Grid-Independent Compressive Imaging and Fourier Phase Retrieval
ERIC Educational Resources Information Center
Liao, Wenjing
2013-01-01
This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…
Grid-Based Fourier Transform Phase Contrast Imaging
NASA Astrophysics Data System (ADS)
Tahir, Sajjad
Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.
Optical Fourier techniques for medical image processing and phase contrast imaging.
Yelleswarapu, Chandra S; Kothapalli, Sri-Rajasekhar; Rao, D V G L N
2008-04-01
This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764
Optical Fourier techniques for medical image processing and phase contrast imaging
Yelleswarapu, Chandra S.; Kothapalli, Sri-Rajasekhar; Rao, D.V.G.L.N.
2008-01-01
This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764
Fourier transform image processing techniques for grid-based phase contrast imaging
NASA Astrophysics Data System (ADS)
Tahir, Sajjad; Bashir, Sajid; Petruccelli, Jonathan C.; MacDonald, C. A.
2014-09-01
A recently developed technique for phase imaging using table top sources is to use multiple fine-pitch gratings. However, the strict manufacturing tolerences and precise alignment required have limited the widespread adoption of grating-based techniques. In this work, we employ a technique recently demonstrated by Bennett et al.1 that ultilizes a single grid of much coarser pitch. Phase is extracted using Fourier processing on a single raw image taken using a focused mammography grid. The effects on the final image of varying grid, object, and detector distances, window widths, and of a variety of windowing functions, used to separate the harmonics, were investigated.
Double image encryption based on random phase encoding in the fractional Fourier domain.
Tao, Ran; Xin, Yi; Wang, Yue
2007-11-26
A novel image encryption method is proposed by utilizing random phase encoding in the fractional Fourier domain to encrypt two images into one encrypted image with stationary white distribution. By applying the correct keys which consist of the fractional orders, the random phase masks and the pixel scrambling operator, the two primary images can be recovered without cross-talk. The decryption process is robust against the loss of data. The phase-based image with a larger key space is more sensitive to keys and disturbances than the amplitude-based image. The pixel scrambling operation improves the quality of the decrypted image when noise perturbation occurs. The novel approach is verified by simulations. PMID:19550895
Single-channel color image encryption using phase retrieve algorithm in fractional Fourier domain
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Xin, Meiting; Tian, Ailing; Jin, Haiyan
2013-12-01
A single-channel color image encryption is proposed based on a phase retrieve algorithm and a two-coupled logistic map. Firstly, a gray scale image is constituted with three channels of the color image, and then permuted by a sequence of chaotic pairs generated by the two-coupled logistic map. Secondly, the permutation image is decomposed into three new components, where each component is encoded into a phase-only function in the fractional Fourier domain with a phase retrieve algorithm that is proposed based on the iterative fractional Fourier transform. Finally, an interim image is formed by the combination of these phase-only functions and encrypted into the final gray scale ciphertext with stationary white noise distribution by using chaotic diffusion, which has camouflage property to some extent. In the process of encryption and decryption, chaotic permutation and diffusion makes the resultant image nonlinear and disorder both in spatial domain and frequency domain, and the proposed phase iterative algorithm has faster convergent speed. Additionally, the encryption scheme enlarges the key space of the cryptosystem. Simulation results and security analysis verify the feasibility and effectiveness of this method.
Color image encryption using iterative phase retrieve process in quaternion Fourier transform domain
NASA Astrophysics Data System (ADS)
Sui, Liansheng; Duan, Kuaikuai
2015-02-01
A single-channel color image encryption method is proposed based on iterative phase iterative process in quaternion Fourier transform domain. First, three components of the plain color image is confused respectively by using cat map. Second, the confused components are combined into a pure quaternion image, which is encode to the phase only function by using an iterative phase retrieval process. Finally, the phase only function is encrypted into the gray scale ciphertext with stationary white noise distribution based on the chaotic diffusion, which has camouflage property to some extent. The corresponding plain color image can be recovered from the ciphertext only with correct keys in the decryption process. Simulation results verify the feasibility and effectiveness of the proposed method.
Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi
2016-01-01
Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687
Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi
2016-08-01
Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687
Huang, Feng-zhen; Yuan, Yan; Zhang, Xiu-bao; Wang, Qian; Zhou, Zhi-liang
2011-07-01
Phase correction is one of the key technologies in the spectrum recovery of the Fourier transform imaging spectrometer. The present paper proposes a correction method based on simulated annealing algorithm to calculate phase error, which overcomes the disadvantage of the existing methods that can not correct the interferogram with noise. The method determines the phase optimum solution by controlling the phase decrease function, attaining objective function value by correcting interferogram data with random phase value generated in the phase range, and determining the objective function increment in accordance with the Metropolis criterion. The simulation result of the algorithm indicates that the optimized phase error is less than 0.5%, and both the error accuracy and stability of the spectrum-recovered relative spectrum is less than 1%, which is a great improvement compared with the existing algorithm. PMID:21942072
Superresolution imaging method using phase-shifting digital lensless Fourier holography.
Granero, Luis; Micó, Vicente; Zalevsky, Zeev; García, Javier
2009-08-17
A method which is useful for obtaining superresolved imaging in a digital lensless Fourier holographic configuration is presented. By placing a diffraction grating between the input object and the CCD recording device, additional high-order spatial-frequency content of the object spectrum is directed towards the CCD. Unlike other similar methods, the recovery of the different band pass images is performed by inserting a reference beam in on-axis mode and using phase-shifting method. This strategy provides advantages concerning the usage of the whole frequency plane as imaging plane. Thus, the method is no longer limited by the zero order term and the twin image. Finally, the whole process results in a synthetic aperture generation that expands up the system cutoff frequency and yields a superresolution effect. Experimental results validate our concepts for a resolution improvement factor of 3. PMID:19687979
Imaging Fourier transform spectrometer
Bennett, C.L.
1993-09-13
This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.
Fourier plane imaging microscopy
Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.
2014-09-14
We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.
Fourier phase in Fourier-domain optical coherence tomography
Uttam, Shikhar; Liu, Yang
2015-01-01
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383
Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme
2015-11-01
An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved. PMID:26561119
Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.
1995-01-01
A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.
Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.
1995-12-12
A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.
Imaging Fourier Transform Spectrometer
Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.
1993-04-14
The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.
Paul, Joseph Suresh; Krishna Swamy Pillai, Uma
2015-11-01
The aim of this paper is to introduce procedural steps for extension of the 1D homodyne phase correction for k-space truncation in all gradient encoding directions. Compared to the existing method applied to 2D partial k-space, signal losses introduced by the phase correction filter are observed to be minimal for the modified approach. In addition, the modified form of phase correction retains the inherent property of homodyne filtering for elimination of incidental phase artifacts due to truncation. In parallel imaging, this new form of homodyne filtering is shown to be effective for minimizing the signal losses, when each of the channel k-spaces is truncated along both phase and frequency-encode directions. This is illustrated with 2D partial k-space for flow compensated multichannel susceptibility weighted imaging. Extension of this method to 3D partial k-space shows improved reconstruction of flow information in phase contrast magnetic resonance angiography with reduced blur and enhanced background suppression. PMID:26117692
Electro-optic imaging Fourier transform spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)
2009-01-01
An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.
Electro-optic Imaging Fourier Transform Spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2005-01-01
JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.
Electro-optic Imaging Fourier Transform Spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2005-01-01
JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.
Fourier analysis of blood plasma laser images phase maps in the diagnosis of cancer in human organs
NASA Astrophysics Data System (ADS)
Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Kushnerick, L. Y.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.
2013-09-01
The optical model of polycrystalline networks of histological sections of rectum wall is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented. They characterize the coordinate polarization distributions of Fourier transforms of laser images of blood plasma and oncological changes. The diagnostic criteria of rectum cancer are determined.
Color image registration based on quaternion Fourier transformation
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wang, Zhengzhi
2012-05-01
The traditional Fourier Mellin transform is applied to quaternion algebra in order to investigate quaternion Fourier transformation properties useful for color image registration in frequency domain. Combining with the quaternion phase correlation, we propose a method for color image registration based on the quaternion Fourier transform. The registration method, which processes color image in a holistic manner, is convenient to realign color images differing in translation, rotation, and scaling. Experimental results on different types of color images indicate that the proposed method not only obtains high accuracy in similarity transform in the image plane but also is computationally efficient.
NASA Astrophysics Data System (ADS)
Choudhury, Niloy; Zeng, Yaguang; Fridberger, Anders; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.; Wang, Ruikang K.
2011-03-01
Studying the sound stimulated vibrations of various membranes that form the complex structure of the organ of Corti in the cochlea of the inner ear is essential for understanding how the travelling sound wave of the basilar membrane couples its energy to the organ structures. In this paper we report the feasibility of using phase-sensitive Fourier domain optical coherence tomography (FD-OCT) to image the vibration of various micro-structures of the cochlea at the same time. An excised cochlea of a guinea pig was stimulated using sounds at various frequencies and vibration image was obtained. When measuring the apex area, vibration signal from different turns, which have different best response frequencies are obtained in the same image. The method has the potential to measure the response from a much wider region of the cochlea than any other currently used method. The noise floor for vibration image for the system at 200 Hz was ~0.3nm.
Rotational-translational fourier imaging system
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2004-01-01
This invention has the ability to create Fourier-based images with only two grid pairs. The two grid pairs are manipulated in a manner that allows (1) a first grid pair to provide multiple real components of the Fourier-based image and (2) a second grid pair to provide multiple imaginary components of the Fourier-based image. The novelty of this invention resides in the use of only two grid pairs to provide the same imaging information that has been traditionally collected with multiple grid pairs.
Efficient single pixel imaging in Fourier space
NASA Astrophysics Data System (ADS)
Bian, Liheng; Suo, Jinli; Hu, Xuemei; Chen, Feng; Dai, Qionghai
2016-08-01
Single pixel imaging (SPI) is a novel technique capturing 2D images using a bucket detector with a high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene’s information. Determined by Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene’s spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images’ spatial spectra, eSPI sequentially projects two \\tfrac{π }{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI.
Acosta, Roberto I; Gross, Kevin C; Perram, Glen P; Johnson, Shane M; Dao, Ly; Medina, David F; Roybal, Robert; Black, Paul
2014-01-01
Emissive plumes from laser-irradiated fiberglass-reinforced polymers (FRP) were investigated using a mid-infrared imaging Fourier transform spectrometer, operating at fast framing rates (50 kHz imagery and 2.5 Hz hyperspectral imagery) with adequate spatial (0.81 mm(2) per pixel) and spectral resolution (2 cm(-1)). Fiberglass-reinforced polymer targets were irradiated with a 1064 nm continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for 60 s at 100 W in air. Strong emissions from H(2)O, CO, CO(2), and hydrocarbons were observed between 1800 and 5000 cm(-1). A single-layer radiative transfer model was developed for the spectral region from 2000 to 2400 cm(-1) to estimate spatial maps of temperature and column densities of CO and CO(2) from the hyperspectral imagery. The spectral model was used to compute the absorption cross sections of CO and CO(2) using spectral line parameters from the high-temperature extension of the HITRAN. The analysis of pre-combustion spectra yields effective temperatures rising from ambient to 1200 K and suddenly increasing to 1515 K upon combustion. The peak signal-to-noise ratio for a single spectrum exceeds 60:1, enabling temperature and column density determinations with low statistical error. For example, the spectral analysis for a single pixel within a single frame yields an effective temperature of 1019 ± 6 K, and CO and CO(2) column densities of 1.14 ± 0.05 and 1.11 ± 0.03 × 10(18) molec/cm(2), respectively. Systematic errors associated with the radiative transfer model dominate, yielding effective temperatures with uncertainties of >100 K and column densities to within a factor of 2-3. Hydrocarbon emission at 2800 to 3200 cm(-1) is well correlated with CO column density. PMID:25014838
Double image encryption based on iterative fractional Fourier transform
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Liu, Shutian
2007-07-01
We present an image encryption algorithm to simultaneously encrypt two images into a single one as the amplitudes of fractional Fourier transform with different orders. From the encrypted image we can get two original images independently by fractional Fourier transforms with two different fractional orders. This algorithm can be independent of additional random phases as the encryption/decryption keys. Numerical results are given to analyze the capability of this proposed method. A possible extension to multi-image encryption with a fractional order multiplexing scheme has also been given.
Fourier analysis of quadratic phase interferograms
NASA Astrophysics Data System (ADS)
Muñoz-Maciel, Jesús; Mora-González, Miguel; Casillas-Rodríguez, Francisco J.; Peña-Lecona, Francisco G.
2015-06-01
A phase demodulation method from a single interferogram with a quadratic phase term is developed. The fringe pattern being analysed may contain circular, elliptic or astigmatic fringes. The Fourier transform of such interferograms is seen to be also a sine or a cosine of a second order polynomial in both the real and imaginary parts. In this work we take a discrete Fourier transform of the fringe patterns and then we take separate inverse discrete transforms of the real and imaginary parts of the frequency spectrum. This results in two new interferograms corresponding to the sine and cosine of the quadratic term of the phase modulated by the sine and cosine of the linear term. The linear term of these interferograms may be recovered with similar procedures of fringe analysis from open fringe interferograms. Once the linear term is retrieved the quadratic phase of the interferogram being analysed can also be calculated. The present approach is also being investigated for interferograms with nearly circularly symmetry given that the phase contains some tilt. The described procedure of Fourier analysis from quadratic phase interferograms of nearly symmetric interferograms could be used instead of complex and time consuming algorithms for phase recovery from fringe patterns with closed fringes. Finally, the method is tested in simulated and real data.
Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS)
Carter, M.R.; Bennett, C.L.; Fields, D.J.; Lee, F.D.
1995-05-10
Lawrence Livermore National Laboratory is currently operating a hyperspectral imager, the Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS). This instrument is capable of operating throughout the infrared spectrum from 3 to 12.5 {mu}m with controllable spectral resolution. In this presentation we report on it`s operating characteristics, current capabilities, data throughput and calibration issues.
Proposal of snapshot line-imaging Fourier spectroscopy for smartphone
NASA Astrophysics Data System (ADS)
Kawashima, Natsumi; Sato, Shun; Ishida, Akane; Inohara, Daichi; Tanaka, Naotaka; Wada, Kenji; Nishiyama, Akira; Fujiwara, Masaru; Ishimaru, Ichiro
2015-03-01
We propose the extremely-compact-size line-imaging Fourier spectroscopy for smartphones. We realize the near common-path interferometer with strong robustness for mechanical vibrations by installing the transmission-type relative-inclined phase-shifter. The interferogram of an imaging line is formed as 2-dimensional fringe pattern on imaging sensor, such as CCD camera. In other words, the horizontal axis on an imaging sensor is assigned to phase-shift value. And the vertical axis is corresponds to image formation coordinate. Thus, by installing a relatively-inclined thin glass into imaging optics, such as smartphone, we will realize the line-imaging Fourier spectroscopy for healthcare sensor in daily-life environments.
Fourier analysis: from cloaking to imaging
NASA Astrophysics Data System (ADS)
Wu, Kedi; Cheng, Qiluan; Wang, Guo Ping
2016-04-01
Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers.
Phase amplitude conformal symmetry in Fourier transforms
NASA Astrophysics Data System (ADS)
Kuwata, S.
2015-04-01
For the Fourier transform ℑ : L2(R) → L2(R) of a complex-valued even or odd function ψ, it is found that the amplitude invariance |ℑψ| = |ψ| leads to a phase invariance or inversion as arg(ℑψ) = ±argψ + θ (θ = constant). The converse holds unless arg ψ = constant. The condition |ψ| = |ℑψ| is required in dealing with, for example, the minimum uncertainty relation between position and momentum. Without the evenness or oddness of ψ, |ℑψ| = |ψ| does not necessarily imply arg(ℑψ) = ±argψ + θ, nor is the converse.
Novel fringe scanning/Fourier transform method of synthetic imaging
Crawford, T.M.; Albano, R.K.
1993-08-01
We have developed a one-dimensional theory and a computer model for synthetically imaging scenes using a novel fringe scanning/Fourier transform technique. Our method probes a scene using two interfering beams of slightly different frequency. These beams form a moving fringe pattern which scans the scene and resonates with any spatial frequency components having the same spatial frequency as the scanning fringe pattern. A simple, non-imaging detector above the scene observes any scattered radiation from the scene falling onto it. If a resonance occurs between the scanning fringe pattern and the scene, then the scattered radiation will be modulated at the difference frequency between the two probing beams. By changing the spatial period of the fringe pattern and then measuring the amplitude and phase of the modulated radiation that is scattered from the scene, the Fourier amplitudes and phases of the different spatial frequency components making up the scene can be measured. A synthetic image of the scene being probed can be generated from this Fourier amplitude and phase data by taking the inverse Fourier transform of this information. This technique could be used to image objects using light, ultrasonic, or other electromagnetic or acoustic waves.
Triple image encryption scheme in fractional Fourier transform domains
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Dai, Jingmin; Sun, Xiaogang; Liu, Shutian
2009-02-01
We proposed a triple image encryption scheme by use of fractional Fourier transform. In this algorithm, an original image is encoded in amplitude part and other two images are encoded into phase information. The key of encryption algorithm is obtained from the difference between the third image and the output phase of transform. In general case, random phase encoding technology is not required in the proposed algorithm. Moreover, all information of images is preserved in theory when image are decrypted with correct key. The optical implementation of the algorithm is presented with an electro-optical hybrid structure. Numerical simulations have demonstrated the efficiency and the security of this algorithm. Based on this scheme a multiple image algorithm is expanded and designed.
Fourier removal of stripe artifacts in IRAS images
NASA Technical Reports Server (NTRS)
Van Buren, Dave
1987-01-01
By working in the Fourier plane, approximate removal of stripe artifacts in IRAS images can be effected. The image of interest is smoothed and subtracted from the original, giving the high-spatial-frequency part. This 'filtered' image is then clipped to remove point sources and then Fourier transformed. Subtracting the Fourier components contributing to the stripes in this image from the Fourier transform of the original and transforming back to the image plane yields substantial removal of the stripes.
Optical image encryption based on multifractional Fourier transforms.
Zhu, B; Liu, S; Ran, Q
2000-08-15
We propose a new image encryption algorithm based on a generalized fractional Fourier transform, to which we refer as a multifractional Fourier transform. We encrypt the input image simply by performing the multifractional Fourier transform with two keys. Numerical simulation results are given to verify the algorithm, and an optical implementation setup is also suggested. PMID:18066153
Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping
NASA Astrophysics Data System (ADS)
Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui
2016-09-01
This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.
Compact snapshot birefringent imaging Fourier transform spectrometer
NASA Astrophysics Data System (ADS)
Kudenov, Michael W.; Dereniak, Eustace L.
2010-08-01
The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.
Fourier transform digital holographic adaptive optics imaging system
Liu, Changgeng; Yu, Xiao; Kim, Myung K.
2013-01-01
A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541
Single beam Fourier transform digital holographic quantitative phase microscopy
Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.
2014-03-10
Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.
Imaging Fourier transform spectrometry of chemical plumes
NASA Astrophysics Data System (ADS)
Bradley, Kenneth C.; Gross, Kevin C.; Perram, Glen P.
2009-05-01
A midwave infrared (MWIR) imaging Fourier transform spectrometer (FTS), the Telops FIRST-MWE (Field-portable Imaging Radiometric Spectrometer Technology - Midwave Extended) has been utilized for the standoff detection and characterization of chemical plumes. Successful collection and analysis of MWIR hyperspectral imagery of jet engine exhaust has allowed us to produce spatial profiles of both temperature and chemical constituent concentrations of exhaust plumes. Successful characterization of this high temperature combustion event has led to the collection and analysis of hyperspectral imagery of lower temperature emissions from industrial smokestacks. This paper presents MWIR data from remote collection of hyperspectral imagery of methyl salicilate (MeS), a chemical warfare agent simulant, during the Chemical Biological Distributed Early Warning System (CBDEWS) test at Dugway Proving Grounds, UT in 2008. The data did not contain spectral lines associated with emission of MeS. However, a few broad spectral features were present in the background-subtracted plume spectra. Further analysis will be required to assign these features, and determine the utility of MWIR hyperspectral imagery for analysis of chemical warfare agent plumes.
Fourier Phase Domain Steganography: Phase Bin Encoding Via Interpolation
NASA Astrophysics Data System (ADS)
Rivas, Edward
2007-04-01
In recent years there has been an increased interest in audio steganography and watermarking. This is due primarily to two reasons. First, an acute need to improve our national security capabilities in light of terrorist and criminal activity has driven new ideas and experimentation. Secondly, the explosive proliferation of digital media has forced the music industry to rethink how they will protect their intellectual property. Various techniques have been implemented but the phase domain remains a fertile ground for improvement due to the relative robustness to many types of distortion and immunity to the Human Auditory System. A new method for embedding data in the phase domain of the Discrete Fourier Transform of an audio signal is proposed. Focus is given to robustness and low perceptibility, while maintaining a relatively high capacity rate of up to 172 bits/s.
NASA Astrophysics Data System (ADS)
Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei
2013-09-01
The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.
NASA Astrophysics Data System (ADS)
Xia, Xiang-Gen; Wang, Genyuan; Chen, Victor C.
2001-03-01
This paper first reviews some basic properties of the discrete chirp-Fourier transform and then present an adaptive chirp- Fourier transform, a generalization of the amplitude and phase estimation of sinusoids (APES) algorithm proposed by Li and Stoica for sinusoidal signals. We finally applied it to the ISAR imaging of maneuvering targets.
Speckle size in optical Fourier domain imaging
NASA Astrophysics Data System (ADS)
Lamouche, G.; Vergnole, S.; Bisaillon, C.-E.; Dufour, M.; Maciejko, R.; Monchalin, J.-P.
2007-06-01
As in conventional time-domain optical coherence tomography (OCT), speckle is inherent to any Optical Fourier Domain Imaging (OFDI) of biological tissue. OFDI is also known as swept-source OCT (SS-OCT). The axial speckle size is mainly determined by the OCT resolution length and the transverse speckle size by the focusing optics illuminating the sample. There is also a contribution from the sample related to the number of scatterers contained within the probed volume. In the OFDI data processing, there is some liberty in selecting the range of wavelengths used and this allows variation in the OCT resolution length. Consequently the probed volume can be varied. By performing measurements on an optical phantom with a controlled density of discrete scatterers and by changing the probed volume with different range of wavelengths in the OFDI data processing, there is an obvious change in the axial speckle size, but we show that there is also a less obvious variation in the transverse speckle size. This work contributes to a better understanding of speckle in OCT.
Multifunctional metasurface lens for imaging and Fourier transform
NASA Astrophysics Data System (ADS)
Wen, Dandan; Yue, Fuyong; Ardron, Marcus; Chen, Xianzhong
2016-06-01
A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping.
Multifunctional metasurface lens for imaging and Fourier transform
Wen, Dandan; Yue, Fuyong; Ardron, Marcus; Chen, Xianzhong
2016-01-01
A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping. PMID:27272601
Color image encryption based on joint fractional Fourier transform correlator
NASA Astrophysics Data System (ADS)
Lu, Ding; Jin, Weimin
2011-06-01
In this paper, an optical color image encryption/decryption technology based on joint fractional Fourier transform correlator and double random phase encoding (DRPE) is developed. In this method, the joint fractional power spectrum of the image to be encrypted and the key codes is recorded as the encrypted data. Different from the case with classical DRPE, the same key code was used both in the encryption and decryption. The security of the system is enhanced because of the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system, and could optically realize single-channel color image encryption. The experimental results indicate that the new method is feasible.
