Vesiku and Ohesaare in Saaremaa island of Estonia, and a number of Lower Devonian localities from Spitsbergen (Svalbard), Andrée Land group. Biomineral preservation was assessed using spot semi-quantitative elemental chemistry (SEM-EDS) and electron back-scatter difractometry (EBSD) for cristallinity imaging. The obtained PAAS shale-normalised REE concentrations were evaluated using basic geochemical calculations and quantifications. The REE patterns from the Lower Devonian vertebrate apatite from Andrée Land, Spitsbergen (Wood Bay and Grey Hœk formations) did not show any recognisable taxon-specific behavior, but had rather well expressed differences of REE compositions related to biomineral structure and sedimentary settings, suggesting REE instead to reflect burial environments and sedimentological history. The Eu anomaly recorded in two of the studied localities but not in the other indicate different taphonomic conditions and palaeoenvironment, while La/Sm, La/Yb ratios sugeest considerable influence of terrestrial freshwater during the early diagenesis. The La/Yb and La/Sm plots also agree with the average REE concentrations, reflecting domination of the adsoption over substitution as principal REE uptake mechanism in the fossils which had significantly lower overall REE concentrations, and vice versa. Vesiku (Homerian, Wenlock) microremains yielded very uniform REE patterns with slightly lower overall REE concentrations in enameloid than in dentine, with strong enrichment in middle REE and depletion in heavy REE. Negative Europium (Eu) anomaly was pronounced in all the profiles, but Cerium (Ce) anomalies were not detected suggesting possible

  6. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    PubMed

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. PMID:27040775

  7. Surface drag reduction and flow separation control in pelagic vertebrates, with implications for interpreting scale morphologies in fossil taxa

    PubMed Central

    Palmer, Colin; Young, Mark T.

    2015-01-01

    Living in water imposes severe constraints on the evolution of the vertebrate body. As a result of these constraints, numerous extant and extinct aquatic vertebrate groups evolved convergent osteological and soft-tissue adaptations. However, one important suite of adaptations is still poorly understood: dermal cover morphologies and how they influence surface fluid dynamics. This is especially true for fossil aquatic vertebrates where the soft tissue of the dermis is rarely preserved. Recent studies have suggested that the keeled scales of mosasaurids (pelagic lizards that lived during the Late Cretaceous) aided in surface frictional drag reduction in a manner analogous to the riblets on shark placoid scales. However, here we demonstrate that mosasaurid scales were over an order of magnitude too large to have this effect. More likely they increased the frictional drag of the body and may have played a role in controlling flow separation by acting as surface roughness that turbulated the boundary layer. Such a role could have reduced pressure drag and enhanced manoeuvrability. We caution those studying fossil aquatic vertebrates from positing the presence of surface drag reducing morphologies, because as we show herein, to be effective such features need to have a spacing of approximately 0.1 mm or less. PMID:26064576

  8. Surface drag reduction and flow separation control in pelagic vertebrates, with implications for interpreting scale morphologies in fossil taxa.

    PubMed

    Palmer, Colin; Young, Mark T

    2015-01-01

    Living in water imposes severe constraints on the evolution of the vertebrate body. As a result of these constraints, numerous extant and extinct aquatic vertebrate groups evolved convergent osteological and soft-tissue adaptations. However, one important suite of adaptations is still poorly understood: dermal cover morphologies and how they influence surface fluid dynamics. This is especially true for fossil aquatic vertebrates where the soft tissue of the dermis is rarely preserved. Recent studies have suggested that the keeled scales of mosasaurids (pelagic lizards that lived during the Late Cretaceous) aided in surface frictional drag reduction in a manner analogous to the riblets on shark placoid scales. However, here we demonstrate that mosasaurid scales were over an order of magnitude too large to have this effect. More likely they increased the frictional drag of the body and may have played a role in controlling flow separation by acting as surface roughness that turbulated the boundary layer. Such a role could have reduced pressure drag and enhanced manoeuvrability. We caution those studying fossil aquatic vertebrates from positing the presence of surface drag reducing morphologies, because as we show herein, to be effective such features need to have a spacing of approximately 0.1 mm or less. PMID:26064576

  9. Middle Pleistocene vertebrate fossils from the Nefud Desert, Saudi Arabia: Implications for biogeography and palaeoecology

    NASA Astrophysics Data System (ADS)

    Stimpson, Christopher M.; Lister, Adrian; Parton, Ash; Clark-Balzan, Laine; Breeze, Paul S.; Drake, Nick A.; Groucutt, Huw S.; Jennings, Richard; Scerri, Eleanor M. L.; White, Tom S.; Zahir, Muhammad; Duval, Mathieu; Grün, Rainer; Al-Omari, Abdulaziz; Al Murayyi, Khalid Sultan M.; Zalmout, Iyaed S.; Mufarreh, Yahya A.; Memesh, Abdullah M.; Petraglia, Michael D.

    2016-07-01

    The current paucity of Pleistocene vertebrate records from the Arabian Peninsula - a landmass of over 3 million km2 - is a significant gap in our knowledge of the Quaternary. Such data are critical lines of contextual evidence for considering animal and hominin dispersals between Africa and Eurasia generally, and hominin palaeoecology in the Pleistocene landscapes of the Arabian interior specifically. Here, we describe an important contribution to the record and report stratigraphically-constrained fossils of mammals, birds and reptiles from recent excavations at Ti's al Ghadah in the southwestern Nefud Desert. Combined U-series and ESR analyses of Oryx sp. teeth indicate that the assemblage is Middle Pleistocene in age and dates to ca. 500 ka. The identified fauna is a biogeographical admixture that consists of likely endemics and taxa of African and Eurasian affinity and includes extinct and extant (or related Pleistocene forms of) mammals (Palaeoloxodon cf. recki, Panthera cf. gombaszogenis, Equus hemionus, cf. Crocuta crocuta, Vulpes sp., Canis anthus, Oryx sp.), the first Pleistocene records of birds from the Arabian Peninsula (Struthio sp., Neophron percnopterus, Milvus cf. migrans, Tachybaptus sp. Anas sp., Pterocles orientalis, Motacilla cf. alba) and reptiles (Varanidae/Uromastyx sp.). We infer that the assemblage reflects mortality in populations of herbivorous animals and their predators and scavengers that were attracted to freshwater and plant resources in the inter-dune basin. At present, there is no evidence to suggest hominin agency in the accumulation of the bone assemblages. The inferred ecological characteristics of the taxa recovered indicate the presence, at least periodically, of substantial water-bodies and open grassland habitats.

  10. Exceptionally well preserved late Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas.

    PubMed

    Steadman, David W; Franz, Richard; Morgan, Gary S; Albury, Nancy A; Kakuk, Brian; Broad, Kenneth; Franz, Shelley E; Tinker, Keith; Pateman, Michael P; Lott, Terry A; Jarzen, David M; Dilcher, David L

    2007-12-11

    We report Quaternary vertebrate and plant fossils from Sawmill Sink, a "blue hole" (a water-filled sinkhole) on Great Abaco Island, The Bahamas. The fossils are well preserved because of deposition in anoxic salt water. Vertebrate fossils from peat on the talus cone are radiocarbon-dated from approximately 4,200 to 1,000 cal BP (Late Holocene). The peat produced skeletons of two extinct species (tortoise Chelonoidis undescribed sp. and Caracara Caracara creightoni) and two extant species no longer in The Bahamas (Cuban crocodile, Crocodylus rhombifer; and Cooper's or Gundlach's Hawk, Accipiter cooperii or Accipiter gundlachii). A different, inorganic bone deposit on a limestone ledge in Sawmill Sink is a Late Pleistocene owl roost that features lizards (one species), snakes (three species), birds (25 species), and bats (four species). The owl roost fauna includes Rallus undescribed sp. (extinct; the first Bahamian flightless rail) and four other locally extinct species of birds (Cooper's/Gundlach's Hawk, A. cooperii/gundlachii; flicker Colaptes sp.; Cave Swallow, Petrochelidon fulva; and Eastern Meadowlark, Sturnella magna) and mammals (Bahamian hutia, Geocapromys ingrahami; and a bat, Myotis sp.). The exquisitely preserved fossils from Sawmill Sink suggest a grassy pineland as the dominant plant community on Abaco in the Late Pleistocene, with a heavier component of coppice (tropical dry evergreen forest) in the Late Holocene. Important in its own right, this information also will help biologists and government planners to develop conservation programs in The Bahamas that consider long-term ecological and cultural processes. PMID:18077421

  11. Exceptionally well preserved late Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas

    PubMed Central

    Steadman, David W.; Franz, Richard; Morgan, Gary S.; Albury, Nancy A.; Kakuk, Brian; Broad, Kenneth; Franz, Shelley E.; Tinker, Keith; Pateman, Michael P.; Lott, Terry A.; Jarzen, David M.; Dilcher, David L.

    2007-01-01

    We report Quaternary vertebrate and plant fossils from Sawmill Sink, a “blue hole” (a water-filled sinkhole) on Great Abaco Island, The Bahamas. The fossils are well preserved because of deposition in anoxic salt water. Vertebrate fossils from peat on the talus cone are radiocarbon-dated from ≈4,200 to 1,000 cal BP (Late Holocene). The peat produced skeletons of two extinct species (tortoise Chelonoidis undescribed sp. and Caracara Caracara creightoni) and two extant species no longer in The Bahamas (Cuban crocodile, Crocodylus rhombifer; and Cooper's or Gundlach's Hawk, Accipiter cooperii or Accipiter gundlachii). A different, inorganic bone deposit on a limestone ledge in Sawmill Sink is a Late Pleistocene owl roost that features lizards (one species), snakes (three species), birds (25 species), and bats (four species). The owl roost fauna includes Rallus undescribed sp. (extinct; the first Bahamian flightless rail) and four other locally extinct species of birds (Cooper's/Gundlach's Hawk, A. cooperii/gundlachii; flicker Colaptes sp.; Cave Swallow, Petrochelidon fulva; and Eastern Meadowlark, Sturnella magna) and mammals (Bahamian hutia, Geocapromys ingrahami; and a bat, Myotis sp.). The exquisitely preserved fossils from Sawmill Sink suggest a grassy pineland as the dominant plant community on Abaco in the Late Pleistocene, with a heavier component of coppice (tropical dry evergreen forest) in the Late Holocene. Important in its own right, this information also will help biologists and government planners to develop conservation programs in The Bahamas that consider long-term ecological and cultural processes. PMID:18077421

  12. Integument und Anhangsorgane

    NASA Astrophysics Data System (ADS)

    Schliemann, Harald

    Das Integument umhüllt den Wirbeltierkörper lückenlos. In der embryonalen Mundbucht (Stomodaeum) und der Afterbucht (Proctodaeum) grenzt es an die Auskleidung des Darmrohres. Über die generelle Bedeutung einer Haut als Abgrenzung zwischen Körperinnenraum und Außenmedium hinaus hat es bei Schädeltieren ein breites Spektrum von Funktionen. Die wichtigsten sind: Mechanischer Schutz durch Verhornungen und Verknöch erungen; Wundheilung; Schutz vor Wasserverlust; Schutz vor Infektionen durch bakterizide Drüsensekrete und immunkompetente Zellen; Schutz vor kurzwelliger Strahlung durch Pigmente; Schutz vor Überwärmung durch Schweißdrüsensekrete und Schutz vor Wärmeverlust durch Federn und Haare; Ausbildung lokomotorisch wichtiger Strukturen wie Federn, Flug- und Schwimmhäute, Krallen und Hufe; Redukt ion des Strömungswiderstandes durch Dämpfungshaut; Abgabe von Sekreten zur Ernährung (Milch); Ausbildung von Strukturen zu Nahrungserwerb und_-bearbeitung, z. B. Zähne, Barten;

  13. Scenes from the past: initial investigation of early jurassic vertebrate fossils with multidetector CT.

    PubMed

    Bolliger, Stephan A; Ross, Steffen; Thali, Michael J; Hostettler, Bernhard; Menkveld-Gfeller, Ursula

    2012-01-01

    The study of fossils permits the reconstruction of past life on our planet and enhances our understanding of evolutionary processes. However, many fossils are difficult to recognize, being encased in a lithified matrix whose tedious removal is required before examination is possible. The authors describe the use of multidetector computed tomography (CT) in locating, identifying, and examining fossil remains of crocodilians (Mesosuchia) embedded in hard shale, all without removing the matrix. In addition, they describe how three-dimensional (3D) reformatted CT images provided details that were helpful for extraction and preparation. Multidetector CT can help experienced paleontologists localize and characterize fossils in the matrix of a promising rock specimen in a nondestructive manner. Moreover, with its capacity to generate highly accurate 3D images, multidetector CT can help determine whether the fossils warrant extraction and can assist in planning the extraction process. Thus, multidetector CT may well become an invaluable tool in the field of paleoradiology. PMID:22977034

  14. High-elevation late Pleistocene (MIS 6-5) vertebrate faunas from the Ziegler Reservoir fossil site, Snowmass Village, Colorado

    NASA Astrophysics Data System (ADS)

    Sertich, Joseph J. W.; Stucky, Richard K.; McDonald, H. Gregory; Newton, Cody; Fisher, Daniel C.; Scott, Eric; Demboski, John R.; Lucking, Carol; McHorse, Brianna K.; Davis, Edward B.

    2014-11-01

    The vertebrate record at the Ziegler Reservoir fossil site (ZRFS) near Snowmass Village, Colorado ranges from ~ 140 to 77 ka, spanning all of Marine Oxygen Isotope Stage (MIS) 5. The site contains at least 52 taxa of macro- and microvertebrates, including one fish, three amphibian, four reptile, ten bird, and 34 mammal taxa. The most common vertebrate is Ambystoma tigrinum (tiger salamander), which is represented by > 22,000 elements representing the entire life cycle. The mastodon, Mammut americanum, is the most common mammal, and is documented by > 1800 skeletal elements making the ZRFS one of the largest accumulations of proboscidean remains in North America. Faunas at the ZRFS can be divided into two groups, a lake-margin group dating to ~ 140-100 ka that is dominated by woodland taxa, and a lake-center group dating to ~ 87-77 ka characterized by taxa favoring more open conditions. The change in faunal assemblages occurred between MIS 5c and 5a (vertebrates were absent from MIS 5b deposits), which were times of significant environmental change at the ZRFS. Furthermore, the ZRFS provides a well-dated occurrence of the extinct Bison latifrons, which has implications for the timing of the Rancholabrean Mammal Age in the region.

  15. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    PubMed Central

    Iniesto, Miguel; Buscalioni, Ángela D.; Carmen Guerrero, M.; Benzerara, Karim; Moreira, David; López-Archilla, Ana I.

    2016-01-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time. PMID:27162204

  16. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    NASA Astrophysics Data System (ADS)

    Iniesto, Miguel; Buscalioni, Ángela D.; Carmen Guerrero, M.; Benzerara, Karim; Moreira, David; López-Archilla, Ana I.

    2016-05-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time.

  17. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates.

    PubMed

    Iniesto, Miguel; Buscalioni, Ángela D; Carmen Guerrero, M; Benzerara, Karim; Moreira, David; López-Archilla, Ana I

    2016-01-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time. PMID:27162204

  18. Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates.

    PubMed

    Maldanis, Lara; Carvalho, Murilo; Almeida, Mariana Ramos; Freitas, Francisco Idalécio; de Andrade, José Artur Ferreira Gomes; Nunes, Rafael Silva; Rochitte, Carlos Eduardo; Poppi, Ronei Jesus; Freitas, Raul Oliveira; Rodrigues, Fábio; Siljeström, Sandra; Lima, Frederico Alves; Galante, Douglas; Carvalho, Ismar S; Perez, Carlos Alberto; de Carvalho, Marcelo Rodrigues; Bettini, Jefferson; Fernandez, Vincent; Xavier-Neto, José

    2016-01-01

    Elucidating cardiac evolution has been frustrated by lack of fossils. One celebrated enigma in cardiac evolution involves the transition from a cardiac outflow tract dominated by a multi-valved conus arteriosus in basal actinopterygians, to an outflow tract commanded by the non-valved, elastic, bulbus arteriosus in higher actinopterygians. We demonstrate that cardiac preservation is possible in the extinct fish Rhacolepis buccalis from the Brazilian Cretaceous. Using X-ray synchrotron microtomography, we show that Rhacolepis fossils display hearts with a conus arteriosus containing at least five valve rows. This represents a transitional morphology between the primitive, multivalvar, conal condition and the derived, monovalvar, bulbar state of the outflow tract in modern actinopterygians. Our data rescue a long-lost cardiac phenotype (119-113 Ma) and suggest that outflow tract simplification in actinopterygians is compatible with a gradual, rather than a drastic saltation event. Overall, our results demonstrate the feasibility of studying cardiac evolution in fossils. PMID:27090087

  19. Fossil vertebrates from Antigua, Lesser Antilles: Evidence for late Holocene human-caused extinctions in the West Indies

    PubMed Central

    Steadman, David W.; Pregill, Gregory K.; Olson, Storrs L.

    1984-01-01

    Vertebrate remains recovered from a limestone fissure filling on Antigua, Lesser Antilles, are associated with radiocarbon dates ranging from 4300 to 2500 yr B.P., contemporaneous with the earliest aboriginal human occupation of the island. Nine taxa of lizards, snakes, birds, bats, and rodents (one-third of the total number of species represented as fossils) are either completely extinct or have never been recorded historically from Antigua. These extinctions came long after any major climatic changes of the Pleistocene and are best attributed to human-caused environmental degradation in the past 3500 yr. Such unnatural influences have probably altered patterns of distribution and species diversity throughout the West Indies, thus rendering unreliable the data traditionally used in ecological and biogeographic studies that consider only the historically known fauna. PMID:16593490

  20. Heart fossilization is possible and informs the evolution of cardiac outflow tract in vertebrates

    PubMed Central

    Maldanis, Lara; Carvalho, Murilo; Almeida, Mariana Ramos; Freitas, Francisco Idalécio; de Andrade, José Artur Ferreira Gomes; Nunes, Rafael Silva; Rochitte, Carlos Eduardo; Poppi, Ronei Jesus; Freitas, Raul Oliveira; Rodrigues, Fábio; Siljeström, Sandra; Lima, Frederico Alves; Galante, Douglas; Carvalho, Ismar S; Perez, Carlos Alberto; de Carvalho, Marcelo Rodrigues; Bettini, Jefferson; Fernandez, Vincent; Xavier-Neto, José

    2016-01-01

    Elucidating cardiac evolution has been frustrated by lack of fossils. One celebrated enigma in cardiac evolution involves the transition from a cardiac outflow tract dominated by a multi-valved conus arteriosus in basal actinopterygians, to an outflow tract commanded by the non-valved, elastic, bulbus arteriosus in higher actinopterygians. We demonstrate that cardiac preservation is possible in the extinct fish Rhacolepis buccalis from the Brazilian Cretaceous. Using X-ray synchrotron microtomography, we show that Rhacolepis fossils display hearts with a conus arteriosus containing at least five valve rows. This represents a transitional morphology between the primitive, multivalvar, conal condition and the derived, monovalvar, bulbar state of the outflow tract in modern actinopterygians. Our data rescue a long-lost cardiac phenotype (119-113 Ma) and suggest that outflow tract simplification in actinopterygians is compatible with a gradual, rather than a drastic saltation event. Overall, our results demonstrate the feasibility of studying cardiac evolution in fossils. DOI: http://dx.doi.org/10.7554/eLife.14698.001 PMID:27090087

  1. Fossil vertebrates from the Pranhita-Godavari Valley (India) and their stratigraphic correlation

    NASA Astrophysics Data System (ADS)

    Jain, Sohan L.; Roychowdhury, Tapan

    Little comprehensive information on Gondwana vertebrates from India is available which enables useful stratigraphic correlations with the world's better known faunas. In this context the Upper Gondwana sequence from the Pranhita-Godavari Valley presents a unique vertebrate faunal record. During the last 25 years, this faunal record has been considerably improved with the discovery of new faunas and better material than earlier records. A Middle Triassic age fauna (Yerrapalli fauna) in the valley consists of two large dicynodonts, two labyrinthodonts, a cynodont, a rhynchosaur, and a saurichthyid fish. In many respects this fauna is comparable to the Middle Triassic Manda beds of Tanzania. An Upper Triassic fauna (Maleri fauna) is represented by a labyrinthodont (Metoposaurus), a rhynchosaur (Paradapedon), a parasuchid (Parasuchus), a cynodont (Exaeretodon), and a protorosaur (Malerisaurus). In addition, fishes are represented by dipnoans and xenacanths. This fauna is comparable to several well-documented Upper Triassic faunas elsewhere. Another fauna (Dharmaram fauna), which may be Upper Norian to Rhaetian in age, has been found (but not described) that includes at least two prosauropods (a plateosaurid and a thecodondotosaurid) and at least two more archosaurs. This fauna is comparable to a Rhaetic fauna. An Early Jurassic fauna (Kota fauna) includes a large sauropod (Barapasaurus) a pterosaur (Compylognathoides), a? teleosaurid crocodile, and a few symmetrodont mammals besides a number of piscine members (Lepidotes, Paradapedium, Tetragonolepis, Indocoelacanthus and Pholidophorus). The presence of four distinct faunas from the Pranhita-Godavari Valley has suggested possibilities of meaningful stratigraphic correlations.

  2. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye.

    PubMed

    Gabbott, Sarah E; Donoghue, Philip C J; Sansom, Robert S; Vinther, Jakob; Dolocan, Andrei; Purnell, Mark A

    2016-08-17

    The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive 'eye spot' in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report-based on evidence of size, shape, preservation mode and localized occurrence-the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin. PMID:27488650

  3. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye

    PubMed Central

    Gabbott, Sarah E.; Sansom, Robert S.; Vinther, Jakob; Dolocan, Andrei; Purnell, Mark A.

    2016-01-01

    The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive ‘eye spot’ in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report—based on evidence of size, shape, preservation mode and localized occurrence—the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin. PMID:27488650

  4. Early development of rostrum saw-teeth in a fossil ray tests classical theories of the evolution of vertebrate dentitions

    PubMed Central

    Smith, Moya Meredith; Riley, Alex; Fraser, Gareth J.; Underwood, Charlie; Welten, Monique; Kriwet, Jürgen; Pfaff, Cathrin; Johanson, Zerina

    2015-01-01

    In classical theory, teeth of vertebrate dentitions evolved from co-option of external skin denticles into the oral cavity. This hypothesis predicts that ordered tooth arrangement and regulated replacement in the oral dentition were also derived from skin denticles. The fossil batoid ray Schizorhiza stromeri (Chondrichthyes; Cretaceous) provides a test of this theory. Schizorhiza preserves an extended cartilaginous rostrum with closely spaced, alternating saw-teeth, different from sawfish and sawsharks today. Multiple replacement teeth reveal unique new data from micro-CT scanning, showing how the ‘cone-in-cone’ series of ordered saw-teeth sets arrange themselves developmentally, to become enclosed by the roots of pre-existing saw-teeth. At the rostrum tip, newly developing saw-teeth are present, as mineralized crown tips within a vascular, cartilaginous furrow; these reorient via two 90° rotations then relocate laterally between previously formed roots. Saw-tooth replacement slows mid-rostrum where fewer saw-teeth are regenerated. These exceptional developmental data reveal regulated order for serial self-renewal, maintaining the saw edge with ever-increasing saw-tooth size. This mimics tooth replacement in chondrichthyans, but differs in the crown reorientation and their enclosure directly between roots of predecessor saw-teeth. Schizorhiza saw-tooth development is decoupled from the jaw teeth and their replacement, dependent on a dental lamina. This highly specialized rostral saw, derived from diversification of skin denticles, is distinct from the dentition and demonstrates the potential developmental plasticity of skin denticles. PMID:26423843

  5. The many functions of fish integument

    USGS Publications Warehouse

    Elliott, D.G.

    2011-01-01

    The integument or skin is the envelope that not only separates and protects a fish from its environment, but also provides the means through which most contacts with the outer world are made. It is a large organ and is continuous with the linings of all body openings, and also covers the fins. Fish integument is a multifunctional organ, and its components may serve important roles in protection, communication, sensory perception, locomotion, respiration, ion regulation, excretion, and thermal regulation.

  6. Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis.

    PubMed

    Boevé, Jean-Luc; Schaffner, Urs

    2003-01-01

    The larvae of several sawfly species belonging to the Tenthredinidae (Hymenoptera) have such a low mechanical resistance in the integument that slight mechanical damage to the integument is enough to provoke the release of hemolymph at a given spot. We quantified this phenomenon, which we call "easy bleeding", by measuring the pressure needed to pierce dissected sawfly integument. We also investigated the feeding deterrance of ethanolic extracts of the hemolymph by laboratory bioassays using Myrmica rubra ant workers. These traits, integument resistance and hemolymph deterrence, were inversely related, considering 22 tenthredinid species. A negative correlation was obtained by only taking into account the species of one tenthredinid tribe, namely the Phymatocerini (nine species studied). Our results support the "harmful hemolymph hypothesis" that we present here and that assumes a functional link between these morphological and chemical traits, jointly acting as a chemical defense strategy. We suspect hemolymph deterrence to be often due to sequestration of plant secondary metabolites. We discuss the role of easy bleeding, considering the fact that sawfly larvae are frequently the prey of invertebrate and vertebrate predators. It is suggested that invertebrates such as ants were more important than vertebrates in the evolution of easy bleeding. PMID:12647187

  7. Heterogeneous rare earth element (REE) patterns and concentrations in a fossil bone: Implications for the use of REE in vertebrate taphonomy and fossilization history

    NASA Astrophysics Data System (ADS)

    Suarez, Celina A.; Macpherson, G. L.; González, Luis A.; Grandstaff, David E.