Multifunctional metasurface lens for imaging and Fourier transform.
Wen, Dandan; Yue, Fuyong; Ardron, Marcus; Chen, Xianzhong
2016-01-01
A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping. PMID:27272601
Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)
NASA Technical Reports Server (NTRS)
Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.
2001-01-01
The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.
NASA Astrophysics Data System (ADS)
Spencer, Locke Dean
The Herschel Space Observatory (Herschel), a flagship mission of the European Space Agency (ESA), is comprised of three cryogenically cooled instruments commissioned to explore the far-infrared/submillimetre universe. Herschel's remote orbit at the second Lagrangian point (L2) of the Sun-Earth system, and its cryogenic payload, impose a need for thorough instrument characterization and rigorous testing as there will be no possibility for any servicing after launch. The Spectral and Photometric Imaging Receiver (SPIRE) is one of the instrument payloads aboard Herschel and consists of a three band imaging photometer and a two band imaging spectrometer. The imaging spectrometer on SPIRE consists of a Mach-Zehnder (MZ)-Fourier transform spectrometer (FTS) coupled with bolometric detector arrays to form an imaging FTS (IFTS). This thesis presents experiments conducted to verify the performance of an IFTS system from a space based platform, Le. the use of the SPIRE IFTS within the Herschel space observatory. Prior to launch, the SPIRE instrument has undergone a series of performance verification tests conducted at the Rutherford Appleton Laboratory (RAL) near Oxford, UK. Canada is involved in the SPIRE project through provision of instrument development hardware and software, mission flight software, and support personnel. Through this thesis project I have been stationed at RAL for a period spanning fifteen months to participate in the development, performance verification, and characterization of both the SPIRE FTS and photometer instruments. This thesis discusses Fourier transform spectroscopy and related FTS data processing (Chapter 2). Detailed discussions are included on the spectral phase related to the FTS beamsplitter (Chapter 3), the imaging aspects of the SPIRE IFTS instrument (Chapter 4), and the noise characteristics of the SPIRE bolometer detector arrays as measured using the SPIRE IFTS (Chapter 5). This thesis presents results from experiments performed
Fourier transform imaging spectropolarimeter using simultaneous polarization modulation.
Meng, Xin; Li, Jianxin; Liu, Defang; Zhu, Rihong
2013-03-01
We introduce a Fourier transform imaging spectropolarimeter composed of a simultaneous polarization modulator and a Fourier transform spectrometer without slit. The spectropolarimeter enables the generation of four sets of fringe patterns with different polarization states of light from an object point. Fourier transform of the fringe patterns provides four equations of Stokes parameters in various wavenumbers. And we can obtain the full-stokes vector from the equations. The most significant advantage of the method is that the four polarized fringe patterns are obtained simultaneously and separated without aliasing. Additionally, the advantages of the Fourier transform spectrometer are maintained, such as high radiative throughput. PMID:23455296
NASA Astrophysics Data System (ADS)
Tiwari, Saumya; Zong, Xinying; Holton, Sarah E.; Prasanth, K. V.; Bhargava, Rohit
2015-03-01
Determination of neoplasia is largely dependent on the state of cell growth. Infrared (IR) spectroscopy has the potential to measure differences between normal and cancerous cells. When analyzing biopsy sections using IR spectroscopy, careful analyses become important since biochemical variations may be misinterpreted due to variations in cell cycle. Processes like DNA replication, transcription and translation to produce proteins are important in determining if the cells are actively dividing but no studies on this aspect using IR spectroscopy have been conducted on isolated cell nuclei. Nuclei hold critical information about the phase of cell and its capacity to divide, but IR spectra of nuclei are often confounded by cytoplasmic signals during data acquisition from intact cells and tissues. Therefore, we sought to separate nuclear signals from cytoplasmic signals and identify spectral differences that characterize different phases of the cell cycle. Both cells and isolated nuclei were analyzed to assess the effect of the cytoplasmic background and to identify spectral changes in nuclei in different phases of cell cycle. We observed that signals of DNA could be obtained when imaging nuclei isolated from cells in different phases of cell cycle, which is in contrast to the oft-cited case in cells wherein nuclear contributions are obscured. The differences across cell cycle phases were more pronounced in nucleic acid regions of the spectra, showing that the use of nuclear spectrum can provide additional information on cellular state. These results can aid in developing computational models that extract nuclear spectra from whole cells and tissues for more accurate assessment of biochemical variations.
Fourier Spectral Filter Array for Optimal Multispectral Imaging.
Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo
2016-04-01
Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data. PMID:26849867
Fourier domain OCT imaging of American cockroach nervous system
NASA Astrophysics Data System (ADS)
Wyszkowska, Joanna; Gorczynska, Iwona; Ruminski, Daniel; Karnowski, Karol; Kowalczyk, Andrzej; Stankiewicz, Maria; Wojtkowski, Maciej
2012-01-01
In this pilot study we demonstrate results of structural Fourier domain OCT imaging of the nervous system of Periplaneta americana L. (American cockroach). The purpose of this research is to develop an OCT apparatus enabling structural imaging of insect neural system. Secondary purpose of the presented research is to develop methods of the sample preparation and handling during the OCT imaging experiments. We have performed imaging in the abdominal nerve cord excised from the American cockroach. For this purpose we have developed a Fourier domain / spectral OCT system operating at 820 nm wavelength range.
Invariant quaternion radial harmonic Fourier moments for color image retrieval
NASA Astrophysics Data System (ADS)
Xiang-yang, Wang; Wei-yi, Li; Hong-ying, Yang; Pan-pan, Niu; Yong-wei, Li
2015-03-01
Moments and moment invariants have become a powerful tool in image processing owing to their image description capability and invariance property. But, conventional methods are mainly introduced to deal with the binary or gray-scale images, and the only approaches for color image always have poor color image description capability. Based on radial harmonic Fourier moments (RHFMs) and quaternion, we introduced the quaternion radial harmonic Fourier moments (QRHFMs) for representing color images in this paper, which can be seen as the generalization of RHFMs for gray-level images. It is shown that the QRHFMs can be obtained from the RHFMs of each color channel. We derived and analyzed the rotation, scaling, and translation (RST) invariant property of QRHFMs. We also discussed the problem of color image retrieval using invariant QRHFMs. Experimental results are provided to illustrate the efficiency of the proposed color image representation.
Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS): Imaging and Tracking Capability
NASA Technical Reports Server (NTRS)
Zhou, D. K.; Larar, A. M.; Liu, Xu; Reisse, R. A.; Smith, W. L.; Revercomb, H. E.; Bingham, G. E.; Zollinger, L. J.; Tansock, J. J.; Huppi, Ronald J.
2007-01-01
The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 128 detector arrays with a spectral resolution of 0.57/cm with a scan duration of approx. 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.
Fractional Fourier transform in temporal ghost imaging with classical light
Setaelae, Tero; Shirai, Tomohiro; Friberg, Ari T.
2010-10-15
We investigate temporal, second-order classical ghost imaging with long, incoherent, scalar plane-wave pulses. We prove that in rather general conditions, the intensity correlation function at the output of the setup is given by the fractional Fourier transform of the temporal object. In special cases, the correlation function is shown to reduce to the ordinary Fourier transform and the temporal image of the object. Effects influencing the visibility and the resolution are considered. This work extends certain known results on spatial ghost imaging into the time domain and could find applications in temporal tomography of pulses.
Theoretical study of Fourier-transform acousto-optic imaging.
Barjean, Kinia; Ramaz, François; Tualle, Jean-Michel
2016-05-01
We propose a full theoretical study of Fourier-transform acousto-optic imaging, which we recently introduced and experimentally assessed in [Opt. Lett.40, 705-708 (2015)OPLEDP0146-959210.1364/OL.40.000705] as an alternative to achieve axial resolution in acousto-optic imaging with a higher signal-to-noise ratio. PMID:27140883
Electro-Optical Imaging Fourier-Transform Spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Zhou, Hanying
2006-01-01
An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.
Phase averaging of image ensembles by using cepstral gradients
Swan, H.W.
1983-11-01
The direct Fourier phase averaging of an ensemble of randomly blurred images has long been thought to be too difficult a problem to undertake realistically owing to the necessity of proper phase unwrapping. It is shown that it is nevertheless possible to average the Fourier phase information in an image ensemble without calculating phases by using the technique of cepstral gradients.
Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform
NASA Astrophysics Data System (ADS)
Li, Yanbin; Zhang, Feng; Li, Yuanchao; Tao, Ran
2015-09-01
A multiple-image cryptosystem is proposed based on the cascaded fractional Fourier transform. During an encryption procedure, each of the original images is directly separated into two phase masks. A portion of the masks is subsequently modulated into an interim mask, which is encrypted into the ciphertext image; the others are used as the encryption keys. Using phase truncation in the fractional Fourier domain, one can use an asymmetric cryptosystem to produce a real-valued noise-like ciphertext, while a legal user can reconstruct all of the original images using a different group of phase masks. The encryption key is an indivisible part of the corresponding original image and is still useful during decryption. The proposed system has high resistance to various potential attacks, including the chosen-plaintext attack. Numerical simulations also demonstrate the security and feasibility of the proposed scheme.
[Spatially modulated Fourier transform imaging spectrometer data compression research].
Huang, Min; Xiangli, Bin; Yuan, Yan; Shen, Zhong; Lu, Qun-bo; Wang, Zhong-hou; Liu, Xue-bin
2010-01-01
Fourier transform imaging spectrometer is a new technic, and has been developed very fast in recent ten years. When it is used in satellite, because of the limit by the data transmission, the authors need to compress the original data obtained by the Fourier transform imaging spectrometer, then, the data can be transmitted, and can be incepted on the earth and decompressed. Then the authors can do data process to get spectrum data which can be used by user. Data compression technic used in Fourier transform imaging spectrometer is a new technic, and few papers introduce it at home and abroad. In this paper the authors will give a data compression method, which has been used in EDIS, and achieved a good result. PMID:20302132
Medical Image Provessing using Transient Fourier Holography in Bacteriorhodopsin Films
NASA Astrophysics Data System (ADS)
Kothapalli, Sri-Rajasekhar; Wu, Pengfei; Yelleswarapu, Chandra; Devulapalli, Rao
2005-03-01
A real-time optical Fourier image processing system is demonstrated for early detection of microcalcifications in screen film as well as digital mammograms. The principle is based on recording and reconstructing the transient photoisomerizative grating formed in the bR film. At first Fourier hologram is recorded by spatially overlapping the Fourier transformed object beam with the reference beam in the bR film. Then the object beam is blocked and the reference beam performs the reconstruction of the recorded Fourier hologram. The optimum of diffraction efficiency occurs when object beam intensity is matched to the reference beam intensity. We exploit this technique to process mammograms in real-time for identification of microcalcifications buried in the soft tissue for early detection of breast cancer. A novel feature of the technique is the ability to transient display of selected spatial frequencies in the reconstructing process which enables the radiologists to study the features of interest in time scale.
Comparative analysis of imaging configurations and objectives for Fourier microscopy.
Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid
2015-11-01
Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies. PMID:26560923
Construction of a Fourier-transform phase-modulation fluorometer
NASA Astrophysics Data System (ADS)
Shibata, Hironobu; Iwata, Tetsuo
2005-12-01
We have constructed a Fourier-transform phase-modulation fluorometer (FT-PMF) by which a fluorescence decay waveform can be obtained. In the FT-PMF, the modulation frequency of the excitation light source is swept continuously from a direct current (dc) to a high frequency f max with a time duration T. The resultant fluorescence signal waveform is Fourier-transformed to obtain its amplitude and phase spectra. The ratio of the amplitude spectrum and the difference of the phase spectrum over those of the reference spectra that are obtained from a non-fluorescent material are calculated, respectively, and the pair of both spectral data is inverse-Fourier-transformed again to obtain the fluorescence decay waveform. The light source used was an ultraviolet light emitting- diode (UV LED) whose typical operating condition was f max = 100 MHz and T = 10 μs. To demonstrate the performance of the FT-PMF, we carried out (1) measurement of a fluorescent decay waveform of YAG materials packed in a white LED, and (2) determination of fluorescence lifetime of 10 ppm quinine sulfate in 0.1N H IISO 4.
Construction of a Fourier-transform phase-modulation fluorometer
NASA Astrophysics Data System (ADS)
Iwata, Tetsuo; Shibata, Hironobu; Araki, Tsutomu
2005-11-01
We have constructed a Fourier-transform phase-modulation fluorometer (FT-PMF) by which a fluorescence decay waveform can be obtained. In the FT-PMF, the modulation frequency of the excitation light source is swept continuously from a direct current (dc) to a high frequency fmax with a time duration T. The resultant fluorescence signal waveform is Fourier transformed to obtain its amplitude and phase spectra. The ratio of the amplitude spectrum and the difference of the phase spectrum over those of the reference spectra from an excitation waveform are calculated, respectively, and the pair of both spectral data is inverse-Fourier-transformed again to obtain the fluorescence decay waveform. The light source used was an ultraviolet light-emitting diode (UV LED) whose operating condition was fmax = 50-120 MHz and T = 10 µs. To demonstrate the performance of the FT-PMF, we carried out (1) the measurement of a fluorescent decay waveform of YAG materials enclosed in a white LED and (2) determinations of fluorescence lifetimes of 10 ppm quinine sulfate in 0.1 N H2SO4 and 10 ppm rhodamine 6G in ethanol.
Langner, Oliver; Wiese, Holger; Redies, Christoph
2015-01-01
We investigated whether low-level processed image properties that are shared by natural scenes and artworks – but not veridical face photographs – affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess – compared to face images – a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope – in contrast to the other tested image properties – did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis. PMID:25835539
[Research on spatially modulated Fourier transform imaging spectrometer data processing method].
Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan
2010-03-01
Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result. PMID:20496726
Visible Imaging Fourier Transform Spectrometer: Design and Calibration
Wishnow, E H; Wurtz, R; Blais-Ouellette, S; Cook, K H; Carr, D; Lewis, I; Grandmont, F; Stubbs, C W
2002-09-19
We present details of the design, operation and calibration of an astronomical visible-band imaging Fourier transform spectrometer (IFTS). This type of instrument produces a spectrum for every pixel in the field of view where the spectral resolution is flexible. The instrument is a dual-input/dual-output Michelson interferometer coupled to the 3.5 meter telescope at the Apache Point Observatory. Imaging performance and interferograms and spectra from calibration sources and standard stars are discussed.
Errors of fourier chemical-shift imaging and their corrections
NASA Astrophysics Data System (ADS)
Wang, Zhiyue; Bolinger, Lizann; Subramanian, V. Harihara; Leigh, John S.
From a finite and discrete Fourier transform point of view, we discuss the sources of localization errors in Fourier chemical-shift imaging, and demonstrate them explicitly by computer simulations for simple cases. Errors arise from intravoxel dephasing and the intravoxel asymmetry. The spectral leakage due to intravoxel dephasing is roughly 6-8% from one voxel to one of its nearest neighbors. Neighbors further away are influenced less significantly. The loss of localization due to intravoxel asymmetry effect is also severe. Fortunately, these errors can be corrected under certain conditions. The method for correcting the errors by postprocessing the data is described.
Fourier transform infrared phase shift cavity ring down spectrometer
NASA Astrophysics Data System (ADS)
Schundler, Elizabeth; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Engel, James R.; Rentz Dupuis, Julia
2013-05-01
We report on our current status towards the development of a prototype Fourier transform infrared phase shift cavity ring down spectrometer (FTIR-PS-CRDS) system under a U.S. EPA SBIR contract. Our system uses the inherent wavelength-dependent modulation imposed by the FTIR on a broadband thermal source for the phase shift measurement. This spectrally-dependent phase shift is proportional to the spectrally-dependent ring down time, which is proportional to the losses of the cavity including those due to molecular absorption. Our approach is a broadband and spectral range enhancement to conventional CRDS which is typically done in the near IR at a single wavelength; at the same time our approach is a sensitivity enhancement to traditional FTIR owing to the long effective path of the resonant cavity. In this paper we present a summary of the theory including performance projections and the design details of the prototype FTIR-PS-CRDS system.
A study of geometric phase topology using Fourier transform method
NASA Astrophysics Data System (ADS)
Samlan, C. T.; Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-07-01
Topological aspect of the geometric phase (GP) due to pure polarization projection is studied using the 2D Fourier transform (2D-FT) method. Projection of orthogonal polarization state results in a phase singularity in the 2D parameter space of ellipticity and orientation of polarization ellipse. Projection of its surrounding states results in an accumulation of GP in different amount that form a spiral structure. A half wave plate–quarter wave plate combination is used to generate different polarization states which are projected using a polarizer. The accumulated phase for each orientation of the wave plate is extracted from 2D-FT of the interferogram, obtained by interfering it with a reference beam in a Mach–Zehnder like interferometer.
Binary-Phase Fourier Gratings for Nonuniform Array Generation
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.
2003-01-01
We describe a design method for a binary-phase Fourier grating that generates an array of spots with nonuniform, user-defined intensities symmetric about the zeroth order. Like the Dammann fanout grating approach, the binary-phase Fourier grating uses only two phase levels in its grating surface profile to generate the final spot array. Unlike the Dammann fanout grating approach, this method allows for the generation of nonuniform, user-defined intensities within the final fanout pattern. Restrictions governing the specification and realization of the array's individual spot intensities are discussed. Design methods used to realize the grating employ both simulated annealing and nonlinear optimization approaches to locate optimal solutions to the grating design problem. The end-use application driving this development operates in the near- to mid-infrared spectrum - allowing for higher resolution in grating specification and fabrication with respect to wavelength than may be available in visible spectrum applications. Fabrication of a grating generating a user-defined nine spot pattern is accomplished in GaAs for the near-infrared. Characterization of the grating is provided through the measurement of individual spot intensities, array uniformity, and overall efficiency. Final measurements are compared to calculated values with a discussion of the results.
360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2016-01-11
360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details. PMID:26832248
Birefringent Fourier transform imaging spectrometer with a rotating retroreflector.
Bai, Caixun; Li, Jianxin; Shen, Yan; Zhou, Jianqiang
2016-08-01
A birefringent Fourier transform imaging spectrometer with a new lateral shearing interferometer is presented. The interferometer includes a Wollaston prism and a retroreflector. It splits an incident light beam into two shearing parallel parts to obtain interference fringe patterns of an imaging target, which is well established as an aid in reducing problems associated with optical alignment and manufacturing precision. Continuously rotating the retroreflector enables the spectrometer to acquire two-dimensional spectral images without spatial scanning. This technology, with a high work efficiency and low complexity, is inherently compact and robust. The effectiveness of the proposed method is demonstrated by the experimental results. PMID:27472640
Astronomical imaging Fourier spectroscopy at far-infrared wavelengths
NASA Astrophysics Data System (ADS)
Naylor, David A.; Gom, Brad G.; van der Wiel, Matthijs H. D.; Makiwa, Gibion
2013-11-01
The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The MachâZehnder (MZ) interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the MZ design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the HerschelâSPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.
A phase space model of Fourier ptychographic microscopy
Horstmeyer, Roarke; Yang, Changhuei
2014-01-01
A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray diffractive imaging. Our mathematical framework demonstrates that under ideal illumination conditions, conventional ptychography and FPM both produce datasets that are mathematically linked by a linear transformation. We hope this finding encourages the future cross-pollination of ideas between two otherwise unconnected experimental imaging procedures. In addition, the coherence state of the illumination source used by each imaging platform is critical to successful operation, yet currently not well understood. We apply our mathematical framework to demonstrate that partial coherence uniquely alters both conventional ptychography’s and FPM’s captured data, but up to a certain threshold can still lead to accurate resolution-enhanced imaging through appropriate computational post-processing. We verify this theoretical finding through simulation and experiment. PMID:24514995
Experimental results from an airborne static Fourier transform imaging spectrometer.
Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre; Fournet, Pierre; Coudrain, Christophe; Deschamps, Joël; Primot, Jérôme
2011-10-20
A high étendue static Fourier transform spectral imager has been developed for airborne use. This imaging spectrometer, based on a Michelson interferometer with rooftop mirrors, is compact and robust and benefits from a high collection efficiency. Experimental airborne images were acquired in the visible domain. The processing chain to convert raw images to hyperspectral data is described, and airborne spectral images are presented. These experimental results show that the spectral resolution is close to the one expected, but also that the signal to noise ratio is limited by various phenomena (jitter, elevation fluctuations, and one parasitic image). We discuss the origin of those limitations and suggest solutions to circumvent them. PMID:22015418
Gradient-based image recovery methods from incomplete Fourier measurements.
Patel, Vishal M; Maleh, Ray; Gilbert, Anna C; Chellappa, Rama
2012-01-01
A major problem in imaging applications such as magnetic resonance imaging and synthetic aperture radar is the task of trying to reconstruct an image with the smallest possible set of Fourier samples, every single one of which has a potential time and/or power cost. The theory of compressive sensing (CS) points to ways of exploiting inherent sparsity in such images in order to achieve accurate recovery using sub-Nyquist sampling schemes. Traditional CS approaches to this problem consist of solving total-variation (TV) minimization programs with Fourier measurement constraints or other variations thereof. This paper takes a different approach. Since the horizontal and vertical differences of a medical image are each more sparse or compressible than the corresponding TV image, CS methods will be more successful in recovering these differences individually. We develop an algorithm called GradientRec that uses a CS algorithm to recover the horizontal and vertical gradients and then estimates the original image from these gradients. We present two methods of solving the latter inverse problem, i.e., one based on least-square optimization and the other based on a generalized Poisson solver. After a thorough derivation of our complete algorithm, we present the results of various experiments that compare the effectiveness of the proposed method against other leading methods. PMID:21690011
Optimal color image restoration: Wiener filter and quaternion Fourier transform
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.; Agaian, Sos S.
2015-03-01
In this paper, we consider the model of quaternion signal degradation when the signal is convoluted and an additive noise is added. The classical model of such a model leads to the solution of the optimal Wiener filter, where the optimality with respect to the mean square error. The characteristic of this filter can be found in the frequency domain by using the Fourier transform. For quaternion signals, the inverse problem is complicated by the fact that the quaternion arithmetic is not commutative. The quaternion Fourier transform does not map the convolution to the operation of multiplication. In this paper, we analyze the linear model of the signal and image degradation with an additive independent noise and the optimal filtration of the signal and images in the frequency domain and in the quaternion space.
Phase Spectroscopy Of Surface Electromagnetic Waves Using Fourier Spectrometer
NASA Astrophysics Data System (ADS)
Kuzik, L. A.; Yakovlev, V. A.; Zhizhin, G. N.; Chesters, M. A.; Parker, S. F.
1989-12-01
The surface electromagnetic wave (SEWS spectroscopy has shown high sensitivity to the state of the surface . The measurements of SEW attenuation andphase retardation during SEW propagation on the sample allow to obtain Ihe optical constants of surface layer or oxide on the metal. Up to now phase spectroscopy used laser sources of radiation, thus the interference measurements were done only in the spectral region where laser lines are available. To apply phase spectroscopy or SEW to the surface analysis widely it is necessary to expand the spectral region where they are studing. High sensitivity or modern Fourier transform spectrometers allows to detect SEW excited by broadband source. We have used Fourier transform spectrometers FTS-20V (Digilab) and Michelson-110 (BOMEM) with liquid nitrogen cooled detectors (Hg-Cd-Te). On silver surface SEW were excited using aperture coupling. The experiment is shown on the fig.1 . IR radiation from interferometer was focused on the gap between the sample 3 surface and the screen 1 placed at the distance of the order of 100 μm. In such a way on the gap propagating along a metal SEW and bulk radiation above the metal are excited.
Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy.
Kim, Jinho; Henley, Beverley M; Kim, Charlene H; Lester, Henry A; Yang, Changhuei
2016-08-01
Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1 imaging system that, providing large field-of-view (FOV) imaging onto a low-cost CMOS imaging sensor. The EmSight improves the image resolution by capturing a series of images of the sample at varying illumination angles; the instrument reconstructs a higher-resolution image by using the iterative Fourier ptychographic algorithm. In addition to providing high-resolution brightfield and phase imaging, the EmSight is also capable of fluorescence imaging at the native resolution of the objectives. We characterized the system using a phase Siemens star target, and show four-fold improved coherent resolution (synthetic NA of 0.42) and a depth of field of 0.2 mm. To conduct live, long-term dopaminergic neuron imaging, we cultured ventral midbrain from mice driving eGFP from the tyrosine hydroxylase promoter. The EmSight system tracks movements of dopaminergic neurons over a 21 day period. PMID:27570701
Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy
Kim, Jinho; Henley, Beverley M.; Kim, Charlene H.; Lester, Henry A.; Yang, Changhuei
2016-01-01
Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1 imaging system that, providing large field-of-view (FOV) imaging onto a low-cost CMOS imaging sensor. The EmSight improves the image resolution by capturing a series of images of the sample at varying illumination angles; the instrument reconstructs a higher-resolution image by using the iterative Fourier ptychographic algorithm. In addition to providing high-resolution brightfield and phase imaging, the EmSight is also capable of fluorescence imaging at the native resolution of the objectives. We characterized the system using a phase Siemens star target, and show four-fold improved coherent resolution (synthetic NA of 0.42) and a depth of field of 0.2 mm. To conduct live, long-term dopaminergic neuron imaging, we cultured ventral midbrain from mice driving eGFP from the tyrosine hydroxylase promoter. The EmSight system tracks movements of dopaminergic neurons over a 21 day period. PMID:27570701
Denoising and deblurring of Fourier transform infrared spectroscopic imaging data
NASA Astrophysics Data System (ADS)
Nguyen, Tan H.; Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew; Popescu, Gabriel; Do, Minh N.; Bhargava, Rohit
2012-03-01
Fourier transform infrared (FT-IR) spectroscopic imaging is a powerful tool to obtain chemical information from images of heterogeneous, chemically diverse samples. Significant advances in instrumentation and data processing in the recent past have led to improved instrument design and relatively widespread use of FT-IR imaging, in a variety of systems ranging from biomedical tissue to polymer composites. Various techniques for improving signal to noise ratio (SNR), data collection time and spatial resolution have been proposed previously. In this paper we present an integrated framework that addresses all these factors comprehensively. We utilize the low-rank nature of the data and model the instrument point spread function to denoise data, and then simultaneously deblurr and estimate unknown information from images, using a Bayesian variational approach. We show that more spatial detail and improved image quality can be obtained using the proposed framework. The proposed technique is validated through experiments on a standard USAF target and on prostate tissue specimens.
Wideband electromagnetic scattering program. Fourier-based radar imaging techniques
NASA Astrophysics Data System (ADS)
Chan, B. L.; Young, J. D.; Rudduck, R. C.
1993-09-01
This report describes the implementation of Fourier based radar imaging algorithms in a computer program. In particular, the algorithms are derived for wide bandwidth and for specific geometries. These geometries are often measured by radar cross section measurement systems such as compact ranges and near field linear synthetic aperture radar systems. The limitations of different implementations of the algorithms are presented. Imaging results from radar measurements are also presented for an F-4 fighter aircraft, an M35 truck (1/16 scale model), and a forest.
High-resolution lensless Fourier transform holography for microstructure imaging
NASA Astrophysics Data System (ADS)
Zhao, Jie; Wang, Dayong; Wang, Huaying; Xie, Jianjun
2007-12-01
Digital holography combines the advantages of the optical holography and the computers. It can implement an all-digital processing and has the quasi real-time property. With lensless Fourier transform recording architecture, the limited bandwidth of CCD camera can be utilized sufficiently, and the sampling theorem is satisfied easily. Therefore, high-resolution can be achieved. So it is preferred in the microstructure imaging. In the paper, based on the Fresnel diffraction theory and the off-axis lensless Fourier transform recording architecture, the experimental optimization and correspondingly the digital reconstruction was investigated. Also, the lateral resolution of the reconstructed image was analyzed and improved by the proposed techniques. When the USAF test target was imaged without any pre-magnification, the lateral resolution of 3.1μm was achieved, which matched the theoretical prediction very well. The key points to achieve high resolution image are to use the smaller object and to arrange the distance between the object and the CCD plane as short as possible. Meanwhile, properly overlapping the reconstructed image with the DC term was helpful to improve the resolution. The noise in the reconstructed image could be reduced greatly by choosing the optical elements precisely and adjusting the beam path finely. The experimental results demonstrated that it is possible for the digital holographic microscopy to produce the high resolution image without the objective pre-magnification. The results also showed that, with a high quality hologram, the special image processing during the reconstruction may be unnecessary to obtain a high quality image.
The use of Fourier reverse transforms in crystallographic phase refinement
Ringrose, S.
1997-10-08
Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.
Closed fringe demodulation using phase decomposition by Fourier basis functions.
Kulkarni, Rishikesh; Rastogi, Pramod
2016-06-01
We report a new technique for the demodulation of a closed fringe pattern by representing the phase as a weighted linear combination of a certain number of linearly independent Fourier basis functions in a given row/column at a time. A state space model is developed with the weights of the basis functions as the elements of the state vector. The iterative extended Kalman filter is effectively utilized for the robust estimation of the weights. A coarse estimate of the fringe density based on the fringe frequency map is used to determine the initial row/column to start with and subsequently the optimal number of basis functions. The performance of the proposed method is evaluated with several noisy fringe patterns. Experimental results are also reported to support the practical applicability of the proposed method. PMID:27409439
Integrated optics in an electrically scanned imaging Fourier transform spectrometer
NASA Technical Reports Server (NTRS)
Breckinridge, James B. (Inventor); Ocallaghan, Fred G. (Inventor)
1982-01-01
An efficient, lightweight and stable, Fourier transform spectrometer was developed. The mechanical slide mechanism needed to create a path difference was eliminated by the use of retro-reflecting mirrors in a monolithic interferometer assembly in which the mirrors are not at 90 degrees to the propagation vector of the radiation, but rather at a small angle. The resulting plane wave fronts create a double-sided inteferogram of the source irradiance distribution which is detected by a charge-coupled device image sensor array. The position of each CCD pixel in the array is an indication of the path difference between the two retro-reflecting mirrors in the monolithic optical structure. The Fourier transform of the signals generated by the image sensor provide the spectral irradiance distribution of the source. For imaging, the interferometer assembly scans the source of irradiation by moving the entire instrument, such as would occur if it was fixedly mounted to a moving platform, i.e., a spacecraft. During scanning, the entrace slot to the monolithic optical structure sends different pixels to corresponding interferograms detected by adjacent columns of pixels of the image sensor.
Imaging Fourier transform spectrometer (IFTS): parametric sensitivity analysis
NASA Astrophysics Data System (ADS)
Keller, Robert A.; Lomheim, Terrence S.
2005-06-01
Imaging Fourier transform spectrometers (IFTS) allow for very high spectral resolution hyperspectral imaging while using moderate size 2D focal plane arrays in a staring mode. This is not the case for slit scanning dispersive imaging spectrometers where spectral sampling is related to the focal plane pixel count along the spectral dimension of the 2D focal plane used in such an instrument. This can become a major issue in the longwave infrared (LWIR) where the operability and yield of highly sensitivity arrays (i.e.HgCdTe) of large dimension are generally poor. However using an IFTS introduces its own unique set of issues and tradeoffs. In this paper we develop simplified equations for describing the sensitivity of an IFTS, including the effects of data windowing. These equations provide useful insights into the optical, focal plane and operational design trade space that must be considered when examining IFTS concepts aimed at a specific sensitivity and spectral resolution application. The approach is illustrated by computing the LWIR noise-equivalent spectral radiance (NESR) corresponding to the NASA Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) concept assuming a proven and reasonable noise-equivalent irradiance (NEI) capability for the focal plane.
Imaging the sun in hard x rays using Fourier telescopes
NASA Technical Reports Server (NTRS)
Campbell, J. W.
1993-01-01
For several years, solar flares have been observed with a variety of instruments confirming that tremendous amounts of energy are locally stored in the solar magnetic field and then rapidly released during the life of the flare. In concert with observations, theorists have attempted to describe the means by which these energetic events occur and evolve. Two competing theories have emerged and have stood the test of time. One theory describes the flare in terms of nonthermal, electron beam injection into a thick target while the other uses a thermal approach. Both theories provide results which are reasonably consistent with current observations; but to date, none have been able to provide conclusive evidence as to the validity of either model. Imaging on short time scales (1 s) and/or small size scales (1 arc s) should give definitive answers to these questions. In order to test whether a realistic telescope can indeed discriminate between models, we construct model sources based upon the thermal and the nonthermal models and calculate the emission as a function of time and energy in the range from 10 to 100 keV. In addition, we construct model telescopes representing both the spatial modulation collimator (SMC) and the rotating modulation collimator (RMC) techniques of observation using random photon counting statistics. With these two types of telescopes we numerically simulate the instrument response to the above two model flares to see if there are distinct x-ray signatures which may be discernable. We find that theoretical descriptions of the primary models of solar flares do indeed predict different hard x-ray signatures for 1 sec time scales and at 1-5 arc sec spatial resolution. However, these distinguishing signatures can best be observed early in the impulsive phase and from a position perpendicular to the plane of the loop. Furthermore, we find that Fourier telescopes with reasonable and currently attainable design characteristics can image these
Fourier transform infrared phase shift cavity ring down spectrometer
NASA Astrophysics Data System (ADS)
Schundler, Elizabeth; Mansur, David J.; Vaillancourt, Robert; Benedict-Gill, Ryan; Newbry, Scott P.; Engel, James R.; Dupuis, Julia Rentz
2014-05-01
OPTRA has developed a Fourier transform infrared phase shift cavity ring down spectrometer (FTIR-PS-CRDS) system under a U.S. EPA SBIR contract. This system uses the inherent wavelength-dependent modulation imposed by the FTIR on a broadband thermal source for the phase shift measurement. This spectrally-dependent phase shift is proportional to the spectrally-dependent ring down time. The spectral dependence of both of these values is introduced by the losses of the cavity including those due to the molecular absorption of the sample. OPTRA's approach allows broadband detection of chemicals across the feature-rich fingerprint region of the long-wave infrared. This represents a broadband and spectral range enhancement to conventional CRDS which is typically done at a single wavelength in the near IR; at the same time the approach is a sensitivity enhancement to traditional FTIR, owing to the long effective path of the resonant cavity. In previous papers1,2, OPTRA has presented a breadboard system aimed at demonstrating the feasibility of the approach and a prototype design implementing performance enhancements based on the results of breadboard testing. In this final paper in the series, we will present test results illustrating the realized performance of the fully assembled and integrated breadboard, thereby demonstrating the utility of the approach.
Imaging Organ of Corti Vibration Using Fourier-Domain OCT
NASA Astrophysics Data System (ADS)
Choudhury, Niloy; Chen, Fangyi; Fridberger, Anders; Zha, Dingjun; Jacques, Steven L.; Wang, Ruikang K.; Nuttall, Alfred L.
2011-11-01
Measuring the sound stimulated vibration from various structures in the organ of Corti is important in understanding how the small vibrations are amplified and detected. In this study we examine the feasibility of using phase-sensitive Fourier domain optical coherence tomography (PSFD-OCT) to measure vibration of the cellular structures of the organ of Corti. PSFD-OCT is a low coherence interferrometry system where the interferrogram is detected as a function of wavelength. The phase of the Fourier transformation of the detected spectra contains path deference (between the sample arm and the reference arm) information of the interferometer. In PSFD-OCT this phase is measured as a function of time and thus any time dependent change in the path difference between the sample arm and the reference arm can be detected. In the experiment, we used an in vitro preparation of the guinea pig cochlea and made a surgical opening at the apical end to access the organ of Corti. By applying tones with different frequencies via the intact middle ear, we recorded the structural vibration inside the organ of Corti. Vibration amplitude and phase of different substructures were mapped on a cross-section view of the organ of Corti. Although the measurements were made at the apical turn of the cochlea, it will be possible to make vibration measurement from various turns of the cochlea. The noise floor of the system was 0.3 nm, calibrated using a piezo stack as a calibrator.
NASA Astrophysics Data System (ADS)
Dai, Xianglu; Xie, Huimin; Wang, Qinghua
2014-06-01
The geometric phase analysis (GPA), an important image-based deformation measurement method, has been used at both micro- and nano-scale. However, when a deformed image has apparent distortion, non-ignorable error in the obtained deformation field could occur by using this method. In this paper, the geometric phase analysis based on the windowed Fourier transform (WFT) is proposed to solve the above-mentioned issue, defined as the WFT-GPA method. In WFT-GPA, instead of the Fourier transform (FT), the WFT is utilized to extract the phase field block by block, and therefore more accurate local phase information can be acquired. The simulation tests, which include detailed discussion of influence factors for measurement accuracy such as window size and image noise, are conducted with digital deformed grids. The results verify that the WFT-GPA method not only keeps all advantages of traditional GPA method, but also owns a better accuracy for deformation measurement. Finally, the WFT-GPA method is applied to measure the machining distortion incurred in soft ultraviolet nanoimprint lithography (UV-NIL) process. The successful measurement shows the feasibility of this method and offers a full-field way for characterizing the replication quality of UV-NIL process.
Instrument concept of the imaging Fourier transform spectrometer GLORIA
NASA Astrophysics Data System (ADS)
Friedl-Vallon, F.; Gulde, T.; Hase, F.; Kleinert, A.; Kulessa, T.; Maucher, G.; Neubert, T.; Olschewski, F.; Piesch, C.; Preusse, P.; Rongen, H.; Sartorius, C.; Schneider, H.; Schönfeld, A.; Tan, V.; Bayer, N.; Blank, J.; Dapp, R.; Ebersoldt, A.; Fischer, H.; Graf, F.; Guggenmoser, T.; Höpfner, M.; Kaufmann, M.; Kretschmer, E.; Latzko, T.; Nordmeyer, H.; Oelhaf, H.; Orphal, J.; Riese, M.; Schardt, G.; Schillings, J.; Sha, M. K.; Suminska-Ebersoldt, O.; Ungermann, J.
2014-03-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the Upper Troposphere/Lower Stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated in a gimbal. The assembly can be mounted in the belly pod of the German high altitude and long range research aircraft HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made predominantly in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.
Instrument concept of the imaging Fourier transform spectrometer GLORIA
NASA Astrophysics Data System (ADS)
Friedl-Vallon, F.; Gulde, T.; Hase, F.; Kleinert, A.; Kulessa, T.; Maucher, G.; Neubert, T.; Olschewski, F.; Piesch, C.; Preusse, P.; Rongen, H.; Sartorius, C.; Schneider, H.; Schönfeld, A.; Tan, V.; Bayer, N.; Blank, J.; Dapp, R.; Ebersoldt, A.; Fischer, H.; Graf, F.; Guggenmoser, T.; Höpfner, M.; Kaufmann, M.; Kretschmer, E.; Latzko, T.; Nordmeyer, H.; Oelhaf, H.; Orphal, J.; Riese, M.; Schardt, G.; Schillings, J.; Sha, M. K.; Suminska-Ebersoldt, O.; Ungermann, J.
2014-10-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the upper troposphere/lower stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated into a gimbal. The assembly can be mounted in the belly pod of the German High Altitude and Long Range research aircraft (HALO) and in instrument bays of the Russian M55 Geophysica. Measurements are made in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, and the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition, the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.
Medical Image Processing Using Real-Time Optical Fourier Technique
NASA Astrophysics Data System (ADS)
Rao, D. V. G. L. N.; Panchangam, Appaji; Sastry, K. V. L. N.; Material Science Team
2001-03-01
Optical Image Processing Techniques are inherently fast in view of parallel processing. A self-adaptive Optical Fourier Processing system using photo induced dichroism in a Bacteriorhodopsin film was experimentally demonstrated for medical image processing. Application of this powerful analog all-optical interactive technique for cancer diagnostics is illustrated with mammograms and Pap smears. Micro calcification clusters buried in surrounding tissue showed up clearly in the processed image. By playing with one knob, which rotates the analyzer in the optical system, either the micro calcification clusters or the surrounding dense tissue can be selectively displayed. Bacteriorhodopsin films are stable up to 140^oC and environmental friendly. As no interference is involved in the experiments, vibration isolation and even a coherent light source are not required. It may be possible to develop a low-cost rugged battery operated portable signal-enhancing magnifier.
The gridding method for image reconstruction by Fourier transformation
Schomberg, H.; Timmer, J.
1995-09-01
This paper explores a computational method for reconstructing an n-dimensional signal f from a sampled version of its Fourier transform {cflx f}. The method involves a window function {cflx w} and proceeds in three steps. First, the convolution {cflx g} = {cflx w} * {cflx f} is computed numerically on a Cartesian grid, using the available samples of {cflx f}. Then, g = wf is computed via the inverse discrete Fourier transform, and finally f is obtained as g/w. Due to the smoothing effect of the convolution, evaluating {cflx w} * {cflx f} is much less error prone than merely interpolating {cflx f}. The method was originally devised for image reconstruction in radio astronomy, but is actually applicable to a broad range of reconstructive imaging methods, including magnetic resonance imaging and computed tomography. In particular, it provides a fast and accurate alternative to the filtered backprojection. The basic method has several variants with other applications, such as the equidistant resampling of arbitrarily sampled signals or the fast computation of the Radon (Hough) transform.
NASA Astrophysics Data System (ADS)
Zhang, B.; Sang, Jun; Alam, Mohammad S.
2013-03-01
An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.
Fourier-processed images of dynamic lung function from list-mode data
Zubal, I.G.; Rowe, R.W.; Bizais, Y.; Susskind, H.; Bennett, G.W.; Brill, A.B.
1983-01-01
Time and volume correlated amplitude and phase images are computed from nuclear medical ventilation studies and for dynamic transmission scans of the lungs. This is made possible by a hardware interface and data acquisition system, developed in-house, allowing camera events and multiple ancillary physiological signals (including lung volume) to be acquired simultaneously in list mode. The first harmonic amplitude and phase images are constructed on an event by event basis. These are computed for both equal time and equal lung volume increments. Time and volume correlated Fourier images for ventilation studies have shown details and functional structures not usually seen in conventional imaging techniques. Processed transmission scans show similar results compared to ventilation images.
Stages: sub-Fourier dynamic shim updating using nonlinear magnetic field phase preparation.
Witschey, Walter R T; Littin, Sebastian; Cocosco, Chris A; Gallichan, Daniel; Schultz, Gerrit; Weber, Hans; Welz, Anna; Hennig, Jürgen; Zaitsev, Maxim
2014-01-01
Heterogeneity of the static magnetic field in magnetic resonance imaging may cause image artifacts and degradation in image quality. The field heterogeneity can be reduced by dynamically adjusting shim fields or dynamic shim updating, in which magnetic field homogeneity is optimized for each tomographic slice to improve image quality. A limitation of this approach is that a new magnetic field can be applied only once for each slice, otherwise image quality would improve somewhere to its detriment elsewhere in the slice. The motivation of this work is to overcome this limitation and develop a technique using nonlinear magnetic fields to dynamically shim the static magnetic field within a single Fourier-encoded volume or slice, called sub-Fourier dynamic shim updating. However, the nonlinear magnetic fields are not used as shim fields; instead, they impart a strong spatial dependence to the acquired MR signal by nonlinear phase preparation, which may be exploited to locally improve magnetic field homogeneity during acquisition. A theoretical description of the method is detailed, simulations and a proof-of-principle experiment are performed using a magnet coil with a known field geometry. The method is shown to remove artifacts associated with magnetic field homogeneity in balanced steady-state free-precession pulse sequences. We anticipate that this method will be useful to improve the quality of magnetic resonance images by removing deleterious artifacts associated with a heterogeneous static magnetic field. PMID:23440677
High throughput full Stokes Fourier transform imaging spectropolarimetry.
Meng, Xin; Li, Jianxin; Xu, Tingting; Liu, Defang; Zhu, Rihong
2013-12-30
A complete full Stokes imaging spectropolarimeter is proposed. Four separate polarized spectra are fed into the Sagnac Fourier transform spectrometer without slit using different angle combinations of the polarized elements. The four polarized spectra are separated without spatial aliasing. And the system has a good performance to resist the instrument noise due to its high light throughput. The mathematical model for the approach is derived and an optimization of the retardance is discussed. For acquiring the four spectra simultaneously, an improved robust polarization modulator using aperture division is outlined. Then the system is discussed in detail including the imaging principle and spectral resolution. Lastly, two proven experiments are carried out and the experimental results in visible light are outlined. PMID:24514802
Ultrahigh speed spectral/Fourier domain ophthalmic OCT imaging
NASA Astrophysics Data System (ADS)
Potsaid, Benjamin; Gorczynska, Iwona; Srinivasan, Vivek J.; Chen, Yueli; Liu, Jonathan; Jiang, James; Cable, Alex; Duker, Jay S.; Fujimoto, James G.
2009-02-01
Ultrahigh speed spectral / Fourier domain optical coherence tomography (OCT) imaging using a CMOS line scan camera with acquisition rates of 70,000 - 312,500 axial scans per second is investigated. Several design configurations are presented to illustrate trade-offs between acquisition speed, sensitivity, resolution and sensitivity roll-off performance. We demonstrate: extended imaging range and improved sensitivity roll-off at 70,000 axial scans per second , high speed and ultrahigh resolution imaging at 106,382 axial scans per second, and ultrahigh speed imaging at 250,000-312,500 axial scans per second. Each configuration is characterized through optical testing and the trade-offs demonstrated with in vivo imaging of the fovea and optic disk in the human retina. OCT fundus images constructed from 3D-OCT data acquired at 250,000 axial scans per second have no noticeable discontinuity of retinal features and show that there are minimal motion artifacts. The fine structures of the lamina cribrosa can be seen. Long cross sectional scans are acquired at 70,000 axial scans per second for imaging large areas of the retina, including the fovea and optic disk. Rapid repeated imaging of a small volume (4D-OCT) enables time resolved visualization of the capillary network surrounding the INL and may show individual red blood cells. The results of this study suggest that high speed CMOS cameras can achieve a significant improvement in performance for ophthalmic imaging. This promises to have a powerful impact in clinical applications by improving early diagnosis, reproducibility of measurements and enabling more sensitive assessment of disease progression or response to therapy.