    2010-05-01

    A bone fragment (CGDQ-3) of Falcariusutahensis, a therizinosaur from the Early Cretaceous Cedar Mountain Formation, Utah, contained within a carbonate nodule, was analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in order to investigate REE variability within a thin-walled phalanx. Previous studies have found depth-related REE pattern variations; however, in CGDQ-3 variation occurs along the circumference of the bone. NASC-normalized REE patterns and concentrations vary between two apparent end members. A light-REE enriched (LREE) pattern, similar to solution ICP-MS analysis of this bone, characterizes approximately two-thirds of the bone fragment. Total REE concentrations are high and do not vary significantly from the periosteal surface to the medullar surface. Conversely, the remaining one-third of the bone has REE patterns that are MREE-depleted and low in total REE concentrations. REE concentrations in this part of the bone do not vary significantly from the periosteal to the medullar surface. A positive Ce anomaly is found throughout the entire bone, and is greatest within the LREE-enriched portion of the bone. This, in combination with the LREE-enrichment, suggests that the bone fossilized under reducing conditions. The distance between the LREE-enriched and MREE-depleted regions is less than 1 mm. Isotopic and petrographic analyses of the bone and surrounding carbonate matrix suggest the REE patterns in the bone were the result of partial fossilization/incomplete filling of micro-pore spaces around bone crystallites in an environment with changing redox conditions. The lower, MREE-depleted part of the bone fossilized contemporaneously with a pendant cement that formed on the underside of the bone in the vadose zone. Formation of the pendant cement restricted water flow through the bone, isolating the lower portion, which incorporated a MREE-depleted pattern. The upper part of the bone (LREE-enriched side) fossilized under

  8. A diverse Rancholabrean vertebrate microfauna from southern California includes the first fossil record of ensatina ( Ensatina eschscholtzii: Plethodontidae)

    NASA Astrophysics Data System (ADS)

    Wake, Thomas A.; Roeder, Mark A.

    2009-11-01

    Analysis of late Pleistocene fossils recovered from near the Huntington Beach, California (USA), pier (site LACM 7679) has revealed a diverse fauna dating to approximately 40 14C ka BP. Extinct megafauna (three genera) are present; however, a microfauna including three genera of fish, five genera of amphibians, twelve genera of reptiles, two genera of birds, and ten genera of small mammals dominates the assemblage in terms of diversity. Additional identification of seven genera of non-marine mollusks and various macro- and microscopic plant remains including grasses, three families of herbs, and seven genera of trees provides a wealth of information concerning the past ecology of what is currently a coastal dune field complex. During the Rancholabrean Period, the LACM 7679 locality was approximately 10 km inland from the Pleistocene coastline and contained lush riparian zones interspersed with coastal sage scrub, a few trees, and grasslands teeming with a variety of small and large animals.

  9. An analysis of pterosaurian biogeography: implications for the evolutionary history and fossil record quality of the first flying vertebrates

    PubMed Central

    Upchurch, Paul; Andres, Brian; Butler, Richard J.; Barrett, Paul M.

    2015-01-01

    The biogeographical history of pterosaurs has received very little treatment. Here, we present the first quantitative analysis of pterosaurian biogeography based on an event-based parsimony method (Treefitter). This approach was applied to a phylogenetic tree comprising the relationships of 108 in-group pterosaurian taxa, spanning the full range of this clade's stratigraphical and geographical extent. The results indicate that there is no support for the impact of vicariance or coherent dispersal on pterosaurian distributions. However, this group does display greatly elevated levels of sympatry. Although sampling biases and taxonomic problems might have artificially elevated the occurrence of sympatry, we argue that our results probably reflect a genuine biogeographical signal. We propose a novel model to explain pterosaurian distributions: pterosaurs underwent a series of ‘sweep-stakes’ dispersal events (across oceanic barriers in most cases), resulting in the founding of sympatric clusters of taxa. Examination of the spatiotemporal distributions of pterosaurian occurrences indicates that their fossil record is extremely patchy. Thus, while there is likely to be genuine information on pterosaurian diversity and biogeographical patterns in the current data-set, caution is required in its interpretation. PMID:26339122

  10. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany

    PubMed Central

    2016-01-01

    The Eocene (∾48 Ma) Messel Pit in Germany is a UNESCO World Heritage Site because of its exceptionally preserved fossils, including vertebrates, invertebrates, and plants. Messel fossil vertebrates are typically characterized by their articulated state, and in some cases the skin, hair, feathers, scales and stomach contents are also preserved. Despite the exceptional macroscopic preservation of Messel fossil vertebrates, the microstructural aspect of these fossils has been poorly explored. In particular, soft tissue structures such as hair or feathers have not been chemically analyzed, nor have bone microstructures. I report here the preservation and recovery of osteocyte-like and blood vessel-like microstructures from the bone of Messel Pit specimens, including the turtles Allaeochelys crassesculpta and Neochelys franzeni, the crocodile Diplocynodon darwini, and the pangolin Eomanis krebsi. I used a Field Emission Scanning Electron Microscope (FESEM) and a Phenom ProX desktop scanning electron microscope (LOT-QuantumDesign) equipped with a thermionic CeB6 source and a high sensitivity multi-mode backscatter electron (BSE) for microscopical and elemental characterization of these bone microstructures. Osteocyte-like and blood vessel-like microstructures are constituted by a thin layer (∾50 nm thickness), external and internal mottled texture with slightly marked striations. Circular to linear marks are common on the external surface of the osteocyte-like microstructures and are interpreted as microbial troughs. Iron (Fe) is the most abundant element found in the osteocyte-like and blood vessel-like microstructures, but not in the bone matrix or collagen fibril-like microstructures. The occurrence of well-preserved soft-tissue elements (at least their physical form) establishes a promising background for future studies on preservation of biomolecules (proteins or DNA) in Messel Pit fossils. PMID:26819855

  11. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany.

    PubMed

    Cadena, Edwin

    2016-01-01

    The Eocene (∾48 Ma) Messel Pit in Germany is a UNESCO World Heritage Site because of its exceptionally preserved fossils, including vertebrates, invertebrates, and plants. Messel fossil vertebrates are typically characterized by their articulated state, and in some cases the skin, hair, feathers, scales and stomach contents are also preserved. Despite the exceptional macroscopic preservation of Messel fossil vertebrates, the microstructural aspect of these fossils has been poorly explored. In particular, soft tissue structures such as hair or feathers have not been chemically analyzed, nor have bone microstructures. I report here the preservation and recovery of osteocyte-like and blood vessel-like microstructures from the bone of Messel Pit specimens, including the turtles Allaeochelys crassesculpta and Neochelys franzeni, the crocodile Diplocynodon darwini, and the pangolin Eomanis krebsi. I used a Field Emission Scanning Electron Microscope (FESEM) and a Phenom ProX desktop scanning electron microscope (LOT-QuantumDesign) equipped with a thermionic CeB6 source and a high sensitivity multi-mode backscatter electron (BSE) for microscopical and elemental characterization of these bone microstructures. Osteocyte-like and blood vessel-like microstructures are constituted by a thin layer (∾50 nm thickness), external and internal mottled texture with slightly marked striations. Circular to linear marks are common on the external surface of the osteocyte-like microstructures and are interpreted as microbial troughs. Iron (Fe) is the most abundant element found in the osteocyte-like and blood vessel-like microstructures, but not in the bone matrix or collagen fibril-like microstructures. The occurrence of well-preserved soft-tissue elements (at least their physical form) establishes a promising background for future studies on preservation of biomolecules (proteins or DNA) in Messel Pit fossils. PMID:26819855

  12. The skin: the many functions of fish integument

    USGS Publications Warehouse

    Elliott, Diane G.

    2011-01-01

    The integument or skin is the envelope that not only separates and protects a fish from its environment, but also provides the means through which most contacts with the outer world are made. It is a large organ and is continuous with the linings of all body openings, and also covers the fins. Fish integument is a multifunctional organ, and its components may serve important roles in protection, communication, sensory perception, locomotion, respiration, ion regulation, excretion, and thermal regulation.

  13. Fossil Horses

    NASA Astrophysics Data System (ADS)

    MacFadden, Bruce J.

    1994-06-01

    The family Equidae have an extensive fossil record spanning the past 58 million years, and the evolution of the horse has frequently been used as a classic example of long-term evolution. In recent years, however, there have been many important discoveries of fossil horses, and these, in conjunction with such new methods as cladistics, and techniques such as precise geochronology, have allowed us to achieve a much greater understanding of the evolution and biology of this important group. This book synthesizes the large body of data and research relevant to an understanding of fossil horses from several disciplines including biology, geology and paleontology. Using horses as the central theme, the author weaves together in the text such topics as modern geochronology, paleobiogeography, climate change, evolution and extinction, functional morphology, and population biology during the Cenozoic period. This book will be exciting reading for researchers and graduate students in vertebrate paleontology, evolution, and zoology.

  14. New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous), NE, Brazil.

    PubMed

    Prado, Gustavo M E M; Anelli, Luiz Eduardo; Petri, Setembrino; Romero, Guilherme Raffaeli

    2016-01-01

    Here we describe three fossil feathers from the Early Cretaceous Santana Formation of the Araripe Basin, Brazil. Feathers are the most complex multiform vertebrate integuments; they perform different functions, occurring in both avian and non-avian dinosaurs. Despite their rarity, fossil feathers have been found across the world. Most of the Brazilian feather fossil record comes from the Santana Formation. This formation is composed of two members: Crato (lake) and Romualdo (lagoon); both of which are predominantly reduced deposits, precluding bottom dwelling organisms, resulting in exceptional preservation of the fossils. Despite arid and hot conditions during the Cretaceous, life teemed in the adjacency of this paleolake. Feathered non-avian dinosaurs have not yet been described from the Crato Member, even though there are suggestions of their presence in nearby basins. Our description of the three feathers from the Crato laminated limestone reveals that, despite the small sample size, they can be referred to coelurosaurian theropods. Moreover, based on comparisons with extant feather morphotypes they can be identified as one contour feather and two downy feathers. Despite their rareness and low taxonomic potential, fossilized feathers can offer insights about the paleobiology of its owners and the paleoecology of the Araripe Basin. PMID:27441102

  15. New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous), NE, Brazil

    PubMed Central

    Anelli, Luiz Eduardo; Petri, Setembrino; Romero, Guilherme Raffaeli

    2016-01-01

    Here we describe three fossil feathers from the Early Cretaceous Santana Formation of the Araripe Basin, Brazil. Feathers are the most complex multiform vertebrate integuments; they perform different functions, occurring in both avian and non-avian dinosaurs. Despite their rarity, fossil feathers have been found across the world. Most of the Brazilian feather fossil record comes from the Santana Formation. This formation is composed of two members: Crato (lake) and Romualdo (lagoon); both of which are predominantly reduced deposits, precluding bottom dwelling organisms, resulting in exceptional preservation of the fossils. Despite arid and hot conditions during the Cretaceous, life teemed in the adjacency of this paleolake. Feathered non-avian dinosaurs have not yet been described from the Crato Member, even though there are suggestions of their presence in nearby basins. Our description of the three feathers from the Crato laminated limestone reveals that, despite the small sample size, they can be referred to coelurosaurian theropods. Moreover, based on comparisons with extant feather morphotypes they can be identified as one contour feather and two downy feathers. Despite their rareness and low taxonomic potential, fossilized feathers can offer insights about the paleobiology of its owners and the paleoecology of the Araripe Basin. PMID:27441102

  16. Development and Evolution of the Amniote Integument: Current Landscape and Future Horizon

    PubMed Central

    CHUONG, CHENG-MING; HOMBERGER, DOMINIQUE G.

    2015-01-01

    This special issue on the development and evolution of the amniote integument begins with a discussion of the adaptations to terrestrial conditions, the acquisition of water-impermeability by the reptilian integument, and the initial formation of filamentous integumentary appendages that pave the way towards avian flight. Recent feather fossils are reviewed and a definition of feathers is developed. Hierarchical models are proposed for the formation of complex structures, such as feathers. Molecular signals that alter the phenotype of integumentary appendages at different levels of the hierarchy are presented. Tissue interactions and the roles of keratins in evolution are discussed and linked to their bio-mechanical properties. The role of mechanical forces on patterning is explored. Elaborate extant feather variants are introduced. The regeneration/gene mis-expression protocol for the chicken feather is established as a testable model for the study of biological structures. The adaptations of the mammalian distal limb end organs to terrestrial, arboreal and aquatic conditions are discussed. The development and cycling of hair are reviewed from a molecular perspective. These contributions reveal that the structure and function of diverse integumentary appendages are variations superimposed on a common theme, and that their formation is modular, hierarchical, and cyclical. They further reveal that these mechanisms can be understood at the molecular level, and that an integrative and organismal approach to studying integumentary appendages is needed. We propose that future research should foster interdisciplinary approaches, pursue understanding at the cellular and molecular level, analyze interactions between the environment and genome, and recognize the contributions of variation in morphogenesis and evolution. PMID:12949766

  17. Evo-Devo of Amniote Integuments and Appendages

    PubMed Central

    Wu, Ping; Hou, Lianhai; Plikus, Maksim; Hughes, Michael; Scehnet, Jeffrey; Suksaweang, Sanong; Widelitz, Randall B.; Jiang, Ting-Xin; Chuong, Cheng-Ming

    2015-01-01

    Integuments form the boundary between an organism and the environment. The evolution of novel developmental mechanisms in integuments and appendages allows animals to live in diverse ecological environments. Here we focus on amniotes. The major achievement for reptile skin is an adaptation to the land with the formation of a successful barrier. The stratum corneum enables this barrier to prevent water loss from the skin and allowed amphibian/reptile ancestors to go onto the land. Overlapping scales and production of β-keratins provide strong protection. Epidermal invagination led to the formation of avian feather and mammalian hair follicles in the dermis. Both adopted a proximal - distal growth mode that maintains endothermy. Feathers form hierarchical branches which produce the vane that makes flight possible. Recent discoveries of feathered dinosaurs in China inspire new thinking on the origin of feathers. In the laboratory, epithelial - mesenchymal recombinations and molecular mis-expressions were carried out to test the plasticity of epithelial organ formation. We review the work on the transformation of scales into feathers, conversion between barbs and rachis, and the production of “chicken teeth”. In mammals, tilting the balance of the BMP pathway in K14 noggin transgenic mice alters the number, size and phenotypes of different ectodermal organs, making investigators rethink the distinction between morpho-regulation and pathological changes. Models on the evolution of feathers and hairs from reptile integuments are discussed. A hypothetical Evo-Devo space where diverse integument appendages can be placed according to complex phenotypes and novel developmental mechanisms is presented. PMID:15272390

  18. Deadly hairs, lethal feathers--convergent evolution of poisonous integument in mammals and birds.

    PubMed

    Plikus, Maksim V; Astrowski, Aliaksandr A

    2014-07-01

    Hairs and feathers are textbook examples of the convergent evolution of the follicular appendage structure between mammals and birds. While broadly recognized for their convergent thermoregulatory, camouflage and sexual display functions, hairs and feathers are rarely thought of as deadly defence tools. Several recent studies, however, show that in some species of mammals and birds, the integument can, in fact, be a de facto lethal weapon. One mammalian example is provided by African crested rats, which seek for and chew on the bark of plants containing the highly potent toxin, ouabain. These rats then coat their fur with ouabain-containing saliva. For efficient toxin retention, the rodents have evolved highly specialized fenestrated and mostly hollow hair shafts that soak up liquids, which essentially function as wicks. On the avian side of the vertebrate integumental variety spectrum, several species of birds of New Guinea have evolved resistance to highly potent batrachotoxins, which they acquire from their insect diet. While the mechanism of bird toxicity remains obscure, in a recently published issue of the journal, Dumbacher and Menon explore the intriguing idea that to achieve efficient storage of batrachotoxins in their skin, some birds exploit the basic permeability barrier function of their epidermis. Batrachotoxins become preferentially sequestered in their epidermis and are then transferred to feathers, likely through the exploitation of specialized avian lipid-storing multigranular body organelles. Here, we discuss wider implications of this intriguing concept. PMID:24698054

  19. Evidence for pyroelectric and piezoelectric sensory mechanisms in the insect integument.

    PubMed Central

    Athenstaedt, H; Claussen, H

    1981-01-01

    Quantitative pyroelectric (PE) and piezoelectric (PZE) measurements were carried out on the insect integument of live Blaberus giganteus (cockroach) and on dry integument preparations of the same species. Voltage responses to optical pulses of 10--500 ms, absorbed in the live integument, were PE: interference filter measurements showed the responses to be proportional to the absorbed thermal radiation flux and independent of the wavelength. The voltage/time-course of the responses was in agreement with theoretically calculated PE signals. Voltage responses to mechanical pulses were PZE. The responses of the inner and outer integument surfaces always had opposite electric signs. The polar character of the integument was confirmed by means of a separate dielectric heating method. To explain these results, we hypothesize that the PE properties are for the most part localized in the two outermost layers (outer and inner epicuticle) of the integument, which consists mainly of polar lipids and proteins. Parallel alignment of these polar molecules perpendicular to the integument surface is very likely. PE and PZE responses, therefore, will not only occur in live insects but will also be measurable in dead, dry integument preparations as long as the polar tissue texture remains intact. Due to its polar texture, the insect integument will react to rapid changes in temperature, illumination, or uniaxial pressure in the same way as nonbiological PE materials, where the voltage responses depend on dX/dt (X, pressure or temperature). It seems clear, therefore, that the well-known physiological reactions of various arthropods to such physical outside influences may be related to the PE property of their integument. Images FIGURE 3 FIGURE 4 PMID:7272444

  20. Vertebral Morphometry.

    PubMed

    Chou, Sharon H; Vokes, Tamara

    2016-01-01

    There is as yet no agreement about the criteria by which to arrive at an imaging diagnosis of a vertebral fracture. Because high-grade fractures result in alterations in vertebral shape, 1 possible avenue of diagnosis has been to quantitate changes in vertebral shape. The result has been a variety of methods for the relative and absolute measurements of vertebral dimensions. Such measurements have also lent themselves to automated computed analysis. The number of techniques reflects the absence of any consensus about the best. The semiquantitative technique proposed by Genant has become the most widely used and has served the field well for comparative purposes. Its use in higher grade fractures has been widely endorsed, if some concepts (e.g., short vertebral height-vertebrae) are at variance with lower grades of fracturing. Vertebral morphometry may be the only recourse in high volume epidemiological and interventional studies. PMID:26349790

  1. Proteome analysis of the inner integument from developing Jatropha curcas L. seeds.

    PubMed

    Soares, Emanoella L; Shah, Mohibullah; Soares, Arlete A; Costa, José H; Carvalho, Paulo; Domont, Gilberto B; Nogueira, Fábio C S; Campos, Francisco A P

    2014-08-01

    In this study, we performed a systematic proteomic analysis of the inner integument from developing seeds of Jatropha curcas and further explored the protein machinery responsible for generating the carbon and nitrogen sources to feed the growing embryo and endosperm. The inner integument of developing seeds was dissected into two sections called distal and proximal, and proteins were extracted from these sections and from the whole integument and analyzed using an EASY-nanoLC system coupled to an ESI-LTQ-Orbitrap Velos mass spectrometer. We identified 1526, 1192, and 1062 proteins from the proximal, distal, and whole inner integuments, respectively. The identifications include those of peptidases and other hydrolytic enzymes that play a key role in developmental programmed cell death and proteins associated with the cell-wall architecture and modification. Because many of these proteins are differentially expressed within the integument cell layers, these findings suggest that the cells mobilize an array of hydrolases to produce carbon and nitrogen sources from proteins, carbohydrates, and lipids available within the cells. Not least, the identification of several classes of seed storage proteins in the inner integument provides additional evidence of the role of the seed coat as a transient source of reserves for the growing embryo and endosperm. PMID:25010673

  2. "Fossil" Forecasting.

    ERIC Educational Resources Information Center

    Brody, Michael J.; deOnis, Ann

    2001-01-01

    Presents a density study in which students calculate the density of limestone substrate to determine if the specimen contains any fossils. Explains how to make fossils and addresses national standards. (YDS)

  3. Marquee Fossils

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2008-01-01

    Professors of an online graduate-level paleontology class developed the concept of marquee fossils--fossils that have one or more unique characteristics that capture the attention and direct observation of students. In the classroom, Marquee fossils integrate the geology, biology, and environmental science involved in the study of fossilized…

  4. Covering the limb – formation of the integument

    PubMed Central

    Byrne, Carolyn; Hardman, Matthew; Nield, Kerry

    2003-01-01

    An organism's outermost covering, the integument, has evolved to fulfil a diverse range of functions. Skin provides a physical barrier, an environment for immunological surveillance, and also performs a range of sensory, thermoregulatory and biosynthetic functions. Examination of the skin of limb digits reveals a range of skin types including the thickened hairless epidermis of the toe pads (palmar or plantar epidermis) and thinner epidermis between the hair follicles (interfollicular epidermis) of hairy skin. An important developmental function of skin is to give rise to a diverse group of appendages including hair follicles, with associated sebaceous glands (or feathers and scales in chick), eccrine sweat glands and the nail. A key question is how does this morphological variety arise from the single-layered epithelium covering embryonic limb buds? This review will attempt to address this question by linking the extensive morphological/anatomical data on maturation of epidermis and its appendages with (1) current research into the range, plasticity and location of the putative epidermal stems cells; (2) molecular/microenvironmental regulation of epidermal stem cell lineages and lineage choice; and (3) regulation of the differentiation pathways, focusing on differentiation of the interfollicular epidermis. PMID:12587926

  5. Hydrodynamic role of fish squamosal integument as an analog of the surfaces directly formed by the turbulent flow. Report 2: Hydrodynamic function of squamosal integument

    NASA Technical Reports Server (NTRS)

    Kudryashov, A. F.; Barsukov, V. V.

    1980-01-01

    The stream flowing round the slowly swimming squama free fish can be laminized with the aid of the external slime coat alone. The slime of the fish with well developed squamae can laminize the stream together with the squamatic integument. Adjustments preventing a loss of the slime during laminization are better developed in the fastest squama free fishes.

  6. Gypsy embryo specifies ovule curvature by regulating ovule/integument development in rice.

    PubMed

    Yamaki, S; Satoh, H; Nagato, Y

    2005-10-01

    The embryo position in a seed is stable in most plant species, indicating the existence of a strict regulatory mechanism that specifies the embryo position in the seed. To elucidate this mechanism, we analyzed the gypsy embryo (gym) mutant of rice, in which the position of the mature embryo in the seed is altered at a low frequency. Analyses of early embryogenesis and ovule development showed that the ectopic embryo was derived from an ill-positioned egg cell, which resulted from the incomplete curvature of the ovule. Although the development of both the inner and outer integuments was impaired, the ovule curvature was associated closely with the extent of inner integument growth. Therefore, inner integument development controls ovule curvature in rice. The expression patterns of OSH1 and OsMADS13 indicated that, in gym, a small number of indeterminate cells are maintained on the style side of the ovule and then in the integument primordium at a low frequency. The prolonged survival of these indeterminate cells disturbs normal integument development. The gym fon2 double mutant suggests that GYM and FON2 are involved redundantly in floral meristem determinacy. Possible functions of the GYM gene and the ovule developmental mechanism are discussed. PMID:16001259

  7. Ediacara Fossils

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Now, a research team from Virginia Tech and Nanjing Institute of Geology and Paleontology has discovered uniquely well-preserved fossil forms from 550-million-year-old rocks of the Ediacaran Period. The research appears in the Proceedings of the National Academy of Sciences. The discovery of these unusually preserved fossils reveals unprecedented…

  8. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  9. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    2003-01-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  10. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    1999-10-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  11. Fossil spiders.

    PubMed

    Selden, Paul A; Penney, David

    2010-02-01

    Over the last three decades, the fossil record of spiders has increased from being previously biased towards Tertiary ambers and a few dubious earlier records, to one which reveals a much greater diversity in the Mesozoic, with many of the modern families present in that era, and with clearer evidence of the evolutionary history of the group. We here record the history of palaeoarachnology and the major breakthroughs which form the basis of studies on fossil spiders. Understanding the preservation and taphonomic history of spider fossils is crucial to interpretation of fossil spider morphology. We also review the more recent descriptions of fossil spiders and the effect these discoveries have had on the phylogenetic tree of spiders. We discuss some features of the evolutionary history of spiders and present ideas for future work. PMID:19961468

  12. Travels with the Fossil Hunters

    NASA Astrophysics Data System (ADS)

    Whybrow, Peter J.

    2000-04-01

    Whether dodging bullets in West Africa, or rabid dogs in Pakistan, surviving yak-butter tea in Tibet, or eating raw fish in China, the life of a globe-trotting fossil hunter is often hazardous and always filled with surprises. Travels with the Fossil Hunters lets readers share the wonder, joys of discovery, and excitement of these intrepid scientists. Packed with more than 100 beautiful, full-color photographs, the volume takes readers on twelve expeditions to remote parts of the world in search of diverse fossil remains, from those of dinosaurs to human ancestors. Each expedition by paleontologists from London's Natural History Museum reveals the problems and challenges of working in extreme conditions, from the deserts of the Sahara and Yemen to the frozen wastes of Antarctica, from the mountains of India to the forests of Latvia. Along the way they also describe the paleontology and geology of the countries they visit and the scientific reasons for their expeditions. With a foreword from Sir David Attenborough and an introduction from Richard Fortey, this fascinating book will appeal to amateur and professional fossil hunters alike and to readers interested in accounts of exotic locales. Peter Whybrow is a research scientist at the Natural History Museum, London. His research interests include Arabian Miocene vertebrates, paleoclimates, paleogeography, and biotic diversity. He is senior editor with A. Hill of Fossil Vertebrates of Arabia (Yale University Press, New Haven, 1999).

  13. Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state

    PubMed Central

    Rakitov, Roman; Gorb, Stanislav N.

    2013-01-01

    Leafhoppers (Insecta, Hemiptera, Cicadellidae) actively coat their integuments with brochosomes, hollow proteinaceous spheres of usually 200–700 nm in diameter, with honeycombed walls. The coats have been previously suggested to act as a water-repellent and anti-adhesive protective barrier against the insect's own exudates. We estimated their wettability through contact angle (CA) measurements of water, diiodomethane, ethylene glycol and ethanol on detached wings of the leafhoppers Alnetoidia alneti, Athysanus argentarius and Cicadella viridis. Intact brochosome-coated integuments were repellent to all test liquids, except ethanol, and exhibited superhydrophobicity, with the average water CAs of 165–172°, and the apparent surface free energy (SFE) estimates not exceeding 0.74 mN m−1. By contrast, the integuments from which brochosomes were removed with a peeling technique using fluid polyvinylsiloxane displayed water CAs of only 103–129° and SFEs above 20 mN m−1. Observations of water-sprayed wings in a cryo-scanning electron microscope confirmed that brochosomal coats prevented water from contacting the integument. Their superhydrophobic properties appear to result from fractal roughness, which dramatically reduces the area of contact with high-surface-tension liquids, including, presumably, leafhopper exudates. PMID:23235705

  14. Microscopic identification of novel cell types in the integument of larval lake sturgeon, Acipenser fulvescens.

    PubMed

    Shute, Lauren; Huebner, Erwin; Anderson, W Gary

    2016-01-01

    Osmoregulation, respiration, nutrient/mineral transport, and defense mechanisms are all evident in the integument of fish. The role of the integument in these physiological processes is particularly important during early life history in larval fishes, as functional systems such as the gills and gastrointestinal tract are not fully developed. Using a variety of microscopy techniques, we describe the morphology of keratinocytes, mitochondria rich cells, ciliated cells and mucous cells of the skin, yolk sac, and gills. The cytology we observed was similar to previous studies describing the integument of larval fish, however, we have also identified two novel cell types on the integument of larval Lake Sturgeon, Acipenser fulvescens, between 9 and 34 days post fertilization. Our detailed analysis included a multifaceted microscopy approach using scanning electron, transmission electron, and light microscopy to elucidate the histology of the tissue and cellular morphology in addition to quantification and distribution of these novel cell types. The first cell type had a characteristic ampullary shape with a central cavity and a pore opening at the surface. The second, located on the free surface of the epidermis, had an uneven plasma membrane surface. Based on the abundance of secretory vesicles, organelles necessary for protein synthesis, and the lack of neural connection in both cell types, we propose these cells to be involved in the release of semiochemicals that may act as a pheromone, alarm substance, or chemical defense mechanism. PMID:26440535

  15. Expression of ovule and integument-associated genes in reduced ovules of Santalales.

    PubMed

    Brown, Ryan H; Nickrent, Daniel L; Gasser, Charles S

    2010-01-01

    Santalales comprise mainly parasitic plants including mistletoes and sandalwoods. Bitegmic ovules similar to those found in most other angiosperms are seen in many members of the order, but other members exhibit evolutionary reductions to the unitegmic and ategmic conditions. In some mistletoes, extreme reduction has resulted in the absence of emergent ovules such that embryo sacs appear to remain embedded in placental tissues. Three santalalean representatives (Comandra, Santalum, and Phoradendron), displaying unitegmic, and ategmic ovules, were studied. Observed ovule morphologies were consistent with published reports, including Phoradendron serotinum, which we interpret as having reduced ategmic ovules, consistent with earlier reports on this species. For further understanding of the nature of the ovule reductions we isolated orthologs of the Arabidopsis genes AINTEGUMENTA (ANT) and BELL1 (BEL1), which are associated with ovule development in this species. We observed ovular expression of ANT and BEL1 in patterns largely resembling those seen in the integumented ovules of Arabidopsis. These genes were found to be expressed in the integument of unitegmic ovules and in the surface layers of ategmic ovules, and in some cases, expression of BEL1 was also observed in the surrounding carpel tissue. We hypothesize that ategmic ovules derive from a fusion of the integuments with the nucellus or that the nucellus has taken on some of the characteristics confined to integuments in ancestral species. PMID:20433462

  16. Vertebrate Reproduction.

    PubMed

    Kornbluth, Sally; Fissore, Rafael

    2015-10-01

    Vertebrate reproduction requires a myriad of precisely orchestrated events-in particular, the maternal production of oocytes, the paternal production of sperm, successful fertilization, and initiation of early embryonic cell divisions. These processes are governed by a host of signaling pathways. Protein kinase and phosphatase signaling pathways involving Mos, CDK1, RSK, and PP2A regulate meiosis during maturation of the oocyte. Steroid signals-specifically testosterone-regulate spermatogenesis, as does signaling by G-protein-coupled hormone receptors. Finally, calcium signaling is essential for both sperm motility and fertilization. Altogether, this signaling symphony ensures the production of viable offspring, offering a chance of genetic immortality. PMID:26430215

  17. Ontogenetic and structural variation of mineralizations and ossifications in the integument within ceratophryid frogs (anura, Ceratophryidae).

    PubMed

    Quinzio, Silvia; Fabrezi, Marissa

    2012-12-01

    Ceratophryidae represent a monophyletic group of terrestrial and aquatic frogs inhabiting lowlands of South America where they are more diverse in semiarid environments of the Chaco region. Adult morphology of ceratophryids presents some features associated to terrestrial and fossorial life such as hyper-ossified skulls, spade feet for digging, among others. For anurans, different mineralized structures have been described in the integument as calcium reservoirs and related to the terrestrial life and water balance (e.g., the calcified layer and dermal ossifications). We describe the ontogeny of the integument in the three genera of ceratophryids (Chacophrys, Ceratophrys, and Lepidobatrachus) that inhabit in semiarid environments. Data obtained demonstrated the early acquisition of metamorphic transformations in the integument layers in larvae of Ceratophrys cranwelli and Lepidobatrachus spp. and a continuous increment in the thickness of them up to old postmetamorphic stages. The integument of ceratophryids develops calcium deposits as the calcified layer during postmetamorphic stages. Furthermore, dorsal shields are also present in adult stages independently of terrestrial versus aquatic lifestyles. While the calcified layer seems to be a feature of a fully developed integument, in which their layers have acquired the adult thickness, dorsal shields develop at premetamorphic stages in L. llanensis and postmetamorphic individuals of C. cranwelli. In ceratophryids, similar to other studied taxa (e.g., Brachycephalus spp.) dorsal shields develop via an intramembranous ossification in which the calcified layer does not precede its differentiation. Within anurans, the occurrence of dorsal shields in the monophyletic ceratophryids suggested a distinctive evolutionary history in the lineage. PMID:23074148

  18. Vertebrate skeletogenesis.

    PubMed

    Lefebvre, Véronique; Bhattaram, Pallavi

    2010-01-01

    Vertebrate skeletogenesis consists in elaborating an edifice of more than 200 pieces of bone and cartilage. Each skeletal piece is crafted at a distinct location in the body, is articulated with others, and reaches a specific size, shape, and tissue composition according to both species instructions and individual determinants. This complex, customized body frame fulfills multiple essential tasks. It confers morphological features, allows controlled postures and movements, protects vital organs, houses hematopoiesis, stores minerals, and adsorbs toxins. This review provides an overview of the multiple facets of this ingenious process for experts as well as nonexperts of skeletogenesis. We explain how the developing vertebrate uses both specific and ubiquitously expressed genes to generate multipotent mesenchymal cells, specify them to a skeletogenic fate, control their survival and proliferation, and direct their differentiation into cartilage, bone, and joint cells. We review milestone discoveries made toward uncovering the intricate networks of regulatory factors that are involved in these processes, with an emphasis on signaling pathways and transcription factors. We describe numerous skeletal malformation and degeneration diseases that occur in humans as a result of mutations in regulatory genes, and explain how these diseases both help and motivate us to further decipher skeletogenic processes. Upon discussing current knowledge and gaps in knowledge in the control of skeletogenesis, we highlight ultimate research goals and propose research priorities and approaches for future endeavors. PMID:20691853

  19. First Evidence of Reproductive Adaptation to “Island Effect” of a Dwarf Cretaceous Romanian Titanosaur, with Embryonic Integument In Ovo

    PubMed Central

    Grellet-Tinner, Gerald; Codrea, Vlad; Folie, Annelise; Higa, Alessandra; Smith, Thierry

    2012-01-01

    Background The Cretaceous vertebrate assemblages of Romania are famous for geographically endemic dwarfed dinosaur taxa. We report the first complete egg clutches of a dwarf lithostrotian titanosaur, from Toteşti, Romania, and its reproductive adaptation to the “island effect”. Methodology/Findings The egg clutches were discovered in sequential sedimentary layers of the Maastrichtian Sânpetru Formation, Toteşti. The occurrence of 11 homogenous clutches in successive strata suggests philopatry by the same dinosaur species, which laid clutches averaging four ∼12 cm diameters eggs. The eggs and eggshells display numerous characters shared with the positively identified material from egg-bearing level 4 of the Auca Mahuevo (Patagonia, Argentina) nemegtosaurid lithostrotian nesting site. Microscopic embryonic integument with bacterial evidences was recovered in one egg. The millimeter-size embryonic integument displays micron size dermal papillae implying an early embryological stage at the time of death, likely corresponding to early organogenesis before the skeleton formation. Conclusions/Significance The shared oological characters between the Haţeg specimens and their mainland relatives suggest a highly conservative reproductive template, while the nest decrease in egg numbers per clutch may reflect an adaptive trait to a smaller body size due to the “island effect”. The combined presence of the lithostrotian egg and its embryo in the Early Cretaceous Gobi coupled with the oological similarities between the Haţeg and Auca Mahuevo oological material evidence that several titanosaur species migrated from Gondwana through the Haţeg Island before or during the Aptian/Albian. It also suggests that this island might have had episodic land bridges with the rest of the European archipelago and Asia deep into the Cretaceous. PMID:22412852

  20. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT).

    PubMed

    Lora, Jorge; Hormaza, José I; Herrero, Maria

    2015-10-01

    While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms. PMID:25991552

  1. A Cretaceous eutriconodont and integument evolution in early mammals.

    PubMed

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion. PMID:26469049

  2. A Cretaceous eutriconodont and integument evolution in early mammals

    NASA Astrophysics Data System (ADS)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D.

    2015-10-01

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  3. Microarray Analysis of the Juvenile Hormone Response in Larval Integument of the Silkworm, Bombyx mori.

    PubMed

    Cheng, Daojun; Peng, Jian; Meng, Meng; Wei, Ling; Kang, Lixia; Qian, Wenliang; Xia, Qingyou

    2014-01-01

    Juvenile hormone (JH) coordinates with 20-hydroxyecdysone (20E) to regulate larval growth and molting in insects. However, little is known about how this cooperative control is achieved during larval stages. Here, we induced silkworm superlarvae by applying the JH analogue (JHA) methoprene and used a microarray approach to survey the mRNA expression changes in response to JHA in the silkworm integument. We found that JHA application significantly increased the expression levels of most genes involved in basic metabolic processes and protein processing and decreased the expression of genes associated with oxidative phosphorylation in the integument. Several key genes involved in the pathways of insulin/insulin-like growth factor signaling (IIS) and 20E signaling were also upregulated after JHA application. Taken together, we suggest that JH may mediate the nutrient-dependent IIS pathway by regulating various metabolic pathways and further modulate 20E signaling. PMID:24809046

  4. [Alterations of the integument of fattening pigs in different housing systems].

    PubMed

    Mayer, C; Hauser, R

    2001-04-01

    Alterations of the integument of fattening pigs were investigated on a total of eleven farms with the following housing systems: "Krieger" system, fully slatted floors, partially slatted floors and kennel housing systems. For this purpose, the alterations of the integument of the animals were visually assessed at different times during fattening. In addition, spot investigations were carried out on three farms with deep litter systems. In the non-littered systems, significantly more changes at the limbs were observed than in the littered systems. The least damages occurred in the deep litter system. Similar as with cattle, soft and deformable lying areas seem to be a prerequisite for the prevention of such alterations. With respect to injuries caused by tailbiting, apart from possibilities of activity, other parameters such as air quality and space availability also play an important role. PMID:11344943

  5. A seed coat outer integument-specific promoter for Brassica napus.

    PubMed

    Wu, Limin; El-Mezawy, Aliaa; Shah, Saleh

    2011-01-01

    In search for seed coat-specific promoters for canola (Brassica napus), transgenic plants carrying a 2,121 bp fragment of Arabidopsis thaliana At4g12960 promoter (AtGILTpro) fused to the uidA reporter gene (GUS) were generated. Out of 7 independent events in transgenic canola plants raised, 2 exhibited GUS activity exclusively in the outer integument of the seed coat. GUS activity in other tissues was also observed in the remaining five transformants. Therefore, the AtGILT promoter can be used as a canola seed coat outer integument-specific promoter after the generation and selection of desired transformants from several transgenic lines. PMID:21052676

  6. Microarray Analysis of the Juvenile Hormone Response in Larval Integument of the Silkworm, Bombyx mori

    PubMed Central

    Cheng, Daojun; Peng, Jian; Meng, Meng; Wei, Ling; Kang, Lixia; Qian, Wenliang; Xia, Qingyou

    2014-01-01

    Juvenile hormone (JH) coordinates with 20-hydroxyecdysone (20E) to regulate larval growth and molting in insects. However, little is known about how this cooperative control is achieved during larval stages. Here, we induced silkworm superlarvae by applying the JH analogue (JHA) methoprene and used a microarray approach to survey the mRNA expression changes in response to JHA in the silkworm integument. We found that JHA application significantly increased the expression levels of most genes involved in basic metabolic processes and protein processing and decreased the expression of genes associated with oxidative phosphorylation in the integument. Several key genes involved in the pathways of insulin/insulin-like growth factor signaling (IIS) and 20E signaling were also upregulated after JHA application. Taken together, we suggest that JH may mediate the nutrient-dependent IIS pathway by regulating various metabolic pathways and further modulate 20E signaling. PMID:24809046

  7. Deciphering principles of morphogenesis from temporal and spatial patterns on the integument

    PubMed Central

    Li, Ang; Lai, Yung-Chih; Figueroa, Seth; Yang, Tian; Widelitz, Randall B; Kobielak, Krzysztof; Nie, Qing; Chuong, Cheng Ming

    2015-01-01

    How tissue patterns form in development and regeneration is a fundamental issue remaining to be fully understood. The integument often forms repetitive units in space (periodic patterning) and time (cyclic renewal), such as feathers and hairs. Integument patterns are visible and experimentally manipulatable, helping us reveal pattern formative processes. Variability is seen in regional phenotypic specificities and temporal cycling at different physiological stages. Here we show some cellular / molecular bases revealed by analyzing integument patterns. 1) Localized cellular activity (proliferation, rearrangement, apoptosis, differentiation) transforms prototypic organ primordia into specific shapes. Combinatorial positioning of different localized activity zones generates diverse and complex organ forms. 2) Competitive equilibrium between activators and inhibitors regulates stem cells through cyclic quiescence and activation. Dynamic interactions between stem cells and their adjacent niche regulate regenerative behavior, modulated by multi-layers of macro-environmental factors (dermis, body hormone status and external environment). Genomics studies may reveal how positional information of localized cellular activity is stored. In vivo skin imaging and lineage tracing unveils new insights into stem cell plasticity. Principles of self-assembly obtained from the integumentary organ model can be applied to help restore damaged patterns during regenerative wound healing and for tissue engineering to rebuild tissues. PMID:25858668

  8. Shark-bitten vertebrate coprolites from the Miocene of Maryland

    NASA Astrophysics Data System (ADS)

    Godfrey, Stephen J.; Smith, Joshua B.

    2010-05-01

    Coprolites (fossilized feces) preserve a wide range of biogenic components, from bacteria and spores to a variety of vertebrate tissues. Two coprolites from the Calvert Cliffs outcrop belt (Miocene-aged Chesapeake Group), MD, USA, preserve shark tooth impressions in the form of partial dental arcades. The specimens are the first known coprolites to preserve vertebrate tooth marks. They provide another example of trace fossils providing evidence of prehistoric animal behaviors that cannot be directly approached through the study of body fossils. Shark behaviors that could account for these impressions include: (1) aborted coprophagy, (2) benthic or nektonic exploration, or (3) predation.

  9. Shark-bitten vertebrate coprolites from the Miocene of Maryland.

    PubMed

    Godfrey, Stephen J; Smith, Joshua B

    2010-05-01

    Coprolites (fossilized feces) preserve a wide range of biogenic components, from bacteria and spores to a variety of vertebrate tissues. Two coprolites from the Calvert Cliffs outcrop belt (Miocene-aged Chesapeake Group), MD, USA, preserve shark tooth impressions in the form of partial dental arcades. The specimens are the first known coprolites to preserve vertebrate tooth marks. They provide another example of trace fossils providing evidence of prehistoric animal behaviors that cannot be directly approached through the study of body fossils. Shark behaviors that could account for these impressions include: (1) aborted coprophagy, (2) benthic or nektonic exploration, or (3) predation. PMID:20213300

  10. Developmental mechanisms of vertebrate limb evolution.

    PubMed

    Cohn, M J

    2001-01-01

    Over the past few years, our understanding of the evolution of limbs has been improved by important new discoveries in the fossil record. Additionally, rapid progress has been made in identifying the molecular basis of vertebrate limb development. It is now possible to integrate these two areas of research in order to identify the molecular developmental mechanisms underlying the evolution of paired appendages in vertebrates. After the origin of paired appendages, several vertebrate lineages reduced or eliminated fins and limbs and returned to the limbless condition. Examples include eels, caecilians, snakes, slow worms and several marine mammals. Analyses of fossil and extant vertebrates show that evolution of limblessness frequently occurred together with elongation of the trunk and loss of clear morphological boundaries in the vertebral column. This may be suggestive of a common developmental mechanism linking these two processes. We have addressed this question by analysing python embryonic development at tissue, cellular and molecular levels, and we have identified a developmental mechanism which may account for evolution of limb loss in these animals. PMID:11277086

  11. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to explore geochemical taphonomy of vertebrate fossils in the upper cretaceous two medicine and Judith River formations of Montana

    USGS Publications Warehouse

    Rogers, R.R.; Fricke, H.C.; Addona, V.; Canavan, R.R.; Dwyer, C.N.; Harwood, C.L.; Koenig, A.E.; Murray, R.; Thole, J.T.; Williams, J.

    2010-01-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine rare earth element (REE) content of 76 fossil bones collected from the Upper Cretaceous (Campanian) Two Medicine (TMF) and Judith River (JRF) Formations of Montana. REE content is distinctive at the formation scale, with TMF samples exhibiting generally higher overall REE content and greater variability in REE enrichment than JRF samples. Moreover, JRF bones exhibit relative enrichment in heavy REE, whereas TMF bones span heavy and light enrichment fields in roughly equal proportions. TMF bones are also characterized by more negative Ce anomalies and greater U enrichment than JRF bones, which is consistent with more oxidizing diagenetic conditions in the TMF. Bonebeds in both formations show general consistency in REE content, with no indication of spatial or temporal mixing within sites. Previous studies, however, suggest that the bonebeds in question are attritional assemblages that accumulated over considerable time spans. The absence of geochemical evidence for mixing is consistent with diagenesis transpiring in settings that remained chemically and hydrologically stable during recrystallization. Lithology-related patterns in REE content were also compared, and TMF bones recovered from fluvial sandstones show relative enrichment in heavy REE when compared with bones recovered from fine-grained floodplain deposits. In contrast, JRF bones, regardless of lithologic context (sandstone versus mudstone), exhibit similar patterns of REE uptake. This result is consistent with previous reconstructions that suggest that channel-hosted microfossil bonebeds of the JRF developed via the reworking of preexisting concentrations embedded in the interfluve. Geochemical data further indicate that reworked elements were potentially delivered to channels in a recrystallized condition, which is consistent with rapid adsorption of REE postmortem. Copyright ?? 2010, SEPM (Society for

  12. Vertebral development and amphibian evolution.

    PubMed

    Carroll, R L; Kuntz, A; Albright, K

    1999-01-01

    Amphibians provide an unparalleled opportunity to integrate studies of development and evolution through the investigation of the fossil record of larval stages. The pattern of vertebral development in modern frogs strongly resembles that of Paleozoic labyrinthodonts in the great delay in the ossification of the vertebrae, with the centra forming much later than the neural arches. Slow ossification of the trunk vertebrae in frogs and the absence of ossification in the tail facilitate the rapid loss of the tail during metamorphosis, and may reflect retention of the pattern in their specific Paleozoic ancestors. Salamanders and caecilians ossify their centra at a much earlier stage than frogs, which resembles the condition in Paleozoic lepospondyls. The clearly distinct patterns and rates of vertebral development may indicate phylogenetic separation between the ultimate ancestors of frogs and those of salamanders and caecilians within the early radiation of ancestral tetrapods. This divergence may date from the Lower Carboniferous. Comparison with the molecular regulation of vertebral development described in modern mammals and birds suggests that the rapid chondrification of the centra in salamanders relative to that of frogs may result from the earlier migration of sclerotomal cells expressing Pax1 to the area surrounding the notochord. PMID:11324019

  13. Are the oldest 'fossils', fossils

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1976-01-01

    A comparative statistical study has been carried out on populations of modern algae, Precambrian algal microfossils, the 'organized elements' of the Orgueil carbonaceous meteorite, and the oldest microfossil-like objects now known (spheroidal bodies from the Fig Tree and Onverwacht Groups of the Swaziland Supergroup, South Africa). The distribution patterns exhibited by the more than 3000 m.y.-old Swaziland microstructures bear considerable resemblance to those of the abiotic 'organized elements' but differ rather markedly from those exhibited by younger, assuredly biogenic, populations. Based on these comparisons, it is concluded that the Swaziland spheroids could be, at least in part, of nonbiologic origin; these oldest known fossil-like microstructures should not be regarded as constituting firm evidence of Archean life.

  14. Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain

    PubMed Central

    Molina-López, R. A.; Adelantado, C.; Arosemena, E. L.; Obón, E.; Darwich, L.; Calvo, M. A.

    2012-01-01

    There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ2 = 8,633) and Arthrinium (P = 0,043; χ2 = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ2 = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ2 = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes. PMID:23762757

  15. Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain.

    PubMed

    Molina-López, R A; Adelantado, C; Arosemena, E L; Obón, E; Darwich, L; Calvo, M A

    2012-01-01

    There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ (2) = 8,633) and Arthrinium (P = 0,043; χ (2) = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ (2) = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ (2) = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes. PMID:23762757

  16. Will My Fossil Float?

    ERIC Educational Resources Information Center

    Riesser, Sharon; Airey, Linda

    1993-01-01

    Explains how young students can be introduced to fossils. Suggests books to read and science activities including "Fossils to Eat" where students make fossils from peanut butter, honey, and powdered milk. (PR)

  17. Pleistocene vertebrates of the Yukon Territory

    NASA Astrophysics Data System (ADS)

    Harington, C. R.

    2011-08-01

    Unglaciated parts of the Yukon constitute one of the most important areas in North America for yielding Pleistocene vertebrate fossils. Nearly 30 vertebrate faunal localities are reviewed spanning a period of about 1.6 Ma (million years ago) to the close of the Pleistocene some 10 000 BP (radiocarbon years before present, taken as 1950). The vertebrate fossils represent at least 8 species of fishes, 1 amphibian, 41 species of birds and 83 species of mammals. Dominant among the large mammals are: steppe bison ( Bison priscus), horse ( Equus sp.), woolly mammoth ( Mammuthus primigenius), and caribou ( Rangifer tarandus) - signature species of the Mammoth Steppe fauna ( Fig. 1), which was widespread from the British Isles, through northern Europe, and Siberia to Alaska, Yukon and adjacent Northwest Territories. The Yukon faunas extend from Herschel Island in the north to Revenue Creek in the south and from the Alaskan border in the west to Ketza River in the east. The Yukon holds evidence of the earliest-known people in North America. Artifacts made from bison, mammoth and caribou bones from Bluefish Caves, Old Crow Basin and Dawson City areas show that people had a substantial knowledge of making and using bone tools at least by 25 000 BP, and possibly as early as 40 000 BP. A suggested chronological sequence of Yukon Pleistocene vertebrates ( Table 1) facilitates comparison of selected faunas and indicates the known duration of various taxa.

  18. Magnetic resonance spectroscopy and imaging for the study of fossils.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. PMID:26979538

  19. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  20. Architecture of the integument in lower teleostomes: functional morphology and evolutionary implications.