NASA Astrophysics Data System (ADS)
Vergnole, Sébastien; Lamouche, Guy; Dufour, Marc; Gauthier, Bruno
2007-07-01
This paper reports the study of an Optical Fourier Domain Imaging (OFDI) setup for optical coherence tomography. One of the main drawbacks of OFDI is its inability to differentiate positive and negative depths. Some setups have already been proposed to remove this depth ambiguity by introducing a modulation by means of electro-optic or acousto-optic modulators. In our setup, we implement a piezoelectric fiber stretcher to generate a periodic phase shift between successive A-scans, thus introducing a transverse modulation. The depth ambiguity is then resolved by performing a Fourier treatment in the transverse direction before processing the data in the axial direction. It is similar to the B-M mode scanning already proposed for Spectral-Domain OCT1 but with a more efficient experimental setup. We discuss the advantages and the drawbacks of our technique compared to the technique based on acousto-optics modulators by comparing images of an onion obtained with both techniques.
Integrated photoelasticity through imaging fourier polarimetry of an elliptic retarder.
Berezhna, S; Berezhnyy, I; Takashi, M
2001-02-10
It is shown that three optical parameters that are necessary for stress computation in integrated photoelasticity can be measured with high accuracy by use of a Fourier polarimetry method. Inasmuch as a photoelastic sample, which is an object of investigation in integrated photoelasticity, is a kind of an elliptic retarder, the technique presented here measures relative retardation delta, azimuth angle theta, and ellipticity angle epsilon instead of the characteristic parameters that traditionally have been used in integrated photoelasticity. The ability of the new technique to provide better accuracy with a simpler setup has been proved experimentally. Furthermore, the technique is self-contained as for phase measurement; i.e., it automatically performs phase unwrapping at the points where phase data exceed the value of pi. The full value of a phase at a certain point is retrieved by processing of pi-modulo phase data that have been precisely measured at several wavelengths. The usefulness of the new method for integrated photoelasticity has been demonstrated through measurement of a diametrically compressed disk viewed at oblique light incidence. PMID:18357041
Research on algorithm for infrared hyperspectral imaging Fourier transform spectrometer technology
NASA Astrophysics Data System (ADS)
Wan, Lifang; Chen, Yan; Liao, Ningfang; Lv, Hang; He, Shufang; Li, Yasheng
2015-08-01
This paper reported the algorithm for Infrared Hyperspectral Imaging Radiometric Spectrometer Technology. Six different apodization functions are been used and compared, and the phase corrected technologies of Forman is researched and improved, fast fourier transform(FFT)is been used in this paper instead of the linear convolution to reduce the quantity of computation.The interferograms is achieved by the Infrared Hyperspectral Imaging Radiometric Spectrometer which are corrected and rebuilded by the improved algorithm, this algorithm reduce the noise and accelerate the computing speed with the higher accuracy of spectrometers.
Continued Development of a Planetary Imaging Fourier Transform Spectrometer (PIFTS)
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.
2002-01-01
This report describes continued efforts to evaluate a breadboard of a Planetary Imaging Fourier Transform Spectrometer (PIFTS). The PIFTS breadboard was developed under prior PIDDP funding. That effort is described in the final report for NASA Grant NAG5-6248 and in two conference papers (Sromovsky et al. 2000; Revercomb et al. 2000). The PIFTS breadboard was designed for near-IR (1-5.2 micrometer imaging of planetary targets with spectral resolving powers of several hundred to several thousand, using an InSb detector array providing at least 64x64 pixels imaging detail. The major focus of the development effort was to combine existing technologies to produce a small and low power design compatible with a very low mass flyable instrument. The objective of this grant (NAG5-10729) was further characterization of the breadboard performance, including intercomparisons with the highly accurate non-imaging Advanced Emitted Radiance Interferometer (AERI) (Revercomb et al. 1994; Best et al. 1997).
Amplitude and phase fourier correlation of ``twin'' GC-spectra of fatty acids from sheep dairy
NASA Astrophysics Data System (ADS)
Teusdea, Alin C.; Gabor, Gianina; Hilma, Elena
2012-08-01
Authors present the discrimination performances of amplitude and phase-only Fourier correlation over the "twin" typed GC-spectra of sheep milk and ripened cheese. Therefore, in order to assess the most robust Fourier correlation method for the "twin" GC-spectra discrimination, the correlation matrix is built up over 17 analyzed GC-spectra in both amplitude and phase domains.
Menk, Ralf Hendrik
2008-11-13
All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift {phi} directly (using interference phenomena), the gradient {nabla}{sub {phi}}, or the Laplacian {nabla}{sup 2}{phi}. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1
Multiresolution graph Fourier transform for compression of piecewise smooth images.
Hu, Wei; Cheung, Gene; Ortega, Antonio; Au, Oscar C
2015-01-01
Piecewise smooth (PWS) images (e.g., depth maps or animation images) contain unique signal characteristics such as sharp object boundaries and slowly varying interior surfaces. Leveraging on recent advances in graph signal processing, in this paper, we propose to compress the PWS images using suitable graph Fourier transforms (GFTs) to minimize the total signal representation cost of each pixel block, considering both the sparsity of the signal's transform coefficients and the compactness of transform description. Unlike fixed transforms, such as the discrete cosine transform, we can adapt GFT to a particular class of pixel blocks. In particular, we select one among a defined search space of GFTs to minimize total representation cost via our proposed algorithms, leveraging on graph optimization techniques, such as spectral clustering and minimum graph cuts. Furthermore, for practical implementation of GFT, we introduce two techniques to reduce computation complexity. First, at the encoder, we low-pass filter and downsample a high-resolution (HR) pixel block to obtain a low-resolution (LR) one, so that a LR-GFT can be employed. At the decoder, upsampling and interpolation are performed adaptively along HR boundaries coded using arithmetic edge coding, so that sharp object boundaries can be well preserved. Second, instead of computing GFT from a graph in real-time via eigen-decomposition, the most popular LR-GFTs are pre-computed and stored in a table for lookup during encoding and decoding. Using depth maps and computer-graphics images as examples of the PWS images, experimental results show that our proposed multiresolution-GFT scheme outperforms H.264 intra by 6.8 dB on average in peak signal-to-noise ratio at the same bit rate. PMID:25494508
Comparison of kinoform synthesis methods for image reconstruction in Fourier plane
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Porshneva, Liudmila A.; Rodin, Vladislav G.; Starikov, Sergey N.
2014-05-01
Kinoform is synthesized phase diffractive optical element which allows to reconstruct image by its illumination with plane wave. Kinoforms are used in image processing systems. For tasks of kinoform synthesis iterative methods had become wide-spread because of relatively small error of resulting intensity distribution. There are articles in which two or three iterative methods are compared but they use only one or several test images. The goal of this work is to compare iterative methods by using many test images of different types. Images were reconstructed in Fourier plane from synthesized kinoforms displayed on phase-only LCOS SLM. Quality of reconstructed images and computational resources of the methods were analyzed. For kinoform synthesis four methods were implemented in programming environment: Gerchberg-Saxton algorithm (GS), Fienup algorithm (F), adaptive-additive algorithm (AA) and Gerchberg-Saxton algorithm with weight coefficients (GSW). To compare these methods 50 test images with different characteristics were used: binary and grayscale, contour and non-contour. Resolution of images varied from 64×64 to 1024×1024. Occupancy of images ranged from 0.008 to 0.89. Quantity of phase levels of synthesized kinoforms was 256 which is equal to number of phase levels of SLM LCOS HoloEye PLUTO VIS. Under numerical testing it was found that the best quality of reconstructed images provides the AA method. The GS, F and GSW methods showed worse results but roughly similar between each other. Execution time of single iteration of the analyzed methods is minimal for the GS method. The F method provides maximum execution time. Synthesized kinoforms were optically reconstructed using phase-only LCOS SLM HoloEye PLUTO VIS. Results of optical reconstruction were compared to the numerical ones. The AA method showed slightly better results than other methods especially in case of gray-scale images.
Feasibility Demonstration of Wide-Field Fourier-Spectroscopic-Imaging in Infrared Region
NASA Astrophysics Data System (ADS)
Qi, Wei; Takuma, Takashi; Tsutsumi, Ryosuke; Inui, Asuka; Kagiyama, Hiroyasu; Kojima, Daisuke; Nishiyama, Akira; Ishimaru, Ichirou
We are aiming at the realization of living-environment sensor and non-invasive blood-sugar sensor by the proposed imaging type 2-D Fourier spectroscopy. This method is based on the phase-shift interference between the object beams. As a result, even if the object beams are spatially incoherent, we can observe the phase-shift interference phenomena. In the near infrared region, we can obtain the high-contrast blood vessel image of mouse's ear in the deeper part by InGaAs camera. Furthermore, in the mid-infrared region, we have successfully measured the radiation spectroscopic-imaging with wild field of view by the infrared module, such as the house plants.
Reconstruction of piecewise homogeneous images from partial knowledge of their Fourier Transform
NASA Astrophysics Data System (ADS)
Féron, Olivier; Chama, Zouaoui; Mohammad-Djafari, Ali
2004-11-01
Fourier synthesis (FS) inverse problem consists in reconstructing a multi-variable function from the measured data which correspond to partial and uncertain knowledge of its Fourier Transform (FT). By partial knowledge we mean either partial support and/or the knowledge of only the module and by uncertain we mean both uncertainty of the model and noisy data. This inverse problem arises in many applications such as : optical imaging, radio astronomy, magnetic resonance imaging (MRI) and diffraction scattering (ultrasounds or microwave imaging). Most classical methods of inversion are based on interpolation of the data and fast inverse FT. But when the data do not fill uniformly the Fourier domain or when the phase of the signal is lacking as in optical interferometry, the results obtained by such methods are not satisfactory, because these inverse problems are ill-posed. The Bayesian estimation approach, via an appropriate modeling of the unknown functions gives the possibility of compensating the lack of information in the data, thus giving satisfactory results. In this paper we study the case where the observations are a part of the FT modulus of objects which are composed of a few number of homogeneous materials. To model such objects we use a Hierarchical Hidden Markov Modeling (HMM) and propose a Bayesian inversion method using appropriate Markov Chain Monte Carlo (MCMC) algorithms.
Optimized multiplexing super resolution imaging based on a Fourier ptychographic microscope
NASA Astrophysics Data System (ADS)
Sun, Jiasong; Chen, Qian; Zhang, Yuzhen; Zuo, Chao; Feng, Shijie; Hu, Yan; Zhang, Jialin
2015-10-01
Fourier ptychographic microscopy (FPM) is a recently developed super-resolution technique by using angularly varying illumination and a phase retrieval algorithm to surpass the diffraction limit of the objective lens. To be specific, FP captures a set of low-resolution (LR) images under angularly varying illuminations, and combines them into one high-resolution (HR) image in the Fourier domain. However, the long capturing process becomes an obvious limitation since there are large number of images need to be acquired. Furthermore, the time can be increased several times over in order to acquire high-dynamic range images. Utilizing the multiplexing principle, we propose an optimized multiplexing FP algorithm, which is highly efficient, to shorten the exposure time of each raw image in this work. High acquisition efficiency is achieved by employing two set of optimized multiplexing patterns for bright-field and dark-field imaging respectively. Experimental results demonstrated that this method could improve the quality of reconstructed HR intensity distributions in a faster measuring process.
ULTRASOUND PULSE-ECHO IMAGING USING THE SPLIT-STEP FOURIER PROPAGATOR
HUANG, LIANJIE; QUAN, YOULI
2007-01-31
Ultrasonic reflection imaging has the potential to produce higher image resolution than transmission tomography, but imaging resolution and quality still need to be further improved for early cancer detection and diagnosis. We present an ultrasound reflection image reconstruction method using the split-step Fourier propagator. It is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wavenumber domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wavenumber domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the breast. We use synthetic ultrasound pulse-echo data recorded around a ring for heterogeneous, computer-generated numerical breast phantoms to study the imaging capability of the method. The phantoms are derived from an experimental breast phantom and a sound-speed tomography image of an in-vivo ultrasound breast data collected usi ng a ring array. The heterogeneous sound-speed models used for pulse-echo imaging are obtained using a computationally efficient, first-arrival-time (time-of-flight) transmission tomography method. Our studies demonstrate that reflection image reconstruction using the split-step Fourier propagator with heterogeneous sound-speed models significantly improves image quality and resolution. We also numerically verify the spatial sampling criterion of wavefields for a ring transducer array.
Imaging Fourier Transform Spectro-polarimetry in the Infrared
NASA Astrophysics Data System (ADS)
Jurgenson, C. A.; Stencel, R. E.; Stout, J.
2004-12-01
Imaging spectro-polarimetry has the capability to trace polarization changes in dust grains throughout an extended region of interest. An instrument that has the capability to achieve moderately high resolution (R = 2000 at 10 microns) via a stepping Fourier transform spectrometer, while preserving imaging polarimetry capabilities (TNTCAM2, Jurgenson et al. 2003), is set to achieve first light during early 2005. Motion control of the interferometer, as well as array control/readout is accomplished via an FPGA card programmed in LabVIEW(c). Mid-IR polarization studies are useful in approximating grain shapes and sizes in dusty environments. Correlation studies between mid and near-IR features can be used to test the core-mantle arrangement of grain growth. Polarization analysis is currently only possible between 8-13 microns, but the interferometer, as well as TNTCAM2, can operate at selected bandpasses in the near-IR region. A wire grid and waveplate would need to be purchased for work in the near-IR. Laboratory calibration results, both spectral and polarization, are reported. We are seeking collaborators in shared-risk science with this instrument, so please contact the authors if interested. Sigma Xi Grants In Aid of Research as well as the estate of William Herschel Womble provided funding for this endeavor.
Ghost imaging of phase objects with classical incoherent light
Shirai, Tomohiro; Setaelae, Tero; Friberg, Ari T.
2011-10-15
We describe an optical setup for performing spatial Fourier filtering in ghost imaging with classical incoherent light. This is achieved by a modification of the conventional geometry for lensless ghost imaging. It is shown on the basis of classical coherence theory that with this technique one can realize what we call phase-contrast ghost imaging to visualize pure phase objects.
NASA Astrophysics Data System (ADS)
Aizenberg, Evgeni; Bigio, Irving J.; Rodriguez-Diaz, Eladio
2012-03-01
The Fourier descriptors paradigm is a well-established approach for affine-invariant characterization of shape contours. In the work presented here, we extend this method to images, and obtain a 2D Fourier representation that is invariant to image rotation. The proposed technique retains phase uniqueness, and therefore structural image information is not lost. Rotation-invariant phase coefficients were used to train a single multi-valued neuron (MVN) to recognize satellite and human face images rotated by a wide range of angles. Experiments yielded 100% and 96.43% classification rate for each data set, respectively. Recognition performance was additionally evaluated under effects of lossy JPEG compression and additive Gaussian noise. Preliminary results show that the derived rotation-invariant features combined with the MVN provide a promising scheme for efficient recognition of rotated images.
Huang, Lianjie
2013-10-29
Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.
NASA Astrophysics Data System (ADS)
Kawashima, Natsumi; Suzuki, Yo; Qi, Wei; Hosono, Satsuki; Saito, Tsubasa; Ogawa, Satoshi; Sato, Shun; Fujiwara, Masaru; Nishiyama, Akira; Wada, Kenji; Tanaka, Naotaka; Ishimaru, Ichiro
2015-03-01
We proposed the imaging-type 2-dimensional Fourier spectroscopy that is a near-common-path interferometer with strong robustness against mechanical vibrations. We introduced the miniature uncooled infrared microbolometer arrays for smartphone (e.g. product name: FILR ONE price: around 400USD). And we constructed the phase-shifter with the piezo impact drive mechanism (maker: Technohands.co.Ltd., stroke: 4.5mm, resolution: 0.01μm, size: 20mm, price: around 800USD). Thus, we realized the palm-size mid-infrared spectroscopic imager [size: L56mm×W69mm×H43mm weight: 500g]. And by using wide-angle lens as objective lens, the proposed method can obtain the wide-field 2- dimensional middle-infrared (wavelength: 7.5-13.5[μm]) spectroscopic imaging of radiation lights emitted from human bodies itself
Geostationary Imaging Fourier Transform Spectrometer (GIFTS): science applications
NASA Astrophysics Data System (ADS)
Smith, W. L.; Revercomb, H. E.; Zhou, D. K.; Bingham, G. E.; Feltz, W. F.; Huang, H. L.; Knuteson, R. O.; Larar, A. M.; Liu, X.; Reisse, R.; Tobin, D. C.
2006-12-01
A revolutionary satellite weather forecasting instrument, called the "GIFTS" which stands for the "Geostationary Imaging Fourier Transform Spectrometer", was recently completed and successfully tested in a space chamber at the Utah State University's Space Dynamics Laboratory. The GIFTS was originally proposed by the NASA Langley Research Center, the University of Wisconsin, and the Utah State University and selected for flight demonstration as NASA's New Millennium Program (NMP) Earth Observing-3 (EO-3) mission, which was unfortunately cancelled in 2004. GIFTS is like a digital 3-d movie camera that, when mounted on a geostationary satellite, would provide from space a revolutionary four-dimensional view of the Earth's atmosphere. GIFTS will measure the distribution, change, and movement of atmospheric moisture, temperature, and certain pollutant gases, such as carbon monoxide and ozone. The observation of the convergence of invisible water vapor, and the change of atmospheric temperature, provides meteorologists with the observations needed to predict where, and when, severe thunderstorms, and possibly tornados, would occur, before they are visible on radar or in satellite cloud imagery. The ability of GIFTS to observe the motion of moisture and clouds at different altitudes enables atmospheric winds to be observed over vast, and otherwise data sparse, oceanic regions of the globe. These wind observations would provide the means to greatly improve the forecast of where tropical storms and hurricanes will move and where and when they will come ashore (i.e., their landfall position and time). GIFTS, if flown into geostationary orbit, would provide about 80,000 vertical profiles per minute, each one like a low vertical resolution (1-2km) weather balloon sounding, but with a spacing of 4 km. GIFTS is a revolutionary atmospheric sensing tool. A glimpse of the science measurement capabilities of GIFTS is provided through airborne measurements with the NPOESS Airborne
Luo, David; Kudenov, Michael W
2016-05-16
Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing. PMID:27409947
Rotational-translational fourier imaging system requiring only one grid pair
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2006-01-01
The sky contains many active sources that emit X-rays, gamma rays, and neutrons. Unfortunately hard X-rays, gamma rays, and neutrons cannot be imaged by conventional optics. This obstacle led to the development of Fourier imaging systems. In early approaches, multiple grid pairs were necessary in order to create rudimentary Fourier imaging systems. At least one set of grid pairs was required to provide multiple real components of a Fourier derived image, and another set was required to provide multiple imaginary components of the image. It has long been recognized that the expense associated with the physical production of the numerous grid pairs required for Fourier imaging was a drawback. Herein one grid pair (two grids), with accompanying rotation and translation, can be used if one grid has one more slit than the other grid, and if the detector is modified.
The Pegg-Barnett phase operator and the discrete Fourier transform
NASA Astrophysics Data System (ADS)
Perez-Leija, Armando; Andrade-Morales, Luis A.; Soto-Eguibar, Francisco; Szameit, Alexander; Moya-Cessa, Héctor M.
2016-04-01
In quantum mechanics the position and momentum operators are related to each other via the Fourier transform. In the same way, here we show that the so-called Pegg-Barnett phase operator can be obtained by the application of the discrete Fourier transform to the number operators defined in a finite-dimensional Hilbert space. Furthermore, we show that the structure of the London-Susskind-Glogower phase operator, whose natural logarithm gives rise to the Pegg-Barnett phase operator, is contained in the Hamiltonian of circular waveguide arrays. Our results may find applications in the development of new finite-dimensional photonic systems with interesting phase-dependent properties.
Midwave infrared imaging Fourier transform spectrometry of combustion plumes
NASA Astrophysics Data System (ADS)
Bradley, Kenneth C.
A midwave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) was used to successfully capture and analyze hyperspectral imagery of combustion plumes. Jet engine exhaust data from a small turbojet engine burning diesel fuel at a low rate of 300 cm3/min was collected at 1 cm -1 resolution from a side-plume vantage point on a 200x64 pixel window at a range of 11.2 meters. Spectral features of H2O, CO, and CO2 were present, and showed spatial variability within the plume structure. An array of thermocouple probes was positioned within the plume to aid in temperature analysis. A single-temperature plume model was implemented to obtain spatially-varying temperatures and plume concentrations. Model-fitted temperatures of 811 +/- 1.5 K and 543 +/- 1.6 K were obtained from plume regions in close proximity to thermocouple probes measuring temperatures of 719 K and 522 K, respectively. Industrial smokestack plume data from a coal-burning stack collected at 0.25 cm-1 resolution at a range of 600 meters featured strong emission from NO, CO, CO2, SO 2, and HCl in the spectral region 1800-3000 cm-1. A simplified radiative transfer model was employed to derive temperature and concentrations for clustered regions of the 128x64 pixel scene, with corresponding statistical error bounds. The hottest region (closest to stack centerline) was 401 +/- 0.36 K, compared to an in-stack measurement of 406 K, and model-derived concentration values of NO, CO2, and SO2 were 140 +/- 1 ppmV, 110,400 +/- 950 ppmV, and 382 +/- 4 ppmV compared to in-stack measurements of 120 ppmV (NOx), 94,000 ppmV, and 382 ppmV, respectively. In-stack measurements of CO and HCl were not provided by the stack operator, but model-derived values of 19 +/- 0.2 ppmV and 111 +/- 1 ppmV are reported near stack centerline. A deployment to Dugway Proving Grounds, UT to collect hyperspectral imagery of chemical and biological threat agent simulants resulted in weak spectral signatures from several species. Plume
Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei
2016-01-01
This paper presents a method to simultaneously acquire an aberration-corrected, wide field-of-view fluorescence image and a high-resolution coherent bright-field image using a computational microscopy method. First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff spatial frequency of the microscope objective lens. At the same time, redundancy within the set of acquired FPM bright-field images offers a means to estimate microscope aberrations. Second, the procedure acquires an aberrated fluorescence image, and computationally improves its resolution through deconvolution with the estimated aberration map. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by up to 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of at least ~18. PMID:26977345
Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei
2016-02-01
This paper presents a method to simultaneously acquire an aberration-corrected, wide field-of-view fluorescence image and a high-resolution coherent bright-field image using a computational microscopy method. First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff spatial frequency of the microscope objective lens. At the same time, redundancy within the set of acquired FPM bright-field images offers a means to estimate microscope aberrations. Second, the procedure acquires an aberrated fluorescence image, and computationally improves its resolution through deconvolution with the estimated aberration map. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by up to 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of at least ~18. PMID:26977345
Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI
Özcan, Alpay
2013-01-01
The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401
NASA Technical Reports Server (NTRS)
2006-01-01
Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.
Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays
NASA Technical Reports Server (NTRS)
Campbell, Jonathan
2008-01-01
This instrument, a proposed Fourier telescope for imaging in hard-x rays and gamma rays, would contain only one pair of grids made of an appropriate radiation-absorpting/ scattering material, in contradistinction to multiple pairs of such as grids in prior Fourier x- and gamma-ray telescopes. This instrument would also include a relatively coarse gridlike image detector appropriate to the radiant flux to be imaged. Notwithstanding the smaller number of grids and the relative coarseness of the imaging detector, the images produced by the proposed instrument would be of higher quality.