    PubMed

    Gemballa, Sven; Bartsch, Peter

    2002-09-01

    A bony ganoid squamation is the plesiomorphic type in actinopterygians. During evolution, it was replaced by weak and more flexible elasmoid scales. We provide a comparative description of the integument of "ganoid" fishes and "nonganoid" fishes that considers all dermal components of mechanical significance (stratum compactum, morphology of ganoid scales, and their regional differences) in order to develop a functional understanding of the ganoid integument as a whole. Data were obtained for the extant "ganoid" fishes (Polypteridae and Lepisosteidae) and for closely related "lower" actinopterygians (Acipenser ruthenus, Amia calva) and "lower" sarcopterygians (Latimeria chalumnae, Neoceratodus forsteri). Body curvatures during steady undulatory locomotion, sharp turns, prey-strikes, and fast starts in "ganoid" fishes were measured from videotapes. Extreme body curvatures as measured in anesthetized specimens are never reached during steady swimming, but are sometimes closely approached in certain situations (sharp turns, prey-strike). During extreme body curvatures we measured high values of lateral strain on the convex and on the concave side of the body. Scale overlap changes considerably (66-127% in Lepisosteus, 42-140% in Polypterus). The ganoid squamation forms a protective coat, but at the same time it permits extreme body curvatures. This is reflected in characteristic morphological features of the ganoid scales, such as an anterior process, concave anterior margin, and peg-and-socket articulation. These characters are most pronounced in the anterior body region, where maximum changes in scale overlap are required. The anterior processes and anterior concave margin, together with the attached stratum compactum, guide movements in a horizontal plane during bending. Displacements of scales relative to each other are possible for scales of different scale rows, but are impeded in scales of the same scale row due to the peg-and-socket articulation. Furthermore

  1. Antagonism of entomopathogenic fungi by Bacillus spp. associated with the integument of cicadellids and delphacids.

    PubMed

    Toledo, Andrea; López, Silvina; Aulicino, Mónica; de Remes-Lenicov, Ana María; Balatti, Pedro

    2015-06-01

    Entomopathogenic fungi are potential tools to biocontrol cicadellids and delphacids, two groups of insects that cause extensive damage to agricultural crops. However, bacteria living on the host cuticle may inhibit fungal growth. In the present work, following the molecular characterization of 10 strains of Bacillus isolated from the integument of cicadellids and delphacids, we selected isolates of the fungi Beauveria bassiana and Metarhizium anisopliae that are resistant to the antimicrobials secreted by these bacterial strains. The antagonistic activity of the 10 bacterial isolates belonging to the genus Bacillus (i.e., B. amyloliquefaciens, B. pumilus, and B. subtilis) against 41 isolates of Bea. bassiana and 20 isolates of M. anisopliae was investigated in vitro on tryptic soy agar using the central disk test. With this approach, isolates of Bea. bassiana and M. anisopliae resistant to antagonistic bacteria were identified that can be further developed as biological control agents. PMID:26496616

  2. Correlation between Hox code and vertebral morphology in archosaurs.

    PubMed

    Böhmer, Christine; Rauhut, Oliver W M; Wörheide, Gert

    2015-07-01

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns. PMID:26085583

  3. Correlation between Hox code and vertebral morphology in archosaurs

    PubMed Central

    Böhmer, Christine; Rauhut, Oliver W. M.; Wörheide, Gert

    2015-01-01

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns. PMID:26085583

  4. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    PubMed

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water. PMID:21977432

  5. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    PubMed Central

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  6. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models.

    PubMed

    Jiang, Ting-Xin; Widelitz, Randall B; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2004-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions ( de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically colocalize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to

  7. Third-harmonic generation microscopy reveals dental anatomy in ancient fossils.

    PubMed

    Chen, Yu-Cheng; Lee, Szu-Yu; Wu, Yana; Brink, Kirstin; Shieh, Dar-Bin; Huang, Timothy D; Reisz, Robert R; Sun, Chi-Kuang

    2015-04-01

    Fossil teeth are primary tools in the study of vertebrate evolution, but standard imaging modalities have not been capable of providing high-quality images in dentin, the main component of teeth, owing to small refractive index differences in the fossilized dentin. Our first attempt to use third-harmonic generation (THG) microscopy in fossil teeth has yielded significant submicrometer level anatomy, with an unexpectedly strong signal contrasting fossilized tubules from the surrounding dentin. Comparison between fossilized and extant teeth of crocodilians reveals a consistent evolutionary signature through time, indicating the great significance of THG microscopy in the evolutionary studies of dental anatomy in fossil teeth. PMID:25831331

  8. Testing Skills in Vertebrates

    ERIC Educational Resources Information Center

    Funk, Mildred Sears; Tosto, Pat

    2007-01-01

    In this article, the authors present a project that gives students examples of basic skills that many vertebrate species develop as they grow and function in their ecosystem. These activities involve information gathering about surroundings, learning how to use objects, and tracking and searching skills. Different vertebrate species may acquire…

  9. The angiosomes of the mammals and other vertebrates.

    PubMed

    Taylor, G I; Minabe, T

    1992-02-01

    This is a comparative study of the vasculature of the integument and underlying deep tissues of a range of mammals and other vertebrates. The investigation was conducted in the pig, monkey, dog, cat, possum, guinea pig, rat, rabbit, duck, and toad. The results from each are compared not only to each other, but also to previously performed human studies. The arterial network of the fresh animal cadaver was injected with a mixture of lead oxide and gelatin. The vascular anatomy of the skin, deep tissues, and individual muscles was defined by dissection, cutaneous perforator counts, photography, and radiography. A similar pilot study of the venous framework was performed in the pig, dog, and rabbit that included maps of the sites and orientations of the valves. The vasculature of the integument and deep tissues was correlated, and we found that we were able to define angiosomes (composite blocks of tissue supplied by the same source vessel) in each animal. Results revealed a marked dissimilarity of the overlying cutaneous vessels in many cases, yet a striking resemblance of the vascular architecture of the deep tissues. The size and density of the cutaneous perforators bore a close relation to the degree of the skin mobility, being large and sparse where the skin was mobile and smaller and more densely grouped where the integument was tethered or fixed. The cutaneous vasculature of the human resembled that of the monkey closely, was similar to that of the dog, cat, and possum, and was dissimilar to that of the pig, rat, guinea pig, and rabbit. Studies of the amphibian and bird bore many resemblances to those of the mammals. They provided basic concepts regarding modification of the animals' vascular anatomy in response to the functional demands of the species. In each animal, the arteries formed an unbroken network throughout the body. This consisted of anatomic territories linked by anastomotic vessels that were usually of reduced caliber. The pattern of the venous

  10. The characters of Palaeozoic jawed vertebrates

    PubMed Central

    Brazeau, Martin D; Friedman, Matt

    2014-01-01

    Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems. PMID:25750460

  11. Vertebrate palaeontology of Australasia into the twenty-first century

    PubMed Central

    Nguyen, Jacqueline M. T.; Molak, Martyna; Black, Karen H.; Fitzgerald, Erich M. G.; Travouillon, Kenny J.; Ho, Simon Y. W.

    2011-01-01

    The 13th Conference on Australasian Vertebrate Evolution Palaeontology and Systematics (CAVEPS) took place in Perth, Western Australia, from 27 to 30 April 2011. This biennial meeting was jointly hosted by Curtin University, the Western Australian Museum, Murdoch University and the University of Western Australia. Researchers from diverse disciplines addressed many aspects of vertebrate evolution, including functional morphology, phylogeny, ecology and extinctions. New additions to the fossil record were reported, especially from hitherto under-represented ages and clades. Yet, application of new techniques in palaeobiological analyses dominated, such as dental microwear and geochronology, and technological advances, including computed tomography and ancient biomolecules. This signals a shift towards increased emphasis in interpreting broader evolutionary patterns and processes. Nonetheless, further field exploration for new fossils and systematic descriptions will continue to shape our understanding of vertebrate evolution in this little-studied, but most unusual, part of the globe. PMID:21715395

  12. The evolution of early vertebrate photoreceptors

    PubMed Central

    Collin, Shaun P.; Davies, Wayne L.; Hart, Nathan S.; Hunt, David M.

    2009-01-01

    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these ‘living fossils’, we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land. PMID:19720654

  13. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  14. Transcriptome analysis of integument differentially expressed genes in the pigment mutant (quail) during molting of silkworm, Bombyx mori.

    PubMed

    Nie, Hongyi; Liu, Chun; Cheng, Tingcai; Li, Qiongyan; Wu, Yuqian; Zhou, Mengting; Zhang, Yinxia; Xia, Qingyou

    2014-01-01

    In the silkworm Bombyx mori, pigment mutants with diverse body colors have been maintained throughout domestication for about 5000 years. The silkworm larval body color is formed through the mutual interaction of melanin, ommochromes, pteridines and uric acid. These pigments/compounds are synthesized by the cooperative action of various genes and enzymes. Previous reports showed that melanin, ommochrome and pteridine are increased in silkworm quail (q) mutants. To understand the pigment increase and alterations in pigment synthesis in q mutant, transcriptome profiles of the silkworm integument were investigated at 16 h after head capsule slippage in the fourth molt in q mutants and wild-type (Dazao). Compared to the wild-type, 1161 genes were differentially expressed in the q mutant. Of these modulated genes, 62.4% (725 genes) were upregulated and 37.6% (436 genes) were downregulated in the q mutant. The molecular function of differently expressed genes was analyzed by Blast2GO. The results showed that upregulated genes were mainly involved in protein binding, small molecule binding, transferase activity, nucleic acid binding, specific DNA-binding transcription factor activity and chromatin binding, while exclusively down-expressed genes functioned in oxidoreductase activity, cofactor binding, tetrapyrrole binding, peroxidase activity and pigment binding. We focused on genes related to melanin, pteridine and ommochrome biosynthesis; transport of uric acid; and juvenile hormone metabolism because of their importance in integument coloration during molting. This study identified differently expressed genes implicated in silkworm integument formation and pigmentation using silkworm q mutant. The results estimated the number and types of genes that drive new integument formation. PMID:24718369

  15. Transcriptome Analysis of Integument Differentially Expressed Genes in the Pigment Mutant (quail) during Molting of Silkworm, Bombyx mori

    PubMed Central

    Cheng, Tingcai; Li, Qiongyan; Wu, Yuqian; Zhou, Mengting; Zhang, Yinxia; Xia, Qingyou

    2014-01-01

    In the silkworm Bombyx mori, pigment mutants with diverse body colors have been maintained throughout domestication for about 5000 years. The silkworm larval body color is formed through the mutual interaction of melanin, ommochromes, pteridines and uric acid. These pigments/compounds are synthesized by the cooperative action of various genes and enzymes. Previous reports showed that melanin, ommochrome and pteridine are increased in silkworm quail (q) mutants. To understand the pigment increase and alterations in pigment synthesis in q mutant, transcriptome profiles of the silkworm integument were investigated at 16 h after head capsule slippage in the fourth molt in q mutants and wild-type (Dazao). Compared to the wild-type, 1161 genes were differentially expressed in the q mutant. Of these modulated genes, 62.4% (725 genes) were upregulated and 37.6% (436 genes) were downregulated in the q mutant. The molecular function of differently expressed genes was analyzed by Blast2GO. The results showed that upregulated genes were mainly involved in protein binding, small molecule binding, transferase activity, nucleic acid binding, specific DNA-binding transcription factor activity and chromatin binding, while exclusively down-expressed genes functioned in oxidoreductase activity, cofactor binding, tetrapyrrole binding, peroxidase activity and pigment binding. We focused on genes related to melanin, pteridine and ommochrome biosynthesis; transport of uric acid; and juvenile hormone metabolism because of their importance in integument coloration during molting. This study identified differently expressed genes implicated in silkworm integument formation and pigmentation using silkworm q mutant. The results estimated the number and types of genes that drive new integument formation. PMID:24718369

  16. Positive Effects of Diphlorethohydroxycarmalol (DPHC) on the Stability of the Integument Structure in Diet-Induced Obese Female Mice

    PubMed Central

    Kim, Chae-lim; Cha, Sun-yeong; Chun, Min Young; Kim, Bumsoo; Choi, Min Young; Cheon, Yong-Pil

    2015-01-01

    Diphlorethohydroxycarmalol (DPHC) is a known to modulate the expression of extracellular matrix (ECM) components in 3T3-L1. However, the possible role of DPHC in integument stability during obesity induction is not clear yet. We evaluated the effects of DPHC on collagen or elastic fiber quantity in integument during obesity induction with high-fat diet. The dorsal back integument sections were stained with hematoxylin–eosin, Masson trichrome, and Verhoff-Van Gieson. The intensities of collagen fibers and elastin fibers were analyzed with ImageJ. The number of fibroblasts was counted at ×1,000 fields. The number of fibroblast was increased by obesity induction, but DPHC suppressed it in a concentrationdependent manner both in lean and obese mice. On the other hand, the intensities of collagen fibers were increased by DPHC treatment in obese mice groups but not in lean mice groups. The intensities of collagen fibers of obese mice were lower than that of the lean mice in 0% group. However, the number became similar between lean and obese mice by the treatment of DPHC. The intensity of elastic fibers was increased in the lean mice with the concentration of DPHC. In the obese mice group, there were increasing patterns but only significant at 10% DPHC group. The intensity of elastic fibers of obese mice was higher than lean mice in 0%, 1%, and 10% groups. Histologically epithelial cells and follicle cells which were diffused nuclear staining forms were increased by DPHC treatment. The results suggest that the activity of integument cells during obesity induction can be modulated by DPHC. PMID:27004271

  17. Isolation, Purification, and Identification of an Important Pigment, Sepiapterin, from Integument of the lemon Mutant of the Silkworm, Bombyx mori

    PubMed Central

    Wang, Jing; Wang, Wenjing; Liu, Chaoliang; Meng, Yan

    2013-01-01

    Sepiapterin is the precursor of tetrahydrobiopterin, an important coenzyme of aromatic amino acid hydroxylases, the lack of which leads to a variety of physiological metabolic diseases or neurological syndromes in humans. Sepiapterin is a main pigment component in the integument of the lemon mutant of the silkworm, Bombyx mori (L.) (Lepidoptera: Bombycidae), and is present there in extremely high content, so lemon is a valuable genetic resource to extract sepiapterin. In this study, an effective experimental system was set up for isolation and purification of sepiapterin from lemon silkworms by optimizing homogenization solvent, elution buffer, and separation chromatographic column. The results showed that ethanol was the most suitable solvent to homogenize the integument, with a concentration of 50% and solid:liquid ratio of 1:20 (g/mL). Sepiapterin was purified successively by column chromatography of cellulose Ecteola, sephadex G-25-150, and cellulose phosphate, and was identified by ultraviolet-visible absorption spectrometry. A stable and accurate high performance liquid chromatography method was constructed to identify sepiapterin and conduct qualitative and quantitative analyses. Sepiapterin of high purity was achieved, and the harvest reached about 40 ug/g of integument in the experiments. This work helps to obtaining natural sepiapterin in large amounts in order to use the lemon B. mori mutant to produce BH4 in vitro. PMID:24773269

  18. Ultrastructural analysis of the integument of a desert-adapted mammal, the one-humped camel (Camelus dromedarius).

    PubMed

    Pfeiffer, C J; Osman, A H K; Pfeiffer, D C

    2006-04-01

    In this study, we conducted a light microscopic and ultrastructural analysis of the integument of the one-humped camel (Camelus dromedarius). In general, the epidermal strata of the camel integument appeared typical of those found in non-desert mammals. Two cell populations were noted in the stratum basale: one with a flat, non-serrated base and the other with a highly serrated base. Typical fine structure was observed in keratinocytes of the stratum spinosum and stratum granulosum. The stratum corneum was six to 10 cells thick. Within the different strata, overall cell morphologies and the general distribution and relative abundance of cellular organelles appeared typical. Dermal features included the presence of myoepithelial cells surrounding apocrine tubular glands. Inter- or intracellular canaliculi within the secretory cells of the apocrine glands, reported to be present in certain other non-desert mammals, were not evident in the camel. Together, these data indicate that while the camel is clearly adapted for a desert lifestyle, these adaptations do not include significant specializations at the cellular or subcellular level in the integument. PMID:16542174

  19. Integument coloration signals reproductive success, heterozygosity, and antioxidant levels in chick-rearing black-legged kittiwakes

    USGS Publications Warehouse

    Leclaire, S.; White, J.; Arnoux, E.; Faivre, B.; Vetter, N.; Hatch, Shyla A.; Danchin, E.

    2011-01-01

    Carotenoid pigments are important for immunity and as antioxidants, and carotenoid-based colors are believed to provide honest signals of individual quality. Other colorless but more efficient antioxidants such as vitamins A and E may protect carotenoids from bleaching. Carotenoid-based colors have thus recently been suggested to reflect the concentration of such colorless antioxidants, but this has rarely been tested. Furthermore, although evidence is accruing for multiple genetic criteria for mate choice, carotenoid-based colors have rarely been shown to reflect both phenotypic and genetic quality. In this study, we investigated whether gape, tongue, eye-ring, and bill coloration of chick-rearing black-legged kittiwakes Rissa tridactyla reflected circulating levels of carotenoids and vitamins A and E. We further investigated whether integument coloration reflected phenotypic (body condition and fledging success) and genetic quality (heterozygosity). We found that the coloration of fleshy integuments was correlated with carotenoid and vitamin A levels and fledging success but only in males. Furthermore, the coloration of tongue and eye-ring was correlated with heterozygosity in both males and females. Integument colors might therefore be reliable signals of individual quality used by birds to adjust their parental care during the chick-rearing period. ?? Springer-Verlag 2011.

  20. Integument coloration signals reproductive success, heterozygosity, and antioxidant levels in chick-rearing black-legged kittiwakes

    NASA Astrophysics Data System (ADS)

    Leclaire, Sarah; White, Joël; Arnoux, Emilie; Faivre, Bruno; Vetter, Nathanaël; Hatch, Scott A.; Danchin, Étienne

    2011-09-01

    Carotenoid pigments are important for immunity and as antioxidants, and carotenoid-based colors are believed to provide honest signals of individual quality. Other colorless but more efficient antioxidants such as vitamins A and E may protect carotenoids from bleaching. Carotenoid-based colors have thus recently been suggested to reflect the concentration of such colorless antioxidants, but this has rarely been tested. Furthermore, although evidence is accruing for multiple genetic criteria for mate choice, carotenoid-based colors have rarely been shown to reflect both phenotypic and genetic quality. In this study, we investigated whether gape, tongue, eye-ring, and bill coloration of chick-rearing black-legged kittiwakes Rissa tridactyla reflected circulating levels of carotenoids and vitamins A and E. We further investigated whether integument coloration reflected phenotypic (body condition and fledging success) and genetic quality (heterozygosity). We found that the coloration of fleshy integuments was correlated with carotenoid and vitamin A levels and fledging success but only in males. Furthermore, the coloration of tongue and eye-ring was correlated with heterozygosity in both males and females. Integument colors might therefore be reliable signals of individual quality used by birds to adjust their parental care during the chick-rearing period.

  1. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies.

    PubMed

    Organ, Chris L; Cooper, Lisa Noelle; Hieronymus, Tobin L

    2015-10-01

    The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization. PMID:26250386

  2. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-04-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic-anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  3. Three-Dimensionally Preserved Integument Reveals Hydrodynamic Adaptations in the Extinct Marine Lizard Ectenosaurus (Reptilia, Mosasauridae)

    PubMed Central

    Lindgren, Johan; Everhart, Michael J.; Caldwell, Michael W.

    2011-01-01

    The physical properties of water and the environment it presents to its inhabitants provide stringent constraints and selection pressures affecting aquatic adaptation and evolution. Mosasaurs (a group of secondarily aquatic reptiles that occupied a broad array of predatory niches in the Cretaceous marine ecosystems about 98–65 million years ago) have traditionally been considered as anguilliform locomotors capable only of generating short bursts of speed during brief ambush pursuits. Here we report on an exceptionally preserved, long-snouted mosasaur (Ectenosaurus clidastoides) from the Santonian (Upper Cretaceous) part of the Smoky Hill Chalk Member of the Niobrara Formation in western Kansas, USA, that contains phosphatized remains of the integument displaying both depth and structure. The small, ovoid neck and/or anterior trunk scales exhibit a longitudinal central keel, and are obliquely arrayed into an alternating pattern where neighboring scales overlap one another. Supportive sculpturing in the form of two parallel, longitudinal ridges on the inner scale surface and a complex system of multiple, superimposed layers of straight, cross-woven helical fiber bundles in the underlying dermis, may have served to minimize surface deformation and frictional drag during locomotion. Additional parallel fiber bundles oriented at acute angles to the long axis of the animal presumably provided stiffness in the lateral plane. These features suggest that the anterior torso of Ectenosaurus was held somewhat rigid during swimming, thereby limiting propulsive movements to the posterior body and tail. PMID:22110629

  4. Investigating integument alterations in cubicle housed dairy cows: which types and locations can be combined?

    PubMed

    Brenninkmeyer, C; Dippel, S; Brinkmann, J; March, S; Winckler, C; Knierim, U

    2016-02-01

    In this study, a data set of 2922 lactating dairy cows in a sample of 64 conventional and organic dairy farms with Holstein Friesian cows in Germany and 31 conventional dairy farms with the dual purpose breed Fleckvieh in Austria was used to screen for correlations between the occurrences of different integument alterations. All cows were housed in cubicle systems. Alterations were classified as hairless areas (H), scabs or wounds (W) or swellings (S) and assessed at 15 locations of the cows' body. Highest median farm prevalences were found at the joints of the legs, which are already commonly included in studies on integumentary alterations: median farm prevalence was 83% for S and 48% for H at the carpal joints, followed by H (38%) and S (20%) at the lateral tarsal joints and H at the lateral calcanei (20%). Additional body parts with notable median prevalences for H were the hip bones (13%), pin bones (12%) and sacrum (11%). Three cluster models, with 2, 5 and 14 clusters, were built by hierarchical clustering of prevalences of the 30 most relevant alteration location combinations. Clustering revealed that location overruled type of lesion in most cases. Occasionally, clusters represented body segments significantly distant from each other, for example the carpal joints and lateral and dorsal calcanei. However, some neighbouring areas such as the medial and lateral hock area should be analysed separately from each other for causal analysis as they formed distinct clusters. PMID:26144555

  5. Structure-function relationships in the integument of Salamandra salamandra during ontogenetic development.

    PubMed

    Pederzoli, Aurora; Gambarelli, A; Gabbay, Shosh; Rozman, A; Katz, U

    2002-06-01

    Morphological, cytological and transport properties of the integument of Salamandra salamandra were investigated during natural ontogenetic development, from birth to adult. Three stages were operationally defined: I, larvae, from birth to metamorphosis; II, metamorphosis (judged externally by the colour change and loss of the gills); and III, post-metamorphosis to adult. Pieces of skin were fixed at various stages for immunocytochemical examinations, and the electrical properties were investigated on parallel pieces. Distinct cellular changes take place in the skin during metamorphosis, and lectin (PNA, WGA and ConA) binding indicates profound changes in glycoprotein composition of cell membranes, following metamorphosis. Band 3 and carbonic anhydrase I (CA I) were confined to mitochondria-rich (MR)-like cells, and were detected only in the larval stage. CA II on the other hand, was detected both in MR-like and in MR cells following metamorphosis. The electrical studies show that the skin becomes more tight (transepithelial resistance increases) upon metamorphosis, followed by manifestation of amiloride-sensitive short-circuit current (I(SC)) indicating that functional Na+ uptake has been acquired. The skin of metamorphosed adults had no finite transepithelial Cl- conductance, and band 3 was not detected in its MR cells. The functional properties of MR-like and MR cells remain to be established. PMID:12206657

  6. Proliferative and Non-Proliferative Lesions of the Rat and Mouse Integument

    PubMed Central

    Mecklenburg, Lars; Kusewitt, Donna; Kolly, Carine; Treumann, Silke; Adams, E. Terence; Diegel, Kelly; Yamate, Jyoji; Kaufmann, Wolfgang; Müller, Susanne; Danilenko, Dimitry; Bradley, Alys

    2014-01-01

    The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) project is a joint initiative of the societies of toxicological pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP). Its aim is to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory rodents. A widely accepted international harmonization of nomenclature in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and will provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists. The purpose of this publication is to provide a standardized nomenclature for classifying microscopical lesions observed in the integument of laboratory rats and mice. Example colour images are provided for most lesions. The standardized nomenclature presented in this document and additional colour images are also available electronically at http://www.goreni.org. The nomenclature presented herein is based on histopathology databases from government, academia, and industrial laboratories throughout the world, and covers lesions that develop spontaneously as well as those induced by exposure to various test materials. (DOI: 10.1293/tox.26.27S; J Toxicol Pathol 2013; 26: 27S–57S) PMID:25035577

  7. Modes of fossil preservation

    USGS Publications Warehouse

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  8. A new arylalkylamine N-acetyltransferase in silkworm (Bombyx mori) affects integument pigmentation.

    PubMed

    Long, Yaohang; Li, Jiaorong; Zhao, Tianfu; Li, Guannan; Zhu, Yong

    2015-04-01

    Dopamine is a precursor for melanin synthesis. Arylalkylamine N-acetyltransferase (AANAT) is involved in the melatonin formation in insects because it could catalyze the transformation from dopamine to dopamine-N-acetyldopamine. In this study, we identified a new AANAT gene in the silkworm (Bombyx mori) and assessed its role in the silkworm. The cDNA of this gene encodes 233 amino acids that shares 57 % amino acid identity with the Bm-iAANAT protein. We thus refer to this gene as Bm-iAANAT2. To investigate the role of Bm-iAANAT2, we constructed a transgenic interference system using a 3xp3 promoter to suppress the expression of Bm-iAANAT2 in the silkworm. We observed that melanin deposition occurs in the head and integument in transgenic lines. To verify the melanism pattern, dopamine content and the enzyme activity of AANAT were determined by high-performance liquid chromatography (HPLC). We found that an increase in dopamine levels affects melanism patterns on the heads of transgenic B. mori. A reduction in the enzyme activity of AANAT leads to changes in dopamine levels. We analyzed the expression of the Bm-iAANAT2 genes by qPCR and found that the expression of Bm-iAANAT2 gene is significantly lower in transgenic lines. Our results lead us to conclude that Bm-iAANAT2 is a new arylalkylamine N-acetyltransferase gene in the silkworm and is involved in the metabolism of the dopamine to avoid the generation of melanin. PMID:25712907

  9. Major African contributions to Palaeozoic and Mesozoic vertebrate palaeontology

    NASA Astrophysics Data System (ADS)

    Durand, J. F.

    2005-10-01

    Over more than two centuries, Africa has been an important source of knowledge with regard to the origins, evolution and distribution of important animal taxa. Not only did Africa south of the Sahara contain a second zoogeographical region virtually unknown four centuries ago, but also gave the world the first insight into the palaeontological wealth and the existence of Gondwana. The section on Agnatha includes a discussion on conodonts from South Africa, considered to be the some of the oldest and best-preserved vertebrate fossils in the world. The section on the Gnathostomata includes a very brief overview of the most important fish taxa from the Palaeozoic to Mesozoic of Africa. The section on the Tetrapoda includes an overview of the major taxa found in the fossil record of the Palaeozoic and Mesozoic of Africa. The Permian and Triassic tetrapod fossils that indicate the evolution and radiation of the parareptiles, eureptiles and synapsids are highlighted. The most important vertebrate fossils from Africa that contributed to our understanding of the radiation of evolutionary important groups such as the fish, tetrapods, tortoises, snakes, crocodiles, dinosaurs and mammals are discussed. The Jurassic and Cretaceous assemblages containing dinosaur and mammal remains, deposited after the break up of Gondwana, are discussed. Finally a perspective on the importance of Africa as fossil repository and the limitations of palaeontological endeavour in Africa is given.

  10. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  11. Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori.

    PubMed

    Fujii, Tsuguru; Yamamoto, Kimiko; Banno, Yutaka

    2016-06-01

    Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants. PMID:27041280

  12. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  13. Integument and defence in larva and prepupa of a sawfly living on a semi-aquatic plant

    NASA Astrophysics Data System (ADS)

    Boevé, Jean-Luc; Voigt, Dagmar; Gorb, Stanislav N.

    2013-01-01

    The larvae of the sawfly Rhadinoceraea micans live and feed on a semi-aquatic plant, Iris pseudacorus, and their integument is strongly hydrophobic. The hydrophobicity is part of a chemical defence strategy, easy bleeding, also known from congeners. The prepupae burrow into the soil where they form a cocoon in which they pupate, thus implying different micro-environmental conditions. The cuticle structure and wetting defensive effectiveness of R. micans were compared between larvae and prepupae. The two stages were similarly well defended against attacking ants by the bleeding of a deterrent hemolymph, whereas they were dissimilar in the cuticle surface that presented sculptures and wax crystals at the larval stage only. The integument of prepupae was less structured, and hydrophilic. Larvae of R. micans exhibit, among sawflies, an exceptional cuticle structuring and we assume that they occupy this particular niche of a semi-aquatic environment to avoid encounters with ground-dwelling predators whereas prepupae may benefit from the chemical defence acquired at larval stage.

  14. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing.

    PubMed

    Duarte, A P M; Ferro, M; Rodrigues, A; Bacci, M; Nagamoto, N S; Forti, L C; Pagnocca, F C

    2016-09-01

    The relationship of attine ants with their mutualistic fungus and other microorganisms has been studied during the last two centuries. However, previous studies about the diversity of fungi in the ants' microenvironment are based mostly on culture-dependent approaches, lacking a broad characterization of the fungal ant-associated community. Here, we analysed the fungal diversity found on the integument of Atta capiguara and Atta laevigata alate ants using 454 pyrosequencing. We obtained 35,453 ITS reads grouped into 99 molecular operational taxonomic units (MOTUs). Data analysis revealed that A. capiguara drones had the highest diversity of MOTUs. Besides the occurrence of several uncultured fungi, the mycobiota analysis revealed that the most abundant taxa were the Cladosporium-complex, Cryptococcus laurentii and Epicoccum sp. Taxa in the genus Cladosporium were predominant in all samples, comprising 67.9 % of all reads. The remarkable presence of the genus Cladosporium on the integument of leaf-cutting ants alates from distinct ant species suggests that this fungus is favored in this microenvironment. PMID:27307255

  15. Integument and defence in larva and prepupa of a sawfly living on a semi-aquatic plant.

    PubMed

    Boevé, Jean-Luc; Voigt, Dagmar; Gorb, Stanislav N

    2013-01-01

    The larvae of the sawfly Rhadinoceraea micans live and feed on a semi-aquatic plant, Iris pseudacorus, and their integument is strongly hydrophobic. The hydrophobicity is part of a chemical defence strategy, easy bleeding, also known from congeners. The prepupae burrow into the soil where they form a cocoon in which they pupate, thus implying different micro-environmental conditions. The cuticle structure and wetting defensive effectiveness of R. micans were compared between larvae and prepupae. The two stages were similarly well defended against attacking ants by the bleeding of a deterrent hemolymph, whereas they were dissimilar in the cuticle surface that presented sculptures and wax crystals at the larval stage only. The integument of prepupae was less structured, and hydrophilic. Larvae of R. micans exhibit, among sawflies, an exceptional cuticle structuring and we assume that they occupy this particular niche of a semi-aquatic environment to avoid encounters with ground-dwelling predators whereas prepupae may benefit from the chemical defence acquired at larval stage. PMID:23183874

  16. Differential expression of cysteine peptidase genes in the inner integument and endosperm of developing seeds of Jatropha curcas L. (Euphorbiaceae).

    PubMed

    Rocha, Antônio J; Soares, Emanoella L; Costa, José H; Costa, Washington L G; Soares, Arlete A; Nogueira, Fábio C S; Domont, Gilberto B; Campos, Francisco A P

    2013-12-01

    In several plant tissues, programmed cell death (PCD) is mediated by the combined action of cysteine peptidases, namely KDEL-tailed cysteine peptidases (KDEL-CysEP) and vacuolar processing enzymes (VPE). Here, we performed a search of the draft genome of Jatropha curcas L. (Euphorbiaceae) and identified 2 genes for KDEL-CysEP (Jc-CysEP1 and Jc-CysEP2) and 3 genes for VPE (Jc-βVPE, Jc-γVPE and Jc-δVPE) and determined the expression patterns of these genes by RT-qPCR in integument and cellular endosperm of seeds collected at seven different developmental stages. We were able to demonstrate that the expression of Jc-CysEP1, Jc-CysEP2, Jc-βVPE and Jc-γVPE proceeded rapidly from Stage IV, with Jc-CysEP2 displaying the highest relative expression; expression of Jc-δVPE could not be detected in any of the tissues/developmental stages analyzed. Additionally, we showed that the expression pattern of these peptidases correlates with anatomical changes in integument and cellular endosperm, thus suggesting a role for both classes of peptidases in PCD and in protein processing, both of which occur simultaneously in each of these tissues. PMID:24157205

  17. [Vertebral hydatidosis: case report].

    PubMed

    Varela, R; Santelices, J P; Cuzmar, D; Aldunate, J T; Plaza-Guzmán, N; Lizama-Calvo, P

    2015-01-01

    Hydatidosis caused by echinococcus granulosus may affect any organ in the body, with the lungs and the liver as the most commonly affected organs. Vertebral compromise resulting from echinococcus granulosus has a low prevalence and accounts for less than 1% of bone compromise. We report the case of a 50 year-old female who presented at the Trauma Service with progressive low back pain with 5 months of duration that irradiated to the right lower limb, and led to neurologic compromise of the limb. Imaging studies showed spondylodiscitis at T12-L1, confirmed by a biopsy. Treatment of this condition is both orthopedic and surgical. The recurrence rate is high, between 30 and 40%. The objective of describing this case is to propose the differential diagnosis of a vertebral mass of unknown origin and provide details as to how to manage this condition. PMID:27012085

  18. Viruses of lower vertebrates.

    PubMed

    Essbauer, S; Ahne, W

    2001-08-01

    Viruses of lower vertebrates recently became a field of interest to the public due to increasing epizootics and economic losses of poikilothermic animals. These were reported worldwide from both wildlife and collections of aquatic poikilothermic animals. Several RNA and DNA viruses infecting fish, amphibians and reptiles have been studied intensively during the last 20 years. Many of these viruses induce diseases resulting in important economic losses of lower vertebrates, especially in fish aquaculture. In addition, some of the DNA viruses seem to be emerging pathogens involved in the worldwide decline in wildlife. Irido-, herpes- and polyomavirus infections may be involved in the reduction in the numbers of endangered amphibian and reptile species. In this context the knowledge of several important RNA viruses such as orthomyxo-, paramyxo-, rhabdo-, retro-, corona-, calici-, toga-, picorna-, noda-, reo- and birnaviruses, and DNA viruses such as parvo-, irido-, herpes-, adeno-, polyoma- and poxviruses, is described in this review. PMID:11550762

  19. Head segmentation in vertebrates

    PubMed Central

    Kuratani, Shigeru; Schilling, Thomas

    2008-01-01

    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Here again, a basic segmental plan for the head has been sought among chordates. We convened a symposium that brought together leading researchers dealing with this problem, in a number of different evolutionary and developmental contexts. Here we give an overview of the outcome and the status of the field in this modern era of Evo-Devo. We emphasize the fact that the head segmentation problem is not fully resolved, and we discuss new directions in the search for hints for a way out of this maze. PMID:20607135

  20. The origin of the myelination program in vertebrates.

    PubMed

    Zalc, B; Goujet, D; Colman, D

    2008-06-24

    The myelin sheath was a transformative vertebrate acquisition, enabling great increases in impulse propagation velocity along axons. Not all vertebrates possess myelinated axons, however, and when myelin first appeared in the vertebrate lineage is an important open question. It has been suggested that the dual, apparently unrelated acquisitions of myelin and the hinged jaw were actually coupled in evolution [1,2]. If so, it would be expected that myelin was first acquired during the Devonian period by the oldest jawed fish, the placoderms [3]. Although myelin itself is not retained in the fossil record, within the skulls of fossilized Paleozoic vertebrate fish are exquisitely preserved imprints of cranial nerves and the foramina they traversed. Examination of these structures now suggests how the nerves functioned in vivo. In placoderms, the first hinge-jawed fish, oculomotor nerve diameters remained constant, but nerve lengths were ten times longer than in the jawless osteostraci. We infer that to accommodate this ten-fold increase in length, while maintaining a constant diameter, the oculomotor system in placoderms must have been myelinated to function as a rapidly conducting motor pathway. Placoderms were the first fish with hinged jaws and some can grow to formidable lengths, requiring a rapid conduction system, so it is highly likely that they were the first organisms with myelinated axons in the craniate lineage. PMID:18579089

  1. Late Cretaceous terrestrial vertebrate fauna, North Slope, Alaska

    SciTech Connect

    Clemens, W.A.; Allison, C.W.

    1985-01-01

    Closely related terrestrial vertebrates in Cretaceous mid-latitude (30/sup 0/ to 50/sup 0/) faunas of North America and Asia as well as scattered occurrences of footprints and skin impressions suggested that in the Late Mesozoic the Alaskan North Slope supported a diverse fauna. In 1961 abundant skeletal elements of Cretaceous, Alaskan dinosaurs (hadrosaurids) were discovered by the late R.L. Liscomb. This material is being described by K.L. Davies. Additional fossils collected by E.M. Brouwers and her associates include skeletal elements of hadrosaurid and carnosaurian (.tyrannosaurid) dinosaurs and other vertebrates. The fossil locality on the North Slope is not at about 70/sup 0/N. In the Late Cretaceous the members of this fauna were subject to the daylight regime and environment at a paleolatitude closer to 80/sup 0/N. Current hypotheses attributing extinctions of dinosaurs and some other terrestrial vertebrates to impact of an extraterrestrial object cite periods of darkness, decreased temperature (possibly followed by extreme warming) and acid rain as the direct causes of their demise. Unless members of this North Slope fauna undertook long-distance migrations, their high latitude occurrence indicates groups of dinosaurs and other terrestrial vertebrates regularly tolerated months of darkness.

  2. Building the Vertebrate Spine

    NASA Astrophysics Data System (ADS)

    Pourquié, Olivier

    2008-03-01

    The vertebrate body can be subdivided along the antero-posterior (AP) axis into repeated structures called segments. This periodic pattern is established during embryogenesis by the somitogenesis process. Somites are generated in a rhythmic fashion from the paraxial mesoderm and subsequently differentiate to give rise to the vertebrae and skeletal muscles of the body. Somite formation involves an oscillator-the segmentation clock-whose periodic signal is converted into the periodic array of somite boundaries. This clock drives the dynamic expression of cyclic genes in the presomitic mesoderm and requires Notch and Wnt signaling. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the segmentation clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator. In humans, mutations in the genes associated to the function of this oscillator such as Dll3 or Lunatic Fringe result in abnormal segmentation of the vertebral column such as those seen in congenital scoliosis. Whereas the segmentation clock is thought to set the pace of vertebrate segmentation, the translation of this pulsation into the reiterated arrangement of segment boundaries along the AP axis involves dynamic gradients of FGF and Wnt signaling. The FGF signaling gradient is established based on an unusual mechanism involving mRNA decay which provides an efficient means to couple the spatio-temporal activation of segmentation to the posterior elongation of the embryo. Another striking aspect of somite production is the strict bilateral symmetry of the process. Retinoic acid was shown to control aspects of this coordination by buffering destabilizing effects from the embryonic left-right machinery. Defects in this embryonic program controlling vertebral symmetry might lead

  3. Fossil Simulation in the Classroom

    ERIC Educational Resources Information Center

    Hoehn, Robert G.

    1977-01-01

    Describes classroom science demonstrations and experiments that simulate the process of fossil formation. Lists materials, procedures and suggestions for successful activities. Includes ten student activities (coral fossils, leaf fossils, leaf scars, carbonization, etc.). Describes a fossil game in which students work in pairs. (CS)

  4. Damage to the gills and integument of Litoria fallax larvae (Amphibia: Anura) associated with ionoregulatory disturbance at low pH.

    PubMed

    Meyer, Edward A; Cramp, Rebecca L; Franklin, Craig E

    2010-02-01

    In fish, exposure to waters of low pH causes significant damage to the gill resulting in fatal iono- and osmoregulatory disturbance. In amphibians, exposure to acid waters also disrupts ionic homeostasis, however the extent and nature of injuries to amphibian larvae from acid exposure are poorly understood. Changes in gross morphology and ultrastructure of the gills and integument were examined, together with measures of Na(+) efflux/uptake, in larval Litoria fallax (Amphibia: Anura) following acute acid exposure. Examination of tissues revealed significant changes in morphology and ultrastructure of both gills and the integument following acutely lethal exposure to low pH water. Changes to the gills of acid-exposed L. fallax larvae included lifting of the branchial epithelium and opening of tight junctions between pavement cells (with a consequent reduction in tight junction length). Damage to epithelial cell-cell tight junctions was also apparent at the integument along with widespread oncosis and localised epithelial necrosis. Mucous secretory activity at the gills and body surface was largely unaffected by acid exposure, with little or no difference in density, cross-sectional area and number of epithelial mucous secretory vesicles in acid-exposed and control larvae. Changes in morphology and ultrastructure at low pH were accompanied by significant Na(+) loss (up to 50% of the total body Na(+) content) attributable in large part to increased paracellular ionic efflux across the gills as well as increased transcellular and paracellular efflux of ions across the integument. PMID:19879955

  5. Mechanotransduction During Vertebrate Neurulation.

    PubMed

    Sokol, Sergei Y

    2016-01-01

    Vertebrate neural tube formation is a complex morphogenetic process, which involves hundreds of genes dynamically coordinating various behaviors in different cell populations of neural tissue. The challenge remains to determine the relative contributions of physical forces and biochemical signaling events to neural tube closure and accompanying cell fate specification. Planar cell polarity (PCP) molecules are prime candidate factors for the production of actomyosin-dependent mechanical signals necessary for morphogenesis. Conversely, physical forces may contribute to the polarized distribution of PCP proteins. Understanding mechanosensory and mechanotransducing properties of diverse molecules should help define the direction and amplitude of physical stresses that are critical for neurulation. PMID:26969989

  6. Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    PubMed Central

    Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.

    2010-01-01

    Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227

  7. Coregulation of host-response genes in integument: switchover of gene expression correlation pattern and impaired immune responses induced by dipteran parasite infection in the silkworm, Bombyx mori.

    PubMed

    Jayaram, Anitha; Pradeep, Appukuttan Nair R; Awasthi, Arvind K; Murthy, Geetha N; Ponnuvel, Kangayam M; Sasibhushan, Sirigineedi; Rao, Guruprasad C

    2014-05-01

    The activation of host response proteins against parasitic infection is dependent on the coregulation of immune gene expression. The infection of commercially important silkworm Bombyx mori through endoparasite Exorista bombycis enhanced host-response gene expression in integument early in the infection and was lowered asymptotically. Principal component analysis (PCA) showed heterogeneity while explaining ∼80 % variance among expression timings. PCA showed positive and negative correlation with gene expression and differentiated transcriptional timings, and revealed cross talk within the immune system. Pearson correlation analysis showed significant linear correlation (mean R (2) = >0.7; P < 0.004) between the expression of 16 pairs of genes in control, while the relation switched over to curvilinear due to parasitism. The genes showed pleiotropic interaction among them, with four genes each for prophenoloxidase activating enzyme (PPAE) and caspase. Besides, after parasitism, exclusive correlation of five gene pairs including PPAE-Spatzle pair (R (2) = 0.9; P < 0.011) was observed in the integument. In integument, the phenol oxidase (PO) activity showed a positive correlation with the tyrosine level (R (2) = 0.410; P < 0.002) and a curvilinear relation (R (2) = 0.745; P < 0.0002) with the expanding lysis area. The PO activity was positively correlated with BmToll expression and negatively correlated with paralytical peptide expression, revealing polygenic influence. Caspase expression was tightly regulated by signal genes in control integument, whereas they were deregulated after infection. Switchover from linear to curvilinear correlation and the appearance of new gene correlations in parasitized integument revealed deviation from gene coregulation, leading to impaired immune responses, characterized by lowered gene expression and varied phenotypic consequences. PMID:24310719

  8. Fossilization of feathers

    NASA Astrophysics Data System (ADS)

    Davis, Paul G.; Briggs, Derek E. G.

    1995-09-01

    Scanning electron microscopy of feathers has revealed evidence that a bacterial glycocalyx (a network of exocellular polysaccharide fibers) played a role in promoting their fossilization in some cases. This mode of preservation has not been reported in other soft tissues. The majority of fossil feathers are preserved as carbonized traces. More rarely, bacteria on the surface are replicated by authigenic minerals (bacterial autolithification). The feathers of Archaeopteryx are preserved mainly by imprintation following early lithification of the substrate and decay of the feather. Lacustrine settings provide the most important taphonomic window for feather preservation. Preservation in terrestrial and normal-marine settings involves very different processes (in amber and in authigenically mineralized coprolites, respectively). Therefore, there may be a significant bias in the avian fossil record in favor of inland water habitats.

  9. Vertebral Angiosarcoma. Case Study.

    PubMed

    Guzik, Grzegorz

    2015-01-01

    Bone angiosarcomas, especially vertebral angiosarcomas, are very rare. There are no studies based on large clinical samples in the literature, and only a few single case reports can be found. The symptoms of the disease are not specific. It is usually detected incidentally or at a late stage when pathological vertebral fractures or neurological complications occur. Diagnostic imaging and history help to recognize the tumour behind the symptoms, but do not allow accurate clinical diagnosis. The basis for a diagnosis is the histopathological examination supported by immunohistochemistry (IHC) assays. The case of a 26-year-old woman with an angiosarcoma involving the eighth thoracic vertebra we report reflects diagnostic problems adversely affecting the efficacy and accuracy of treatment offered to patients. The patient underwent three surgeries of the spine, including two biopsies. A needle biopsy did not provide sufficient information for the diagnosis. An open excisional biopsy, which at the same time temporarily reduced neurological deficits in the patient, was the only chance to obtain an accurate diagnosis. The third surgery was posterior decompression of the spinal cord due to the rapidly escalating paraparesis. It was not until 8 weeks later that the final diagnosis was established. At that time, the patient could not be qualified for any supplementary treatment. The patient died in hospital 6 months after the onset of disease. PMID:26468177

  10. DEVELOPMENTAL PALEOBIOLOGY OF THE VERTEBRATE SKELETON

    PubMed Central

    RÜCKLIN, MARTIN; DONOGHUE, PHILIP C. J.; CUNNINGHAM, JOHN A.; MARONE, FEDERICA; STAMPANONI, MARCO

    2015-01-01

    Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties. PMID:26306050

  11. The epidemiology of vertebral fractures. European Vertebral Osteoporosis Study Group.

    PubMed

    Cooper, C; O'Neill, T; Silman, A

    1993-01-01

    Vertebral fractures are recognised as a hallmark of osteoporosis, yet little is known of their epidemiology. This deficiency limits accurate characterisation of the public health importance of osteoporosis. Assessment of the impact of vertebral fractures has been hampered by the absence of formal criteria for identifying fractures on a thoracolumbar radiograph. Initial methods relying upon subjective radiological assessments have given way to morphometric measurements of vertebral heights, with deformities defined according to various algorithms. These methods have been used in a series of studies performed in Rochester, MN, to determine the incidence, outcome, and time trends of vertebral deformities. The results suggest a prevalence rate of vertebral deformity of 25.3 per 100 Rochester women aged 50 years and over (95% CI, 22.3-28.2), with an estimated incidence of 17.8 per 1,000 person-years. The incidence of clinically diagnosed vertebral fractures among women in the same population was 5.3 per 1,000 person-years, suggesting that around 30% of such deformities in women receive clinical attention. Morphometric measurement on the radiographs of women with clinically diagnosed fractures revealed that 80% had grade 2 ( > 4 SD) deformities. Comparable data on the occurrence and health impact of vertebral deformities throughout Europe are urgently required. The European Vertebral Osteoporosis Study (EVOS) is a multicentre epidemiological study that aims to address this issue. It is designed as a radiographic prevalence study in 34 European centres.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8110529

  12. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils.

    PubMed

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F; Currano, Ellen D; Jacobs, Louis L; Sylvestersen, Rene Lyng; Gabbott, Sarah E; Vinther, Jakob

    2015-10-13

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns. PMID:26417094

  13. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils

    PubMed Central

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F.; Currano, Ellen D.; Jacobs, Louis L.; Sylvestersen, Rene Lyng; Gabbott, Sarah E.; Vinther, Jakob

    2015-01-01

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns. PMID:26417094

  14. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils

    NASA Astrophysics Data System (ADS)

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F.; Currano, Ellen D.; Jacobs, Louis L.; Lyng Sylvestersen, Rene; Gabbott, Sarah E.; Vinther, Jakob

    2015-10-01

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.

  15. Contemporaneous Trace and Body Fossils from a Late Pleistocene Lakebed in Victoria, Australia, Allow Assessment of Bias in the Fossil Record

    PubMed Central

    Camens, Aaron Bruce; Carey, Stephen Paul

    2013-01-01

    The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones. PMID:23301008

  16. Trace Fossil Analysis

    NASA Astrophysics Data System (ADS)

    Hasiotis, Stephen T.

    2009-05-01

    Today, the study of trace fossils—ichnology—is an important subdiscipline of geology at the interface of paleontology and sedimentology, mostly because of the efforts of Adolf Seilacher. His ability to synthesize various aspects of ichnology and produce a hierarchy of marine ichna and sedimentary facies has made ichnology useful worldwide in interpreting paleodiversity, rates of sedimentation, oxygenation of bottom water and sediment pore water, and depositional energy. Seilacher's book Trace Fossil Analysis provides a glimpse into the mind, methodology, and insights of the father of modern ichnology, generated from his course notes as a professor and a guest lecturer. The title sounds misleading—readers looking for up-to-date principles and approaches to trace fossil analysis in marine and continental strata will be disappointed. In his preface, however, Seilacher clearly gives direction for the use of his text: “This is a course book—meaning that it is intended to confer not knowledge, but skill.” Thus, it is not meant as a total compilation of all trace fossils, ichnotaxonomy, ichnological interpretations, applications, or the most relevant and up-to-date references. Rather, it takes the reader on a personal journey, explaining how trace fossils are understood in the context of their three-dimensional (3-D) morphology and sedimentary facies.

  17. Fossil-Fired Boilers

    Energy Science and Technology Software Center (ESTSC)

    1993-09-23

    Boiler Performance Model (BPM 3.0S) is a set of computer programs developed to analyze the performance of fossil-fired utility boilers. The programs can model a wide variety of boiler designs, and can model coal, oil, or natural gas firing. The programs are intended for use by engineers performing analyses of alternative fuels, alternative operating modes, or boiler modifications.

  18. Fossil-energy

    NASA Astrophysics Data System (ADS)

    1981-08-01

    Progress in the following areas of fossil energy is reported: physiochemical cleaning and recovery of fine coal; a systematic investigation of the organosulfur components in coal; microstructures of coal; rapid analysis of mineral content in coal; coal blending experiments; performance characteristics of heavy media cyclones using fly ash derived heavy media; briquetting solvent treated coal; and coal preparation and testing.

  19. Advanced fossil energy utilization

    SciTech Connect

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01

    This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

  20. The 'Tully monster' is a vertebrate.

    PubMed

    McCoy, Victoria E; Saupe, Erin E; Lamsdell, James C; Tarhan, Lidya G; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G; Anderson, Ross P; Petermann, Holger; Locatelli, Emma R; Briggs, Derek E G

    2016-04-28

    Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years. PMID:26982721

  1. Vertebral fracture classification

    NASA Astrophysics Data System (ADS)

    de Bruijne, Marleen; Pettersen, Paola C.; Tankó, László B.; Nielsen, Mads

    2007-03-01

    A novel method for classification and quantification of vertebral fractures from X-ray images is presented. Using pairwise conditional shape models trained on a set of healthy spines, the most likely unfractured shape is estimated for each of the vertebrae in the image. The difference between the true shape and the reconstructed normal shape is an indicator for the shape abnormality. A statistical classification scheme with the two shapes as features is applied to detect, classify, and grade various types of deformities. In contrast with the current (semi-)quantitative grading strategies this method takes the full shape into account, it uses a patient-specific reference by combining population-based information on biological variation in vertebra shape and vertebra interrelations, and it provides a continuous measure of deformity. Good agreement with manual classification and grading is demonstrated on 204 lateral spine radiographs with in total 89 fractures.