Pisani, Marco; Zucco, Massimo
2009-05-11
An imaging spectrometer based on a Fabry-Perot interferometer is presented. The Fabry-Perot interferometer scans the mirror distance up to contact and the intensity modulated light signal is transformed using a Fourier Transform based algorithm, as the Michelson based Fourier Transform Spectrometers does. The resulting instrument has the advantage of a compact, high numerical aperture, high luminosity hyperspectral imaging device. Theory of operation is described along with one experimental realization and preliminary results. PMID:19434165
A generalized Fourier penalty in prior-image-based reconstruction for cross-platform imaging
NASA Astrophysics Data System (ADS)
Pourmorteza, A.; Siewerdsen, J. H.; Stayman, J. W.
2016-03-01
Sequential CT studies present an excellent opportunity to apply prior-image-based reconstruction (PIBR) methods that leverage high-fidelity prior imaging studies to improve image quality and/or reduce x-ray exposure in subsequent studies. One major obstacle in using PIBR is that the initial and subsequent studies are often performed on different scanners (e.g. diagnostic CT followed by CBCT for interventional guidance); this results in mismatch in attenuation values due to hardware and software differences. While improved artifact correction techniques can potentially mitigate such differences, the correction is often incomplete. Here, we present an alternate strategy where the PIBR itself is used to mitigate these differences. We define a new penalty for the previously introduced PIBR called Reconstruction of Difference (RoD). RoD differs from many other PIBRs in that it reconstructs only changes in the anatomy (vs. reconstructing the current anatomy). Direct regularization of the difference image in RoD provides an opportunity to selectively penalize spatial frequencies of the difference image (e.g. low frequency differences associated with attenuation offsets and shading artifacts) without interfering with the variations in unchanged background image. We leverage this flexibility and introduce a novel regularization strategy using a generalized Fourier penalty within the RoD framework and develop the modified reconstruction algorithm. We evaluate the performance of the new approach in both simulation studies and in physical CBCT test-bench data. We find that generalized Fourier penalty can be highly effective in reducing low-frequency x-ray artifacts through selective suppression of spatial frequencies in the reconstructed difference image.
Optical Fourier and Holographic Techniques for Medical Image Processing with Bacteriorhodopsin
NASA Astrophysics Data System (ADS)
Yelleswarapu, Chandra
2008-03-01
The biological photochrome bacteriorhodopsin (bR) shows many intrinsic optical and physical properties. The active chromophore in bR is a retinal group which absorbs light and goes through a photocycle. The unique feature of the system is its flexibility -- the photocycle can be optically controllable since the process of photoisomerization can go in both directions depending on wavelength, intensity and polarization of the incident light, opening a variety of possibilities for manipulating amplitude, phase, polarization and index of refraction of the incident light. Over the years we studied the basic nonlinear optics and successfully exploited the unique properties for several optical spatial filtering techniques with applications in medical image processing. For nonlinear Fourier filtering, the photo-controlled light modulating characteristics of bR films are exploited. At the Fourier plane, the spatial frequency information carried by a blue probe beam at 442 nm is selectively manipulated in the bR film by changing the position and intensity of a yellow control beam at 568 nm. In transient Fourier holography, photoisomerizative gratings are recorded and reconstructed in bR films. Desired spatial frequencies are obtained by matching the reference beam intensity to that of the particular frequency band in object beam. A novel feature of the technique is the ability to transient display of selected spatial frequencies in the reconstructing process which enables radiologists to study the features of interest in time scale. The results offer useful information to radiologists for early detection of breast cancer. Some of the highlights will be presented.
Image watermarking extraction using Fourier domain Wiener filter
NASA Astrophysics Data System (ADS)
Birch, Philip; Pavlidis, Marios; Panwar, Ankit; Nnamadim, Ozoemena; Kypraios, Ioannis; Mitra, Bhargav; Young, Rupert; Chatwin, Chris
2008-03-01
Digital watermarking is a vital process for protecting the copyright of images. This paper presents a method of embedding a private robust watermark into a digital image. The full complex form the Wiener filter is used to extract the signal from the watermarked image. This is shown to outperform the more conventional approximate notation. The results are shown to be extremely noise insensitive.
Nonlinear phased array imaging
NASA Astrophysics Data System (ADS)
Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.
2016-04-01
A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.
Periodic artifact reduction in Fourier transforms of full field atomic resolution images.
Hovden, Robert; Jiang, Yi; Xin, Huolin L; Kourkoutis, Lena F
2015-04-01
The discrete Fourier transform is among the most routine tools used in high-resolution scanning/transmission electron microscopy (S/TEM). However, when calculating a Fourier transform, periodic boundary conditions are imposed and sharp discontinuities between the edges of an image cause a cross patterned artifact along the reciprocal space axes. This artifact can interfere with the analysis of reciprocal lattice peaks of an atomic resolution image. Here we demonstrate that the recently developed Periodic Plus Smooth Decomposition technique provides a simple, efficient method for reliable removal of artifacts caused by edge discontinuities. In this method, edge artifacts are reduced by subtracting a smooth background that solves Poisson's equation with boundary conditions set by the image's edges. Unlike the traditional windowed Fourier transforms, Periodic Plus Smooth Decomposition maintains sharp reciprocal lattice peaks from the image's entire field of view. PMID:25597865
Yatabe, Kohei; Oikawa, Yasuhiro
2016-06-10
The windowed Fourier filtering (WFF), defined as a thresholding operation in the windowed Fourier transform (WFT) domain, is a successful method for denoising a phase map and analyzing a fringe pattern. However, it has some shortcomings, such as extremely high redundancy, which results in high computational cost, and difficulty in selecting an appropriate window size. In this paper, an extension of WFF for denoising a wrapped-phase map is proposed. It is formulated as a convex optimization problem using Gabor frames instead of WFT. Two Gabor frames with differently sized windows are used simultaneously so that the above-mentioned issues are resolved. In addition, a differential operator is combined with a Gabor frame in order to preserve discontinuity of the underlying phase map better. Some numerical experiments demonstrate that the proposed method is able to reconstruct a wrapped-phase map, even for a severely contaminated situation. PMID:27409020
Fabrication and Testing of Binary-Phase Fourier Gratings for Nonuniform Array Generation
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.; Nelson, Tom R., Jr.; Parker, Jack H.; Beecher, Elizabeth A.
2004-01-01
This effort describes the fabrication and testing of binary-phase Fourier gratings designed to generate an incoherent array of output source points with nonuniform user-defined intensities, symmetric about the zeroth order. Like Dammann fanout gratings, these binary-phase Fourier gratings employ only two phase levels to generate a defined output array. Unlike Dammann fanout gratings, these gratings generate an array of nonuniform, user-defined intensities when projected into the far-field regime. The paper describes the process of design, fabrication, and testing for two different version of the binary-phase grating; one designed for a 12 micron wavelength, referred to as the Long-Wavelength Infrared (LWIR) grating, and one designed for a 5 micron wavelength, referred to as the Mid-Wavelength Infrared Grating (MWIR).
In vivo human retinal imaging by Fourier domain optical coherence tomography.
Wojtkowski, Maciej; Leitgeb, Rainer; Kowalczyk, Andrzej; Bajraszewski, Tomasz; Fercher, Adolf F
2002-07-01
We present what is to our knowledge the first in vivo tomograms of human retina obtained by Fourier domain optical coherence tomography. We would like to show that this technique might be as powerful as other optical coherence tomography techniques in the ophthalmologic imaging field. The method, experimental setup, data processing, and images are discussed. PMID:12175297
Frost, Robert; Porter, David A; Miller, Karla L; Jezzard, Peter
2012-08-01
Single-shot echo-planar imaging has been used widely in diffusion magnetic resonance imaging due to the difficulties in correcting motion-induced phase corruption in multishot data. Readout-segmented EPI has addressed the multishot problem by introducing a two-dimensional nonlinear navigator correction with online reacquisition of uncorrectable data to enable acquisition of high-resolution diffusion data with reduced susceptibility artifact and T*(2) blurring. The primary shortcoming of readout-segmented EPI in its current form is its long acquisition time (longer than similar resolution single-shot echo-planar imaging protocols by approximately the number of readout segments), which limits the number of diffusion directions. By omitting readout segments at one side of k-space and using partial Fourier reconstruction, readout-segmented EPI imaging times could be reduced. In this study, the effects of homodyne and projection onto convex sets reconstructions on estimates of the fractional anisotropy, mean diffusivity, and diffusion orientation in fiber tracts and raw T(2)- and trace-weighted signal are compared, along with signal-to-noise ratio results. It is found that projections onto convex sets reconstruction with 3/5 segments in a 2 mm isotropic diffusion tensor image acquisition and 9/13 segments in a 0.9 × 0.9 × 4.0 mm(3) diffusion-weighted image acquisition provide good fidelity relative to the full k-space parameters. This allows application of readout-segmented EPI to tractography studies, and clinical stroke and oncology protocols. PMID:22535706
Phase-space distributions in quasi-polar coordinates and the fractional Fourier transform.
Alieva, T; Bastiaans, M J
2000-12-01
The ambiguity function and Cohen's class of bilinear phase-space distributions are represented in a quasipolar coordinate system instead of in a Cartesian system. Relationships between these distributions and the fractional Fourier transform are derived; in particular, derivatives of the ambiguity function are related to moments of the fractional power spectra. A simplification is achieved for the description of underspread signals, for optical beam characterization, and for the generation of signal-adaptive phase-space distributions. PMID:11140493
Flewett, Samuel; Eisebitt, Stefan
2011-02-20
One consequence of the self-amplified stimulated emission process used to generate x rays in free electron lasers (FELs) is the intrinsic shot-to-shot variance in the wavelength and temporal coherence. In order to optimize the results from diffractive imaging experiments at FEL sources, it will be advantageous to acquire a means of collecting coherence and spectral information simultaneously with the diffraction pattern from the sample we wish to study. We present a holographic mask geometry, including a grating structure, which can be used to extract both temporal and spatial coherence information alongside the sample scatter from each individual FEL shot and also allows for the real space reconstruction of the sample using either Fourier transform holography or iterative phase retrieval.
NASA Astrophysics Data System (ADS)
Crabtree, P.; McNicholl, P.; Seanor, C.; Murray-Krezan, J.
2012-09-01
A variety of image registration techniques have been investigated for applications such as image analysis, fusion, compression, enhancement, and creating mosaics. In particular, robust registration is a key component for successful multi-frame processing aimed at super-resolution or high dynamic range imaging. Image registration techniques are broadly categorized as global (area) or feature-based, and can also be classified as being performed in either the Fourier- or spatial-domain. Spatial domain methods are typically used for applications requiring accurate estimation of sub-pixel motion, such as multi-frame super-resolution based on de-aliasing. However, these techniques often rely on the availability of a priori information (good initial guess), and are therefore limited in terms of the dynamic range of the global motion estimates. A Gaussian pyramid approach is one standard method for extending the region of convergence of spatial domain techniques. On the other hand, Fourier domain-based correlation techniques such as the log-polar FFT method provide fast and reasonably accurate estimates of global shifts, rotation, and uniform scale changes, and tend to perform well over a large range of frame-to-frame motion magnitudes. In this paper we explore several possible hybrid algorithms for robust global registration based on combining the log-polar FFT and spatial-domain techniques. This includes the straightforward use of the log-polar FFT algorithm to generate an initial guess for use by a spatial domain algorithm, as well as the intertwining of the two methods by applying both global correlation and spatial domain registration at each relevant step within the log-polar FFT algorithm. In addition, we explore the benefits of normalized gradient correlation in performing the coarse log-polar FFT registration. The use of normalized gradient correlation, as opposed to phase-only correlation, has recently been proposed for improving the log-polar FFT method in terms
Plane wave imaging using phased array
NASA Astrophysics Data System (ADS)
Volker, Arno
2014-02-01
Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data acquisition configurations can be designed in combination with an imaging algorithm. The objective of this paper is to use the minimal amount of data required to construct an image. If a plane wave is synthesized, the region of interest is illuminated completely. For plane wave synthesis, all elements in the phase array are fired. This ensures a good signal to noise ratio. Imaging can be performed efficiently with a mapping algorithm in the wavenumber domain. The algorithm involves only two Fourier transforms and can therefore be extremely fast. The obtained resolution is comparable to conventional imaging algorithms. This work investigates the potential and limitations of this mapping algorithm on simulated data. With this approach, frame rates of more than 1 kHz can be achieved.
Measured performance of an airborne Fourier-transform hyperspectral imager
NASA Astrophysics Data System (ADS)
Otten, Leonard John, III; Meigs, Andrew D.; Sellar, R. Glenn; Rafert, Bruce
1996-11-01
A new hyperspectral imager has recently been developed by Kestrel Corporation for use in light aircraft platforms. The instrument provides 256 spectral channels with 87 cm-1 spectral bandwidth over the 450 nm to 1000 nm portion of the spectrum. Operated as a pushbroom imager, the FTVHSI has been shown to have a IFOV of 0.75 mrad, and a FOV of 0.23 rad. The sensor includes an internal spectral/radiometric calibration source, a self contained spectrally resolved downwelling sensor, and complete line of sight and GPS positioning information. The instrument is now operating from a Cessna TU-206 single engine aircraft.
Phase microscope imaging in phase space
NASA Astrophysics Data System (ADS)
Sheppard, Colin J. R.; Mehta, Shalin B.
2016-03-01
Imaging in a bright field or phase contrast microscope is partially coherent. We have found that the image can be conveniently considered and modeled in terms of the Wigner distribution function (WDF) of the object transmission. The WDF of the object has a simple physical interpretation for the case of a slowly varying object. Basically, the image intensity is the spatial marginal of the spatial convolution of the object WDF with the phase space imager kernel (PSIkernel), a rotated version of the transmission cross-coefficient. The PSI-kernel can be regarded as a partially-coherent generalization of the point spread function. This approach can be extended to consider the partial coherence of the image itself. In particular, we can consider the mutual intensity, WDF or ambiguity function of the image. It is important to note that the spatial convolution of the object WDF with the PSI-kernel is not a WDF, and not the WDF of the image. The phase space representations of the image have relevance to phase reconstruction methods such as phase space tomography, or the transport of intensity equation approach, and to the three-dimensional image properties.
NASA Astrophysics Data System (ADS)
Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Porshneva, Liudmila A.; Rodin, Vladislav G.; Starikov, Sergey N.
2014-10-01
Digital holography is popular tool for research and practical applications in various fields of science and technology. Most widespread method of optical reconstruction implements digital hologram display on spatial light modulators (SLM). Optical reconstruction of digital holograms is used for remote display of static and dynamic 2D and 3D scenes, in optical information processing, metrology, interferometry, microscopy, etc. Holograms recorded with digital cameras are amplitude type. Therefore quality of its optical reconstruction with phase SLM is worse compared to amplitude SLM. However application of phase SLM can provide higher diffraction efficiency. To improve quality of optical reconstruction with phase SLM, method of SLM phase modulation depth reduction at digital hologram display is proposed. To our knowledge, this method was applied only in analog holography. Also two other methods of quality improvement are considered: hologram to kinoform conversion and holograms multiplexing. Numerical experiments on modelling of digital Fourier holograms recording and their optical reconstruction by phase SLM were performed. Method of SLM phase modulation depth reduction at digital holograms display was proposed and tested. SLM phase modulation depth ranged from 0 to 2π. Quantity of hologram phase levels equal to 256 corresponds to 2π phase modulation depth. To keep SLM settings while changing phase modulation depth hologram phase distribution was renormalized instead. Dependencies of reconstruction quality on hologram phase modulation depth were obtained. Best quality is achieved at 0.27π÷0.31π phase modulation depth. To reduce speckle noise, hologram multiplexing can be applied. Modeling of multiplex holograms optical reconstruction was conducted. Speckle noise reduction was achieved. For improvement of digital hologram optical reconstruction quality and diffraction efficiency hologram to kinoform conversion can be used. Firstly numerically reconstructed image
A Super-Imaging Fourier Transform Spectrometer for the VLT
NASA Astrophysics Data System (ADS)
Maillard, Jean-Pierre; Bacon, Roland
A cryogenic, near-infrared (Hawaii2 domain) imaging FTS is proposed for a Nasmyth focus of an 8-m VLT, as a unique solution for providing integral field spectroscopy at high spectral resolution (R = 50,000 at 2 μm) over a large field, up to 3 x 3 arcmin FOV. Another mode is proposed behind AO with a smaller field but preserving high spectral resolution.
NASA Astrophysics Data System (ADS)
Arai, K.; Belthangady, C.; Zhang, H.; Bar-Gill, N.; Devience, S. J.; Cappellaro, P.; Yacoby, A.; Walsworth, R. L.
2015-10-01
Optically detected magnetic resonance using nitrogen-vacancy (NV) colour centres in diamond is a leading modality for nanoscale magnetic field imaging, as it provides single electron spin sensitivity, three-dimensional resolution better than 1 nm (ref. 5) and applicability to a wide range of physical and biological samples under ambient conditions. To date, however, NV-diamond magnetic imaging has been performed using ‘real-space’ techniques, which are either limited by optical diffraction to ˜250 nm resolution or require slow, point-by-point scanning for nanoscale resolution, for example, using an atomic force microscope, magnetic tip, or super-resolution optical imaging. Here, we introduce an alternative technique of Fourier magnetic imaging using NV-diamond. In analogy with conventional magnetic resonance imaging (MRI), we employ pulsed magnetic field gradients to phase-encode spatial information on NV electronic spins in wavenumber or ‘k-space’ followed by a fast Fourier transform to yield real-space images with nanoscale resolution, wide field of view and compressed sensing speed-up.
Fourier spectrum and phases for a signal in a finite interval
NASA Astrophysics Data System (ADS)
Belmont, Gérard; Dorville, Nicolas; Sahraoui, Fouad; Rezeau, Laurence
2015-04-01
When investigating the physics of turbulent media, as the solar wind or the magnetosheath plasmas, obtaining accurate Fourier spectra and phases is a crucial issue. For the different fields, the spectra allow in particular verifying whether one or several power laws can be determined in different frequency ranges. Accurate phases are necessary as well for all the "higher order statistics" studies in Fourier space, the coherence ones and for the polarization studies. Unfortunately, the Fourier analysis is not unique for a finite time interval of duration T: the frequencies lower than 1/T have a large influence on the result, which can hardly be controlled. This unknown "trend" has in particular the effect of introducing jumps at the edges of the interval, for the function under study itself, as well as for all its derivatives. The Fourier transform obtained directly by FFT (Fast Fourier Transform) is generally much influenced by these effects and cannot be used without care for wide band signals. The interference between the jumps and the signal itself provide in particular characteristic "hairs" on the spectrum, which are clearly visible on it with df≈1/T. These fluctuations are usually eliminated by smoothing the spectrum, or by averaging several successive spectra. Nevertheless, such treatments introduce uncertainties on the spectral laws (the phases being anyway completely lost). Windowing is also a method currently used to suppress or decrease the jumps, but it modifies the signal (the windowed trend has a spectrum, which is convolved with the searched one) and the phases are generally much altered. Here, we present a new data processing technique to circumvent these difficulties. It takes advantage of the fact that the signal is generally not unknown out of the interval under study: the complete signal is tapered to this interval of interest thanks to a new window function, sharp but not square. This window function is chosen such that the spectrum obtained
Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging
Dong, Siyuan; Shiradkar, Radhika; Nanda, Pariksheet; Zheng, Guoan
2014-01-01
Information multiplexing is important for biomedical imaging and chemical sensing. In this paper, we report a microscopy imaging technique, termed state-multiplexed Fourier ptychography (FP), for information multiplexing and coherent-state decomposition. Similar to a typical Fourier ptychographic setting, we use an array of light sources to illuminate the sample from different incident angles and acquire corresponding low-resolution images using a monochromatic camera. In the reported technique, however, multiple light sources are lit up simultaneously for information multiplexing, and the acquired images thus represent incoherent summations of the sample transmission profiles corresponding to different coherent states. We show that, by using the state-multiplexed FP recovery routine, we can decompose the incoherent mixture of the FP acquisitions to recover a high-resolution sample image. We also show that, color-multiplexed imaging can be performed by simultaneously turning on R/G/B LEDs for data acquisition. The reported technique may provide a solution for handling the partially coherent effect of light sources used in Fourier ptychographic imaging platforms. It can also be used to replace spectral filter, gratings or other optical components for spectral multiplexing and demultiplexing. With the availability of cost-effective broadband LEDs, the reported technique may open up exciting opportunities for computational multispectral imaging. PMID:24940538
Meng, Xin; Li, Jianxin; Song, Huaqing; Zhu, Rihong
2014-08-20
A Fourier-transform imaging spectropolarimeter is presented and demonstrated. It is composed of a time-division polarization modulator and a high radiation throughput Fourier-transform spectrometer. Four polarization states of the input light are generated by rotating the retarder. Then, the polarized light enters the Fourier-transform spectrometer to create four sets of interferometric images, where we can recover four polarization spectra and calculate the full-Stokes vector in various wavenumber frequency. The method has good performance to resist instrument noise and has the advantage of high spatial resolution. The laboratory setup is described and the noise source is analyzed. Two proven experiments have been carried out in visible light. PMID:25321096
Simple technique of Fourier-transform holographic microscope with compensation of phase aberration
NASA Astrophysics Data System (ADS)
Grishin, Oleg V.; Fedosov, Ivan V.; Tuchin, Valery V.
2016-04-01
In this paper, we present a novel simple technique of Fourier-transform holographic microscopy (FTHM). Simplicity of the scheme, possibility to use a small image sensor and provide compensation of aberration, enable one to construct inexpensive holographic microscopes. We experimentally compare FTHM with in-line holographic microscopy. In this paper, we present experimental scheme of FTHM, description of used algorithms and experimental results for an amplitude test object and biological samples (blood smears).
NASA Astrophysics Data System (ADS)
Dai, Xianglu; Xie, Huimin; Wang, Huaixi; Li, Chuanwei; Liu, Zhanwei; Wu, Lifu
2014-02-01
The geometric phase analysis (GPA) method based on the local high resolution discrete Fourier transform (LHR-DFT) for deformation measurement, defined as LHR-DFT GPA, is proposed to improve the measurement accuracy. In the general GPA method, the fundamental frequency of the image plays a crucial role. However, the fast Fourier transform, which is generally employed in the general GPA method, could make it difficult to locate the fundamental frequency accurately when the fundamental frequency is not located at an integer pixel position in the Fourier spectrum. This study focuses on this issue and presents a LHR-DFT algorithm that can locate the fundamental frequency with sub-pixel precision in a specific frequency region for the GPA method. An error analysis is offered and simulation is conducted to verify the effectiveness of the proposed method; both results show that the LHR-DFT algorithm can accurately locate the fundamental frequency and improve the measurement accuracy of the GPA method. Furthermore, typical tensile and bending tests are carried out and the experimental results verify the effectiveness of the proposed method.
Imaging by Zernike phase plates in the TEM.
Edgcombe, C J
2016-08-01
The images produced from simple phase objects, lenses and Zernike phase plates when all have rotational symmetry can be calculated by 1D Fourier-Bessel transforms. For a simple disc object producing a uniform phase shift over its diameter, the resulting image can be defined for any size of object phase change. The monotonic range of intensity variation with object phase is found to depend strongly on the phase change introduced by the phase plate; this property of the system is not well predicted by the weak phase approximation. The effect of spreading the phase transition at the plate over a range of radius is beneficial if the plate phase change is sufficiently small. Weak-phase calculations for a phase distribution more typical of a spherical object are also shown. PMID:27183505
Instrumental phase-based method for Fourier transform spectrometer measurements processing
Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco
2011-04-20
Phase correction is a critical procedure for most space-borne Fourier transform spectrometers (FTSs) whose accuracy (owing to often poor signal-to-noise ratio, SNR) can be jeopardized from many uncontrollable environmental conditions. This work considers the phase correction in an FTS working under significant temperature change during the measurement and affected by mechanical disturbances. The implemented method is based on the identification of an instrumental phase that is dependent on the interferometer temperature and on the extraction of a linear phase component through a least-squares approach. The use of an instrumental phase parameterized with the interferometer temperature eases the determination of the linear phase that can be extracted using only a narrow spectral region selected to be immune from disturbances. The procedure, in this way, is made robust against phase errors arising from instrumental effects, a key feature to reduce the disturbances through spectra averaging. The method was specifically developed for the Mars IR Mapper spectrometer, that was designed for operation onboard a rover on the Mars surface; the validation was performed using ground and in-flight measurements of the Fourier transform IR spectrometer planetary Fourier spectrometer, onboard the MarsExpress mission. The symmetrization has been exploited also for the spectra calibration, highlighting the issues deriving from the cases of relevant beamsplitter emission. The applicability of this procedure to other instruments is conditional to the presence in the spectra of at least one spectral region with a large SNR along with a negligible (or known) beamsplitter emission. For the PFS instrument, the processing of data with relevant beamsplitter emission has been performed exploiting the absorption carbon dioxide bands present in Martian spectra.
Instrumental phase-based method for Fourier transform spectrometer measurements processing.
Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco
2011-04-20
Phase correction is a critical procedure for most space-borne Fourier transform spectrometers (FTSs) whose accuracy (owing to often poor signal-to-noise ratio, SNR) can be jeopardized from many uncontrollable environmental conditions. This work considers the phase correction in an FTS working under significant temperature change during the measurement and affected by mechanical disturbances. The implemented method is based on the identification of an instrumental phase that is dependent on the interferometer temperature and on the extraction of a linear phase component through a least-squares approach. The use of an instrumental phase parameterized with the interferometer temperature eases the determination of the linear phase that can be extracted using only a narrow spectral region selected to be immune from disturbances. The procedure, in this way, is made robust against phase errors arising from instrumental effects, a key feature to reduce the disturbances through spectra averaging. The method was specifically developed for the Mars IR Mapper spectrometer, that was designed for operation onboard a rover on the Mars surface; the validation was performed using ground and in-flight measurements of the Fourier transform IR spectrometer planetary Fourier spectrometer, onboard the MarsExpress mission. The symmetrization has been exploited also for the spectra calibration, highlighting the issues deriving from the cases of relevant beamsplitter emission. The applicability of this procedure to other instruments is conditional to the presence in the spectra of at least one spectral region with a large SNR along with a negligible (or known) beamsplitter emission. For the PFS instrument, the processing of data with relevant beamsplitter emission has been performed exploiting the absorption carbon dioxide bands present in Martian spectra. PMID:21509063
Gallery of Datacubes Obtained with the Livermore Imaging Fourier Transform Spectrometer
Wurtz, R; Wishnow, E H; Blais-Ouellette, S; Cook, K H; Holden, B P; Carr, D J; Stubbs, C W
2002-09-12
We have acquired spatial-spectral datacubes of astronomical objects using the Livermore visible-band imaging Fourier transform spectrometer at Apache Point Observatory. Each raw datacube contains hundreds of thousands of spectral interferograms. We present in-progress demonstrations of these observations.
NASA Astrophysics Data System (ADS)
Cunningham, C. C.; Anthony, D.
1993-04-01
Two methods of deconvolution, the inverse Fourier method and the Lucy iterative technique, are compared with respect to their applicability to restoration of Hubble Space Telescope images of Saturn. The two techniques are found to provide nearly identical results in the case of cloud morphologies and comparable results for fluxes from Saturn's bright disk.
Gaseous effluent monitoring and identification using an imaging Fourier transform spectrometer
Carter, M.R.; Bennett, C.L.; Fields, D.J.; Hernandez, J.
1993-10-01
We are developing an imaging Fourier transform spectrometer for chemical effluent monitoring. The system consists of a 2-D infrared imaging array in the focal plane of a Michelson interferometer. Individual images are coordinated with the positioning of a moving mirror in the Michelson interferometer. A three dimensional data cube with two spatial dimensions and one interferogram dimension is then Fourier transformed to produce a hyperspectral data cube with one spectral dimension and two spatial dimensions. The spectral range of the instrument is determined by the choice of optical components and the spectral range of the focal plane array. Measurements in the near UV, visible, near IR, and mid-IR ranges are possible with the existing instrument. Gaseous effluent monitoring and identification measurements will be primarily in the ``fingerprint`` region of the spectrum, ({lambda} = 8 to 12 {mu}m). Initial measurements of effluent using this imaging interferometer in the mid-IR will be presented.
Underwood, Kenneth J; Jones, Andrew M; Gopinath, Juliet T
2015-06-20
We present a new application of the stochastic parallel gradient descent (SPGD) algorithm to fast active phase control in a Fourier synthesis system. Pulses (4.9 ns) with an 80 MHz repetition rate are generated by feedback from a single phase-sensitive metric. Phase control is applied via fast current modulation of a tapered amplifier using an SPGD algorithm realized on a field-programmable gate array (FPGA). The waveforms are maintained by constant active feedback from the FPGA. We also discuss the extension of this technique to many more semiconductor laser emitters in a diode laser array. PMID:26193004
Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)
NASA Technical Reports Server (NTRS)
Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.
2001-01-01
A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.
Field-of-view analysis of a polarization interference Fourier transform imaging spectrometer.
DeHoog, Edward; Xia, Xiaowei; Parfenov, Alexander; Shih, Min-Yi
2011-09-20
The Fourier transform imaging spectrometer (FTIS) is an important tool for the measurement of spectral information in a scene. Advances in electro-optic crystal systems have led to the advent of the FTIS based on polarization interference filters. The operation of these devices as spectrometers has been well characterized, but the imaging capabilities have yet to be thoroughly explored. We explore the field-of-view limitations that occur when using this particular type of FTIS. PMID:21947057
Ren, Wenyi; Zhang, Chunmin; Jia, Chenling; Mu, Tingkui; Li, Qiwei; Zhang, Lin
2013-04-15
A method was proposed to precisely reconstruct the spectrum from the interferogram taken by the Fourier transform imaging spectrometer (FTIS) based on the polarization beam splitters. Taken the FTISs based on the Savart polariscope and Wollaston prism as examples, the distorted spectrums were corrected via the proposed method effectively. The feasibility of the method was verified via simulation. The distorted spectrum, recovered from the interferogram taken by the polarization imaging spectrometer developed by us, was corrected. PMID:23595463
Two-dimensional Kerr-Fourier imaging of translucent phantoms in thick turbid media
NASA Astrophysics Data System (ADS)
Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.
1995-06-01
Translucent scattering phantoms hidden inside a 5.5-cm-thick Intralipid solution were imaged as a function of phantom scattering coefficients by the use of a picosecond time-and space-gated Kerr-Fourier imaging system. A 2-mm-thick translucent phantom with a 0.1% concentration (scattering coefficient) difference from the 55-mm-thick surrounding scattering host can be distinguished at a signal level of approximately 10-10 of the incidence illumination intensity.
Fourier spectrum and phases for a signal in a finite interval
NASA Astrophysics Data System (ADS)
Dorville, N.; Belmont, G.; Sahraoui, F.; Rezeau, L.
2014-12-01
When investigating the physics of turbulent media, as the solar wind or the magnetosheath plasmas, obtaining accurate Fourier spectra and phases is a crucial issue. For the different fields, the spectra allow in particular verifying whether one or several power laws can be determined in different frequency ranges. Accurate phases are necessary as well for all the "higher order statistics" studies in Fourier space, the coherence ones and for the polarization studies. Unfortunately, the Fourier analysis is not unique for a finite time interval of duration T: the frequencies lower than 1/T have a large influence on the result, which can hardly be controlled. This unknown "trend" has in particular the effect of superposing jumps at the edges of the interval, for the function under study itself, as well as for all its derivatives. The Fourier transform obtained directly by FFT (Fast Fourier Transform) is generally much influenced by these effects and cannot be used without care for wide band signals. The interferences between the jumps and the signal itself also provide "hairs" on the spectrum, which are clearly visible fluctuations with df≈1/T. These fluctuations are usually eliminated by smoothing the spectrum, or by averaging several successive spectra. Nevertheless, such smoothing introduces uncertainties on the spectral laws and it makes the phases lost. Windowing is also a method currently used to suppress the jumps, but it modifies the signal (the windowed trend has a spectrum, which is convolved with the searched one) and the phases are also lost to a large extent. Here, we present a new data processing technique to circumvent these difficulties. It takes advantage of the fact that the signal is generally not unknown out of the interval under study: the complete signal is tapered to this interval of interest thanks to a new kind of window, sharp but not square. This kind of window is such that the spectrum obtained can then be deconvolved almost exactly
NASA Astrophysics Data System (ADS)
Kirsten, Lars; Walther, Julia; Cimalla, Peter; Gaertner, Maria; Meissner, Sven; Koch, Edmund
2011-06-01
Optical coherence tomography (OCT) is a noninvasive imaging modality generating cross sectional and volumetric images of translucent samples. In Fourier domain OCT (FD OCT), the depth profile is calculated by a fast Fourier transformation of the interference spectrum, providing speed and SNR advantage and thus making FD OCT well suitable in biomedical applications. The interference spectrum can be acquired spectrally resolved in spectral domain OCT or time-resolved in optical frequency domain imaging (OFDI). Since OCT images still suffer from motion artifacts, especially under in vivo conditions, increased depth scan rates are required. Therefor, the principle of Fourier domain mode locking has been presented by R. Huber et al. circumventing the speed limitations of conventional FD OCT systems. In FDML lasers, a long single mode fiber is inserted in the ring resonator of the laser resulting in an optical round trip time of a few microseconds. Sweeping the wavelength synchronously by a tunable Fabry-Perot filter can provide wavelength sweeps with repetition rates up to a few MHz used for OFDI. Imaging of subpleural lung tissue for investigation of lung dynamics and its elastic properties is a further biomedical application demanding high-speed OCT imaging techniques. For the first time, the visualization of subpleural alveolar structures of a rabbit lung is presented by the use of an FDML-based OCT system enabling repetition rates of 49.5 kHz and 122.6 kHz, respectively.
Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F
2008-11-10
Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization. PMID:19582027
Novel Algorithm for Polar and Spherical Fourier Analysis on Two and Three Dimensional Images
NASA Astrophysics Data System (ADS)
Yang, Zhuo; Kamata, Sei-Ichiro
Polar and Spherical Fourier analysis can be used to extract rotation invariant features for image retrieval and pattern recognition tasks. They are demonstrated to show superiorities comparing with other methods on describing rotation invariant features of two and three dimensional images. Based on mathematical properties of trigonometric functions and associated Legendre polynomials, fast algorithms are proposed for multimedia applications like real time systems and large multimedia databases in order to increase the computation speed. The symmetric points are computed simultaneously. Inspired by relative prime number theory, systematic analysis are given in this paper. Novel algorithm is deduced that provide even faster speed. Proposed method are 9-15% faster than previous work. The experimental results on two and three dimensional images are given to illustrate the effectiveness of the proposed method. Multimedia signal processing applications that need real time polar and spherical Fourier analysis can be benefit from this work.
A compact Fourier transform imaging spectrometer employing a variable gap Fabry-Perot interferometer
NASA Astrophysics Data System (ADS)
Lucey, Paul G.; Akagi, Jason; Bingham, Adam L.; Hinrichs, John L.; Knobbe, Edward T.
2014-05-01
Fourier transform spectroscopy is a widely employed method for obtaining visible and infrared spectral imagery, with applications ranging from the desktop to remote sensing. Most fielded Fourier transform spectrometers (FTS) employ the Michelson interferometer and measure the spectrum encoded in a time-varying signal imposed by the source spectrum interaction with the interferometer. A second, less widely used form of FTS is the spatial FTS, where the spectrum is encoded in a pattern sampled by a detector array. Recently we described using a Fabry-Perot interferometer, with a deliberately wedged gap geometry and engineered surface reflectivities, to produce an imaging spatial FTS. The Fabry-Perot interferometer can be much lighter and more compact than a conventional interferometer configuration, thereby making them suitable for portable and handheld applications. This approach is suitable for use over many spectral regimes of interest, including visible and infrared regions. Primary efforts to date have focused on development and demonstration of long wave infrared (LWIR) spectral imagers. The LWIR version of the miniaturized Fabry-Perot has been shown to be effective for various applications including spectral imaging-based chemical detection. The compact LWIR spectral imager employs uncooled optics and a microbolometer camera; a handheld version is envisioned for future development. Recent advancements associated with the spatial Fourier Transform imaging spectrometer system are described.
Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.
2015-03-01
Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.
Digital watermarking algorithm research of color images based on quaternion Fourier transform
NASA Astrophysics Data System (ADS)
An, Mali; Wang, Weijiang; Zhao, Zhen
2013-10-01
A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.
Zarabadi, Atefeh S; Pawliszyn, Janusz
2015-02-17
Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain. PMID:25607375
Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle.
Huang, Chenhui; Kino, Saiko; Katagiri, Takashi; Matsuura, Yuji
2012-10-10
A spectral imaging system consisting of a Fourier transform-infrared spectrometer, a high-speed infrared camera, and a bundle of hollow-optical fibers transmitting infrared radiation images was constructed. Infrared transmission spectra were obtained by carefully processing multiple interferograms taken by high-speed photography. Infrared spectral images of a variety of samples captured by the system were measured. We successfully detected existence maps of the oil and fat of biological samples by mapping the transmission of specific wavelengths in the spectrum. PMID:23052066
Phase-sensitive swept source OCT imaging of the human retina with a VCSEL light source
Choi, WooJhon; Potsaid, Benjamin; Jayaraman, Vijaysekhar; Baumann, Bernhard; Grulkowski, Ireneusz; Liu, Jonathan J.; Lu, Chen D.; Cable, Alex E.; Huang, David; Duker, Jay S.; Fujimoto, James G.
2013-01-01
Despite the challenges in achieving high phase stability, Doppler swept source / Fourier domain OCT has advantages of less fringe washout and faster imaging speeds compared to spectral / Fourier domain detection. This manuscript demonstrates swept source OCT with a VCSEL light source at 400kHz sweep rate for phase-sensitive Doppler imaging, measuring pulsatile total retinal blood flow with high sensitivity and phase stability. A robust, simple, and computationally efficient phase stabilization approach for phase-sensitive swept source imaging is also presented. PMID:23381430
High-SNR static Fourier-transform imaging spectrometer based on differential structure
NASA Astrophysics Data System (ADS)
Jin, Peng; Zhu, Shuaishuai; Zhang, Yu; Lin, Jie
2015-03-01
Fourier-transform imaging spectrometers are rapidly developed due to their extensive use in industrial monitoring, target detection, and chemical identification. Static Fourier-transform imaging spectrometer (SFIS) containing a birefringent interferometer is one of the most popular directions due to its inherent robustness. However, the SFIS suffers from its low achievable signal-to-noise ratio (SNR) because of the restriction of incident angle. Meanwhile, in applications, the SNR is perhaps the most important factor to determine the usefulness of an instrument. In this paper, we report here a Static Fourier-transform imaging spectrometer based on differential structure (SFIS-DS) in the 400-800nm wavelength range with a high SNR. As in electronic system, the differential structure can double optical efficiency and strongly restrain common mode error in the SFIS-DS. And the differential structure described here is also available for any instruments containing a birefringent interferometer. However, the drawback of the SFIS-DS is that the two images obtained by the two differential channels need precise registration which can be overcome by a sub-pixel spatial registration algorithm. The experimental results indicate the SFIS-DS can increase the SNR by no less than 40%.
Phase Contrast Imaging in Neonates
Zhong, Kai; Ernst, Thomas; Buchthal, Steve; Speck, Oliver; Anderson, Lynn; Chang, Linda
2011-01-01
Magnetic resonance phase images can yield superior gray and white matter contrast compared to conventional magnitude images. However, the underlying contrast mechanisms are not yet fully understood. Previous studies have been limited to high field acquisitions in adult volunteers and patients. In this study, phase imaging in the neonatal brain is demonstrated for the first time. Compared to adults, phase differences between gray and white matter are significantly reduced but not inverted in neonates with little myelination and iron deposits in their brains. The remaining phase difference between the neonatal and adult brains may be due to different macromolecule concentration in the unmyelinated brain of the neonates and thus different frequency due to water macromolecule exchange. Additionally, the susceptibility contrast from brain myelination can be separately studied in neonates during brain development. Therefore, magnetic resonance phase imaging is suggested as a novel tool to study neonatal brain development and pathologies in neonates. PMID:21232619
NASA Astrophysics Data System (ADS)
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
Fourier-interpolation superresolution optical fluctuation imaging (fSOFi) (Conference Presentation)
NASA Astrophysics Data System (ADS)
Enderlein, Joerg; Stein, Simon C.; Huss, Anja; Hähnel, Dirk; Gregor, Ingo
2016-02-01
Stochastic Optical Fluctuation Imaging (SOFI) is a superresolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation Localization Microsopy (PALM) or Stochastic Optical Reconstruction Microscopy (STORM), but computes a superresolved image via temporal cumulants from a recorded movie. A technical challenge hereby is that, when directly applying the SOFI algorithm to a movie of raw images, the pixel size of the final SOFI image is the same as that of the original images, which becomes problematic when the final SOFI resolution is much smaller than this value. In the past, sophisticated cross-correlation schemes have been used for tackling this problem. Here, we present an alternative, exact, straightforward, and simple solution using an interpolation scheme based on Fourier transforms. We exemplify the method on simulated and experimental data.
Universal and special keys based on phase-truncated Fourier transform
NASA Astrophysics Data System (ADS)
Qin, Wan; Peng, Xiang; Meng, Xiangfeng; Gao, Bruce
2011-08-01
We propose a novel optical asymmetric cryptosystem based on a phase-truncated Fourier transform. Two decryption keys independent of each other are generated. They are referred to as universal key and special key, respectively. Each of them can be used for decryption independently in absence of the other. The universal key is applicable to decrypt any ciphertext encoded by the same encryption key, but with poor legibility. On the contrary, the special key is adequate for legible decryption, but only valid for one ciphertext corresponding to the specified plaintext. A set of simulation results show the interesting performance of two types of decryption keys.
Binary encoding method to encrypt Fourier-transformed information of digital images
NASA Astrophysics Data System (ADS)
Lin, Kuang Tsan
2009-02-01
An encoding method is used to encrypt the Fourier-transformed information of a hidden (covert) digital image in an overt image, while the Fourier-transformed information must be encoded with binary codes. All of the pixels in an overt image are classified into five groups that are called identification, type, tracing, dimension, and information codes. Identification codes are used to judge if the overt image contains codes that belong to the proposed encoding method or not; type codes are used to judge the encoding type; tracing codes are used to judge the encoding trace; dimension codes are used to judge the size of the hidden information; and information codes are used to decode the hidden information. Applying the proposed encoding method is rather easy, and host images corresponding to overt images are not needed for decoding work. The experiment has demonstrated four types of encoding for the proposed encoding method to reconstruct covert images without any distortion or only with a little distortion.
Ohta, Izumi S; Hattori, Makoto; Matsuo, Hiroshi
2007-05-20
We have developed a millimeter and submillimeter Michelson-type bolometric interferometer based on a Martin-Puplett-type Fourier-transform spectrometer named multi-Fourier-transform interferometer (MuFT). We have succeeded in proving that the MuFT is capable of performing broadband imaging observations as theoretically proposed by our previous paper (OHM) [Appl. Opt. 45, 2576 (2006)]. We succeeded in acquiring the mutual coherence signal for an extended source in broadband. By analyzing the obtained mutual coherence signal following the formula proposed in OHM, 2D source images for each wavenumber from 5 cm(-1) (150 GHz) to 35 cm(-1) (1.05 THz) with a wavenumber interval of 0.4 cm(-1) (12 GHz) were successfully extracted. The large dynamic range advantage of the MuFT proposed in OHM was confirmed experimentally. PMID:17514233
Nonnegative image reconstruction from sparse Fourier data: a new deconvolution algorithm
NASA Astrophysics Data System (ADS)
Bonettini, S.; Prato, M.
2010-09-01
This paper deals with image restoration problems where the data are nonuniform samples of the Fourier transform of the unknown object. We study the inverse problem in both semidiscrete and fully discrete formulations, and our analysis leads to an optimization problem involving the minimization of the data discrepancy under nonnegativity constraints. In particular, we show that such a problem is equivalent to a deconvolution problem in the image space. We propose a practical algorithm, based on the gradient projection method, to compute a regularized solution in the discrete case. The key point in our deconvolution-based approach is that the fast Fourier transform can be employed in the algorithm implementation without the need of preprocessing the data. A numerical experimentation on simulated and real data from the NASA RHESSI mission is also performed.
Effect of the fringe visibility on spectrum SNR of Fourier transform imaging spectrometer
NASA Astrophysics Data System (ADS)
Wang, Shuang; Bin, Xiangli; Jing, Juanjuan; Pi, Haifeng
2013-08-01
The principle of Fourier transform spectrometer is based on the relationship of Fourier-Transform between interferogram and spectrum. The spectral information of Fourier transform imaging spectrometer (FTIS) reconstructed from raw interferogram by data processing. So there are two kinds of signal-to-noise ratio (SNR) to evaluate instrument performance, one regarding interferogram and the other regarding reconstructed spectrum. Because the raw interferogram is intuitive, the interferogram SNR is studied usually. On the contrary, the spectrum SNR is studied less because of the complexity of the data processing from interferogram to spectrum. The research about the effect of the interference fringe visibility on the spectrum SNR is especially few. This paper present a research work on the relations between the interference fringe visibility and the spectrum SNR. Firstly, the reduction of fringe visibility caused by imaging lens defocus was analyzed. Secondly, the changes of the average spectrum signal and noise caused by the reduction of fringe visibility were calculated. For average spectrum signal, the math deductions are done base on Fourier transform theory. The average noise with different input signal optic-electrons number are simulated. the results show that the average spectrum signal is directly proportional to the fringe visibility, and the effect of fringe visibility on the noise related to signal can be ignorable. Finally, In order to demonstrate above results, the imaging experiment was done with white-light source, using LASIS (Large aperture static imaging spectrometer) based on Sagnac Interferometer. The average spectrum SNRs under different fringe visibility are calculated and analyzed. The experimental results show that: the average spectrum SNRs increase from 42.7 to 62.4.along with the fringe visibility increasing from 0.5051 to 0.687. the reconstructed spectrum SNR is directly proportional to the fringe visibility. As a result, the interferogram
Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform
Archibald, Richard K.; Gelb, Anne; Platte, Rodrigo
2015-09-09
Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l1 regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l1 regularization terms. The Split Bregman Algorithm provides a fast explicit solutionmore » for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l1 regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l1 regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.« less
Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform
Archibald, Richard K.; Gelb, Anne; Platte, Rodrigo
2015-09-09
Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l^{1} regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l^{1} regularization terms. The Split Bregman Algorithm provides a fast explicit solution for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l^{1} regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l^{1} regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.