  2. Molecules, fossils, and the origin of tetrapods.

    PubMed

    Meyer, A; Dolven, S I

    1992-08-01

    Since the discovery of the coelacanth, Latimeria chalumnae, more than 50 years ago, paleontologists and comparative morphologists have debated whether coelacanths or lungfishes, two groups of lobe-finned fishes, are the closest living relatives of land vertebrates (Tetrapoda). Previously, Meyer and Wilson (1990) determined partial DNA sequences from two conservative mitochondrial genes and found support for a close relationship of lungfishes to tetrapods. We present additional DNA sequences from the 12S rRNA mitochondrial gene for three species of the two lineages of lungfishes that were not represented in the first study: Protopterus annectens and Protopterus aethiopicus from Africa and Neoceratodus forsteri (kindly provided by B. Hedges and L. Maxson) from Australia. This extended data set tends to group the two lepidosirenid lungfish lineages (Lepidosiren and Protopterus) with Neoceratodus as their sister group. All lungfishes seem to be more closely related to tetrapods than the coelacanth is. This result appears to rule out the possibility that the coelacanth lineage gave rise to land vertebrates. The common ancestor of lungfishes and tetrapods might have possessed multiple morphological traits that are shared by lungfishes and tetrapods [Meyer and Wilson (1990) listed 14 such traits]. Those traits that seem to link Latimeria and tetrapods are arguably due to convergent evolution or reversals and not to common descent. In this way, the molecular tree facilitates an evolutionary interpretation of the morphological differences among the living forms. We recommended that the extinct groups of lobe-finned fishes be placed onto the molecular tree that has lungfishes and not the coelacanth more closely related to tetrapods. The placement of fossils would help to further interpret the sequence of morphological events and innovations associated with the origin of tetrapods but appears to be problematic because the quality of fossils is not always high enough, and

  3. Chemical ecology of vertebrate carrion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertebrate carrion is a nutrient-rich, ephemeral resource that is utilized by many different organisms ranging from vertebrate and invertebrate scavengers to microbes. The organisms that consume carrion play an important ecological role, as decomposition is vital to ecosystem function. Without the...

  4. The eyes of Tullimonstrum reveal a vertebrate affinity.

    PubMed

    Clements, Thomas; Dolocan, Andrei; Martin, Peter; Purnell, Mark A; Vinther, Jakob; Gabbott, Sarah E

    2016-04-28

    Tullimonstrum gregarium is an iconic soft-bodied fossil from the Carboniferous Mazon Creek Lagerstätte (Illinois, USA). Despite a large number of specimens and distinct anatomy, various analyses over the past five decades have failed to determine the phylogenetic affinities of the 'Tully monster', and although it has been allied to such disparate phyla as the Mollusca, Annelida or Chordata, it remains enigmatic. The nature and phylogenetic affinities of Tullimonstrum have defied confident systematic placement because none of its preserved anatomy provides unequivocal evidence of homology, without which comparative analysis fails. Here we show that the eyes of Tullimonstrum possess ultrastructural details indicating homology with vertebrate eyes. Anatomical analysis using scanning electron microscopy reveals that the eyes of Tullimonstrum preserve a retina defined by a thick sheet comprising distinct layers of spheroidal and cylindrical melanosomes. Time-of-flight secondary ion mass spectrometry and multivariate statistics provide further evidence that these microbodies are melanosomes. A range of animals have melanin in their eyes, but the possession of melanosomes of two distinct morphologies arranged in layers, forming retinal pigment epithelium, is a synapomorphy of vertebrates. Our analysis indicates that in addition to evidence of colour patterning, ecology and thermoregulation, fossil melanosomes can also carry a phylogenetic signal. Identification in Tullimonstrum of spheroidal and cylindrical melanosomes forming the remains of retinal pigment epithelium indicates that it is a vertebrate; considering its body parts in this new light suggests it was an anatomically unusual member of total group Vertebrata. PMID:27074512

  5. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  6. Paleophysiology: From Fossils to the Future.

    PubMed

    Vermeij, Geerat J

    2015-10-01

    Future environments may resemble conditions that have not existed for millions of years. To assess the adaptive options available to organisms evolving under such circumstances, it is instructive to probe paleophysiology, the ways in which ancient life coped with its physical and chemical surroundings. To do this, we need reliable proxies that are based on fundamental principles, quantitatively verified in living species, and observable in fossil remains. Insights have already come from vertebrates and plants, and others will likely emerge for marine animals if promising proxies are validated. Many questions remain about the circumstances for the evolution of environmental tolerances, metabolic rates, biomineralization, and physiological responses to interacting species, and about how living organisms will perform under exceptional conditions. PMID:26411617

  7. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates.

    PubMed

    Sire, Jean-Yves; Donoghue, Philip C J; Vickaryous, Matthews K

    2009-04-01

    Most non-tetrapod vertebrates develop mineralized extra-oral elements within the integument. Known collectively as the integumentary skeleton, these elements represent the structurally diverse skin-bound contribution to the dermal skeleton. In this review we begin by summarizing what is known about the histological diversity of the four main groups of integumentary skeletal tissues: hypermineralized (capping) tissues; dentine; plywood-like tissues; and bone. For most modern taxa, the integumentary skeleton has undergone widespread reduction and modification often rendering the homology and relationships of these elements confused and uncertain. Fundamentally, however, all integumentary skeletal elements are derived (alone or in combination) from only two types of cell condensations: odontogenic and osteogenic condensations. We review the origin and diversification of the integumentary skeleton in aquatic non-tetrapods (including stem gnathostomes), focusing on tissues derived from odontogenic (hypermineralized tissues, dentines and elasmodine) and osteogenic (bone tissues) cell condensations. The novelty of our new scenario of integumentary skeletal evolution resides in the demonstration that elasmodine, the main component of elasmoid scales, is odontogenic in origin. Based on available data we propose that elasmodine is a form of lamellar dentine. Given its widespread distribution in non-tetrapod lineages we further propose that elasmodine is a very ancient tissue in vertebrates and predict that it will be found in ancestral rhombic scales and cosmoid scales. PMID:19422423

  8. What fossils can tell us about the evolution of viviparity and placentation.

    PubMed

    Carter, A M

    2008-11-01

    Recently a fossil of one of the earliest jawed fishes was found with a fetal skeleton and the remains of a cord. It was from the Devonian period and takes the history of vertebrate placentation back to 380 million years ago. This and later fossil evidence for viviparity in marine reptiles and early mammals is reviewed. Of particular interest are the fossils of horses as they document that a reproductive strategy with a single precocial newborn was evolved early on. In one instance there is sufficient representation of soft tissue to imply that early horses had a diffuse placenta, much as had been predicted by phylogenetic analyses of placentation. PMID:18774606

  9. Effects of some botanical extracts on the midgut, integument and fat body of the cotton leaf worm, Spodoptera littoralis (Lepidoptera: Noctuidae).

    PubMed

    Khatter, Najat A

    2010-08-01

    Botanical extracts (8%) of four plants (Artemisia monosperma, Zygophyllum cocccineum, Lupinus termis and Brassica tournifortii) fed to the 4th larval instars of Spodoptera littoralis induced histopathological changes in the structure of the midgut, integument and fat body of the 5th instars. Zygophyllum cocci-neum and Lupinus termis induced severe damages in the midgut. The integument of treated larvae showed degeneration in the cuticle and epidermal cells which were also detached from each other. Water extracts of A. monosperma, Z. coccinieum and L. termis were the most promising in inducing shrinkage in the fat body cells and detachment of midgut muscle layers. Also, the degeneration of the midgut membrane and epithelial layer occurs in different degrees with the tested plants. This study supports the use of botanical extracts in pest control programs of lepidopterous insects. PMID:21246948

  10. [The structure of the skin of the ear in domesticated pigs, with special reference to their use for human dermatological research. 2. Specific histology of the integument].

    PubMed

    Meyer, W; Zschemisch, N H; Godynicki, S; Neurand, K

    2001-01-01

    Based on light microscopy, the study describes the specific histology of the ear integument of the white domesticated pig. After careful tissue fixation and embedding, routine histological staining, collagen fibre staining, fat demonstration based on frozen sections, and ink injection of the integumental blood vessel system were applied. A detailed description is presented of the structure of the skin layers (epidermis, dermis, hypodermis), the ear cartilage envelopes (fascia, perichondrium), the plica scaphae, the blood vessel distribution, the architecture of the collagen fibre bundles, as well as the hair follicles and the skin glands (sebaceous glands, apocrine tubular glands). The results are discussed with regard to a direct comparison with the histological structure of the human integument, and the advantages and disadvantages of the use of the porcine ear skin as model system in human dermatological research are emphasized. PMID:11314580

  11. Gaps in the Rock and Fossil Records and Implications for the Rate and Mode of Evolution.

    ERIC Educational Resources Information Center

    Smith, Grant Sackett

    1988-01-01

    Examines three types of gaps in the fossil record: real gaps, imaginary gaps, and temporary gaps. Reviews some recent evidence concerning evolution from the paleontological record of microfossils, invertebrates, and vertebrates in order to make some general conclusions regarding the manner in which life evolved on earth. (CW)

  12. Morphological alterations in the synganglion and integument of Rhipicephalus sanguineus ticks exposed to aqueous extracts of neem leaves (Azadirachta indica A. JUSS).

    PubMed

    Remedio, R N; Nunes, P H; Anholeto, L A; Camargo-Mathias, M I

    2014-12-01

    Currently, the necessity of controlling infestation by ticks, especially by Rhipicephalus sanguineus, has led researchers and public health managers around the world to search for new and more efficient control methods. This way, we can highlight neem (Azadirachta indica A. Juss) leaf, bark, and seed extracts, which have been very effective on tick control, and moreover causing less damage to the environment and to the host. This study showed the potential of neem as a control method for R. sanguineus through morphological and morphometric evaluation of the integument and synganglion of females, in semiengorged stage. To attain this, routine techniques of optical microscopy, scanning electron microscopy and morphometry of the cuticle and subcuticle of the integument were applied. Expressive morphological alterations were observed in both organs, presenting a dose-dependent effect. Integument epithelial cells and nerve cells of the synganglion showed signs of cell vacuolation, dilated intercellular boundaries, and cellular disorganization, alterations not previously reported in studies with neem. In addition, variations in subcuticle thickness were also observed. In general, the effects of neem are multiple, and affect the morphology and physiology of target animals in various ways. The results presented in this work are the first evidence of its effects in the coating and nervous system of ticks, thus allowing an indication of neem aqueous extracts as a potential control method of the brown dog tick and opening new perspectives on acaricide use. PMID:25130979

  13. Chemistry of bone remodelling preserved in extant and fossil Sirenia.

    PubMed

    Anné, Jennifer; Wogelius, Roy A; Edwards, Nicholas P; van Veelen, Arjen; Ignatyev, Konstantin; Manning, Phillip L

    2016-05-01

    Bone remodelling is a crucial biological process needed to maintain elemental homeostasis. It is important to understand the trace elemental inventories that govern these processes as malfunctions in bone remodelling can have devastating effects on an organism. In this study, we use a combination of X-ray techniques to map, quantify, and characterise the coordination chemistry of trace elements within the highly remodelled bone tissues of extant and extinct Sirenia (manatees and dugongs). The dense bone structure and unique body chemistry of sirenians represent ideal tissues for studying both high remodelling rates as well as unique fossilisation pathways. Here, elemental maps revealed uncorrelated patterning of Ca and Zn within secondary osteons in both extant and fossil sirenians, as well as elevated Sr within the connecting canals of fossil sirenians. Concentrations of these elements are comparable between extant and fossil material indicating geochemical processing of the fossil bone has been minimal. Zn was found to be bound in the same coordination within the apatite structure in both extant and fossil bone. Accurate quantification of trace elements in extant material was only possible when the organic constituents of the bone were included. The comparable distributions, concentrations, and chemical coordination of these physiologically important trace elements indicate the chemistry of bone remodelling has been preserved for 19 million years. This study signifies the powerful potential of merging histological and chemical techniques in the understanding of physiological processes in both extant and extinct vertebrates. PMID:26923825

  14. Bizarre tubercles on the vertebrae of Eocene fossil birds indicate an avian disease without modern counterpart

    NASA Astrophysics Data System (ADS)

    Mayr, Gerald

    2007-08-01

    Remains of fossil birds with numerous bony tubercles on the cervical vertebrae are reported from the Middle Eocene of Messel in Germany and the Late Eocene of the Quercy fissure fillings in France. These structures, which are unknown from extant birds and other vertebrates, were previously described for an avian skeleton from Messel but considered a singular feature of this specimen. The new fossils are from a different species of uncertain phylogenetic affinities and show that tuberculated vertebrae have a wider taxonomic, temporal, and geographic distribution. In contrast to previous assumptions, they are no ontogenetic feature and arise from the vertebral surface. It is concluded that they are most likely of pathologic origin and the first record of a Paleogene avian disease. Their regular and symmetrical arrangement over most of the external vertebral surface indicates a systemic disorder caused by factors that do not affect extant birds, such as especially high-dosed phytohormones or extinct pathogens.

  15. Lymphatic regulation in nonmammalian vertebrates.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2013-08-01

    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression. PMID:23640588

  16. Cycles in fossil diversity

    SciTech Connect

    Rohde, Robert A.; Muller, Richard A.

    2004-10-20

    It is well-known that the diversity of life appears to fluctuate during the course the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 Ma). Using Sepkoski's compendium of the first and last stratigraphic appearances of 36380 marine genera, we report a strong 62 {+-} 3 Myr cycle, which is particularly strong in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance, we also consider contributing environmental factors and possible causes.

  17. Finding fossils in new ways: an artificial neural network approach to predicting the location of productive fossil localities.

    PubMed

    Anemone, Robert; Emerson, Charles; Conroy, Glenn

    2011-01-01

    Chance and serendipity have long played a role in the location of productive fossil localities by vertebrate paleontologists and paleoanthropologists. We offer an alternative approach, informed by methods borrowed from the geographic information sciences and using recent advances in computer science, to more efficiently predict where fossil localities might be found. Our model uses an artificial neural network (ANN) that is trained to recognize the spectral characteristics of known productive localities and other land cover classes, such as forest, wetlands, and scrubland, within a study area based on the analysis of remotely sensed (RS) imagery. Using these spectral signatures, the model then classifies other pixels throughout the study area. The results of the neural network classification can be examined and further manipulated within a geographic information systems (GIS) software package. While we have developed and tested this model on fossil mammal localities in deposits of Paleocene and Eocene age in the Great Divide Basin of southwestern Wyoming, a similar analytical approach can be easily applied to fossil-bearing sedimentary deposits of any age in any part of the world. We suggest that new analytical tools and methods of the geographic sciences, including remote sensing and geographic information systems, are poised to greatly enrich paleoanthropological investigations, and that these new methods should be embraced by field workers in the search for, and geospatial analysis of, fossil primates and hominins. PMID:22034235

  18. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori

    PubMed Central

    Wu, Songyuan; Tong, Xiaoling; Peng, Chenxing; Xiong, Gao; Lu, Kunpeng; hu, Hai; Tan, Duan; Li, Chunlin; Han, Minjin; Lu, Cheng; Dai, Fangyin

    2016-01-01

    The insect cuticle is a critical protective shell that is composed predominantly of chitin and various cuticular proteins and pigments. Indeed, insects often change their surface pigment patterns in response to selective pressures, such as threats from predators, sexual selection and environmental changes. However, the molecular mechanisms underlying the construction of the epidermis and its pigmentation patterns are not fully understood. Among Lepidoptera, the silkworm is a favorable model for color pattern research. The black dilute (bd) mutant of silkworm is the result of a spontaneous mutation; the larval body color is notably melanized. We performed integument transcriptome sequencing of the wild-type strain Dazao and the mutant strains +/bd and bd/bd. In these experiments, during an early stage of the fourth molt, a stage at which approximately 51% of genes were expressed genome wide (RPKM ≥1) in each strain. A total of 254 novel transcripts were characterized using Cuffcompare and BLAST analyses. Comparison of the transcriptome data revealed 28 differentially expressed genes (DEGs) that may contribute to bd larval melanism, including 15 cuticular protein genes that were remarkably highly expressed in the bd/bd mutant. We suggest that these significantly up-regulated cuticular proteins may promote melanism in silkworm larvae. PMID:27193628

  19. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori.

    PubMed

    Wu, Songyuan; Tong, Xiaoling; Peng, Chenxing; Xiong, Gao; Lu, Kunpeng; Hu, Hai; Tan, Duan; Li, Chunlin; Han, Minjin; Lu, Cheng; Dai, Fangyin

    2016-01-01

    The insect cuticle is a critical protective shell that is composed predominantly of chitin and various cuticular proteins and pigments. Indeed, insects often change their surface pigment patterns in response to selective pressures, such as threats from predators, sexual selection and environmental changes. However, the molecular mechanisms underlying the construction of the epidermis and its pigmentation patterns are not fully understood. Among Lepidoptera, the silkworm is a favorable model for color pattern research. The black dilute (bd) mutant of silkworm is the result of a spontaneous mutation; the larval body color is notably melanized. We performed integument transcriptome sequencing of the wild-type strain Dazao and the mutant strains +/bd and bd/bd. In these experiments, during an early stage of the fourth molt, a stage at which approximately 51% of genes were expressed genome wide (RPKM ≥1) in each strain. A total of 254 novel transcripts were characterized using Cuffcompare and BLAST analyses. Comparison of the transcriptome data revealed 28 differentially expressed genes (DEGs) that may contribute to bd larval melanism, including 15 cuticular protein genes that were remarkably highly expressed in the bd/bd mutant. We suggest that these significantly up-regulated cuticular proteins may promote melanism in silkworm larvae. PMID:27193628

  20. Fossil Microorganisms in Archaean

    NASA Technical Reports Server (NTRS)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  1. Evolution of vertebrate retinal photoreception

    PubMed Central

    Lamb, Trevor D.

    2009-01-01

    Recent findings shed light on the steps underlying the evolution of vertebrate photoreceptors and retina. Vertebrate ciliary photoreceptors are not as wholly distinct from invertebrate rhabdomeric photoreceptors as is sometimes thought. Recent information on the phylogenies of ciliary and rhabdomeric opsins has helped in constructing the likely routes followed during evolution. Clues to the factors that led the early vertebrate retina to become invaginated can be obtained by combining recent knowledge about the origin of the pathway for dark re-isomerization of retinoids with knowledge of the inability of ciliary opsins to undergo photoreversal, along with consideration of the constraints imposed under the very low light levels in the deep ocean. Investigation of the origin of cell classes in the vertebrate retina provides support for the notion that cones, rods and bipolar cells all originated from a primordial ciliary photoreceptor, whereas ganglion cells, amacrine cells and horizontal cells all originated from rhabdomeric photoreceptors. Knowledge of the molecular differences between cones and rods, together with knowledge of the scotopic signalling pathway, provides an understanding of the evolution of rods and of the rods' retinal circuitry. Accordingly, it has been possible to propose a plausible scenario for the sequence of evolutionary steps that led to the emergence of vertebrate photoreceptors and retina. PMID:19720653

  2. New occurrences of microvertebrate fossil accumulations in Bauru Group, Late Cretaceous of western São Paulo state, Brazil

    NASA Astrophysics Data System (ADS)

    Alveş, Y. M.; Bergqvist, L. P.; Brito, P. M.

    2016-08-01

    In this work, we present the results of several palaeontological expeditions to four Upper Cretaceous fossil microsites of the Adamantina and Presidente Prudente formations in western São Paulo State, Brazil. Despite the fragmentary condition of the fossils recovered, they represent an important record of vertebrate microremains. The material, recovered through screen washing, comprises teeth and scales of Lepisosteidae; two morphotypes of Halecostomi teeth with similarities to Characiformes and Amiiformes; a Teleostei tooth of molariform shape; fin spines of Siluriformes; teeth of possible Baurusuchidae, Notosuchia (probably Adamantinasuchus or Mariliasuchus), Neosuchia (probably Itasuchus or Goniopholis), and other Mesoeucrocodylia indet.; probable teeth of Abelisauroidea, other Theropoda indet., and a phalanx of Aves. The comparative microvertebrate fossil accumulation from western São Paulo State provides evidence that: 1) floodplain channels accumulate large concentrations of microremains; 2) coarse sandstone privileges enamel tissues like teeth and scales; 3) new vertebrate fossil records have been discovered in Florida Paulista, Alfredo Marcondes, and Alvares Machado outcrops.

  3. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    PubMed

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA). PMID:18442873

  4. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle

    PubMed Central

    Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong

    2014-01-01

    Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous. PMID:25313060

  5. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle.

    PubMed

    Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong

    2014-10-28

    Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous. PMID:25313060

  6. Medical treatment of vertebral osteoporosis.

    PubMed

    Lippuner, K

    2003-10-01

    Although osteoporosis is a systemic disease, vertebral fractures due to spinal bone loss are a frequent, sometimes early and often neglected complication of the disease, generally associated with considerable disability and pain. As osteoporotic vertebral fractures are an important predictor of future fracture risk, including at the hip, medical management is targeted at reducing fracture risk. A literature search for randomized, double-blind, prospective, controlled clinical studies addressing medical treatment possibilities of vertebral fractures in postmenopausal Caucasian women was performed on the leading medical databases. For each publication, the number of patients with at least one new vertebral fracture and the number of randomized patients by treatment arm was retrieved. The relative risk (RR) and the number needed to treat (NNT, i.e. the number of patients to be treated to avoid one radiological vertebral fracture over the duration of the study), together with the respective 95% confidence intervals (95%CI) were calculated for each study. Treatment of steroid-induced osteoporosis and treatment of osteoporosis in men were reviewed separately, based on the low number of publications available. Forty-five publications matched with the search criteria, allowing for analysis of 15 different substances tested regarding their anti-fracture efficacy at the vertebral level. Bisphosphonates, mainly alendronate and risedronate, were reported to have consistently reduced the risk of a vertebral fracture over up to 50 months of treatment in four (alendronate) and two (risedronate) publications. Raloxifene reduced vertebral fracture risk in one study over 36 months, which was confirmed by 48 months' follow-up data. Parathormone (PTH) showed a drastic reduction in vertebral fracture risk in early studies, while calcitonin may also be a treatment option to reduce fracture risk. For other substances published data are conflicting (calcitriol, fluoride) or insufficient

  7. Fossil mammals and paleoenvironments in the Omo-Turkana Basin.

    PubMed

    Bobe, René

    2011-01-01

    Although best known for its fossil hominins, the Omo-Turkana Basin of Kenya and Ethiopia is the source of one of the best records of vertebrate evolution from the Late Cenozoic of Africa. Located near the heart of the East African Rift Valley, the basin serves as an important frame of reference for the continent. The fossil record from this region plays a key role in our efforts to understand the environmental and ecological context of human evolution in Africa. The Omo-Turkana faunal data shed light on key questions of human evolution: What kinds of environments did early humans inhabit? How did these environments change over time? What is the relationship between faunal change in East Africa and broader patterns of climatic change? PMID:22170694

  8. Fossil energy materials needs assessment

    NASA Astrophysics Data System (ADS)

    King, R. T.; Judkins, R. R.

    1980-07-01

    An assessment of needs for materials of construction for fossil energy systems was prepared by Oak Ridge National Laboratories staff members who conducted a literature search and interviewed various individuals and organizations that are active in the area of fossil energy technology. Critical materials problems associated with fossil energy systems are identified. Background information relative to the various technologies is given and materials research needed to enhance the viability and improve the economics of fossil energy processes is discussed. The assessment is presented on the basis of materials-related disciplines that impact fossil energy material development. These disciplines include the design-materials interface, materials fabrication technology, corrosion and materials compatibility, wear phenomena, ceramic materials, and nondestructive testing.

  9. Variation in anthropoid vertebral formulae: implications for homology and homoplasy in hominoid evolution.

    PubMed

    Williams, Scott A

    2012-03-01

    Variation in vertebral formulae within and among hominoid species has complicated our understanding of hominoid vertebral evolution. Here, variation is quantified using diversity and similarity indices derived from population genetics. These indices allow for testing models of hominoid vertebral evolution that call for disparate amounts of homoplasy, and by inference, different patterns of evolution. Results are interpreted in light of "short-backed" (J Exp Zool (Mol Dev Evol) 302B:241-267) and "long-backed" (J Exp Zool (Mol Dev Evol) 314B:123-134) ancestries proposed in different models of hominin vertebral evolution. Under the long-back model, we should expect reduced variation in vertebral formulae associated with adaptively driven homoplasy (independently and repeatedly reduced lumbar regions) and the relatively strong directional selection presumably associated with it, especially in closely related taxa that diverged relatively recently (e.g., Pan troglodytes and Pan paniscus). Instead, high amounts of intraspecific variation are observed among all hominoids except humans and eastern gorillas, taxa that have likely experienced strong stabilizing selection on vertebral formulae associated with locomotor and habitat specializations. Furthermore, analyses of interspecific similarity support an evolutionary scenario in which the vertebral formulae observed in western gorillas and chimpanzees represent a reasonable approximation of the ancestral condition for great apes and humans, from which eastern gorillas, humans, and bonobos derived their unique vertebral profiles. Therefore, these results support the short-back model and are compatible with a scenario of homology of reduced lumbar regions in hominoid primates. Fossil hominin vertebral columns are discussed and shown to support, rather than contradict, the short-back model. PMID:22532475

  10. Organic molecules as chemical fossils - The molecular fossil record

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1983-01-01

    The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.

  11. Vertebrate paleontological exploration of the Upper Cretaceous succession in the Dakhla and Kharga Oases, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Sallam, Hesham M.; O'Connor, Patrick M.; Kora, Mahmoud; Sertich, Joseph J. W.; Seiffert, Erik R.; Faris, Mahmoud; Ouda, Khaled; El-Dawoudi, Iman; Saber, Sara; El-Sayed, Sanaa

    2016-05-01

    The Campanian and Maastrichtian stages are very poorly documented time intervals in Africa's record of terrestrial vertebrate evolution. Upper Cretaceous deposits exposed in southern Egypt, near the Dakhla and Kharga Oases in the Western Desert, preserve abundant vertebrate fossils in nearshore marine environments, but have not yet been the focus of intensive collection and description. Our recent paleontological work in these areas has resulted in the discovery of numerous new vertebrate fossil-bearing localities within the middle Campanian Qusier Formation and the upper Campanian-lower Maastrichtian Duwi Formation. Fossil remains recovered from the Campanian-aged Quseir Formation include sharks, rays, actinopterygian and sarcopterygian fishes, turtles, and rare terrestrial archosaurians, including some of the only dinosaurs known from this interval on continental Africa. The upper Campanian/lower Maastrichtian Duwi Formation preserves sharks, sawfish, actinopterygians, and marine reptiles (mosasaurs and plesiosaurs). Notably absent from these collections are representatives of Mammalia and Avialae, both of which remain effectively undocumented in the Upper Cretaceous rocks of Africa and Arabia. New age constraints on the examined rock units is provided by 23 nannofossil taxa, some of which are reported from the Duwi Formation for the first time. Fossil discoveries from rock units of this age are essential for characterizing the degree of endemism that may have developed as the continent became increasingly tectonically isolated from the rest of Gondwana, not to mention for fully evaluating origin and diversification hypotheses of major modern groups of vertebrates (e.g., crown birds, placental mammals).

  12. Learning about Vertebrate Limb Development

    ERIC Educational Resources Information Center

    Liang, Jennifer O.; Noll, Matthew; Olsen, Shayna

    2014-01-01

    We have developed an upper-level undergraduate laboratory exercise that enables students to replicate a key experiment in developmental biology. In this exercise, students have the opportunity to observe live chick embryos and stain the apical ectodermal ridge, a key tissue required for development of the vertebrate limb. Impressively, every…

  13. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  14. Fossil evidence and stages of elongation of the Giraffa camelopardalis neck

    PubMed Central

    Danowitz, Melinda; Vasilyev, Aleksandr; Kortlandt, Victoria; Solounias, Nikos

    2015-01-01

    Several evolutionary theories have been proposed to explain the adaptation of the long giraffe neck; however, few studies examine the fossil cervical vertebrae. We incorporate extinct giraffids, and the okapi and giraffe cervical vertebral specimens in a comprehensive analysis of the anatomy and elongation of the neck. We establish and evaluate 20 character states that relate to general, cranial and caudal vertebral lengthening, and calculate a length-to-width ratio to measure the relative slenderness of the vertebrae. Our sample includes cervical vertebrae (n=71) of 11 taxa representing all seven subfamilies. We also perform a computational comparison of the C3 of Samotherium and Giraffa camelopardalis, which demonstrates that cervical elongation occurs disproportionately along the cranial–caudal vertebral axis. Using the morphological characters and calculated ratios, we propose stages in cervical lengthening, which are supported by the mathematical transformations using fossil and extant specimens. We find that cervical elongation is anisometric and unexpectedly precedes Giraffidae. Within the family, cranial vertebral elongation is the first lengthening stage observed followed by caudal vertebral elongation, which accounts for the extremely long neck of the giraffe. PMID:26587249

  15. Fossil evidence and stages of elongation of the Giraffa camelopardalis neck.

    PubMed

    Danowitz, Melinda; Vasilyev, Aleksandr; Kortlandt, Victoria; Solounias, Nikos

    2015-10-01

    Several evolutionary theories have been proposed to explain the adaptation of the long giraffe neck; however, few studies examine the fossil cervical vertebrae. We incorporate extinct giraffids, and the okapi and giraffe cervical vertebral specimens in a comprehensive analysis of the anatomy and elongation of the neck. We establish and evaluate 20 character states that relate to general, cranial and caudal vertebral lengthening, and calculate a length-to-width ratio to measure the relative slenderness of the vertebrae. Our sample includes cervical vertebrae (n=71) of 11 taxa representing all seven subfamilies. We also perform a computational comparison of the C3 of Samotherium and Giraffa camelopardalis, which demonstrates that cervical elongation occurs disproportionately along the cranial-caudal vertebral axis. Using the morphological characters and calculated ratios, we propose stages in cervical lengthening, which are supported by the mathematical transformations using fossil and extant specimens. We find that cervical elongation is anisometric and unexpectedly precedes Giraffidae. Within the family, cranial vertebral elongation is the first lengthening stage observed followed by caudal vertebral elongation, which accounts for the extremely long neck of the giraffe. PMID:26587249

  16. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees

    PubMed Central

    Sansom, Robert S.; Wills, Matthew A.

    2013-01-01

    Fossils are vital for calibrating rates of molecular and morphological change through geological time, and are the only direct source of data documenting macroevolutionary transitions. Many evolutionary studies therefore require the robust phylogenetic placement of extinct organisms. Here, we demonstrate that the inevitable bias of the fossil record to preserve just hard, skeletal morphology systemically distorts phylogeny. Removal of soft part characters from 78 modern vertebrate and invertebrate morphological datasets resulted in significant changes to phylogenetic signal; it caused individual taxa to drift from their original position, predominately downward toward the root of their respective trees. This last bias could systematically inflate evolutionary rates inferred from molecular data because first fossil occurrences will not be recognised as such. Stem-ward slippage, whereby fundamental taphonomic biases cause fossils to be interpreted as erroneously primitive, is therefore a ubiquitous problem for all biologists attempting to infer macroevolutionary rates or sequences. PMID:23985991

  17. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    SciTech Connect

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume III lists the model equations and a one line definition for equations, in a short, readable format.

  18. Sonic hedgehog signaling pathway in vertebrate epithelial appendage morphogenesis: perspectives in development and evolution.

    PubMed

    Chuong, C M; Patel, N; Lin, J; Jung, H S; Widelitz, R B

    2000-11-01

    Vertebrate epithelial appendages are elaborate topological transformations of flat epithelia into complex organs that either protrude out of external (integument) and internal (oral cavity, gut) epithelia, or invaginate into the surrounding mesenchyme. Although they have specific structures and diverse functions, most epithelial appendages share similar developmental stages, including induction, morphogenesis, differentiation and cycling. The roles of the SHH pathway are analyzed in exemplary organs including feather, hair, tooth, tongue papilla, lung and foregut. SHH is not essential for induction and differentiation, but is involved heavily in morphogenetic processes including cell proliferation (size regulation), branching morphogenesis, mesenchymal condensation, fate determination (segmentation), polarizing activities and so on. Through differential activation of these processes by SHH in a spatiotemporal-specific fashion, organs of different shape and size are laid down. During evolution, new links of developmental pathways may occur and novel forms of epithelial appendages may emerge, upon which evolutionary selections can act. Sites of major variations have progressed from the body plan to the limb plan to the epithelial appendage plan. With its powerful morphogenetic activities, the SHH pathway would likely continue to play a major role in the evolution of novel epithelial appendages. PMID:11130174

  19. Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement

    PubMed Central

    Hufton, Andrew L.; Groth, Detlef; Vingron, Martin; Lehrach, Hans; Poustka, Albert J.; Panopoulou, Georgia

    2008-01-01

    Researchers, supported by data from polyploid plants, have suggested that whole genome duplication (WGD) may induce genomic instability and rearrangement, an idea which could have important implications for vertebrate evolution. Benefiting from the newly released amphioxus genome sequence (Branchiostoma floridae), an invertebrate that researchers have hoped is representative of the ancestral chordate genome, we have used gene proximity conservation to estimate rates of genome rearrangement throughout vertebrates and some of their invertebrate ancestors. We find that, while amphioxus remains the best single source of invertebrate information about the early chordate genome, its genome structure is not particularly well conserved and it cannot be considered a fossilization of the vertebrate preduplication genome. In agreement with previous reports, we identify two WGD events in early vertebrates and another in teleost fish. However, we find that the early vertebrate WGD events were not followed by increased rates of genome rearrangement. Indeed, we measure massive genome rearrangement prior to these WGD events. We propose that the vertebrate WGD events may have been symptoms of a preexisting predisposition toward genomic structural change. PMID:18625908

  20. Fossilized bioelectric wire – the trace fossil Trichichnus

    PubMed Central

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-01-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic–anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized “electric wire”. PMID:26290671

  1. Vertebral Augmentation for Osteoporotic Compression Fractures.

    PubMed

    Richmond, Bradford J

    2016-01-01

    Vertebral augmentation procedures such as vertebroplasty and kyphoplasty were developed to reduce pain and improve quality of life for patients with osteoporotic vertebral compression fractures. However, the use of vertebral augmentation has been debated and questioned since its inception. This article addresses some of these issues. PMID:26490134

  2. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes

    PubMed Central

    Alibardi, Lorenzo; Valle, Luisa Dalla; Nardi, Alessia; Toni, Mattia

    2009-01-01

    Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal–epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal–epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%–95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins

  3. Dating Fossil Pollen: A Simulation.

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1992-01-01

    Describes a hands-on simulation in which students determine the age of "fossil" pollen samples based on the pollen types present when examined microscopically. Provides instructions for the preparation of pollen slides. (MDH)

  4. An Introduction to Fossil Plants

    ERIC Educational Resources Information Center

    Thomas, B. A.

    1976-01-01

    Introduces methods of studying fossil plants and of teaching palaeobotany. Brief accounts are given of different types of preservation and where to find specimens. An annotated bibliography is provided. (Author/SL)

  5. Stripes and belly-spots -- a review of pigment cell morphogenesis in vertebrates.

    PubMed

    Kelsh, Robert N; Harris, Melissa L; Colanesi, Sarah; Erickson, Carol A

    2009-02-01

    Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here - chick, mouse, and zebrafish - each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated

  6. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera).

    PubMed

    Maleszka, J; Forêt, S; Saint, R; Maleszka, R

    2007-03-01

    Small chemosensory proteins (CSPs) belong to a conserved, but poorly understood, protein family found in insects and other arthropods. They exhibit both broad and restricted expression patterns during development. In this paper, we used a combination of genome annotation, transcriptional profiling and RNA interference to unravel the functional significance of a honeybee gene (csp5) belonging to the CSP family. We show that csp5 expression resembles the maternal-zygotic pattern that is characterized by the initiation of transcription in the ovary and the replacement of maternal mRNA with embryonic mRNA. Blocking the embryonic expression of csp5 with double-stranded RNA causes abnormalities in all body parts where csp5 is highly expressed. The treated embryos show a "diffuse", often grotesque morphology, and the head skeleton appears to be severely affected. They are 'unable-to-hatch' and cannot progress to the larval stages. Our findings reveal a novel, essential role for this gene family and suggest that csp5 (unable-to-hatch) is an ectodermal gene involved in embryonic integument formation. Our study confirms the utility of an RNAi approach to functional characterization of novel developmental genes uncovered by the honeybee genome project and provides a starting point for further studies on embryonic integument formation in this insect. PMID:17216269

  7. Climate change and marine vertebrates.

    PubMed

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. PMID:26564847

  8. The potential of paleozoic nonmarine trace fossils for paleoecological interpretations

    USGS Publications Warehouse

    Maples, C.G.; Archer, A.W.

    1989-01-01

    Many Late Paleozoic environments have been interpreted as marine because of the co-occurrence of supposedly exclusively marine trace fossils. Beginning in the Late Ordovician, however, nonmarine trace-fossil diversity increased throughout the Paleozoic. This diversification of nonmarine organisms and nonmarine trace fossils was especially prevalent in Devonian and later times. Diversification of freshwater organisms is indicated by the large number of freshwater fish, arthropods, annelids and molluscs that had developed by the Carboniferous. In addition to diverse freshwater assemblages, entirely terrestrial vertebrate and invertebrate ecosystems had developed by the Devonian. This rapid diversification of freshwater and terrestrial organisms is inherently linked to development and diversification of land plants and subsequent shedding of large quantities of organic detritus in nonmarine and marginal-marine areas. Nearshore marine organisms and their larvae that are able to tolerate relatively short periods of lowered salinities will follow salt-water wedges inland during times of reduced freshwater discharge. Similarly, amphidromous marine organisms will migrate periodically inland into nonmarine environments. Undoubtedly, both of these processes were active in the Paleozoic. However, both processes are restricted to stream/distributary channels, interdistributary bays, or estuaries. Therefore, the presence of diverse trace-fossil assemblages in association with floodplain deposits is interpreted to reflect true nonmarine adaptation and diversity. Conversely, diverse trace-fossil assemblages in association with stream/distributary channel deposits, interdistributary-bay deposits, or estuarine deposits may reflect migration of salt-water wedges inland, or migration of marine organisms into freshwater environments (amphidromy), or both. ?? 1989.

  9. Three-dimensional Magnetic Resonance Imaging of fossils across taxa

    NASA Astrophysics Data System (ADS)

    Mietchen, D.; Aberhan, M.; Manz, B.; Hampe, O.; Mohr, B.; Neumann, C.; Volke, F.

    2007-08-01

    The visibility of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide an interesting methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI) which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether 1H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as 1H and 13C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.

  10. Three-dimensional Magnetic Resonance Imaging of fossils across taxa

    NASA Astrophysics Data System (ADS)

    Mietchen, D.; Aberhan, M.; Manz, B.; Hampe, O.; Mohr, B.; Neumann, C.; Volke, F.

    2008-01-01

    The frequency of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide a valuable methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI) which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether 1H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as 1H and 13C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.

  11. Extraneural Glioblastoma Multiforme Vertebral Metastasis.

    PubMed

    Goodwin, C Rory; Liang, Lydia; Abu-Bonsrah, Nancy; Hdeib, Alia; Elder, Benjamin D; Kosztowski, Thomas; Bettegowda, Chetan; Laterra, John; Burger, Peter; Sciubba, Daniel M

    2016-05-01

    Glioblastoma multiforme (GBM) is the most common malignant central nervous system tumor; however, extraneural metastasis is uncommon. Of those that metastasize extraneurally, metastases to the vertebral bodies represent a significant proportion. We present a review of 28 cases from the published literature of GBM metastasis to the vertebra. The mean age at presentation was 38.4 years with an average overall survival of 26 months. Patients were either asymptomatic with metastasis discovered at autopsy or presented with varying degrees of pain, weakness of the extremities, or other neurologic deficits. Of the cases that included the time to spinal metastasis, the average time was 26.4 months with a reported survival of 10 months after diagnosis of vertebral metastasis. A significant number of patients had no treatments for their spinal metastasis, although the intracranial lesions were treated extensively with surgery and/or adjuvant therapy. With increasing incremental gains in the survival of patients with GBM, clinicians will encounter patients with extracranial metastasis. As such, this review presents timely information concerning the presentation and outcomes of patients with vertebral metastasis. PMID:26704201

  12. Extraneural Glioblastoma Multiforme Vertebral Metastasis

    PubMed Central

    Goodwin, C. Rory; Liang, Lydia; Abu-Bonsrah, Nancy; Hdeib, Alia; Elder, Benjamin D.; Kosztowski, Thomas; Bettegowda, Chetan; Laterra, John; Burger, Peter; Sciubba, Daniel M.

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common malignant central nervous system tumor; however, extraneural metastasis is uncommon. Of those that metastasize extraneurally, metastases to the vertebral bodies represent a significant proportion. We present a review of 28 cases from the published literature of GBM metastasis to the vertebra. The mean age at presentation was 38.4 years with an average overall survival of 26 months. Patients were either asymptomatic with metastasis discovered at autopsy or presented with varying degrees of pain, weakness of the extremities, or other neurologic deficits. Of the cases that included the time to spinal metastasis, the average time was 26.4 months with a reported survival of 10 months after diagnosis of vertebral metastasis. A significant number of patients had no treatments for their spinal metastasis, although the intracranial lesions were treated extensively with surgery and/or adjuvant therapy. With increasing incremental gains in the survival of patients with GBM, clinicians will encounter patients with extracranial metastasis. As such, this review presents timely information concerning the presentation and outcomes of patients with vertebral metastasis. PMID:26704201

  13. Vertebral Fractures: Clinical Importance and Management.

    PubMed

    Kendler, D L; Bauer, D C; Davison, K S; Dian, L; Hanley, D A; Harris, S T; McClung, M R; Miller, P D; Schousboe, J T; Yuen, C K; Lewiecki, E M

    2016-02-01

    Vertebral fractures are common and can result in acute and chronic pain, decreases in quality of life, and diminished lifespan. The identification of vertebral fractures is important because they are robust predictors of future fractures. The majority of vertebral fractures do not come to clinical attention. Numerous modalities exist for visualizing suspected vertebral fracture. Although differing definitions of vertebral fracture may present challenges in comparing data between different investigations, at least 1 in 5 men and women aged >50 years have one or more vertebral fractures. There is clinical guidance to target spine imaging to individuals with a high probability of vertebral fracture. Radiology reports of vertebral fracture need to clearly state that the patient has a "fracture," with further pertinent details such as the number, recency, and severity of vertebral fracture, each of which is associated with risk of future fractures. Patients with vertebral fracture should be considered for antifracture therapy. Physical and pharmacologic modalities of pain control and exercises or physiotherapy to maintain spinal movement and strength are important components in the care of vertebral fracture patients. PMID:26524708

  14. Bilateral mechanical rotational vertebral artery occlusion.

    PubMed

    Dargon, Phong T; Liang, Conrad W; Kohal, Anmol; Dogan, Aclan; Barnwell, Stanley L; Landry, Gregory J

    2013-10-01

    Rotational vertebral artery occlusion, or bow hunter's stroke, is reversible, positional symptomatic vertebrobasilar ischemia. The typical mechanism of action is obstruction of a dominant vertebral artery with contralateral head rotation in the setting of baseline ipsilateral vertebral artery stenosis or occlusion. Here we present a rare case of mechanical occlusion of bilateral patent vertebral arteries manifesting as near syncope with rightward head rotation. Diagnostic cerebral angiography showed dynamic right C5 vertebral occlusion and left C2 vertebral occlusion. The patient underwent right C4/5 transverse process decompression. Postoperative angiogram showed patent flow through the right vertebral artery in neutral position and with head turn with resultant resolution of symptoms. PMID:23465174

  15. New genomic and fossil data illuminate the origin of enamel.

    PubMed

    Qu, Qingming; Haitina, Tatjana; Zhu, Min; Ahlberg, Per Erik

    2015-10-01

    Enamel, the hardest vertebrate tissue, covers the teeth of almost all sarcopterygians (lobe-finned bony fishes and tetrapods) as well as the scales and dermal bones of many fossil lobe-fins. Enamel deposition requires an organic matrix containing the unique enamel matrix proteins (EMPs) amelogenin (AMEL), enamelin (ENAM) and ameloblastin (AMBN). Chondrichthyans (cartilaginous fishes) lack both enamel and EMP genes. Many fossil and a few living non-teleost actinopterygians (ray-finned bony fishes) such as the gar, Lepisosteus, have scales and dermal bones covered with a proposed enamel homologue called ganoine. However, no gene or transcript data for EMPs have been described from actinopterygians. Here we show that Psarolepis romeri, a bony fish from the the Early Devonian period, combines enamel-covered dermal odontodes on scales and skull bones with teeth of naked dentine, and that Lepisosteus oculatus (the spotted gar) has enam and ambn genes that are expressed in the skin, probably associated with ganoine formation. The genetic evidence strengthens the hypothesis that ganoine is homologous with enamel. The fossil evidence, further supported by the Silurian bony fish Andreolepis, which has enamel-covered scales but teeth and odontodes on its dermal bones made of naked dentine, indicates that this tissue originated on the dermal skeleton, probably on the scales. It subsequently underwent heterotopic expansion across two highly conserved patterning boundaries (scales/head-shoulder and dermal/oral) within the odontode skeleton. PMID:26416752

  16. A comparative study of the ocular skeleton of fossil and modern chondrichthyans.

    PubMed

    Pilgrim, Brettney L; Franz-Odendaal, Tamara A

    2009-06-01

    Many vertebrates have an ocular skeleton composed of cartilage and/or bone situated within the sclera of the eye. In this study we investigated whether modern and fossil sharks have an ocular skeleton, and whether it is conserved in morphology. We describe the scleral skeletal elements of three species of modern sharks and compare them to those found in fossil sharks from the Cleveland Shale (360 Mya). We also compare the elements to contemporaneous arthrodires from the same deposit. Surprisingly, the morphology of the skeletal support of the eye was found to differ significantly between modern and fossil sharks. All three modern shark species examined (spiny dogfish shark Squalus acanthias, porbeagle shark Lamna nasus and blue shark Prionace glauca) have a continuous skeletal element that encapsulates much of the eyeball; however, the tissue composition is different in each species. Histological and morphological examination revealed scleral cartilage with distinct tesserae in parts of the sclera of the porbeagle and blue shark, and more diffuse calcification in the dogfish. Strengthening of the scleral cartilage by means of tesserae has not been reported previously in the shark eye. In striking contrast, the ocular skeleton of fossil sharks comprises a series of individual elements that are arranged in a ring, similar to the arrangement in modern and fossil reptiles. Fossil arthrodires also have a multi-unit sclerotic ring but these are composed of fewer elements than in fossil sharks. The morphology of these elements has implications for the behaviour and visual capabilities of sharks that lived during the Devonian Period. This is the first time that such a dramatic variation in the morphology of scleral skeletal elements has been observed in a single lineage (Chondrichthyes), making this lineage important for broadening our understanding of the evolution of these elements within jawed vertebrates. PMID:19538630

  17. A Galactic Fossil

    NASA Astrophysics Data System (ADS)

    2007-05-01

    How old are the oldest stars? Using ESO's VLT, astronomers recently measured the age of a star located in our Galaxy. The star, a real fossil, is found to be 13.2 billion years old, not very far from the 13.7 billion years age of the Universe. The star, HE 1523-0901, was clearly born at the dawn of time. "Surprisingly, it is very hard to pin down the age of a star", the lead author of the paper reporting the results, Anna Frebel, explains. "This requires measuring very precisely the abundance of the radioactive elements thorium or uranium, a feat only the largest telescopes such as ESO's VLT can achieve." ESO PR Photo 23a/07 ESO PR Photo 23a/07 The 'Cosmic Clock' This technique is analogous to the carbon-14 dating method that has been so successful in archaeology over time spans of up to a few tens of thousands of years. In astronomy, however, this technique must obviously be applied to vastly longer timescales. For the method to work well, the right choice of radioactive isotope is critical. Unlike other, stable elements that formed at the same time, the abundance of a radioactive (unstable) isotope decreases all the time. The faster the decay, the less there will be left of the radioactive isotope after a certain time, so the greater will be the abundance difference when compared to a stable isotope, and the more accurate is the resulting age. Yet, for the clock to remain useful, the radioactive element must not decay too fast - there must still be enough left of it to allow an accurate measurement, even after several billion years. "Actual age measurements are restricted to the very rare objects that display huge amounts of the radioactive elements thorium or uranium," says Norbert Christlieb, co-author of the report. ESO PR Photo 23b/07 ESO PR Photo 23b/07 Uranium Line in the Spectrum of an Old Star Large amounts of these elements have been found in the star HE 1523-0901, an old, relatively bright star that was discovered within the Hamburg/ESO survey [1]. The

  18. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    SciTech Connect

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

  19. Evolutionary Specialization of Tactile Perception in Vertebrates.

    PubMed

    Schneider, Eve R; Gracheva, Elena O; Bagriantsev, Slav N

    2016-05-01

    Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates. PMID:27053733

  20. Variance in the treatment of vertebral haemangiomas.

    PubMed

    Rawat, Sheh; Nangia, S; Ezhilalan, R B; Bansal, A K; Ghosh, D

    2007-01-01

    Vertebral haemangiomas constitute an infrequently encounterd entity in clinical practice. Although x-ray, computerised tomography scan and magnetic resonance Imaging scan provide a pathognomic picture confirming the diagnosis of vertebral haemangiomas, angiography constitutes an important tool for diagnosis and helps in deciding and execution of treatment. Various treatment modalities like surgery, radiotherapy, pre-operative embolisation, percutaneous vertebroplasty and intralesional ethanol have been discussed in the setting of asymptomatic vertebral haemangiomas to those presenting with features of cord compression. PMID:17802977

  1. General management of vertebral fractures.

    PubMed

    Rapado, A

    1996-03-01

    Vertebral fractures cause pain and disability. Four concepts should guide their comprehensive management: treat the patient, not the skeleton; use a multidisciplinary approach; engage the patient and his or her family in the treatment; and provide appropriate goals, education, encouragement, and support. The goals include procuring bone mass and preventing injury: back support, physical therapy, occupational therapy, psychosocial support, and prevention of falls. Initial treatment includes bed rest, pain management with local and systemic analgesia, bracing to improve comfort, and patient reassurance. Long-term management includes spinal stretching exercises and continuing ordinary activities within limits permitted by pain. A back school program is an effective addition to conventional concepts using physiotherapy exclusively. In certain selected patients, the indication for operative treatment of vertebral fracture depends on the additional injury, and extent and characteristics of cord compression; stability of the fracture; and the amount of deformity. Vertebroplasty can be effective in the control of pain and in obtaining stability of the spine. PMID:8777087

  2. Centrosome positioning in vertebrate development

    PubMed Central

    Tang, Nan; Marshall, Wallace F.