NASA Astrophysics Data System (ADS)
Azoug, Seif Eddine; Bouguezel, Saad
2016-01-01
In this paper, a novel opto-digital image encryption technique is proposed by introducing a new non-linear preprocessing and using the multiple-parameter discrete fractional Fourier transform (MPDFrFT). The non-linear preprocessing is performed digitally on the input image in the spatial domain using a piecewise linear chaotic map (PLCM) coupled with the bitwise exclusive OR (XOR). The resulting image is multiplied by a random phase mask before applying the MPDFrFT to whiten the image. Then, a chaotic permutation is performed on the output of the MPDFrFT using another PLCM different from the one used in the spatial domain. Finally, another MPDFrFT is applied to obtain the encrypted image. The parameters of the PLCMs together with the multiple fractional orders of the MPDFrFTs constitute the secret key for the proposed cryptosystem. Computer simulation results and security analysis are presented to show the robustness of the proposed opto-digital image encryption technique and the great importance of the new non-linear preprocessing introduced to enhance the security of the cryptosystem and overcome the problem of linearity encountered in the existing permutation-based opto-digital image encryption schemes.
Terahertz holography for imaging amplitude and phase objects.
Hack, Erwin; Zolliker, Peter
2014-06-30
A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results. PMID:24977861
Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T; So, Peter T C
2014-10-01
A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367
NASA Astrophysics Data System (ADS)
Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.
2013-03-01
We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.
Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.
2014-01-01
A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367
Perfusion and ventilation filters for Fourier-decomposition MR lung imaging.
Wujcicki, Artur; Corteville, Dominique; Materka, Andrzej; Schad, Lothar R
2015-03-01
MR imaging without the use of contrast agents has recently been used for creating perfusion and ventilation functional lung images. The technique incorporates frequency- or wavelet-domain filters to separate the MR signal components. This paper presents a new, subject-adaptive algorithm for perfusion and ventilation filters design. The proposed algorithm uses a lung signal model for separation of the signal components in the frequency domain. Non-stationary lung signals are handled by a short time Fourier transform. This method was applied to sets of 192 and 90 co-registered non-contrast MR lung images measured for five healthy subjects at the rate of 3,33 images per second, using different slice thicknesses. In each case, the resulted perfusion and ventilation images showed a smaller amount of mutual information, when compared to those obtained using the known lowpass/highpass filter approach. PMID:25466452
Andreeva, A; Burova, M; Burov, J
2007-06-01
A metal object is computer visualized by registration of the amplitudes of the transmitted through the object short acoustic pulses. The pulses are separated by time, because of the presence of holes and internal compact components in the longitudinal section (structure along the propagation direction of acoustic wave). The acoustic field transmitted through the object is composited from a field presenting Fourier transformation of the hole shape and field, transmitted through the metal components in the longitudinal section of the object. A computer Fourier transformation of the digital data of the amplitude fields transmitted through the object components is performed instead of converging lens. The Fourier series of the object obtained as digital data after the transformation is multiplied with a term, describing the angle distribution of the field on spatial frequencies. The reconstruction of the image of the metal components is performed by reverse transformation, i.e. summing up in all spatial frequencies. 3D visualization of the transmitted through the hole acoustic field determines the hole geometry (circular, square, rectangular). It is shown that at the transmission of a short acoustic pulse through the components with different thicknesses and holes, presenting Fourier and non-Fourier transformation can be registered separately in contrast to the optics. PMID:17395232
NASA Astrophysics Data System (ADS)
Li, YaSheng; Chen, Yan; Liao, Ningfang; Lyu, Hang; He, Shufang; Wan, Lifang
2015-08-01
A new calibration method for infrared hyperspectral imaging Fourier transform spectrometer is presented. Two kinds of common materials as Polypropylene (PP) and Polyethylene Terephthalate (PET) films which have special absorption peaks in the infrared band were used in the calibration experiment. As the wavelengths at the sharp absorption peaks of the films are known, an infrared imaging spectrometer can be calibrated on spectra with two or three peaks. With high precision and stability, this method simplifies the calibration work. It is especially appropriate for the measuring condition with a lack of calibration equipment or with inconvenience to calibrate the multiple light sources outdoors.
Automated turbulences jitters correction with a dual ports imaging Fourier-transform spectrometer
NASA Astrophysics Data System (ADS)
Prel, Florent; Lantagne, Stéphane; Moreau, Louis; Roy, Claude
2015-05-01
When the scene observed by an imaging Fourier-Transform Spectrometer is not stable in amplitude or in position during the time it takes to acquire to spectrum, spectro-radiometric artifacts are generated. These artifacts reduce the radiometric accuracy and may also damage the spectral line shape. The displacements of the scene in the field of view can be due to air turbulence, platform jitters or scene jitters. We describe an automated correction process based on the information provided by the second output port of a two-port imaging FTS. Corrected and uncorrected data will be compared.
Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.
2010-09-07
This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.
NASA Astrophysics Data System (ADS)
Zhang, Yizhuo; Situ, Guohai; Pedrini, Giancarlo; Wang, Dayong; Javidi, Bahram; Osten, Wolfgang
2013-01-01
We propose a short-coherence lensless Fourier-transform digital holography for imaging through scattering media. The technique utilizes a low-power cw diode laser with short temporal coherence and enables the selection of the early-arriving photons through a diffusive medium by interfering with a spherical reference beam from the same source. An averaging technique is introduced to extract the weak signal from strong background noise. The proposed technique is verified using both theoretical analysis and experimental demonstration by imaging an object through a 3-mm-thick chicken breast tissue.
NASA Astrophysics Data System (ADS)
Acosta, Roberto I.
The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.
NASA Astrophysics Data System (ADS)
Wei, Deyun; Li, Yuanmin
2013-05-01
This paper addresses the problem of multidimensional signal reconstruction from generalized samples in fractional Fourier domain including the deterministic case and the stochastic case. The generalized sampling expansion is investigated for the case where the fractional bandlimited input depends on N real variable, i.e., f(t)=f(t1,⋯,tN) and is used as a common input to a parallel bank of m independent N dimensional linear fractional Fourier filters Hα,k(u), k=1,⋯,m. For the deterministic input, the input is assumed to have its N dimensional fractional Fourier transform bandlimited to the frequency rang |ui|≤Ωi, for i=1,⋯,N. If m, the number of fractional Fourier filters, is written as a product of positive integers in the form m=m1m2⋯mN, and if the fractional bandlimited input f(t) is processed by fractional Fourier filter Hα,k(u)resulting m outputs gk(t), then f(t) can be reconstructed in terms of the samples gk(nT), each output being sampled at the identical rates of Ω1 csc α/m1π, Ω2 csc α/m2π,⋯, ΩN csc α/mNπ samples/second in t1,⋯,tN respectively. This contrasts with the rates of Ω1 csc α/π, Ω2 csc α/π,⋯, ΩN csc α/π in t1,⋯,tN needed for reconstruction of the unfiltered input f(t). Input sampling expansions in terms of samples of the output filters are given for both deterministic and stochastic inputs, the generalized sampling expansion for random input having the same form as for the deterministic case but interpreted in the mean-square sense. Our formulation and results are general and include derivative sampling and periodic nonuniform sampling in the fractional Fourier domain for multidimensional signals as special case. Finally, the potensional application of the multidimensional generalized sampling is presented to show the advantage of the theory. Especially, the application of multidimensional generalized sampling in the context of the image scaling about image super-resolution is
NASA Technical Reports Server (NTRS)
Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.
1993-01-01
Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.
Fourier synthesis image reconstruction by use of one-dimensional position-sensitive detectors.
Kotoku, Jun'ichi; Makishima, Kazuo; Okada, Yuu; Negoro, Hitoshi; Terada, Yukikatsu; Kaneda, Hidehiro; Oda, Minoru
2003-07-10
An improvement of Fourier synthesis optics for hard x-ray imaging is described, and the basic performance of the new optics is confirmed through numerical simulations. The original concept of the Fourier synthesis imager utilizes nonposition-sensitive hard x-ray detectors coupled to individual bigrid modulation collimators. The improved concept employs a one-dimensional position-sensitive detector (such as a CdTe strip detector) instead of the second grid layer of each bigrid modulation collimator. This improves the imaging performance in several respects over the original design. One performance improvement is a two-fold increase in the average transmission, from 1/4 to 1/2. The second merit is that both the sine and cosine components can be derived from a single grid-detector module, and hence the number of imaging modules can be halved. Furthermore, it provides information along the depth direction simultaneously. This in turn enables a three-dimensional imaging hard x-ray microscope for medical diagnostics, incorporating radioactive tracers. A conceptual design of such a microscope is presented, designed to provide a field of view of 4 mm and a spatial resolution of 400 microm. PMID:12856730
Field experiment performance of the receiver elements for a Fourier telescopy imaging system
NASA Astrophysics Data System (ADS)
Mathis, J.; Stapp, J.; Cuellar, E. L.; Cooper, J.; Morris, A.; Fairchild, P.; Hult, Dane; Koski, Katrina; Ramzel, Lee; Thornton, Marcia A.
2005-08-01
Fourier telescopy (FT) is an active imaging technique that is a candidate for high resolution imaging systems which can be used to obtain satellite images out to geosynchronous target ranges. Fourier telescopy uses multiple beams that illuminate the target with a fringe pattern that sweeps across it due to a set frequency difference between beams. In this way the target spatial frequency components are encoded in the temporal signal that is reflected from the target. The FT receiver can then be composed of a large area "light bucket" collector, since only the integrated temporal signal is necessary to reconstruct the target image. The GEO Light Imaging National Testbed (GLINT) system was previously designed to obtain satellite images at geosynchronous ranges by using this technique. The "light bucket" receiver was designed use forty heliostats, each having a collection area of ten meters square, and composed of a 16 x 16 grid of two foot square mirrors. The heliostats would redirect the return light from the target onto a large spherical concentrator array composed of hexagonal mirror segments. This concentrator would then focus the return light onto a photomultiplier tube (PMT) detector. The FT Field experiment presented in this paper uses one 10-meter square heliostat and a single PMT, plus a scaled down secondary array to provide the optical elements of the receiver for the FT field experiment. In this paper, we will describe the performance characteristics of the heliostat, secondary, and PMT detector. Performance characteristics include optical wavefront, alignment, and alignment stability of the optical elements. Finally, results will be presented after the receiver was integrated with a transmitter system that provided the modulated FT signal from various targets. Image reconstructions will show that even using low quality "Light bucket" receiver optics and a 1.5 km horizontal path through the atmosphere, the modulated signal can still produce good image
In-vivo human corneal nerve imaging using Fourier-domain OCT
NASA Astrophysics Data System (ADS)
Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong; Hwang, Ho Sik
2015-03-01
We have imaged human corneal nerve bundles by using real-time Fourier-domain OCT (FD-OCT). Corneal nerves contribute to the maintenance of healthy ocular surface owing to their trophic influences on the corneal epithelium. The FD-OCT system was based on a swept laser of a 50 kHz sweeping rate and 1.31 μm center wavelength. At the area including sclera, limbus, and cornea, we could successfully get the in-vivo tomograms of the corneal nerve bundles. The scan range was 5 x 5mm. In this study, the A-scan images in each B-scan were realigned to have a flat air-surface boundary in the final B-scan image. With this effort, we could align corneal nerve bundle in a same depth and get the 3D image showing the branched and threadlike corneal nerve bundles.
Zhang, Xusheng; Yousefi, Siavash; An, Lin
2012-01-01
Abstract. Segmentation of optical coherence tomography (OCT) cross-sectional structural images is important for assisting ophthalmologists in clinical decision making in terms of both diagnosis and treatment. We present an automatic approach for segmenting intramacular layers in Fourier domain optical coherence tomography (FD-OCT) images using a searching strategy based on locally weighted gradient extrema, coupled with an error-removing technique based on statistical error estimation. A two-step denoising preprocess in different directions is also employed to suppress random speckle noise while preserving the layer boundary as intact as possible. The algorithms are tested on the FD-OCT volume images obtained from four normal subjects, which successfully identify the boundaries of seven physiological layers, consistent with the results based on manual determination of macular OCT images. PMID:22559689
Quantitative phase imaging of arthropods
NASA Astrophysics Data System (ADS)
Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel
2015-11-01
Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.
Quantitative phase imaging of arthropods
Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel
2015-01-01
Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858
Yu, Shu-Hai; Dong, Lei; Liu, Xin-Yue; Lin, Xu-Dong; Megn, Hao-Ran; Zhong, Xing
2016-08-20
To confirm the effect of uplink atmospheric turbulence on Fourier telescopy (FT), we designed a system for far-field imaging, utilizing a T-type laser transmitting configuration with commercially available hardware, except for a green imaging laser. The horizontal light transmission distance for both uplink and downlink was ∼300 m. For both the transmitting and received beams, the height upon the ground was below 1 m. The imaging laser's pointing accuracy was ∼9.3 μrad. A novel image reconstruction approach was proposed, yielding significantly improved quality and Strehl ratio of reconstructed images. From the reconstruction result, we observed that the tip/tilt aberration is tolerated by the FT system even for Changchun's atmospheric coherence length parameter (r0) below 3 cm. The resolution of the reconstructed images was ∼0.615 μrad. PMID:27556991
Phase-image-based content-addressable holographic data storage
NASA Astrophysics Data System (ADS)
John, Renu; Joseph, Joby; Singh, Kehar
2004-03-01
We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.
Makey, Ghaith; El-Daher, Moustafa Sayem; Al-Shufi, Kanj
2012-11-10
This paper introduces a new modification for the well-known binary detour phase method, which is largely used to represent Fourier holograms; the modification utilizes gray scale level control provided by a liquid crystal spatial light modulator to improve the traditional binary detour phase. Results are shown by both simulation and experiment. PMID:23142903
Fourier spatial frequency analysis for image classification: training the training set
NASA Astrophysics Data System (ADS)
Johnson, Timothy H.; Lhamo, Yigah; Shi, Lingyan; Alfano, Robert R.; Russell, Stewart
2016-04-01
The Directional Fourier Spatial Frequencies (DFSF) of a 2D image can identify similarity in spatial patterns within groups of related images. A Support Vector Machine (SVM) can then be used to classify images if the inter-image variance of the FSF in the training set is bounded. However, if variation in FSF increases with training set size, accuracy may decrease as the size of the training set increases. This calls for a method to identify a set of training images from among the originals that can form a vector basis for the entire class. Applying the Cauchy product method we extract the DFSF spectrum from radiographs of osteoporotic bone, and use it as a matched filter set to eliminate noise and image specific frequencies, and demonstrate that selection of a subset of superclassifiers from within a set of training images improves SVM accuracy. Central to this challenge is that the size of the search space can become computationally prohibitive for all but the smallest training sets. We are investigating methods to reduce the search space to identify an optimal subset of basis training images.
Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform
Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos
2013-01-01
Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028
Remote measurement of highly toxic vapors by scanning imaging Fourier-transform spectrometry
NASA Astrophysics Data System (ADS)
Harig, Roland; Rusch, Peter; Dyer, Chris; Jones, Anita; Moseley, Richard; Truscott, Benjamin
2005-11-01
In the case of chemical accidents, terrorist attacks, or war, hazardous compounds may be released into the atmosphere. Remote sensing by Fourier-transform infrared spectrometry allows identification and quantification of these hazardous clouds. The output of current standoff detection systems is a yes/no decision by an automatic identification algorithm that analyses the measured spectrum. The interpretation of the measured spectrum by the operator is complicated and thus this task requires an expert. Even if a scanning system is used for surveillance of a large area the operator is dependent on the decision of the algorithm. In contrast to that, imaging systems allow automatic identification but also simple interpretation of the result, the image of the cloud. Therefore, an imaging spectrometer, the scanning infrared gas imaging system (SIGIS) has been developed. The system is based on an interferometer with a single detector element (Bruker OPAG 22) in combination with a telescope and a synchronised scanning mirror. The results of the analyses of the spectra are displayed by an overlay of a false colour image, the "chemical cloud image", on a video image. In this work, the first application of the system as chemical warfare agent identification and imaging system is described. The system, the data analysis method, and results of measurements of chemical warfare agents are presented.
Fourier domain Pump-Probe Optical Coherence Tomography imaging of melanin.
Jacob, Desmond; Shelton, Ryan L; Applegate, Brian E
2010-06-01
We report the development of a two-color Fourier domain Pump-Probe Optical Coherence Tomography (PPOCT) system. Tissue phantom experiments to characterize the system performance demonstrated imaging depths in excess of 725 microm, nearly comparable to the base Optical Coherence Tomography system. PPOCT A-line rates were also demonstrated in excess of 1 kHz. The physical origin of the PPOCT signal was investigated with a series of experiments which revealed that the signal is a mixture of short and long lifetime component signals. The short lifetime component was attributed to transient absorption while the long lifetime component may be due to a mixture of transient absorption and thermal effects. Ex vivo images of porcine iris demonstrated the potential for imaging melanin in the eye, where cancer of the melanocytes is the most common form of eye cancer in adults. PMID:20588366
An image reconstruction method from Fourier data with uncertainties on the spatial frequencies
NASA Astrophysics Data System (ADS)
Cornelio, Anastasia; Bonettini, Silvia; Prato, Marco
2013-10-01
In this paper the reconstruction of a two-dimensional image from a nonuniform sampling of its Fourier transform is considered, in the presence of uncertainties on the frequencies corresponding to the measured data. The problem therefore becomes a blind deconvolution, in which the unknowns are both the image to be reconstructed and the exact frequencies. The availability of information on the image and the frequencies allows to reformulate the problem as a constrained minimization of the least squares functional. A regularized solution of this optimization problem is achieved by early stopping an alternating minimization scheme. In particular, a gradient projection method is employed at each step to compute an inexact solution of the minimization subproblems. The resulting algorithm is applied on some numerical examples arising in a real-world astronomical application.
Lebensohn, Ricardo A; Lee, Sukbin; Rollett, Anthony D
2009-01-01
A viscoplastic approach using the Fast Fourier Transform (FFT) method for obtaining local mechanical response is utilized to study microstructure-property relationships in composite materials. Specifically, three-dimensional, two-phase digital materials containing isotropically coarsened particles surrounded by a matrix phase, generated through a Kinetic Monte Carlo Potts model for Ostwald ripening, are used as instantiations in order to calculate the stress and strain rate fields under uniaxial tension. The effects of the morphology of the matrix phase, the volume fraction and the contiguity of particles, and the polycrystallinity of matrix phase, on the stress and strain rate fields under uniaxial tension are examined. It is found that the first moments of the stress and strain rate fields have a different dependence on the particle volume fraction and the particle contiguity from their second moments. The average stresses and average strain rates of both phases and of the overall composite have rather simple relationships with the particle volume fraction whereas their standard deviations vary strongly, especially when the particle volume fraction is high, and the contiguity of particles has a noticeable effect on the mechanical response. It is also found that the shape of stress distribution in the BCC hard particle phase evolves as the volume fraction of particles in the composite varies, such that it agrees with the stress field in the BCC polycrystal as the volume of particles approaches unity. Finally, it is observed that the stress and strain rate fields in the microstructures with a polycrystalline matrix are less sensitive to changes in volume fraction and contiguity of particles.
SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope
NASA Astrophysics Data System (ADS)
Drissen, L.; Bernier, A.-P.; Rousseau-Nepton, L.; Alarie, A.; Robert, C.; Joncas, G.; Thibault, S.; Grandmont, F.
2010-07-01
We describe the concept of a new instrument for the Canada-France-Hawaii telescope (CFHT), SITELLE (Spectromètre Imageur à Transformée de Fourier pour l'Etude en Long et en Large de raies d'Emission), as well as a science case and a technical study of its preliminary design. SITELLE will be an imaging Fourier transform spectrometer capable of obtaining the visible (350 nm - 950 nm) spectrum of every source of light in a field of view of 15 arcminutes, with 100% spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R = 104 (for gas dynamics). SITELLE will cover a field of view 100 to 1000 times larger than traditional integral field spectrographs, such as GMOS-IFU on Gemini or the future MUSE on the VLT. It is a legacy from BEAR, the first imaging FTS installed on the CFHT and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the star formation rate in distant galaxies.
Design of spatio-temporally modulated static infrared imaging Fourier transform spectrometer.
Wang, WenCong; Liang, JingQiu; Liang, ZhongZhu; Lü, JinGuang; Qin, YuXin; Tian, Chao; Wang, WeiBiao
2014-08-15
A novel static medium wave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) is conceptually proposed and experimentally demonstrated. In this system, the moving mirror in traditional temporally modulated IFTS is replaced by multi-step micro-mirrors to realize the static design. Compared with the traditional spatially modulated IFTS, they have no slit system and are superior with larger luminous flux and higher energy efficiency. The use of the multi-step micro-mirrors can also make the system compact and light. PMID:25121906
Lin, Yu; Liao, Ning-fang; Luo, Yong-dao; Cui, De-qi; Tan, Bo-neng; Wu, Wen-min
2010-08-01
In the present paper, the authors will introduce our research on spectral reconstruction of Fourier transform computed tomography imaging spectrometer by means of the algebraic reconstruction technology. A simulation experiment was carried out to demonstrate the algorithm. The spatial similarities and spectral similarities were evaluated using the normalized correlation coefficient. The performance of ART was evaluated when the quantity of projection is 45. In that case, filter back projection can't work well. Actual spectral slices were reconstructed by using ART in the last part of this paper. PMID:20939312
NASA Astrophysics Data System (ADS)
Osowiecki, Gaël. D.; Madi, Mohammad; Shorubalko, Ivan; Philipoussis, Irène; Alberti, Edoardo; Scharf, Toralf; Herzig, Hans P.
2015-09-01
We show the miniaturization and parallelization of a scanning standing wave spectrometer with a long term goal of creating a compact imaging spectrometer. In our standing wave integrated Fourier transform spectrometer, light is injected with micro-lenses into several optical polymer waveguides. A piezo actuated mirror located at the waveguide end-facet can shift the interferogram to increase its sampling frequency. The spatial distribution of the standing wave intensity inside the waveguide is partially scattered out of the plane by a periodic metallic grating and recorded by a CCD camera. We present spectra acquisition for six adjacent waveguides simultaneously at a wavelength of 632.8 nm.
Chen, Ni; Ren, Zhenbo; Lam, Edmund Y
2016-03-01
We present a technique for synthesizing the Fourier hologram of a three-dimensional scene from its light field. The light field captures the volumetric information of an object, and an important advantage is that it does not require coherent illumination, as in conventional holography. In this work, we show how to obtain a high-resolution digital hologram with the light field obtained from a series of photographic images captured along the optical axis. The method is verified both by simulations and experimentally captured light field. PMID:26974639
NASA Technical Reports Server (NTRS)
Beecken, Brian P.; Kleinman, Randall R.