    2012-01-01

    Summary The centrosome, a major organizer of microtubules, has important functions in regulating cell shape, polarity, cilia formation and intracellular transport as well as the position of cellular structures, including the mitotic spindle. By means of these activities, centrosomes have important roles during animal development by regulating polarized cell behaviors, such as cell migration or neurite outgrowth, as well as mitotic spindle orientation. In recent years, the pace of discovery regarding the structure and composition of centrosomes has continuously accelerated. At the same time, functional studies have revealed the importance of centrosomes in controlling both morphogenesis and cell fate decision during tissue and organ development. Here, we review examples of centrosome and centriole positioning with a particular emphasis on vertebrate developmental systems, and discuss the roles of centrosome positioning, the cues that determine positioning and the mechanisms by which centrosomes respond to these cues. The studies reviewed here suggest that centrosome functions extend to the development of tissues and organs in vertebrates. PMID:23277534

  3. Basal jawed vertebrate phylogenomics using transcriptomic data from Solexa sequencing.

    PubMed

    Chen, Ming; Zou, Ming; Yang, Lei; He, Shunping

    2012-01-01

    The traditionally accepted relationships among basal jawed vertebrates have been challenged by some molecular phylogenetic analyses based on mitochondrial sequences. Those studies split extant gnathostomes into two monophyletic groups: tetrapods and piscine branch, including Chondrichthyes, Actinopterygii and sarcopterygian fishes. Lungfish and bichir are found in a basal position on the piscine branch. Based on transcriptomes of an armored bichir (Polypterus delhezi) and an African lungfish (Protopterus sp.) we generated, expressed sequences and whole genome sequences available from public databases, we obtained 111 genes to reconstruct the phylogenetic tree of basal jawed vertebrates and estimated their times of divergence. Our phylogenomic study supports the traditional relationship. We found that gnathostomes are divided into Chondrichthyes and the Osteichthyes, both with 100% support values (posterior probabilities and bootstrap values). Chimaeras were found to have a basal position among cartilaginous fishes with a 100% support value. Osteichthyes were divided into Actinopterygii and Sarcopterygii with 100% support value. Lungfish and tetrapods form a monophyletic group with 100% posterior probability. Bichir and two teleost species form a monophyletic group with 100% support value. The previous tree, based on mitochondrial data, was significantly rejected by an approximately unbiased test (AU test, p = 0). The time of divergence between lungfish and tetrapods was estimated to be 391.8 Ma and the divergence of bichir from pufferfish and medaka was estimated to be 330.6 Ma. These estimates closely match the fossil record. In conclusion, our phylogenomic study successfully resolved the relationship of basal jawed vertebrates based on transtriptomes, EST and whole genome sequences. PMID:22558409

  4. Ghrelin Receptors in Non-Mammalian Vertebrates

    PubMed Central

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2012-01-01

    The growth hormone secretagogue-receptor (GHS-R) was discovered in humans and pigs in 1996. The endogenous ligand, ghrelin, was discovered 3 years later, in 1999, and our understanding of the physiological significance of the ghrelin system in vertebrates has grown steadily since then. Although the ghrelin system in non-mammalian vertebrates is a subject of great interest, protein sequence data for the receptor in non-mammalian vertebrates has been limited until recently, and related biological information has not been well organized. In this review, we summarize current information related to the ghrelin receptor in non-mammalian vertebrates. PMID:23882259

  5. The Aryl Hydrocarbon Receptor: A Review of Its Role in the Physiology and Pathology of the Integument and Its Relationship to the Tryptophan Metabolism

    PubMed Central

    Noakes, Rowland

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a cytosolic receptor for low molecular weight molecules, of which the most widely recognized ligand is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the most widely recognized effect, chloracne. Adverse effects of manipulation were most recently and graphically demonstrated by the poisoning of Viktor Yushchenko during the Ukrainian presidential elections of 2004. However, recent research has revealed a receptor with wide-ranging, and at times, paradoxical actions. It was arguably among the first biological receptors to be utilized by dermatologists, dating from the time of topical tar preparations as a therapeutic agent. I provide a review outlining the role AHR plays in the development, cellular oxidation/antioxidation, responses to ultraviolet light, melanogenesis, epidermal barrier function, and immune regulation and its relationship to tryptophan metabolism. Finally, I will review the role of AHR in diseases of the integument. PMID:25733915

  6. The aryl hydrocarbon receptor: a review of its role in the physiology and pathology of the integument and its relationship to the tryptophan metabolism.

    PubMed

    Noakes, Rowland

    2015-01-01

    The aryl hydrocarbon receptor (AHR) is a cytosolic receptor for low molecular weight molecules, of which the most widely recognized ligand is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the most widely recognized effect, chloracne. Adverse effects of manipulation were most recently and graphically demonstrated by the poisoning of Viktor Yushchenko during the Ukrainian presidential elections of 2004. However, recent research has revealed a receptor with wide-ranging, and at times, paradoxical actions. It was arguably among the first biological receptors to be utilized by dermatologists, dating from the time of topical tar preparations as a therapeutic agent. I provide a review outlining the role AHR plays in the development, cellular oxidation/antioxidation, responses to ultraviolet light, melanogenesis, epidermal barrier function, and immune regulation and its relationship to tryptophan metabolism. Finally, I will review the role of AHR in diseases of the integument. PMID:25733915

  7. Morphological characterization of the nymphs Rhipicephalus sanguineus ticks (Latreille, 1806) (Acari: Ixodidae). Description of the testes, integument, Malpighian tubules, and midgut on the detachment day.

    PubMed

    De Oliveira, Patrícia Rosa; Calligaris, Izabela Braggião; Roma, Gislaine Cristina; Bechara, Gervásio Henrique; Mathias, Maria Izabel Camargo

    2012-06-01

    This study presents the morpho-histological and histochemical characterization of the testes, integument, Malpighian tubules, and midgut of engorged Rhipicephalus sanguineus nymphs on the detachment day, showing the morphological and physiological characteristics to this phase in the life cycle of these individuals. The testis is constituted by germinative cells (only spermatogonia) with large, round-shaped and strongly stained nuclei which are organized into cysts by a thin layer of somatic cells. The integument consists of a cuticle subdivided into epicuticle (lipoprotein) and procuticle (glycoproteic), and a layer of epithelial cells which present glycolipoprotein elements. The procuticle presents two distinct regions: the exocuticle (next to the epicuticle) and the endocuticle (next to the epithelial layer). The Malpighian tubules present a simple epithelium with small flat and/or cubic cells, which form its wall and delimitates a lumen full of lipoprotein material. The midgut consists of an epithelial wall formed by two types of digestive cells, spent cells and empty digest cells, and by generative cells supported by a basal lamina and a thin layer of muscular tissue. This study described the main organs of engorged nymphs of R. sanguineus, to generate information that can help researchers to better understand the biology of these ectoparasites; which is fundamental for the development of compounds that are less aggressive to the environment. In addition, if the immature stages of the ticks are controlled, the number of adult ticks able to cause damages to the animals--and to the man as well--is also under control. PMID:22615106

  8. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa.

    PubMed

    Reeder, Tod W; Townsend, Ted M; Mulcahy, Daniel G; Noonan, Brice P; Wood, Perry L; Sites, Jack W; Wiens, John J

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement. PMID:25803280

  9. Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa

    PubMed Central

    Reeder, Tod W.; Townsend, Ted M.; Mulcahy, Daniel G.; Noonan, Brice P.; Wood, Perry L.; Sites, Jack W.; Wiens, John J.

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement. PMID:25803280

  10. Progress of fossil fuel science

    SciTech Connect

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  11. Fossils of big bang turbulence

    NASA Astrophysics Data System (ADS)

    Gibson, C. H.

    2004-12-01

    A model is proposed connecting turbulence, fossil turbulence, and the big bang origin of the universe. While details are incomplete, the model is consistent with our knowledge of these processes and is supported by observations. Turbulence arises in a hot-big-bang quantum-gravitational-dynamics scenario at Planck scales. Chaotic, eddy-like-motions produce an exothermic Planck particle cascade from 10-35 m at 1032 K to 108 larger, 104 cooler, quark-gluon scales. A Planck-Kerr instability gives high-Reynolds-number (Re 106) turbulent combustion, space-time-energy-entropy and turbulent mixing. Batchelor-Obukhov-Corrsin turbulent-temperature fluctuations are preserved as the first fossil-turbulence by inflation stretching the patterns beyond the horizon ct of causal connection faster than light speed c in time t 10-33 seconds. Fossil-big-bang-temperature-turbulence re-enters the horizon and imprints nucleosynthesis of H-He densities that seed fragmentation by gravity at 1012 s in the low Reynolds number plasma before its transition to gas at t 1013 s and T 3000 K. Multi-scaling coefficients of the cosmic-microwave-background (CMB) temperature anisotropies closely match those for high Reynolds number turbulence, Bershadskii and Sreenivasan 2002, 2003. CMB spectra support the interpretation that big-bang-turbulence-fossils triggered fragmentation of the viscous plasma at supercluster to galaxy mass scales from 1046 to 1042 kg, Gibson 1996, 2000, 2004ab.

  12. Fossil power plant systems description

    SciTech Connect

    Not Available

    1984-01-01

    This single-volume, looseleaf text presents the functions and relationships between each major component and its auxiliaries within a system. The text also describes the relationships between systems. All major components are addressed, and system boundaries are defined for a generic fossil power plant.

  13. The 'Goldilocks' effect: preservation bias in vertebrate track assemblages.

    PubMed

    Falkingham, P L; Bates, K T; Margetts, L; Manning, P L

    2011-08-01

    Finite-element analysis was used to investigate the extent of bias in the ichnological fossil record attributable to body mass. Virtual tracks were simulated for four dinosaur taxa of different sizes (Struthiomimus, Tyrannosaurus, Brachiosaurus and Edmontosaurus), in a range of substrate conditions. Outlines of autopodia were generated based upon osteology and published soft-tissue reconstructions. Loads were applied vertically to the feet equivalent to the weight of the animal, and distributed accordingly to fore- and hindlimbs where relevant. Ideal, semi-infinite elastic-plastic substrates displayed a 'Goldilocks' quality where only a narrow range of loads could produce tracks, given that small animals failed to indent the substrate, and larger animals would be unable to traverse the area without becoming mired. If a firm subsurface layer is assumed, a more complete assemblage is possible, though there is a strong bias towards larger, heavier animals. The depths of fossil tracks within an assemblage may indicate thicknesses of mechanically distinct substrate layers at the time of track formation, even when the lithified strata appear compositionally homogeneous. This work increases the effectiveness of using vertebrate tracks as palaeoenvironmental indicators in terms of inferring substrate conditions at the time of track formation. Additionally, simulated undertracks are examined, and it is shown that complex deformation beneath the foot may not be indicative of limb kinematics as has been previously interpreted, but instead ridges and undulations at the base of a track may be a function of sediment displacement vectors and pedal morphology. PMID:21233145

  14. Results and assessment of uranium series dating of vertebrate fossils from Quaternary alluvium in Colorado.

    USGS Publications Warehouse

    Szabo, B. J.

    1980-01-01

    An average uranium-series age of 102 000 yr for bones from Louviers Alluvium, near Denver, Colorado, is compatible with the inferred geologic age of from 120 000 to 150 000 yr. A uranium date of about 190 000 yr for a bone from Slocum Alluvium, near Canon City, Colorado, is consistent with the inferred geologic age of from 150 000 to 260 000 yr. Age determinations for the Broadway Alluvium are inconsistent but its geologic age is considered to be 15 000 to 30 000 yr BP. -Authorsage bones Louviers Alluvium Slocum Alluvium Canon City(Colorado) Broadway Alluvium

  15. Fossil Energy: Drivers and Challenges.

    NASA Astrophysics Data System (ADS)

    Friedmann, Julio

    2007-04-01

    Concerns about rapid economic growth, energy security, and global climate change have created a new landscape for fossil energy exploration, production, and utilization. Since 85% of primary energy supply comes from fossil fuels, and 85% of greenhouse gas emissions come from fossil fuel consumption, new and difficult technical and political challenges confront commercial, governmental, and public stakeholders. As such, concerns over climate change are explicitly weighed against security of international and domestic energy supplies, with economic premiums paid for either or both. Efficiency improvements, fuel conservation, and deployment of nuclear and renewable supplies will help both concerns, but are unlikely to offset growth in the coming decades. As such, new technologies and undertakings must both provide high quality fossil energy with minimal environmental impacts. The largest and most difficult of these undertakings is carbon management, wherein CO2 emissions are sequestered indefinitely at substantial incremental cost. Geological formations provide both high confidence and high capacity for CO2 storage, but present scientific and technical challenges. Oil and gas supply can be partially sustained and replaced through exploitation of unconventional fossil fuels such as tar-sands, methane hydrates, coal-to-liquids, and oil shales. These fuels provide enormous reserves that can be exploited at current costs, but generally require substantial energy to process. In most cases, the energy return on investment (EROI) is dropping, and unconventional fuels are generally more carbon intensive than conventional, presenting additional carbon management challenges. Ultimately, a large and sustained science and technology program akin to the Apollo project will be needed to address these concerns. Unfortunately, real funding in energy research has dropped dramatically (75%) in the past three decades, and novel designs in fission and fusion are not likely to provide any

  16. Using extant taxa to inform studies of fossil footprints

    NASA Astrophysics Data System (ADS)

    Falkingham, Peter; Gatesy, Stephen

    2016-04-01

    Attempting to use the fossilized footprints of extinct animals to study their palaeobiology and palaeoecology is notoriously difficult. The inconvenient extinction of the trackmaker makes direct correlation between footprints and foot far from straightforward. However, footprints are the only direct evidence of vertebrate motion recorded in the fossil record, and are potentially a source of data on palaeobiology that cannot be obtained from osteological remains alone. Our interests lie in recovering information about the movements of dinosaurs from their tracks. In particular, the Hitchcock collection of early Jurassic tracks held at the Beneski Museum of Natural History, Amherst, provide a rare look into the 3D form of tracks at and below the surface the animal walked on. Breaking naturally along laminations into 'track books', the specimens present sediment deformation at multiple levels, and in doing so record more of the foot's motion than a single surface might. In order to utilize this rich information source to study the now extinct trackmakers, the process of track formation must be understood at a fundamental level; the interaction of the moving foot and compliant substrate. We used bi-planar X-ray techniques (X-ray Reconstruction of Moving Morphology) to record the limb and foot motions of a Guineafowl traversing both granular and cohesive substrates. This data was supplemented with photogrammetric records of the resultant track surfaces, as well as the motion of metal beads within the sediment, to provide a full experimental dataset of foot and footprint formation. The physical experimental data was used to generate computer simulations of the process using high performance computing and the Discrete Element Method. The resultant simulations showed excellent congruence with reality, and enabled visualization within the sediment volume, and throughout the track-forming process. This physical and virtual experimental set-up has provided major insight into

  17. Building the backbone: the development and evolution of vertebral patterning.

    PubMed

    Fleming, Angeleen; Kishida, Marcia G; Kimmel, Charles B; Keynes, Roger J

    2015-05-15

    The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning. PMID:25968309

  18. Fossils and Fossil Climate: The Case for Equable Continental Interiors in the Eocene

    NASA Astrophysics Data System (ADS)

    Wing, Scott L.; Greenwood, David R.

    1993-08-01

    There are many methods for inferring terrestrial palaeoclimates from palaeontological data, including the size and species diversity of ectothermic vertebrates, the locomotor and dental adaptations of mammals, characteristics of leaf shape, size, and epidermis, wood anatomy, and the climatic preferences of nearest living relatives of fossil taxa. Estimates of palaeotemperature have also been based on stable oxygen isotope ratios in shells and bones. Interpretation of any of these data relies in some way on uniformitarian assumptions, although at different levels depending on the method. Most of these methods can be applied to a palaeoclimatic reconstruction for the interior of North America during the early Eocene, which is thought to be the warmest interval of global climate in the Cenozoic. Most of the data indicate warm equable climates with little frost. Rainfall was variable, but strong aridity was local or absent. The inferred palaeoclimate is very different from the present climate of the region and from model simulations for the Eocene. This suggests that models fail to incorporate forcing factors that were present at that time, that they treat the heat regime of continents unrealistically, and/or that model inputs such as sea surface temperature gradients or palaeotopography are incorrect.

  19. The ‘Tully monster’ is a vertebrate

    NASA Astrophysics Data System (ADS)

    McCoy, Victoria E.; Saupe, Erin E.; Lamsdell, James C.; Tarhan, Lidya G.; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D.; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G.; Anderson, Ross P.; Petermann, Holger; Locatelli, Emma R.; Briggs, Derek E. G.

    2016-04-01

    Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the ‘problem of the problematica’, particularly the ‘weird wonders’ of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309–307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.

  20. Fossil group origins. VII. Galaxy substructures in fossil systems

    NASA Astrophysics Data System (ADS)

    Zarattini, S.; Girardi, M.; Aguerri, J. A. L.; Boschin, W.; Barrena, R.; del Burgo, C.; Castro-Rodriguez, N.; Corsini, E. M.; D'Onghia, E.; Kundert, A.; Méndez-Abreu, J.; Sánchez-Janssen, R.

    2016-02-01

    Context. Fossil groups (FG) are expected to be the final product of galaxy merging within galaxy groups. In simulations, they are predicted to assemble their mass at high redshift. This early formation allows for the innermost M∗ galaxies to merge into a massive central galaxy. Then, they are expected to maintain their fossil status because of the few interactions with the large-scale structure. In this context, the magnitude gap between the two brightest galaxies of the system is considered a good indicator of its dynamical status. As a consequence, the systems with the largest gaps should be dynamically relaxed. Aims: In order to examine the dynamical status of these systems, we systematically analyze, for the first time, the presence of galaxy substructures in a sample of 12 spectroscopically-confirmed fossil systems with redshift z ≤ 0.25. Methods: We apply a number of tests to investigate the substructure in fossil systems in the two-dimensional space of projected positions out to R200. Moreover, for a subsample of five systems with at least 30 spectroscopically-confirmed members we also analyze the substructure in the velocity and in the three-dimensional velocity-position spaces. Additionally, we look for signs of recent mergers in the regions around the central galaxies. Results: We find that an important fraction of fossil systems show substructure. The fraction depends critically on the adopted test, since each test is more sensitive to a particular type of substructure. Conclusions: Our interpretation of the results is that fossil systems are not, in general, as relaxed as expected from simulations. Our sample of 12 spectroscopically-confirmed fossil systems need to be extended to compute an accurate fraction, but our conclusion is that this fraction is similar to the fraction of substructure detected in nonfossil clusters. This result points out that the magnitude gap alone is not a good indicator of the dynamical status of a system. However, the

  1. A compendium of fossil marine animal families, 2nd edition.

    PubMed

    Sepkoski, J J

    1992-03-01

    A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification. PMID:11542296

  2. A compendium of fossil marine animal families, 2nd edition

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1992-01-01

    A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification.

  3. Integrating developmental biology and the fossil record of reptiles.

    PubMed

    Skawiński, Tomasz; Tałanda, Mateusz

    2014-01-01

    Numerous new discoveries and new research techniques have influenced our understanding of reptile development from a palaeontological perspective. They suggest for example that transition from mineralized to leathery eggshells and from oviparity to viviparity appeared much more often in the evolution of reptiles than was previously thought. Most marine reptiles evolved from viviparous terrestrial ancestors and had probably genetic sex determination. Fossil forms often display developmental traits absent or rare among modern ones such as polydactyly, hyperphalangy, the presence of ribcage armour, reduction of head ornamentation during ontogeny, extreme modifications of vertebral count or a wide range of feather-like structures. Thus, they provide an empirical background for many morphogenetic considerations. PMID:26154335

  4. Problems with six-point vertebral morphometry

    NASA Astrophysics Data System (ADS)

    Gardner, Jill C.; Yaffe, Laurence G.; Johansen, Jennifer M.; von Ingersleben, Gabriel; Chestnut, Charles H., III

    1998-06-01

    In this study we have examined errors in measurements of vertebral heights and vertebral area resulting from spin rotation and projection effects in x-ray images. Measurement errors were evaluated with phantom images, and simulated rotations of a 3D spine model. An active contour model (snake) was used for measurements of vertebral area. The model contained two pressure parameters which were needed to obtain good fits of the snake to upper and lower edges (endplates) of rotated vertebral bodies. Details of the snake model are included in this report. The results of this study indicate that six point vertebral morphometry can result to significant measurement errors, representing an overestimation of vertebral height and area, in cases showing projection effects and concealed endplate contours. In serial studies, such errors could produce the erroneous appearance of `growing' vertebral bodies. One can improve the accuracy of the morphometric analysis by using additional fiducial points placed on corresponding endplate contours. Additional useful information on fracture and vertebral deformity can be obtained by accurately tracking edge contours, using an active contour model, or comparable techniques.

  5. [Vertebral changes in histiocytosis x (author's transl)].

    PubMed

    Greinacher, I; Gutjahr, P

    1978-06-01

    Manifestations of histiocytosis X in the vertebral column occurred in 3 of 15 children. Pathological alterations showed a marked variability. Especially a vertebra plana should be considered as eosinophilic granuloma, until another cause is proven. Bone scans were positive in all three cases. Even in most severe cases with vertebral destruction neurological abnormalities were absent. PMID:308238

  6. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement.

    PubMed

    Miyashita, Tetsuto

    2016-08-01

    The evolutionary origin of the vertebrate jaw persists as a deeply puzzling mystery. More than 99% of living vertebrates have jaws, but the evolutionary sequence that ultimately gave rise to this highly successful innovation remains controversial. A synthesis of recent fossil and embryological findings offers a novel solution to this enduring puzzle. The Mandibular Confinement Hypothesis proposes that the jaw evolved via spatial confinement of the mandibular arch (the most anterior pharyngeal arch within which the jaw arose). Fossil and anatomical evidence reveals: (i) the mandibular region was initially extensive and distinct among the pharyngeal arches; and (ii) with spatial confinement, the mandibular arch acquired a common pharyngeal pattern only at the origin of the jaw. The confinement occurred via a shift of a domain boundary that restricted the space the mesenchymal cells of the mandibular arch could occupy. As the surrounding domains replaced mandibular structures at the periphery, this shift allowed neural crest cells and mesodermal mesenchyme of the mandibular arch to acquire patterning programs that operate in the more posterior arches. The mesenchymal population within the mandibular arch was therefore no longer required to differentiate into specialized feeding and ventilation structures, and was remodelled into a jaw. Embryological evidence corroborates that the mandibular arch must be spatially confined for a jaw to develop. This new interpretation suggests neural crest as a key facilitator in correlating elements of the classically recognized vertebrate head 'segmentation'. PMID:25899041

  7. Nanotechnology for treating osteoporotic vertebral fractures

    PubMed Central

    Gao, Chunxia; Wei, Donglei; Yang, Huilin; Chen, Tao; Yang, Lei

    2015-01-01

    Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided. PMID:26316746

  8. Nanotechnology for treating osteoporotic vertebral fractures.

    PubMed

    Gao, Chunxia; Wei, Donglei; Yang, Huilin; Chen, Tao; Yang, Lei

    2015-01-01

    Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided. PMID:26316746

  9. Fossil groups of galaxies: Are they groups? Are they fossils?

    NASA Astrophysics Data System (ADS)

    Dupke, Renato de Alencar; Miller, Eric; de Oliveira, Claudia Mendes; Sodre, Laerte; Rykoff, Eli; de Oliveira, Raimundo Lopes; Proctor, Rob

    2010-11-01

    Fossil groups present a puzzle to current theories of structure formation. Despite the low number of bright galaxies, their high velocity dispersions and high TX indicate cluster-like potential wells. Measured concentration parameters seem very high indicating early formation epochs in contradiction with the observed lack of large and well defined cooling cores. There are very few fossil groups with good quality X-ray data and their idiosyncrasies may enhance these apparent contradictions. The standard explanation for their formation suggests that bright galaxies within half the virial radii of these systems were wiped out by cannibalism forming the central galaxy. Since dry mergers, typically invoked to explain the formation of the central galaxies, are not expected to change the IGM energetics significantly, thus not preventing the formation of cooling cores, we investigate the scenario where recent gaseous (wet) mergers formed the central galaxy injecting energy and changing the chemistry of the IGM in fossil groups. We show a test for this scenario using fossil groups with enough X-ray flux in the Chandra X-ray Observatory archive by looking at individual metal abundance ratio distributions near the core. Secondary SN II powered winds would tend to erase the dominance of SN IA ejecta in the core of these systems and would help to erase previously existing cold cores. Strong SN II-powered galactic winds resulting from galaxy merging would be trapped by their deep potential wells reducing the central enhancement of SN Ia/SN II iron mass fraction ratio. The results indicate that there is a decrement in the ratio of SN Ia to SN II iron mass fraction in the central regions of the systems analyzed, varying from 99±1% in the outer regions to 85±2% within the cooling radius (Figure 1) and would inject enough energy into the IGM preventing central gas cooling. The results are consistent with a scenario of later formation epoch for fossil groups, as they are defined

  10. FOSSIL SPRINGS ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Beard, L.S.; Ellis, C.E.

    1984-01-01

    Based on field studies, the Fossil Springs Roadless Area in central Arizona is concluded to have little promise for the occurrence of mineral or energy resources. Rocks in the Supai Formation (Pennsylvanian-Permian) near the central part of the roadless area contain widespread but spotty copper mineralization and trace amounts of uranium. Analyses obtained during the study define geochemical anomalies in two portions of the area that remain unexplained. The suites of anomalous metals suggest the possibility of hydrothermal veins and the presence of ultramafic rocks; neither were found in the field. Although there is little promise for the occurrence of mineral resources in the Fossil Springs Roadless Area, studies to identify the source of the geochemical anomalies could have valuable implications for regional studies and mineral exploration in the surrounding area.