2004-01-01
New developments in infrared sensor technology have potentially made possible a new space-based system which can measure far-infrared radiation at lower costs (mass, power and expense). The Stationary Imaging Fourier Transform Spectrometer (SIFTS) proposed by NASA Langley Research Center, makes use of new detector array technology. A mathematical model which simulates resolution and spectral range relationships has been developed for analyzing the utility of such a radically new approach to spectroscopy. Calculations with this forward model emulate the effects of a detector array on the ability to retrieve accurate spectral features. Initial computations indicate significant attenuation at high wavenumbers.
A compact, high numerical aperture imaging Fourier transform spectrometer and its application
NASA Astrophysics Data System (ADS)
Alcock, R. D.; Coupland, J. M.
2006-11-01
This paper describes a compact imaging Fourier transform spectrometer with high numerical aperture. In comparison with other optical arrangements in which extended interferometer paths are required for the inclusion of dispersion compensation optics, this technique utilizes a rudimentary cubic beam splitter based Michelson interferometer with minimal optical path so that the numerical aperture of the system is maximized. Mathematical modelling is presented showing that the fringe distortions caused by the dispersion in the cubic beam splitter can be entirely removed without any loss of the spectral information. An illustration of the power of the technique is given classifying between different plant foliage performed using a Fisher discriminant function based optimal linear filtering.
Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling
NASA Astrophysics Data System (ADS)
Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen
2009-05-01
OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.
The quantum state vector in phase space and Gabor's windowed Fourier transform
NASA Astrophysics Data System (ADS)
Bracken, A. J.; Watson, P.
2010-10-01
Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schrödinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.
Fourier transform interferometer alignment method.
Goldberg, Kenneth A; Naulleau, Patrick; Bokor, Jeffrey
2002-08-01
A rapid and convenient method has been developed to facilitate the alignment of the image-plane components of point-diffraction interferometers, including the phase-shifting point-diffraction interferometer. In real time, the Fourier transform of the detected image is used to calculate a pseudoimage of the electric field in the image plane of the test optic where thecritical alignment o f variousoptical components is performed. Reconstruction of the pseudoimage is similar to off-axis, Fourier transform holography. Intermediate steps in the alignment procedure are described. Fine alignment is aided by the introduction and optimization of a global-contrast parameter that is easily calculated from the Fourier transform. Additional applications include the alignment of image-plane apertures in general optical systems, the rapid identification of patterned image-plane alignment marks, and the probing of important image-plane field properties. PMID:12153074
Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques
NASA Technical Reports Server (NTRS)
Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew
2004-01-01
Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.
Application of Fourier Domain OCT Imaging Technology to the Anterior Segment of the Human Eye
NASA Astrophysics Data System (ADS)
Wojtkowski, Maciej; Marcos, Susana; Ortiz, Sergio; Grulkowski, Ireneusz
The anterior segment is the front part of the human eye, which forms the optical system and hence directly impacts vision. Traumatic or pathological changes in the anterior segment may lead to vision loss and, in some cases, even blindness. Since the eighteenth century, optical instrumentation for measuring and imaging the anterior segment of the human eye has been developing along with modern ophthalmology. The application of OCT to the anterior segment imaging is particularly of interest, since this could potentially provide substantial complementary information regarding the large-scale architecture of the cornea and the crystalline lens, or on small portions of tissue imaged with high spatial resolutions comparable to regular microscopy. Especially an introduction of Fourier domain detection in OCT has opened new frontiers in OCT ophthalmic applications. The resultant substantial speed improvement enables rapid image acquisition, helping to reduce artifacts due to patient motion. Thus, it is currently possible to perform high-speed, in vivo, three-dimensional volumetric imaging over large scales within a reasonable time limit and without reducing system sensitivity. This chapter describes the state-of the art OCT technology dedicated to anterior segment imaging and indicates all important parameters which are required for optimization of the performance of OCT instrument.
Vuiblet, Vincent; Fere, Michael; Gobinet, Cyril; Birembaut, Philippe; Piot, Olivier; Rieu, Philippe
2016-08-01
Renal interstitial fibrosis and interstitial active inflammation are the main histologic features of renal allograft biopsy specimens. Fibrosis is currently assessed by semiquantitative subjective analysis, and color image analysis has been developed to improve the reliability and repeatability of this evaluation. However, these techniques fail to distinguish fibrosis from constitutive collagen or active inflammation. We developed an automatic, reproducible Fourier-transform infrared (FTIR) imaging-based technique for simultaneous quantification of fibrosis and inflammation in renal allograft biopsy specimens. We generated and validated a classification model using 49 renal biopsy specimens and subsequently tested the robustness of this classification algorithm on 166 renal grafts. Finally, we explored the clinical relevance of fibrosis quantification using FTIR imaging by comparing results with renal function at 3 months after transplantation (M3) and the variation of renal function between M3 and M12. We showed excellent robustness for fibrosis and inflammation classification, with >90% of renal biopsy specimens adequately classified by FTIR imaging. Finally, fibrosis quantification by FTIR imaging correlated with renal function at M3, and the variation in fibrosis between M3 and M12 correlated well with the variation in renal function over the same period. This study shows that FTIR-based analysis of renal graft biopsy specimens is a reproducible and reliable label-free technique for quantifying fibrosis and active inflammation. This technique seems to be more relevant than digital image analysis and promising for both research studies and routine clinical practice. PMID:26683669
NASA Astrophysics Data System (ADS)
Ricci, Camilla; Chan, K. L. Andrew; Kazarian, Sergei G.
2006-09-01
Conventional FTIR spectroscopy and microscopy has been widely used in forensic science. New opportunities exist to obtain rapid chemical images and to enhance the sensitivity of detection of trace materials using attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy coupled with a focal-plane array (FPA) detector. In this work, the sensitivity of ATR-FTIR spectroscopic imaging using three different kinds of ATR crystals (Ge coupled with an infrared microscope, ZnSe and diamond) and resulting in three different optical arrangements for the detection of model drug particles is discussed. Model systems of ibuprofen and paracetamol particles having a size below 32 micrometers have been prepared by sieving. The sensitivity level in the three different approaches has been compared and it has been found that both micro and macro-ATR imaging methods have proven to be a promising techniques for the identification of concealed drug particles. To demonstrate the power and applicability of FTIR chemical imaging to forensic research, various examples are discussed. This includes investigation of the changes of chemical nature of latent fingerprint residue under controlled conditions of humidity and temperature studied by ATR-FTIR imaging. This study demonstrates the potential of spectroscopic imaging for visualizing the chemical changes of fingerprints.
The Anatomy of Fourier-Based Correlation Image Velocimetry and Sources of Decorrelating Errors
NASA Astrophysics Data System (ADS)
Giarra, Matthew; Vlachos, Pavlos
2015-11-01
Particle image velocimetry (PIV) algorithms have recently been applied to photographs captured using a variety of techniques including schlieren, synchrotron x-ray, and microscope imaging. While the characteristics of these types of images differ greatly from those of particle images, virtually no analysis has been done to determine how these differences affect the performance of Fourier-based cross correlation (CC) algorithms. Here, we analyze schlieren, x-ray, and traditional PIV images to show that the signal-to-noise ratios (SNR) of their CCs vary across spectral wavenumbers, and that the assignment of a single SNR to the CC is an oversimplification that obfuscates the underlying source of the decorrelating errors. We will show that the failure of traditional algorithms to distinguish correlated from uncorrelated wavenumbers introduces secondary CC peaks that increase measurement uncertainty by decreasing the correlation peak-height ratio, and can cause the measurement to fail by overtaking the true peak. Finally, we introduce a new algorithm that mitigates these issues and increases measurement accuracy by automatically discriminating correlated wavenumbers with no a priori information about the images' contents.
Imaging capabilities of weak-phase interferometric devices
NASA Astrophysics Data System (ADS)
Lannes, Andre
1998-07-01
The first imaging devices of optical interferometry are likely to be of weak phase, typically: a set of three- element arrays, coherent and stable, independently observing the same object. The study of their imaging capabilities essentially addresses the self-calibration problem and its stability. Like in VLBI, the principle of our self- calibration methods consists in preforming a series of alternate phase calibration operations and Fourier synthesis processes. Algebraic graph theory and algebraic number theory prove to be the key topics involved in the phase calibration operation. The latter can often be written in closed form. As expected, the relative expressions explicitly refer to a set of independent closure phases. To illustrate this essential point, we consider the special case of three-element arrays. The corresponding phase calibration formula, which is then particularly simple, provides all the elements for coping with the possible global instabilities. The Fourier synthesis process, which is also involved in the self-calibration cycles, is performed via WIPE, a methodology recently introduced in radio imaging and optical interferometry. The robustness of the image reconstruction process can then be well controlled.
NASA Astrophysics Data System (ADS)
Otten, Leonard John, III; Butler, Eugene W.; Rafert, Bruce; Sellar, R. Glenn
1995-06-01
Kestrel Corporation and the Florida Institute of Technology have designed, and are now manufacturing, a Fourier transform visible hyperspectral imager system for use in a single engine light aircraft. The system is composed of a Sagnac-based interferometer optical subsystem, a data management system, and an aircraft attitude and current position sybsystem. The system is designed to have better than 5 nm spectral resolution at 450 nm, operates over the 440 nm to 1150 nm spectral band and has a 2D spatial resolution of 0.8 mrad. An internal calibration source is recorded with every frame of data to retain radiometric accuracy. The entire system fits into a Cessna 206 and uses a conventional downward looking view port located in the baggage compartment. During operation, data are collected at a rate of 15 Mbytes per second and stored direct to a disk array. Data storage has been sized to accommodate 56 minutes of observations. Designed for environmental mapping, this Fourier transform imager has uses in emergency response and military operations.
NASA Astrophysics Data System (ADS)
Landry, Jean-Thomas; Grandmont, Frédéric
2006-06-01
This paper presents an overview of a step scanning mechanism employing a flexure stage coupled with a dynamically aligned mirror used in the SpIOMM (Spectrometre Imageur de l'Observatoire du Mont Megantic) instrument, an Imaging Fourier Transform Spectrometer (IFTS) concept for ground based telescopes produced in collaboration with ABB and Universite Laval. This instrument can acquire spectra of variable resolutions up to R = λ/Δλ = 10 000 from the near UV to the near IR (350 nm to 900 nm). It is designed to fit the f/8 focus of the Mont Megantic (Quebec, Canada) 1.6m optical telescope. The innovative aspect of this instrument compared to other imaging spectrometers is the spatial coverage. The FOV covers spans of 12 arc minutes in diameter with a pixel sampling of 0.55 arc seconds. Hence spectra of more than a million scene elements are acquired at each measurement.
Tensor representation of color images and fast 2D quaternion discrete Fourier transform
NASA Astrophysics Data System (ADS)
Grigoryan, Artyom M.; Agaian, Sos S.
2015-03-01
In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N × M-point 2-D QDFT into a set of 1-D QDFTs. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. In particular, a proposed method of calculating the 2r × 2r -point 2-D QDFT uses 18N2 less multiplications than the well-known column-row method and method of calculation based on the symplectic decomposition. The proposed algorithm is simple to apply and design, which makes it very practical in color image processing in the frequency domain.
A Novel Gradient Projection Approach for Fourier-Based Image Restoration
NASA Astrophysics Data System (ADS)
Bonettini, S.; Prato, M.
2010-09-01
This work deals with the ill-posed inverse problem of reconstructing a two-dimensional image of an unknown object starting from sparse and nonuniform measurements of its Fourier Transform. In particular, if we consider a priori information about the target image (e.g., the nonnegativity of the pixels), this inverse problem can be reformulated as a constrained optimization problem, in which the stationary points of the objective function can be viewed as the solutions of a deconvolution problem with a suitable kernel. We propose a fast and effective gradient-projection iterative algorithm to provide regularized solutions of such a deconvolution problem by early stopping the iterations. Preliminary results on a real-world application in astronomy are presented.
NASA Astrophysics Data System (ADS)
Rafert, J. B.; Holbert, E. T.; Rusk, E. T.; Durham, S. E.; Caudill, E.; Keating, D.; Newby, H.
1992-12-01
We have constructed several visible, Spatially-Modulated Imaging Fourier Transform Spectrometers (SMIFTS) for spatially resolved spectral imaging in the visible wavelength region based on work by several authors including Yoshihara and Kitade (1967), Okamoto et al. (1984), Barnes (1985) and Smith and Schempp (1991). Our spectrometers require no moving parts, are compact and enjoy a number of advantages over the other spectral data collection technologies. The unique combination of characteristics define an important niche for astronomical, remote sensing, and reconnaissance spectral data acquisition. Our SMIFTS simultaneously acquires hundreds or thousands of spectral bands for hundreds or thousands of spectral channesl. This type of sensor has been called a "hyperspectral" sensor to emphasize the major quantitative difference between this type of sensor and multispectral imagers which collect only a few spectral bands. The SMIFTS consists of input optics (a telescope), a field limiting aperture, a beamsplitter which divides the input beam into two paths, two mirrors which redirect the split beams through the same path, a collimating lens which forms the interferogram of the input aperture on the detector plane, and a cylindrical imaging lens. Thus on the detector array one axis contains spatial information and the other axis contains the spectral information for each point of the spatial axis. The result of this arrangement is that each row of the detector array contains the interferogram of the corresponding point on the aperture or slit. This slit can be fixed upon the target, or the slit can be scanned across the target to build up a second axis of spatial information resulting in a data set with four dimensions: two spatial, one spectral, and one temporal. We present sample data for both astronomical and remote sensing applications taken with the Malabar SMIFTS. Barnes, T.H. "Photodiode Array Fourier Transform Spectrometer with Improved Dynamic Range", Appl
NASA Astrophysics Data System (ADS)
Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.
2013-03-01
Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.
Optical design of a static LWIR Fourier-transform imaging spectrometer with high throughput
NASA Astrophysics Data System (ADS)
Wang, Hai-yang; Fu, Yan-peng; Zheng, Wei-jian; Liao, Ning-fang; Jin, Wei-qi
2013-08-01
A LWIR Fourier-transform imaging spectrometer based on the static Michelson interferometer with high throughput is presented. Advantages and disadvantages of some common structures of imaging spectrometer are analyzed. Some selection of optimum configurations for imaging spectrometer is proceeded. The interferogram is acquired over the whole field of the camera while the scene of interest scans the path difference range, and vignetting should be strongly limited while keeping the size of the interferometer as small as possible for manufacturability and practicability reasons. The key point is to put the entrance pupil of the imaging lens inside the interferometer. The design of optical system is proposed. The field of view(FOV) is 10°.The operating wavelength range is from 8 to 12μm, F number is 2 and the working temperature range is -20°C～40°C. Optical system with 100% cold shield efficiency is good adaptability to wide environment temperature change. The spectrometer system has low utilization of solar energy in the infrared band, so to ensure its transmittance, and it is necessary to use a small amount of lenses as possible, so here the method of the active electromechanical athermalisation just uses four lenses in the system. Modulation transfer function (MTF), aberrant and distortion etc of optical system are analyzed. The results show that an excellent performance and image performance are obtained despite the simple structure.
Huang, Yong; Zhang, Kang; Ibrahim, Zuhaib; Cha, Jaepyeong; Lee, W. P. Andrew; Brandacher, Gerald; Gehlbach, Peter L.
2012-01-01
Abstract. The authors describe the development of an ultrafast three-dimensional (3D) optical coherence tomography (OCT) imaging system that provides real-time intraoperative video images of the surgical site to assist surgeons during microsurgical procedures. This system is based on a full-range complex conjugate free Fourier-domain OCT (FD-OCT). The system was built in a CPU-GPU heterogeneous computing architecture capable of video OCT image processing. The system displays at a maximum speed of 10 volume/s for an image volume size of 160×80×1024 (X×Y×Z) pixels. We have used this system to visualize and guide two prototypical microsurgical maneuvers: microvascular anastomosis of the rat femoral artery and ultramicrovascular isolation of the retinal arterioles of the bovine retina. Our preliminary experiments using 3D-OCT-guided microvascular anastomosis showed optimal visualization of the rat femoral artery (diameter<0.8 mm), instruments, and suture material. Real-time intraoperative guidance helped facilitate precise suture placement due to optimized views of the vessel wall during anastomosis. Using the bovine retina as a model system, we have performed “ultra microvascular” feasibility studies by guiding handheld surgical micro-instruments to isolate retinal arterioles (diameter∼0.1 mm). Isolation of the microvessels was confirmed by successfully passing a suture beneath the vessel in the 3D imaging environment. PMID:23224164
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Cai, Wei (Inventor)
2007-01-01
A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model.
Ramaiah, Vijayaraghavan L; Harish, B; Sunil, HV; Selvakumar, Job; Ravi, Kishore AG; Nair, Gopinathan
2011-01-01
Aim: To define the range of phase spread on equilibrium gated radionuclide ventriculography (ERNV) in normal individuals and derive the cut-off limit for the parameters to detect cardiac dyssynchrony. Materials and Methods: ERNV was carried out in 30 individuals (age 53±23 years, 25 males and 5 females) who had no history of cardiovascular disease. They all had normal left ventricular ejection fraction (LVEF 55–70%) as determined by echocardiography, were in sinus rhythm, with normal QRS duration (≤120 msec) and normal coronary angiography. First harmonic phase analysis was performed on scintigraphic data acquired in best septal view. Left and right ventricular standard deviation (LVSD and RVSD, respectively) and interventricular mechanical delay (IVMD), the absolute difference of mean phase angles of right and left ventricle, were computed and expressed in milliseconds. Mean + 3 standard deviation (SD) was used to derive the cut-off limits. Results: Average LVEF and duration of cardiac cycle in the study group were 62.5%±5.44% and 868.9±114.5 msec, respectively. The observations of LVSD, RVSD and right and left ventricular mean phase angles were shown to be normally distributed by Shapiro–Wilk test. Cut-off limits for LVSD, RVSD and IVMD were calculated to be 80 msec, 85 msec and 75 msec, respectively. Conclusion: Fourier phase analysis on ERNV is an effective tool for the evaluation of synchronicity of cardiac contraction. The cut-off limits of parameters of dyssynchrony can be used to separate heart failure patients with cardiac dyssynchrony from those without. ERNV can be used to select patients for cardiac resynchronization therapy. PMID:23326063
X-ray Phase Imaging Microscopy with Two-Dimensional Knife-Edge Filters
NASA Astrophysics Data System (ADS)
Choi, Jaeho; Park, Yong-Sung
2012-04-01
A novel scheme of X-ray differential phase imaging was implemented with an array source and a two-dimensional Foucault knife-edge (2DFK). A pinhole array lens was employed to manipulate the X-ray beam on the Fourier space. An emerging biaxial scanning procedure was also demonstrated with the periodic 2DFK. The differential phase images (DPIs) of the midrib in a leaf of a rose bush were visualized to verify the phase imaging of biological specimens by the proposed method. It also has features of depicting multiple-stack phase images, and rendering morphological DPIs, because it acquires pure phase information.
Huang, Yong; Furtmüller, Georg J.; Tong, Dedi; Zhu, Shan; Lee, W. P. Andrew; Brandacher, Gerald; Kang, Jin U.
2014-01-01
Purpose To demonstrate the feasibility of a miniature handheld optical coherence tomography (OCT) imager for real time intraoperative vascular patency evaluation in the setting of super-microsurgical vessel anastomosis. Methods A novel handheld imager Fourier domain Doppler optical coherence tomography based on a 1.3-µm central wavelength swept source for extravascular imaging was developed. The imager was minimized through the adoption of a 2.4-mm diameter microelectromechanical systems (MEMS) scanning mirror, additionally a 12.7-mm diameter lens system was designed and combined with the MEMS mirror to achieve a small form factor that optimize functionality as a handheld extravascular OCT imager. To evaluate in-vivo applicability, super-microsurgical vessel anastomosis was performed in a mouse femoral vessel cut and repair model employing conventional interrupted suture technique as well as a novel non-suture cuff technique. Vascular anastomosis patency after clinically successful repair was evaluated using the novel handheld OCT imager. Results With an adjustable lateral image field of view up to 1.5 mm by 1.5 mm, high-resolution simultaneous structural and flow imaging of the blood vessels were successfully acquired for BALB/C mouse after orthotopic hind limb transplantation using a non-suture cuff technique and BALB/C mouse after femoral artery anastomosis using a suture technique. We experimentally quantify the axial and lateral resolution of the OCT to be 12.6 µm in air and 17.5 µm respectively. The OCT has a sensitivity of 84 dB and sensitivity roll-off of 5.7 dB/mm over an imaging range of 5 mm. Imaging with a frame rate of 36 Hz for an image size of 1000(lateral)×512(axial) pixels using a 50,000 A-lines per second swept source was achieved. Quantitative vessel lumen patency, lumen narrowing and thrombosis analysis were performed based on acquired structure and Doppler images. Conclusions A miniature handheld OCT imager that can be used for
PHASE CORRELATION METHOD FOR THE ALIGNMENT OF TOTAL SOLAR ECLIPSE IMAGES
Druckmueller, M.
2009-12-01
A modified phase correlation method, based on Fourier transform, which enables the alignment of solar coronal images taken during the total solar eclipses, is presented. The method enables the measurement of translation, rotation, and scaling factor between two images. With the application of this technique, pairs of images with different exposure times, different brightness scale, such as linear for CCD and nonlinear for images taken with photographic film, and even images from different emission lines can be aligned with sub-pixel precision.
An approach to the interface of a reverse-phase high-performance liquid chromatograph and a Fourier transform infrared spectrometer has been developed in which the solutes eluting from the column are continuously extracted into dichloromethane. The application of both flow cell a...
NASA Astrophysics Data System (ADS)
Rafert, J. Bruce; Sellar, R. Glenn; Holbert, Eirik; Blatt, Joel H.; Tyler, David W.; Durham, Susan E.; Newby, Harold D.
1994-06-01
The Florida Institue of Technology and the Phillips Laboratory have developed several advanced visible (0.4-0.8 micrometers ) imaging fourier transform spectrometer (IFTS) brassboards, which simultaneously acquire one spatial and one spectral dimension of the hyperspectral image cube. The initial versions of these instruments may be scanned across a scene or configured with a scan mirror to pick up the second spatial dimension of the image cube. The current visible hyperspectral imagers possess a combination of features, including (1) low to moderate spectral resolution for hundreds/thousands of spectral channels, (2) robust design, with no moving parts, (3) detector limited free spectral range, (4) detector-limited spatial and spectral resolution, and (5) field widened operation. The utility of this type of instrument reaches its logical conclusion however, with an instrument designed to acquire all three dimensions of the hyperspectral image cube (both spatial and one spectral) simultaneously. In this paper we present the (1) detailed optical system designs for the brassboard instruments, (2) the current data acquisition system, (3) data reduction and analysis techniques unique to hyperspectral sensor systems which operate with photometric accuracy, and (4) several methods to modify the basic instrument design to allow simultaneous acquistion of the entire hyperspectral image cube. The hyperspectral sensor systems which are being developed and whose utility is being pioneered by Florida Tech and the Phillips Laboratory are applicable to numerous DoD and civil applications including (1) space object identification, (2) radiometrically correct satellite image and spectral signature database observations, (3) simultaneous spactial/spectral observations of booster plumes for strategic and surrogate tactical missile signature identification, and (4) spatial/spectral visible and IR astronomical observations with photometric accuracy.